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INTRODUCTION
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The blue crab, Callinectes sapidus, is a species of swimming crab native to the

Western Atlantic, from Maine to Argentina, and the Gulf of Mexico (Rathbun 1896;

Williams 1974). One of the more defined populations of blue crab is in found in the

Chesapeake Bay (Rugolo et al. 1997), where this species is a key component of the

estuarine foodweb (Baird and Ulanowicz 1989), and supports both important recreational

fishing opportunities and the Chesapeake Bay’s most lucrative commercial fishery

(Kennedy et al. 2007).

Like many estuarine-dependent species, the blue crab exhibits a complex life

history which involves movement between marine and estuarine habitats (Figure 1.1).

Mating occurs in shallow water tributaries throughout Chesapeake Bay when females

molt to maturity; on the molt to maturity, males cradle females and transfer sperm during

her soft stage (Jivoff et al. 2007). In general, mating occurs between May and October

(Hines et al. 2003). After mating, inseminated females undergo a long-distance migration

from subestuaries throughout the Bay to the spawning areas in the lower Bay, with peak

movement occurring in the fall (Aguilar et al. 2005, 2008; Hines et al. 2008).  Most

females then overwinter and will begin producing broods of eggs in the following year. A

female will produce several broods in her lifetime potentially over multiple years (Hines

et al. 2003; Darnell et al. 2009). The resulting larvae (zoea) are then carried into the

waters off the coastal shelf (Johnson and Hess 1990; Roman and Boicourt 1999;

Natunewicz and Epifanio 2001).

After undergoing a series of molts, zoea will metamorphose into postlarvae,

called megalopae, and return to the Chesapeake Bay (Epifanio 2007). Re-entering the

Chesapeake Bay from the Atlantic Ocean in late summer and fall
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Figure 1.1 Life history cycle of the blue crab, Callinectes sapidus. (Diagram provided by
the Smithsonian Environmental Research Center)
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(van Montfrans et al.1990, 1995), megalopae then undergo metamorphosis to the first

juvenile instar (C1) and settle in primarily in seagrass beds or other structured habitats of

the lower Bay (Orth and van Montfrans 1987; Lipcius et al. 2005, 2007). Juvenile blue

crabs continue to feed and grow within initial lower Bay settlement habitats until a size of

approximately 20 mm carapace width (CW; 5th to 7th crab instar, C5-C7 stage).  At this

stage, juveniles commence the secondary dispersal phase (Etherington and Eggleston

2000), whereby they redistribute into a wide array of shallow water habitats throughout

Chesapeake Bay (Pile et al. 1996; Hines et al. 1987; Hines 2007) which serve as

secondary nurseries.  Secondary dispersal may also occur in early instars (C1-C2; Reyns

and Eggleston 2004; Reyns et al. 2006) and appears to be mediated by density-dependent

competition and cannibalism among conspecifics (Gunther 1992; Moksnes et al. 1997;

Hines and Ruiz 1995; Etherington and Eggleston 2003).  Secondary dispersal in this

species plays a large role in structuring population dynamics by redistributing juveniles

from initial settlement habitats that harbor high densities of juveniles to low density

habitats that may receive little or no postlarval recruitment (Etherington and Eggleston

2003).

The juvenile stage plays a vital role in the population dynamics of the Chesapeake

Bay blue crab. Juvenile blue crabs grow rapidly in their first year, some will even reach a

marketable size. Until recently the stock assessment models assumed 100% of the age 0

crabs would reach marketable size before the season was over. However, recent changes

have reduced this percentage to 60% (Miller et al. 2011). This is very important as any

changes in the abundance of juveniles susceptible to the fishery will impact the historical

exploitation rates leading to changes in the assessment of the population’s health.
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Therefore it is imperative we have an accurate estimate of the abundance of juvenile blue

crabs.

In Chesapeake Bay, secondary dispersal occurs during fall with juvenile blue

crabs typically arriving in upper Bay subestuaries in October-November (Hines et al.

1987). With the onset of winter juveniles will then bury in the sediment and become

inactive and as water temperatures decline. Although the timing of secondary dispersal to

upper Bay subestuaries in Chesapeake Bay is relatively well documented (Hines et al.

1995; Hines 2007), the fine-scale patterns of seasonal depth and habitat selection by

juvenile blue crabs remain poorly documented in Chesapeake Bay. The primary

objectives of this study were to quantify spatio-temporal patterns of juvenile crab

abundance in the shallow water tributaries of upper Chesapeake Bay.

Objectives

For this study I had three objectives.

Objective 1: Calculate gear efficiencies for active juvenile blue crabs using two gear
types, and one gear type for overwintering juvenile blue crabs.

To address this objective, a series of gear efficiency experiments were conducted

for two gear types: (1) a commercial grass scrape and (2) a modified commercial grass

scrape fitted with a tooth bar that allowed it to act in the field as a small scale dredge. A

gear efficiency study for both types of gear was conducted on active juvenile blue crabs

during summer using mark-recapture methodologies.  Secondly, a gear efficiency study

was conducted for only the small-scale dredge on overwintering juvenile blue crabs using

a series of depletion experiments; this component of the study did not include the
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commercial grass scrape because gear efficiency was assumed to be near zero based on

previous observations. This objective is addressed in Chapter 2.

Objective 2: Quantify the spatiotemporal patterns of juvenile blue crabs densities in two
rivers within the upper Chesapeake Bay with an emphasis on the spatial distribution
during winter.

To address this objective the depth distribution and of juvenile blue crabs was

tracked between October 2010 and July 2011 in the Rhode and West rivers using a

fishery-independent survey involving a stratified sampling design with depth and bottom

sediment type as strata. A generalized additive model was used to predict the density and

distribution of juvenile blue crabs in the area sampled. This study is presented in Chapter

3 of this thesis.

Objective 3: Conduct a study of the feasibility of a fishery-independent winter survey by
sampling the shallow waters of the Maryland section of the Chesapeake Bay for juvenile
blue crabs and comparing the density of juvenile blue crabs within the shallow waters to
the densities observed in the Winter Dredge Survey.

To address this objective, two creeks were sampled in each of four river systems

selected to be broadly representative of four regions of the upper Chesapeake Bay. The

average density of juvenile blue crabs found in each river system was compared to the

average density of juvenile blue crabs in all winter dredge survey sites within nearby sites

(<16 km). An estimate of absolute juvenile abundance was then calculated using

combined Shallow Water Survey and Winter Dredge Survey(WDS) data and compared to
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estimates generated for the WDS alone to determine if the juvenile crab population is

underestimated by the current WDS. This objective is addressed in Chapter 4 of this

thesis.
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CHAPTER 2:

EFFICIENCY OF GEAR FOR SAMPLING ACTIVE
AND OVERWINTERING JUVENILE BLUE CRABS
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Abstract

An accurate estimate of sampling gear efficiency is critical when estimating the

absolute abundance of a species from fisheries independent surveys. For this thesis, three

gear efficiencies were calculated using alternative gear that could be used to sample

juvenile blue crabs: (1) commercial grass scrape sampling active juvenile blue crabs, (2)

small-scale dredge sampling active juvenile blue crabs, and (3) small-scale dredge

sampling overwintering juvenile blue crabs. Two estimate methods were used to calculate

the three gear efficiencies: a mark recapture method estimated the efficiencies of gears

sampling active juvenile blue crabs and a depletion method estimated the efficiency of

the gear that sampled overwintering blue crabs. There was no significant difference in the

efficiencies of each gear efficiency calculated.  The individual efficiencies, each

approximately 25%, are similar to the weighted average gear efficiency for all boats

participating in the 2011 winter dredge survey as well as previous summer surveys.
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Introduction

Searches rely upon the relative movement of target and sensor (Koopman 1956).

In passive searches, the sensor is fixed in time and the search relies on the motion of the

target toward the sensor, e.g. RADAR or a sit and wait predator (Gerritsen and Strickler

1977).  Active searching requires movement of the sensor relative to the target, e.g.,

search and rescue or a cruise predator (Gerritsen and Strickler 1977).  In many instances

of active searching both the sensor and the target move – because often one party wants

to find the other which is in turn seeking to evade being found (e.g., predator – prey

interactions).  In both active and passive search strategies the sensitivity and efficiency of

the sensor are important determinants of the overall effectiveness of the search.  A sensor

with a wide encounter radius is generally better than one with a smaller search radius, and

a more sensitive sensor better than a less sensitive one.  The encounter radius of a sensor

is generally easy to determine, but the efficiency of the sensor is often challenging to

quantify.  Yet both are important determinants of the effectiveness of the search process.

In natural resource management, searches are often conducted to determine the

number of individuals of a target species in an area.  The resultant abundance estimates

are used to derive estimates of abundance which when sequentially combined can provide

estimates of population growth and survival.  Often the search is conducted within a

rigorous statistical framework, (e.g., random and stratified random surveys), which then

provide estimates of the variance in the abundances estimated in each area surveyed.

Subsequently, the abundance per area can be multiplied by the total survey area to

provide an estimate of the total abundance.  However, this approach assumes that the
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sensor used in the survey has an absolute encounter radius and a known efficiency. Thus,

knowledge of the encounter radius and efficiency of sensors used in surveys is central to

the reliability of the abundances and vital rates, if estimated, of any survey.

Fishery management use a variety of sensors to conduct surveys.  Increasingly

managers use electronic sensors (both passive and active hydroacoustics and lidar) to

estimate abundance.  However, nets are still commonly used to assess abundance.  These

have the advantage of having a known and binary encounter radius – indexed by the

overall size of the net.  However, the efficiency of nets can be difficult to estimate and is

often poorly known.  In many cases, managers of fishery resources rely on indices of

relative abundance and use a statistical model to expand these relative abundances to

yield an absolute abundance.  But even in this case, it is necessary to assume that the

sampling gear is equally efficient in all habitats.

The blue crab, Callinectes sapidus, is a species of swimming crab native to the

Western Atlantic, from Maine to Argentina, and the Gulf of Mexico (Rathbun 1896;

Williams 1974). One of the more defined populations of blue crab is in found in the

Chesapeake Bay (Rugolo et al. 1997), where this species is a key component of the

estuarine foodweb (Baird and Ulanowicz 1989), and supports both important recreational

fishing opportunities and the Chesapeake Bay’s most lucrative commercial fishery

(Kennedy et al. 2007). Management of blue crab in the Chesapeake Bay relies upon data

from fishery independent surveys and from the fisheries which are combined in a stock

assessment model to establish management reference points (Miller et al. 2011).  Central

to the reliability of the assessment is a winter dredge survey which estimates the



12

abundance of blue crabs during winter months when crabs are quiescent in the sediments

(Sharov et al. 2003).  Substantial effort is invested to estimate the efficiency of the winter

dredge gear so that the fishery managers can provide stakeholders with estimates of

absolute abundance.  However, the estimate of the efficiency of the survey for juvenile

crabs is known to be highly uncertain because juvenile crabs are distributed outside of the

survey area (shallow water), thereby allowing availability to the survey to potentially

vary, because juveniles may not be fully retained by the mesh on the dredge itself

(efficiency), and because the vagility of crabs changes seasonally with distinct active and

quiescent periods.

Estimating efficiency of active fishery survey gear is challenging. One common

method of estimating gear efficiency appropriate for use with the chosen gear, on active

crabs, is mark recapture. Mark recapture relies on release and resampling of a known

number of marked individuals.  In simple terms, the known density of marked individuals

released can be compared to the density of marked individuals caught in the sample. The

proportional difference of sampled density and known density is the estimate of gear

efficiency. The most common method of estimating the gear efficiency of inactive crabs

is the depletion method (Sharov et al. 2003; Volstad et al. 2000). Depletion studies

require that you sample the same area multiple times and record the decline in catch per

sample. While this method is commonly used, it is dependent on being able to sample the

exact same area multiple times. There are methods that can be used if you deviate from

the original sampled path (Rago et al. 2006); however, the calculation of the gear

efficiency is more complicated. An alternative method for use on inactive crabs, is one in

which you take an initial sample within a defined area larger than the sampled area to get



13

a density estimate. The defined area can then be sampled till no crabs are left. The total

crabs caught can then be used to calculate a known true density. This method requires

that no immigration or emigration occurs while the defined area is being depleted. This

method also requires that the gear remains in the defined area while depleting it of

juvenile blue crabs. Like the mark recapture estimate, the proportional difference of

initial sample density and known density is the estimate of gear efficiency.

Here, I evaluate the gear efficiencies of two alternative gears that could be used to

target juvenile crabs in both the active and quiescent phase. Commercial grass scrapes

are a familiar gear type used in the sampling of juvenile blue crabs. The grass scrape is

similar to a bottom trawl but provides a rigid opening that feeds to a mesh net. This is

beneficial because it provides a fixed gear width which can then be easily multiplied by

the distance the gear is dragged to accurately calculate the total area sampled. The grass

scrape is the ideal gear for active juvenile blue crabs; however it is ineffective when

sampling for stationary crabs that are buried into the sediment. A dredge is commonly

used to sample overwintering blue crab, but this gear type requires larger vessels that

cannot access the shallow water. A commercial grass scrape can be modified with a tooth

bar that allows the gear to act as a dredge while being small enough to be pulled by

smaller boats with less draft (Figure 2.1).

Gear efficiencies were predicted to differ between gear types, and among winter

when crabs are inactive and buried and other months when crabs are active and mobile.

These differences necessitated estimation of three separate three gear efficiencies: (1)

efficiency of the commercial grass scrape on active blue crabs, (2) efficiency of the
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Figure 2.1 Picture of the modified commercial grass scrape fitted with a tooth bar that
allowing it to act as a small scale dredge. The commercial grass scrape was identical
except with a solid bar rather than a tooth bar.
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small-scale dredge on active juvenile blue crabs, and (3)  efficiency of the small-scale

dredge for overwintering blue crabs.  Gear efficiency for the grass scrape in winter was

not estimated because it is known that this gear type is not effective for sampling inactive

blue crabs.

Materials and Methods

Gear efficiency for active juvenile blue crabs

A small-scale mark-recapture experiment was designed and conducted during

June 2010 to estimate the gear efficiency for the commercial crab scrape and the small

dredge sampling active juvenile blue crabs. A sample of crabs were collected from

around the Chesapeake Bay using the commercial grass. A subsample of 512 crabs, 408

of which were less than 60mm (mean size 44 mm carapace width (cw), range 11-167 mm

cw), were marked using coded microwire tags (CWTs; Northwest Marine Technology,

Inc. NMT), Shaw Island, WA 98286) prior to release.  CWTs have negligible rates of

short-term tag loss and have been successfully used in a variety of mark-recapture

experiments with this species (Eggleston and Johnson 2008; Johnson and Eggleston

2010; Johnson et al. 2011). Tagged crabs were released in July of 2010 into a small cove

(0.32 ha) within the Rhode River resulting in an approximately uniform density of 0.16

crabs m-2 for all crabs and 0.13 crabs m-2 for crabs less than 60mm. Emigration from the

study area was not likely to occur given the spatial configuration of the cove which had a

narrow opening and because sampling commenced immediately following release.
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Each gear was then towed randomly within the study area for a distance of 75m

and all captured blue crabs were scanned with a magnetic moment detector (NMT) to

detect the presence of a CWT. The carapace width and sex of each recaptured crab was

then recorded, and crabs were returned to the study site along the approximate path of the

tow prior to beginning each subsequent tow. In total, 22 tows were completed with the

commercial grass scrape and 18 tows with the small scale dredge over the course of a

sampling period of four hours. The gear efficiency was calculated by dividing the average

observed density of tagged crabs by the expected density of juvenile blue crabs, those

less than 60mm.

Gear efficiency of overwintering juvenile blue crabs

Gear efficiency for juvenile blue crabs during winter may differ from that in

summer because crabs are known to bury into the sediment at low temperatures which

may make them less vulnerable to capture by the survey gear. Winter gear efficiency

experiments were conducted in the Patuxent River given that in 2010 it had the highest

summer juvenile blue crabs densities of any river on the western Maryland section of the

Chesapeake Bay. Three independent locations in shallow tributaries of the lower

Patuxent River were randomly chosen to conduct the gear efficiency experimental trials.

To begin a trial, a 5m × 75m experimental area was delineated by marking the four

corners with PVC pipe driven into the sediment. At least one tow was performed inside

the marked area and a minimum of two additional tows in the area immediately adjacent

to the marked area using a small scale winter dredge (Figure 2.2). The density of juvenile

blue crabs in the marked area was assumed to be identical to the density just outside the
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Figure 2.2. Schematic diagram of the overwintering juvenile blue crabs gear efficiency
study sites. The red circles represent PVC pipes that mark the study area. The black lines
show the border lengths. The blue lines represent the initial tows performed.

5 meters

75

meters

Initial Tows
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marked area. Additional tows were performed within the marked area until the study area

was assumed to be completely depleted of crabs. Care was taken not to have the small-

scale dredge leave the defined area. If the gear appeared to be drifting out of the area the

tow was stopped and reset. To be reasonably sure that the area was completely depleted,

sampling continued until the following two conditions were met: (1) a minimum of 20

tows had been completed within the study area and (2) no blue crabs were captured on

three successive tows. This process was repeated in three experimental trials to generate

three independent estimates of gear efficiency. However, due to gear failure on the third

attempt only two trials were used in the calculation of the gear efficiency.

For each winter tow the carapace widths of all blue crabs caught were measured.

To calculate the gear efficiency for juvenile blue crabs, first the sum total of all blue

crabs less than 60mm collected in all tows inside the study area was calculated. This

value was an estimate of the actual number of juvenile blue crabs within the marked area.

This value was then divided by (375m2), which was the size of the study area (5 × 75m)

to calculate the absolute density (no. m-2) of juvenile blue crabs (CW < 60mm) in the

study area. A density estimate of blue crabs less than 60mm was calculated for each of

the initial tows. The gear efficiency was calculated by dividing this estimate of relative

density by the estimated absolute density. For each trial, the gear efficiency estimates

calculated from the initial tows were averaged. The trials were averaged to get the final

gear efficiency estimate. During the sampling of the third site the boats davit broke and

sampling could not be completed.  Thus, the marked area could not be completely

depleted.  Therefore, only the first two sites were used to calculate the gear efficiency.
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Results

In summer for active juvenile blue crabs, an area with a known density of 9.56

juvenile crabs less than 60 mm per 75m2 was sampled. The grass scrape caught an

average of 2.4 ± 2.9 crabs per 75m2 (range 0 – 12 crabs per 75 m2, n=22, Table 2.1) The

distribution of catches in the grass scape is not normal and appears to follow the negative

binomial distribution given the standard deviation is larger than the mean, this is common

in count data. For the small scale dredge the average tow contained 2.8 ± 2.6 crabs per

75m2 (range 0 – 7 crabs per 75 m2, n=18, Table 2.1). Like the distribution of grass scrape

catches, the distribution of catches for the small scale dredge most closely resembles that

of the negative binomial distribution. The resultant gear efficiencies were 24.7% for the

commercial grass scrape and 25.3% for the small scale dredge.

In sampling of inactive juvenile crabs in the Patuxent River 27 and 32 tows were

completed to meet the depletion requirement established in the sampling design. The

third trail could not be completed due to a gear failure. The resultant average abundance

among the two completed areas was 33.8 ± 22.4 crabs per 375 m2 (Table 2.2). The

estimated abundance in the adjacent unmarked areas was 7.2 ± 8.6 crabs per 375m2

(Table 2.2). The estimated gear efficiency for overwintering blue crabs, less than 60mm,

for the small scale dredge was 24.2 %.  A summary of the site specific gear efficiency

estimates for overwintering juvenile blue crabs can be found in Table 2.2.
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Table 2.1 A Summary of the gear efficiency for the small scale dredge and commercial
grass scrape on active juvenile blue crabs.

Average
Crabs per
75m Tow

Released
Density in

crabs / 75m2

Gear
Efficiency
Estimate

Standard
Error

Grass Scrape 2.364 9.556 0.247 0.06
Dredge 2.778 9.556 0.253 0.05
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Table 2.2. A Summary of the gear efficiency estimates and the overall average gear
efficiency for the small scale dredge on overwintering juvenile blue crabs. The standard
error is calculated from the two trial estimates.

Gear
Efficiency
Estimate

Standard
Error

Inside Left 0.1128
Outside Left 0
Outside Right 0.5039
Trial 1 0.2056 0.15267
Inside Left 0.2778
Inside Right 0.5556
Outside Left 0
Outside Right 0.27778
Trial 2 0.27778 0.1134

Average 0.24167



22

Discussion

The purpose of this study was to accurately estimate the gear efficiencies for the

commercial grass scrape on active blue crabs, the efficiency of the small-scale dredge on

active juvenile blue crabs, and the efficiency of the small-scale dredge for overwintering

blue crabs. The efficiency estimates ranged from 24.2% to 25.3% and the confidence

intervals for all three estimates overlapped with one another. Therefore there was no

significant difference among the three gear efficiencies calculated. I expected to find a

lower gear efficiency estimate on active crabs than inactive crabs, using the small scale

dredge, because I assumed they might avoid the gear. The fact that the gear efficiency

estimate for the small scale dredge on active and buried crabs is so similar suggests that

active crabs are not attempting or are not able to avoid the gear when they are active.

The use of mark recapture studies in calculating gear efficiency is well

documented in many fisheries. In this study the estimated gear efficiency for the

commercial grass scrape is consistent with other similar studies. However, this study

included a modified commercial grass scrape that would act as a small scale dredge. It

was not known whether the modifications to the commercial grass scrape would have an

impact on the gear efficiency. It was determined that the gear modifications did not have

an appreciable effect on the gear efficiency given the small difference between the two

estimates and significant overlap between the two confidence intervals. The study

requires the following assumptions: (1) No tagged crabs left the sampling area and (2) the

crabs were homogeneously distributed within the sampling area.  Given the mobility of

blue crabs it is likely both assumptions were violated. However, it is possible the impacts
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of the violations are not very large. Given the relatively short duration of sampling it is

unlikely that many crabs left the small cove. Even if the crabs did not leave the cove they

must be evenly distributed within the cove. When the crabs were first released great care

was taken to ensure the crabs were scattered evenly within the cove. It is possible that

once released the crabs would move towards the shallow waters and away from other

crabs. However, as the tows were conducted within the cove the collected crabs were

again scattered around the entire cove. Some improvements could be made if this mark

recapture study was going to be conducted again. Firstly, the cove should be blocked off

by a net that would prevent any crabs from leaving.  Secondly, a defined sampling pattern

could be implemented that reduces the impacts of the crabs migrating within the cove.

Given the known limitations and issues with these gear efficiency studies, a degree of

caution should be taken in any subsequent results that rely on converting raw catch to

absolute density/abundance.

An emphasis was put on ensuring the gear efficiency estimates were accurate, a

comparison can be made between the estimates generated from this study and to those of

other similar depletion style efficiency estimates for dredge gear. In the study conducted

by Volstad et al. (2000) they estimated changes in gear efficiency on overwintering blue

crabs of all sizes using different dredge linings. They found gear efficiencies ranging

from 15% to 22% with standard errors ranging from 2% to 3%. These gear efficiencies

are slightly lower than those observed in this study. The study conducted by Sharov et al.

(2003) is most comparable to this winter gear efficiency study, here they found the gear

efficiencies ranged from 17% to 42% with standard errors ranging between 1% and 9%.

The wide range of gear efficiencies can be explained by the design, in this study they ran



24

the gear over a defined path and used the rate of depletion to estimate the gear efficiency.

Therefore, they must assume that the gear never leaves the original path. A problem with

this assumption is that it is incredibly difficult to follow the exact same path every time.

Any deviation from the original path will result in a slower apparent depletion rate which

will imply a lower gear efficiency estimate. Each year the returning captains would be

better able to keep the gear on the original path. This resulted in an apparent increase in

gear efficiency over time.

This winter gear efficiency study was designed in such a way that the gear was

only required to remain within a defined area and not to a defined path. The Sharov et al.

(2003) study looked at the rate of depletion, while this study compared the density of

crabs within an initial tow to the density of crabs observed by fully depleting the defined

area. In this study two assumptions must be made: (1) the gear does not leave the defined

area while depleting it of crabs, and (2) the density of crabs within the defined area is the

same as the area directly adjacent. While every attempt was made to ensure the gear

never left the defined area it was possible. If the gear left the area, any crabs collected

outside the area would be included in the final observed density and result in an

artificially lowered gear efficiency rate. If the second assumption is violated then the

tows that were taken outside the defined area could not be compared to the density

observed in the depleted area. If the winter gear efficiency were to be repeated, none of

the initial tows would occur outside of the marked area and I would increase the number

of trials conducted. This would eliminate the need for the assumption of homogeneous

density within and adjacent to the depleted area. Additionally I would attach a floating
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marker to a line tied to the mouth of the gear that would allow the boat operator to know

if the gear was going to leave the defined area.
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CHAPTER 3:

SPATIOTEMPORAL PATTERNS IN JUVENILE BLUE CRABS DENSITIES IN THE
RHODE AND WEST RIVERS, MD
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Abstract

The life history of the Chesapeake Bay blue crab population is well described.

However, the habits of juvenile blue crabs after they leave the lower bay habitats are not

as well described as other life stages. In particular, little is known about the depth

distribution of juvenile blue crabs during winter. The spatial and temporal patterns of

juvenile blue crabs densities in the Rhode and West Rivers, two adjacent tributaries of

upper western Chesapeake Bay, was examined in a seasonal study. To quantify the

distribution of juvenile blue crabs in these systems, a stratified survey was conducted

using depth and bottom sediment type as strata. The spatiotemporal patterns of juvenile

blue crabs density was described. Most relevant to this investigation was the finding that

depth, sediment and sampling time were significant predictors of juvenile blue crabs

density. During the winter sampling period juvenile blue crabs were found mostly in the

shallow waters on the edge of the rivers sampled.  Consistent with earlier work in these

systems, it was observed that in the summer month’s juvenile blue crabs were

predominantly found in shallow waters less than 1.5m.
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Introduction

Following a period of larval development in oceanic waters, juvenile blue crabs

settle in high salinity estuarine waters.  Structured habitats, such as seagrass, appear to be

preferred habitats, for early stage juveniles, as a protection against high mortality rates

(van Montfrans eta al. 1995; Stockhausen and Licpius 2003; see Lipcius et al. 2007 for

review). As the juveniles grow, competition for valuable food resources in seagrass beds

increases (Etherington et al. 2003) and the value of seagrass as a refuge from predation

diminishes (Pile et al. 1996; Lipcius et al. 2007). At this stage, many juveniles undergo

secondary dispersal. This process appears to be driven by density-dependent competition

among conspecifics (Günther 1992; Etherington and Eggleston 2003; Reyns and

Eggleston 2004), which is not surprising given the cannibalistic nature of the species

(Moksnes et al. 1997; Hines and Ruiz 1995). Secondary dispersal results in a wide

distribution of juvenile crabs away from the primary settlement sites (Etherington and

Eggleston 2003), such that juveniles become distributed to lower density juvenile habitats

that receive little or no postlarval settlement.

Secondary juvenile habitats are often shallow tributary or littoral habitats.

Juveniles tend to remain in these shallow secondary habitats until they mature, (Hines et

al. 1995; Davis et al. 2005). However, juveniles remain active as they grow, moving

within and between secondary habitats reflecting both ontogenetic changes in habitat use

and patterns of food availability.  For example, juvenile crabs tend to move into shallow

waters in the warmer months to escape predation and cannibalistic interactions with

larger crabs in deeper waters (Dittel et al. 1995; Hines et al. 1995). In contrast, the depth
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preference of juvenile blue crabs during winter is poorly understood; although several

studies have documented the impact of winter mortality at low temperatures (Bauer and

Miller 2010a, Bauer and Miller 2010b, Rome et al. 2005). Therefore it is reasonable to

hypothesize that juvenile crabs may leave the shallows and move to deeper waters which

may provide a thermal refuge and reduced potential for ice scour. Although this has been

reported anecdotally (Hines 2007), this hypothesis has not been rigorously tested.

Habitat selection remains an important unanswered question in juvenile blue crabs

for both ecological and management reasons. An accurate understanding of the

distribution patterns of juvenile blue crabs during winter has important management

implications.  For example, a bay-wide winter dredge survey is conducted in the

Chesapeake Bay to provide estimates of absolute abundance for management purposes

(Volstad et al. 2000; Sharov et al. 2003; Miller et al. 2005; Miller et al. 2011).  This

survey is conducted annually at approximately 1,500 randomly assigned stations, but is

restricted to water depths > 1.6m.  If juvenile blue crabs routinely occur in waters < 1.6 m

then not all of the population of juvenile blue crabs are available to the survey gear.  This

would not be a concern if a constant fraction of the juvenile population occurred in

waters < 1.6m in winter, as the bias would be constant from year to year.  However, if

differing proportions of the juvenile population occur at depths that are not available to

the survey, then survey estimates become less reliable. If, as suggested above winter

depth preference is temperature dependent, then the depth distribution of juvenile blue

crabs likely does change from year to year.  Understanding the absolute number of

juvenile blue crabs is important because stock assessments for this population assume a

pattern of recruitment of juvenile blue crabs to the fishery over the course of the
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subsequent fishing year (Rugolo et al. 1997; Miller and Houde 1999; Miller et al. 2005;

Miller et al. 2011).

Uncertainties regarding interannual variability in the availability of the juvenile

blue crabs to the winter dredge survey can be evaluated by implementing a survey of

juvenile blue crabs in water depths < 1.6m.  Accordingly, the spatiotemporal patterns of

juvenile blue crabs density in the Rhode and West rivers, two representative shallow

tributaries of upper Chesapeake Bay, were quantitatively assessed. Numerous studies

have described the distribution of juvenile blue crabs in these rivers from spring through

fall (Hines et al. 1987), however the winter distribution of juvenile blue crabs is not

known. The main objective was to quantify the spatial and temporal patterns of juvenile

blue crabs in the Rhode and West rivers, with an emphasis on the overwintering depth

and spatial distribution. To accomplish this task, a stratified survey was conducted from

October 2010 to July 2011. The strata were determined by unique combinations of depth

and bottom sediment type. Using observed density data, a generalized additive model

incorporating depth, bottom sediment type and sampling month was used to predict the

density of juvenile blue crabs at each potential sampling cell. These predictions were

mapped so that the distribution of juvenile blue crabs could be observed for each

sampling period.

Materials and Methods

The density and depth distribution of juvenile blue crabs was estimated during

eight individual sampling periods, between early October 2010 and mid-July 2011 using

two gear types, a commercial grass scrape and a modified grass scrape, in the Rhode and
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West Rivers, two tributaries on the western shore of the Chesapeake Bay (Figure 3.1).

The two rivers have a combined surface area of approximately 14.27 square kilometers.

A majority of the Rhode River shoreline is undeveloped, however much of the shoreline

in the West River is developed. Both rivers are commercially and recreationally fished,

predominantly by commercial watermen using trot-lines in the summer months. These

rivers were ideal systems for conducting this work because (1) they are broadly

representative of upper western shore tributaries in Chesapeake Bay, (2) their long

history of ecological research, particularly for blue crabs, and (3) the close proximity to

the Smithsonian Environmental Research Center.

The survey employed a stratified sampling design involving depth and bottom

sediment type. To determine sampling locations, a GIS shape-file (obtained from

rimmer.ngdc.noaa.gov) was used to get the shoreline of the Rhode and West Rivers, the

boundary separating the sampling area from the Chesapeake Bay is the no crab pot line.

A 100m × 100m grid was then overlaid on top of the sampling area to get unique cells

that would then become potential sample sties (Figure 3.1). This grid size was chosen to

allow a tow length of 75m to be completed entirely within a sample site. If a cell had an

area of less than 3000m2 it was omitted from the list of potential sample sites. This was

done to reduce the risk of leaving the sample site when sampling.

Bottom sediment type information was obtained from bottom-penetrating sonar

data provided by NOAA (http://chesapeakebay.noaa.gov/acoustic-seafloor-

mapping/rhode-and-west-rivers-md-benthic-habitat-characterization; S. Giordano, pers.

comm.). The information was provided in a JPEG that was scaled, georeferenced and
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Figure 3.1. A map of the shoreline of the Rhode and West Rivers. The bay boundary is
the no crab potting line. The sampling area has a 100mX100m grid overlaid to assist in
site selection.
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superimposed on the Rhode and West River Grid (Figure 3.2). Because not all of the

area in the rivers was mapped by the side scan sonar, the bottom sediment type of

unmapped areas was extrapolated using observed nearby sediment types. This

assumption was validated by groundtruthing all unmapped cells and a subset of mapped

cells using a standard box-core (0.04 m2) to obtain the samples from which the actual

sediment type was determined. The sediment in only 2.3% of cells sampled differed from

that predicted by the sonar maps. Bottom type was classified into four major categories:

(1) Clay/Silt, (2) Silt/Sand, (3) Sand and (4) hard-bottom/oyster. Because cells were not

homogenous with respect to sediment type, if a cell did not have at least 60% coverage of

one sediment type it was omitted as a potential sampling location to reduce confounding

effects (Figure 3.2); however, few cells fell into this category, and only 9.4% of the 1933

potential sites were excluded. All of the cells that were defined as having hard-

bottom/oyster as the dominant sediment type were excluded to reduce the potential

impact of the survey on the local remnant oyster populations; only 8 potential sites were

excluded using this criterion. The depth for each sampling site cell was determined by

using a GIS point file of mean low tide depth information. The average of the points in

each sampling site cell (Figure 3.3) was used as the cell depth. Potential sampling cells

were classified into four strata according to depth: (1) less than 1m (2) 1-2m, (3) 2-3m,

and (4) 3-4m; no cells in the sampling area had an average depth greater than 4m.

The survey utilized two types of gear, a commercial grass scrape and a modified

grass scrape to act as a small scale dredge (Figure 2.1).  Both gears were 1m in width, but

the modified scrape was fitted with a tooth bar with teeth approximately 100 mm in

length at a 45 degree angle spaced about 20mm apart. The tooth bar was affixed to the
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Figure 3.2.  Sediment identification for each of the potential sampling sites. The cells that
are blank represent sites that did not have at least 60% coverage of one sediment type.
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Figure 3.3. Resulting depth identities for each of the potential sampling site cells. Lighter
cells represent shallower depths while the darkest areas represent the deepest areas.
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bottom of the scrape and allowed the gear to dig into the sediment and effectively sample

buried fauna.  The commercial grass scrape was towed by a 13ft johnboat and the small

scale dredge was towed by the R/V Macoma, an 18ft Boston Whaler. The grass scrape

was used during the winter; however, this gear type was ineffective due to low capture

efficiency when crabs are buried (see Chapter 2). Optimal effort allocation between the

two gear types was determined by using data obtained during field testing of the gears

prior to beginning the seasonal sampling. On average, it took 50% longer to perform a

75m tow with the small scale dredge as it did to perform the same tow using the

commercial grass scrape. With the available personnel, it was determined approximately

100 sites could be sampled within a week.  Therefore, 60 grass scrape samples and 40

dredge samples could be collected for each sampling period during fall, spring and

summer when water temperatures are warmer and crabs are active. Due to the

ineffectiveness of the commercial grass scrape and to better characterize distribution

patterns in during overwintering, an additional 21 sample sites were added for the small

scale dredge during winter sampling to increase the sample size and spatial coverage of

the data.

Selected sites were sampled from October of 2010 to July of 2011. In total, eight

semi-monthly surveys were conducted and subdivided into three sampling periods

defined by distinct biological transition events. The first period encompassed juvenile

blue crabs recruitment into the Rhode and West Rivers, which typically occurs in late fall

during the months of October and November (Hines et al. 1987). The second period was

defined as the period of overwintering, or the months of December through March when

water temperature declined below 10 °C and crabs bury and become inactive (Brylawski
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and Miller 2006). The final period was defined as post-winter and encompassed the

period from April through July when water temperatures warm and crabs resume activity.

Table 3.1 contains the dates of the sampling periods as well as a detailed summary of the

crabs caught in each sampling period

All combinations of depth and sediment strata present in the rivers were

identified. The sample was then stratified by depth and sediment to ensure all

combinations were adequately represented in the data, providing a basis for model-based

estimates. Half of the samples in each combination of depth and sediment were fixed

(sampled in all periods) and the other half were random. If a combination of depth and

sediment resulted in a sample size of two both sites were fixed. An additional site for

each gear type was added to the silt/sand sediment in depths between 3m to 4m to

increase the number of cells sampled for that particular combination since it appeared it

was underrepresented based on the early October sampling.

The fixed sites were selected using a random number generator whose output

corresponded to an individual cell with a specific combination of depth and bottom

sediment type. If random selection resulted in two sites that shared a border both sites

were re-selected. This same method was used to select the random sites for each

sampling period. For each sampling location, a random tow direction was chosen;

however, in some cases this direction was not followed depending on wind and tidal

currents. The latitude and longitude of the center of the cell was used to identify the

sample site coordinates that could be uploaded to a handheld GPS unit.
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Table 3.1. Summary of the raw data collected from the seasonal study sampling. *After
the first sampling period, early October, two additional sites were included for each gear
type to increase the coverage of the silt/sand sites in water between 3m and 4m deep.
**The winter sampling period contains fewer sampled sites because we did not include
the grass scrape data since the gear was not able to effectively sample the buried crabs.

Sampling
period Gear

Total
Sampled

sites

Minimum
crabs per

75m2

Average
crabs per

75m2

Maximum
crabs per

75m2

% of tows
with 1 or

more crabs

Early
October*
(10/05/2010-
10/15/2010)

Grass
Scrape 60 0 0.21 2 15%
Dredge 40 0 0.30 4 20%

Total 100 0 0.25 4 17%

Late
October
(10/26/2010-
10/28/2010)

Grass
Scrape 61 0 0.72 9 31%
Dredge 41 0 0.85 6 44%

Total 102 0 0.77 9 37%

November
(11/17/2010-
11/19/2010)

Grass
Scrape 61 0 0.61 6 28%
Dredge 41 0 0.99 10 39%

Total 102 0 0.76 10 33%

Winter**
(02/16/2011-
03/17/2011)

Grass
Scrape 0 . . .
Dredge 62 0 0.31 3 26%

Total 62 0 0.31 3 26%

April
(04/19/2011-
05/02/2011)

Grass
Scrape 61 0 0.26 4 16%
Dredge 41 0 0.15 1 15%

Total 102 0 0.22 4 16%

May
(05/16/2011-
05/24/2011)

Grass
Scrape 61 0 0.70 10 31%
Dredge 41 0 0.63 10 32%

Total 102 0 0.68 10 32%

June
(06/07/2011-
06/14/2011)

Grass
Scrape 61 0 0.74 11 26%
Dredge 41 0 1.26 6 53%

Total 102 0 0.95 11 38%

July
(07/05/2011-
07/13/2011)

Grass
Scrape 61 0 1.18 12 43%
Dredge 41 0 3.50 25 51%

Total 102 0 2.12 25 47%
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Standard Field Sampling Methods

Identical sampling methodologies were used for both gear types. Since the

coordinates defined the center of the sample cell, the gear was deployed approximately

35m from the coordinates opposite of the tow direction so that entire length of each tow

would be within the appropriate sample cell. A handheld recreational GPS (Garmin

GPSMAP76) was used to measure the tow distance. A standard tow was 75m in length;

however, any deviations were recorded in the data. If a sample could not be completed

after three attempts it was discarded and a new site was randomly selected.

At the completion of each tow, bottom temperature, salinity and dissolved oxygen

were recorded using a standard handheld YSI Professional Plus (YSI, Inc. Yellowspring,

OH). The collection bag was then rinsed to remove mud and sediment before being

opened and sorted. For each tow, any species of fish present were recorded; if the fish

was a known predator of blue crabs the total length was measured for the first ten

individuals of that species. For each crab the sex, carapace width, molt stage and limb

loss were recorded. If a dead crab was collected, only the carapace width and sex were

recorded.

Identifying the Age 0 Cohort

Because juvenile crabs are growing throughout the survey duration, size cutoffs

were estimated for each sampling period to identify juvenile blue crabs (Age-0 cohort)

from larger, older individuals (Age 1+). To determine the appropriate size cutoffs, the

observed carapace width distributions for each sampling period were used to identify
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potential cutoffs (Figure 3.4.). The following size cutoffs were used to identify juvenile

blue crabs for sample periods 1 thru 7, respectively; less than 40mm, less than 45mm,

less than 50mm, less than 60mm, less than 70mm less than 80mm and less than 90mm

respectively (Figure 3.4). For sample period 8 (July), juvenile blue crabs had grown

sufficiently that two unique cohorts could no longer be clearly identified so all crabs were

included in the analysis.  With these cutoffs the numbers of juvenile (Age-0) crabs caught

in a 75m tow for each sample site was identified for each sampling period.

Statistical Analysis

The overall goal was to observe changes in the spatial distribution of juvenile blue

crabs between the recruitment phase and the early summer within the Rhode and West

Rivers. Therefore, model based estimates are required to gain a finer level of detail than

can be provided by design based estimates. There are two prominent model frameworks

that could be used. The most simple is a single process model which assumes a single

statistical distribution can describe presence/absence and abundance. A second approach

is a two-stage model which separate distributions for presence/absence and abundance

(Jensen et al 2005). For this analysis a single stage Negative Binomial Generalized

Additive Model (NBGAM) was used to describe the distribution of juvenile blue crabs

over a series of months. While environmental data was collected it was determined that

the range of observed value would have no effect on the presence of juvenile blue crabs

within a given sample period, therefore a two-staged model is unnecessary.

Previous analyses indicate that spatial and temporal autocorrelation were not

present in the data (See Appendix I). This suggests a mixed model is not necessary and a
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Figure 3.4. Size frequency data for each sampling period used to identify juvenile size
cutoffs. For periods 1-7 I used less than 40mm, less than 45mm, less than 50mm, less
than 60mm, less than 70mm less than 80mm and less than 90mm, respectively, as the
cutoffs. No cutoff was set for period 8.
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NBGAM could be used. The density of crabs per tow was modelled as a negative

binomial process (Zuur et al. 2009) where

( ) = , (1)

Where g() is some function of the standardized number of crabs in a 75 m tow, NB is the

negative binomial distribution, µ i,j is the mean of the negative binomial process, and θ is

the overdispersion process.  µ i,j can be given by

μi,j,k,l=eβ0+β1(Sedimenti)+ 1 Depthj, . + 2(Sample Periodl, . )+ 3 Depthj Sample Periodl, .
(2)

Where β’s are fitted parameters for each model factor or interaction of factors.  A

smoothing factor of k=4 was used for each function within the model. Models defined by

equation 1 and 2 were fit using a range of Ɵ (Eq. 1). Theta values of 0.1 to 10 by 0.1

were input into the model and the value of Ɵ was chosen that minimized the Akaike

Information Criterion (AIC) for the model. All models were fit using R and the package

mgcv (Wood 2000; 2006)

The best fitting model was then used to predict the number of juvenile blue crabs

per 75m tow in each of the 1743 potential sampling sites for each of the eight sampling

periods. The density for a given site within a sample period was adjusted by dividing by

the maximum density estimate for that sample period; this allows for the observation of

relative trends that are not influenced by seasonal changes in the absolute abundance of

juvenile blue crabs. These values were then used to create a density heat map (ArcGIS

10.2.1, ESRI Corporation).



43

Results

The survey was completed in all months. In general there is an increase in

juvenile blue crabs from early October through November (Table 3.1). Juvenile blue

crabs densities decreased from December – May and then increased from May through

June. While samples were taken using the commercial grass scrape in the winter months

the data was not included in the models since the gear was not able to effectively sample

the buried crabs.

Negative Binomial Generalized Additive Model (NBGAM).

AIC values indicated that the best fitting model was achieved with θ = 0.4.

Depth, sediment, sample period and the tensor interaction between depth and sample

period were all significant predictors of juvenile blue crabs density in the Rhode and

West Rivers at the p=0.05 significance level (Table 3.2).

Smoothing functions were estimated from the model for the main effects of

sample period and depth. The predicted smoother for sample period is nonlinear and

multimodal (Figure 3.5), indicating the pulsed pattern of recruitment. The predicted

smoother for depth was generally a declining linear function, indicating that crabs were

approximately twice as likely at shallow depths (<0.5m) than at 4m (Figure 3.6).

Figure 3.7 shows the coefficient estimates generated from the model for each

sediment classification, solid lines, and +/- two standard errors, dashed lines. The

Clay/Silt sediment has a coefficient estimate of zero since the parameter was not
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Table 3.2. The model summary for the Negative Binomial Generalized Additive Model.

Family: Negative Binomial(0.4) Generalize Additive Model
Link Function: Log
Formula: CrabsAdj ~ ti(Sample Period, k = 4) + ti(Depth, k = 4) +

ti(Sample Period, Depth, k = 4) + Sediment

Coefficient Estimate
Standard
Error T Value P Value

Intercept -0.863 0.106 -8.146 <0.0001
Sediment-Sand 0.682 0.171 3.983 <0.0001
Sediment- Silt/Sand 0.689 0.262 2.635 0.0084

Tensor Interaction
Smoother Terms

Estimated
Degrees of
Freedom

Chi
Square
value P Value

Sample period 2.864 46.88 <0.0001
Depth 1.000 13.41 0.0003
Sample Period x Depth 2.708 16.66 0.0008

R-Square(adjusted) 0.187
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Figure 3.5. Smoothing function (solid line) for sample period estimated from the best
fitting negative binomial general additive model. The x-axis shows the sampling period,
with the tick marks indicating the values used in model fitting.  The y-axis indicates the
relative impact of sample period on the standardized density of blue crab relative to the
mean (0-value).  The dashed lines are ± 1 SE of the mean.
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Figure 3.6. Smoothing function (solid line) for depth estimated from the best fitting
negative binomial general additive model. The x-axis shows the sample depth, with the
tick marks indicating the values used in model fitting.  The y-axis indicates the relative
impact of depth on the standardized density of blue crab relative to the mean (0-value).
The dashed lines are ± 1 SE of the mean.
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Figure 3.7. Plot of the sediment coefficient estimates and 95% confidence intervals
generated from the Negative Binomial Generalized Additive Model.
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estimated. The dashed vertical lines on the x-axis represent the sediment type of each site

sampled across all sample periods.

The best fitting model was used to predict the density of juvenile crab in all

potential grid cells in all sampling periods (Table 3.3).  Relative density estimates were

plotted as heat maps for each sampling period (Figures 3.8 – 3.15). These maps indicated

that juvenile crabs are relatively evenly distributed in the Rhode / West River system in

the first three sampling periods (October – November).  Thereafter, the distribution maps

indicate higher densities of blue crab in shallower water, and in more up river sites

further from the mouth of the West River.

Discussion

The main objective of the seasonal study was to quantify seasonal patterns of

juvenile blue crabs distribution and abundance with particular interest in depth utilization

during winter. This was accomplished using model based estimates generated from data

collected during a stratified survey taking place from October 2010 to July 2011. The key

findings of this study were (1) Depth, bottom sediment type, sample period and the

interaction between depth and sample period were significant predictor of juvenile blue

crabs density. (2). It appears that as depth increases the density of juvenile blue crabs

decreases; more than 50% of all juvenile blue crabs were predicted to be in waters less

than 1.6m, currently the minimum depth sampled by the Winter Dredge Survey (WDS),

across all sample periods (Figure 3.16).
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Table 3.3. Minimum and maximum predicted crabs per 75m2 for each sample period,
generated by the Negative Binomial Generalized Additive Model. *In the winter
sampling period only data collected by the small scale dredge were used in the analysis.

Sampling
period

Minimum
predicted crabs
per 75m2

Average
predicted crabs
per 75m2

Maximum
predicted crabs
per 75m2

Early October 0.29 0.53 1.21
Late October 0.33 0.59 1.33
November 0.36 0.64 1.44
Winter* 0.17 0.47 0.98
April 0.10 0.38 0.73
May 0.11 0.52 1.00
June 0.18 0.98 1.97
July 0.34 2.24 4.70
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Figure 3.8.  Heat map of the predicted relative density of juvenile blue crabs for early
October.
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Figure 3.9.  Heat map of the predicted relative density of juvenile blue crabs for late
October.
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Figure 3.10.  Heat map of the predicted relative density of juvenile blue crabs for
November.
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Figure 3.11.  Heat map of the predicted relative density of juvenile blue crabs for the
winter sampling period.
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Figure 3.12.  Heat map of the predicted relative density of juvenile blue crabs for April.
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Figure 3.13.  Heat map of the predicted relative density of juvenile blue crabs for May.
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Figure 3.14.  Heat map of the predicted relative density of juvenile blue crabs for June.
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Figure 3.15.  Heat map of the predicted relative density of juvenile blue crabs for July.
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Figure 3.16. Cumulative distribution of predicted juvenile blue crabs by depth in meters.
The area to the left of the red vertical line represents depths unsampled by the Winter
Dredge Survey.
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The need for detailed density estimates dictated the use of model based

estimators. It is common in fisheries surveys whose data contains many zeros; this is

especially true when encountering the target species is a rare occurrence. Sometimes the

data is zero-inflated, meaning there are certain underlying factors that exclude or deter

the target species from occupying the sampled area. In an aquatic environment

temperature, salinity, and dissolved oxygen can be important factors that determine the

habitability. During the seasonal study the temperature, salinity, and dissolved oxygen

were measured; however, variations within a sampling period were not enough to suggest

these factors were contributing to zero-inflated data. It is most likely that the zeros in the

data are explained by relatively low abundances and small area sampled during each tow.

It is likely that if the tow distance was significantly increased there would be fewer zeros

in the data. This suggests that a single stage model is most suitable for observing

spatiotemporal patterns in seasonal density estimates.

Count data is typically non-normally distributed, usually displaying properties of

a poisson or negative binomial distribution. Data whose mean and standard deviation are

identical generally best described by the poisson distribution. Sometimes the standard

deviation is greater than the mean, indicating over dispersion of the data. In that case the

data might be best described by the negative binomial distribution. For this study the data

is best described by the negative binomial distribution given the relatively small means,

large maximum observed counts per tow and large standard deviations for each sample

period.
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Generalized models can be used when analyzing non-normal data; two common

generalized models are the Generalized Linear Model (GLM) and the Generalized

Additive Model (GAM). As the name suggests the GLM uses a linear combination of

variables to predict a response, whereas the GAM incorporates the use of smoothing

functions to describe nonlinear processes. For this study a GAM is most appropriate

given the relationship between juvenile blue crabs density and depth and/or time of year

the sampling took place is most likely not linear. Since it is likely changes in the depth

preferences of juvenile blue crabs is not uniform across all months sampled a tensor

interaction was included in the model. Ideally a tensor interaction would be included to

examine the interaction between sediment type and sample period, unfortunately the

bottom sediment type was not diverse enough to support an additional tensor interaction.

Therefore, we must assume that, for a given depth, the relative density of juvenile blue

crab for each sediment type is consistent across all sample periods. This poses a

significant problem if the juvenile blue crabs seek specific substrate depending of the

time of year. It is possible that juvenile blue crabs prefer one substrate in the summer and

move to a softer substrate just before overwintering. Without the ability to better classify

specific sediment types a tensor interaction cannot be included in the model; therefore, no

statements can be made about changes in the juvenile blue crabs sediment type

preferences across the sampling periods.

A more complex Negative Binomial Generalized Additive Mixed Model

(NBGAMM) can be used to incorporate spatial and temporal autocorrelation. A

NBGAMM was used to plot a semivariogram and autocorrelation function. Neither plot

suggested any autocorrelation. Therefore the density of juvenile blue crabs can be
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described by the NBGAM model alone. This implies some interesting behavioral

interactions. At least for this study, it appears that the density of crabs within a specific

site is uncorrelated to the density of crabs in nearby sites. That is the density can be

predicted by the parameters within the model alone. This could be explained by a lack of

competition between juveniles. If resources were limited then you might expect to see a

degree of spatial autocorrelation. Based on this research alone, the level of resource

completion between individuals cannot be surmised.

Even with these limitations the Negative Binomial Generalized Additive Model

(NBGAM) is the best option for predicting the spatiotemporal patterns in the density of

juvenile blue crabs. The heat maps generated from the model predictions yield some very

interesting results that can provide insight into the spatiotemporal patterns of juvenile

blue crabs densities within the Rhode and West Rivers. In the first sampling period, early

October, the distribution of juveniles appears to be fairly uniform. The sampling for this

period took place during the first stages of juvenile recruitment into the Rhode and West

Rivers. At this point the crabs have not fully recruited into the river systems and are still

very mobile. This pattern is also seen in the late October and November sampling

periods.

The winter sampling period was of greatest interest because it was during this

sample period the depth distribution of juvenile blue crabs that were overwintering could

be observed.  For this sampling period juvenile blue crabs were seen in higher densities in

the shallow waters near the shore, having moved from the deeper waters where they had

been located in previous months. This migration appears to continue through the spring
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and summer months. This data, broadly supports previous findings that juvenile blue

crabs tend to move towards shallow water in the warmer summer months to escape

cannibalism from larger adult blue crabs (Dittel et al. 1995; Hines et al. 1995).

One possibility why higher relative densities were seen in the shallow waters

after the winter might have been because of a rapid drop in water temperature; perhaps

encouraging burial before the preferred depth could be reached. Another explanation

might be that the juveniles avoided the extremely shallow waters as a form of thermal

refuge. Sampling would need to be repeated over many years to make any conclusive

statement about juvenile blue crabs overwintering habits in the Rhode and West Rivers.

The most important finding is that in the winter sampling period approximately 70% of

all juvenile blue crabs in the Rhode and West Rivers were in waters less than 1.6m, the

current minimum sampling depth for the current WDS. In all sampling periods more than

50% of all juvenile blue crabs were located in waters less than 1.6, with the proportion

ranging from about 58% to 83% of all juvenile blue crabs in the shallow unsampled

waters.

In addition to the trends in depth preferences across months, an interesting trend

in the average density estimates was observed. From early October through November

the average predicted densities showed a gradual increase.  A decrease in the density

estimates was observed in the winter and April sampling periods followed by an increase

from May through July. While there are many other possible explanations for this

observation the most likely reason is we are observing winter mortality followed by

continued recruitment from the lower bay into the Rhode and West Rivers. The sudden
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drop in temperature could have resulted in the juvenile crabs overwintering before they

could fully disperse throughout the Chesapeake Bay. If the study were to be repeated I

would need to devise a method to observe emigration and immigration to better explain

trends in the average density estimates seen within the Rhode and West Rivers.

Even though the model provides interesting results care must be taken when

making statements about the results. Firstly the model is limited, not allowing for a tensor

interaction between the sediment type and sample period. Another topic that requires

further investigation is the choice of size cutoffs for identifying juvenile blue crabs

throughout the sampling. When the size cutoffs for classifying juvenile blue crabs were

identified the WDS was the base reference. Since the WDS uses a size cutoff of 60mm

that was the size cut off used for the winter sampling period. The carapace width

frequency data did not provide enough evidence to change the WDS size cutoff for the

winter sampling period. Logical size cutoffs were selected for the previous months based

on the frequency data, meaning no previous month could have a size cutoff greater than

60mm. This was also done for the sample periods after the winter sample period, making

sure no size cutoff was less than 60mm. For the July sample period a clear cutoff could

not be identified; because of this any trends observed for this sample period were for all

blue crabs not just juveniles. While these cutoffs are fairly arbitrary, they are appropriate

given the data collected. There are many reasons why a time varying size cutoff of would

be more appropriate. Lower than normal temperatures leading up to winter might reduce

the growth of juvenile blue crabs resulting in a smaller cutoff being necessary. However,

it is extremely unlikely that an age 1+ crab is smaller than 60mm after a full year of

growth. Conversely if the period leading up to the winter was warmer than normal it
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might facilitate faster growth, necessitating larger size cutoff. Proper size cutoffs are

important so that the age 0 and age1+ crabs can be properly identified; improper age class

identification will could result in an inaccurate estimate of the proportion of juvenile blue

crabs in the areas unsampled by the WDS.

This study yields interesting results that demand further study. A single year of

observations is not enough to make broad statements about the spatiotemporal patterns of

juvenile blue crabs abundance. A multi-year study is required to make a more generalized

statement about the depth and sediment preferences of juvenile blue crabs throughout the

year, with an emphasis on the distribution during the overwintering period. If this study

was to be repeated it could benefit from a few changes to the design. Firstly there should

be no fixed sites sampled, the addition of fixed sites needlessly complicates the analysis.

Secondly, given the similarities in gear efficiencies between both gear on active crabs,

and the inability for the commercial grass scrape to effectively sample the overwintering

blue crabs, only the small scale dredge should be used. Because encountering a juvenile

blue crabs while sampling a site was relatively low the area sampled should be increased.

This can be accomplished by increasing the sample cell size and increasing the tow

distance or by increasing the number of sites. Increasing the tow distance would reduce

the number of zero counts in the data, while increasing the number of sites sampled

would decrease the standard error of the density estimates. This study could also be

completed in other river systems to see if the trends seen in this study are also seen in

other rivers around the Chesapeake Bay. With these changes more generalized statements

can be made about the spatiotemporal patterns of juvenile blue crabs densities within the

shallow waters of the entire bay. Additional information on the spatiotemporal patterns of
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juvenile blue crabs might lead to a shallow water survey that can be used to generate

more accurate indices of abundance for juvenile blue crabs. These indices might be

included in future stock assessments to improve management targets.
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CHAPTER 4:

PRELIMINARY SHALLOW WATER SURVEY AND
COMPARISON TO THE CURRENT WINTER DREDGE SURVEY
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Abstract

Annual estimates of blue crab abundance from the Bay-wide winter dredge survey

(WDS) provide precise estimates of large blue crabs that will be exploitable during the

coming fishery. However, the WDS targets deep water areas (>1.5m) and may

underestimate the abundance of very young blue crabs overwintering in shallow waters

that are not accessible to the WDS. A coordinated preliminary shallow water survey

(SWS) was conducted in four shallow water tributaries in Maryland and compared the

abundance of juvenile blue crabs with estimates from nearby (<16 km) sampling

locations in the WDS as well as compare estimates of total juvenile abundance in the

Maryland waters of the Chesapeake Bay generated by the WDS alone and the SWS and

WDS combined. The estimates of juvenile abundance in shallow water tributaries were

much greater than those predicted by the WDS data alone.  In fact, the actual abundance

of juvenile blue crabs in Maryland portions of Chesapeake Bay may be underestimated

by nearly 70%. These results have important implications for both stock assessment

models and their associated biological reference points and fisheries management for

blue crabs in Chesapeake Bay.
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Introduction

The blue crab is both economically and ecologically important in Chesapeake Bay

where it provides valuable ecosystem services and supports the Bay’s most lucrative fishery.

The Chesapeake Bay fishery is complex with commercial and recreational sectors,

regional variation in fishing gear, multi-jurisdictional management, and a variety of

markets including “live hard crab”, “soft and peeler” and “processed crab meat”

industries (Kennedy et al. 2007). Despite efforts to reduce fishing pressure and improve

habitat quality in Chesapeake Bay, blue crab populations declined since the early 1990s

and persisted at low levels of abundance with little sign of recovery until 2009 (Lipcius

and Stockhausen 2002; Sharov et al. 2003; Chesapeake Bay Stock Assessment

Committee (CBSAC) 2010).  Most troubling was the precipitous 84% decline in

spawning stock abundance in the lower Bay spawning sanctuary (Lipcius and

Stockhausen 2002), with concurrent evidence of recruitment limitation in local

populations in many areas in the Bay (Jensen et al. 2006; Johnson et al. unpublished

data).  In response to stock declines and the designation of the stock as “fishery disaster”

by NOAA, recent conservation efforts enacted since 2008 have focused on conserving

mature females.  Mature female crab abundance significantly increased in 2009 and again

in 2010 as a result of coordinated management actions to reduce exploitation and

favorable environmental conditions. In 2011 there was a slight decrease in the density of

spawning females, and in 2012 the decline continued more precipitously, followed by a

slight increase in 2013 and in 2014 the density fell to its lowest value since 2002.  For the

most recent winter dredge survey the density of spawning females increased to a level
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above what was seen in 1994-2008, but below the high densities reported in 2009, 2010

and 2011.

Due to its economic importance in Chesapeake Bay, the blue crab has been the

focus of intense scientific study, fishery-independent monitoring programs, and

coordinated regional management.  A great deal is known about the ecology and life

history of the blue crab (Kennedy and Cronin 2007), providing assessment biologists

with valuable life history information necessary for conducting ever more advanced stock

assessments (Rugolo et al. 1997; Miller 2001; Miller et al. 2005; Miller et al. 2011). The

intensive winter dredge survey (WDS) conducted annually by MDNR and VIMS

provides fishery-independent indices of abundance that form the backbone of these

assessments (Sharov et al. 2003; Miller et al. 2005; Miller et al. 2011).  Fishery-

dependent harvest data is collected from the commercial fishery; accurate data on fishery

landings is an essential component in assessing the impact of fishing on population

dynamics (Hilborn and Walters 1992).  In the Chesapeake, blue crab fishery exploitation

targets and thresholds are a direct function of removals making an accurate estimate of

total landings critical for effective management. As a result, considerable effort has been

expended to collect and rigorously analyze harvest data for the blue crab in Chesapeake

Bay to ensure reported landings accurately reflect actual removals from the system

(Miller and Houde 1999; Fogarty and Miller 2004; Colton 2011; Miller et al. 2011).

To help guide management in maintaining a sustainable fishery, a stock

assessment of the Chesapeake Bay blue crab population is conducted, on average, every

five years. At the heart of the most recent assessment (Miller et al. 2011) assessment is a
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sex-specific catch multiple survey model (SSCMSA) that utilizes both fisheries-

dependent and -independent data to estimate population abundance and generate

biological reference points. Fisheries-dependent data comes from three management

agencies; the Virginia Marine Resource Commission, the Potomac River Fisheries

Commission and the Maryland Department of Natural Resources.  The fisheries-

independent data comes from three major surveys; the Virginia juvenile finfish and blue

crab trawl, the Maryland DNR trawl survey and the Winter Dredge Survey (WDS)

(Miller et al. 2011); however the only WDS occurs Bay-wide and is considered to most

accurately reflect actual population abundance (Sharov et al. 2003; Jensen et al. 2006).

The WDS started in 1989 as a stratified random sample with the strata being region,

bottom sediment type and depth. In 1991, the survey design was changed so that there are

only three regional strata which correspond roughly to low, mid and high salinity areas:

(1) all tributaries of the Chesapeake and northern bay, (2) middle Chesapeake, and (3)

lower Chesapeake Bay. However, the entire bay is not sampled during the winter dredge

survey since the survey is only conducted in waters greater than five feet leaving shallow

water habitats unsampled. Approximately 1200 stations are sampled every winter with

the sample size in each stratum proportional to the area they cover. A 1.83m wide

Virginia crab dredge is used to sample each station. All crabs collected are sexed and

sorted into two age classes, age-0 and age-1+. To identify the age class all crabs less than

60mm are classified as age-0 and anything greater is age-1+. Using the WDS catch and

gear efficiency data an absolute abundance estimate is then calculated for age-1+ crabs.

However, the stock assessment model calculates; which will be referred in this document

as the susceptibility coefficient, for age-0 crabs, across all years and adjusts the WDS
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abundance estimates accordingly (Miller et al. 2005; Miller et al. 2011). The most recent

stock assessment estimated that the susceptibility was 0.4, indicating only 40% of all

juvenile crabs are susceptible to the WDS, the remaining 60% are not susceptible because

they are outside the sampled area or are not captured by the gear within the sampling area

since the gear efficiency is less than 100% (Miller et al. 2011). Rothschild et al. 1992

found no significant difference in the densities of juvenile blue crabs in waters not

sampled by the WDS.

Unlike previous assessment models, the current SSCMSA model assumes that a

fraction of age-0 crabs will recruit to the fishery before the years end (Miller et al. 2011).

Thus, there are two potential problems with the current model. The first is the model uses

a single mortality value for both age-0 and age-1+ blue crabs. Tethering studies have

shown that relative mortality decreases as the crabs grow in size (Hines and Ruiz 1995).

Therefore it is possible the natural mortality of juveniles is higher than it is for adults.

However, related studies have suggested that smaller juveniles will seek shallow waters

as a refuge from predation and cannibalism (Dittel et al. 1995). This makes estimating the

natural mortality of juveniles very difficult.

The second potential problem arises if the portion juvenile blue crabs in shallow,

unsampled, waters changes year to year. Any juveniles that stay in waters below 1.5m

will not be susceptible to the WDS. The current model can cope with this to a certain

degree by adjusting using the susceptibility coefficient (q) to scale up the abundances of

juvenile blue crabs.  However, this is coefficient does not change year to year; this is also

confounded by the model using one value of natural mortality for adults and juveniles. If

the portion of juvenile blue crabs in the shallow waters varies year to year it becomes
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difficult to accurately estimate the juvenile blue crabs abundance. If the natural mortality

of juveniles is greater than what is assumed then the susceptibility coefficient will be

overestimated and as a result the abundance of age-0 blue crabs will be underestimated.

Since a portion of juvenile blue crab will be exposed to the fishery in their first year,

approximately 60%, it is important to have an accurate estimate of age-0 natural mortality

and abundance to allow for a more accurate calculation of the exploitation fraction, of

age-0+ crabs, at maximum sustainable yield (MSY).

My research lab coordinated with researchers (Dr. Romuald Lipcius) at the

Virginia Institute of Marine Science (VIMS) to conduct a pilot-scale shallow water

survey to assess the potential need for an additional shallow water compliment to the

WDS and to provide preliminary estimates of sampling variance to aid in survey design if

a juvenile survey were to be recommended by management. Four river systems were

selected to be sampled in the Maryland waters of the Chesapeake Bay, and VIMS

selected four rivers in the Virginia waters of the Chesapeake Bay. In this chapter, two

comparisons are made between juvenile blue crabs densities in the four Maryland river

systems and the WDS densities.

For the first comparison, a series of contrasts were used to evaluate the

differences in juvenile blue crabs densities between the four selected river system in the

SWS and the average density of juvenile blue crabs in all WDS sites within 16 km of

each river. A Negative Binomial Generalized Linear Model was used to calculate the

contrasts. The second comparison involved calculating absolute abundance estimates for

the Maryland waters of the Chesapeake Bay using just the WDS data and comparing this

to an abundance estimate for the Maryland waters using the combined shallow water
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survey data and the WDS data. An estimate of the susceptibility coefficient of juvenile

blue crabs in the Maryland waters of the Chesapeake Bay was then calculated. I expect

that the abundance of juvenile blue crabs in the shallow, un-sampled, Maryland waters of

the Chesapeake Bay to be much greater than the waters susceptible to the WDS.

Therefore I expect that the susceptibility coefficient I calculate will be less than the value

estimated by the current stock assessment model.

Materials and Method

The following methods are for one part of a joint preliminary study whose goal

was to assess the potential need for a shallow water compliment to the Winter Dredge

Survey (WDS). This survey was conducted along with a group from the Virginia Institute

of Marine Science (VIMS). My group was responsible for conducting the survey in

Maryland, and VIMS conducted the complementary survey in Virginia. Four rivers were

chosen to be sampled and the same small-scale dredge was used from the previous

seasonal study to perform the sampling. The rivers selected for this study were all

sampled in February and early March; all WDS sites used in the comparisons were

sampled between late December and late February.

Selection of rivers

To select the rivers for this study the Maryland area of the Chesapeake Bay was

separated into four sections using existing information from the spatial coverage of the

WDS (G. Davis, MDNR, Figure 4.1). The lower boundary of the upper bay region was

set by connecting the northern points of the mouth of the Magothy and Chester Rivers.
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Figure 4.1. The four regions of the Maryland section of the Chesapeake Bay. The blue
area is the northern bay represented by the Middle River (Circle), the red area is the
middle bay represented by Rhode and West Rivers (Triangle), the orange area is the
lower west bay represented by the Patuxent River (Square) and last the green area is the
lower eastern bay represented by the Manokin River (Star).



75

The upper boundary of the lower bay section was the same as the upper boundary of the

second stratum of the WDS. The lower section was then split into two; a lower western

and a lower eastern section. The lower boundary of the upper bay section and the upper

boundary of the lower bay section now provide the boundaries for the middle Bay. One

river system was selected in each section from a list of rivers previously sampled during a

bay-wide summer juvenile blue crabs survey. This was done because they were familiar

locations, and to allow for future comparisons of winter and summer juvenile blue crabs

densities in these selected areas. The Middle River was selected to represent the upper

Chesapeake Bay, the Rhode and West Rivers were selected to represent the middle Bay,

the Patuxent River was selected to represent the lower western Bay and the Manokin

River to represent the lower eastern Bay.  In each river two replicate creeks were sampled

and each creek was divided into the main-stem and tributaries of the creek.

Site Selection and Sampling Methods

Within each creek, the main-stem and adjacent tributary were sampled in 12

random locations using a small-scale dredge (75 m tows).  Earlier work has shown that

sampling variance was asymptotic at this number of replicate tows in similar shallow

cove systems in Maryland. The shoreline of the selected creeks and tributaries was

digitized and a random number generator was used to select a point on the length of the

shoreline. Six of the twelve sites were near-shore while the other six were in the in the

middle of the creek/tributary. A tow direction of up or downstream was also randomly

assigned. I used Google Earth to place the sites and capture the latitude and longitude



76

data, and uploaded those coordinates to a handheld recreational GPS unit (Garmin

GPSMAP76). These coordinates represent the starting location for each sample tow.

Like the previous study I used a modified commercial grass scrape, which acts as

a small scale dredge, and was towed by an 18ft Boston Whaler center console.  A

standard tow was 75m in length; however, any deviations were recorded in the data. The

tow length was measured using a tracking feature on a handheld Garmin GPS unit. Once

the tow was complete YSI (YSI Professional Plus, YSI, Inc. Yellowspring, OH) readings

of the bottom temperature, salinity and dissolved oxygen were taken. The collection bag

was then rinsed before being opened and sorted. For each sampling site any species of

fish present were recorded, if the fish was a predator to the blue crab the total length was

measured for the first ten individuals. For each crab the sex, carapace width, molt-stage

and limb loss was recorded.

Comparative Analysis

A key goal for this work was to facilitate a comparison between densities of

juvenile blue crabs in the SWS and the densities found in the WDS. Any blue crab with a

carapace width of less than 60mm was identified as a juvenile, this matches the size

cutoff for the WDS. Two comparative methods were chosen, the first method simply took

the average density of blue crab in each of the four river systems sampled and compare it

to the average density of juvenile blue crabs in any WDS sites within a 16 km radius of

the river. This range was chosen to allow for an adequate sample size of WDS sites and

ensure no WDS site was used in more than one comparison, ensuring we were not

extending our range too far and maintain an independence of each rivers comparison. The
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second method of comparison involved estimating the total juvenile blue crabs

abundance in Maryland waters using just the WDS data and comparing that to an

abundance estimate from a combination of the shallow water survey and the Maryland

waters of the WDS. The current blue crab stock assessment model calculates that the

WDS yields an abundance estimate that is only 40% of the true abundance for the entire

Chesapeake Bay.

For the first comparison I started by calculating an average density of juvenile

blue crabs for each of the four rivers. I used the raw catch per tow data and calculated a

density per 1000m2 for each sample site, secondly I adjusted the density to account for

gear efficiency to get an estimate of catchability corrected juvenile blue crabs density,

using the gear efficiency estimates from chapter 2. Following that I identified a point that

would become the center of the circle that would be used to identify nearby WDS sites

for comparison. The latitude and longitude of the mouth of both creeks sampled in a

given river system were identified and the latitude and longitude of the midpoint between

the two mouths were used as the identification point for each river system. This midpoint

was used to calculate the geographical distance to each of the WDS sampling sites

surveyed during the winter of 2011. All sites within 16 km of the river identification

point were selected for inclusion in this comparison. The catch per tow of juvenile blue

crabs was the converted to juvenile blue crabs per 1000m2 for each site. I again corrected

for gear efficiency (gear and vessel specific efficiencies were provided by G. Davis,

MDNR) to get a catchability corrected estimate of juvenile blue crabs density.
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The density of juvenile blue crabs was modelled as a negative binomial process

(Zuur et. al 2009) where

( ) = , (3)

Where g() is some function of the density of crabs in a 1000m2 area, NB is the negative

binomial distribution, µ i,j is the mean of the negative binomial process, and θ is the

overdispersion process.  µ i,j can be given by

μi,j=eβ0+β1(Riveri)+β2 Surveyj +β3 Riveri Surveyj (4)

Where β’s are fitted parameters for each fitted model or interaction. The average

catchability corrected density of juvenile blue crabs in sites within 16 km was compared

to the average catchability corrected density of juvenile blue crabs within the sampled

river systems using a series of contrasts. All catchability corrected density values were

rounded to the nearest whole crab.

For the second comparison, the absolute abundance of juvenile blue crabs in

Maryland waters was calculated using, (1) the WDS alone, and (2) the estimate from the

SWS and WDS combined.  To begin, all WDS sites in Maryland waters were selected

and a density estimate was calculated for each site. Using information obtained from

Maryland Department of Natural Resources the WDS spatial coverage for Maryland

waters using was charted using ArcGIS (Figure 4.2). The area of three unique sections

was then calculated; the first area is the first strata of the WDS, the second area is the

second strata of the WDS and the final area is the portion not sampled by the WDS. The

area not sampled by the WDS was then split into four subsections based on the four
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Figure 4.2. The figure above shows the spatial coverage of the Winter Dredge Survey
(WDS) in the Maryland area of the Chesapeake Bay. The green area represents the first
stratum of the WDS, the red area represents the second stratum of the WDS and the blue
area represents area not sampled by the WDS.
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quadrants previously defined; each quadrant had a corresponding river system that was

sampled to estimate the shallow water density of juvenile blue crabs (Figure 4.1).

The weighted catchability corrected average density of juvenile blue crabs from

the WDS data was then calculated, weighting by the WDS strata area coverage. An

estimate of total juvenile blue crabs abundance based on the WDS data alone was

calculated by multiplying the average catchability corrected density of juvenile blue crabs

and the total area of the Maryland waters of the Chesapeake Bay and tributaries. ArcGIS

was used to calculate area not sampled by the WDS for each of the four quadrants. The

catchability corrected density of juvenile blue crabs estimated for each of the four river

systems sampled was multiplied that by their corresponding area of water not sampled by

the WDS to get an abundance of juvenile blue crabs in the area not sampled by the WDS.

The abundance of juvenile blue crabs in the first and second stratum of the WDS was

calculated and the three abundance estimates were then summed to get a total abundance

estimate of juvenile blue crabs in Maryland waters. The two estimates of total abundance

were then compared.

Results

A total of 192 samples were taken for the Shallow Water Survey (SWS), 48 in

each of the 4 rivers sampled. A total of 170 sites in the Winter Dredge Survey (WDS)

were within 16km of the rivers I sampled in the SWS. We saw an increase in the

observed juvenile blue crabs density moving down the Chesapeake Bay, North to South,

in both the SWS and nearby WDS sites. A summary of the raw and catchability corrected

densities for both surveys can be seen in Table 4.1. Figures 4.3 to 4.6 show the
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Table 4.1 Summary of the raw and catchability corrected crabs per 1000m2 for each river sampled by the Shallow Water
Survey (SWS) all Winter Dredge Survey (WDS) sites within 16km. The minimum and maximum values are rounded to the
nearest whole crab.

River Survey
Sample

Size
Raw
Mean

Standard
Error

Corrected
Mean

Standard
Error Minimum

Raw
Maximum

Corrected
Maximum

Middle SWS 48 1.39 0.59 5.52 2.38 0 13 53

WDS 31 0.56 0.27 1.35 0.64 0 5 11

Rhode / SWS 48 1.67 0.85 6.67 3.42 0 27 107

West WDS 39 3.89 1.29 9.34 3.10 0 41 99

Patuxent SWS 48 13.61 4.06 54.35 16.23 0 147 587

WDS 58 9.57 1.74 22.93 4.17 0 77 185

Manokin SWS 48 181.10 31.49 724.44 125.95 0 1373 5493

WDS 42 33.04 5.10 79.26 12.23 0 148 355
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Figure 4.3 Plot of the proportional distribution of the raw juvenile blue crabs caught per
tow in both the Shallow Water Survey (SWS) and Winter Dredge Survey (WDS) for the
Middle River.
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Figure 4.4 Plot of the proportional distribution of the raw juvenile blue crabs caught per
tow in both the Shallow Water Survey (SWS) and Winter Dredge Survey (WDS) for the
Manokin River. A single tow from the SWS contained 103 juvenile blue crabs and is not
included in the proportional distribution above.
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Figure 4.5 Plot of the proportional distribution of the raw juvenile blue crabs caught per
tow in both the Shallow Water Survey (SWS) and Winter Dredge Survey (WDS) for the
Rhode and West Rivers.
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Figure 4.6 Plot of the proportional distribution of the raw juvenile blue crabs caught per
tow in both the Shallow Water Survey (SWS) and Winter Dredge Survey (WDS) for the
Patuxent.
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proportional distribution of the raw catch per tow of juvenile blue crabs in both the SWS

and WDS. In all of the rivers sampled, except for the Manokin, a majority of tows

contained zero crabs. In general the distributions widened the further south the river is

located. One of the samples in the Manokin River contained 103 juvenile blue crabs and

is not included in the frequency distribution but is used in the two comparative methods.

In the Middle River both the SWS and nearby WDS sites contained no more than

one crab per tow. In the Rhode/West and the Patuxent Rivers the WDS had a slightly

wider distribution than the SWS but in general the distributions are very similar.  In the

Manokin River the distribution of juvenile blue crabs catch per tow for both the SWS and

the WDS were more uniform than in the other rivers. The SWS appeared to be more

dispersed than the WDS and contain relatively fewer 0 catch tows. Overall the

proportional distributions appear to show the properties of a negative binomial

distribution.

Comparison of Shallow Water Survey to nearby Winter Dredge Survey sites

For the first method of comparison a series of contrasts generated from a Negative

Binomial Generalized Linear Model (NBGLM) (Eq.3, 4) were used. The interaction

between river sampled and survey was found to be significant at the 0.05 level, a

summary of the model can be seen in Table 4.2. This indicates at least one combination

of river and survey differed from another combination. This interaction produces 28

different comparisons between unique combinations of river sampled and survey method.

However, only four combinations that compare the two surveys within each river are of

importance (Table 4.3). Of the four contrasts only the Manokin and Middle rivers shows
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Table 4.2. The model summary for the Negative Binomial Generalized Linear Model
used to generate the contrasts necessary to compare the rivers sampled by the Shallow
Water Survey (SWS) and nearby Winter Dredge Survey (WDS) sites.

Family: Negative Binomial(0.6) Generalize Linear Model
Formula: CrabsAdj ~ River + Survey + River x Survey

Parameter Estimate
Standard
Error

Wald Chi-
Square P Value

Intercept 2.231 0.404 30.51 <.0001
River- Manokin 2.142 0.559 14.69 0.0001
River- Middle -1.927 0.623 9.56 0.0020
River- Patuxent 0.902 0.521 2.99 0.0837
SWS -0.334 0.545 0.38 0.5400
Manokin x SWS 2.546 0.759 11.26 0.0008
Middle x SWS 1.739 0.810 4.61 0.0318
Patuxent x SWS 1.197 0.732 2.67 0.1021

Dispersion 6.254 0.586
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Table 4.3. Results of the selected contrasts comparing the two survey results for each
river. * Indicates significance at the p=0.5 level.

Contrast Chi-Square Value P Value

Middle 4.74 0.0294*
Rhode/West 0.38 0.5388
Patuxent 3.08 0.0792
Manokin 13.82 0.0002*
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significantly different juvenile blue crabs densities between the two surveys. For both

significant contrasts the densities in the SWS are greater than the nearby WDS sites.

No significant difference was seen between the average density of juvenile blue

crabs in the SWS for the Rhode/West and Patuxent Rivers and the nearby WDS sites. For

the Rhode/West River location the SWS had an average catchability corrected density of

6.67 crabs per 1000 m2 whereas nearby WDS sites had an average catchability corrected

density of 9.34 crabs per 1000 m2. In the Patuxent River the average catchability

corrected density was 54.35 crabs per 1000 m2 for the SWS and 22.93 crabs per 1000 m2

for the WDS (Table 4.1, 4.3).

A significant difference was seen between the average catchability corrected

density of juvenile blue crabs in the SWS for the Middle and Manokin River and the

nearby WDS sites. For the Middle River the SWS had an average density of 5.52 crabs

per 1000 m2 whereas nearby WDS sites had an average density of just 1.35 crabs per

1000 m2.  In the Manokin River the average density was 724.44 crabs per 1000 m2 for the

SWS and 79.26 crabs per 1000 m2 for the WDS (Table 4.1, 4.3).

Comparison of Juvenile blue crabs Abundance Estimates

A weighted average density of juvenile blue crabs in Maryland Chesapeake Bay

waters was calculated to be approximately 24.48 crabs per 1000 m2 based on only the

WDS data (Table 4.4). This density results in a juvenile blue crabs abundance estimate of

approximately 149,073,775 individuals in the Maryland waters of the Chesapeake Bay.

The average density of juvenile blue crabs in unsampled Maryland waters, weighted by
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Table 4.4. A summary of the areas and density estimates used to calculate the
discrepancy between the Winter Dredge Survey (WDS) juvenile blue crabs abundance
estimates and the abundance estimates generated from both the WDS and the Shallow
Water Survey.

Area
m2 Abundance

Density
Crabs per
1000m2

WDS Stratum 1 2,983,414,269 911,772,601 30.56

WDS Stratum 2 1,000,371,090 6,344,631 6.34

Total Sampled 3,983,785,359 97521891 24.48

Upper Not Sampled 606,737,366 3,349,190 5.75

Middle Not Sampled 477,108,597 3,182,314 6.89

Lower West Not
Sampled

545,881,530 29,668,661 56.32

Lower East Not
Sampled

476,175,466 344,960,554 749.36

Total Not Sampled 2,105,902,958 381,160,720 180.99

Total MD Bay Area 6,089,688,317 478,682,611 78.61
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regional area coverage, was estimated to be approximately 180.99 crabs per 1000 m2. The

weighted average density of juvenile blue crabs, in the Maryland waters of the

Chesapeake Bay using the SWS densities and the WDS sites together, is approximately

78.61 crabs per 1000m2. This then translates to an abundance estimate of approximately

478,682,611 juvenile blue crabs in the Maryland waters of the Chesapeake Bay. A

summary of these findings can be found in Table 4.4. The pilot study yielded an

abundance estimate approximately 3.21 times higher than the abundance estimate

generated by the WDS data alone. In other words only 31% of the juvenile blue crabs are

susceptible to the WDS within the Maryland waters of the Chesapeake Bay; this

translates to a susceptibility value of 0.31.

Discussion

This goals of this study were: (1) Compare the densities of juvenile blue crabs in

the shallow, unsampled, waters with estimates from nearby (<16 km) sampling locations

in the Winter Dredge Survey (WDS) and (2) Compare estimates of total juvenile

abundance in the Maryland waters of the Chesapeake Bay generated by the WDS alone

and the Shallow Water Survey (SWS) and WDS combined. They key findings were (1)

two of the four rivers sampled, the Middle and Manokin Rivers, showed significantly

higher densities than nearby WDS sites, and (2) Using both the SWS and the WDS data

to estimate the abundance of juvenile blue crabs in the Maryland waters of the

Chesapeake Bay resulted in an abundance estimate approximately 3.21 time greater than

using the WDS data alone.
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However, there are some restrictions to the implications of the results of this

study. Future stock assessments for the Chesapeake Bay Blue Crab will rely less on

absolute abundances and more on relative indices of abundance. Relying less on

estimates of absolute abundance is advantageous given the limitations in calculating

reliable gear efficiency estimates, as seen in Chapter 2. A multi-year study would need to

be conducted in order to determine if the proportion of juvenile blue crabs in the shallow

unsampled waters relative to the juvenile blue crabs in the sampled waters changes from

year to year. If the proportion changes annually a separate shallow water survey would

need to be conducted to provide an additional index of relative abundance that can be

used along with the WDS. Many things learned during this study can be applied to any

future shallow water surveys. Firstly, a greater number of regions would need to be

sampled within the entire Chesapeake Bay. One major limitation of this study is only 4

river systems were sampled and these rivers might not truly represent of the regions they

are located within. Also, a greater number of sites would need to be sampled. A total of

192 SWS sites represented over 2,100 km2 of unsampled water within the Maryland

section of the Chesapeake Bay. Whereas, 826 WDS sites represented just under 4,000

km2 of sampled water within the Maryland section of the Chesapeake Bay

Even with the limitations this study yielded interesting results. Ideally the

Negative Binomial Generalized Linear Model (NBGLM) would have shown an

insignificant interaction between the survey methods and river, thus indicating that the

proportion of juvenile blue crabs in the unsampled waters relative to the waters sampled

by the WDS remains constant across all regions of the Maryland Waters of the

Chesapeake Bay. However, because the interaction term was significant the ad hoc
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contrasts were needed to see which rivers contained significantly different densities

between the SWS and WDS. Interestingly the two rivers furthest apart are also the only

two rivers where the SWS had a significantly higher catchability corrected density

compared to nearby WDS sites.

The Middle River catchability corrected density estimate for the SWS was

approximately 4 times higher than that of the nearby WDS sites. The Middle River

represented the uppermost region of the Chesapeake Bay and had the lowest density

estimates compared to the other rivers within the same survey. Figure 4.3 shows the

proportional distribution of the raw count of juvenile blue crabs caught per tow for the

SWS sites sampled within the Middle River and nearby WDS sites. Neither survey had a

single tow with more than 1 crab caught; this, combined with the relatively low sample

size for both surveys, n=48 for the SWS and n=31 for the WDS, suggests that the results

might not be truly representative of the region as sampling such a rare event would

require a substantially larger sample size.

The catchability corrected density estimate of juvenile blue crabs within the

shallow waters of the Manokin River is approximately 9 times greater than the density

estimate of nearby WDS sites. The Manokin River represented the south eastern region of

the Maryland waters of the Chesapeake Bay and had the highest density estimates

compared to the other rivers within the same survey. Figure 4.4 shows the proportional

distribution of the raw count of juvenile blue crabs caught per tow. Both surveys show

similar patters with the WDS containing proportionally more zero hauls and the SWS

containing proportionally more tows containing 15 or more juvenile blue crabs in a single
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tow. Not represented in the figure is the single SWS tow that contained 103 juvenile blue

crabs in a 75m tow; this data is included when creating the model and contrasts

Both the Rhode/West and Patuxent Rivers did not have significantly different

catchability corrected densities between the SWS and nearby WDS sites. The Rhode and

West Rivers represented the middle of the Maryland waters within the Chesapeake Bay

and the Patuxent River represents the south western section of the Maryland waters

within the Chesapeake Bay. Figure 4.5 shows the proportional distribution of the raw

count of juvenile blue crabs caught per tow within the Rhode and West Rivers. Both

surveys show similar patters with the SWS containing proportionally more zero hauls and

the WDS containing proportionally more tows containing 3 or more juvenile blue crabs

in a single tow. Figure 4.6 shows the proportional distribution of the raw count of

juvenile blue crabs caught per tow within the Patuxent River. Both surveys show similar

patterns with the SWS containing proportionally more zero hauls and the WDS

containing proportionally more tows containing 3 or more juvenile blue crabs in a single

tow.

However, comparing absolute densities should be done with caution. Firstly, the

SWS sites were sampled up to a month and a half after the WDS sites were sampled. The

natural mortality that occurs between the time the WDS sites are sampled and the SWS

sites were sampled would reduce the density observed in the SWS. Therefore the

differences in abundances between the two surveys would be greater, but without an

accurate estimate of winter mortality it is impossible to determine the magnitude of the

impact and if the increase in the SWS densities would result in significant contrasts for
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the Rhode/West and Patuxent Rivers. Additionally, as stated in Chapter 2, the difficulty

of calculating an accurate gear efficiency estimate means care should be taken when

making inferences based on comparisons of absolute densities.

When comparing the absolute abundance of juvenile blue crabs in Maryland

waters a greater abundance was calculated using both the SWS and WDS data than the

abundance estimated from the WDS data alone. It could be expected that this trend would

also be seen in Virginia waters and potentially with a greater difference in abundance

estimates given juvenile blue crabs must pass through this region on their way from the

ocean to the upper sections of the bay. This is supported by a long term summer juvenile

blue crabs survey that takes place in several rivers around the Chesapeake Bay; in general

juveniles are in much greater densities in the Virginia Rivers than in the Maryland Rivers

(Johnson et al. unpublished data). This would suggest that the susceptibility coefficient

value is lower than predicted by the model and have a greater impact on reference point

calculations, specifically the exploitation fraction at maximum sustainable yield (MSY).

The exploitation fraction is calculated by dividing the estimated catch by the sum

of age-0 and age-1+ crabs. The age-0 crabs are divided by the susceptibility coefficient to

adjust the WDS abundance estimates. To estimate the susceptibility coefficient the

current multiple catch-survey model uses a sex specific Ricker stock-recruitment model

to predict the combined number of age 0 crabs at time t that survived to time t+1and the

number of age 1+ crabs at time t that survived to time t+1 to predict the total number of

age 1+ crabs at time t+1. This abundance estimate is then compared to the abundance

estimate generated from the WDS at time t+1 and the discrepancy is the susceptibility
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coefficient for age 0 crabs at time t. The model predicts that the WDS generates a

juvenile abundance estimate that is about 40% of the true abundance (Miller et al. 2011).

However, based on the SWS and the WDS, that in Maryland the WDS abundance

estimate is roughly 30% of the true population. This value may be overestimated because

of the timing of the SWS versus the WDS. SWS sites were sampled up to a month and a

half after the WDS sites. The natural mortality that occurred between the two surveys

would result in lower abundance estimates; thus resulting in a larger susceptibility

coefficient. Like the previous comparison, without an accurate estimate of winter

mortality it is impossible to determine the magnitude of the impact it has on the

susceptibility coefficient.

If this trend is also seen in Virginia, some of the discrepancy between this

susceptibility coefficient estimate and the stock assessment models susceptibility

coefficient estimate could be due to an incorrect natural mortality value for juvenile blue

crabs. If juvenile blue crabs experience higher natural mortality the susceptibility

coefficient is being underestimated since the proportionally fewer age 0 crabs will

survive to the age 1+ size class. If a shallow water survey was added to the WDS there

would be no need to estimate a susceptibility coefficient, and therefore any discrepancy

would be due to random/observation errors and an incorrect natural mortality rate.

Without the need to calculate a susceptibility coefficient the natural mortality for juvenile

blue crabs could be estimated, as long as the natural mortality of adults is known or

assumed.
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CHAPTER 5:

SUMMARY
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The blue crab, Callinectes sapidus, is an estuarine-dependent species supports both

important recreational and commercial fisheries (Kennedy et al. 2007). Because of its

economical, biological, and cultural importance the blue crab has been the object of many

scientific studies, fishery-independent monitoring programs, and coordinated regional

management projects. One of the main goals in the management of blue crabs is the

development of advanced stock assessment methodologies. The newest stock assessment,

completed in 2011, introduced a new sex-specific catch multiple survey assessment

model (Miller et al. 2011). There were two major changes to the previous stock

assessment, the first is the separation of age 1+ males and females in the assessment

model. The second major change was a partial recruitment of juvenile blue crabs to the

fishery.

The Winter Dredge Survey (WDS) is a Bay-wide stratified random sample of

waters greater than 1.6 meter. Of all large scale surveys conducted in the Chesapeake

Bay, the WDS is considered to provide the most accurate reflection population

abundance (Sharov et al. 2003; Jensen and Miller 2006). However, studies have

suggested that smaller juveniles will seek shallow waters as a refuge from predation and

cannibalism (Dittel et al. 1995). Any juveniles that stay in waters below 1.5m will not be

susceptible to the WDS. The current model calculates a susceptibility coefficient (q) to

scale up the abundances of juvenile blue crabs not susceptible to the WDS.  However,

this is confounded by the model using one value of natural mortality. If the natural

mortality of juveniles is greater than what is assumed then the susceptibility coefficient

will be overestimated and as a result the abundance of age-0 blue crabs will be

underestimated. Since a portion of juvenile blue crabs will be exposed to the fishery in
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their first year it is important to have an accurate estimate of age-0 natural mortality and

abundance to allow for a more accurate calculation of the exploitation rate, of age-0

crabs, at maximum sustainable yield.

Three objectives were identified to help assess the need for an additional shallow

water survey to compliment the current WDS. Those three objectives are; (1) calculate

gear efficiencies for active juvenile blue crabs using two gear types, and one gear type for

overwintering juvenile blue crabs, (2) quantify the spatiotemporal patterns of juvenile

blue crabs densities in two rivers within the upper Chesapeake Bay with an emphasis on

the spatial distribution during winter and (3) conduct a study of the feasibility of a

fishery-independent winter survey by sampling the shallow waters of the Maryland

section of the Chesapeake Bay for juvenile blue crabs and comparing the density of

juvenile blue crabs within the shallow waters to the densities observed in the Winter

Dredge Survey.

The first objective is addressed in Chapter 2; a series of gear efficiency experiments

were conducted for two gear types: (1) a commercial grass scrape and (2) a modified

commercial grass scrape fitted with a tooth bar that allowed it to act in the field as a small

scale dredge. To accomplish this a gear efficiency study for both types of gear was

conducted on active juvenile blue crabs during the summer using mark-recapture

methodologies.  Secondly, a gear efficiency study was conducted for the small-scale

dredge on overwintering juvenile blue crabs using a series of modified depletion

experiments; this component of the study did not include the commercial grass scrape

because gear efficiency was assumed to be near zero based on previous observations.
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Gear efficiency estimates were consistent across gear type, season, and estimation

methodology; my estimates were about 25%. An emphasis was put on ensuring the gear

efficiency estimates were accurate; similar studies have been conducted on overwintering

blue crabs that have assumptions that may not be valid (Volstad et al. 2000; Sharov et al.

2003). Design changes were made for this gear efficiency study to reduce the risk of

violating our assumptions. The most important difference between the methodology

presented in this thesis and the methods used by Sharov el al. (2003) is in the role of

depletion. The Sharov el al. (2003) methodology uses the rate of depletion to estimate the

gear efficiency, however this requires the assumption that all passes happen over exactly

the same area every time. The methodology used in this thesis only requires that the

sampling gear does not leaved a defined area while the area is depleted. Once depleted,

the first pass within the area can be compared to the known density. The assumptions

made in this thesis are less likely to have been validated than those made by Sharov et al.

(2003). When estimating the gear efficiency of both gear types on active blue crabs a

series of assumptions were made that were likely violated. It was assumed that no tagged

crabs left the cove during sampling and that the tagged crabs were homogenously

distributed within the cove.

Improvements can be made to the methodology used in this thesis to further reduce

the likely hood that any of our assumptions will been violated in the future. For

estimating the gear efficiency of active juvenile blue crabs the cove where sampling is

occurring should be blocked off to prevent emigration and changes should be made to

how the cove is sampled to maintain a homogeneous distribution of juvenile blue crabs.

For estimating the gear efficiency of overwintering juvenile blue crabs the gear should be
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better marked so that it can be seen if it is leaving the defined area. Also, the number of

trials should be increased.

The second objective is addressed in Chapter 3, the depth distribution of juvenile blue

crabs was tracked between October 2010 and July 2011 in the Rhode and West rivers

based on a stratified sampling design with depth and bottom sediment type as strata. Size

cutoffs for each sample period to categorize the crabs caught into juvenile blue crabs and

adult blue crab size classes. A Negative Binomial Generalized Additive Model

(NBGAM) was used to predict the density of juvenile blue crabs for each potential

sampling site within the Rhode and West Rivers. Heat maps were generated of the

relative densities of juvenile blue crabs to facilitate the observation of spatiotemporal

patterns in juvenile blue crabs densities, focusing on the depth distribution of

overwintering juveniles.

The most important finding was that in all sampling periods over 50% of all juvenile

blue crabs in the Rhode and West Rivers were located in waters less than 1.6m. In the

winter nearly 70% of all juveniles are located in waters unsampled by the WDS.

However, this study was only conducted over a single year and should be replicated over

several years and within different river systems in order to make general statements about

the depth preferences of overwintering juvenile blue crabs. If the proportion of juvenile

blue crabs with the shallow, unsampled, waters changes from year to year this would be

strong support for the creation of a new shallow water survey to obtain a better index of

abundance for juvenile blue crabs. If this study were to be replicated a few hurdles must

be overcome, mainly the lack of a tensor interaction between sampling period and

sediment type may be problematic if juveniles change their sediment preference
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depending on the time of year. Additionally, the relatively small area sampled within the

river system resulted in a high number of zeros. This can be overcome by increasing the

area covered by each sample and increasing the number of sites sampled.

The final objective is addressed in Chapter 4; for this study a preliminary Shallow

Water Survey (SWS) was conducted where two creeks in each of four river systems,

selected to be broadly representative of four regions of the upper Chesapeake Bay, were

sampled. The average density of juvenile blue crabs found in each river system was

compared to the average density of juvenile blue crabs within all nearby winter dredge

survey sites (<16 km). An estimate of absolute juvenile abundance was then calculated

using combined SWS and WDS data and compared to estimates generated for the WDS

alone to determine if the juvenile crab population is underestimated by the current WDS.

Only two of the four rivers sampled showed significantly higher juvenile blue crabs

in the shallow waters than nearby WDS sites. Higher density of juvenile blue crabs were

found in the unsampled waters of the Middle and Manokin rivers when compared to

nearby WDS sites. The juvenile blue crabs density in the unsampled waters of the

Rhode/West and Patuxent Rivers was not significantly different than nearby WDS sites.

The results of this analysis are mixed and suggest that future studies would benefit from

an increase in sample size for each region sampled. In addition to increasing the sample

size the number of regions sampled should be increased to better represent the entire bay

not just a few small portions.

When comparing juvenile blue crabs abundances in Maryland waters a greater

abundance was calculated using both the SWS and WDS data than the abundance
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estimated from the WDS data alone. The current stock assessment model predicts that the

WDS generates a juvenile abundance estimate that is about 40% of the true abundance

(Miller et al. 2011). In the stock assessment this value is called the susceptibility and is

expressed as q0=0.4. According to the abundances calculated in this chapter, within the

Maryland waters of the Chesapeake Bay the WDS generates a juvenile abundance

estimate that is 30% of the population abundance calculated from both the WDS and

SWS, therefore the q0 value is approximately 0.3. Currently the stock assessment model

uses one value for natural mortality for both juvenile and adult blue crabs, however some

studies have suggested juvenile blue crabs mortality is higher than that of adults (Hines

and Ruiz 1995; Lipcius et al. 2005; Johnson et al. 2011).  Some of the discrepancy seen

between the estimate of susceptibility calculate here and the susceptibility predicted by

the model could be explained by juvenile blue crabs having a higher natural mortality

than adults. Care should be taken when interpreting these results, converting from catch

to density requires an accurate estimate of gear efficiency. Given the concerns about the

accuracies of the gear efficiency estimates and the move away from the use of absolute

abundances in future stock assessments, the shallow water survey should be redesigned to

better meet the future needs of the stock assessment scientists.

Overall, the results of the seasonal and shallow water survey may indicate a potential

need for a bay-wide shallow water survey to compliment the current Winter Dredge

Survey. It might be worthwhile to further explore spatiotemporal patterns of juvenile

blue crabs densities in the shallow waters of other rivers to see if similar patterns as those

in the Rhode and West Rivers are seen elsewhere. These studies should be repeated for

several years to determine if the proportion of juvenile blue crabs in the unsampled
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waters remains constant or if it varies from year to year. If this proportion is time varying

it would be strong evidence for a separate shallow water survey to generate an additional

index of abundance for juvenile blue crabs. The addition of an additional shallow water

survey could improve current stock assessment models and allow for better management

of the blue crab stock in the Chesapeake Bay.
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Appendix I: Results of Negative Binomial Generalized Additive Mixed Model for
the Rhode and West River Seasonal Study

Methods:

The autocorrelation function and vairogram of a Negative Binomial Generalized

Additive Mixed Model (NBGAMM), seen in equations 5 and 6, were examined to

determine if there was any spatial and/or temporal autocorrelation in the data collected as

part of the season study conducted in the Rhode and West Rivers. Crabs represents the

number of juvenile blue crabs in a 75m tow. In the event the tow length was not 75m the

crab count was corrected and rounded to the nearest whole juvenile crab. A smoothing

factor, of k=4, was applied to the sample period term of the equation. Theta values of 0.1

to 10 by 0.1 were input into the model and the most appropriate theta was chosen by

minimizing the Akaike Information Criterion (AIC). For the variogram, the distance

between two samples was determine from the latitude and longitude of the center of the

sampled cells; paired distances were calculated for each sample period. A maximum

distance of 2.9km was used for the variogram; this represents half the maximum distance

between any two cells sampled in this study.

The abundance of crabs per tow was modelled as a negative binomial process

(Zuur et al. 2009) where

( ) = , (5)
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Where g() is some function of the standardized number of crabs in a 75 m tow, NB is the

negative binomial distribution, µ i,j is the mean of the negative binomial process, and θ is

the overdispersion process.  µ i,j can be given by

μi,j,k,l=eβ0+β1(Sedimenti)+β2 Depthj + 2(Sample Periodl, . ) (6)

Where β’s are fitted parameters for each model factor or interaction of factors.  A

smoothing factor of k=4 was used for each function within the model. Models defined by

eq 1 and 2 were fit using a range of Ɵ (Eq. 5). Theta values of 0.1 to 10 by 0.1 were input

into the model and the value of Ɵ was chosen that minimized the Akaike Information

Criterion (AIC) for the model. All models were fit using R and the package mgvc (Wood

2000, 2006)

Results:

The AIC for the NBGAMM, was minimized at theta= 0.6. The model summary

can be found in Table AI.1). The best fitting model indicated that depth, sediment and

sample periods were significant predictors of juvenile blue crabs density in the Rhode

and West Rivers. The autocorrelation function plot indicated a correlation of 1 at time lag

0, and small but significant correlations at temporal lags 2, 5, and 8 (Figure AI.1).

However, the pattern in the autocorrelation function did not indicate the presence of

temporal autocorrelation in the data. Similarly, the spatial variogram did not indicate

presence of substantial spatial correlation (Figure AI.2).
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Table AI.1 The model summary for the Negative Binomial Generalized Additive Mixed
Model.

Family: Negative Binomial(0.6) Generalize Additive Mixed Model
Link Function: Log
Formula: CrabsAdj ~ Depth + Sediment + s(Sample Period, k = 4)

Coefficent Estimate
Standard
Error T Value P Value

Intercept -0.331 0.179 -1.850 0.0647
Depth -0.286 0.085 -3.375 0.0008
Sediment-Sand 0.678 0.184 3.678 0.0003
Sediment- Silt/Sand 0.659 0.288 2.288 0.0224

Smoother term

Estimated
Degrees of
Freedom F value P Value

Sample period 2.695 16.67 <0.0001

R-Square(adjusted) 0.152
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Figure AI.1 The Autocorrelation Function plot generated from the results of the Negative
Binomial Generalized Additive Mixed Model. The plot suggests there is no temporal
autocorrelation.
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Figure AI.2 Variogram generated from the results of the Negative Binomial Generalized
Additive Mixed Model and used to determine the presence or absence of spatial
autocorrelation. The plot suggests there is no spatial autocorrelation.
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Appendix II: R code for Rhode and West River Seasonal Study

Below is the Code used to observe any spatial or temporal autocorrelation and predict
juvenile blue crabs densities for each potential sample site in the Rhode and West Rivers.

##### Need packages nlme gstat mgcv MASS
setwd("f:/Masters")

SPmissingdata=read.csv("mastersdata_missing_sp.csv")

#####################################################

#### Data with Sample Period by 0.5 month intervals Where October is SP=1 and July is
SP=10 SP=1.5 is for Late OCT Sampling
#### Sled data for winter sampling period = NA since gear efficiency is near 0 and not
estimated

#### Changing negbin by 0.1 to get lowest AIC
AICtest<-NULL

for (i in (1:100)) {

CrabModel1<-gamm(CrabsAdj ~ Depth + Sed + s(SP,k=4),
data = SPmissingdata,
family = negbin((i/10))
)

AICtest[i]<-AIC(CrabModel1$lme)

}

cat(AICtest,sep="\n")

##### AIC minimized at theta=0.6

CrabModel2<-gamm(CrabsAdj ~ Depth + Sed + s(SP,k=4),
data = SPmissingdata,
family = negbin(0.6)
)

#### Look at residuals of model And ACF

M3Resid<-residuals(CrabModel2$gam, type = c("pearson"))
EAll<-vector(length=length(SPmissingdata$CrabsAdj))
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EAll[]<-NA
I1<- !is.na(SPmissingdata$CrabsAdj)
EAll[I1]<- M3Resid
plot(SPmissingdata$SP,EAll)

#### Create ACF to examine temporal autocorrelation

M3Resid2<-residuals(CrabModel2$gam, type = c("pearson"))
I1<- !is.na(SPmissingdata$CrabsAdj)
Efull<-vector(length=length(SPmissingdata$CrabsAdj))
Efull<-NA
Efull[I1]<- M3Resid2
acf(Efull, na.action =na.pass)

#### ACF shows no temporal autocorrelation

#### Create Variogram to determine if there is spatial autocorrelation

CrabModel2Var2<-Variogram(CrabModel2$lme, form=~ Long+Lat|SP, data=
SPmissingdata, maxDist=0.0265)

plot(CrabModel2Var2, smooth=FALSE)

#### since there is no spatial or temporal correlation a GAM is more appropriate than
GAMM

#### Rerun as GAM
#### Add tensor to create"Interaction" between depth and SP

AICtest<-NULL

for (i in (1:100)) {

CrabModel3<-gam(CrabsAdj ~ ti(SP,k=4) + ti(Depth,k=4) + ti(SP,Depth, k=4) + Sed,
data = SPmissingdata,
family = negbin(i/10)
)

AICtest[i]<-AIC(CrabModel3)

}

cat(AICtest,sep="\n")

#### AIC minimized at theta=0.4
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#### Final Model selected

CrabModel4<-gam(CrabsAdj ~ ti(SP,k=4) + ti(Depth,k=4) + ti(SP,Depth, k=4) + Sed,
data = SPmissingdata,
family = negbin(0.4)
)

FinalCrabModelPredCell<-predict(CrabModel4, newdata=SPcelldata, se = T,
type="response")

write.csv(FinalCrabModelPredCell, "FinalCrabModelPredCell.csv")

M3Resid<-residuals(CrabModel4, type = c("pearson"))
EAll<-vector(length=length(SPmissingdata$CrabsAdj))
EAll[]<-NA
I1<- !is.na(SPmissingdata$CrabsAdj)
EAll[I1]<- M3Resid
plot(SPmissingdata$SP,EAll)

M3Resid2<-residuals(CrabModel4, type = c("pearson"))
I1<- !is.na(SPmissingdata$CrabsAdj)
Efull<-vector(length=length(SPmissingdata$CrabsAdj))
Efull<-NA
Efull[I1]<- M3Resid2
acf(Efull, na.action =na.pass)

plot(CrabModel4)
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Appendix III: SAS Code for Shallow Water Survey

Below is the SAS Code used to create the contrasts used for comparing the Shallow
Water Survey juvenile blue crabs densities to nearby Winter Dredge Survey samples.

proc import datafile= "E:\SWS.csv"
out=sws
dbms=csv;
getnames=yes;
run;

data sws;
set sws;
crabsadj= round(crabsadj);
run;

proc genmod data=SWS;
class River Sample;
model crabsadj = river|sample/ dist=negbin type3;
contrast 'Manokin' sample 1 -1 river*sample 1 -1 0 0 0 0 0 0 ;
contrast 'Middle' sample 1 -1 river*sample  0 0 1 -1 0 0 0 0 ;
contrast 'Patuxent' sample 1 -1 river*sample  0 0 0 0 1 -1 0 0 ;
contrast 'RhodeWest' sample 1 -1 river*sample  0 0 0 0 0 0 1 -1 ;
run;

proc means data=sws mean median stderr min max;
class river sample;
var crabsadj;
run;

proc import datafile= "E:\SWSRW.csv"
out=swsRW
dbms=csv;
getnames=yes;
run;

data swsRW2;
set swsRW;
crabsadj= round(crabsadj);
run;

proc genmod data=SWSRW2;
class River Sample;
model crabsadj = river|sample/ dist=negbin type3;
contrast 'Manokin' sample 1 -1 river*sample 1 -1 0 0 0 0 0 0 ;
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contrast 'Middle' sample 1 -1 river*sample  0 0 1 -1 0 0 0 0 ;
contrast 'Patuxent' sample 1 -1 river*sample  0 0 0 0 1 -1 0 0 ;
contrast 'RhodeWest' sample 1 -1 river*sample  0 0 0 0 0 0 1 -1 ;
run;

proc means data=swsRW2 mean median stderr min max;
class river sample;
var crabsadj;
run;
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