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Transportation systems are critical lifelines for society, but are at risk from natural or 

human-caused hazards. To prevent significant loss from disaster events caused by such 

hazards, the transportation system must be resilient, and thus able to cope with disaster 

impact. It is impractical to reinforce or harden these systems to all types of events. 

However, options that support quick recovery of these systems and increase the 

system’s resilience to such events may be helpful. 

To address these challenges, this dissertation provides a general mathematical 

framework to protect transportation infrastructure systems in the presence of uncertain 

events with the potential to reduce system capacity/performance. A single, general 

decision-support optimization model is formulated as a multi-stage stochastic program. 

The program seeks an optimal sequence of decisions over time based upon the 

realization of random events in each time stage. This dissertation addresses three 

problems to demonstrate the application of the proposed mathematical model in 



  

different transportation environments with emphasis on system-level resilience: 

Airport Resilience Problem (ARP), Building Evacuation Design Problem (BEDP), and 

Travel Time Resilience in Roadways (TTR). These problems aim to measure system 

performance given the system’s topological and operational characteristics and support 

operational decision-making, mitigation and preparedness planning, and post-event 

immediate response. Mathematical optimization techniques including, bi-level 

programming, nonlinear programming, stochastic programming and robust 

optimization, are employed in the formulation of each problem. Exact (or approximate) 

solution methodologies based on concepts of primal and dual decomposition (integer 

L-shaped decomposition, Generalized Benders decomposition, and progressive 

hedging), disjunctive optimization, scenario simulation, and piecewise linearization 

methods are presented. Numerical experiments were conducted on network 

representations of a United States rail-based intermodal container network, the 

LaGuardia Airport taxiway and runway pavement network, a single-story office 

building, and a small roadway network.   
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Chapter 1: Introduction 

1.1. Motivation and research objectives 

Transportation systems provide a network of options to support the mobility of people 

and goods. They connect businesses and support supply chains and services. Moreover, 

they offer accessibility to vital resources for daily activities and in emergency 

circumstances. In this latter case, these systems play a key role in survivor evacuation, 

rescue operations, and community reconstruction and recovery. These systems are 

exposed to risk from a multiplicity of hazards, ranging from natural events and 

technological failures to intentional malicious acts. Disruptions in the operation of 

these systems can have cascading impacts within the system and on other 

interconnected critical lifelines. In addition to the effects of direct damage to the 

physical transportation infrastructure, indirect damage to, for example, the economy 

and social systems may result. 

The frequency of disasters, whether natural or human-made, has increased to 

an unprecedented level in the last decade (Guha-Sapir et al. 2011). Likewise, the 

impacts of such events on transportation infrastructure systems have intensified due to 

increased system complexity and interdependency, and urbanization in coastal and 

other disaster-prone areas. Hurricane Sandy (2012), Hurricane Irene (2011), the 

Japanese Tsunami (2011) and subsequent nuclear meltdown, the Sichuan Earthquake 

in China (2008), the Christchurch earthquake (2011) in New Zealand, the Minneapolis 

I-35W bridge collapse (2007), and Hurricane Katrina (2005) are only a few examples 

of recent devastating events. Their impacts illustrates how susceptible transportation 
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systems with embedded infrastructure are to such events. Damage caused by Hurricane 

Sandy to the New York City transportation system amounted to $7.5 billion (New York 

News 2012). Hurricane Irene affected more than 500 miles of highways, 2000 miles of 

roadways, 200 miles of railways, and 300 bridges in Vermont (Lunderville 2011). The 

collapse of the I-35W Bridge over the Mississippi River imposed over $0.4 million in 

costs to daily trips alone due to traffic rerouting (Zhu et al. 2011). 

Transportation infrastructure systems are also a common target of terrorist 

attacks, such as 9/11 attacks and the bombings in London (2005), Madrid (2004), and 

Mumbai (2006). In addition to resulting physical damage, these events have long-term 

socio-economic and psychological impacts. Furthermore, they affect traveler decisions. 

Gordon et al. (2007) concluded a 6% reduction in passenger trips and noted a big shift 

from public transit services to private automobiles during a two-year period following 

the 9/11 attacks. 

While many societies have come to rely on transportation systems, these 

systems are operating at or near design capacity. They are aging and are faced with 

greater risk of attack, whether natural, accidental or human-induced. Because these 

systems have become quite complex, interdependent and interconnected, the possibility 

that a disruptive event to any one system will cascade into an event involving multiple 

systems is significant and can result in widespread failure or difficult recovery. 

Sustained loss of one or more of these lifelines can have catastrophic impact on the 

well-being of a society. Consequently, governments and agencies that own or operate 

these systems are reviewing their investment policies with goals of expanding system 

capacity, reducing risk of attack, and reducing susceptibility of infrastructure to damage 
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given possible disruptions or disaster events (U.S. Department of Homeland Security 

Homeland Security, 2009). In addition, as it is impractical to reinforce or harden these 

systems to all types of events, efficient options to support quick recovery of these 

systems from such events are being considered. 

To evaluate investment options that can be taken to reduce risk of failure and 

increase a system's ability to rebound from an attack, one must be able to quantify the 

innate ability of the system to cope with attack and its ability to adapt through the use 

of available resources. Numerous performance measures have been proposed in the 

literature for such quantification. These measures include various specifications of 

system reliability, vulnerability, robustness and flexibility, which describe the behavior 

of systems and their performance variations under different situations. They aim to 

quantify how well a system is expected to perform given the possibility of potential 

future events that affect system capacity.  

Various definitions of such performance measures have been introduced in the 

literature. These definitions, however, are sometimes intertwined and often 

inconsistent. Moreover, the majority are qualitative in nature. As a result, it is often 

unclear to the agencies responsible for maintaining, expanding and protecting critical 

societal lifelines which measure or set of measures should be considered in evaluating 

these systems or potential investment options.This dissertation provides a 

comprehensive survey of the literature on performance measurement for transportation 

infrastructure systems under possible disaster occurrence. It further develops a 

mathematical framework for conceptualizing, categorizing, and quantifying such 

system performance measures. A single mathematical decision problem is developed 
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based on the introduced framework for quantifying these measures congruously and 

maximizing their values. This problem is formulated generally as a two-stage stochastic 

programming model to capture the uncertain nature of disasters and their consequences. 

The model seeks the optimum allocatation of resources to pre-event mitigation and 

preparedness and post-event response actions given the realization of a single disaster 

scenario od many possible scneairos. 

This general framework is customized for application to a variety of 

transportation systems, incliding freight networks, airport taxiway and runway 

pavement networks, roadway networks, and building environments. The characteristics 

of each system and their operations are captured. Application on a set of real world 

based case studies offer insights into the various performance measures, their 

relationships, and the relative importance of preparedness and response actions.  

In the next section, specific problem classes addressed in this dissertation are 

discussed in detail. The main contributions of this dissertation are synopsized in Section 

1.3. Formal definitions, as well as detailed description of mathematical approaches, 

models, and solution methodologies, are given in Chapters 3 through 6. 

1.2. Specific problems addressed 

1.2.1. A mathematical framework for quantifying and optimizing protective actions 

for civil infrastructure systems 

In Chapter 3 of this dissertation, a comprehensive framework is addressed for 

conceptualizing, categorizing, and quantifying system performance measures in the 

presence of uncertain events, component failure, or other disasters with the potential to 
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reduce system performance. The framework clarifies the interrelationships between 

notions of coping capacity, preparedness, robustness, flexibility, recovery capacity and 

resilience, previously espoused as independent measures, and provides a single 

mathematical decision problem for quantifying these measures congruously and 

maximizing their values.  

Required solution methodologies are described for use in evaluating system 

performance in terms of these measures. Resulting solutions can be exploited to determine 

an optimal allocation of limited resources to preparedness and response options. A 

numerical transportation-related example is provided to illustrate its application. Results 

of this application offer insights into these various performance measures, their 

relationships, and the relative importance of preparedness and response actions. More 

details on this framework, the mathematical structure of the decision problem and solution 

methodologies are given in Chapter 3. 

1.2.2. Resilience of airport runway and taxiway pavement networks  

In Chapter 4 of this dissertation, the problem of assessing and maximizing the resilience 

of an airport’s runway and taxiway pavement network under multiple potential 

damage-meteorological scenarios is addressed. The problem is formulated as a 

stochastic integer program with recourse and an exact solution methodology based on 

integer L-shaped decomposition is proposed for its solution. The formulation seeks an 

optimal allocation of limited resources to response capabilities and preparedness 

actions that facilitate them. The overall aim is to quickly restore post-event take-off 

and landing capacities to pre-event operational levels taking into account operational, 

budgetary, time, space, and physical resource limitations. Details, such as aircraft size 
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impacts, reductions in capacity due to joint take-off and landing maneuvers on common 

runways or bidirectional flows on taxiways, potential for outsourcing repair work, and 

multi-team response, is incorporated.  

The capabilities and applicability of the solution approach is demonstrated on 

an illustrative case study. Potential benefits to airport operators are described. These 

include for example, the tool’s utility in suggesting equipment to have at the ready, 

identifying the critical pavement system components, and information to aid in 

prioritizing future facility developments. 

1.2.3. Stochastic Models for Emergency Shelter and Exit Design in Buildings under 

System Optimum and User Equilibrium Conditions 

In Chapter 5 of this dissertation, a bi-level, two-stage, binary stochastic program with 

equilibrium constraints and three variants, are presented that support the planning and 

design of shelters and exits along with hallway fortification strategies and associated 

evacuation paths in buildings. At the upper-level of this model, decisions are made 

regarding exit design, hallway fortification and the location of shelters, along with their 

size and level of protection, with the objective of minimizing the expected maximum 

endured risk over all scenarios. At the lower-level, the choice of evacuation routes by 

the users, following the upper-level design decisions, is modeled as a user equilibrium 

problem, where each individual seeks to minimize his/her risk exposure. Variants of 

the model involve both stochastic programming and robust optimization concepts 

under both user equilibrium and system optimal conditions. A multi-hazard approach 

is utilized in which the performance of a plan is tested given various possible future 

emergency scenarios. Piecewise linearization of travel time functions and a disjunctive 
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constraints transformation method that converts the single-level equivalent math 

program with complementarity constraints to a mixed integer program are employed to 

eliminate nonlinearities in the model. Integer L-shaped decomposition is adopted for 

solution of all four variants. These approaches are compared on a case study involving 

a single-story building. 

1.2.4. Travel time resilience of roadway networks in the presence of non-recurring 

disruptions 

In Chapter 6 of this dissertation, a bi-level, three-stage stochastic mathematical 

program with equilibrium constraints (SMPEC) is proposed for quantifying and 

optimizing travel time resilience in roadway networks under nonrecurring natural or 

human-induced disaster events. At the upper-level, a sequence of optimal decisions is 

taken over pre-event mitigation and preparedness and post-event response stages of the 

disaster management life cycle. Appropriate preparedness and response actions that 

aim to preserve or restore capacity to damaged roadways are considered. Assuming 

semi-adaptive user behavior exists shortly after the disaster and after the 

implementation of immediate response actions, the lower-level problem is formulated 

as a Partial User Equilibrium, where only affected users are likely to rethink their 

routing decisions. An exact Progressive Hedging algorithm is presented for solution of 

a single-level equivalent, linear approximation of the SMPEC. A recently proposed 

technique from the literature that uses Schur’s decomposition with SOS1 variables in 

creating a linear equivalent to complementarity constraints is employed. Similarly, 

recent advances in piecewise linearization are exploited in addressing nonseparable 
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link travel time functions. The formulation and solution methodology are demonstrated 

on an illustrative example. 

1.3. Contributions 

The main contributions of this dissertation are enumerated next.  

1) Completion of an extensive literature review that archives, syntheses, and 

categorizes approximately 200 journal articles, conference proceedings and 

technical reports based on a host of criteria, including qualitative/quantitative 

concepts, measure employed/defined, assessment or management strategy used, 

and proposed mathematical methodology. This provides a framework for 

considering this body of literature, as well as similarities and differences in their 

coverage, approach and utility. 

2) Development of a conceptual and mathematical framework for protection of 

infrastructure systems generically devised to permit consideration of a variety 

of applications, including, for example, applications arising in transportation, 

power grid, telecommunication, supply chain, and water supply networks. 

3) Application of variants of stochastic programming approaches, including two- 

and three-stage stochastic programs, as well as the concepts of robust 

optimization. These models can be used to measure and optimize performance 

in different transportation environments in the presence of uncertain events in 

which a sequence of optimal decisions are taken over time based upon the 

evolution of uncertainty over time stages. 

4) Application and adaptation of cutting edge OR techniques, especially 

linearization techniques particular to bi-level stochastic programs with 
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complementarity constraints to address inherent nonlinearities and 

nonconvexities. 

5) Presentation of exact solution methodologies to address the specific 

mathematical properties of the considered problem classes based on concepts 

of primal and dual decomposition methods, including integer L-shaped 

decomposition, and progressive hedging.  

6) Design and completion of extensive numerical experiments to illustrate the 

concepts and application of proposed stochastic programs and solution methods 

for their intended applications.  
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Chapter 2: Disaster Research in Transportation Infrastructure 
Systems: A Comprehensive Review 
 

2.1. Introduction 

Transportation infrastructure systems provide a network of options to support the 

mobility of people and goods. They connect businesses and support supply chains and 

services. Moreover, they offer accessibility to vital resources for daily activities and in 

emergency circumstances. In this latter case, these systems play a key role in survivor 

evacuation, rescue operations, and community reconstruction and recovery. These 

systems are exposed to risk from a multiplicity of hazards, ranging from natural events 

and technological failures to intentional malicious acts. Disruptions in the operation of 

these systems can have cascading impacts within the system and on other 

interconnected critical lifelines. In addition to the effects of direct damage to the 

physical transportation infrastructure, indirect damage to, for example, the economy 

and social systems may result.  

The frequency of disasters, whether natural or human-made, has increased to 

an unprecedented level in the last decade (Guha-Sapir et al. 2011). Likewise, the 

impacts of such events on transportation systems have intensified due to increased 

system complexity and interdependency, and urbanization in coastal and other disaster-

prone areas. Hurricane Sandy (2012), Hurricane Irene (2011), the Japanese Tsunami 

(2011) and subsequent nuclear meltdown, the Sichuan Earthquake in China (2008), the 

Christchurch earthquake in New Zealand (2011), the Minneapolis I-35W bridge 

collapse (2007), and Hurricane Katrina (2005) are only a few examples of recent 
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devastating events. Their impact illustrates how susceptible transportation systems, and 

their infrastructure, are in such circumstances. Damage caused by Hurricane Sandy to 

the New York City transportation system amounted to $7.5 billion (New York News 

2012). Hurricane Irene affected more than 500 miles of highways, 2000 miles of 

roadways, 200 miles of railways, and 300 bridges in Vermont (Lunderville 2011). The 

collapse of the I-35W Bridge over the Mississippi River imposed over $0.4 million in 

costs to daily passenger trips alone due to traffic rerouting (Zhu et al. 2011).  

Transportation infrastructure systems are also a common target of terrorist 

attacks, such as 9/11 attacks and the bombings in London (2005), Madrid (2004), and 

Mumbai (2006). In addition to resulting physical damage, these events have long-term 

socio-economic and psychological impacts. Furthermore, they affect traveler decisions. 

Gordon et al. (2007) identified a 6% reduction in passenger trips and a large shift from 

public transit services to private automobiles during a two-year period following the 

9/11 attacks.  

An increasing awareness of these issues has led to a growing body of literature 

on the subject of transportation systems performance in disaster. A marked and 

continued growth in journal articles, both qualitative and quantitative, on this topic 

followed the 1995 Kobe earthquake (also noted by Chang and Nojima 2001). The 

articles range in content from conceptual frameworks and performance metrics to 

strategies for improving preparedness and reducing the duration of time required for 

recovery. This chapter aims to provide a comprehensive overview of that portion of 

this literature which emphasizes performance evaluation in the presence of physical 

damage resulting from hazard impact.  
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The contributions of this work include: (1) an archive and synthesis of recent 

literature on the studied topic; (2) analysis and organization of approximately 200 

journal articles, conference proceedings and technical reports based on a host of 

criteria, including qualitative/quantitative concepts, measure employed/defined, 

assessment or management strategy used, and proposed mathematical methodology; 

and (3) a framework for considering this body of literature, similarities and differences 

in their coverage, approach and utility. An additional benefit of this review is that it 

provides newcomers to the field with the background needed to contribute to the area, 

and enables the identification of gaps in the literature for which additional study is 

warranted. 

2.2. Study Scope 

An enormous number of works address the performance of transportation systems, and 

hundreds of these works consider aspects associated with disaster events involving 

these systems. This subject is rather general. The scope of this chapter, thus, was 

carefully chosen to provide insights into that portion of the literature pertaining to 

transportation system performance given damage to the physical infrastructure. 

Articles that provide strategies for preparing for or responding to disaster events 

(e.g. evacuation planning, resource allocation), address humanitarian relief logistics, or 

focus on the effects of disaster on human well-being or the environment (e.g. air quality 

or ecology) are not included in this review.  Additionally, studies on the material 

properties of transportation system components from a structural engineering 

perspective, such as modeling bridge fragility and road pavement cracking/distortion, 
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are excluded. While several pioneering works from the late 1990s are included, this 

review primarily includes works published since 2000. 

A variety of terms have been used to label events precipitating disaster. These 

include: hazard, threat, perturbation, and disruption event. They are referred to herein 

as “hazards” and are considered herein to fall within one of three categories: (1) natural 

climatic/geological events (e.g. earthquake, hurricane, flood, and tsunami); (2) 

operational and technological failures due to hardware/software degradation/error and 

human error (e.g. major traffic accidents); and (3) intentional malicious acts, such as 

terrorist attacks. The term “disaster” is used to describe an event in which such a hazard 

has caused extensive physical damage; the event is non-recurring and likely 

unanticipated, and its location, impact area and severity, cannot be predicted with 

certainty. 

2.3. Overview of terminology 

A variety of performance metrics have been proposed in the disaster literature for 

evaluating and analyzing disaster impacts on transportation systems. Selection of an 

appropriate disaster measure for the particular application is an important first step in 

system analysis. These measures can be generally categorized as: risk, vulnerability, 

reliability, robustness, flexibility (also known as agility and adaptability), survivability, 

and resilience. Other performance metrics, such as total travel time, throughput, 

economic loss and connectivity, that may also provide input in quantification of some 

of these measures, are considered and categorized herein as alternative measures of 

effectiveness (MOEs). Because authors use these terms in a variety of ways, and also 

sometimes introduce new terminology for similar concepts or do not define their 
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chosen terminology, this review includes those works using alternative terminology 

under the most relevant of these categories. Where an author uses a measure that might 

be categorized under an alternative heading, the default is to assign that work based on 

the terminology adopted by the author.  

2.3.1. Risk 

 
Risk is a concept used to characterize the threat of a disaster event in terms of its 

likelihood of occurrence and consequences. Thus, risk is typically measured as with 

respect to the probability of an event arising and its corresponding effects (e.g. Basoz 

and Kiremidjian 1996). Often their product is taken. These two risk components must 

be derived through detailed location-specific probability and impact (e.g. likelihood of 

structural damage of varying levels, reduction in services, and health or environmental 

concerns) estimation. In the context of transportation system performance in disaster, 

risk can be a good measure when considering engineering failures related to a specific 

component, such as the collapse of a bridge; it may be impractical for use in networks 

consisting of many components. Thus, alternative measures may be preferred (Taylor 

et al. 2006). 

2.3.2. Vulnerability 

Vulnerability, like risk, considers the potential consequences of a disaster event on 

system performance. It captures a system’s weaknesses or susceptibility to threats 

related to operational performance (e.g. Berdica 2002, Jenelius et al. 2006). Unlike risk, 

however, the probability of the disaster event is not accounted for (Jenelius et al. 2006). 

That is, vulnerability studies recognize that it may be difficult to predict the likelihood 
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of very rare events for many systems, and expectations that incorporate such low 

probability events may not be very illuminating (Taylor et al. 2006). The concept of 

vulnerability can be vague and is often described qualitatively.   

2.3.3. Reliability 

Reliability is typically defined as the probability that a network remains operative 

(often a function of connectivity) given the occurrence of a disaster or disruption event 

(e.g. Scaparra and Church 2008, Balakrishnan et al. 2009). Variants with utility for 

transportation systems have been introduced that capture effects of disruption on 

performance level. Such a reliability measure might be, for example, the probability of 

a system performing within a satisfactory level of service under a disruption event 

(Wakabayashi and Iida 1992). One can view reliability as the complement of 

vulnerability, where the former considers remaining functionality and the latter 

potential loss or degradation (Berdica 2002 and D’Este and Taylor 2001). Concepts of 

reliability are used extensively in assessing telecommunication networks, electric 

power grids, and other engineered systems, where failures can be recurrent, and thus, 

their probability of occurrence may be significant and predictable. 

2.3.4. Robustness 

Robustness measures the ability of a system to continue in operation and, thus, maintain 

some level of functionality, even when exposed to disruption. Like reliability, it is a 

measure of strength rather than loss and can be seen as a complement to vulnerability 

(Jenelius et al. 2006, Snelder et al. 2012). For many works in the literature, robustness 

has been synonymous with reliability. Where they are distinguished from one another, 
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it is that reliability considers probability of meeting a given level-of-service; whereas, 

robustness assesses remaining functionality for a given event. It might be noted that 

offering a high degree of reliability often requires a robust system. Robustness concepts 

have been applied to engineered systems (Nagurney and Qiang 2007), including 

computer systems and telecommunications, for example. In the context of 

transportation systems, this concept was initially applied to measure network-level 

impacts of node or link removal (e.g. Chang and Nojima 2001, Sakakibara et al. 2004, 

Scott et al 2006, Nagurney and Qiang 2007). 

2.3.5. Robustness 

Another relevant concept is flexibility (also known as adaptability or agility). It 

captures the inherent capacity of a system to cope with uncertainty. This concept is 

primarily used in manufacturing systems, where for example multipurpose system 

elements or processes enable adaptation to new circumstances, e.g. pooling resources 

to allow the same capacity to be used for production of a variety of products (Morlok 

and Chang 2004). This concept has been applied in the transportation arena. For 

example, Morlok and Chang (2004) measure system flexibility in terms of the transport 

system’s ability to continue to accommodate traffic with existing capacity under 

demand uncertainty. Chen and Kasikitwiwat (2011) and Tomlin (2006) discuss 

flexibility with respect to supply uncertainties, e.g. possible degradation in the 

functionality of facilities, or other network nodes or links. Application to supply chain 

disaster management involves a general definition of flexibility as the ability to adapt 

and adjust to supply changes through contingency planning in the aftermath of 

disruptions. Flexibility can be viewed as the opposite of robustness, capturing the 
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ability of the system to absorb changes with negative impact as opposed to the ability 

to endure these changes without adaptation (Faturechi and Miller-Hooks 2013).  

2.3.6. Survivability 

Survivability is a measure of whether or not a network can continue to perform its 

intended function given damage to network components (Mead et al. 2000). Morlok 

and Chang (2004) describe survivability as a supply-oriented concept aimed at 

measuring the fraction of system demand that can be met post-disruption. A main 

application area for survivability measures has been telecommunication networks. 

These networks are often partitioned hierarchically, rendering some components more 

important than others. Additionally, arc traversal times are considered to be trivial in 

comparison to time spent waiting to pass through network nodes. Thus, extension of 

specific survivability measures developed for this industry to transportation systems 

requires adaptation (Abdel-Rahim et al. 2007 and Du and Peeta 2012). This measure 

may be comparable to robustness.  

2.3.7. Robustness 

Resilience was initially conceptualized and applied in the context of ecological systems 

(Holling 1973). It is generally defined as a system’s ability to resist and absorb the 

impact of disruptions (Bruneau et al. 2003). It builds on the strengths or weaknesses 

measured by risk, vulnerability, reliability, robustness and survivability (i.e. resistance) 

and adaptability measures, while also encapsulating the benefits of the system’s ability 

to adapt to post-disaster circumstances as in flexibility measures. Resilience measures, 

thus, account for possible interventions that can aid in returning system performance to 
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nearly pre-disaster levels. They can quantify the potential benefits of pre-disaster 

mitigation actions aimed at increasing the system’s ability to cope with disaster impact 

and post-disaster adaptive actions that aim to restore functionality.  

2.3.8. Summary 

In Table 2-1, the most-agreed upon interpretations of these measures discussed in this 

section are given. Fig. 2-1 provides a schematic of their boundaries and interactions. 

Table 2-1 Common Definitions of Common Performance Metrics 

Measure General definition 

Risk 
Combination of probability of an event and its consequences in terms of system 

performance 
Vulnerability Susceptibility of the system to threats and incidents causing operational degradation 

Reliability Probability of a system performing its intended purpose adequately post-disaster 

Robustness 
Ability to withstand or absorb disturbances and remain intact when exposed to 

disruptions 

Flexibility 
Ability to adapt and adjust to changes through contingency planning in the 

aftermath of disruptions 

Survivability 
Ability to withstand sudden disturbances to functionality while meeting original 

demand 
Resilience Ability to resist, absorb and adapt to disruptions and return to normal functionality 

 

 
Figure 2-1 Disaster measures, their boundaries and interactions 

2.4. Qualitative vs. quantitative approaches to assessing performance 

The literature on disaster-related performance measurement can be categorized by 

whether qualitative descriptions are given or quantitative measures are defined. Such 
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descriptions can provide insights into impact evaluation and management tactics. 

Quantitative measures, on the other hand, provide direct measurement that can be used 

to assess or predict disaster impact. Such measures can aid in the prioritization of 

mitigation, preparedness and adaptive actions.  

Some quantitative measures have been implemented within software or other types of 

decision support tools. Table 2-2 provides an overview of the literature through this 

categorization approach, distinguishing those works in which mathematical models or 

quantification techniques are provided from those in which a tool employing such 

models or techniques is described. Mathematical models are further classified by 

whether they provide direct assessment or suggest decisions that can be used to alter 

system performance. Assessment includes component- and system-level performance, 

both of which allow for identification of critical system elements. The models that 

suggest decisions support management of these systems. Disaster management 

includes prioritization and optimization of pre- and post-disaster investment options 

with the aim of maximizing a system’s coping capacity, reducing disaster losses, and/or 

restoring performance. 
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Table 2-2 Qualitative and quantitative publications in disaster research 

Concept 
Qualitative 

conceptualization 

Quantitative approaches 
Modeling Tool 

development Assessment Management 
R

is
k 

Basoz and 
Kiremidjian 

(1996), Cafiso et 
al. (2005), 

D’Andrea et al. 
(2005), Haimes et 

al. (2002), 
Homeland Security 

(2007)  

Basoz and Kiremidjian (1996), 
Bensi et al. (2011), Chang et al. 

(2010), Chang et al. (2000), 
Chang and Nojima (2001), Cho 

et al. (2001), Dalziell and 
Nicholson (2001), Di Gangi and 
Luongo (2005), Gupta (2001), 
Ham et al. (2005), Kim et al. 

(2002), Kiremidjian et al. 
(2007), Murray-Tuite (2007, 

2008, 2010), Na and Shinozuka 
(2009), Shiraki et al (2007), 

Stergiou and Kiremidjian (2010), 
Tatano and Tsuchiya (2008), 

Wang and Elhag (2007), Werner 
et al. (2000)  

Chang et al. (2010), 
Kim et al. (2008), 

Murray-Tuite and Fei 
(2010), Shinozuka et 
al. (2003), Zhou et al. 

(2004) 

Banerjee and 
Shinozuka 

(2009), 
Dalziell and 
Nicholson 

(2001), 
Eguchi et al 

(1997), 
Werner et al. 

(2008),  

V
ul

ne
ra

bi
li

ty
 

Berdica (2002), 
Berle et al. (2011), 
D’Este and Taylor 

(2001) 

Bell et al. (2008), Chen et al. 
(2007), D’Este and Taylor 

(2001), Ferber et al. (2007), 
Ibrahim et al. (2011), Jenelius et 
al. (2006), Knoop et al., (2012), 

Lownes et al. (2011), Luping 
and Dalin (2012), Luathep et al. 

(2011), Lu and Peng (2011), 
Murray-Tuite and Mahmassani 

(2004), Shimamoto et al. (2008), 
Sohn (2006), Sohn et al. (2003), 
Tampere et al. (2007), Taylor et 

al. (2006), Tu et al. (2012), 
Ukkusuri and Yushimito (2009), 

Yingfei et al. (2010)  

Chang (2003), Lou 
and Zhang (2011), 
Mohaymany and 
Pirnazar (2007), 

Patidar et al. (2007), 
Viswanath and Peeta 

(2003) 

Erath et al., 
(2008), 

Jenelius and 
Mattsson 
(2012), 

Taylor and 
Susilawati 

(2012),  

R
el

ia
bi

li
ty

 Bell (2000), 
Berdica (2002), 

Iida (1999), 
Nicholson and Du 
(1997), Nicholson 

(2003) 

Al-Deek and Emam (2006), 
Andreas et al. (2008), Asakura 
(1999), Bell (2000), Bell and 

Iida (2001), Bell and Schmocker 
(2002), Chen et al. (2002), Chen 
et al. (2013), Chen and Eguchi 

(2003), Golroo et al. (2010), Iida 
(1999), Lam et al. (2008), 

Nicholson (2003), Sumalee and 
Watling (2008), Nojima (1999), 
Szeto (2011), Siu and Lo (2008), 

Wakabayashi and Iida (1992), 
Yin and Ieda (2001) 

Augusti et al.(1998), 
Bin et al. (2009), 
Chootinan et al. 

(2005), Desai and 
Sen (2010), 

Dimitriou and 
Stathopoulos (2008), 
Golroo et al. (2010), 
Lo and Tung (2003), 

Lou and Zhang 
(2011), Sumalee and 

Kurauchi (2006), 
Poorzahedy and 
Bushehri (2005), 

Sanchez-Silva et al. 
(2005), Snyder and 
Daskin (2005), Park 
et al. (2007), Yin and 

Ieda (2002) 

- 
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Table 2-2 (Continued) 

Concept 
Qualitative 

conceptualization 

Quantitative approaches 
Modeling Tool 

development Assessment Management 
R

ob
us

tn
es

s Berdica (2002), 
Nagurney and 
Qiang (2007), 
Snelder (2012) 

Angeloudis and Fisk 
(2006), Derrible and 

Kennedy (2010), De-Los-
Santos et al. (2012), Ip 

and Wang (2011), 
Moreira et al. (2009), 

Morohosi (2010), 
Nagurney and Qiang 
(2007,2009,2012), 

Snelder et al. (2012), 
Sakakibara et al. (2004), 

Sullivan et al. (2010), 
Scott et al. (2006) 

Cappanera and 
Scaparra (2011), De-

Los-Santos et al. 
(2012), Fan and Liu 

(2010), Faturechi 
and Miller-Hooks 
(under review), 

Huang et al. (2007), 
Liu et al. (2009), 

Laporte et al. (2010), 
Liberatore et al. 

(2011), Patriksson 
(2008), Santos et al. 
(2010), Scaparra and 
Church (2008,2012), 
Zhang and Levinson 

(2004) 

- 

S
ur

vi
va

bi
lit

y 

Abdel-Rahim et al. 
(2007), Mead et al. 

(2000)  

Grubesic and Murray 
(2006), Matisziw and 

Murray (2009) 

Abdel-Rahim et al. 
(2007), Chen et al. 

(2011), Du and Peeta 
(2012), Garg and 

Smith (2008), Peeta 
et al. (2010), Smith 

et al. (2007) 

- 

F
le

xi
bi

lit
y Chen and 

Kasikitwiwat 
(2011), Morlok and 

Chang (2004), 
Tomlin (2006) 

Morlok and Chang 
(2004), Sun et al. (2006) 

Faturechi and 
Miller-Hooks (2013) 

- 

R
es

ili
en

ce
 

Bruneau et al. 
(2003), Caplice et 
al. (2008), Croope 

and McNeil (2011), 
Dorbritz (2011), 
Goodchild et al 

(2009),  Mansouri et 
al. (2010), Ortiz et 
al (2008), Reggiani 

(2012), Ta et al. 
(2009) 

Bekkem et al (2011), 
Berche et al. (2009), Cox 
et al (2011), Freckleton et 

al. (2012), Liu and 
Murray-Tuite (2008), 
Murray-Tuite (2006), 
Nguyen et al (2011), 
Omer et al. (2011), 

Vugrin et al. (2011), 
Zhang et al. (2009) 

Chen and Miller-
Hooks (2012), 
Faturechi et al. 
(under review), 
Faturechi and 
Miller-Hooks 

(2013), Losada et al. 
(2012), Miller-

Hooks et al. (2012), 
Vugrin et al. (2010), 

Vugrin and 
Turnquist (2012)  

Adams et al. 
(2012), Leu 
et al. (2010), 

Nair et al. 
(2010), 

Omer et al. 
(2011), 

Serulle et al. 
(2011) 
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2.5. Categorization by life-cycle phase 

The disaster life-cycle is often described as having four phases: mitigation, 

preparedness, response, and recovery (e.g. Green 2002). The first two phases arise pre-

disaster, when the disaster occurrence and its component- and system-level impacts can 

only be anticipated and actions can be developed for their mitigation. The latter two 

phases involve the implementation of post-disaster adaptive actions that aim to restore 

system performance to pre-disaster levels.  

Mitigation efforts typically aim at reducing the probability of disaster 

occurrence or the level of its consequences. The aim of such efforts may be to reduce 

the probability of an attack (e.g. human-made) on the system or reduce the likelihood 

that an attack will cause a given level of damage (i.e. will have certain consequences). 

In the context of transportation systems, the primary mitigation strategies can be 

described as: (1) retrofitting system components, (2) expanding the system to include 

new links or nodes, (3) adding capacity to existing system elements, or (4) positioning 

resources for protective purposes. The concept of expansion as a mitigation strategy is 

fairly new, and its benefits are derived through added post-disaster residual capacities. 

Highway embankment, assignment of security teams, and bridge fortification, are some 

examples of mitigation strategies used to combat floods, terrorist attacks and 

earthquakes, respectively.  

Preparedness strategies support quicker and more efficient response in a 

disaster’s aftermath. Such strategies might include, for example, implementing 

awareness campaigns, training response teams, or pre-positioning equipment and/or 
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other resources, such as fire extinguishers for firefighting, water pumps for use in 

floods, and salt spreaders for snow or ice handling.  

Post-disaster emergency response includes short-term response actions in the 

aftermath of a disaster with the aim of restoring system performance. The first portion 

of this life-cycle phase is devoted to humanitarian relief operations, such as emergency 

rescue and medical service distribution (not covered in this study). This is followed by 

repair of damaged system components with the objective of restoring connectivity or 

increasing system throughput levels. Pavement crack repair, debris removal, and 

construction of temporary road mats, are some examples of response strategies.  

Recovery, as the final phase of the disaster life-cycle, continues beyond 

emergency response, until actions to improve system performance are terminated. This 

phase may take months, even years, to accomplish; thus, requiring long-term planning. 

Short-term decisions taken in the response phase can impact the efficiency of the 

recovery phase (Baird 2010).  

The reviewed literature is categorized by life-cycle phase and performance 

measure in Table 2-3.  
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Table 2-3 Summary of disaster management research based on life-cycle phases 

Concept References 

Mitigation 

P
re

pa
re

dn
es

s 

R
es

po
ns

e 

R
ec

ov
er

y 

R
et

ro
fi

t 

E
xp

an
si

on
 

Risk 
Chang et al. (2010), Kim et al. (2008), Shinozuka et 

al. (2003), Wang et al. (2008), Zhou et al. (2004) 
     

Vulnerability 
Mohaymany and Pirnazar (2007), Patidar et al. 

(2007), Viswanath and Peeta (2003) 
     

Lou and Zhang (2011)      

Reliability 

Augusti et al. (1998), Golroo et al. (2010), 
Poorzahedy and Bushehri (2005) 

     

Chootinan et al. (2005), Dimitriou and Stathopoulos 
(2008), Lo and Tung (2003), Lou and Zhang (2011), 

Park et al. (2007), Yin and Ieda (2002) 
     

Sanchez-Silva et al. (2005), Snyder and Daskin 
(2005)  

     

Desai and Sen (2010)      
Bin et al. (2009), Sumalee and Kurauchi (2006)         

Robustness 

Cappanera and Scaparra (2011), Fan and Liu (2010), 
Liu et al. (2009) , Liberatore et al. (2011), Scaparra 

and Church (2008,2012) 
     

De-Los-Santos et al. (2012), Laporte et al. (2010),
Patriksson (2008), Santos et al. (2010), Zhang and 

Levinson (2004) 
     

Huang et al. (2007)      
Faturechi and Miller-Hooks (2013)        

Survivability 
Du and Peeta (2012), Peeta et al. (2010)      

Abdel-Rahim et al. (2007), Chen et al. (2011), Garg 
and Smith (2008), Smith et al. (2007) 

     

Flexibility Faturechi and Miller-Hooks (2013)       

Resilience 

Losada et al. (2012)      
Chen and Miller-Hooks (2012), Vugrin et al. (2010)      

Miller-Hooks et al. (2012)       
Faturechi et al. (under review)       
Vugrin and Turnquist (2012)        

Faturechi and Miller-Hooks (2013)        

No specific 
concept 

Barbarosoglu and Arda (2004), Chang (2003), Ferris 
and Ruszczynski (2000), Feng and Wang (2003), 

Karlaftis et al. (2007), Lambert and Patterson (2002), 
Lertworawanich (2012), Liu et al. (2008), Modarres 
and Zarei (2002), Yan and Shih (2009), Yan et al. 

(2012)  

     

Chen and Tzeng (2000), Mehlhorn (2009), Orabi et 
al. (2009), Sato and Ichii (1996) 

     
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As illustrated in the histogram of Figure 2-2, reliability and robustness are 

common pre-disaster measures used in the literature, while most studies on post-

disaster response and recovery do not involve any specific disaster measure. 

Furthermore, system resilience is the one measure chosen by the majority of studies to 

model both pre- and post-disaster actions simultaneously.  

 

Figure 2-2 Number of disaster management publications in pre- and post-disaster phases 

2.6. Categorization by MOEs 

A variety of user- and supply-oriented MOEs have been developed in the literature. 

These differ depending on the transportation mode, such as intermodal ports, airports, 

highway networks and transit services, for which they were developed, and specific 

system objectives.  

Two major categories of MOEs were identified: function and topological. 

Functional measures focus on serviceability of the transportation system as categorized 

by: travel time/distance, flow or throughput, and accessibility. Topological measures 

consider the transportation system as a pure network and characterize it based on 

concepts of graph theory. Measures such as connectivity, betweenness, and centrality 

fall into this category. These measures focus on the relative location of network nodes 

and links and their interconnections rather than operations.  
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In addition to functional and topological MOEs, a number of studies have been 

conducted on the estimation of economic losses due to disaster damage within 

transportation systems. However, it appears that no work in the literature presents or 

discusses quantitative economic measures for disaster management purposes.  

Table 2-4 Categorization of publications based on the applied performance measure 

Performance 
measure  

Assessment 
Management 

Mitigation 
preparednes

s 
Response Recovery 

T
op

ol
og

ic
al

 m
ea

su
re

s 

Andreas et al. (2008), 
Angeloudis and Fisk 

(2006), Asakura (1999), 
Bell and Iida (2001), 
Bell and Schmocker 
(2002), Berche et al. 
(2009), Chang et al. 
(2010), Chen and 

Eguchi (2003), Di Gangi 
and Luongo (2005), 

Derrible and Kennedy 
(2010), Ferber et al. 
(2007), Grubesic and 
Murray (2006), Iida 
(1999), Ip and Wang 
(2011), Matisziw and 

Murray (2009), Moreira 
et al. (2009), Murray-
Tuite and Mahmassani 

(2004), Morohosi 
(2010), Sakakibara et al. 

(2004), Snelder et al. 
(2012), Sullivan et al. 

(2010), Scott et al. 
(2006), Tu et al. (2012), 
Wakabayashi and Iida 
(1992), Yingfei et al. 
(2010), Zhang et al. 

(2009) 

Augusti et 
al. (1998), 
Balakrishn

an et al. 
(2009), Du 
and Peeta 
(2012), 

Kim et al. 
(2008), 

Peeta et al. 
(2010) 

- 

Bin et al. 
(2009), 

Lertworawanich 
(2012)  

- 

E
co

no
m

ic
 m

ea
su

re
s 

Bensi et al. (2011), Cho 
et al. (2001), Dalziell 
and Nicholson (2001), 
Eguchi et al. (1997), 

Gupta (2001), Haimes et 
al. (2002), Ham et al. 

(2005), Kim et al. 
(2002), Na and 

Shinozuka (2009), 
Tatano and Tsuchiya 
(2008), Werner et al. 

(2000,2008),  

- - - - 
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Table 2-4 (Continued) 
Performance 

measure  
Assessment 

Management 
Mitigation preparedness Response Recovery 

F
un

ct
io

na
l m

ea
su

re
s 

T
ra

ve
l t

im
e/

di
st

an
ce

 
Basoz and Kiremidjian (1996), Bell (2000), Bell et 
al. (2008), Chang et al. (2000), Chang et al. (2010), 
Dalziell and Nicholson (2001), De-Los-Santos et al. 

(2012), Freckleton et al. (2012), Golroo et al. 
(2010), Ibrahim et al. (2011), Israeli and Wood 

(2002), Jenelius et al. (2006), Jenelius and Mattsson 
(2012), Kiremidjian et al. (2007), Knoop et al., 

(2012), Lam et al. (2008), Lownes et al. (2011), Lo 
and Tung (2003), Murray-Tuite (2006), Morohosi 
(2010), Nagurney and Qiang (2007,2009,2012), 

Omer et al. (2011), Stergiou and Kiremidjian 
(2010), Sumalee and Watling (2008), Suarez et al. 

(2005), Shimamoto et al. (2008), Shiraki et al 
(2007), Szeto (2011), Siu and Lo (2008), Ukkusuri 
and Yushimito (2009), Werner et al. (2000), Yin 

and Ieda (2001), Zhang et al. (2009) 

Al-Deek and Emam (2006), 
Cappanera and Scaparra (2011), 

De-Los-Santos et al. (2012), 
Dimitriou and Stathopoulos 
(2008), Fan and Liu (2010), 

Golroo et al. (2010), Ieda (2002), 
Kim et al. (2008), Laporte et al. 

(2010), Losada et al. (2012), 
Liberatore et al. (2011), Liu et al. 
(2009), Lou and Zhang (2011), 
Lo and Tung (2003), Murray-

Tuite and Fei (2010), Poorzahedy 
and Bushehri (2005), Scaparra 

and Church (2008, 2012), 
Shinozuka et al. (2003), Yin and 

Park et al. (2007), Zhang and 
Levinson (2004), Zhou et al. 

(2004), 

- 

Ferris and 
Ruszczynski (2000), 

Feng and Wang 
(2003), Lambert and 
Patterson (2002), Liu 
et al. (2008), Vugrin 

et al. (2010), Yan and 
Shih (2009)  

Chen and 
Tzeng 
(2000), 
Orabi et 

al.(2009), 
Sato and 

Ichii 
(1996)  

T
hr

ou
gh

pu
t/c

ap
ac

ity
 Adams et al. (2012), Bekkem et al (2011), Chang et 

al. (2010), Chen et al. (2002), Caplice et al. (2008), 
Chen et al. (2013), Cox et al (2011), Liu and 

Murray-Tuite (2008), Luping and Dalin (2012), 
Morlok and Chang (2004), Murray-Tuite (2006, 

2010), Na and Shinozuka (2009), Nojima (1999), 
Sun et al. (2006), Sohn et al. (2003), Tampere et al. 

(2007), Vugrin et al. (2011) 

Chen et al. (2011), Chootinan et 
al. (2005), Desai and Sen (2010), 

Faturechi and Miller-Hooks 
(2013), Garg and Smith (2008), 
Kim et al. (2008), Miller-Hooks 
et al. (2012),Smith et al. (2007) 

Desai and Sen 
(2010), Faturechi 

et al. (under 
review), Miller-

Hooks et al. 
(2012), Vugrin 
and Turnquist 

(2012) 

Chen and Miller-
Hooks (2012), 

Faturechi and Miller-
Hooks (2013), 
Faturechi et al. 
(under review), 
Karlaftis et al. 

(2007), Miller-Hooks 
et al. (2012), 
Sumalee and 

Kurauchi (2006), 
Vugrin and Turnquist 

(2012), Yan et al. 
(2012) 

- 

A
cc

es
si

bi
li

ty
 

Chen et al. (2007), Chang and Nojima (2001), 
Chang et al. (2010), D’Este and Taylor (2001), 

Luathep et al. (2011), Lu and Peng (2011), Sohn 
(2006), Taylor and Susilawati (2012), Taylor et al. 

(2006) 

Mohaymany and Pirnazar (2007), 
Santos et al. (2010), Viswanath 

and Peeta (2003) 

Modarres and 
Zarei (2002), 

Sanchez-Silva et 
al. (2005) 

Chang (2003) 
Mehlhorn 

(2009) 
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Table 2-4 summarizes the literature by these three categories of MOEs: functional, 

topological and economic. The histograms in Figures 2-3 and 2-4 provide a graphical 

representation of the number of publications that falling under these categories. The 

figures indicate that travel time is the most utilized MOE. In the context of recovery, it 

is the predominant measure. Topological measures have been applied primarily in 

mitigation and response studies. 

Figure 2-3 Number of disaster assessment 
publications on each MOE 

 

Figure 2-4 Number of disaster management publications 
on each MOE and life-cycle phase 
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2.7. Categorization by uncertainty modeling technique 

The geographic location, severity and other impacts of a disaster event can at best be 

known a priori with uncertainty. Several different approaches have been applied within 

this literature for modeling possible disasters and their consequences. Such models are 

employed in providing input for system optimization and analysis. These approaches 

can be generally categorized as falling under scenario, simulation, probability 

distribution and worst-case performance-based techniques as given in Table 2-5. This 

table also includes those works that study a single historical disaster event. 

Scenario-based techniques generate one or more hypothetical disaster 

scenarios; the probability of the scenario’s occurrence is not regarded. Applications of 

these techniques generally consider a small set of component-level scenarios, e.g. 

failure of a road segment or a bridge. Before and after analysis are often conducted for 

comparison. Techniques that include targeted and coordinated attack scenarios aiming 

at the most important system components also fall in this category. Simulation 

techniques generate a wide range of scenarios for consideration. The scenarios are 

generated in proportion to the disruption or damage occurrence probabilities at the 

component-level. A distribution of system performance level over all considered 

scenarios can be generated. Other techniques that employ disruption or damage 

probability occurrences might use the probability distribution functions directly. 

Finally, optimization and game-theoretic modeling approaches, e.g. interdiction 

models, can be used to identify a worst-case performance that might results from 

damage to the system, where the damage may be given in terms of, for example, a 

number of link failures. 
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Table 2-5 Categorizing by disaster event modeling technique 

2.8. Categorization by methodology 

Mathematical models of system performance, for either assessment or management 

purposes, proposed in the literature can be considered as analytical, simulation, or 

optimization models. Those that address assessment are described in Table 2-6, while 

others addressing management are given in Table 2-7. 

Uncertainty 
modeling 
techniques  

References 

 Scenario  

Al-Deek and Emam (2006), Basoz and Kiremidjian (1996), Bell et al. (2008), 
Chang et al. (2000), De-Los-Santos et al. (2012), Fan and Liu (2010), 

Faturechi et al. (under review), Ferber et al. (2007), Freckleton et al. (2012), 
Feng and Wang (2003), Golroo et al. (2010), Gupta (2001), Ham et al. (2005), 
Ip and Wang (2011), Jenelius et al. (2006), Kim et al. (2002), Kiremidjian et 

al. (2007), Knoop et al., (2012), Liu et al. (2009),  Liu and Murray-Tuite 
(2008), Luathep et al. (2011), Luping and Dalin (2012), Lu and Peng (2011), 
Murray-Tuite (2006, 2007, 2010), Nagurney and Qiang (2007,2009,2012), 

Nguyen et al (2011), Omer et al. (2011), Peeta et al. (2010), Shinozuka et al. 
(2003), Sohn et al. (2003), Shimamoto et al. (2008), Sumalee and Watling 

(2008), Sun et al. (2006), Sullivan et al. (2010), Scott et al. (2006), Tatano and 
Tsuchiya (2008), Taylor et al. (2006), Tu et al. (2012), Ukkusuri and 

Yushimito (2009), Vugrin et al. (2010, 2011), Vugrin and Turnquist (2012)

 Simulation  

Bell and Schmocker (2002), Bensi et al. (2011), Berche et al. (2009), Chang et 
al. (2010), Chang (2003), Chen et al. (2002), Chen and Miller-Hooks (2012), 
Cho et al. (2001), Dalziell and Nicholson (2001), Dimitriou and Stathopoulos 
(2008), Du and Peeta (2012), Faturechi and Miller Hooks (2013), Garg and 

Smith (2008), Kim et al. (2008), Miller Hooks et al. (2012), Morohosi (2010), 
Murray-Tuite (2008), Murray-Tuite and Fei (2010), Na and Shinozuka (2009), 
Nair et al. (2012), Nojima (1999), Patriksson (2008), Stergiou and Kiremidjian 

(2010), Shiraki et al (2007),  Sumalee and Kurauchi (2006), Tampere et al. 
(2007), Werner et al. (2000), Zhou et al. (2004),  Zhang and Levinson (2004) 

 
Probability 
distribution 

Andreas et al. (2008), Angeloudis and Fisk (2006), Asakura (1999), Augusti et 
al.(1998), Bin et al. (2009), Chen et al. (2007), Chootinan et al. (2005), 
Derrible and Kennedy (2010), Desai and Sen (2010), D’Este and Taylor 

(2001), Iida (1999), Lam et al. (2008), Moreira et al. (2009), Nicholson (2003), 
Park et al. (2007), Poorzahedy and Bushehri (2005), Sakakibara et al. (2004), 
Sanchez-Silva et al. (2005), Siu and Lo (2008), Wakabayashi and Iida (1992), 

Yin and Ieda (2001, 2002) 

 
Worst-case 

performance 

Bell (2000), Bell et al. (2008), Bell and Iida (2001), Chen et al. (2011), 
Cappanera and Scaparra (2011), Grubesic and Murray (2006), Huang et al. 
(2007), Ibrahim et al. (2011), Jenelius and Mattsson (2012), Laporte et al. 
(2010), Liberatore et al. (2011),  Lim and Smith (2007), Lou and Zhang 
(2011), Losada et al. (2012), Lownes et al. (2011), Lo and Tung (2003), 

Matisziw and Murray (2009), Murray-Tuite and Mahmassani (2004), Scaparra 
and Church (2008, 2012), Smith et al. (2007),  Snyder and Daskin (2005), 

Szeto (2011), Yan and Shih (2009), Yates and Lakshmanan (2011) 

 
Historical 
scenario 

Bekkem et al (2011), Chang (2000), Chang and Nojima (2001),  Cox et al. 
(2011), Zhang et al. (2009) 
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Analytical methods have been used to analyze potential failure states and risk 

classification based on disaster probabilities and consequences through different forms 

of logical structures, e.g. risk matrix, Event Tree Analysis (ETA), Fault Tree Analysis 

(FTA), and Failure Mode and Effects Analysis (FMEA). In disaster management, 

analytical models, specifically Analytical Hierarchy Process (AHP), have been applied 

for evaluating, ranking and prioritizing decision options through concepts of utility 

theory. These methods are not efficient for large-scale applications with a large number 

of possible failure states and candidate investment options (Wang et al. 2008, Murray-

Tuite 2008).   

Simulation methods, such as Monte Carlo simulation, are employed to generate 

a large sample of scenarios, each with a randomly selected damage state and probability 

of occurrence. These methods broadly allow generation of different combinations of 

degradation in the links or nodes. Simulation methods are also employed to evaluate 

the effectiveness of investment options by comparing system performance before and 

after expenditures are made. Such evaluation is made separately for an individual 

scenario; thus, related decisions may be suboptimal under other arising scenarios. 
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Table 2-6 Assessment methodologies 

 

 

 

 

 

 

 

Methods  References Description  

Analytical 
methods 

Risk 
matrix 

Basoz and Kiremidjian (1996), FAA 
(2007) 

 Ranking risk of system 
components with respect to 
disaster probability and 
consequences, from low to 
extreme risk 

ETA/FTA 
Al-Deek and Emam (2006), Murray-

Tuite (2007,2008) 

 Representing probable states of 
system components using 
logical structures in the form of 
a tree 

FMEA 
Bekkem et al. (2011), Caplice et al. 

(2008) 
 Analyzing potential failure 

states and classifying risk  

Fuzzy 
inference  
approach 

Freckleton et al. (2012), Serulle et 
al. (2011), Wang and Elhag (2007) 

 Assessing vulnerability using 
linguistic terms such as High, 
Medium, and Low rather than 
precise numerical values 

Input-
output 

analysis 

Cho et al. (2001), Gupta (2001), 
Ham et al. (2005), Kim et al. (2002), 

Sohn et al. (2003), Tatano and 
Tsuchiya (2008) 

 Modeling system losses, mostly 
economic, with respect 
component interconnections 

Bayesian 
analysis 

Bensi et al. (2011), Murray-Tuite 
(2010) 

 Real-time assessing of post-
disaster system performance 
through evolving information 

Simulation 

Chen et al. (2002), Chen et al. 
(2013), Dalziell and Nicholson 
(2001), Kiremidjian et al. (2007), 
Knoop et al. (2012), Liu and 
Murray-Tuite (2008), Morohosi 
(2010), Murray-Tuite (2006), Na 
and Shinozuka (2009), Nojima 
(1999),  Omer et al. (2011), 
Shinozuka et al. (2003), Shiraki et al 
(2007),  Snelder et al. (2012), Suarez 
et al. (2005), Sumalee and Watling 
(2008), Tampere et al. (2007), 
Stergiou and Kiremidjian (2010), 
Vugrin et al. (2011), Werner et al. 
(2000) 

 Generating a large number of 
disruption scenarios, useful for 
capturing failure dependencies 
of system components 
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Table 2-6 (Continued) 

 

 

 

 

 

Methods  References Description  

Deterministic 
optimization 

Graph-
theoretic 
models  

Abdel-Rahim et al. (2007), Andreas et al. 
(2008), Angeloudis and Fisk (2006), De-
Los-Santos et al. (2012), Derrible and 
Kennedy (2010), Ferber et al. (2007), Ip 
and Wang (2011), Jenelius and Mattsson 
(2012), Moreira et al. (2009), Nagurney 
and Qiang (2007,2009,2012), Sakakibara 
et al. (2004), Scott et al. (2006), 
Shimamoto et al. (2008), Sullivan et al. 
(2010), Taylor et al. (2006), Tu et al. 
(2012), Yingfei et al. (2010), 
Wakabayashi and Iida (1992) 

 Determining most critical 
nodes/links using graph 
theory concepts (e.g. 
connectivity); scenario-
based, but no event 
probabilities included 

Game-
theoretic 
models 

Israeli and Wood (2002), Murray et al. 
(2007), Matisziw and Murray (2009), 

Ukkusuri and Yushimito (2009) 

 Sequentially seeking to 
maximize and minimize 
transportation costs using 
a two-player game 
between a leader and 
follower for identifying 
worst-case performance 
as in interdiction 
problems; no event 
probabilities included 

Stochastic 
optimization 

Game-
theoretic 
models  

Bell (2000), Bell et al. (2008), Grubesic 
and Murray (2006), Ibrahim et al. (2011), 
Lownes et al. (2011), Murray-Tuite and 

Mahmassani (2004), Szeto (2011), 
Murray-Tuite and Fei (2010), Yates and 

Lakshmanan (2011)  

 Incorporating in the game 
the uncertain 
characteristics of the 
transportation network 
due to disasters, where 
the leader seeks to 
maximize the expectation 
of transportation costs 

Markov 
chain 

models 

Bell and Schmocker (2002), Nguyen et 
al. (2011) 

 Modeling a set of failure 
states assuming 
Markovian transitions 
between states 

Utility-
theoretic 
models 

Asakura (1999), Chen et al. (2007), Lam 
et al. (2008),  Luathep et al. (2011), Siu 

and Lo (2008), Sun et al. (2006), Yin and 
Ieda (2001)  

 Using concepts of 
random utility theory to 
model stochastic user 
route choice under 
disruptions (Stochastic 
User Equilibrium)  
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Table 2-7 Management methodologies 

Methods References Description 

AHP 
Modarres and Zarei (2002), Patidar et 

al. (2007), Wang et al. (2008) 
 Prioritizing alternatives based 

on concepts of utility theory  

Simulation 

Chang (2003), Chen and Tzeng 
(2000), Sato and Ichii (1996), Zhang 

and Levinson (2004), Zhou et a. 
(2004)  

 Evaluating management 
options under a large number of 
scenarios 

Deterministic 
optimization 

Feng and Wang (2003), Golroo et al. 
(2010), Karlaftis et al. (2007), 
Lambert and Patterson (2002), 

Lertworawanich (2012), Mehlhorn 
(2009), Mohaymany and Pirnazar 

(2007), Orabi et al. (2009), 
Viswanath and Peeta (2003), Vugrin 
et al. (2010), Yan and Shih (2009), 

Yan et al. (2012) 

 Optimally selecting 
alternatives, e.g. resource 
allocation and reconstruction 
scheduling, regardless of event 
probabilities 

S
tochastic optim

ization 

Game-theoretic 
models  

Cappanera and Scaparra (2011), 
Lakshmanan (2011), Laporte et al. 

(2010), Lou and Zhang (2011), 
Losada et al. (2012), Liberatore et al. 
(2011), Scaparra and Church (2008, 
2012), Smith et al. (2007), Yates and 

Snyder and Daskin (2005) 

 Optimally selecting design 
alternatives under worst-case 
scenario through use of a multi-
level defender-attacker game, 
where the defender makes 
decisions on network design in 
the upper–level and the attacker 
responds to these decisions in 
the lower-level 

Reliability-based 
constrained 

models  

Bin et al. (2009), Chootinan et al. 
(2005), Desai and Sen (2010), 
Dimitriou and Stathopoulos (2008), 
Lo and Tung (2003), Park et al. 
(2007), Poorzahedy and Bushehri 
(2005), Santos et al. (2010), Sanchez-
Silva et al. (2005), Sumalee and 
Kurauchi (2006), Yin and Ieda 
(2002) 

 Optimally selecting design 
alternatives using stochastic 
network design with reliability 
requirements, e.g. chance 
constrained modeling 

Multi-stage 
stochastic 

programming  

Barbarosoglu and Arda (2004), 
Chang et al. (2010), Chen et al. 
(2011), Chen and Miller-Hooks 

(2012), Du and Peeta (2012), Fan and 
Liu (2010), Faturechi et al. (in 

review), Faturechi and Miller-Hooks 
(2013), Ferris and Ruszczynski 

(2000), Garg and Smith (2008), Kim 
et al. (2008), Liu et al. (2008), Liu et 

al. (2009), Miller-Hooks et al. 
(2012), Nair et al. (2010), Peeta et al. 
(2010), Vugrin and Turnquist (2012) 

 Optimizing sequence of 
alternative selection over time 
given realization of uncertain 
problem elements in each time 
stage 

Robust 
optimization 

Huang et al. (2007), Laporte et al. 
(2010), Patriksson (2008) 

 Optimally selecting alternatives 
to guarantee system 
performance under worst-case 
scenario; generating 
conservative and expensive 
solutions  
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2.9. Conclusions and insights  

In this chapter, a comprehensive review of the literature addressing transportation 

system performance measurement given potential future disaster events is provided. 

Related publications were identified and categorized from a variety of perspectives. 

This categorization provides clarity through direct comparison of similarities, 

differences, intersections and interactions, permitting a deeper understanding of the 

topic. The review also aids in the identification of research challenges and gaps to be 

addressed in the future. 

Although the literature was scoured the for all transportation environments, the 

vast majority of the scholarly literature related to disaster performance measures and 

transportation has focused on surface transportation as is reflected in this literature 

review. The review reveals that nearly 70% of publications on this topic reported in 

this literature address the assessment of the transportation system’s ability to cope with 

disaster consequences. Publications including strategies for managing these systems in 

disaster are fewer in number, but growing. While decision-makers can benefit from 

techniques that consider interdependency of decisions in different stages of the disaster 

life cycle and multiple disaster scenarios, more than 90% of disaster management 

publications reviewed herein address only one component of the life-cycle. Although 

qualitative works of relevance were reviewed, much of the analysis provided herein 

focuses on quantitative efforts. Additional effort to categorize the qualitative studies on 

disaster assessment may be useful. 

An uptick in papers explicitly considering uncertainty in future conditions can be noted 

from the review. More generally, an increase in articles that incorporate complexities 
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of the real-world, including dependencies that contribute to system-level failure, is 

noticeable. In that vein, an increase can be noticed in the percentage of articles that 

consider system- rather than component-level performance. To consider these 

complexities, simulation is often required. Improved computational capabilities in 

recent years has also made sensitivity analysis possible on a larger scale, as evidenced 

by the increasing number of articles employing such approaches. 
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Chapter 3: A Mathematical Framework for Quantifying and 
Optimizing Protective Actions for Civil Infrastructure Systems  
 

3.1. Introduction 

All societies depend on a system of infrastructure for survival. The most advanced 

depend on this infrastructure to support a wide range of human activities. These 

infrastructure systems, often described in terms of the sectors of society that they affect, 

such as agriculture, finance, transportation, energy, water, healthcare, communications 

and defense, are crucial for public health, safety, security and economies. 

While many societies have come to rely on these infrastructure systems, these 

systems are operating at or near design capacity. They are aging and are faced with 

greater risk of attack, whether natural, accidental or human-induced. Because these 

systems have become quite complex, interdependent and interconnected, the possibility 

that a disruptive event to any one system will cascade into an event involving multiple 

systems is significant and can result in widespread failure or difficult recovery. 

Sustained loss of one or more of these lifelines can have catastrophic impact on the 

well-being of a society. Consequently, governments and agencies that own or operate 

these systems are reviewing their investment policies with goals of expanding system 

capacity, reducing risk of attack, and reducing susceptibility of infrastructure to damage 

given possible disruptions or disaster events (U.S. Department of Homeland Security 

Homeland Security 2009). In addition, as it is impractical to reinforce or harden these 

systems to all types of events, efficient options to support quick recovery of these 

systems from such events are being considered.  
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To evaluate investment options that can be taken to reduce risk of failure and 

increase a system's ability to rebound from an attack, one must be able to quantify the 

innate ability of the system to cope with attack and its ability to adapt through the use 

of available resources. Numerous performance measures have been proposed in the 

literature for such quantification. These measures include various specifications of 

system reliability, vulnerability, robustness and flexibility, which describe the behavior 

of systems and their performance variations under different situations. They aim to 

quantify how well a system is expected to perform given the possibility of potential 

future events that affect system capacity.  

Various definitions of such performance measures have been introduced in the 

literature. These definitions, however, are sometimes intertwined and often 

inconsistent. Moreover, the majority are qualitative in nature. As a result, it is often 

unclear to the agencies responsible for maintaining, expanding and protecting critical 

societal lifelines which measure or set of measures should be considered in evaluating 

these systems or potential investment options.  

This chapter provides a comprehensive framework for conceptualizing, 

categorizing, and quantifying system performance measures, previously espoused as 

independent measures, in the presence of uncertain events, component failure, or other 

disruptions/disasters with the potential to reduce system capacity or performance from 

pre-event levels. The framework is structured from a supply-oriented perspective and 

assumes a constant demand for system capacity. It builds on concepts involving a 

system's innate ability to resist and recover from the negative consequences of events, 

and classes of mitigation and contingency actions designed to diminish damage impact. 
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This framework clarifies the intersection and overlap between notions of inherent 

characteristics of the system (coping capacity), preparedness, robustness, flexibility (or 

adaptability/agility), recovery capacity and resilience, and provides a common 

approach for their quantification. Building on the framework, a single decision problem 

is proposed that can be used to quantify these measures and determine optimal 

investment strategies so as to maximize their values. The formulation of the decision 

problem is generically devised to permit consideration of a variety of applications, 

including, for example, applications arising in power grid, transportation, 

telecommunication, supply chain, and water supply networks. A numerical example is 

provided to illustrate its application. 

3.2. Related System Performance Measures In the Literature 

Several system performance measures for assessing the coping capacity of a network 

that is subject to disaster or disruption have been proposed in the literature. These 

measures are applied within a variety of arenas ranging from transportation, water and 

other civil infrastructure systems to computer and supply chain networks. Key 

measures include vulnerability, reliability, robustness, flexibility (adaptability/agility) 

and resilience. No attempt is made herein to review all literature that discusses such 

measures. Rather, an overview of these measures with examples from the literature is 

given. 

The most widely used of these performance concepts is that of vulnerability. 

Vulnerability typically expresses some notion of how susceptible a system is to 

malfunction or performance degradation in the event of an attack, natural or otherwise 

(Berdica 2002). Vulnerability relates directly to concepts of risk, which weight the 
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susceptibility to performance degradation by the probability of attack. Because the 

concept of susceptibility can have many interpretations, exact definitions of 

vulnerability vary widely. Additional concepts, such as reliability, have been 

introduced to address this lack of specificity. Definitions of reliability, while varying, 

have in common that they aim to quantify the probability that the system will continue 

to function given a disruption event (Iida 1999) or measure system performance given 

a disruption (e.g. Berdica 2002).  

Another related concept is that of system robustness, typically defined as the 

ability of a system to resist changes to its physical structure in response to a hazard 

event (e.g. Nagurney and Qiang 2007, Immers et al. 2004). Flexibility captures how a 

system adapts to significant internally- and externally-induced changes (Goetz and 

Szyliowicz 1997). Most of the network flexibility literature focuses on demand changes 

(e.g. Morlok and Chang 2004, and Chen and Kasikitwiwat 2011). 

A number of works (e.g. Ukkusuri at al. (2007)) study the impact of system 

capacity expansion on system robustness and reliability. Others (e.g. Liu et al. 2009, 

and Peeta et al. 2010) consider retrofit actions that can be taken to reinforce existing 

infrastructure and improve system robustness. Numerous works (e.g. Huang et al. 

(2006) and Kondaveti and Ganz (2009)) develop techniques to support emergency 

response to disasters, but few works address planning for recovery efforts aimed at 

post-event restoration of system performance.  

The concept of resilience has been introduced to measure not only the network’s 

ability to absorb externally induced changes as in vulnerability, reliability and 

robustness measures, but also the network’s ability to adapt to post-event 
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circumstances, which can be likened to flexibility. This notion of resilience was 

initially conceptualized by ecologists in relation to stability of ecological systems in 

the presence of disruptions due to natural or anthropogenic causes and their ability to 

bounce back to a state of equilibrium (Holling 1973). It is discussed also in (Rose 2004) 

in the context of economic systems. Bruneau et al. (2003) define community resilience 

as the ability of a community to mitigate the effects of hazards and recover system 

performance so as to minimize life and economic loss. Cutter et al. (2008) discuss 

community resilience in terms of inherent and adaptive qualities. Additional works 

describe performance measures similar in concept to vulnerability or robustness under 

the name of resilience (e.g. Berche et al. 2009, Gutfraind 2010, Bekkem et al. 2011, Ip 

and Wang 2011, and Serulle et al. 2011).  

Concepts of vulnerability, reliability, robustness and flexibility, or related 

concepts under headings of redundancy and adaptability, have been coupled to form a 

variety of resilience notions. Some of these notions involve pre- or post-event actions, 

such as preparedness, or actions taken in advance to improve resource availability, 

post-event recovery action implementation times and, ultimately, recovery time, to 

enhance resilience levels (Bruneau et al. 2003, Sheffi 2005, Murray-Tuite 2006, 

Caplice et al. 2008, McDaniels et al. 2008, Ortiz et al. 2008, Ta et al. 2009, and Cox et 

al. 2011). To illustrate, Bruneau et al. (2003) provide a qualitative measure of resilience 

whose components are robustness, redundancy, resourcefulness, and rapidity of 

response to disruption. Recently, Cox et al. (2011) adapted concepts from ecological 

system resilience to study passenger transportation systems. They discuss the potential 
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role of vulnerability (defined in terms of robustness), wealth (given by system 

redundancy), and flexibility. 

While numerous works discuss the concept of resilience, few provide the 

necessary methodology for its quantification. Murray-Tuite (2006) proposed 

quantitative measures for transportation system adaptability, safety, mobility and 

recovery, and applied a simulation-based method for their computation. Adams et al. 

(2010) applied the resilience framework of Caplice et al. (2008) to assess the resilience 

of ten high-risk segments along a U.S. interstate highway given knowledge of past 

events and their consequences. Nguyen et al. (2011) proposed four general 

mathematical formulations for the quantification of four criteria in the context of 

resilience of transportation networks: functionality degradation, recovery time, 

recovery speed and flexibility of the system.  

A quantitative resilience measure for intermodal freight transport systems that 

seeks the maximum post-event expected fraction of demand that can be met in the 

aftermath of disruption was introduced by Chen and Miller-Hooks (2012). This 

measure incorporates both the innate coping capacity and effects of short-term adaptive 

actions on mitigating negative effects that can be taken post-event. They proposed a 

stochastic programming formulation of the problem and exact solution technique based 

on Benders decomposition, column generation and Monte Carlo simulation. This 

resilience concept was applied in Nair et al. (2010) to improve security at nodal 

facilities within intermodal freight networks. Miller-Hooks et al. (2012) extended this 

concept to include pre-event preparedness actions and investigated potential synergies 
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between pre- and post-event investments to improve system resilience. They employ a 

two-stage stochastic program and propose an integer L-shaped method for its solution. 

A variety of concepts have been proposed to address system performance under 

disruption from different perspectives. These concepts are often intertwined and the 

same term can be used with different definitions. The authors know of no prior work 

that has sought to provide a common framework with guidelines for creating consistent 

definitions of measures designed for assessing system performance under 

disaster/disruption as well as supportive roles of different classes of actions. This work 

seeks to fill this gap by defining important elements of infrastructure protection, 

positioning these elements within a single framework, showing how these elements can 

be combined to define the various performance measures, and clarifying connections 

between measures accordingly. 

3.3. Framework for Infrastructure Performance Management 

3.3.1. Infrastructure Protection Framework (IPF) 

A single framework for understanding the various system performance measures 

discussed in previous sections is provided. This framework builds on concepts used in 

describing a system’s innate capacity to endure natural and human-made disruptions 

and considering pre- and post-event actions to improve the system’s performance. The 

former includes coping capacity characteristics (including ability to withstand stress, 

i.e. resistance, and/or excess in terms of redundancies and underutilized capacity), and 

the latter includes retrofit, expansion, resource availability and response activities that 

can be undertaken to mitigate the impact of the disaster event and increase inherent 
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system qualities of resistance and excess. Together, these form a framework, referred 

to herein as the Infrastructure Protection Framework (IPF), and depicted in Figure 3-1.  

Figure 3-1 Infrastructure Protection Framework (IPF) 

 

 
(a) Coping capacity (b) Preparedness (c) Robustness 

 
(d) Flexibility (e) Recovery (f) Resilience 

Figure 3-2 System Performance Measures Defined on IPF 
 

Concepts of coping capacity, preparedness, flexibility, robustness, recovery 

capability and resilience are described in terms of elements of this framework as shown 

in Figure 3-2. These relationships are further illustrated in Table 3-1. 

Figure 2 serves as a tool for understanding system performance measures 

designed for evaluating a system’s disaster readiness, along with their interactions and 
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differences. It can aid in assimilating relevant literature and choosing an appropriate 

measure for an application.  

Table 3-1 Description of IPF components 

Component Description 
Contributing 

factor in: 
Examples 

Coping 
capacity 

Innate capability to resist disaster event 
through material strength and maintain 

functionality without intervention as well as 
built-in excess capacity and redundancies 

permitting post-disaster adaptation 

Coping capacity, 
preparedness, 
robustness, 
flexibility, 
resilience 

- 

Expansion 

Pre-event action to enhance network 
performance by increasing connectivity (e.g. 

adding redundancy) or capacity; aimed at 
reducing effects of disaster event by reducing 
marginal impact of loss; benefits for both pre-

event and post-event performance. 

Preparedness, 
robustness, 
resilience 

Addition to 
roadway 
capacity 

Retrofit 

Pre-event actions to reinforce or harden system 
elements, diminishing likelihood or level of 

damage due to disaster event impact; does not 
affect pre-event system performance. 

Preparedness, 
robustness, 
resilience 

Drainage 
system for 

flood; 
fortifying 

bridges for 
earthquake 

Resource 
availability 

Pre-event actions aimed at supporting post-
event response, including pre-positioning 

resources and contracting for response 
support; no pre-event performance benefits 

derived, but reduced response times and costs 
obtainable post-event if response actions 

taken. 

Preparedness, 
flexibility, 
recovery, 
resilience 

Fire 
extinguisher 

for arson; 
salt sparkler 

for snow; 
water pump 

for flood 

Response 
Post-event actions to quickly recover some 

portion of lost capacity and performance loss; 
benefits derived post-event only. 

Flexibility, 
recovery, 
resilience 

Temporary 
road mat 

construction; 
replacing 

components 

 

Figure 3-2(a) describes inherent characteristics of the system that enable it to 

resist and absorb the impact of the disruption, i.e. its coping capacity. A preparedness 

measure in Figure 3-2(b) contains all actions that are taken prior to the disaster event, 

including those that have benefit only if response options are exercised (i.e. resource 

availability), as well as pre-existing qualities (i.e. coping capacity). Note that the costs 
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of preparedness actions are incurred whether or not disaster occurs. Such a prepared 

system can be distinguished from one that is robust in that robustness can be described 

in terms of the system’s innate coping capacity and pre-event actions taken to enhance 

system resistance under disruption as in Figure 3-2(c). A system that can withstand the 

impact of the disaster event is said to be robust. 

A flexibility measure is defined in Figure 3-2(d). This definition, in contrast 

with robustness, accounts for a system’s adaptive capabilities to respond to disruption. 

That is, flexibility measures the capability of the system to absorb system demand given 

reduced system offerings through post-event adaptive response actions. It draws on 

excess capacities that may exist through coping capacity. Measures of recovery in 

Figure 3-2(e) can be viewed as the converse of preparedness, where resource 

availability is established during the preparedness stages, but is exploited through 

response actions. These concepts further differ in that preparedness measures’ focus 

on the existing coping capacity and system enhancements made through pre-event 

actions, while recovery measures include only post-event coping mechanisms to restore 

performance.  

Finally, the framework of Figure 3-2(f) supports a concept of resilience that 

incorporates all elements of the system's inherent capabilities, disaster readiness and 

post-event response capability, i.e. its ability to both resist and adapt. With this 

conceptualization, coping capacity, preparedness, robustness, recovery and flexibility 

can all be seen facets of resilience. Note that one might argue for the inclusion of 

reliability, vulnerability or risk as important classes of related measures. Despite that 

reliability can be a measure of a system's inherent coping capacity, it is omitted here, 



 

 

47 
 

because it is used to compute a probability, such as the probability that the system 

remains connected, or the probability that travel time/capacity remains within a desired 

range, rather than post-event expected performance level. Likewise, risk and 

vulnerability are measures of disruption probability and/or level of consequence. These 

measures capture potential losses and event likelihood rather than residual performance 

given event occurrence. 

3.3.2. A common framework for performance measure qualification 

a) Graphical representation through disruption profiles 

A common framework for depicting and quantifying the performance measures 

considered herein is constructed using concepts of disruption profiles. Disruption 

profiles are used to display system behavior changes over time, beginning from the 

moment prior to disruption through the time at which the system is restored to its pre-

event state or reaches an alternative desired state. The profile can be divided into 

distinct disruption and recovery periods, where the former refers to the duration of time 

from the moment the disruption takes place, ݐ଴, until recovery begins, and the latter 

refers to the duration of time during which response actions are taken to recover 

performance. Bruneau et al. (2003) and Sheffi (2005) employed such disruption 

profiles to graphically depict system performance in the context of human communities 

and supply chain network resilience, respectively.  

This disruption profile is employed herein (see Figure 3-3). It is a function of 

time, and hence denoted as ܲሺݐሻ, because it provides an indication of the system-wide 

performance level at each point over the time horizon. Its application enables insights 
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into the impact of individual IPF components. Four performance functions, ܲ௨ሺݐሻ, 

ܲ௥ሺݐሻ (or ܲ ௘ሺݐሻ), ܲ ௥௘ሺݐሻ, and ܲ ௥௘௦ሺݐሻ, depict the performance of the same system given 

that select preparedness actions, i.e. no action (unprepared, u), retrofit (r), expansion 

(e), retrofit and expansion (re), and expansion, retrofit and resource availability 

(prepared, res), are taken. Preparedness actions lead to enhancements in system 

performance over time as shown in the figure. Let ܻ ൌ ሼݑ, ,ݎ ݁, ,݁ݎ  .ሽݏ݁ݎ

As in Figure 3-3, the period of time prior to and up to the very moment of a 

disruption event is referred to as the pre-event period, denoted by O. The moment just 

after the event arises, and the effects of the disruption on system performance begin, 

until the system experiences its lowest performance level as a consequence of the event 

is referred to as the post-event period. D is used within the nomenclature to refer to this 

period. Finally, the recovery period refers to the period beginning from the point in 

time when the system reaches its minimum performance level through the point at 

which a desired performance level is attained as a consequence of response actions. R 

is used within the nomenclature to refer to this period.  Zൌ ሼܱ,ܦ, ܴሽ.  

 

Figure 3-3 Graphical representation of IPF components 
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For the disruption period, let ݐ஽
௬ be the point in time at which the system 

experiences its minimum performance level given, for ݕ ∈ ܻ, and ஽ܲ
௬ be the 

corresponding minimum post-event performance level. Let ݐோ
௬, ݕ ∈ ܻ, be a point in time 

in the recovery period at which a desired performance level, referred to herein as the 

post-recovery performance level, is achieved. Figure 3-3 depicts this time for a desired 

performance level ோܲ
௥௘௦.  

Consider the unprepared system in Figure 3-3. The reduction in ܲ௨ሺݐሻ during 

the period of disruption from ݐை to ݐ஽
௨ provides information about the system's inherent 

coping capacity. If no further action is taken, the system will continue to perform at the 

஽ܲ
௨ level into the future. Likewise, for the other performance functions, the maximum 

achievable post-event performance level will be sustained if no additional response 

actions are taken. 

Improvements in a system’s post-event performance can be attained through 

retrofit and expansion actions resulting in post-event performance ஽ܲ
௥௘. Retrofit actions 

are intended to aid the system component(s) in withstanding a disaster event and may 

result in a higher minimum post-event performance level. That is ܲ௨ሺݐሻ ൑ ܲ௥ሺݐሻ for 

ைݐ ൑ ݐ ൑ ஽ݐ
௨, and ஽ܲ

௨ ൑ ஽ܲ
௥. Such actions will have no impact on pre-event 

performance. Expansion actions improve pre-event performance, i.e. ைܲ
௨ ൑ ைܲ

௘. 

Consequently, ܲ௥ሺݐሻ ൑ ܲ௥௘ሺݐሻ for ݐை ൑ ݐ ൑ ஽ݐ
௥ . Moreover, expansion and retrofit 

result in greater time to descend to this minimum, i.e. ݐ஽
௥௘ ൑ ஽ݐ

௨. Note that ܲ௥௘௦ሺݐሻ ൌ

ܲ௥௘ሺݐሻ for ݐை ൑ ݐ ൑ ஽ݐ
௥௘, since investment made in resource availability has no effect 

on performance within the disruption period. Likewise, ݐ஽
௥௘ ൌ ஽ݐ

௥௘௦. The performance 
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improvements due to system retrofit and expansion actions are given in the figure by 

 .ሻ, respectivelyݐሻ and eሺݐሺݎ

The position on the y-axis and shape of performance function ܲ௬ሺݐሻ over the 

recovery period, for ݕ ∈ ܻ, depends on the value ܲ ஽
௬ and the impact of response actions 

taken to restore performance, ݏሺݐሻ. Retrofit and expansion actions, both of which are 

taken in advance of any disruption, do not have additional impact on system 

performance during the recovery period. ܲ௨ሺݐሻ ൑ ܲ௥ሺݐሻ ൑ ܲ௥௘ሺݐሻ, because ஽ܲ
௨ ൑

஽ܲ
௥ ൑ ஽ܲ

௥௘ for a given response action. 

The impact of resource availability is evident only in the recovery period, as 

depicted in Figure 3-3. If resources are made available in advance to support recovery 

efforts, a higher performance level, ܲ௥௘௦ሺݐሻ, can be attained when considered at a 

specific point in time t during the recovery period, i.e. ோܲ
௥௘ሺݐሻ ൑ ோܲ

௥௘௦ሺݐሻ, and a shorter 

duration of recovery period will be needed to attain a desired performance level, e.g. 

ோܲ
௥௘௦. The vertical distance between ܲ௥௘ሺݐሻ and ܲ௥௘௦ሺݐሻ, ݒሺݐሻ, indicates to what extent 

resource availability can improve the recovery process over time. 

b) Point and period performance metrics 

Using the concept of disruption profiles, mathematical equations can be derived for the 

studied system performance measures. Two conceptualization of the measures, point 

and period, are given. Let ܶ ൌ ோݐ
௥௘௦. The contribution of the IPF components to the 

maximum post-recovery performance level ோܲ
௥௘௦ achieved at time ܶ is called its point 

contribution (Figure 3-4(a)). Additional information about performance can be 

obtained by considering not only the maximum post-recovery achieved level, but also 
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the rate at which the performance level drops or increases over time. The contribution 

of IPF components in characterizing performance over disruption and recovery periods 

can be captured by computing the relevant areas under the performance function 

curves, called period contribution, as depicted in Figure 3-4(b). The shaded areas 

illustrate the contributions of each IPF component over time period ሾݐ଴, ܶሿ.   

 

(g) Point contribution of IPF components on post-

recovery performance ோܲ
௥௘௦ 

(h) Period contribution of IPF components over time 

period ሾݐ଴, ܶሿ 

Figure 3-4 Point contribution of IPF components on post-recovery performance ோܲ
௥௘௦ 

 

Point and period performance measures are computed from the summation of 

point estimates and areas under the curves, respectively, as mathematically formulated 

in Table 3-2. Let ܫ ்̅ ,஻
௜	  and ்ܫ,஻

௜	  be point and period performance measures of ݅, ݅ 

{coping capacity, preparedness, robustness, flexibility, recovery, resilience}, for an 

available budget level ܤ, and point in time ܶ. Note that in the best case, the system will 

achieve a level of post-recovery performance equivalent to (possibly better than) its 

pre-event performance level. In the worst-case, a zero system performance level may 

be reached, indicating complete failure. 
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Table 3-2 Mathematical equations of point and period performance measures 

Point performance measures Period performance measures 

ܫ ்̅ ,஻
஼௢௣௜௡௚	௖௔௣௔௖௜௧௬	 ൌ

௉ವ
ೠ

௉ೀ
ೠ    (1) ்ܫ,஻

஼௢௣௜௡௚ ௖௔௣௔௖௜௧௬ ൌ
׬ ሾ௉ೠሺ௧ሻି௦ሺ௧ሻሿ.ௗ௧
೅
೟ೀ

௣ೀ
ೠ.ሺ்ି௧ೀሻ

  (7) 

ܫ ்̅ ,஻
௉௥௘௣௔௥௘ௗ௡௘௦௦ ൌ

௉ೃ
ೝ೐ೞିሺ௉ೃ

ೠି௉ವ
ೠሻ

௉ೀ
ೠ ஻,்ܫ (2) 

௉௥௘௣௔௥௘ௗ௡௘௦௦ ൌ
׬ ሾ௉ೝ೐ೞሺ௧ሻି௦ሺ௧ሻሿ.ௗ௧
೅
೟ೀ

௣ೀ
ೠ.ሺ்ି௧ೀሻ

  (8) 

ܫ ்̅ ,஻
ோ௢௕௨௦௧௡௘௦௦ ൌ

௉ವ
ೝ೐

௉ೀ
ೠ ஻,்ܫ (3)  

ோ௢௕௨௦௧௡௘௦௦ ൌ
׬ ሾ௉ೝ೐ೞሺ௧ሻି௦ሺ௧ሻି௩ሺ௧ሻሿ.ௗ௧
೅
೟ೀ

௣ೀ
ೠ.ሺ்ି௧ೀሻ

  (9) 

ܫ ்̅ ,஻
ி௟௘௫௜௕௜௟௜௧௬ ൌ

௉ೃ
ೝ೐ೞିሺ௉ವ

ೝ೐ି௉ವ
ೠሻ

௉ೀ
ೠ ஻,்ܫ (4)  

ி௟௘௫௜௕௜௟௜௧௬ ൌ
׬ ሾ௉ೠሺ௧ሻା௩ሺ௧ሻሿ.ௗ௧
೅
೟ೀ

௣ೀ
ೠ.ሺ்ି௧ೀሻ

  (10) 

ܫ ்̅ ,஻
ோ௘௖௢௩௘௥௬ ൌ

௉ೃ
ೝ೐ೞି௉ವ

ೝ೐

௉ೀ
ೠ ஻,்ܫ (5)  

ோ௘௖௢௩௘௥௬ ൌ
׬ ሾ௦ሺ௧ሻା௩ሺ௧ሻሿ.ௗ௧
೅
೟ೀ

௣ೀ
ೠ.ሺ்ି௧ೀሻ

  (11) 

ܫ ்̅ ,஻
ோ௘௦௜௟௜௘௡௖௘ ൌ

௉ೃ
ೝ೐ೞ

௉ೀ
ೠ ஻,்ܫ (6)   

ோ௘௦௜௟௜௘௡௖௘ ൌ
׬ ௉ೝ೐ೞሺ௧ሻ.ௗ௧
೅
೟ೀ

௣ೀ
ೠ.ሺ்ି௧ೀሻ

  (12) 

 

Considering the time dimension in assessing system period performance may 

also aid post-disaster response activity scheduling, permitting earlier gains in system 

performance levels. To further illustrate, consider Figure 3-5 in which a disruption 

event occurs at time 1. Capacity along the studied link is immediately reduced from 10 

to 3 units. Two recovery options are available, both of which restore performance to 9 

units of capacity by time 5. Using the point measures discussed in the previous section, 

these recovery options produce identical results. However, it can be noted that recovery 

option 1 restores capacity more quickly and, thus, may be preferred.    

 

Figure 3-5 Comparison of point and period measurement 
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3.3.3. Contribution of Pre- and Post-event actions to infrastructure protection 

While only preparedness, robustness, flexibility and resilience measures account for 

the coping capacity of the system, these measures, as well as recovery capability and 

flexibility, include the contributions of pre- and post-event actions that can be taken to 

prevent or mitigate the effects of disaster. The nature of these actions and related need 

for investment and implementation efforts are investigated in this section. This 

investigation requires the introduction of four variables, described in Table 3-3.  

Table 3-3 Description of pre- and post-event action levels 

Action type 
Action 
level 

Range Description 

Retrofit ߚ௔ [0,1] 
 ߚ௔ ൌ 1 is the level at which no disruption scenario can impact 

component ܽ 
 Reduces disruption severity; no impact on event probabilities 

Expansion ߙ௔ [0,	∞) 

 Expansion strategies include: 
   (1) expand capacity of existing component 
   (2) add component 
 Theoretically ranges from 0 (no action) to infinity 
 ߙ௔ ൌ 1 for the first expansion strategy indicates an expansion 

of a component ܽ equivalent to its starting capacity 
 For second expansion strategy one could think of relating 

expansion level to specific amount of component capacity to be 
constructed 

Resource 
availability 

 ௔ [0,1]ߛ
 ߛ௔ ൌ 1 means perfect resource availability in component a such 

that required resource for implementing responsive actions in 
the most efficient way are provided in advance 

Response ߣ௔ሺߦሻ [0,	∞) 

 Reflecting restored system performance taking both resource 
availability and responsive actions 

 ߣ௔ሺߦሻ indicates the level of restoration related to the pre-event 
performance level of the component. In the event of complete 
failure, λୟሺξሻ ൌ 1 would infer complete reconstruction. Note 
that a value greater than one is permitted as further enhancement 
may be desirable 

 

The proposed action levels are continuous representations of actions with 

corresponding budgets and implementation times defined for each individual system 

component ܽ ∈  In general, in a network .ܣ ,given the set of all system components ,ܣ

representation of a system, the system components as designated herein will be 
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represented by the links of the network (e.g. roadways or railways in a transportation 

network, pipelines in a water supply network, or gas lines in an energy network).  

To assess system performance a priori, one must consider the prospect of 

numerous possible future disruptive event scenarios from a variety of potential sources. 

These sources might include natural weather events, accidental events, e.g. due to 

technological failure or a hazardous materials incident, or malicious acts. Each scenario 

will affect post-event performance differently. Which scenario will occur cannot be 

known a priori with certainty.  

The post-event performance depends on the performance of the individual 

system components and their interactions. Furthermore, the components of the system 

that are impacted and the extent of impact depend on the specifics of the event. Let ݌஽௔
௬  

and ݌ோ௔
௬  represent the post-event and post-recovery performance levels of component 

a, for ݕ ∈ ஽௔݌ .ܻ
௬  and ݌ோ௔

௬  are random variables, and ݌஽௔
௬ ሺߦሻ and ݌ோ௔

௬ ሺߦሻ are their 

corresponding post-event performance levels under disruption scenario ߦ. Let ߗ be the 

set of scenarios. Each scenario ߦ ∈  is defined and generated as a vector of random ߗ

values ሾ݌஽௔
௨ ሺߦሻሿ௔∈஺, indicating post-event performance of all components of an 

unprepared system. Component performance after expansion, retrofit, and response can 

be calculated through equations (13)-(17) given corresponding action level decisions. 

Suppose that the effects of retrofit are linear to system performance. Then,  

஽௔݌
௥ ሺߦሻ ൌ ஽௔݌

௨ ሺߦሻ ൅ ை௔௨݌௔ሾߚ െ ஽௔݌
௨ ሺߦሻሿ. (13) 

The distribution function of ஽ܲ௔
௥  as a function of ߚ௔ (retrofit effort) is depicted 

in Figure 3-6 for a given component a in a retrofitted system. For ߚ௔ ൌ ஽௔݌ ,0
௥  and ݌஽௔

௨  
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have equivalent distribution functions. When ߚ௔ ൌ ஽௔݌ ,1
௥ ሺߦሻ ൌ ை௔݌

௨  inferring that ,ߦ∀ ,

no disruption can impact the performance of component ܽ.  

  

Figure 3-6 Discrete probability function of ݌஽௔
௥  as a function of ߚ௔ 

 

Component performance values between these extremes are derived from linear 

interpolation as is done in similar contexts (e.g. Liu et al. 2009, and Du and Peeta 2012). 

Retrofit does not impact the probability of event occurrence. However, with increasing 

retrofit level, the range on post-event performance narrows leading to higher 

expectation and lower variance. Moreover, the probability of higher post-event 

performance level increases. Thus, post-event component performance, and ultimately 

system performance, is decision-dependent. 

The pre-event performance of component a expanded by level ߙ௔ is computed 

by equation (14). Post-event performance of the expanded component is presumed to 

be a linear function of the expansion level ߙ௔ in equation (15). This infers that any 

disaster impact on the operation of an existing component will similarly affect the 

expanded portion of the facility. Effects of new materials, etc. may be considered. The 

post-event performance of this retrofitted and expanded component for a given scenario 

஽௔݌
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஽௔݌ሺݎܲ
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ை௔݌
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ξ can be computed by equation (16) assuming that when a component is expanded the 

same level of retrofit is applied throughout. 

ை௔݌
௘ ൌ ሺ1 ൅ ை௔௨݌௔ሻߙ ,  (14) 

஽௔݌
௘ ሺߦሻ ൌ ሺ1 ൅ ஽௔௨݌௔ሻߙ ሺߦሻ (15) 

஽௔݌
௥௘ ሺߦሻ ൌ ሺ1 ൅ ஽௔௥݌௔ሻߙ ሺߦሻ  (16) 

For each component a and disruption realization ߦ, post-recovery performance 

ோ௔݌
௬ ሺߦሻ, for ݕ ∈ ܻ, can be computed as in equations (17).  

ோ௔݌
௬ ሺߦሻ ൌ ஽௔݌

௬ ሺߦሻ ൅ ை௔௨݌ሻߦ௔ሺߣ  (17) 
The cost and implementation time required for taking response actions is 

considered when determining the level of recovery action to execute. For a given 

component a,  ఉܾೌ and  ܾఈೌ give the costs of retrofit and expansion, respectively. The 

cost of resource availability, ܾఊೌ, is presumed to be linear in ߛ௔ and independent of ߙ௔ 

and ߚ௔. That is: 

ఉܾೌ ൌ ሺ1 ൅ ௔ሻߙ ఉܾೌ
௠௔௫ߚ௔, (18) 

ܾఈೌ ൌ ܾఈೌ
௠௔௫ߙ௔, and (19) 

ܾఊೌ ൌ ܾఊೌ
௠௔௫ߛ௔,	 (20) 

where ఉܾೌ
௠௔௫, ܾఈೌ

௠௔௫, and ܾఊೌ
௠௔௫ are unit costs of retrofit, expansion and resource 

availability, respectively, in component a.. Level of retrofit is not included in equation 

(19) so that associated costs are applied only once in equations (18).  

Let the implementation cost and time of post-event response actions in system 

component ܽ, ఒܾೌ and ݍఒೌ, be defined as nonlinear functions of response and resource 

availability levels. Then,  

ఒܾೌ
ሺߦሻ ൌ ൣ ఒܾೌ

௠௔௫ െ ൫ ఒܾೌ
௠௔௫ െ ఒܾೌ

௠௜௡൯ߛ௔൧ߣ௔ሺߦሻ, and (21) 

ሻߦఒೌሺݍ ൌ ఒೌݍൣ
௠௔௫ െ ൫ݍఒೌ

௠௔௫ െ ఒೌݍ
௠௜௡൯ߛ௔൧ߣ௔ሺߦሻ, (22) 

where ఒܾೌ
௠௔௫ (ݍఒೌ

௠௔௫) and ఒܾೌ
௠௜௡ (ݍఒೌ

௠௜௡) are unit implementation costs (times) of response 

actions required to achieve the level of response equal to one, given zero and perfect 
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level of resource availability, respectively. How the implementation cost and time 

functions change with level of response and resource availability is shown in Figure 3-

7. With a higher level of resource availability, less effort is required to achieve a given 

performance level. Once the decision on action level is made, the corresponding 

specific action to take can be identified from a mapping of action level to 

implementation cost and time functions.  

 

Figure 3-7 Implementation cost (time) of response actions as functions of resource availability and 

response levels 

 

3.4. Infrastructure Protection Optimization 

In this section, a general optimization program of this Infrastructure Protection Problem 

(IPP) is formulated to determine the maximum attainable system performance level 

using the point performance concept and identify an optimal investment in 

preparedness and responsive actions needed to achieve this level. It accounts for 

uncertainty in post-event performance of the system, since which event, if any, will be 

realized cannot be known in advance. The model selects the optimal retrofit, expansion 

and resource availability actions to take a priori (pre-event) so as to maximize system 

performance given that chosen responsive (recourse) actions will be taken post-event 

ఒܾೌ
௠௜௡ሺݍఒೌ

௠௜௡ሻ 

1 

ఒܾೌሺݍఒೌሻ 

 ௔ߛ

௔ߣ

ఒܾೌ
௠௔௫ሺݍఒೌ

௠௔௫) 
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once the disaster circumstances are realized. Recourse options may also depend on the 

choice of preparedness actions.  

The IPP exploits a network representation of the system infrastructure. Let ܩ ൌ

ሺܰ, ܰ ሻ, whereܣ ൌ ሼ1,… , ݊ሽ and ܣ ൌ ሼ1,… ,݉ሽ are the set of nodes and links that 

connect the nodes. For instance, for a rail-based transport system, stations are 

represented by nodes and tracks along which trains travel are represented through the 

links. In a road transport network, nodes may represent demand source locations, like 

houses, businesses, or parking lots. At a higher level, these locations may represent an 

area, such as Traffic Analysis Zones (TAZ), entire towns or even countries. 

Alternatively, the nodes may merely denote a decision point between roadways. Links 

represent physical connections between nodes or actual roadways. In the electric power 

grid, generators, stations and consumers are taken to be the nodes of the network and 

power lines are represented by its links. Note that nodal components can be expanded 

accordingly.  

3.4.1. The general model for IPP 

The IPP is formulated as a nonlinear two-stage, stochastic program. Preparedness 

options are considered in the first-stage and remedial actions that can be taken in 

response to knowledge of the disaster scenario are determined in the second-stage in 

the form of recourse decisions. For simplicity, let ߙ, ,ߚ  be vectors of action ߣ and ,ߛ

levels in network links, and ݌ and ܲ be vectors of component- and system-level 

performance for all ݕ ∈ ܻ and ݖ ∈ ܼ. The IPP is formulated generically, permitting its 

application in measuring and optimizing system performance with respect to any of the 

performance measures defined in Table 3-2. 
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ሺܲܲܫሻ 

First stage:  

ݔܽ݉
ఈ,ఉ,ఊ

క෨ܧ	 ሾߕሺߦሻሿ  (23) 
s.t.  

,ߙ ,ߚ ߛ ∈ ܵ  (24) 

Second stage:   

ሻߦሺߕ ൌ ݔܽ݉
ఒ,௣,௉

	 ܫ ்̅ ,஻
௜ ሺߦሻ	 (25) 

 s.t.  
ఒݍ ሺߦሻ ൑ ܶ, (26) 
ܾఈ ൅ ఉܾ ൅ ܾఊ ൅ ఒܾ ሺߦሻ ൑  (27) ,ܤ
ሻߦሺߣ ∈ ܴା௠,  (28) 
,ߦሾܪ ,ሻߦሺ݌ ܲሺߦሻሿ ൑ 0. (29) 

 

The objective function (23) seeks to maximize the expected system 

performance measure value given first-stage preparedness and second-stage recourse 

decisions for the set of possible disruption scenarios. ߕሺߦሻ is the maximum value of 

the desired point performance measure ܫ ்̅ ,஻
௜ ሺߦሻ, ݅ {coping capacity, preparedness, 

robustness, flexibility, recovery, resilience}, for disruption scenario ߦ, that can be 

attained given specified maximum recovery period duration and budgetary limitations, 

enforced through constraints (26) and (27), respectively, in the second stage.  

Component-level action implementation cost and time variables in (26) and 

(27) are determined from equations (18)-(21). First-stage variables belong to the set 

ܵ ൌ ሼߙ, ,ߚ ,ߚ		:ߛ ߛ ൑ 1, ,ߙ ,ߚ ߛ ∈ ܴା௠ሽ, enforcing non-negativity and retrofit and 

resource availability limits. Constraints (28) enforce non-negativity in second-stage 

decision variables. Finally, a general function ܪ defined in constraints (29) describes 

the relationship between system-level performance ܲ and component-level 

performance ݌, where ݌ is a function of action level determined using equations (13)-
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(17). A schematic of the how elements of the IPP contribute to the system performance 

level sought through its objective function is given in Figure 3-8.  

 
Figure 3-8 Schematic connecting IPP elements to its objective function 

This formulation builds on a two-stage stochastic program introduced by 

Miller-Hooks et al. (2012) for the problem of measuring and maximizing resilience 

specific to intermodal freight transport. In that earlier work, preparedness and recovery 

actions are given by a set of discrete options, creating an integer stochastic program. 

The IPP expands on that program to provide a general model for measuring and 

maximizing not only resilience, but coping capacity, preparedness, robustness, 

flexibility, and recovery (Figure 3-2). It further permits its use over a wide array of 

applications. These performance measures are affected by the system’s inherent 

characteristics and actions that can be taken through expansion, retrofit, resource 

availability and response actions, together comprising the components of the proposed 

IPF as described in Figure 3-2 and Table 3-1.  

A more generic representation of actions is permitted through the use of 

continuous action variables related to expansion, retrofit, resource availability and 

response. This permits an abstract notion of action and, thus, an infinite set of choices 

in terms of action levels. In the prior work, a response action would be defined in a 

very specific way. For example, it might be exercising an option to borrow two gantry 

cranes from a competing stevedoring company at the same port or use of a pump to 
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remove water from a flooded area. In the proposed IPP, the response action is given by 

an action level. Action level 0.5, thus, indicates that a response action of some type 

should be taken to increase the post-event performance of a specific system component 

by 50% of its pre-event performance level. Thus, if the component’s performance is at 

25% of its pre-event performance level, the resulting performance level of the 

component will be raised to 75% of its pre-event performance level. This use of 

continuous decision variables aids in clarifying the effects of budget limitations, 

permitted recovery period durations, and interaction effects between variable classes. 

3.4.2. Mathematical structure of IPP 

The general IPP is a nonlinear, stochastic program with nonlinear first and second-stage 

constraints and potentially nonlinear objective functions for both stages. The properties 

of the objective functions depend, in part, on the performance measure that is 

employed, which is a function of the application (e.g. a measure of connectivity needed 

to assess performance of computer systems or a measure involving travel time 

applicable for passenger transport systems). The mathematical properties of the IPP are 

explored in this section.  

Several bilinear terms are employed within the constraints of the IPP, resulting 

in nonconvexity in the feasible region. Bilinear terms involving first-stage decision 

variables ߙ and ߚ appear in the budget constraint (27) and component-system 

relationship constraint (29), which uses link performance equations (16). Bilinear terms 

involving the multiplication of first- and second-stage decision variables, specifically	ߛ 

and ߣሺߦሻ, appear in constraints (26) and (27) which depend on equations (21) and (22). 

For a subset of performance measures, the bilinear terms can be eliminated from the 
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model. For example, if one seeks the coping capacity of a system, all of the decision 

variables associated with preparedness and response actions will drop out of the model.  

Table 3-4 synopsizes both the application of the IPP in terms of which decision 

variables or model parameters will be eliminated and which constraints will drop out 

as a consequence of variable elimination and general problem properties that result. 

Whether or not additional nonlinearities or nonconvexities exist within the 

model depends on the specific application. That is, the specific form of the objectives 

and constraints depends on the performance specification and goals. Consider an 

application where the goal is to maximize throughput. The objective can be given as a 

linear function of flow with linear flow conservation and limitation constraints. Now, 

consider an alternative application where the objective is to minimize total travel time 

and travel time is a function of flow. Such a problem will be nonlinear, but convex. 

Last, consider an application seeking a user equilibrium solution as is typical in 

vehicular traffic applications. In such an application, the objective is identical to that 

of the system optimal problem, but the program will contain complementarity 

constraints needed to ensure that the solution assigns traffic such that no user can 

improve his/her travel time by unilaterally switching paths (Wardrop 1952). Such 

complementarity constraints introduce nonlinearities and nonconvexities. Additional 

constraints associated with the specific application will appear as part of constraints 

(29). Thus, the linearity or convexity of the program depends largely on the form these 

constraints. 
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Table 3-4 IPP mathematical structure for each optimization measure 

Optimization 
measure 

Eliminated 
variables/ 

parameters 

Eliminated 
equations/constraints 

IPP properties 

L
inearity/convexity 

L
inearity/convexity in 
1

st stage variables  

L
inearity/convexity in 
2

nd stage variables  

S
eparability of 1

st and 
2

nd stage variables 

Coping capacity ߙ, ,ߚ ,ߛ ,ߦሺܪ ሻ All exceptߦሺߣ ,݌ ܲሻ ൑ 0      
Preparedness ߣሺߦሻ (17), (21)~(22), (26) ‐  -  

Robustness 	ߛ,  ‐ ሻ (17), (20)~(22), (26)ߦሺߣ -  

Flexibility ߙ,  ߚ
(13)~(16), (17) for ݈ ∈
ሼݎ, ݁, ,݁ݎ  ሽ, (18)~(19)ݏ݁ݎ

-     - 

Recovery 
,ߙ  ,ߚ

and ஽ܲ௔
௨ ሺߦሻ ൌ 0 

(13)~(16), (17) for ݈ ∈
ሼݎ, ݁, ,݁ݎ  ሽ, (18)~(19)ݏ݁ݎ

-     - 

Resilience - - - -  - 

 

3.4.3. Solution methodology 

The most general version of the IPP is nonlinear and nonconvex. Decomposition by 

stage results in a second-stage program that is linear in the level of response variable 

λ. Thus, for applications where constraints (29) are convex, the second-stage problem 

for fixed values of first-stage variables is convex and solution can be obtained using a 

generalized L-shaped method designed for nonlinear, stochastic programs. Such a 

method is based on generalized Benders decomposition (GBD) developed from 

concepts of Benders decomposition (Geoffrion 1972). In general, these methods 

decompose the program into stages that exploit a temporal (or sequential) relationship 

between decision variables. Solution first projects the problem onto first-stage 

variables and then applies a cutting plane technique to solve the resulting problem. 

Optimality cuts are also generated for inclusion in the first-stage program, iteratively 

producing a more restrictive first-stage problem. The approach iterates until 
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convergence is achieved between solution values of the two stages. The projection of 

IPP onto ߙ,   .can be formulated as in (30) ߛ and ,ߚ

ݔܽ݉
ఈ,ఉ,ఊ

߯ሺߙ, ,ߚ ሻߛ .ݏ			 ,ߙ		.ݐ ,ߚ ߛ ∈ ܵ ∩ ሖܵ , (30) 

where ߯ሺߙ, ,ߚ ሻߛ ൌ క෨ܧ ቊ݌ݑݏ
ఒ,௣,௉

ܫ	 ்̅ ,஻
௜ ሺߦሻ		ݏ. ,ߦሾܩ		.ݐ ,ߙ ,ߚ ,ߛ ,ሻߦሺߣ ,ሻߦሺ݌ ܲሺߦሻሿ ൑ 0ቋ for 

,ߦሾܩ ,ߙ ,ߚ ,ߛ ,ሻߦሺߣ ,ሻߦሺ݌ ܲሺߦሻሿ ൑ 0 representing second-stage constraints (26)~(29). 

The additional restriction on the feasible set of first-stage variables is enforced by ሖܵ ൌ

ሼߙ, ,ߚ ఈܾ	:ߛ ൅ ఉܾ ൅ ܾఊ ൑ ܵ ሽ. Withܤ ሖ , feasibility of ߯ ሺߙ, ,ߚ  ሻ is guaranteed (completeߛ

recourse), i.e. ሖܵ ൌ ሼߙ, ,ߚ ,ߦሾܩ	:ߛ ,ߙ ,ߚ ,ߛ ,ሻߦሺߣ ,ሻߦሺ݌ ܲሺߦሻሿ ൑ 0 for some ߣሺߦሻ ∈ ܴା௠ሽ. 

The problem (30) is decomposed into a master problem (MP) and a set of subproblems 

(SP), one for each disruption scenario realization, ߦ:  

ሺܲܯሻ:  ݉ܽݔ
ఈ,ఉ,ఊ,ఏ

.ݏ			ߠ	 ߠ		.ݐ ൑ ߯ሺߙ, ,ߚ ,ሻߛ ,ߙ ,ߚ ߛ ∈ ܵ ∩ ሖܵ  (31) 

ሺܵܲሻ:   ݉ܽݔ
ఒ,௣,௉

ܫ	 ்̅ ,஻
௜ ሺߦሻ				ݏ. ,ߦሾܩ		.ݐ ,జߙ ,జߚ ,జߛ ,ሻߦሺߣ ,ሻߦሺ݌ ܲሺߦሻሿ ൑ 0  (32) 

The MP is an equivalent version of the original IPP (30) involving a set of 

optimality cuts given by ߠ ൑ ߯ሺߙ, ,ߚ ,ߙis an approximation of ߯ሺ ߠ ሻ, whereߛ ,ߚ  ሻ. Inߛ

iteration ߭, the solution value of the MP, ߠజ, provides an upper bound (UB) on the 

optimal solution value of (30). The values of ߙ, ,ߚ ,జߙ are tentatively fixed to ߛ  జ, andߚ

,జߙజ, i.e. the solution from the MP, in each SP. Thus, ߯ሺߛ ,జߚ  జሻ, computed overߛ

solutions of the SPs, provides a lower bound (LB) on the optimal solution. Solutions to 

the SPs are used within a cutting plane technique to generate a new optimality cut for 

inclusion in the MP. The solution process continues until UB൑LB, at which point 

optimality is achieved. An overview of Benders-based decomposition methods is given 

in Figure 3-9.  
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Figure 3-9 The general flowchart of Benders-based decomposition methods 

For some measures, like preparedness and robustness, when constraints (29) are 

convex, the SPs will be convex since there are no bilinear terms. Thus, the conventional 

L-shaped method of Van Slyke and Wets (1969) designed for separable, linear and 

stochastic programs may also be applied. In this method, optimality cuts are generated 

by linear programming duality. Let second-stage constraints be represented by 

,ߦଵሺܩ ,ߙ ,ߚ ሻߛ ൅ ,ሻߦሺߣଶሾܩ ,ሻߦሺ݌ ܲሺߦሻሿ ൑  ଶ are separatedܩ ଵ andܩ ሻ, whereߦଷሺܩ

functions of first- and second-stage variables, respectively, and ܩଷ is a vector of 

modeling parameters that depend on disruption scenario ߦ. The optimality cut is 

generated by replacing ߯ሺߙ, ,ߚ   :ሻ in (31) by its dual objective functionߛ

ߠ ൑ క෨ܧ ሼߨ
జሺߦሻሾܩଷሺߦሻ– ,ߦଵሺܩ ,ߙ ,ߚ ሻሿሽߛ , (33) 

where ߨజሺߦሻ is the value vector of dual variables corresponding to second-stage 

constraints at iteration v.  

If, on the other hand, constraints (29) are nonlinear but convex, the generalized 

L-shaped method, which exploits Lagrangian relaxation of ߯ሺߙ, ,ߚ  ሻ in (31), will beߛ

required:  

ߠ ൑ క෨ܧ ൛ܫ ்̅ ,஻
௜ ሺߦሻ ൅ ,ߦሾܩ	ሻߦజሺߪ ,ߙ ,ߚ ,ߛ ,ሻߦజሺߣ ,ሻߦజሺ݌ ܲజሺߦሻሿൟ, ሻߦజሺߪ ൒ 0, (34) 

Stop

 Solve SPs on ߙజ, ,జߚ  జߛ

 Update LB 

Initialization Solve MP ሺߠజ, ,జߙ ,జߚ  జሻߛ

Add 
optimality cut ߠజ ൑ ߯ሺߙజ, ,జߚ ?జሻߛ

Yes 

No 
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where ߣజሺߦሻ, ,ሻߦజሺ݌ ܲజሺߦሻ, and ߪజሺߦሻ are vectors delineating the optimal solution and 

corresponding optimal Lagrangian multipliers for the SPs associated with scenario ߦ at 

iteration v.   

For applications involving flexibility, recovery and resilience, bilinear terms ߛߣ 

exist in equations (21)-(22), which ultimately feed into (30), resulting in 

nonseparability of decision variables in the SPs. Consequently, Benders-based 

decomposition methods fail to generate valid optimality cuts, and thus, will not 

guarantee convergence to the global optimum (Geoffrin 1972, Floudas et al. 1989). In 

fact, these methods require that a certain property (property P), in which the explicit 

form of the optimality cuts must be generated independent of first-stage variables, hold 

(Geoffrin 1972); however, this property does not hold where the variables are 

nonseparable, the case here. Local optimality is, however, achieved through the 

application of the generalized L-shaped method (Floudas et al. 1989, Bagajewicz and 

Manousiouthakis 1991). The quality of the solution depends largely on the starting 

values of first-stage decision variables. A multi-start version of the generalized L-

shaped method may lead to improved local solutions. For the most difficult nonconvex 

programs with bilinear terms, for small problem instances, it is possible to obtain 

globally optimum solutions using, for example, a branch-and-reduce solution 

methodology as found in commercial software packages like BARON (Sahinidis and 

Mohit 2007). Alternatively, bilinear terms can be linearized as suggested in 

(McCormick 1976), where a linear relaxation of the bilinear terms using convex 

envelopes is proposed. The conventional L-shaped method can be applied to the relaxed 

problem to obtain approximate solutions. 
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For applications involving coping capacity, action variables are forced to zero. 

As variables are forced out of the program, some constraints drop out. Consequently, 

the stochastic program is decomposable by scenario. If constraints (29) are convex, and 

each scenario-dependent program will be a convex deterministic program, making the 

problem easy to solve. If, on the other hand, constraints (29) are nonconvex, solution 

of nonconvex, deterministic, scenario-dependent programs will be required. In both 

cases, however, decomposition by stage is not required. 

Table 3-4 summarizes the properties of the IPP for each measure assuming 

convexity in constraints (29). Generally, when constraints (29) are nonconvex, dual 

decomposition methods can be applied. See, for example, (Rockafellar and Wets 1991; 

Caroe and Schultz 1999). Relying on concepts of column generation, these methods 

decompose the problem by scenario. Convexity is not required. Alternatively, 

convexification methods, including outer approximation techniques (e.g. Horst et al. 

1992), can be applied; however, solutions obtained through such approximate methods 

do not guarantee locally or globally optimal solutions for the original problem. 

3.5. Illustrative Numerical Example 

The IPP can be applied to study the performance of many networked infrastructure-

based systems. For a chosen application, p and P must be specified. To show how the 

proposed framework and modeling construct operates, the IPP framework is applied to 

the freight-rail problem class addressed in (Miller-Hooks et al. 2012), where the 

resilience concept involving inherent coping capacity, along with preparedness and 

adaptive actions was first introduced.  
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In the context of freight flows, p is a vector of link flows and P represents total 

throughput. Numerous applications, including passenger transport, water transport 

through pipes, and electricity supply through power grids, involve flow-based 

performance. 

3.5.1. Specifying the example IPP 

To specify the IPP for this application, constraints (29) must incorporate flow 

conservation, link capacity and demand limitation constraints. For background 

purposes, a generic path-based maximum flow (throughput) formulation is given by 

(T). 

 (T)   ݉ܽݔ 	 ∑ ∑ ݂ሺ݇,ݓሻ௞∈௄ೢ௪∈ௐ    

s.t.  

∑ ݂ሺ݇,ݓሻ௞∈௄ೢ ൑ ݀௪,					ݓ ∈ ܹ    

௔ݔ ൌ ∑ ∑ ௔௞ߜ
௪ . ݂ሺ݇, ሻ௞∈௄ೢ௪∈ௐݓ , ∀ܽ ∈    ܣ

0 ൑ ௔ݔ ൑ ܿ௔,				∀ܽ ∈      ,ܣ

where ݂ሺ݇,ݓሻ is the flow though path ݇ between O-D pair ݓ. ܹ is the set of O-D pairs 

and  ܭ௪ is the set of paths ݇ connecting O-D pair ݓ. The objective is to maximize the 

flow between all O-D pairs representing system-level performance while 

simultaneously limiting flow along all paths between a particular O-D pair ݓ to the 

demand of that O-D pair, ݀௪. The component-level performance is captured in the 

vector of link flows, ݔ௔ the flow along link ܽ, which is limited by the link’s capacity, 

ܿ௔. Path-link incidence indicators, ߜ௔௞
௪  , are set to 1 if path k uses link a for shipping 

flow between O-D pair w, and zero otherwise. For ݕ ∈ ܻ and ݖ ∈ ሼܦ, ܴሽ	, let 

௭݂
௬ሺߦ, ݇, ௭௔ݔ and ,ݓ ሻ be the path flow along path ݇ between O-D pairݓ

௬ ሺߦሻ and ܿ௭௔
௬ ሺߦሻ 
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be the flow and capacity for link a under scenario ߦ. Constraints (29) in the IPP 

formulation are captured by linear constraints (35)-(37). 

∑ ௭݂
௬ሺߦ, ݇, ሻ௞∈௄ೢݓ ൑ ݀௪,					∀ݓ ∈ ݕ∀,ܹ ∈ ܻ, ݖ∀ ∈ ሼܦ, ܴሽ   (35) 

௭௔ݔ
௬ ሺߦሻ ൌ ∑ ∑ ௔௞ߜ

௪ . ௭݂
௬ሺߦ, ݇, ሻ௞∈௄ೢ௪∈ௐݓ , ∀ܽ ∈ ,ܣ ݕ∀ ∈ ܻ, ݖ∀ ∈ ሼܦ, ܴሽ	  (36) 

0 ൑ ௭௔ݔ
௬ ሺߦሻ ൑ ܿ௭௔

௬ ሺߦሻ,				∀ܽ ∈ ,ܣ ݕ∀ ∈ ܻ, ݖ∀ ∈ ሼܦ, ܴሽ     (37) 

System-level performance is measured by ௭ܲ
௬ሺߦሻ ൌ ∑ ∑ ௭݂

௬ሺߦ, ݇, ሻ௞∈௄ೢ௪∈ௐݓ , 

for ݕ ∈ ܻ and ݖ ∈ ሼܦ, ܴሽ. ைܲ
௨ ൌ ∑ ݀௪௪∈ௐ , assuming that all demand can be served 

within level-of-service bounds prior to a disruption event. This term will appear in the 

denominator of the objective function. For performance in terms of resilience, these 

pieces together produce the following formulation. 

(IPP-
T) 

ݔܽ݉
ఈ,ఉ,ఊ

క෨ܧ	 ൝݉ܽݔఒ,௙
	
∑ ∑ ோ݂

௥௘௦ሺߦ, ݇, ሻ௞∈௄ೢ௪∈ௐݓ

∑ ௪௪∈ௐܦ

.ݏ .ݐ ሺ26ሻ െ ሺ29ሻ, ሺ35ሻ

െ ሺ37ሻൡ 
 

s.t.   ߙ, ,ߚ ߛ ∈ ܵ ∩ ܵ.ሖ  
 

3.5.2. The network  

The model from Section 3.5.1 and related versions of the IPP-T that seek to maximize 

coping capacity, preparedness, robustness, flexibility and recovery are demonstrated 

on the Double-Stack Container Network (shown in Figure 3-10), representing a rail 

freight network connecting 8 cities in the western United States (Morlok and Chang 

2004). 17 O-D pairs are chosen for this case study. Five classes of disruption scenarios, 

based on scenarios developed in (Chen and Miller-Hooks 2012), are considered: 

bombing, earthquake, flooding, terrorist attacks, and intermodal attack. In practice, 

realizations of each scenario include a vector of post-event link capacities for the 
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unprepared system: ሾܿ஽௔
௨ ሿ௔∈஺. Correlation between link capacities under each scenario 

helps structure the event by type.  

 
Figure 3-10 Double-stack container network (Morlok and Chang 2004)   

 

Table 3-5 Values of modeling parameters 

Link 
Action implementation costs (×$1000) Response action implementation time (days) 

ܾఈ௔௠௔௫ ఉܾ௔
௠௔௫ ܾఊ௔௠௔௫ ఒܾ௔

௠௜௡ ఒܾ௔
௠௔௫ ݍఒ௔

௠௜௡ ݍఒ௔
௠௔௫ 

1 78 1560 35 39 156 18 90 
2 37 31 9 10 39 3 15 
3 273 819 37 41 164 12 60 
4 334 167 26 29 117 9 45 
5 35 702 16 18 70 6 30 
6 240 200 56 62 250 18 90 
7 91 273 12 14 55 6 30 
8 457 228 36 40 160 12 60 
9 103 2067 47 52 207 15 75 

10 105 87 25 27 109 9 45 
11 351 1053 47 53 211 15 75 
12 669 334 53 59 234 18 90 
13 117 2340 53 59 234 18 90 
14 210 175 49 55 218 18 90 
15 475 1424 64 71 285 21 105 
16 490 245 39 43 172 12 60 
17 70 1404 32 35 140 12 60 
18 168 140 39 44 176 15 75 
19 273 819 37 41 164 12 60 
20 279 139 22 24 98 9 45 
21 68 1365 31 34 137 12 60 
22 300 250 70 78 312 24 120 
23 462 1385 62 69 277 21 105 
24 446 223 35 39 156 21 105 

 

The Monte Carlo method that captures this correlation structure described in 

(Chen and Miller-Hooks 2012) was adopted for use in generating scenario realizations, 
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specifically 100 realizations for each scenario classification. ܤ is set to $400,000 and 

recovery period ܶ is assumed to be two days. Parameter settings are given in Table 3-

5. These parameters are hypothetical and are chosen only to illustrate the proposed 

concepts and solution methodologies.  

3.5.3. Application of solution methodologies 

As a result of convexity of constraints (35)-(37), for any measure considered herein 

and for a fixed set of first-stage variables, the second stage problem of IPP-T is convex 

and Benders-based decomposition methods can be employed. The solution 

methodology is implemented in GAMS calling CPLEX and BARON solvers for linear 

and nonlinear problems, respectively.  

For coping capacity, IPP-T is decomposed by scenario, producing a set of linear 

programs, each of which can be solved using the linear solver in CPLEX. For 

preparedness and robustness, the conventional L-shaped method can be applied. Each 

nonlinear MP is solved by BARON, which guarantees a global optimum. A faster 

alternative with the capability of solving larger problem instances is to linearize bilinear 

terms ߙߚ in MP using the convex relaxation method of McCormick (1976). This 

permits solution using any linear solver. In McCormick’s method, four constraints are 

introduced that restrict the variables in the bilinear term in relation to lower and upper 

bounds. Specifically, let ݉௔ ൌ ܽ ௔ represent the MP bilinear term forߚ௔ߙ ∈  and ,ܣ

,௔௅ߚ ,௔௎ߚ  .௔௎ be lower and upper bounds of retrofit and expansion level variablesߙ ௔௅, andߙ

McCormick’s constraints are formulated for each link ܽ in (39). 

݉௔ ൒ ௔ߙ௔௅ߚ ൅ ௔ߚ௔௅ߙ െ  ,௔௅ߙ௔௅ߚ
(39) 

݉௔ ൒ ௔ߙ௔௎ߚ ൅ ௔ߚ௔௎ߙ െ ,௔௎ߙ௔௎ߚ  
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݉௔ ൑ ௔ߙ௔௎ߚ ൅ ௔ߚ௔௅ߙ െ  ,௔௅ߙ௔௎ߚ

݉௔ ൑ ௔ߙ௔௅ߚ ൅ ௔ߚ௔௎ߙ െ ,௔௎ߙ௔௅ߚ ܽ ∈ .ܣ  

Specifically in IPP, ߚ௔௅ ൌ ܽ ௔௅=0 forߙ ∈ ௔௎ߚ ,ܵ According to feasibility set .ܣ ൌ

1 for ܽ ∈  ,Using constraints (27), in conjunction with definitions of (18) and (19) .ܣ

௔௎ߙ ,௔௎ can be defined by setting other action level variables equal to zero. Thenߙ	 ൌ

஻

௕ഀೌ
೘ೌೣ for ܽ ∈  Given these bounds, constraints (39) can be replaced by the following .ܣ

constraints (40). These constraints are added to the MP.  

݉௔ ൒ 0,݉௔ ൒
ܤ

ܾఈ௔௠௔௫ ௔ߚ െ
ܤ

ܾఈ௔௠௔௫ ,݉௔ ൑ ௔,݉௔ߙ ൑
ܤ

ܾఈ௔௠௔௫ ,௔ߚ ܽ ∈  (40) .ܣ

Three different approaches are applied to solve the IPP-T associated with each 

of these measures. First, the extended version of each stochastic program, in which 

constraints are explicitly defined over all realizations, is solved by BARON permitting 

an optimality gap of 1%. To assess the applicability of the generalized L-shaped 

method, this method is applied with a starting point in which all first-stage variables 

are set to zero. As mentioned in Section 3.4.3, this approach can only guarantee locally 

optimal solutions for this application. Finally, bilinear terms are convexified using 

McCormick’s method. This approach creates linearity and separability in the IPP-T. 

ሻߦሻ in which each element ݊௔ሺߦሻ terms in the SPs are replaced by a vector ݊ሺߦሺߣߛ ൌ

ܽ ሻ forߦ௔ሺߣ௔ߛ ∈ ௔௅ߛ Lower bounds of involved action level variables .ܣ ൌ ሻߦ௔௅ሺߣ ൌ 0. 

With respect to the feasibility set ܵ, the upper bound of resource availability, ߛ௔௎, is set 

to be 1, i.e. ߛ௔௎ ൌ 1. According to constraints (26), a valid upper bound of response 

action level, ߣ௔௎ሺߦሻ, is set to ߣ௔௎ሺߦሻ ൌ
்

௤ഊೌ
೘೔೙ሺకሻ

, assuming ߛ௔ ൌ 1, and the following linear 

constraints are added to the SPs.  
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݊௔ሺߦሻ ൒ ሻߦ௔ሺߣ ൅
ܶ

ఒ௔ݍ
௠௜௡ሺߦሻ

ߣ௔ሺߦሻ െ
ܶ

ఒ௔ݍ
௠௜௡ሺߦሻ

, ݊௔ሺߦሻ ൑ ,ሻߦ௔ሺߣ  

݊௔ሺߦሻ ൑
ܶ

ఒ௔ݍ
௠௜௡ሺߦሻ

ߣ௔ሺߦሻ, ݊௔ሺߦሻ ൒ 0, ܽ ∈ .ܣ  

(41) 

In the case of resilience, ߙߚ terms must also be convexified. This can be 

achieved through a similar replacement of terms and addition of bounding constraints 

(39) in the MP. 

3.5.4. Numerical results 

Results of the numerical experiments for competing solution methodologies are given 

in Figure 3-11. Solutions were obtained quickly and, thus, computation times are not 

reported. Analysis of the results shown in the figure indicates a system coping capacity 

of 56%. Thus, with no preparedness and response actions, the system has an expected 

throughput of just above half of its desired value. Preparedness and robustness 

measures are identical at 77%, indicating the value of preparedness actions. Their 

equivalence is expected, because these measures only differ in the inclusion of resource 

availability, which can only contribute to improved performance if response actions 

can be taken that exploit their existence. Greater improvement is obtained through 

response actions, including those that take advantage of resources made available 

through preparedness steps, as compared with other preparedness actions, as indicated 

by a flexibility value of 83%. 26% of system throughput is due to recovery actions taken 

in isolation, i.e. performance in terms of recovery is 26%. Thus, if complete system 

failure were to occur as a consequence of a disaster event, recovery actions could result 

in this level of throughput. Finally, taking all actions permissible, a resilience level of 

nearly 86% is achievable. 
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Figure 3-11 Comparison of results using different solution methodologies for each optimization 

measure 

Modeling the action levels over a continuum permits sensitivity studies and 

enables insights that do not depend on the specific choice of potential available 

preparedness and response actions (i.e. a toolbox of pre- and post-event options) 

required in prior related works. For instance, the impact of budget and recovery time 

on resilience can be depicted, as in Figure 3-12, through resilience indifference curves, 

requiring continuous values of action level variables that contribute to resilience.    

Figure 3-12 Resilience indifference curves for combinations of available budget and recovery period 
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3.6. Conclusions and Extensions 

The proposed conceptualization of resilience and related measures, along with 

optimization framework and solution methods, provide a structure and needed tools for 

assessing system performance under potential future disruption scenarios. These 

further aid decision-makers with prioritization of preparedness and response actions 

and, thus, the development of investment strategies. Improvements in pre-event 

preparedness and post-event response capabilities aid in protecting the civil 

infrastructure and the people who live within it. 
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Chapter 4: Resilience of Airport Runway and Taxiway 

Pavement Networks  

4.1. Introduction 

Air transportation is one of the fastest growing modes of transportation globally. A 

recent market outlook (Boeing, 2012) forecasts a steady annual growth in demand of 

approximately 5%, implying that air traffic should double every 14 years. Currently, 

there are about 44 thousand airports worldwide, of which approximately one third have 

a paved network of runways and taxiways (CIA, 2012). The latter subset, which is the 

focus of this study, carries the vast majority of air passengers and cargo. In comparison 

with road or rail systems, airport pavement networks are compact in size and have a 

reduced degree of topological interconnectivity. Also, they provide service to 

‘vehicles’ that are less tolerant to physical distress than other means of motorized 

transportation. As a direct consequence, the functionality of an entire airport may be 

impaired considerably even when a small part of its runway and taxiway network 

sustains damage. Pavement damage can be classified into four generic types, applicable 

to both asphalt and concrete pavements (FAA, 2007): (i) cracking - unplanned fracture 

lines traversing the surface, (ii) disintegration - breakup and fragmentation of the 

materials into small loose particles, (iii)  distortion - permanent change in surface shape 

and elevations relative to original grades, and (iv) loss of skid resistance - increased 

surface slipperiness. The occurrence of any of the above distress types can lead to loss 

of serviceability and will require repair action to be taken before functionality is 

restored.  
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There are a myriad of events that might cause the aforementioned pavement 

damage types; these can also be classified into four broad categories: (i) extreme 

climate or geological events, (ii) random operational events, (iii) natural deterioration 

in combination with ill-timed maintenance, and (iv) intentional malicious acts such as 

terrorism or war. The first category encompasses those meteorological conditions not 

envisioned or not accounted for in the design of the facility. As an example, extreme 

high or low ambient temperatures (or fast transition between them) can cause airport 

pavements to abruptly buckle and crack or become locally distorted. When weather 

events include long dry spells or exceptional wet conditions, pavements founded on 

active soils can become severely cracked and distorted (McKeen, 1981). Snow/ice 

events negatively affect not only skid resistance - they can also induce cracking and 

distortion. In thunderstorms, when lightning strikes a concrete surface, spalling is 

usually the result (The Aberdeen group, 1984). Also included under this category are 

earthquakes, floods and tsunamis that can bring about crippling damage from any of 

the four abovementioned generic types.  

Under random operational events, pavement damage can be caused by tire 

blowouts during takeoff or landing resulting in surface gouging (i.e. disintegration and 

distortion). Another probable ‘operational’ event can be a localized oil or fuel spill, 

which reduces the pavement skid resistance and produces disintegration (especially for 

asphalt pavements) leading to Foreign Object Debris (FOD) danger. Additionally, the 

need may arise to permit pavement overloading, i.e. allow aircraft operations with 

weights that far exceed the original design. This may come about in disaster relief or 

medical evacuation missions that demand special transport requirements, or during an 
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emergency landing. In such cases, the sudden ‘abuse’ may be detrimental to the 

pavement network.  

As for the third damage category, it is not uncommon in these economically 

constrained times to find runways and taxiways that have deteriorated to the verge of 

functionality loss, ‘setting the stage’ for subsequent unexpected shutdowns and 

unplanned demand for remedial actions to be taken. This situation usually arises when 

the natural pavement deterioration curve accelerates with age. Finally, acts of terrorism 

or war may involve targeted attacks on airports, with the aim of disabling the runway 

and taxiway systems to disrupt or completely disable takeoff and landing capabilities. 

This is usually ‘accomplished’ by cracking and distorting select/critical network 

components by means of explosives.  

The economic impact of runway or full airport closure can be very significant. 

Specific impact estimates are given in (ARTBA, 2010) with respect to three major 

recent airport and airspace shutdown events. An 8-day shutdown of the Bangkok 

Airport in 2008 due to protests is reported to have cost the Thai economy over $8 

billion. Incurred losses affected not only the well-being of stranded passengers, but 

specific industries with valuable, perishable cargo, as well as tourism to the area. $1.4 

and $1.7 billion in revenue losses resulted from the three-day nationwide airport 

shutdown after the 9/11 terrorist attacks and multi-nation airport shutdown for the 2010 

Eyjafjallajökull volcanic eruption in Iceland, respectively. On a smaller scale, daily 

runway shutdowns for pavement maintenance have significant local impact. For 

example, European airports shut down nearly 4 hours per month due to FOD incidents 

resulting from events such as oil spills or tire and engine damage. Direct costs per 
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airport annually are on the order of $20 million. The cost to the top 300 European 

airports alone, including indirect costs due to, for example, fuel inefficiencies and delay 

costs, result in an estimated $12 billion in annual FOD-related expenses (McCreary, 

2008). Additionally, cost estimates due to cancelling, ground holding and rerouting 

flights for only a one hour closure of runways at London’s Heathrow Airport are 

between 700,000 and 1,250,000 euros (Pejovic et al., 2009). These estimates exclude 

additional substantial emissions costs due to increased fuel burn and other external 

costs. 

The overall objective of this work is to transfer and apply the concept of 

resilience, as proposed in (Miller-Hooks, 2012) for rail-based intermodal cargo 

container networks, to the airport arena. Taking a multi-hazard perspective, resilience 

is measured in terms of the system’s ability to provide for continuity of operations via 

existing attributes (topological and procedural) post-event. In this definition, the innate 

capability to resist and absorb disruption impacts through redundancies and 

underutilized capacity, the effects of adaptive actions that can be taken post-event, and 

the preparedness decisions that support these actions, are all integrated into the concept 

of resilience.  

A plethora of works in the literature consider resilience, robustness, flexibility 

and other notions of network performance under disruption in the context of 

transportation and other critical civil infrastructure systems; see for example (Miller-

Hooks et al., 2012; Bruneau et al., 2003; Amin and Horowitz, 2008; Shinozuka, 2009; 

Xu, 2009; Gopalakrishnin and Peeta, 2010). However, none of these consider 

disruptions to airport runway and taxiway systems. A number of decision support 
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systems have also been developed in the literature for risk analysis of critical 

infrastructure systems in natural disasters, such as flooding (Multi Infrastructure Map 

for the Evaluation of the Impact of Crisis Scenarios (MIMESIS) (Rosato et al., 2011)), 

earthquake (e.g. Risks from Earthquake Damage to Roadway Systems (REDAR) 

(Werner et al., 2006)), human-caused malicious acts (e.g. Critical Infrastructure 

Protection Decision Support System (CIP-DSS) (Bush, 2005)), and “all-hazards” (e.g. 

Critical Infrastructure Protection Modelling and Analysis (CIPMA) (Australian 

Government, 2009)). These systems generally include a disaster scenario generator to 

create system inputs and support decisions by providing estimates of decision 

consequences and infrastructure risk to damage and failure. As compared to the above 

cited tools, the approach suggested herein offers greater specificity to the airport arena 

with a high level of mathematical rigor. In effect, the vast majority of works related to 

civilian airport disaster management focus on aviation security and vulnerability and 

do not address the physical infrastructure that supports take-offs and landings. 

Perhaps the most related work in the literature to the problem at hand deals with 

military airfields under wartime situations. Wegner (1982) addressed the optimal 

sequencing of repair actions by a single team to damaged taxiways. A simple, ad-hoc 

path-based heuristic is proposed for use on a reduced network containing only damaged 

arcs that seeks the schedule that minimizes average time that aircraft located at parking 

areas are denied access to the runways. Several limiting assumptions were made, 

including the availability of only one repair team, suggesting that all repair actions be 

taken in series, and deterministically known repair times. Solution quality of the 

heuristic was studied through comparison with exact solutions obtained through 
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branch-and-bound for 100 problem instances each associated with a single damage 

situation. Several works from the 90’s describe pavement materials and procedures for 

Rapid Runway Repair (RRR) applications (Chang, 1990; Saroni, 1990). More recently, 

a methodology for computing the repair duration of a given Minimum Operating Strip 

(MOS) was proposed to aid in MOS selection, and thus, time to operation (Duncan, 

2007). The Critical Path Method was suggested on an activity network representation 

of repair tasks to determine the repair duration.  

In this chapter, the problem of evaluating and optimizing the resilience of a 

single airport’s runway and taxiway network, referred to herein as the Airport 

Resilience Problem (ARP), is conceptualized and mathematically formulated as a two-

stage stochastic integer program. The program captures complexities of modeling 

taxiway/runway capacities with bi-directional operations, optimal runway 

configuration selection under varying meteorological conditions, and minimum 

operating strip (MOS) restrictions, among other practical requirements (see Section 

4.2). Novel modeling techniques and constraint specifications with applicability in 

airport ground traffic management beyond this emergency application and system-wide 

interactions are captured through a flow-based formulation. Budgetary, time, space, 

and physical resource limitations are also imposed. The program considers a myriad of 

potential future network disruption scenarios from multiple hazard classes based on the 

aforementioned distress-types and causal-categories, as well as their occurrence 

probabilities and potential consequences. Randomly arising meteorological conditions 

and their effects are also taken into consideration. An exact solution methodology based 

on concepts of integer L-shaped decomposition is proposed (Section 4.3). How the 
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mathematical model and solution methodology might be embedded within a decision 

support tool is described (Section 4.4). The tool is subsequently applied to a specific 

case study on which its capabilities and applicability to the airport and pavement arenas 

are demonstrated (Section 4.5). 

4.2. Formulation of the Airport Resilience Problem 

The mathematical formulation of the ARP exploits a network representation of an 

airport’s runway and taxiway pavement infrastructure. Let ݎܩ ൌ ሺܸ⋃ሼܱ, ,ሽܦ ܣ ൌ

 ଷሻ be an undirected graph, where ܱ represents a supersource, i.e. theܣ⋃ଶܣ⋃ଵܣ

terminal, and ܦ represents a supersink, i.e. the airways. ܣଵ and ܣଶ are sets of arcs (or 

links) representing taxiways and runways, respectively, and ܸ is the set of vertices 

representing connections between these facilities. ܣଷ is the set of virtual arcs 

connecting physical network elements to the supersource and sink. While runway and 

taxiway arcs are undirected, any arc can only be used in one direction at a given point 

in time. Where appropriate, directed arc terminology is adopted.  

The network is considered under a set of disruption events (i.e. network states) 

characterized by damage severity, type (climate/geological, operational, natural 

deterioration, and terrorism) and location, along with current meteorological conditions 

in terms of temperature, wind velocity, precipitation and visibility. The 

interrelationship between damage to the network and meteorological conditions is also 

considered. Damage may occur in multiple locations and its distribution over the 

pavement network depends on its cause. The likelihood of an event falling within any 

of these causal categories depends on the geographical characteristics of the airport. 
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Thus, each disruption event is equivalently a damage-meteorological scenario denoted 

by	ξ. 

A unique runway usage-pattern, in which particular runways operate in a pre-

specified direction, called the runway configuration (Swedish, 1981), is selected 

through the specification of binary variables ሼߨ௚ሺߦሻሽ௚∈ீ, where ܩ is the set of possible 

runway configurations that could be taken in different conditions and ߨ௚ሺߦሻ indicates 

whether or not runway configuration ݃ is ‘selected’ under damage-meteorological 

scenario ξ. Specification of the airport pavement network also involves runway and 

taxiway capacities on network flow rates. Flows are distinguished by aircraft size 

(small/large) and maneuver type (takeoff/landing). Capacities associated with each arc 

in ܣଵ and ܣଶ describe the rate at which aircraft can be served by the taxiways and 

runways, respectively. This rate depends on both meteorological conditions and facility 

use details.  

The ARP seeks the optimal preparedness actions (resources that are made 

available) given all randomly generated ‘disruptions’, their probabilities of occurrence 

and the knowledge that the optimal recourse action will be invoked given available 

resources if an event is actualized. Mathematically, the solution takes the form of a 

two-stage integer stochastic program. Given that one of hundreds or thousands of 

potential disruption events may arise in the future, the first stage seeks optimal 

decisions pertaining to putting the appropriate personnel and agreements in place from 

which repair crews of skilled and certified workers (e.g. equipment operators, 

engineers, and electricians) will be formed and purchasing and prepositioning of heavy 

equipment (e.g. dump trucks, industrial tractors, towed sweepers). These decisions are 
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taken a priori, i.e. prior to the occurrence (generation) of a disruption event. The second 

stage determines the post-event, i.e. a posteriori, recourse actions required to 

ameliorate damage impact once the event has occurred and damage assessment has 

been conducted. Thus, decisions taken a priori must support response actions needed 

for a host of damage situations.  

Repair materials (e.g. aggregates, hot mix asphalt, Portland cement concrete, 

sealants) are assumed to be readily obtainable when needed. The choice of a repair 

action depends on a variety of factors, including: the damage type and extent, 

meteorological conditions, availability and cost of existing resources, available repair 

time, expected repair life and therefore willingness to tolerate long-term maintenance 

requirements, and willingness to restrict landing and/or take-off operations. The time 

interval required for implementing a chosen repair action depends on the type and 

dispersal of the damage, whether the task is undertaken using internal resources or if 

external resources (involving added start-up time) are used, and prevailing 

meteorological conditions. The latter conditions affect not only the repair time due to 

material properties and human/machine efficiency (Duncan, 2007), but may even 

necessitate selection of a different repair technology to cope with the situation. These 

conditions are accounted for in the model through repair-time multipliers. The solution 

is guided by an objective function that seeks the maximum expected post-event, post-

repair taxiway and runway flow rates over all aircraft classes and runway maneuvers.  

Nomenclature employed within the mathematical program is as follows: 

ܣ) set of links = ܣ ൌ ଵܣ ∪ ଶܣ ∪  ଶ is theܣ ,ଵ is the set of taxiwaysܣ ଷሻ, whereܣ
set of runways, and ܣଷ is the set of added dummy links  

 ݃ set of runway configurations = ܩ
́ܽ,ଵܣ
௖ ⊂ ́ܽ ଵ = subset of taxiways connected to a runwayܣ ∈   ଶ (entrance/exit taxiways)ܣ

ଶܣ
௚ ⊂  ݃ ଶ = subset of runways that are active under configurationܣ
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́ܽ ௔́ = set of segments of runwayܫ ∈   ଶܣ
௔́ܫ
௔ ⊂ ́ܽ ௔́ = subset of segments of runwayܫ ∈  ଶ following (leading to) entrance (exit)ܣ

taxiway ܽ ∈ ́ܽ,ଵܣ
௖   

  super source and sink nodes = ܦ,ܱ
W = set of maneuver types ݓ ∈ ܹ ൌ ሼܽݎݎ,  ሽ for arrival and departure݌݁݀

maneuvers between nodes ܱ and ܦ, respectively  
ܴ = set of repair actions ݎ  
  ݁ set of equipment types = ܧ
௘ܰ = maximum number of equipment type ݁ that could possibly be provided    

    maximum number of teams that might be deployed = ܯ
ܵ = set of aircraft classes (sizes) ݏ  
  ݁ ௘,௡ = required storage space for n pieces of equipment typeݕ
ܻ = total available storage space 
ܲ௚,௪,௦ = set of active paths ݌ for runway configuration ݃, maneuver type ݓ and 

aircraft class ݏ  
 arrival and) ݏ and aircraft class ݓ ௪,௦ = original demand for maneuver typeܦ

departure demands)  
ܽ ௔௧௫௖ = capacity envelop for taxiwayܨ ∈  ଵ representing directional flow tradeoffܣ
ܿ௔ሺߦሻ = capacity of taxiway ܽ ∈  and ܴ under meteorological ܮ ଵ for both directionsܣ

conditions of scenario ߦ 
 ௚௢௖ = overall capacity envelop for runway configuration ݃ representing totalܨ

arrival and departure flow tradeoff  
௔́ܨ
௥௖ = capacity envelop of runway ܽ́ ∈  ଶ representing arrival and departure flowܣ

tradeoff of that individual runway  
 large scalar = ܥ
௔,௣ߜ
௞,௚,௪,௦ = taxiway path-link incidence (=1 if path ݌ for runway configuration ݃ with 

maneuver type ݓ for aircraft class ݏ uses direction ݇ of taxiway ܽ ∈  ଵ, andܣ
=0 otherwise) 

ሖ௔́,௣ߜ
௚,௪,௦  runway path-link incidence (=1 if path ݌ for runway configuration ݃ with 

maneuver type ݓ for aircraft class ݏ uses runway ܽ́ ∈  (ଶ, and =0 otherwiseܣ
 can ݎ క,௥ = scenario-repair relationship parameter, which is set to 1 if repair actionߩ

be taken under the meteorological conditions of scenario ߦ, and 0 otherwise. 
 ௘,௥ = equipment-repair relationship parameter, which is set to 1 if equipment ݁ isߩ́

needed for a team to take repair action ݎ, and 0 otherwise. 
ܾ௠௧௠ = cost of employing ݉ teams (݉ ൌ 0, 1,  (ܯ…
ܾ௘,௡
௘௤

 = cost of providing ݊ pieces of equipment type ݁  

ܾ௔,௥௘௫ ሺߦሻ, ௔,௥௘௫ݍ ሺߦሻ 
= implementation cost and time of repair action ݎ by external resources in 

taxiway ܽ ∈  ,ߦ ଵ under the meteorological conditions of scenarioܣ
respectively 

ܾ௔,௥௜௡ ሺߦሻ, ௔,௥௜௡ݍ ሺߦሻ = implementation cost and time of repair action ݎ by internal resources 
(employed teams and equipment) in taxiway ܽ ∈  ଵ under theܣ
meteorological conditions of scenario ߦ, respectively 

ܾ௔́೔,௥
௘௫ ሺߦሻ, ௔́೔,௥ݍ

௘௫ ሺߦሻ
 

= implementation cost and time of repair action ݎ by external resources in 
segment ݅ of runway ܽ́ ∈  ଶ under the meteorological conditions of scenarioܣ
  respectively ,ߦ

ܾ௔́೔,௥
௜௡ ሺߦሻ, ௔́೔,௥ݍ

௜௡ ሺߦሻ = implementation cost and time of repair action ݎ by internal resources 
(employed teams and equipment) in segment ݅ of runway ܽ́ ∈  ଶ under theܣ
meteorological condition of scenario ߦ, respectively 

ܾ௔,௥௠௡, ܾ௔́೔,௥
௠௡  = maintenance cost of taxiway ܽ ∈ ́ܽ ଵ and segment ݅ of runwayܣ ∈  ଶ ifܣ

repair action ݎ is taken, respectively   
ܶ௠௔௫ሺߦሻ = maximum allowed repair time under scenario ߦ 

 total budget = ܤ
߮௔ሺߦሻ, ܽ ሻ = pre- and post-repair damage state of taxiwayߦ௔ሺߔ ∈  if 1=) ߦ ଵ under scenarioܣ
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functional, and =0 otherwise), respectively  

߮௔́೔ሺߦሻ, ௔́೔ߔ
ሺߦሻ = pre- and post-repair damage state of segment ݅ of runway ܽ́ ∈  ଶ underܣ

scenario ߦ (=1 if functional, and =0 otherwise), respectively  
݈௔́೔
௨  = length of runway segments ݅ of runway ܽ́ ∈  ଶܣ

݈௪,௦௠௜௡ = MOS requirements (minimum required length of runways for maneuver type 
 (to use that runway ݏ and aircraft class ݓ

݈௔,௔́
௪ ሺߦሻ = length of consecutive of post-repair active segments of runway ܽ ∈  ଶܣ

following (leading to) entrance (exit) taxiway ܽ ∈ ́ܽ,ଵܣ
௖  under scenario ߦ 

௔ߪ
௪,௦ሺߦሻ = binary variable indicating whether or not ݈௔,௔́

௪ ሺߦሻ is longer than ݈௪,௦௠௜௡ of 
maneuver type ݓ and aircraft type ݏ under scenario 1 =) ߦ if longer, and = 0 
otherwise) 

Pre-event decision variables: 
߬௠ 
 

= binary variable indicating that ݉ teams are employed (= 1 if exactly ݉ teams 
are employed and = 0 otherwise) 

 ௘,௡ = binary variable indicating if ݊ units of equipment type ݁ are purchased (= 1 ifߛ
provided and = 0 otherwise) 

Post-event decision variables: 
 ሻ = binary variable indicating whether or not runway configuration ݃ is selectedߦ௚ሺߨ

under scenario ߦ (= 1 if selected, and = 0 otherwise) 
௔,௥௘௫ߣ ሺߦሻ, ௔,௥௜௡ߣ ሺߦሻ = binary variable indicating whether or not repair action ݎ is taken by external 

and internal (airport repair team and equipment) resources, respectively, on 
taxiway ܽ ∈  , (if taken and = 0 otherwise 1 =) ߦ ଵ under scenarioܣ
respectively 

௔́೔,௥ߣ
௘௫ ሺߦሻ, ௔́೔,௥ߣ

௜௡ ሺߦሻ = binary variable indicating whether or not repair action ݎ is taken by external 
and internal resources, respectively, on segment ݅ of runway ܽ́ ∈  ଶ underܣ
scenario ߦ (= 1 if taken and = 0 otherwise), respectively   

௣݂
௚,௪,௦ሺߦሻ = post-repair flow rate along path ݌ for runway configuration ݃, maneuver 

type ݓ and aircraft type ݏ under scenario ߦ 
 

Airport Resilience Problem-ARP:  
క෨ܧ		ݔܽ݉ ሾܼሺߦሻሿ  s.t. {resource limitations: (4)-(8)}, (1) 
where  

ܼሺߦሻ ൌ ݔܽ݉	 ∑ ∑ ௣݂
௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ௪,௚,௦   

s.t. 
(2) 

 
{Taxiway capacity estimation: (9)-(16)    
 Runway capacity estimation: (17)-(20)   
Operational constraints: (21)-(24-1,2)    
 Runway configuration selection: (25)-(27)    
 Taxiway/runway segment post-repair damage states: (28)-(32)  
 Repair period limit: (33)-(36)   
 Budget and post-repair flow restrictions: (37)-(39)}  

 
Details of the formulation are given next. 
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4.2.1. Objective 

The objective of the ARP is to maximize resilience. Airport resilience,	஻,்೘ೌೣ, can be 

mathematically defined as in (3) as the expected fraction of total pre-event demand in 

terms of arrival and departure flows that can be met post-repair with repair time 

limitation ܶ௠௔௫ and budget B. 

஻,்೘ೌೣ ൌ
ா഍෩ሾ∑ ∑ ௙೛

೒,ೢ,ೞሺకሻሿ೛∈ು೒,ೢ,ೞೢ,೒,ೞ

∑ ஽ೢ,ೞೢ,ೞ
.  

 

	    

(3) 

Noting that the denominator is a constant, the denominator can be dropped from 

the objective function and reintroduced after solution of the ARP is obtained.  

4.2.2. Resource limitations 

Resources in terms of repair crews and equipment must be put into place in advance if 

they are to support repair operations. While a virtually infinite supply of personnel and 

equipment can be obtained, limitations on the availability of these resources are applied 

to align with reasonable practice in a civilian airport environment and work-space 

restrictions that if violated would hamper productivity. While space may be copious in 

many locations, space may be limiting for airports located in highly populated locations 

and for those located in close proximity to water or other physical barriers. In the first 

stage, space for equipment storage is restricted. Binary first-stage variables as well as 

space limitations for equipment storage are defined through first-stage constraints (4)-

(8). Note that teams are assumed to be homogeneous and trained for all considered 

repair options.  

∑ ߬௠௠ ൑ 1   (4) 

∑ ௘,௡௡ߛ ൑ 1,									   ∀݁ ∈  (5) ܧ
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∑ ௘,௡௘,௡ߛ௘,௡ݕ ൑ ܻ   (6) 

߬௠ ∈ ሼ0,1ሽ,									 ݉ ൌ 1,…  (7) ܯ,

௘,௡ߛ ∈ ሼ0,1ሽ,				 				  ∀݁ ∈ ,ܧ ݊ ൌ 1,… , ௘ܰ (8) 
 

4.2.3. Taxiway capacity estimation 

For a given scenario, the capacity of a taxiway is a function of its original capacity 

under the same meteorological situation and whether or not it is functioning. A taxiway 

may be functioning if it was never damaged or if it was damaged and repaired. 

Specification of the capacity requires information about meteorological conditions and 

is thus given as a function of scenario: for each taxiway ܽ ∈  ሻ representsߦଵ, ܿ௔ሺܣ

capacity in terms of number of aircraft that can be served in one direction per unit time 

under meteorological conditions present under scenario ߦ assuming no damage. The 

capacity is set to zero if the taxiway is damaged and not repaired under the given 

scenario. Considering a flow of aircraft with minimum headways, the capacity ܿ௔ሺߦሻ 

can be calculated based on the taxiway speed and minimum separation requirements 

under meteorological conditions of ߦ (adapted from (Clayton and Capozzi, 2004)):   

ܿ௔ሺߦሻ ൌ
௩തೌሺకሻ

ௗതೌ
೘೔೙ሺకሻ

,										   ∀ܽ ∈  ଵ (9)ܣ

where ̅ݒ௔ሺߦሻ and ݀̅௔௠௜௡ሺߦሻ are average taxiing speed (meters per hour) and minimum 

separation requirement (meters), respectively, for taxiway ܽ ∈  ଵ underܣ

meteorological conditions of scenario ߦ. A taxiway that is used alternatively for 

movements in both possible directions will have lower capacity than one used in only 

one direction, since the taxiway needs to be entirely cleared before a second aircraft 

may enter from the other direction. Therefore, the hourly capacity in a chosen direction 

given a single aircraft movement in the opposite direction will be reduced by 
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2݈௔/݀̅௔௠௜௡ሺߦሻ [=̅ݒ௔ሺߦሻ/݀̅௔௠௜௡ሺߦሻ ∙ 2݈௔/̅ݒ௔ሺߦሻ], where ݈௔ is the length of the taxiway 

(meters).  

Let ݔ௔
௞,௚ሺߦሻ be the flow in direction ݇ ∈ ሼ݇ା, ݇ିሽ of taxiway ܽ under 

configuration ݃. 

௔ݔ
௞,௚ ൌ ∑ ∑ ௔,௣ߜ

௞,௚,௪,௦
௣݂
௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ௪,௦ ,  ∀݃ ∈ ,ܩ ܽ ∈ ,ଵܣ ݇ ∈ ሼ݇ା, ݇ିሽ  (10)

where ݇ା and ݇ି refer to left and right directions under meteorological conditions of 

scenario ߦ. Taxiway flow in either direction is limited by lower and upper bounds, 0 ൑

௔ݔ
௞,௚ሺߦሻ ൑ ܿ௔ሺߦሻ. 

In circumstances when two or more aircraft coming from the same direction are 

scheduled to use the same taxiway one directly after the other, a small capacity 

reduction is incurred. However, when consecutive aircraft movements along a taxiway 

are in opposing directions this capacity reduction is significantly larger. The rate of 

reduction in capacity per aircraft movement diminishes with increasing number of such 

movements. This is captured through consideration of tradeoffs in opposing flows. The 

tradeoff between flows by direction of any taxiway link can be written as ݔ௔
௞శ,௚ሺߦሻ ൌ

௔ݔ௔௧௫௖ൣܨ
௞ష,௚ሺߦሻ൧. This tradeoff can be viewed graphically using a taxiway directional 

capacity envelope depicted in Figure 4-1.  

This depiction assumes a symmetric, nonconvex, piecewise linear function 

 ௔௧௫௖ሺ∙ሻ; it further presumes independence in the operation of taxiways, as well asܨ

runways. To address the non-convexity of ܨ௔௧௫௖ሺ∙ሻ, a piecewise linearization method of 

Sherali (2001) is employed in the formulation. As shown in the figure, the range on 

possible values of ݔ௔ሺߦሻ is partitioned into three non-overlapping segments, 0 ൑ 1 ൑
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ܿ௔ሺߦሻ െ
ଶ௟ೌ

ௗതೌ
೘೔೙ሺకሻ

൑ ܿ௔ሺߦሻ for flows in both directions. Let ߚ௔,௩ଵ  and ߚ௔,௩ଶ  be disaggregated 

convex-combination weights associated to left and right endpoints of affine segment 

ݒ ∈ ሼ1,2,3ሽ, and ߰௔,௩ be a binary variable indicating whether or not flow takes a value 

within that segment in taxiway ܽ (=1 if flow takes a value within that segment, and =0 

otherwise).  

  
Figure 4-1 Directional capacity envelop in taxiways 

 

Thus, ܨ௔௧௫௖ሺ∙ሻ is given by constraints (11)-(15):  

௔ݔ
௞శ,௚ሺߦሻ 	ൌ ௔,ଵߚ

ଶ ൅ ௔,ଶߚ
ଵ ൅ ሾܿ௔ሺߦሻ െ

ଶ௟ೌ
ௗതೌ
೘೔೙ሺకሻ

ሿሺߚ௔,ଶ
ଶ ൅

௔,ଷߚ
ଵ ሻ ൅ ܿ௔ሺߦሻ	ߚ௔,ଷ

ଶ ,    

∀݃ ∈ ,ܩ ܽ ∈ ଵ (11)ܣ

௔ݔ
௞ష,௚ሺߦሻ 	൑ ܿ௔ሺߦሻ	ߚ௔,ଵ

ଶ ൅ ሾܿ௔ሺߦሻ െ
ଶ௟ೌ

ௗതೌ
೘೔೙ሺకሻ

ሿሺߚ௔,ଵ
ଶ ൅ ௔,ଶߚ

ଵ ሻ ൅

௔,ଶߚ
ଶ ൅ ௔,ଷߚ

ଵ   

∀݃ ∈ ,ܩ ܽ ∈   ଵܣ (12)

௔,௩ଵߚ ൅ ௔,௩ଶߚ ൌ ߰௔,௩,   ∀ܽ ∈  ,ଵܣ

ݒ ∈ ሼ1,2,3ሽ  

(13)

∑ ߰௔,௩ ൌ 1ଷ
௩ୀଵ ,   ∀ܽ ∈ ଵ (14)ܣ

߰௔,௩ ∈ ሼ0,1ሽ,   ∀ܽ ∈  ,ଵܣ

ݒ ∈ ሼ1,2,3ሽ  

(15)

An advantage of this method to piecewise linearization is that it maintains a 

totally unimodular structure, allowing integrality constraints (15) to be relaxed (Sherali, 

Right-direction flow 

ܿ௔ሺߦሻ

ܿ௔ሺߦሻ
Left-direction flow 

1

1

ܿ௔ሺߦሻ െ
ଶ௟ೌ

ௗതೌ
೘೔೙ሺకሻ

  

ܿ௔ሺߦሻ െ
ଶ௟ೌ

ௗതೌ
೘೔೙ሺకሻ

  

Feasible 
region 
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2001). A taxiway is assumed to function if it was never damaged or if it was damaged 

but repaired, i.e. ߔ௔ሺߦሻ ൌ 1; this is modeled through constraints (16). 

௔ݔ
௞,௚ ൑ ܿ௔ሺߦሻߔ௔ሺߦሻ,   ∀݃ ∈ ,ܩ ܽ ∈ ,ଵܣ ݇ ∈ ሼ݇ା, ݇ିሽ   (16)

 

4.2.4. Runway capacity estimation 

Runway throughput rates are diminished when runways are used for both takeoffs and 

landings. They ultimately depend on the alternating pattern of maneuvers that is 

exercised. Likewise, minimum separation distances between aircraft using the 

runways, which directly affect runway flow rates, depend on the aircraft size mix and 

related wake vortex restrictions (Gilbo, 1993). Other physical impediments and 

operational dependencies, such as runway crossings, will further constrain flows. A 

common approach to modeling tradeoffs due to joint arrival-departure maneuvers on 

any runway and additional effects of capacity dependencies between runways is to use 

capacity envelopes. Capacity envelopes are given at the airport level and are estimated 

from historical data at the specific airport. The capacity envelopes are often convex and 

piecewise linear. They specify maximum effective arrival and departure flow rates 

achievable under chosen operating conditions by category (Visual Flight Rules (VFR), 

Marginal VFR (MVFR), Instrument Flight Rules (IFR), and Low IFR (LIFR)) and 

runway configuration, including runway dependencies (Gilbo, 1993). Noise and 

environmental ordinances may further limit capacities (Gilbo, 1993; FAA, 2004). 

Capacity envelopes are often developed from historical data at airports (e.g., (Frolow 

and Sinnott, 1989; Gilbo, 1993; Clayton and Capozzi, 2004), but optimization and 

statistical methods of estimation have also been proposed (Hu et al., 2007; Gilbo, 2003; 

Ramanujan, 2012; Jiang et al., 2011).  
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Let ́ݔ௚,௪ሺߦሻ be the total flow of maneuver type ݓ ∈ ሼܽݎݎ,  ሽ through the set݌݁݀

of runways exploited for configuration ݃, ܣଶ
௚, under meteorological conditions of 

scenario ߦ.  

ሻߦ௚,௪ሺݔ́ 	ൌ ∑ ∑ ∑ ሖ௔́,௣ߜ
௚,௪,௦

௣݂
௚,௪,௦ሺߦሻ௔́∈஺మ௣∈௉೒,ೢ,ೞ௦   ∀݃ ∈ ݓ,ܩ ∈ ሼܽݎݎ,  ሽ݌݁݀ (17)

Convex capacity envelopes of a runway configuration ݃ can be given in terms 

of the total arrival flow as a function of total departure flow through active runways.  

ሻߦ௚,௔௥௥ሺݔ́ 	ൌ ሻߦ௚,ௗ௘௣ሺݔ௚௢௖ሾ́ܨ ሿ,    ∀݃ ∈ (18) ܩ

Typical airport-level capacity envelopes as produced by the FAA (2004) are 

presented in Figure 4-2 for a specific runway configuration under VFR and IFR 

conditions. As depicted in the figure, when the number of arrivals and/or departures is 

small, or when there are significantly more of one type than the other, runway 

capacities for both arrivals and departures remain at their highest levels. However, 

when there is significant mixing of both arrivals and departures, arrival and departure 

capacities decline. Because runway capacities are generally more restrictive than 

taxiway capacities, overall airport capacity is governed by the runway capacities.  

 

Figure 4-2 Typical airport-level capacity envelops given runway configuration (FAA, 2004) 

 

Total airport 
arrivals 

Total airport 
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IFR feasible 
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In addition to imposing capacity restrictions at the airport-level, capacities of 

individual runways are further restricted.  The individual runway capacity envelopes 

have similar form to that of the capacity envelope of a given runway configuration. Let 

௔́ݔ́
௚,௪ሺߦሻ be the flow of maneuver type ݓ ∈ ሼܽݎݎ,  ሽ in a runway ܽ́ using݌݁݀

configuration ݃ under meteorological conditions of scenario ߦ. 

௔́ݔ́
௚,௪ ൌ ∑ ∑ ሖ௔́,௣ߜ

௚,௪,௦
௣݂
௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ௦    ∀݃ ∈ ,ܩ ܽ́ ∈ ,ଶܣ ݓ ∈ ሼܽݎݎ,  ሽ݌݁݀ (19)

The associated capacity limitations can be mathematically formulated as in 

(20). 

௔́ݔ́ 
௚,௔௥௥ሺߦሻ ൌ ௔́ܨ

௥௖ሾ́ݔ௔́
௚,ௗ௘௣ሺߦሻሿ,    ∀݃ ∈ ,ܩ ܽ́ ∈ ଶ (20)ܣ

where ܨ௔́
௥௖ሺ∙ሻ is the capacity envelope of an individual runway ܽ́ ∈  ଶ representing theܣ

arrival flow as a function of departure flow in an individual runway ܽ́ ∈  ଶ underܣ

meteorological conditions present under scenario  ߦ. The effects of disaster impact on 

runway operations are described in the operational constraints section.  

4.2.5. Operational constraints 

Capacities of individual runways given the occurrence of a disruption scenario must be 

modeled. A runway will be affected by any damage it incurs, but it may be partially or 

fully operational for certain purposes if an MOS remains or is restored due to the 

intelligent selection of repair actions within the runway when multiple segments have 

sustained damage. It is recognized that in civilian airports (unlike military applications) 

the use of a runway that has incurred damage to any portion is typically prohibited. 

Nonetheless, the concept of MOS may be relevant in extreme conditions and is, 

therefore, considered by the model for the sake of generality. It is easily annulled by 

equating the MOS with the full (pristine) runway length.  
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 The capacity of a runway with given MOS for a given maneuver and aircraft 

class is nonzero only if the runway meets the minimum length requirement for that 

maneuver type and aircraft class. This is captured through constraints (21)-(29). The 

flow rate associated with a given maneuver type and aircraft class under a chosen 

configuration is permitted along an entrance (exit) taxiway ܽ ∈ ଵ,௔́ܣ
௖  only if the length 

of combination of post-repair active segments of the connected runway ܽ́ ∈  ଶܣ

following (leading to) that taxiway,	݈௔,௔́ሺߦሻ, meets corresponding minimum length 

requirements, i.e. ߪ௔
௪,௦ሺߦሻ ൌ 1. 

∑ ௔,௣ߜ
௞,௚,௪,௦

௣݂
௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ ൑ ௔ߪܥ

௪,௦ሺߦሻ,   ∀ܽ ∈ ଵ,௔́ܣ
௖ , ܽ́ ∈ ,ଶܣ ݇ ∈ ሼ݇ା, ݇ିሽ,

݃ ∈ ݓ,ܩ ∈ ܹ, ݏ ∈ ܵ   

(21)

݈௪,௦௠௜௡ߪ௔
௪,௦ሺߦሻ ൑ ݈௔,௔́ሺߦሻ   ݓ∀ ∈ ܹ, ݏ ∈ ܵ, ܽ ∈ ଵ,௔́ܣ

௖ , ܽ́ ∈  ଶܣ (22)

௔ߪ
௪,௦ሺߦሻ ∈ ሼ0,1ሽ,					  ݓ∀ ∈ ܹ, ݏ ∈ ܵ, ܽ ∈ ଵ (23)ܣ

The functional runway length ݈௔,௔́ሺߦሻ is calculated through the following 

nonlinear equation:  

݈௔,௔́ሺߦሻ ൌ ∑ ሾ∏ ሻߦ௔́ೕሺߔ
௢
௝ୀ௜∗ ሿ݈௔́೚

௨
௢∈ூೌ ́

ೌ    ݋∀ ∈ ௔́ܫ
௔, ܽ ∈ ଵ,௔́ܣ

௖ , ܽ́ ∈  ଶܣ (24)

where that ݅∗ is the segment of set ܫ௔́
௔ at which taxiway ܽ is connected to runway ܽ́. The 

term ∏ ሻߦ௔́ೕሺߔ
௢
௝ୀ௜∗  in (24) is a source of nonlinearity. Let  

௔́೔∗,೔∗శభ,…,೚ߔ
ሺߦሻ ൌ ∏ ሻߦ௔́ೕሺߔ

௢
௝ୀ௜∗ , ݋∀   ∈ ௔́ܫ

௔, ܽ ∈ ଵ,௔́ܣ
௖ , ܽ́ ∈   ଶܣ

where variables ߔ௔́೔∗,೔∗శభ,…,೚
ሺߦሻ indicate whether or not all binary variables, ߔ௔́ೕሺߦሻ, for 

݆ from ݅∗ to ݋, are equal to one. Hence, linearization can be achieved through 

replacement of constraints (24) by constraints (24-1) and (24-2).    

݈௔,௔́ሺߦሻ ൌ ∑ ݈௔́೚
௨ ሻ௢∈ூೌߦ௔́೔∗,೔∗శభ,…,ೀሺߔ ́

ೌ ݋∀  , ∈ ௔́ܫ
௔, ܽ ∈ ଵ,௔́ܣ

௖ , ܽ́ ∈  ଶ (24-1)ܣ

௔́೔∗,೔∗శభ,…,೚ߔ
൑ ݆∀    								,ሻߦ௔ೕሺߔ ∈ ሼ݅∗, ݅∗ ൅ 1, … , ,ሽ݋ ݋ ∈ ௔́ܫ

௔, 

ܽ ∈ ଵ,௔́ܣ
௖ , ܽ́ ∈  ଶܣ

(24-2) 
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4.2.6. Runway configuration selection 

Constraints (25)-(27) are imposed in the model to select a single configuration under 

realized scenario conditions. These constraints further ensure that no flow can be 

shipped along paths that are not available given the chosen configuration.  

∑ ∑ ௣݂
௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ௪,௦ ൑ ,ሻߦ௚ሺߨܥ    ∀݃ ∈ (25) ܩ

∑ ሻ௚ߦ௚ሺߨ ൌ 1     (26)

ሻߦ௚ሺߨ ∈ ሼ0,1ሽ,								  ∀݃ ∈ (27) ܩ
 

4.2.7. Taxiway/runway segment post-repair damage states  

Post-repair damage states of taxiway and runway segments, ߔ௔ሺߦሻ and ߔ௔́೔ሺߦሻ, are 

determined as functions of corresponding pre-repair damage states, ߮௔ሺߦሻ and ߮௔́೔ሺߦሻ, 

as well as repair actions taken though constraints (28)-(32), respectively. 

ሻߦ௔ሺߔ ൌ ሾ1 െ ߮௔ሺߦሻሿ൛∑ క,௥ߩ ∙ ௔,௥௜௡ߣൣ ሺߦሻ ൅ ௔,௥௘௫ߣ ሺߦሻ൧௥ ൟ ൅

߮௔ሺߦሻ,		

∀ܽ ∈ 	ଵܣ (28)

ሻߦ௔́೔ሺߔ ൌ ൣ1 െ ߮௔́೔ሺߦሻ൧൛∑ క,௥ߩ ∙ ௔́೔,௥ߣൣ
௜௡ ሺߦሻ ൅௥

௔́೔,௥ߣ
௘௫ ሺߦሻ൧ൟ ൅ ߮௔́೔ሺߦሻ  

∀ܽ́ ∈ ,ଶܣ ݅ ∈ ௔́ (29)ܫ

௔,௥௜௡ߣ ሺߦሻ, ௔,௥௜௡ߣ ሺߦሻ, ௔́೔,௥ߣ
௘௫ ሺߦሻߣ௔́೔,௥

௘௫ ሺߦሻ ∈ ሼ0,1ሽ,    ∀ܽ ∈ ,ଵܣ ܽ́ ∈  ,ଶܣ

݅ ∈ ,௔́ܫ ݎ ∈ ܴ 

(30)

∑ క,௥ߩ ∙ ሾߣ௔,௥௘௫ ሺߦሻ ൅ ௔,௥௜௡ߣ ሺߦሻሿ௥ ൑ 1,    ∀ܽ ∈  ଵܣ (31)

∑ క,௥ߩ ∙ ሾߣ௔́೔,௥
௘௫ ሺߦሻ ൅ ௔́೔,௥ߣ

௜௡ ሺߦሻሿ௥ ൑ 1,    ∀ܽ́ ∈ ,ଶܣ ݅ ∈  ௔́ܫ (32)

 

Repair actions that cannot be applied under the given meteorological conditions 

are precluded. The possibility of outsourcing one or more repair jobs is permitted 

through these constraints. Only one repair action, whether through internal or external 
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resources, can be chosen for each taxiway/runway segment as guaranteed through 

constraints (31)-(32). 

4.2.8. Repair period limit 

The resilience of the airport pavement network, and thereby operational capacities, are 

evaluated at time ܶ௠௔௫. Thus, repair actions can affect only capacities of those 

damaged segments that have been repaired by time ܶ௠௔௫. 	ܶ௠௔௫ can be a function of 

the meteorological conditions that exist under each scenario; hence, repair 

implementation time constraints are imposed in the model’s second stage. A range on 

ܶ௠௔௫ between four and 24 hours may be reasonable for given circumstances associated 

with civilian applications. In rapid runway repair applications associated with military 

operations, a duration limit of four to seven hours may be more appropriate (Duncan, 

2007). The longer the duration required to attain reasonable airport runway and taxiway 

capacity rates comparable to pre-event rates, the greater the potential monetary losses 

due to forced cancellations and diversions. Repair time limitation is captured through 

second-stage constraints (33)-(36). 

∑ ௔,௥௜௡ݍ௘,௥ߩక,௥́ߩ ሺߦሻߣ௔,௥௜௡ ሺߦሻ௔∈஺భ,௥ ൅

∑ ௔́೔,௥ݍ௘,௥ߩక,௥́ߩ
௜௡ ሺߦሻߣ௔́೔,௥

௜௡ ሺߦሻ௔́∈஺మ,௜,௥   

൑ ܶ௠௔௫ሺߦሻ ∙ ሾ∑ ௘,௡௡∈ே೐ߛ݊ ሿ,  

∀݁ ∈ (33) ܧ

∑ ௔,௥௜௡ݍక,௥ߩ ሺߦሻߣ௔,௥௜௡ ሺߦሻ௔∈஺భ,௥ ൅

∑ ௔́೔,௥ݍక,௥ߩ
௜௡ ሺߦሻߣ௔́೔,௥

௜௡ ሺߦሻ௔́∈஺మ,௜,௥ ൑ ܶ௠௔௫ሺߦሻ ∙ ሾ∑ ݉߬௠௠ ሿ,  

  (34)

∑ ௔,௥௘௫ݍక,௥ߩ ሺߦሻߣ௔,௥௘௫ ሺߦሻ௥ ൑ ܶ௠௔௫ሺߦሻ, ∀ܽ ∈ ଵ (35)ܣ

∑ ௔́೔,௥ݍక,௥ߩ
௘௫ ሺߦሻߣ௔́೔,௥

௘௫ ሺߦሻ௥ ൑ ܶ௠௔௫ሺߦሻ, ∀ܽ́ ∈ ,ଶܣ ݅ ∈  ௔́ܫ (36)

Constraints (33)-(34) restrict the use of each piece of available equipment to 

only one damage location at any point in time, and permit the simultaneous use of 
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multiple pieces of the same equipment type at multiple damage sites when more than 

one team exists that can be allocated to repair activities. In constraints (35)-(36), the 

possibility of outsourcing one or more repair jobs is permitted.  

4.2.9. Budget and post-repair flow restrictions 

Budget constraints are included within the model to guarantee that the budget available 

for both preparedness and recovery actions is not exceeded. The budget can be 

allocated (through first stage decisions) to preparedness actions that support repair 

operations. All or some part of the budget may be kept in reserve to address damage 

post-event. If teams and equipment have been put in place as a preparedness strategy, 

they can service repair tasks. If all or some portion of the repairs will require external 

resources, a portion of the budget must be reserved for this purpose. This is imposed 

through the budget constraint (37), to be satisfied under each individual scenario.  

∑ ܾ௛
௧௠߬௛௛ ൅ ∑ ܾ௘,௡

௘௤ ௘,௡௘,௡ߛ ൅ ∑ క,௥ߩ ∙ ൛ሾܾ௔,௥௘௫ ሺߦሻ ൅ ܾ௔,௥௠௡൧ߣ௔,௥௘௫ ሺߦሻ௔∈஺భ,௥ ൅

ሾܾ௔,௥௜௡ ሺߦሻ ൅ ܾ௔,௥௠௡ሿߣ௔,௥௜௡ ሺߦሻሽ ൅ ∑ క,௥ߩ ∙ ൛ሾܾ௔́೔,௥
௘௫ ሺߦሻ ൅௔́∈஺మ,௜,௥

ܾ௔́೔,௥
௠௡൧ߣ௔́೔,௥

௘௫ ሺߦሻ ሾܾ௔́೔,௥
௜௡ ሺߦሻ ൅ ܾ௔́೔,௥

௠௡ሿߣ௔́೔,௥
௜௡ ሺߦሻሽ ൑        ܤ

(37)

Whether undertaken internally or externally, multiple repair options may exist 

for addressing certain damage. Consider, for example, that a pothole can be repaired 

through a temporary fill or by repaving a portion of the affected pavement segment. 

The duration of the repair and, thus, the long-term costs of addressing the damage, are 

included through an additional maintenance or replacement cost accounted for in the 

budget constraint. 
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Finally, arrival and departure flow rates by aircraft class ݏ are restricted to be 

less than the corresponding pre-event demand through constraints (38). Flow is 

restricted to be non-negative in constraints (39).   

∑ ௣݂
௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ ൑ ݃∀  ,௪,௦ܦ ∈ ݓ,ܩ ∈ ܹ, ݏ ∈ ܵ (38)

௣݂
௚,௪,௦ሺߦሻ ൒ 0, 							  ∀݃ ∈ ݓ,ܩ ∈ ܹ, ݏ ∈ ܵ, ݌ ∈ ܲ௚,௪,௦	    (39)

 

4.3. Solution Methodology 

The ARP is formulated as a two-stage stochastic program with binary first-stage and 

binary and integer second-stage decision variables. To solve the ARP, an effective, 

exact solution methodology, the integer L-shaped method developed by Laporte and 

Louveaux (1993), is applied. This approach has been used to address a myriad of 

problems arising in a host of arenas.   

The integer L-shaped method decomposes the original program into a master 

problem (MP) and set of subproblems (SPs) each of which relates to a realization of 

the network, i.e. a network state:   

 

ሺMPሻ  

ݔܽ݉ (40)     ߠ	

s.t.   

(4)-(6)   

݂൫ߛ௘,௡, ߬௠, ൯ߠ ൑ 0   (41)

∑ ܾ௛
௧௠߬௛௛ ൅ ∑ ܾ௘,௡

௘௤ ௘,௡௘,௡ߛ  ൑   ܤ (42)

0 ൑ ߬௠ ൑ 1, ݉ ൌ 1,… (43) ܯ,

0 ൑ ௘,௡ߛ ൑ 1,		 					  ∀݁ ∈ ,ܧ ݊ ൌ 1,… , ௘ܰ (44)
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ሺSPsሻ 
 

ܼሺߦሻ ൌ ݔܽ݉
ߣ

∑ ∑ ௣݂
௚,௪,௦ሺߦሻ௣∈௉೒,ೢ,ೞ௪,௚,௦      s.t.  

(10)-(39), 

 (45)

where ߠ in is the approximation of expected second-stage objective function in 

MP. Constraints (41) are optimality cuts generated during iterations. To ensure the 

feasibility of budget constraints of the SPs, constraint (42) is added to the MP to limit 

the allocated budget for provision of equipment and teams to be less than the total 

budget. With constraints (42), the solution of the MP always results in a feasible 

solution for the original problem. Decision variables, ߛ௘,௡ and ߬௠, are given through 

solution of the MP and are, therefore, fixed in each SP. 

An optimality cut is a function of ߠ, absolute upper bound of subproblems ܷܤ, 

first-stage decision variables and expectation of second-stage objective functions. A 

tight upper bound can speed up the solution process. The method requires the problem 

to be bounded to a finite ܷܤ, which can be obtained from the total demand rate over 

all aircraft classes, i.e. ܷܤ ൌ ∑ ௪,௦ܦ
௪,௦ . Let ߯ఠ represent all first-stage variables for 

߱ ∈ Ω, where Ω ൌ ሼߛ௘,௡ሽ∀௘,௡ ∪ ሼ߬௠ሽ∀௠. The number of feasible first-stage solutions is 

limited due to their binary nature, here indexed by ߳ ൌ 1,2, … , Ε; thus, the algorithm is 

guaranteed to converge in a finite number of steps. First, solution of the MP with 

relaxed integrality constraints, given in (43)-(44), continues through a Branch-and-

Bound process until a feasible solution is achieved (binary solutions for all first-stage 

variables ߯ఠ). Let Ωఢ ൌ ሼ߱|߯ఠ ൌ 1}, Ωഥఢ ൌ ሼ߱|߯ఠ ൌ 0} and ߠఢௌ௉ be the expectation 

over second-stage objective functions corresponding to feasible first-stage solution ߳. 

Thus, (46) provides a valid optimality cut. 
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ߠ ൑ ሾܷܤ െ ܳఢሺ߯ሻሿሺ|Ωఢ| െ 1ሻ െ ሾܷܤ െ ܳఢሺ߯ሻሿൣ∑ ߯ఠఠ∈ஐച െ ∑ ߯ఠఠ∈ஐഥച ൧ ൅

 ,ܤܷ

(46)

where ܳఢሺ߯ሻ is the expectation over second-stage objective functions corresponding to 

feasible first-stage solution ߳.  

Details of the integer L-shaped method specified for the ARP are outlined next 

following a similar structure to the description of the general integer L-shaped method 

presented by Laporte and Louveaux (1993). Let ݖ be the objective value of the original 

problem and ݖ be the lower bound of ݖ:   

Step 0: Set	ߤ ൌ 0 and	ݖ ൌ 0. The value of ߠ is set to an absolute upper bound. A list is 

created that contains only a single pendant node corresponding to the initial 

subproblem. 

Step 1: Select a pendant node in the list to specify the current problem; if the pendant 

node list is empty, stop. 

Step 2: Set	ߤ ൌ ߤ ൅ 1. Solve the current problem. If the current problem has no feasible 

solution, fathom the current node; go to Step 1. Otherwise, let ሺ߯ఓ,  ఓሻ be an optimalߠ

solution. 

Step 3: Check for integrality. If integrality is violated, create two new branches in 

which the most fractional variable is set to 0 or 1. Append the two nodes to the pendant 

node list, and go to Step 1. 

Step 4: Solve the sub-problems and compute ܳሺ߯ఓሻ. ݖఓ ൌ ܳሺ߯ఓሻ. If ݖఓ ൐  update ,ݖ

lower bound ݖ ൌ  .ఓݖ

Step 5: If ߠఓ ൑ ܳሺ߯ఓሻ, then fathom the current node and go to Step 1; otherwise, 

impose an optimality cut to the MP, and return to Step 2. 
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4.4. Framework for a decision support tool 

The ARP is modeled with the fidelity needed to capture the many important operational 

considerations associated with airport taxiway and runway operations. To support 

airport operators in decisions pertaining to investment in preparedness and response, as 

well as other matters associated with creating a resilient airport pavement system, the 

model and solution methodology can be embedded within a decision support tool. A 

schematic overview of such a tool is depicted in Figure 4-3.  

 
Figure 4-3 Schematic overview of the decision support framework. 

As can be seen, the computational process is decomposed into three steps: (i) 

input data, including scenario generation; (ii) optimization core, consisting of the 

mathematical formulation and exact solution methodology described in Sections 2 and 
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 Runway and taxiway 

capacity envelopes 
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3; and (iii) modeling outcomes. Details associated with the input and output steps are 

presented next. Two key input category requirements of the tool are stipulated: airport 

characteristics and a host of possible meteorological - damage scenarios. As means of 

expressing the interrelations between damage characteristics and meteorological 

conditions, conditional probabilities are employed in generating scenarios. The 

probability of each scenario is assumed to be known a priori. Thus, the probability of 

scenario 	,ߦ 	݌ሺߦሻ, can be computed from conditional probability as in (47).  

ሻߦሺ݌ ൌ ݊݋݅ݐ݌ݑݎݏ݅݀|ߦሺ݌ ሻ݁݌ݕݐ
∙ ݊݋݅ݐ݌ݑݎݏሺ݀݅݌ ݈ܽܿ݅݃݋݈݋ݎ݋݁ݐ݁݉|݁݌ݕݐ ሻ݊݋݅ݐ݅݀݊݋ܿ 	
∙ ݈ܽܿ݅݃݋݈݋ݎ݋݁ݐሺ݉݁݌ ሻ݊݋݅ݐ݅݀݊݋ܿ

(47) 

 

The scenario generation process is summarized in the flowchart of Figure 4-4. 

Using the computational results, performance indicators, such as measured post-repair 

capacity rates for take-offs and landings that can be achieved through the inherent 

coping capacity of the system and use of limited funds for preparedness and recovery 

actions, can be computed. Application of the tool culminates in equipment purchase or 

lease decisions, number of repair teams to train, repair actions to be taken for each 

generated scenario, post-repair taxiway and runway capacities in terms of potential 

flow rates and performance measures including coping capacity and resilience.  

Given that the resilience of the airport pavement network is evaluated at time 

ܶ௠௔௫ (see Section 2), a range of ܶ௠௔௫ values between four and 16 hours is explored in 

the following section. Restricting ܶ௠௔௫ to less than a day reflects the criticality for the 

airport to provide operational continuity and low tolerance for shutdowns or delays. 

Additionally, this restriction precludes the model from considering major 

reconstruction or infrastructure enhancement projects as ‘legitimate’ coping options. 



 

 

103 
 

 
Figure 4-4 The flowchart of scenario generator 

4.5. Illustrative case study 

4.5.1. Case study details 

The mathematical solution framework through its inclusion in the decision support tool 

is demonstrated in an application on a pavement network modeled from New York’s 

LaGuardia Airport (LGA). Referring to Figure 4-5, the pavement network consists of 

two intersecting runways (04-22 and 13-31), each about 2,100 meters long, supported 

by an array of taxiways. The airport is represented with 68 nodes and 104 links, 

consisting of 10 dummy, 2 runway, and 92 taxiway links. The runway links are 

partitioned at 100 meter intervals with a shared segment at the crossing; the structural 

section for all segments is assumed asphaltic. 
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Figure 4-5 Study network representation. 

It is presumed that the airport serves a fleet consisting of two aircraft classes 

like the Boeing 737 and Airbus A319, with average weights of 50 and 65 tons, 

respectively. The first (second) aircraft class requires 1700 (700) meters and 2000 

(1800) meters for landing and takeoff, respectively. These values are specifically for 

LGA with nearly sea-level elevation under normal meteorological conditions. Landing 

length requirements should be increased by 15% for wet and slippery pavement 

conditions (FAA, 2006). The capacity of the airport taxiways is taken a computed 

maximum of 200 aircraft per hour based on 15 kilometers per hour average speed and 

a minimum separation distance of 100 meters. Taxiway links are categorized into three 

taxiway length classes, namely 50, 100, and 200 meters. These classes are used in 

computing capacity reduction in one direction due to flow in the opposite direction; 

taxiway directional capacity envelopes are captured by constraints (10)-(17).   

In theory, there are 12 directional configurations by which the two runways can 

be utilized for takeoffs and landings: 04|04, 04|13, 04|31, 22|22, 22|13, 22|31, 13|13, 

13|04, 13|04, 31|31, 31|04, and 31|22. In this notation, the first (left) number indicates 

runway threshold for arrival (landing) and the second (right) number indicates runway 
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starting point for departure (takeoff). For this specific airport, the most commonly used 

runway configurations are 22|13 and 4|13 (FAA, 2004). Two additional configurations 

are considered for this case study as they may be preferable under certain disruption 

scenarios: 4|4 and 13|13. Table 4-1 provides information about the performance of the 

airport runways under each of these four possible directional configurations (developed 

from information from (FAA, 2004)). The capacity envelopes for configurations 4|4 

and 13|13 also represent capacity envelopes of single runways 04-22 and 13-31, 

respectively. The capacity envelopes depend also on the visibility conditions in terms 

of Visual Flight Rules (VFR) and Instrument flight rules (IFR). 

 

Table 4-1 Capacity envelopes for different runway configurations and visibility conditions 

Runway configuration 
Capacity envelopes (aircraft per hour) 
VFR IFR 

4|4 

13|13 

4|13 

22|13 

 
The meteorological conditions associated with the scenarios are selected in 

accordance with the airport location. For LGA, located in a bay area on the waterfront 

and sheltered from the North Atlantic Ocean by Long Island, six viable combinations 

of temperature, precipitation, and visibility levels were chosen (Fisk, 2012): (i) very 

hot, no precipitation, VFR (with probability 0.05); (ii) very hot, high precipitation, VFR 

(0.05); (iii) moderate temp., no precipitation, VFR (0.65); (iv) moderate temp., high 

precipitation, IFR (0.15); (v) very cold, no precipitation, VFR (0.05); and (vi) very 
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Arrival 
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35 (40, 35) 

Departure 

Arrival 
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32 (38, 32) 
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cold, snow/ice, IFR (0.05). As can be seen, temperature level is categorized 

qualitatively as: very hot, moderate, and very cold. Precipitation intensity is also 

addressed qualitatively as either low or high. Visibility is categorized as: IFR and VFR.  

Next, the scenario generator randomly produces ‘disruption events’ that lead to 

damage (out of the four generic types). Probabilities of disruption events in the 

following example are selected to be as realistic as possible. Nonetheless, they are 

given purely for demonstration purposes. As shown in Table 4-2, eight specific 

disruption events are considered in the case study, falling under one of three categories 

arising with given probabilities: extreme climatic or geologic event (flood, snow/ice, 

and extreme heat; probability 0.19), operational events (oil spill, overloading, and jet 

blast; probability 0.69), and intentional malicious acts (guided and unguided attacks; 

probability 0.12).  

The fourth category mentioned in Section 4.1 dealing with natural deterioration 

(in combination with ill-timed maintenance) was excluded for the example. It is noted 

that the probabilities of the weather-related disruptions (i.e. first category) are 

determined through their conditional probabilities with respect to the six 

meteorological situations. Ten possible damage types resulting from the disruption 

events were identified and are presented in Table 4-2. The numbers in parentheses 

indicate the maximum number of affected segments. In this connection, the damaged 

segments used in the simulation were randomly generated between zero and the 

maximum number of affected segments (in each case) assuming a uniform probability 

density function. Overall, 36 possible combinations could be pooled from the 8 

disruption events (Table 4-2) and 6 meteorological conditions, disregarding unlikely 
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combinations, like snow/ice under the first meteorological condition (very hot, no 

precipitation). Ten scenarios were randomly generated from each of these 36 

combinations, resulting in a total of 360 scenarios. 

Table 4-2 Disruption events, probabilities and resulting damage  

Disruption event 

Probability 

A
lligator 

cracking

B
lock 

cracking 

T
ransverse 
cracking

Jet B
last 

R
aveling 

R
utting 

P
otholes 

S
ingle 

crater

S
lippery 

surface

B
leeding 

Extreme 
climatic or 

geologic event 

Flood 0.095 - - - - - - - - 
 

(20) 
- 

Snow/ice  0.050 - 
 

(15) 
 

(30) 
- - - - -  (5) - 

Very hot 0.045 - - - - - 
 

(2) 
- - - 

 
(4) 

Operational 
events 

Oil spill 0.280 - - - - 
 

(5) 
- - - - - 

Overloading 0.220 (10) - - - - - - - - - 

Jet Blast 0.190 - - - 
 

(3) 
- - - - - - 

Intentional 
malicious acts 

Guided 
attack 0.060 - - - - - - 

 
(2*) 

 
(3) 

- - 

Unguided 
attack 0.060 - - - - - - 

 
(10) 

- - - 

*Indicates that consecutive segments affected; otherwise, damage need not be 

adjoining. 

 

Damage type linked to each disruption event was predicted based on the 

underlying governing mechanisms (Shahin, 2005; ASTM, 2011). For example, 

alligator cracking is a fatigue-related distress and hence linked to pavement 

overloading. Excessive rutting and bleeding are more likely to develop in asphalt 

pavements when surface temperatures are abnormally high causing bitumen expansion 

and loss of mix stability. Slippery surface conditions can be associated with ice/snow 

events. 

Table 4-3 lists 19 types of machinery/tools that are required for damage repair; 

also listed are the annual lease and maintenance costs associated with each item. The 
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latter were computed from hourly rates and number of working hours as suggested in 

(US Army Corps of Engineers, 2011). As a starting point, the airport is assumed to self-

own one of each of the first 15 items on the list. The cost associated with self-owned 

equipment is disregarded in the model assuming they serve in non-emergency 

situations. To address their disaster-related costs, 10% of annual purchase, depreciation 

and maintenance costs are considered in the table for the additional four equipment 

items on the list, as well as for adding units from the self-owned items. 

Table 4-3 Repair equipment 
Identification 

# 
Equipment 

Cost 
($/year) 

Identification 
# 

Equipment 
Cost 

($/year) 
1 Small asphalt 

paver 
8100 11 Tack coat sprayer 1800

2 Mechanical 
sweeper 

8500 12 Seal injector/melter 1500

3 Small milling 
machine 

6500 13 Crack chasing saw 2700

4 Small asphalt 
roller 

1400 14 Small mixer 1350

5 Asphalt cutter 1700 15 Water pump 1350
6 Salt Sprinkler 2550 16 Large milling 

machine 
9500

7 Snow shovel 4800 17 Vibratory roller 2210
8 Front loader 8160 18 Motor grader 25000
9 Backhoe 13600 19 Large asphalt paver 32000

10 Dump truck 11650    

 

It is further presumed that five repair crews can be assembled from existing 

employees with regular duties associated with non-emergency day-to-day operations. 

Table 4-4 defines the repair actions required for every damage type out of the possible 

ten (see Table 4-2) for a single taxiway or runway segment. In each case, the table 

identifies the equipment needed (from Table 4-3), the nominal repair time, and the 

nominal cost involved if the work is done with internal resources. The costs of repair 

actions with internal resources include associated operating costs of required 

equipment, e.g. fuel, FOG (filter, oil and grease), and tire wear, and cost of employing 



 

 

109 
 

teams (US Army Corps of Engineers, 2011). Given a typical team of eight people and 

an hourly labor rate of $40, the hourly team cost for completing repairs is $320. 

Additional costs of $18,000 are associated with quarterly training, certifying repair 

crew personnel, and associated position backfill. 

Table 4-4 Repair actions, implementation costs and execution times 

Damage 
types to be 

repaired 

Repaired Internally 
Repaired 
externally 

Weather-dependent 
multiplier for repair duration 

and costs 
Equipment set 
requirement 

Duration 
(hr) 

Cost 
($) 

Duration 
(hr) 

Cost 
($) 

1 2 3 4 5 6 

Alligator 
cracking 

1,2,4,8,10,15,16 5 2510 9 4267 1 10 1 10 1.5 2 

Block 
cracking 

2,11,12 2 736 6 1251 1 10 1 10 1 10 

Transverse 
cracking 

2,11,12 2 736 6 1251 1 10 1 10 1 10 

Jet Blast 2,4,5,8,9,10,15 4 1912 8 3250 1 10 1 10 1.5 2 
Raveling 2,4,5,8,9,10,15 4 1912 8 3250 1 10 1 10 1.5 2 
Rutting 2,4,5,8,9,10,15 4 1912 8 3250 1 10 1 10 1.5 2 
Array of 

small 
potholes 

1,2,4,5,6,16 3 1407 7 2391 1 10 1 10 1.5 2 

A single 
crater 

1,2,3,4,5,6,7,15,16, 
17,19  

6 4374 10 7435 1 10 1 10 1.5 2 

Slippery 
surface 

2,4,14,15,18 1 461 5 783 1 1.5 1 1.5 2 10 

Bleeding 2,4,5,6,13,17 3 1665 7 2830 1 10 1 10 1.5 2 

 

The option of external repair is also included, in which case it can be noticed 

that the repair duration and cost are higher; equipment scarcity is not an issue if repairs 

are externally completed. Repair action costs using external resources are presumed to 

be 70% higher than repairs made through internal resources. Four hours more are added 

to the implementation duration to account for the time needed to arrange for the 

services and for the services to mobilize. Table 4-4 also includes weather-dependent 

multipliers, which are unitless numbers that depend on one of the six meteorological 

conditions; they multiply both the duration and costs (in each case) to represent 

escalation in costs and implementation times when repairing damage under sub-optimal 
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weather conditions. A multiplier of 10 essentially means that the weather conditions 

preclude taking the associated repair action. 

4.5.2. Tool output 

Results from runs of the tool on the study airport are hereafter presented and discussed. 

While data are presented and analyzed, the main aim here is to demonstrate the tool’s 

capabilities created through the proposed mathematical modeling and solution 

framework and types of general support that it can provide. Before producing the 

results, the model was first verified by checking consistency with capacity envelopes. 

That is, under normal operating conditions (i.e. meteorological condition 3 given 

probability-one of no disruption and zero budget for preparedness and recovery actions) 

the model produced the maximum total flow rate (i.e. number of takeoffs and landings) 

of 64 maneuvers per hour. This maximum flow rate was used as a benchmark for 

assessing subsequent performance metrics, such as coping capacity and resilience, and 

is consistent with FAA runway capacity estimates (FAA, 2004) for the study airport. It 

provides the denominator for the computation of resilience in equation (3). 

The first decision question addressed using the tool deals with trade-offs 

between annual budget and ܶ௠௔௫. For the case study, the outcome is depicted both 

numerically and graphically in Figure 4-6. The resilience indifference curves are 

plotted for a budget in the range of 0 to $100,000 in combination with ܶ௠௔௫ in the 

range of 0 to 16 hours. To generate this figure, Tmax was varied by four hour intervals 

(i.e. 0, 4, 8, 12, and 16) and only four budget levels were considered (0, $25,000, 

$50,000, and $100,000). Intermediate levels of resilience shown were interpolated with 

a bilinear scheme. As can be seen, the resilience level ranged between a minimum of 
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0.54 (no budget, or short ܶ௠௔௫, or both) and a maximum of 0.88 (maximal budget and 

long ܶ௠௔௫).  

The minimal value of 0.54 is the airport’s coping capacity (akin to zero-budget 

resilience); it indicates that about 54% of the pre-event takeoff and landing flow rate 

can be achieved in expectation over the 360 random scenarios if no recovery actions 

are considered in evaluating the system’s performance. The performance of the airport 

pavement network was investigated further for an annual budget of $25,000 and ܶ௠௔௫ 

of 8 hours. In this case, the performance improves to about 0.67 if repair actions can be 

taken externally and 0.68 if this is further supplemented by the use of existing 

equipment by teams that are trained through preparedness plans. When the system can 

avail itself of all preparedness and repair actions, a resilience level of 0.71 can be 

attained. Thus, the tool enables investigation of the airport’s inherent capability to cope 

with and adapt to the considered random events within a specified time period and 

given available monetary resources. Moreover, the tool quantifies the trade-offs 

between resilience and level of ܶ௠௔௫ or the budget through sensitivity analysis. For 

example, given a chosen ܶ௠௔௫ of five hours, it can be seen from the figure that 

increasing the budget over and above about $35,000 does not induce a corresponding 

increase in resilience; thus, with such a figure, airport management can optimize 

associated resources. 

The tool can also be used to study the frequency with which runways can be 

expected to operate with a MOS for each aircraft class. The impact on resilience level 

of repair opportunities can be quantified, and the likelihood that only one or no runways 

will operate given that some disruption event arises, with or without damage, can be 
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ascertained. For the airport study location, with no budget for preparedness or response, 

the likelihood that all runways will operate (resilience of 1) is approximately 0.36 and 

that none will operate (resilience of 0) is 0.17. With a budget of $50,000 and ܶ௠௔௫ of 

8 hours, the former likelihood rises to around 0.48 and the latter decreases to roughly 

0.08. 

  
Figure 4-6 Resilience indifference curves for different combinations of budget and Tmax 

 

The probability of a given resilience level can be further investigated by causal 

category, an example of which is depicted in Figure 4-7. With no budget, the likelihood 

of the event resulting in a shutdown or low operating capacity (resilience 0 or 0.25) is 

highest for extreme climatic events. This is partially ameliorated when resources can 

be expended. Likewise, operational events are most easily absorbed. This is a positive 

finding for airport managers as these types of events have the greatest likelihood of 

occurrence.  

Figure 4-8 depicts the proportion of the budget that is expended on internal and 

external resources for the purpose of completing repair actions for given budget and 

ܶ௠௔௫ levels. The figure shows the tradeoffs between the efficiencies associated with 

the use of internal resources and the ability to perform specific repair actions. For 
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limited repair durations, e.g. ܶ௠௔௫=4, and small budgets, there is insufficient time or 

funds to take advantage of external resources. 

(a) No budget (coping capacity) (b) B=$50000, Tmax=8 hrs 
Figure 4-7 Resilience probabilities under each disaster type for budget (B) and ܶ௠௔௫combinations. 

 

 

(a) Budget=$25,000 (b) Budget=$50,000 (c) Budget=$100,000 
Figure 4-8 Proportion of budget assigned to repair actions through internal and external resources 

 

In connection with resource allocation, output from the model enables 

prioritization in the response to damage in infrastructure components. That is, it aids in 

the identification of key runways or taxiways within the pavement network. This is 

demonstrated in Figure 4-9, where the frequencies of chosen configurations over the 

possible scenarios are displayed for varying levels of budget and ܶ௠௔௫. This depiction 

highlights the utility of runway configuration 04|04. This runway is the most likely 

configuration to be chosen by the model with and without repair action, and operates 
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with more than 0.35 probability even when no repair actions are taken into 

consideration in performance evaluation. It can be observed from the network topology 

(Figure 4-5) that this runway has connectivity to redundant taxiways not available to 

the second runway. Additional insights can be garnered from these results; for example, 

the shorter ܶ௠௔௫, the more likely that only one runway will be operating post-repair. 

That is, the model chooses to focus its resources on repairing one runway to support 

operations by both aircraft classes rather than only smaller aircraft on two runways. 

Likewise, the longer ܶ௠௔௫, the higher the likelihood that configurations with two 

operating runways will be chosen post-repair. Thus, quantities computed by the tool 

can aid airport managers in ascertaining the criticality of airport pavement assets. 

  Figure 4-9 Runway configuration probabilities over scenarios. 

In the immediate aftermath of a disruption, on average, the airport serves 

demand at 54% of its pre-disruption rate. With a budget of only $25,000 and ܶ௠௔௫of 

16 hours, this rate can be increased to 83% through outsourcing. When the budget is 

increased to $75,000  (which pays for two teams and one of each equipment type 12, 

13, 16, and 17, along with costs associated with both internal and external repair 

operations), this rate can be further increased to 86%. A gain of only 2% in capacity is 

realized through an additional $25,000, where the optimal investment strategy is to 
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train three teams that will use only existing equipment. This change in strategy can be 

explained by the large cost associated with training each team. It also illustrates how 

the discrete and combinatorial nature of the problem makes intuition about optimal 

solutions difficult without assistance of quantification methodologies 

4.6. Summary and Remarks 

The developed mathematical modeling and solution methodology techniques, and 

concepts for their inclusion in a decision support tool employing a scenario generator 

for multiple hazard classes, fills the need for a quantification methodology to assess the 

readiness of an airport to cope with damage to its paved network of runways and 

taxiways. Inherent uncertainties associated with disaster and disruption planning are 

explicitly recognized and directly addressed. The mathematical model differentiates 

small and large size aircraft. It further accounts for reductions in capacity due to joint 

take-off and landing maneuvers on common runways, reconfiguration strategies that 

consider bidirectional flows, weather effects, applicability and benefits of repair 

operations, implementation time and cost trade-offs related to conducting recovery 

actions taken in-house versus outsourcing, a range of disruption scenarios including 

those with multiple damage locations, multi-team response, limited equipment 

availability and a reasonable timeframe for conducting recovery operations. A 

mathematical tool with these capabilities makes it possible for optimal decisions to be 

derived for the large combinatorial and stochastic problem instances that are associated 

with real airports. It is also worth noting that, while it is not intended for use in real-

time operations, solutions obtained for each scenario in the mathematical program’s 
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second state provide optimal recovery plans that can be used post-disaster once the 

disaster situation is understood. 

Additional contributions are derived from insights gleaned from results of the 

tool’s application on a case study based on the topology and meteorological conditions 

of an existing airport. To this end, the effectiveness of investment strategies that 

balance preparedness and recovery choices is explored in relation to the system’s 

ability to cope with and adapt to unforeseen disruption scenarios, i.e. the system’s 

resilience level. While the details of the optimal preparedness and response actions 

determined by the tool for the case study may have limited intrinsic value, they provide 

tangible examples of the tool’s capabilities and potential utility in decision support in 

other comparable circumstances. For large airports, such as Baltimore Washington 

International (BWI) or San Francisco International (SFO) airport, both with 4 runways, 

if solution is difficult to obtain in a reasonable timeframe, one can reduce the 

combinations of actions that are permissible to greatly decrease solution time. 

Airport managers may benefit from use of this tool and its methodologies in a 

variety of ways. Solutions from various what-if situations can be compared and trade-

offs between investment approaches, use of limited internal resources and time can be 

assessed to evaluate proposed tactics for coping with major disruptions. Optimal 

solutions provide information about which equipment will be most important to have 

at the ready, how many repair crews should be on hand, and what outsourcing contracts 

to have in place. Benefits exist from merely considering the potential scenarios that 

might arise, but also from investigating which scenarios would be most problematic if 

realized and conducting a needs assessment for their resolution. In this regard, solutions 
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from the tool would offer insights into not only what assets to pre-position, but where 

to locate them. Likewise, the tool can identify critical pavement system components 

and reveal system design weaknesses and other vulnerabilities. When appropriate 

external funds are made available for airport security, the tool can be used to analyze 

and back monetary requests. For example, it can quantify the potential performance 

benefits that could be attained in, say, less than 24 hours through the use of requested 

funds. 
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Chapter 5: Stochastic Models for Emergency Shelter and Exit 

Design in Buildings under Stochastic Optimum and User 

Equilibrium Conditions  

5.1. Introduction and motivation 

Regional evacuation studies have previously dealt with the problem of determining the 

optimal location and size of public shelters to which people can be evacuated in case 

of events such as floods and hurricanes. Studies on building evacuation, on the other 

hand, have mainly dealt with the question of how users can be evacuated as fast as 

possible to predefined building exits during an emergency. In practice, it might not be 

possible for all users to vacate a large or tall building in time. This may be true in 

particular in the case of disabled or elderly users. In other cases, it might be possible 

for the users to reach an exit, but this will not be the safest option because of the 

presence of internal hazards such as fire or smoke on the path of evacuation inside the 

building, or because of external hazards that originate outside the building.  

A possible alternative is to evacuate building users to shelters inside buildings, 

which offer a certain level of protection. This policy is already being implemented in 

some countries, such as Singapore and Israel, where buildings are required to contain 

air-raid shelters in every dwelling or on every floor. As is standard in some countries, 

shelters have a protective envelope of 20-30 cm thick reinforced concrete walls and 

ceilings, as well as blast-proof doors and windows and an air-filtration system. They 

usually contain a single room that serves an additional purpose, such as a bedroom in 

an apartment or a conference room in an office building. In high-rise buildings, they 
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are built one on top of another, sometimes with trap-doors and ladders that internally 

connect the shelters and can serve as an alternative evacuation route if staircases have 

become unusable. This creates a stable tower of shelters that will remain intact even if 

the rest of the building is heavily damaged. Such spaces have replaced the underground 

communal shelters that were originally built for this purpose in basements or even in 

public parks – serving several surrounding buildings. External communal shelters 

became less useful as buildings became higher, and the required time for evacuation 

decreased due to changing threats. This required shelters to be brought inside buildings 

and elevated to higher stories, so that they could be reached in time by evacuees. While 

the main purpose of existing shelters in buildings is to protect building users from 

missile attacks, they also offer protection during earthquakes. The possibility of using 

such shelters to protect users from additional hazards, such as fire or storms, is also 

considered herein.  

While most shelters inside buildings are designed to house no more than a few 

dozen evacuees, local shelters, which serve an entire neighborhood, may house 

hundreds of evacuees. Such shelters are often located in public facilities, like schools 

or subway stations, and can serve the residents of buildings that do not contain internal 

shelters. Choice of where to locate these facilities depends on the type of hazard from 

which they are designed to protect. Regional evacuation may include even larger 

shelters, such as stadia that can house thousands of evacuees. The goal of this chapter 

is to develop mathematical models that supports the planning of shelters and evacuation 

paths in buildings designed to accommodate a limited number of people. The objective 

of these models is to ensure that evacuees are optimally protected during emergencies, 
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both during the evacuation as well as after reaching their destinations. The objective 

function is therefore defined to minimize the risk to which evacuees may be exposed, 

rather than minimize evacuation time. The models support identification of the shelters 

to which a population should evacuate in various emergency scenarios, in light of 

possible hazards on the evacuation paths. Moreover, the models can aid in investigating 

if it is preferable for building users to evacuate to shelters inside the building, rather 

than to building exits. A network representation is used in the model to represent the 

layout of a building’s circulation systems (i.e. the passageways along which building 

users can travel). A set of nodes may represent spaces inside buildings such as rooms 

and corridors. A set of links represents connections between these spaces. The 

movement of evacuees towards shelters is represented as flows on the links. The 

capacity of links and the risk exposure endured in traversing them may vary during 

emergencies as a result of structural failures or the spread of fire and smoke inside the 

building. 

Different types of hazards may endanger a population's safety and require its 

evacuation. These may be natural (e.g. earthquakes), human-made (e.g. terror attacks), 

internal (e.g. fire) or external (e.g. hurricanes). Restricted construction budgets, and the 

difficulty to prepare evacuees for more than one evacuation procedure, imply the need 

to accommodate different hazards in a single solution. A multi-hazard approach is 

therefore adopted, in which the performance of a plan is tested under various possible 

future emergency scenarios. This chapter presents a solution for the problem of 

designing a single building so that its users can minimize their exposure to risk in an 

emergency situation involving building egress or sheltering. This problem is referred 
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to as the Building Evacuation Design Problem (BEDP). To solve the BEDP, a bi-level, 

two-stage stochastic program is defined. The program falls under the class of Stochastic 

Mathematical Programs with Equilibrium Constraints (SMPECs).  

At the upper-level of the proposed bi-level program, decisions are made 

regarding the location of shelters in the building, their size and level of protection, as 

well as the location of building exits, with the objective of minimizing the exposure of 

evacuees to risk over all scenarios. The uncertainty in the scenarios that will be realized 

is taken into account. It is assumed that construction costs are limited to a certain 

budget. This budget can be used for the planning of shelters that offer a high level of 

protection. Alternatively, the budget can be allocated for a partial fortification of 

sections of the hallways and staircases through which users evacuate to increase the 

level of protection that they offer, for widening hallways to increase their capacity, or 

for the construction of additional or redesign of existing building exits. The advantages 

of allocating the available budget for the construction of shelters can thus be weighed 

against the benefits of using it to add or redesign exits or to reduce the risks for evacuees 

on certain sections of the evacuation paths by fortifying or widening them. 

At the lower-level of the program, the choice of evacuation paths by the users, 

following the upper-level decisions on the location of safe locations (shelters, fortified 

hallways) and exits, is modeled either as a User Equilibrium (UE) problem, or as a 

System Optimization (SO) problem. When modeled as a UE problem, it is assumed 

that users are homogenous, that they are perfectly informed of the conditions in the 

building or region, and choose a path with minimum risk. Evacuees will choose 

between evacuating to a specific shelter, evacuating to an exit, or staying in a partially 
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fortified hallway. On the other hand, when the choice of evacuation paths is modeled 

as a SO problem, it is assumed that evacuees are assigned to an exit or shelter and told 

which path to use to reach that location. The SO approach uses the available system 

resources optimally, but requires command and control by a trained staff to direct the 

evacuees. It may require some evacuees to follow paths or take cover in shelters that 

are not necessarily optimal for them individually. The UE approach ensures that no 

evacuee can do better by taking an alternative decision, but requires that evacuees be 

familiar with the building and with the risks imposed by the hazard, in order to have 

full information about all alternatives. 

Four variants of the BEDP are formulated using concepts of stochastic 

programming and robust optimization each under UE and SO conditions. UE models 

involve the bi-level formulation described previously. By recognizing that the Karush-

Kuhn-Tucker (KKT) conditions are necessary and sufficient for optimality, these 

models are reduced to equivalent single-level, two-stage stochastic integer programs. 

All variants are nonlinear. Using a disjunctive constraints transformation method and 

piecewise linearization, the models are linearized and integer L-shaped decomposition 

is proposed for solution of each of these mathematical programs. The capabilities of 

the modeling and solution techniques are illustrated on an office building using the 

original architectural plans. Trade-offs between system optimal and UE solutions and 

their implications in terms of their application, as well as in the use of stochastic 

programming versus robust optimization, are investigated. 
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5.2. Literature review 

To the best of our knowledge, there have been no prior works in the literature that 

address optimal shelter and exit location in buildings. However, models with relevance 

to the BEDP have been developed in the literature for locating shelters in the context 

of regional evacuation problems. These works are reviewed next. 

It appears that Sherali et al. (1991) were the first to study the shelter location 

problem for regional evacuation planning. They proposed a nonlinear mixed integer 

program to determine the shelter locations, resources allocations and assignment of 

evacuees to minimize evacuation time.  They suggest a SO approach, which assumes 

that a central authority controls the flow of evacuees. The model uses a single given 

hazard scenario. A deterministic, multi-objective p-median problem formulation is 

proposed by Alcada-Almeida et al. (2009) for locating p shelters in a given area so as 

to minimize demand-weighted distance traveled, incurred risk and travel time 

associated with an evacuation. Similar deterministic and system optimal assumptions 

are made. Congestion is not considered.  

Kongsomaksakul et al. (2005) proposed a bi-level programming model for 

determining locations and sizes of shelters that can be used by evacuees to minimize 

evacuation time in the event of a flood. The model is intended for pre-disaster planning. 

The upper-level problem determines the number and locations of shelters among a 

given set of potential locations, and the lower-level problem is a combined trip 

distribution and assignment problem. The inclusion of the lower-level problem allows 

evacuees to freely select their preferred shelters and choose the shortest route to their 

chosen shelters. Shelter selection behavior is modeled with a logit model, and a 
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Wardrop equilibrium is assumed to be reached. A genetic algorithm is employed to 

solve the problem. It is tested through a simulated flood scenario. Ng et al. (2010) also 

propose a bi-level programming model for regional shelter location, but optimize the 

shelter assignment in the upper-level problem, instead of assuming that evacuees 

themselves choose the shelters to which they will evacuate, as in Kongsomaksakul et 

al. (2005). A simulated annealing heuristic is proposed.  

These earlier models all use a single given hazard scenario for locating shelters. 

Therefore, the identified solution may not be optimal for a wider range of hazard 

scenarios. Further, these models disregard the uncertain nature of disaster events. 

Kulshrestha et al. (2011) take into account uncertainty in demand for shelter capacity 

in a robust, bi-level program to determine the locations and sizes of shelters. As in 

Kongsomaksakul et al. (2005), it is assumed that the number of shelters, their locations 

and capacities are determined by a central authority, while the evacuees choose shelters 

and routes to access them. Although a set of possible demand scenarios is considered, 

other uncertainties regarding the type of hazard and the level of its severity are 

disregarded. An exact cutting plane algorithm is presented. Li et al. (2011) study 

sheltering network planning and operations for natural disaster preparedness and 

response with a two-stage stochastic program. In their study, the number of evacuees 

present at each origin at the start of the evacuation period (i.e. the evacuation demand) 

and transportation costs are assumed to be known only with uncertainty. In the first 

stage, the locations, capacities and resources required to supply the shelters are 

determined. In the second stage, the evacuees and resources are distributed to shelters 

under various disaster scenarios. With only continuous variables in the second stage, 
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the L-shaped method can be employed. The proposed model and solution method were 

applied on a case study involving the Louisiana Gulf Cost.  

Another paper that explicitly addresses the uncertainties inherent in disaster 

situations is by Li et al. (2012). They developed a scenario-based, bi-level stochastic 

program for optimal shelter location that considers a range of possible hurricane 

scenarios. The program seeks to minimize expected total travel time and unmet shelter 

demand under one of a host of possible disaster scenarios. Such scenarios differ in the 

area of impact. A dynamic user equilibrium is sought in the lower-level. Unlike earlier 

works, this work considers the possibility that evacuees will exit the area, and will not 

necessarily use the shelters. While Li et al. (2012) is the most relevant to this work, it 

only considers only a single type of hazard. Moreover, the problem is solved using a 

heuristic rather than exact solution methodology. 

 This literature is summarized in Table 5-1. The contributions of this chapter 

are, in light of existing relevant works: (1) a mathematical formulation to address 

shelter and exit design and location, possible fortification of hallways with reduced risk 

exposure, and selection of evacuation routes for buildings; (2) a multi-hazard approach 

with applicability to not only a multitude of disaster types, but simultaneous 

consideration of special and competing needs arising from these hazard types; (3) 

explicit consideration of risk exposure and its relation to the effects of user route choice 

on travel congestion; (4) simultaneous consideration of shelter and exit use; (5) a 

comparison of stochastic programming and robust optimization modeling; (6) an 

evaluation of the role of cooperative behavior and related need for command and 

control through a comparison of user equilibrium and system optimum formulation 
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applications; and (7) an exact solution methodology that addresses problem 

nonlinearities for a set of complicated SMPECs and stochastic nonlinear programs 

(SNLPs). 

Table 5-1 Synthesis of the related literature 

Reference 
SO vs. 

UE 

What 
problem 

elements are 
stochastic  

Optimization 
approach 

Solution method
Hazard 

type 
Application

Sherali et al. 
(1991) 

SO n/a NLMIP 
Generalized 
Benders & 
heuristic 

Hurricane, 
flood 

Geographic

Alcada-Almeida et 
al. (2009) 

SO n/a 

Multi-
objective p-

Median 
program 

Heuristic 
algorithm  

(nondominated 
solutions) 

Generic Geographic

Kongsomsaksakul 
(2005) 

UE n/a 
Bi-level 
program 

Genetic 
algorithm 

Flood Geographic

Ng & Park 
(2010) 

UE n/a 
Bi-level 
program 

Simulated 
annealing 

Generic Geographic

Kulshrestha et al. 
(2011) 

UE 
Number of 
evacuees  

Bi-level RO 
Cutting plane 

algorithm 
Generic Geographic

Li et al. (2011) SO 
Evacuation 

cost, number 
of evacuees

Two-stage SP
L-Shaped 
algorithm 

Hurricane Geographic

Li et al. (2012) 
Dynamic 

UE 
Evacuation 

capacity  
Two-stage SP Heuristic Hurricane Geographic

This work Both 
Evacuation 

risk 
exposure 

Bi-level two-
stage SP /RO

Integer L-shaped
Multi-
hazard 

Geographic 
& Building

 

5.3. Problem definition 

5.3.1. Notation 

In modeling the BEDP, a network representation ܩ ൌ ሺܰ,  ሻ of the building circulationܣ

system layout is used. A set of nodes ܰ corresponds with locations inside the building, 

such as evacuation points of origin, transition points, candidate shelter locations, 

existing exits and candidate exit locations, as well as a supersink ݀. A set of links ܣ ൌ
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ଵܣ ∪ ଶܣ ∪  ଵ is a subset of the links representingܣ .ଷ connects these locationsܣ

hallways, staircases, doorways and other passageways. ܣଶ is a subset of the links 

connecting existing and candidate shelters and fortified hallways, i.e. safe locations, to 

supersink ݀. Note that ܣଷ is subset of links similarly connecting existing and candidate 

emergency exits to supersink ݀. This network representation is illustrated in Fig. 5-1. 

The movement of evacuees in the circulation system is represented as flows along the 

links. The introduction of a supersink reduces the related network flow problem to that 

of a multi-source, single-sink problem.  

 

Figure 5-1 Building network representation scheme 
 

The network is considered under a host of potential states (or scenarios) that 

might arise for a building under no-notice disaster events. Unlike disaster events with 

notice, such as a hurricane with two to three days advanced warning, notification of 

such a no-notice event in the context of buildings, perhaps provided by an alarm 

system, may entail only minutes. In this context, it is assumed that such notification 

provides information to the evacuees and building managers on the disaster type and 

possibly the location within the building (e.g. fire on a particular floor). This 

information may be imperfect, but can permit assessment of risk exposure associated 

Supersink node 

Candidate shelter locations 

Existing emergency exit 

Dummy links connecting the network to 

Candidate fortification 
Hallways, doorways, staircases 

 

d

Evacuation origin nodes, transition nodes 

d 

Candidate emergency exit 
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with evacuee options, both in terms of safe locations and exits, as well as the paths that 

lead to these locations.  

In the network representation, a particular state is given by the realization of 

parameters of link risk exposure functions. Risk exposure associated with a link 

consists of the likelihood of exposure while using the link and potential consequences. 

The longer the time spent en route to a safe location, the greater the likelihood of 

exposure. Thus, risk exposure is a function of travel time, which will depend not only 

on the link’s length, but also on the number of people using it. It is assumed that the 

evacuees can assess risk exposure perfectly from the information they receive, and that 

all evacuees perceive risk identically. Risk associated with each safe location or an exit 

is also incorporated in the risk exposure functions. In the problem formulations 

proposed herein, evacuees choose or are guided to a safe location or exit with the goal 

of minimizing total risk exposure. 

With this in mind, risk exposure associated with a link a is defined as a linear 

function of the link’s flow-dependent travel time: ݎ௔ሾݔ௔ሺߦሻሿ ൌ ሻሿߦ௔ሺݔ௔ሾݐሻߦሺߙ ൅  ,ሻߦሺߚ

where parameter ߙሺߦሻ converts the time it takes to evacuate through the hallways, 

staircases and doorways to risk exposure, and parameter ߚሺߦሻ is a measure of the risk 

associated with staying in a shelter or hallway, or exiting the building. Both parameters 

are a function of the scenario. Different emergency scenarios, ߦ, may induce different 

behaviors or decisions to reduce risk exposure. For example, when an internal hazard 

occurs (e.g. a fire event), exiting from the building will be of the highest priority; 

whereas, in the case of an external hazard (e.g. a storm), taking refuge within the 

building will provide protection. This is captured by parameter ߚሺߦሻ. 
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The BPR travel time function, originally used to estimate travel time on road 

networks, is adapted in the following form to estimate the evacuation travel time in a 

link ܽ ∈  ሻ (see Schomborg etߦ௔ሺݔ ,ሻሿ, as a nonlinear function of link flowߦ௔ሺݔ௔ሾݐ ,ଵܣ

al. 2011). The travel time along link ܽ ∈ ଶܣ ∪  :ଷ is also set to zeroܣ

ሻሿߦ௔ሺݔ௔ሾݐ ൌ ൝
ሻߦ௔଴ሺݐ ൅ 0.15ሾ௫ೌ

ሺకሻ

௖ೌሺకሻ
ሿଶ, ∀ܽ ∈ ଵܣ

0,																	 ∀ܽ ∈ ଶܣ ∪ ଷܣ
  (1) 

where ݐ௔଴ and ܿ௔ሺߦሻ are the freeflow travel time and capacity of link ܽ ∈  ଵ underܣ

scenario ߦ, respectively. The BPR function is generally formulated based on the 

velocity-density fundamental diagram for vehicle movement in road networks. 

Schomborg et al. (2011) argue that, in the context of macroscopic modeling, this 

function can also be utilized to estimate the pedestrian travel time using the parameter 

values adopted in equation (1).  

Nomenclature used in the remainder of the chapter is provided next. 

ܵ  = set of shelter/hallway fortification types  
 ܧ = set of exit types/sizes 
݃௔௦  = cost of fortification of type ݏ ∈ ܵ in link ܽ ∈  ଶܣ
݃́௔௘  = cost of construction of exit type ݁ ∈ ܽ in link ܧ ∈  ଷܣ
 total budget for exit design and shelter/hallway fortification = ܤ
ݏ ௔௦ = capacity of shelter type݌ ∈ ܵ, ܽ ∈  ଶܣ
 ௢ݍ = number of evacuees originating at node ݋ ∈ ܰ  
 ௢ܭ = set of paths containing no cycles originating from node ݋ ∈ ܰ  
௔,௞ߜ
௢   = link-path incidence matrix (=1 if link ܽ belongs to path ݇ originated 

from node ݋, and =0 otherwise)  
Ξ  = set of possible scenarios ߦ ∈ Ξ 

 
Pre-event variables: 
ݏ ௔௦ = binary variable indicating if fortification of typeݕ ∈ ܵ is selected for 

application to link ܽ ∈   ଶ (=1 if selected, and =0 otherwise)ܣ
݁ ௔௘ = binary variable indicating if exit typeݕ́ ∈  is selected for ܧ

construction in link ܽ ∈  ଷ (=1 if selected, and =0 otherwise)ܣ
 

Post-event variables: 

௞݂
௢ሺߦሻ = flow along path ݇ ∈  ߦ under scenario ݋ ௢ from demand nodeܭ
ܽ  ሻ = flow along linkߦ௔ሺݔ ∈  ߦ under scenario ܣ
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ܽ ሻሿ = travel time along linkߦ௔ሺݔ௔ሾݐ ∈  ߦ under scenario ܣ
ܽ ሻሿ = risk exposure associated with linkߦ௔ሺݔ௔ሾݎ ∈  assumed ;ߦ under scenario ܣ

to be a linear function of link travel time: ݎ௔ሾݔ௔ሺߦሻሿ ൌ
ሻሿߦ௔ሺݔ௔ሾݐሻߦሺߙ ൅ ሻߦሺߚ

ܿ௞
௢ሺߦሻ  = risk exposure on path ݇, for ∀݇ ∈ ,௢ܭ ݋ ∈ ܰ 

 

5.3.2. Problem formulations 

Four BEDP formulations are presented. The programs use either Stochastic 

Programming (SP), which takes into account the expectation in performance over all 

future scenarios, or Robust Optimization (RO) with emphasis on the worst-case 

scenario imposing the highest evacuation risk exposure. The latter is a conservative 

approach, which may require a more expensive solution to attain the same level of risk 

exposure. Two of the models adopt a bi-level structure, where the evacuees choose 

their own routes to minimize their own risk exposure (taking a UE perspective). The 

remaining two models are single-level and assume the evacuees will follow system 

optimal instructions (taking a SO perspective). This latter perspective requires 

command and control for implementation. That is, users are commanded toward safe 

locations or exits that meet the system’s goals and control is in place to ensure 

compliance (Feng and Miller-Hooks, 2012). These four programs are referred to by 

their acronyms: BEDP-SP-UE, BEDP-SP-SO, BEDP-RO-UE, and BEDP-RO-SO. The 

modeling specifications of these problems are summarized in Table 5-2.  

Objectives that minimize the maximum or expected maximum risk exposure 

are proposed herein, because they indirectly address issues of equity and consider the 

protection of each individual. This differs from other network design formulations in 
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the literature. For both emergency and nonemergency applications, it is common to 

minimize total travel time or other disutility measures. 

Table 5-2 Modeling specifications for the proposed problems 

Problem 
Optimization 

approach 

User 
behavior 
modeling 

Modeling Structure Objective 

BEDP-
SP-UE 

SP UE  Bi-level 
o UL:1st stage decision on 

design/fortification options 
o LL: user response to UL 

decisions 

min E[max 
evacuation 

risk] BEDP-
RO-UE 

RO UE 

BEDP-
SP-SO 

SP SO 
 Single-level (command and 

control) 

minmax 
[evacuation 

risk]  BEDP-
RO-SO 

RO SO 

 

a) BEDP-SP-UE 

This BEDP-SP-UE problem is formulated as a bi-level, two-stage stochastic program 

with equilibrium constraints, a type of stochastic MPEC.  

ሺܲܦܧܤ െ ܵܲ െ   ሻܧܷ
Upper-level:  ݉݅݊

௬
క∈ஆሾܧ	 ௌܼ௉ି௎ா

௎ ሺߦሻሿ  (2)

s.t. 
∑ ∑ ݃௔௦ݕ௔௦௦∈ௌ௔∈஺మ ൅ ∑ ∑ ݃́ܽ

ܽݕ́݁
݁

௘∈ா௔∈஺య ൑ (3)  ܤ
∑ ௔௦௦∈ௌݕ ൑ 1,			 	∀ܽ ∈ ଶ  (4)ܣ
∑ ܽݕ́

݁
௘∈ா ൑ 1,			 	∀ܽ ∈   ଷܣ (5)

,௔௦ݕ ܽݕ́
݁ ∈ ሼ0,1ሽ, 				∀ܽ ∈ ଶܣ ∪ ,ଷܣ ݏ ∈ ܵ, ݁ ∈ (6) ܧ

 
where  

ௌܼ௉ି௎ா
௎ ሺߦሻ ൌ ݉݅݊

௫
ݔܽ݉
௢∈ை

ሻ (7)ߦ௢ሺݑ	
 

Lower-level: ௌܼ௉ି௎ா
௅ ሺߦሻ ൌ ݉݅݊∑ ׬ ሻݓ௔ሺݎ

௫ೌሺకሻ
଴ ௔ݓ݀     (8)

s.t. 
∑ ௞݂

௢ሺߦሻ௞∈௄೚ ൌ ݋∀					,௢ݍ ∈ ܱ   (9)
ሻߦ௔ሺݔ ൌ ∑ ௔,௞ߜ

௢
௞݂
௢ሺߦሻ௢∈ை ,				 ∀ܽ ∈ ܣ   (10)

ሻߦ௔ሺݔ ൑ ∑ ௔௦௦∈ௌݕ௔௦݌ ,					∀ܽ ∈ ଶܣ (11)
ሻߦ௔ሺݔ ൒ 0,				∀ܽ ∈ (12) ܣ

௞݂
௢ሺߦሻ ൒ 0,				∀݇ ∈ ,௢ܭ ݋ ∈ ܱ (13)
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At the upper-level, the problem is to determine the optimal location of exits, 

location and size of shelters to be constructed, and hallways to be fortified, as well as 

corresponding level of protection, aiming at minimizing the expectation of the worst-

case risk exposure experienced by the evacuees over all scenarios. Construction costs 

are limited to an available budget in constraint (3). Constraints (4)-(6) ensure that only 

one type of fortification is constructed at any candidate location.  

At the lower-level is a path-based capacitated user equilibrium problem with 

side-constraints adapted from Larsson and Patriksson (1995). Evacuees rationally seek 

to minimize their risk exposure, assuming that they have perfect information on the 

risks associated with the evacuation path choices under a given scenario ξ  and the 

building design options (including the shelter capacities) determined at the upper-level.  

Evacuees are assigned to paths through constraints (9). Link flows are defined 

in constraints (10) as the total flow in terms of evacuees traveling from any origin along 

any path containing that link. In constraints (11), flow is allowed through a link ܽ ∈  ଶܣ

if a shelter of any type ݏ ∈ ܵ is constructed along that link. The flow is limited to the 

shelter’s capacity, ݌௔௦. An infinite capacity is presumed for all exit doors ܽ ∈ -ଷ. Nonܣ

negativity requirements for link and path flows are captured through constraints (12)-

(13). 

The formulation can be readily extended to permit shelter capacities as a 

function of hazard type. This is important in real applications, because the amount of 

space required per evacuee while sheltered depends on the amount of time the evacuee 

will remain in the shelter. The longer the required time, the greater the required space. 

Because it is morally difficult to restrict the number of evacuees to enter a shelter when 
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it appears that there is more space, constructing shelters for the worst-case as is 

supported by the proposed objective functions is desirable. 

b) BEDP-SP-SO 

As an alternative modeling approach, safe locations, exits and evacuation routes are 

designed to support a system optimal flow of evacuees under the assumption that 

evacuees are directed in emergency situations by trained staff or through commands 

given electronically. Thus, it is presumed that the evacuees will follow the instructions 

they are provided. This problem is formulated as a single-level, nonlinear two-stage 

stochastic program.   

ሺܲܦܧܤ െ ܵܲ െ ܱܵሻ  
݉݅݊
௬
క∈ஆሾܧ	 ௌܼ௉ିௌைሺߦሻሿ  s.t. (3-6) (14)

 
where  
ௌܼ௉ିௌைሺߦሻ ൌ ݉݅݊

௫
ݔܽ݉
௢∈ை

ሻ (15)ߦ௢ሺݓ	
s.t. (9-13) 

௞݂
௢ሺߦሻ ∙ ሾܿ௞

௢ሺߦሻ െ ሻሿߦ௢ሺݓ ൑ 0, ∀݇ ∈ ,௢ܭ ݋ ∈ ܰ    (16)
 

As in the BEDP-SP-UE, the objective function is to minimize the expectation 

of the maximum evacuation risk exposure evacuees experience over all scenarios. 

 Through .݋ ሻ is defined as the worst (highest) evacuation risk exposure from nodeߦ௢ሺݓ

additional constraints (16), only the risk exposure of active paths from node ݋ is used 

to determine ݓ௢ሺߦሻ. That is, the inequality ܿ௞
௢ሺߦሻ ൑ ሻ is imposed if ௞݂ߦ௢ሺݓ

௢ሺߦሻ ൐ 0. 

c) BEDP-RO-UE and BEDP-RO-SO 

By focusing on the worst evacuation risk exposure under the worst-case scenario rather 

than on the expectation of worst risk exposure over all scenarios, this robust 
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optimization model is even more conservative than the BEDP models that use 

stochastic programming (BEDP-SP-UE and BEDP-SP-SO). Scenario probabilities are 

not included in robust optimization. Two problems, BEDP-RO-UE and BEDP-RO-SO, 

are formulated using the UE and SO principles, respectively: 

  

ሺܲܦܧܤ െ ܴܱ െ ሻܧܷ  
Upper-level: ݉݅݊

௬
ݔܽ݉	
క∈ஆ

ሾܼோைି௎ா
௎ ሺߦሻሿ  s.t. (3-6) (17)

where  
ܼோைି௎ா
௎ ሺߦሻ ൌ ݉݅݊

௫
ݔܽ݉
௢∈ை

ሻ (18)ߦ௢ሺݑ	
and the lower-level problem as given in (8-13).  

 

ሺܲܦܧܤ െ ܴܱ െ ܱܵሻ  
݉݅݊
௬
ݔܽ݉	
క∈ஆ

ሾܼோைିௌைሺߦሻሿ  s.t. (3-6) (19)

 
where  

ܼோைିௌைሺߦሻ ൌ ݉݅݊
௫

ݔܽ݉
௢∈ை

ሻ   s.t. (9-13), (16) (20)ߦ௢ሺݓ	
 

Both formulations seek to minimize the maximum evacuation risk exposure 

over all scenarios. 

5.4. Solving the BEDP variants 

5.4.1. Complementarity constraints 

 a) BEDP-SP-UE and BEDP-RO-UE 

A common approach to solving bi-level programs is, when possible, to eliminate the 

lower-level problem by incorporating the original lower-level constraints along with 

related KKT conditions (first-order optimality conditions) within the upper-level. This 
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creates an equivalent single-level program. In the context of the BEDP-UE-SP and 

BEDP-UE-RO formulations, this includes constraints (9)-(13) and (21)-(24): 

  

௞݂
௢ሺߦሻ ∙ ሾܿ̂௞

௢ሺߦሻ െ ሻሿߦ௢ሺݑ ൌ 0, ∀݇ ∈ ,௢ܭ ݋ ∈ ܰ    (21)
ܿ̂௞
௢ሺߦሻ െ ሻߦ௢ሺݑ ൒ 0,					∀݇ ∈ ,௢ܭ ݋ ∈ ܰ  (22)
ሻߦ௔ሺߣ ∙ ሾ∑ ௔௦௦∈ௌ݌ ௔௦ݕ െ ሻሿߦ௔ሺݔ ൌ 0, ∀ܽ ∈ ଶܣ (23)
ሻߦ௔ሺߣ ൒ 0,					∀ܽ ∈ ଶ  (24)ܣ

 

Building on the work of Larsson and Patriksson (1995) who considered the 

capacitated assignment problem in which users selfishly seek to minimize their 

experienced disutilities, it is assumed that a generalized Wardrop equilibrium can be 

reached. In such an equilibrium, no evacuee can unilaterally switch routes and improve 

his/her disutility (risk exposure in the context of this work). 

In constraints (21)-(24), ݑ௢ሺߦሻ indicates the minimum risk exposure incurred 

by evacuees originating from node ݋ ∈ ܰ under scenario ߦ and ܿ ௞̂
௢ሺߦሻ is the generalized 

path risk exposure adapted from Larsson and Patriksson (1995): 

ܿ̂௞
௢ሺߦሻ ൌ ܿ௞

௢ሺߦሻ ൅ ∑ ௔,௞ߜ
௢

௔∈஺య ,ሻߦ௔ሺߣ ∀݇ ∈ ,௢ܭ ݋ ∈ ܰ. (25)

In addition, ܿ௞
௢ሺߦሻ ൌ ∑ ௔,௞ߜ

௢
௔∈஺  ሻሿ is the risk exposure on path ݇, forߦ௔ሺݔ௔ሾݎ

∀݇ ∈ ,௢ܭ ݋ ∈ ܰ, and ߣ௔ሺߦሻ is the Lagrange multiplier for link ܽ ∈  ଷ associated withܣ

complementarity constraints (23). ߣ௔ሺߦሻ can be interpreted as the additional risk 

exposure that users passing through a saturated link are willing to endure to use the link 

(i.e. the link’s shadow price).  

In their compatible formulation, Larsson and Patriksson showed that the KKT 

conditions are both necessary and sufficient for optimality. Constraints (21) and (23) 

fo the KKT conditions fall under the class of complementarity constraints, and thus, 

are nonlinear. A transformation methodology, specifically a disjunctive constraints 
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approach, initially introduced in (Fortuny-Amat and McCarl, 1981), is employed in 

which the introduction of binary variables converts these constraints into equivalent 

linear mixed-integer constraints.  

The implementation of this methodology given in Wang and Lo (2010) is 

followed herein. Thus, constraints (13) are replaced by constraints (26)-(28):       

ܮ ∙ ߮௞
௢ሺߦሻ ൅ ߝ ൑ ௞݂

௢ሺߦሻ ൑ ܷ ∙ ሾ1 െ ߮௞
௢ሺߦሻሿ, ∀݇ ∈ ,௢ܭ ݋ ∈ ܰ    (26)

ܮ ∙ ߮௞
௢ሺߦሻ ൑ ܿ̂௞

௢ሺߦሻ െ ሻߦ௢ሺݑ ൑ ܷ ∙ ߮௞
௢ሺߦሻ, ∀݇ ∈ ,௢ܭ ݋ ∈ ܰ    (27)

߮௞
௢ሺߦሻ ∈ ሼ0,1ሽ,						∀݇ ∈ ,௢ܭ ݋ ∈ ܰ   (28)

where ܮ and ܷ are very large negative and positive numbers, respectively, and ߝ is a 

very small positive number. Binary variable ߮௞
௢ሺߦሻ indicates whether or not path ݇ 

from origin node ݋ receives a flow, i.e. ߮௞
௢ሺߦሻ ൌ 0 resulting in ܿ̂௞

௢ሺߦሻ ൌ  ሻ ifߦ௢ሺݑ

௞݂
௢ሺߦሻ ൐ 0; ߮௞

௢ሺߦሻ=1, otherwise.  

Similarly, constraints (23) are replaced by constraints (29-31): 

ܮ ∙ ߶௔ሺߦሻ ൅ ߝ ൑ ሻߦ௔ሺߣ ൑ ܷ ∙ ሾ1 െ ߶௔ሺߦሻሿ, ∀ܽ ∈ ଶܣ    (29)
ܮ ∙ ߶௔ሺߦሻ ൑ ∑ ௔௦௦݌ ௔௦ݕ െ ሻߦ௔ሺݔ ൑ ܷ ∙ ߶௔ሺߦሻ, ∀ܽ ∈ ଶܣ    (30)
߶௔ሺߦሻ ∈ ሼ0,1ሽ,						∀ܽ ∈   (31)	ଶܣ

where binary variable ߶௔ሺߦሻ indicates whether or not flow along link a reaches the link 

capacity. When the flow along link a reaches the link’s capacity limitation, ߶௔ሺߦሻ ൌ 0, 

resulting in ߣ௔ሺߦሻ ൐ 0; and ߶௔ሺߦሻ ൌ 1, otherwise. 

 b) BEDP-SP-SO and BEDP-RO-SO 

BEDP-SO-SP and BEDP-SO-RO do not involve UE constraints, and thus the need for 

the complementarity constraints described in the prior section is eliminated; they are, 

thus, single-level problems. However, complementarity constraints (16) are required to 

ensure that risk exposure is considered within the objective only for active paths. Thus, 

the programs are nonlinear. Again, a disjunctive constraints transformation approach is 

applied wherein constraints (32)-(34) replace constraints (16).      
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ܮ ∙ ௞ߪ
௢ሺߦሻ ൅ ߝ ൑ ௞݂

௢ሺߦሻ ൑ ܷ ∙ ሾ1 െ ௞ߪ
௢ሺߦሻሿ, ∀݇ ∈ ,௢ܭ ݋ ∈ ܰ    (32)

ܿ௞
௢ሺߦሻ െ ሻߦ௢ሺݓ ൑ ܷ ∙ ௞ߪ

௢ሺߦሻ, ∀݇ ∈ ,௢ܭ ݋ ∈ ܰ    (33)
௞ߪ
௢ሺߦሻ ∈ ሼ0,1ሽ,						∀݇ ∈ ,௢ܭ ݋ ∈ ܰ    (34)

where ߪ௞
௢ሺߦሻ is a binary variable indicating whether a path is active or not: ߪ௞

௢ሺߦሻ ൌ 0 

if ௞݂
௢ሺߦሻ ൐ 0; and  ߪ௞

௢ሺߦሻ ൌ 1, otherwise 

5.4.2. Piecewise linearization of the travel time function 

For each link ܽ ∈  ଵ, the nonlinear travel time function is replaced by a piecewiseܣ

linear function using a method presented by Sherali (2001) (also applied in (Farvaresh 

and Sepehri, 2011)). The first step of this technique is to bound link flow ݔ௔ሺߦሻ by 

lower- and upper-bounds. One simple approach to setting these bounds is to use zero 

and total evacuation demand from all origin nodes, i.e. 0 ൑ ሻߦ௔ሺݔ ൑ ∑ ௢௢∈ைݍ , 	ܽ ∈

 ௔ non-overlapping segments. Let the link flowܫ ଵ. Next, this range is partitioned intoܣ

  :ሻ be represented as followsߦ௔ሺݔ

ሻߦ௔ሺݔ ൌ ∑ ௔,௜ߨሶ௔,௜ିଵݔ
௅ ൅ ௔,௜ߨሶ௔,௜ݔ

ோூೌ
௜ୀଵ , ∀ܽ ∈ ଵ (35)ܣ

where ݔሶ௔,௜ିଵ and ݔሶ௔,௜ are link flow values at endpoints of segment ݅, and ߨ௔,௜
௅  and ߨ௔,௜

ோ  

are convex-combination weights of that segment such that equations (36) and (37) hold. 

௔,௜ߨ
௅ ൅ ௔,௜ߨ

ோ ൌ ܽ∀					,௔,௜ߠ ∈ ,ଵܣ ݅ ൌ 1,2, . . , ௔  (36)ܫ

∑ ௔,௜ߠ
ூೌ
௜ୀଵ ൌ 1,					∀ܽ ∈ ଵ  (37)ܣ

where 

௔,௜ߨ
௅ , ௔,௜ߨ

ோ ൒ 0,		 		∀ܽ ∈ ,ଵܣ ݅ ൌ 1,2, . . , ௔  (38)ܫ
θ௔,௜ ∈ ሼ0,1ሽ,					∀ܽ ∈ ,ଵܣ ݅ ൌ 1,2, . . , ௔  (39)ܫ

Then, the link travel time function can be replaced by the piecewise linear 

function given in (40).  

ሻሿߦ௔ሺݔ௔ሾݐ ൌ ௔଴ݐ ൅ ܾ௔. ሾ∑ ሶ௔,௜ିଵݔ
ଶ ௔,௜ߨ

௅ ൅ ሶ௔,௜ݔ
ଶ ௔,௜ߨ

ோூೌ
௜ୀଵ ሿ, ∀ܽ ∈ ଵ  (40)ܣ

An advantage of this linearization method is that the matrix of coefficients in 

these added constraints (constraints (36)-(39)) is totally unimodular, making it possible 

to relax integrality constraints (39) (see Sherali (2001) for more details).  
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Given the above mathematical replacements, the nonlinear BEDPs are 

reformulated as SMIPs presented in Table 5-3.  

Table 5-3 BEDPs reformulated as two-stage SMIPs 

Problem Objective function 

Constraints 
1st 

stage 
2nd stage 
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(3)-
(6) 

(9)-
(13) 

(26)-
(28) 

(29)-
(31) 

(32)-
(34) 

(35)-
(40) 

BEDP-SP-
UE 

݉݅݊
௬
క∈ஆܧ	 ሾ݉݅݊௫

ݔܽ݉
௢∈ை

 ሻሿ     - ߦ௢ሺݑ

BEDP-RO-
UE 

݉݅݊
௬
ݔܽ݉	
క∈ஆ

ሾ݉݅݊
௫

ݔܽ݉
௢∈ை

 ሻሿ     - ߦ௢ሺݑ

BEDP-SP-
SO 

݉݅݊
௬
క∈ஆሾ݉݅݊௫ܧ	

ݔܽ݉
௢∈ை

 ሻሿ   - -  ߦ௢ሺݓ

BEDP-RO-
SO 

݉݅݊
௬
ݔܽ݉	
క∈ஆ

ሾ݉݅݊
௫

ݔܽ݉
௢∈ை

 ሻሿ   - -  ߦ௢ሺݓ

  * CC: Complementarity Constraints 

5.5. Solution methodology 

The integer L-shaped method, introduced by Laporte and Louveaux (1993), is adopted 

to solve the four variants of the BEDP each having only binary decision variables in 

the first-stage as required by the procedure. This method is exact. It decomposes the 

original program into a master problem and set of subproblems representing second-

stage problems ܼሺߦሻ for each scenario. Let ݕ ∈ ܻ ൌ ሼݕ௔௦,  ௔௘ሽሺ௔ሻ∈஺మ∪஺య,௦∈ௌ,௦∈ா representݕ́

all first-stage variables. The master problem is generally formulated as follows.  

݉݅݊ (41)     ߠ	
s.t.   
(3-5)   
0 ൑ ݕ ൑ 1  (42)
݂ሺݕ, ሻߠ ൑ 0   (43)
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where the objective is to minimize ߠ, an approximation of the expectation (maximum) 

of the second-stage objective functions ܼሺߦሻ over all scenarios ߦ ∈ Ξ for a general 

stochastic program or in robust optimization. Constraints (42) are relaxations of 

integrality constraints (6) for first-stage variables.  

To solve the master problem, branch-and-bound steps are integrated within the 

procedure to obtain binary solutions at each iteration. The binary variables of these 

solutions are fixed in the subproblems. Optimality cuts (43) are iteratively generated 

and added to the master problem based on solution of the subproblems, creating a 

tighter feasible region. No feasibility cuts are required, since the master problem 

solution is always feasible for the subproblems.  

Let ܻఢ be the ߳th vector of feasible solutions, i.e. binary solutions from the 

master problem including the sets of 1’s and 0’s: ଵܻ
ఢ ൌ ሼݕ|ݎ௥ ൌ 1} and ଴ܻ

ఢ ൌ ሼݕ|ݎ௥ ൌ

0}. Valid optimality cuts are generated by (44).  

ߠ ൒ ሼߠఢ െ ∑ሽൣܤܮ ௥௥∈௒భݕ
ച െ ∑ ௥ఢ∈௒బݕ

ച ൧ െ ሼߠఢ െ |ሽሺܤܮ ଵܻ
ఢ| െ 1ሻ ൅ (44)  ,ܤܮ

where | ଵܻ
ఢ| is the cardinality of the set ଵܻ

ఢ, and ܤܮ is a finite lower bound that can be 

set to zero in this problem. A tighter lower bound could significantly improve the 

solution time, however. One suggestion to find a better lower bound is to relax the 

budget constraint and solve the subproblems assuming best-quality shelters are 

constructed in all candidate locations.  

Laporte and Louveaux (1993) proved that cuts given by (44), where ߠఢ ൌ

ௌ௉ߠ
ఢ ൌ ,క∈ஆሾܼሺܻఢܧ  ሻሿ (i.e. the expectation over second-stage objective functionsߦ

corresponding to first-stage feasible solutions ܻఢ), are valid for stochastic programs. 
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Therefore, cuts (44) can be directly applied to solve both the BEDP-SP-UE and BEDP-

SP-SO. In this work, these cuts are further modified for solving robust optimization 

versions: BEDP-RO-UE and BEDP-RO-SO.  

Proposition 1. Let ߠఢ ൌ ோைߠ
ఢ ൌ ݔܽ݉

క∈ஆ
ሾܼሺܻఢ,  ሻሿ be the maximum second-stageߦ

objective function over all scenarios ߦ ∈ Ξ corresponding to first-stage feasible 

solutions ܻఢ. Modified optimality cuts (46) are valid cuts for BEDP-RO-UE and 

BEDP-RO-SO.   

ߠ ൒ ሼߠோை
ఢ െ ∑ሽൣܤܮ ௥௥∈௒భݕ

ച െ ∑ ௥ఢ∈௒బݕ
ച ൧ െ ሼߠோை

ఢ െ |ሽሺܤܮ ଵܻ
ఢ| െ 1ሻ ൅ (45)  .ܤܮ

  
Proof. The inequality ∑ ௥௥∈௒భݕ

ച െ ∑ ௥ఢ∈௒బݕ
ച ൑ | ଵܻ

ఢ| always holds; thus, the right-hand 

side of (46) takes a value less than or equal to ܤܮ. In the extreme case where ∑ ௥௥∈௒భݕ
ച െ

∑ ௥ఢ∈௒బݕ
ച ൌ | ଵܻ

ఢ|, the right-hand side will be equal to ߠோை
ఢ . Therefore, the cuts (45) will 

never eliminate the globally optimal solution, and it is valid to impose them on first-

stage solutions. □  

Note that in numerical experiments described in Section 6, to improve the 

implementation time of the UE-based problems, the corresponding SO-based problems 

were solved first and their objective function values were used as the ܤܮ in optimality 

cuts (44) and (45). 

The general algorithm of the integer L-shaped method (Laporte and Louveaux 

1993) to solve the BEDPs is presented in the following. Let ܼ̅ be the upper bound of 

the desired stochastic program or robust optimization model ܼ, and ߤ be the algorithm 

iteration number:   
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Step 0: Set	ߤ ൌ 0, upper bound	ܼ̅ ൌ ∞. The value of ߠ is set to െ∞ or other absolute 

lower bound. A pendant node list is created that contains only a single pendant node 

corresponding to the initial subproblem. 

Step 1: Select a pendant node in the list. Stop if the pendant node list is empty.  

Step 2: Set	ߤ ൌ ߤ ൅ 1 and solve the current problem. If the problem is infeasible, 

fathom the current node and go to Step 1. Otherwise, let ሺݕఓ,  ఓሻ be an optimalߠ

solution. 

Step 3: Check for integrality. If violated, create two new branches in which the most 

fractional variable is set to 0 or 1. Append the two nodes to the pendant node list and 

go to Step 1. 

Step 4: Given the first-stage solutions ݕఓ, solve the sub-problems ܼሺݕఓ,  ሻ for eachߦ

scenario ߦ. If the model is a stochastic program, calculate the expectation value over 

all scenarios, ܼሺݕఓሻ ൌ ܧ
క∈ஆ

ሾܼሺݕఓ,  ሻሿ. Otherwise, if the model is of robust optimizationߦ

models, calculate the corresponding maximum value over all scenarios, ܼሺݕఓሻ ൌ

ݔܽ݉
క∈ஆ

ሾܼሺݕఓ, ఓሻݕሻሿ. If ܼሺߦ ൏ ܼ̅, update upper bound ܼ̅ ൌ ܼሺݕఓሻ.  

Step 5: If ߠఓ ൒ ܼሺݕఓሻ, then fathom the current node and go to Step 1; otherwise, 

impose an optimality cut to the master problem, and return to Step 2. 

5.6. Numerical example 

5.6.1. Network representation 

Numerical experiments were conducted using the design of an actual office building. 

The building has a reinforced concrete structure, and consists of two connected wings 
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that surround an inner courtyard. In the original design of the building, each wing has 

a core containing a shelter. The layout of the building is illustrated in Fig. 5-2.  

Two exits (E1 and E2) were already included in the initial building design. One 

additional emergency exit (E3) is also considered for incorporation in the design, and 

is represented by dashed lines. Seven locations are taken as candidates to fortify as 

shelters represented by dashed ovals (S1-S7). Four hallways (H1-H4) are already 

included in the building evacuation plan as relatively safe locations for evacuees in case 

of a hazard. One additional hallway, H5, is also considered in this example as a 

candidate for fortification. The network representation includes 75 links, as well as 15 

dummy links that connect the locations of shelters, exits and fortified hallways to the 

supersink node.  

Figure 5-2 Office building layout 
 

40 rooms in the building are considered evacuation origin nodes. The number 

of evacuees in these rooms is estimated based on their maximum occupancies from the 

National Fire Protection Association (NFPA) Life Safety Code (2009), and given in 

Table 5-4. 

E3

E2

S4S2 S3
S5 S6 S7 

S1

H1 

H2

H3 

H4 

H5
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Table 5-4 Maximum occupancy of rooms in building 

Room # Max occ. Room # Max occ. Room # Max occ. Room # Max occ. 
1 4 12 6 22 4 39 4 
2 4 13 2 23 5 40 4 
3 2 14 2 24 1 41 4 
4 2 15 4 25 2 42 4 
5 3 16 4 26 4 43 4 
6 5 17 4 27 5 44 4 
7 1 18 4 28 2 45 4 
8 2 19 4 32 5 49 6 

10 4 20 4 33 5 50 6 
Total building occupancy =150 people 

 

5.6.2. Modeling parameters 

In this example, only one fortification or construction type is considered for each 

location in terms of level of protection, cost and capacity. However, the general 

formulation of the optimization model allows different design options to be considered 

for any single location out of which one option can then be selected through the 

optimization. The costs and capacities (in terms of number of evacuees) of the design 

options are given in Table 5-5. These were estimated based on current average 

construction costs. 

Table 5-5 Costs and capacities of design options 

Design option ID Design cost ($) Capacity 

Shelter 

S1 6,700 35 
S2 4,100 15 
S3 5,600 25 
S4 5,000 25 
S5 3,700 15 
S6 3,900 25 
S7 4,100 15 

Unfortified hallway  

H1 - 30 
H2 - 30 
H3 - 30 
H4 - 30 

Hallway fortification H5 3,600 40 
Emergency exit E3 2,200 - 
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Five disaster scenarios are generated assuming 20% occurrence probability of 

each: one scenario for an external malicious act which is likely to affect the whole 

building equally, and four scenarios for an internal fire in different parts of the building 

(north, south, west, and east). The stochastic nature of these scenarios is captured 

through parameters ߙሺߦሻ and ߚሺߦሻ in the risk exposure function. ߙሺߦሻ represents the 

slope of the risk function line converting the evacuation time through passageways to 

a risk exposure value, and ߚሺߦሻ represents the risk imposed by exiting the building or 

staying in a safe location.  

To quantify the risk to which evacuees are exposed, a range of 0-100 points is 

considered, where 0 indicates no risk exposure and 100 indicates a maximum risk 

exposure (which can be interpreted as a high risk of death). To find risk equivalency of 

evacuation time, it is assumed that the maximum tolerable evacuation times is equal to 

a risk exposure of 100 points and occurs at 120 seconds for an external malicious act 

and 180 seconds for an internal fire. This results in ߙሺߦሻ values of 0.83 (=100/120) and 

0.55 (=100/180), respectively. Moreover, given the range of 0-100, the risk exposure 

of using each individual evacuation option under different hazard types is estimated 

and is given in Table 5-6.  

 
Table 5-6 Scenario-dependent values of parameter ߚሺߦሻ in risk exposure function 

Scenario 
Evacuation option  

Exit Shelter Unfortified hallway Fortified hallway 
External malicious act 100 5 30 10 

Internal fire 0 20 100 40 

 

The travel time function is divided into 20 linear segments with respect to link 

flow, and the function parameters for passageways ܽ ∈  ௔଴ and ܿ௔, are estimatedݐ	,ଵܣ

from the Society of Fire Protection Engineers’ (SFPE) Handbook (2002) based on 
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passageway lengths, widths, and average speed of evacuees. These are presented in 

Table 5-7. Finally, four budget levels of $0, $7500, $15,000 and $42,000 (a sufficient 

budget for the construction of all the design options) are considered for experimental 

runs. 

 
Table 5-7 Values of passageway travel time function parameters 

Link 
ID 

Link 
type* 

 ௔଴ݐ
(s) 

ܿ௔ 
(evac./s) 

Link 
ID 

Link 
type* 

 ௔଴ݐ
(s) 

ܿ௔ 
(evac./s) 

Link 
ID 

Link 
type* 

 ௔଴ݐ
(s) 

ܿ௔ 
(evac./s) 

1 C 2.5 2 26 C 5.6 2 51 C 4.5 2 
2 C 3.0 2 27 C 2.7 2 52 C 4.3 2 
3 C 2.1 2 28 D 3.1 1 53 C 4.1 2 
4 D 3.1 1 29 C 4.0 3 54 D 4.9 1 
5 C 2.3 2 30 D 9.5 1 55 C 3.6 2 
6 C 2.6 2 31 D 4.1 1 56 C 3.5 2 
7 C 1.7 2 32 D 8.2 1 57 C 3.1 2 
8 C 2.1 2 33 D 6.6 1 58 C 4.7 2 
9 C 2.5 2 34 C 2.3 3 59 D 10.8 1 

10 C 3.2 2 35 D 2.8 1 60 C 0.8 3 
11 C 4.0 2 36 S 4.3 1 61 D 8.5 1 
12 C 4.3 2 37 C 4.6 2 62 D 1.7 1 
13 C 4.4 2 38 C 3.5 2 63 D 3.7 1 
14 C 3.6 2 39 C 3.4 2 64 S 2.4 1 
15 D 5.2 1 40 D 5.6 1 65 D 7.6 1 
16 D 5.6 1 41 S 2.8 1 66 C 3.0 3 
17 C 4.1 2 42 D 3.9 1 67 D 7.0 1 
18 C 4.3 2 43 D 2.1 1 68 D 7.9 1 
19 D 3.7 1 44 D 8.6 1 69 D 3.3 1 
20 C 3.8 2 45 D 2.0 1 70 D 3.9 1 
21 C 2.2 2 46 D 9.8 1 71 S 4.8 1 
22 C 2.4 2 47 D 9.7 1 72 D 3.2 1 
23 C 3.5 2 48 C 20.8 2 73 C 4.2 2 
24 C 3.4 2 49 D 6.4 1 74 C 3.8 2 
25 C 3.5 2 50 C 2.2 2 75 C 3.6 2 

*D=Door, C=Corridor, S=Stairs 

5.6.3. Experimental results 

The SP (BEDP-SP-UE, BEDP-SP-SO) and RO (BEDP-RO-UE and BEDP-RO-SO) 

model results are reported in Tables 5-8 and 5-9, respectively. The RO and SP 

approaches lead to different design solutions. Scenarios with external hazards 

frequently give the worst results in terms of evacuation risk exposure. Under these 
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scenarios, the RO design solutions are best, because they target these worst-case 

situations. 

Table 5-8 SP run results 

Problem BEDP-SP-UE BEDP-SP-SO 

Budget ($×1000) 0 7.5 15 42 0 7.5 15 42 
Selected design 

options 
- S7, H5 

S4, S7, 
H5, E3 

All - S7, H5 
S2, S7, 
H5, E3 

All 

Expected risk 61.8 36.7 34.7 26.6 58.3 33.8 31.0 25.8 
Max. risk 66.3 54.6 49.1 32.5 63.7 50.1 41.6 27.7 

Standard deviation 4.5 9.2 7.5 3.4 4.8 8.2 5.4 1.3 
 

 
 

Table 5-9 RO run results 

Problem BEDP-RO-UE BEDP-RO-SO 

Budget ($×1000) 0 7.5 15 42 0 7.5 15 42 
Selected design 

options 
- S6, E3 

S4, S5, 
H5, E3 

All - S6, E3 
S4, S6, 

H5 
All 

Expected risk 61.8 45.6 37.1 26.6 58.3 40.0 37.2 25.8 
Max. risk 66.3 53.3 47.5 32.5 63.7 46.5 39.7 27.7 

Standard deviation 4.5 5.5 5.3 3.4 4.8 3.7 2.1 1.3 
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As expected, modeling under SO results in slightly lower evacuation risk 

exposure compared to modeling under the UE condition for the same level of budget. 

This is also true in those cases in which the same optimal design solution was identified 

under SO or UE conditions. The difference in objective function values quantifies the 

benefits to the system of enforcing SO-derived routes and shelter/exit assignments. 

With a budget of $15,000, for example, the reduction in expected risk exposure 

achieved by enforcing the SO solution over allowing individuals the freedom to choose 

their own paths is approximately 12%. 

Moreover, the maximum as well as the dispersion of risk data points over all 

scenarios (measured by standard deviation) diminishes through a RO approach. That 

is, RO modeling results in better solutions. Similar reduction in standard deviation is 

noted when comparing implementations with SO and UE conditions. That is, as 

expected, the SO solutions outperform the UE solutions. Of course, their practical 

implementation requires some level of support to ensure that evacuees adhere to 

directives. 

The optimal design solutions were also determined under only internal fire 

scenarios given a budget of $7,500. The corresponding results are reported and 

compared with the design solutions under both internal and external scenarios in Table 

8 and resulting designs are depicted in Table 5-10. Identical solutions are found for SPs 

under UE and SO conditions. However, a design shift is made from fortification of 

hallway 5 to construction of exit 3 for internal only scenarios. Evacuating out of the 

building through an emergency exit is the least desired option under the external 

malicious act scenario. When only an internally produced hazard is considered, 
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evacuation from the building will produce best results. Such diametrically opposed 

optimal design solutions highlights the importance of pursuing a multi-hazard 

approach. 

Table 5-10 Optimal design solutions under internal only scenarios vs. internal and external scenarios 
(budget= $7,500) 

Problem 
Hazard type 

Internal  Internal & external 

BEDP-SP-
UE 

 

BEDP-SP-
SO 

BEDP-RO-
UE 

BEDP-RO-
SO 

 

5.7. Conclusions 

The mathematical program presented in this chapter allows the identification of 

building design solutions that ensure the safety of evacuees during emergencies. The 

program can be used to investigate different alternatives for the design of shelters, 

fortified hallways and exits in buildings, and permits exact solution that minimizes the 
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exposure of evacuees to risks under various hazard scenarios. This solution requires a 

novel approach that differs from previous studies on building evacuation, which deal 

mainly with the analysis of a predefined building design, as well as previous studies on 

regional evacuation problems, which have focused on the minimization of evacuation 

time for a single type of hazard. The explicit consideration of risk exposure includes 

not only the time evacuees will spend in different locations in the building (which in 

turn depends on the length of the path traveled as well as on  the number of people 

using that path), but also the level of protection from hazards that these locations 

provide. 

This study follows a multi-hazard approach, in which different types of hazards 

are simultaneously taken into account when searching for an optimal solution. This can 

be crucial, since for each type of hazard a different solution may produce the best 

results, but eventually a single design solution must be chosen. All other relevant works 

in the literature consider only a single hazard class. Furthermore, the program allows 

the use of an objective function based on expectation, which gives weight to a range of 

hazard scenarios, or a more conservative RO approach, which focuses on the worst-

case scenario in terms of evacuation risk exposure. 

Finally, the program allows different types of user responses to be considered 

by embedding either SO or UE conditions. The SO approach assumes that evacuees 

will be guided by a trained staff person who is fully informed of the conditions in the 

building. This may be appropriate in certain types of buildings (e.g. train stations), in 

certain circumstances in which a building may be used (e.g. a concert or sporting 

event), and for certain types of events for which such information can be provided (e.g. 



 

 

150 
 

an internal fire). The UE approach assumes that fully informed evacuees will 

themselves choose their evacuation paths and destinations, and that the evacuees have 

full information about their options. This may be appropriate in buildings with which 

the evacuees are highly familiar (e.g. their home or workplace), and for certain types 

of events for which they have been repeatedly trained or which they have repeatedly 

experienced.  
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Chapter 6: Travel Time Resilience of Roadway Networks in the 

Presence of Non-recurring Disruptions 

6.1. Introduction 

More than 4 million miles of U.S. public roads serve approximately 90% of passenger 

transport in the country (BTS, 2013). Natural and human-caused hazards threaten this 

roadway network, and the possibility for significant economic loss due to damage to 

this network is significant. Damage caused by Hurricane Irene to the Vermont 

transportation network amounted to $65 million (Lunderville, 2012). The collapse of 

the I-35W Bridge over the Mississippi River interrupted more than 140,000 daily 

vehicular trips causing more than $0.4 million increase in daily passenger trip costs due 

to traffic rerouting (Zhu et al., 2010). The repair and reconstruction costs of 

transportation infrastructure systems after Hurricane Katrina were estimated to have 

exceeded $32 billion (Sundeen and Reed, 2006).  

Transportation infrastructure systems are also attractive targets for malicious 

acts. Recent examples include bombings of passenger rail systems in London (2005), 

Madrid (2004), and Mumbai (2006). Since the 1990s, more than 25% of terrorist 

attacks have either targeted surface transportation systems or used them to provide 

access to other targets (Murray-Tuite, 2008). In addition to resulting physical damage, 

these events have long-term socio-economic and psychological impacts. Furthermore, 

they affect traveler decisions. Gordon et al. (2007) identified a 6% reduction in 

passenger trips and a sizable shift from public transit services to private automobiles 

during a two-year period following the 9/11 attack. 
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To prevent significant loss from disaster events, whether caused by a malicious 

act, an accident or technology failure, or nature, the transportation system must be 

resilient, and thus able to cope with disaster impact. Resilience is a measure of a 

network’s ability to absorb disruption consequences (see for example: Bruneau et al., 

2003; Rose, 2004; Sheffi, 2005; Cox et al., 2011; Chen and Miller-Hooks, 2012). 

Faturechi et al. (under review) provide a synthesis of approximately 200 works in the 

literature on resilience and other related measures, including coping capacity, 

robustness, flexibility and recovery, in the context of transportation. In addition to 

works that focus on resilience estimation, there are works that determine optimal pre-

event mitigation or preparedness strategies (Losada et al., 2012), post-event response 

actions (Chen and Miller-Hooks, 2012; Vugrin et al., 2010) or both (Miller-Hooks et 

al., 2012) with the goal of maximizing resilience. A single paradigm for understanding 

and optimizing resilience and related measures that builds on the existence or 

nonexistence of possible actions that can be taken pre- or post-disaster is provided in 

(Faturechi and Miller-Hooks, 2013).  

All prior works related to the maximization of resilience consider only 

applications in which resilience enhancing actions are chosen with the aim of achieving 

a system optimal solution. Such solutions inherently assume that the users of the system 

will follow the system optimal directives. For example, traffic might be centrally 

directed to use predetermined routes seeking a system optimum implementation. This 

is appropriate in many applications, such as in freight networks where the goods to be 

moved are not cognizant. Several relevant works involving network design under 

supply or demand uncertainty explicitly recognize the ability of people to make their 



 

 

153 
 

own decisions regarding their path choice, often with the goal of selfishly maximizing 

their own utility functions. This is discussed in detail in (Nagurney and Qiang 2012). 

These works generally involve a bilevel program structure, where design decisions, 

such as capacity expansion of a network link, are taken at the upper level, while the 

response of travelers to the supply offerings is assessed at the lower level. Supply 

uncertainty typically arises from day-to-day incidents, like traffic accidents, that may 

cause degradation in network performance. The impact of demand uncertainty is 

typically measured through variations in travel speeds and, thus, travel times. Chen et 

al. (2011) provide an extensive review of this literature. 

A few works in the literature employ a similar bilevel structure in addressing 

network design or enhancement problems in the context of disaster mitigation. 

Specifically, these works consider retrofit (Fan and Liu, 2010) and expansion (Lo and 

Tung, 2003; Dimitriou and Stathopoulos, 2008) actions with the aim of reducing the 

impact of potential disaster events on network performance. These works may be 

viewed as seeking to maximize system reliability or robustness through pre-event 

actions. Link capacities are only known with certainty post-disaster, however, these 

works build in the capacity uncertainty within the lower-level problem, where the 

system users take decisions only after the disaster scenario is realized. These earlier 

works suggest the use of inexact solution techniques in which the complicating 

complementarity constraints are relaxed or other heuristics methods. A general 

discussion on the properties of related problem classes and potential solution 

techniques can be found in (Patriksson, 2008).  
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In the earlier works where uncertainty in supply (e.g. link capacities) was 

considered in the lower-level, a UE is determined for each potential event scenario 

given upper-level decisions, and upper-level decisions are taken deterministically. 

Achieving a UE assumes fully-adaptive behavior by system users. The users are 

presumed to have perfect information about the state of the roadway network in 

choosing their paths. In the context of disaster events, this assumption might be valid 

only long after the event’s initial occurrence at which time system users have enough 

information to adapt their travel behavior to the new situation, and a new UE is 

established. However, shortly after the event occurrence, such an assumption is likely 

erroneous. Despite the rich literature on travel behavior, modeling such behavior under 

disruption has received little attention and is conceptually complex (Zhu et al., 2010).  

The subject of this lower-level problem is the period arising shortly after the 

occurrence of a disaster event in which short-term, contingency plans can be 

implemented. According to a user behavior survey of De Palma and Rochat (1999), 

users have high flexibility in their route choice shortly after the occurrence of an event. 

That is, user behavior is characterized as being semi-adaptive given limited 

information, including information on damage and completion of repairs, on network 

conditions (Iida et al., 2000). Thus, the lower-level problem is formulated as a Partial 

UE (PUE) traffic assignment problem. This concept of a PUE was introduced in 

Sumalee and Watling (2008).  

This chapter incorporates user behavior in the measurement and maximization 

of travel time resilience for roadway networks given under a set of possible disaster 

scenarios. The problem of quantifying and optimizing travel time resilience (i.e. the 
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Travel Time Resilience Problem (TTRP)) is formulated as a bilevel, three-stage 

stochastic program with lower-level equilibrium constraints. Both upper- and lower-

level problems involve capacity uncertainty. The upper-level includes a three-stage 

decision making process in which both pre- and post-event resilience enhancing actions 

may be taken. The decision process is informed by information that is revealed at each 

stage, as is compatible with the Disaster Management Life-Cycle (DMLC) (Waugh, 

2000): (1) pre-event expansion and retrofit as mitigation options to enhance the coping 

capacity of the road network, (2) pre-event preparedness where resources are acquired 

and prepositioned shortly in advance of a predicted event occurrence to facilitate 

response actions, and (3) post-event short-term response actions taken post-disaster to 

restore network capacity, minimize the extent of damage, and/or protect the remaining 

facilities. A multi-hazard perspective is taken, whereby actions that may be effective 

in one scenario may be ineffective in another. An exact Progressive Hedging algorithm 

is presented for solution of a single-level equivalent to this bilevel, three-stage 

stochastic program.  

 Whether addressing day-to-day incident-induced traffic congestion or disaster 

events, including pre-event or both pre- and post-event actions for enhancing system 

performance, or employing a UE or PUE, these problems involving uncertainty in 

available system capacity in which user response to network supply decisions is 

captured can be mathematically modeled as Stochastic Mathematical Programs with 

Equilibrium Constraints (SMPECs). Thus, they are a type of Stochastic Network 

Design Problem (SNDP). In addition to its contributions to resilience measurement, 

this chapter extends the study of SNDPs (SMPECs) generally. Key to its contributions 
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are its consideration of supply uncertainty in both upper- and lower-level problems, 

incorporation of a three-stage stochastic program in the upper-level to capture key 

relevant DMLC stages, use of a PUE in traffic assignment rather than a UE as is 

appropriate for the disaster-context, and application of cutting-edge linearization 

methodologies for dealing with complementarity constraints and nonlinear, 

nonseparable travel time functions.  

The next section introduces the problem formulation. This is followed by 

description of the solution method in Section 6-3, and application on an illustrative 

example in Section 6-4.  

6.2. Problem formulation 

At the upper level of the proposed TTRP, mitigation, preparedness and response actions 

are chosen with information from the lower level about the resulting total travel time 

for all O-D pairs that can be expected given upper level choices. The upper level acts 

as the leader, determining the optimal supply decisions. The lower level acts as the 

follower, wherein affected system users selfishly determine their paths with knowledge 

of the upper-level decisions. The optimal solution to the bilevel problem results at a 

Stackelberg equilibrium (Gibbons, 1992).  

The upper-level problem is a three-stage stochastic program that accounts for 

the occurrence of one of a set of potential disaster events, as well as the information 

that is revealed about these events and their consequences over time. In the first stage, 

possible disaster events and their consequences are known probabilistically. At the end 

of this stage, after some passage of time, certain attributes of the disaster event may be 

revealed, informing the second stage or equivalently creating a second information 
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state. Here, this information includes the disaster event type and its temporal and spatial 

properties/distributions. The third information stage arises, revealing a final 

information state, once the event has occurred and quick assessment of the disaster 

region has been completed.  

This information process can be captured through the concept of a scenario tree 

(Table 6-1) within which each node represents an information state and each link 

carries with it the probability of transitioning from one information state to the next 

over time (or stages). Decisions taken at each stage are depicted. The tree, thus, captures 

all possible outcomes, and each path from the root of the tree to a leaf (i.e. from the 

first-stage to the last) gives a possible scenario. Where a finite set of possible disaster 

scenarios is considered, the scenarios can be completely enumerated and are known a 

priori. Notation employed in describing the travel time resilience problem is given 

next, followed by the problem formulation. 

A network representation of the roadway system is exploited. The network’s 

topology is given by ܩ ൌ ሺܰ,  .is the set of links ܣ ሻ, where ܰ is the set of nodes andܣ

Associated with each link is its travel time and capacity limitation, both of which are 

random variables. Network performance is measured under a set of possible disaster 

scenarios, each of which is defined by a disaster event type, affected links and its impact 

the travel time and capacity of these links. 
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Table 6-1 DMLC stages the given the level of uncertainty realization 

Disaster 
event tree 

Informatio
n revealed 

 ଷߦ ଶߦ ∗ଵߦ

DMLC 
stage 

Mitigation Preparedness Response stage 

Decision 
variables 

઻ଵ ઻ଶሺߦଶሻ ઻ଷሺߦଷሻ 

 ଵ known deterministically from the startߦ *

6.2.1. A measure of travel time resilience in roadway networks 

Total travel time, ܜܜ, to serve a given O-D demand is chosen as the system-level 

measure of performance. The disruption profile given in figure 6-1, graphically 

captures the variation of a roadway network’s ܜܜ over the DMLC, from pre-event 

conditions in which a UE is reached until recovery is complete and a new UE state is 

established given new network conditions. Changes in the network conditions may 

result from long-term activities, such as reconstruction. Users adapt their travel 

behaviors to this new situation, creating a new UE. Immediately after the occurrence 

of a disaster event, i.e. post-event (confusion), capacity is degraded and users may not 

be able to ascertain the disaster’s impact on potential routes. Thus, they may be 

confused or indecisive, creating inefficiencies in the use of a network that is 

simultaneously performing below its norm. Post-response, travel times improve, 
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reaching a PUE, as the network capacity is partially restored to a satisfactory level 

through the implementation of short-term repairs, and users have received limited 

information on network conditions and improvements.  

 

Figure 6-1 Travel time disruption profile for passenger traffic in a roadway network, where ܌ܜܜ ,ܗܜܜ, 
and ܚܜܜ are the total travel times at the end of the pre-event, confusion, and response stages 

 

Total travel time is employed in assessing resilience, ்ܴ,஻, under a given 

budget, B, for taking mitigation, preparedness and response actions and given time 

allotted for response action implementation, T. As in equation (1), the reciprocal of 

total travel time achieved in reaching a PUE at the end of the response stage divided by 

the reciprocal of the total travel time achieved in a UE pre-event and pre-action is taken 

to quantify resilience.  

்ܴ,஻ ൌ
ሺܜܜ౨ሻష૚	

ሺܜܜ౥ሻష૚
ൌ ܠ౥,ܜ౥

ܠ౨,ܜ౨	
  (1) 

 

6.2.2. Notation 

The notation employed within the mathematical program is as follows: 

Response Recovery

P
re-event 

 ܜܜ

t 

 ୰ܜܜ

  ୭ܜܜ

  ୢܜܜ

C
onfusion 
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Sets   
ܣ = set of links, a, in the roadway network 
ܰ  = set of network nodes, ݊, representing roadway intersections and 

points of demand 
ܹ = set of origin-destination (OD) pairs ݓ 
 ௪ܭ = set of paths ݇ between OD pair ݓ ∈ W 
ܵ  = set of disaster types ݏ ∈ ܵ  
ܲ  = set of stages, ݌ ൌ 1,2,3, over which information is gained: ݌ ൌ

1 refers to  a pre-event stage where the current state is known 
deterministically, but possible future disaster events in terms 
of type, location and consequences are known only 
probabilistically; ݌ ൌ 2 refers to a later point in time when the 
event type and location are known deterministically (either 
pre- or post-event), but the impact on the system is unknown, 
and the probability distribution of the event’s potential or 
perceived consequences is updated; and ݌ ൌ 3 refers to the 
point in time after the event has occurred and all event 
characteristics, as well as the system state, are known 
deterministically.   

 
Modeling parameters 
ሼߦ௣ሽ௣  = information process capturing the state of knowledge,	ߦ, about 

the system’s current and future states at stage ݌ ∈  ଵߦ :ܲ
captures pre-event conditions deterministically and probability 
distributions of future conditions; ߦଶ specifies event type and 
location, but updates the probability distributions of future 
conditions that are associated with the impact of the event on 
the system;  ଷ specifies conditions of the network once theߦ
event is fully realized. 

۲ = vector of OD travel demand, ۲ ൌ ሾ… …,௪ܦ, ሿ∀ ࢀ	ݓ ∈ ܹ 
 ଵሻߦ୭ሺ܎ = known vector of pre-event path flows, ܎୭ሺߦଵሻ ൌ

ሾ… , ௞݂,௪
௢ ሺߦଵሻ, … ሿࢀ ∀ ݇ ∈ ݓ,௪ܭ ∈ ܹ  

,ଵሻߦ୭ሺܠ  ଵሻߦ୭ሺ܋ = known vectors of pre-event link flows and capacities, 
ଵሻߦ୭ሺܠ ൌ ሾ… , ,ଵሻߦ௔௢ሺݔ … ሿࢀ and ܋୭ሺߦଵሻ ൌ ሾ… , ܿ௔௢ሺߦଵሻ, … ሿࢀ 
∀ܽ ∈   respectively ,ܣ

 ଵሻߦ୭ሺܜ = vector of pre-event link travel times, ܜ୭ሺߦଵሻ ൌ
ሾ… , ,ଵሻߦ௔௢ሺݐ … ሿࢀ ∀ ܽ ∈  respectively ,ܣ

ଷሻ = vector of post-event link capacities under information stateߦሺୢ܋  ,ଷߦ
ଷሻߦሺୢ܋ ൌ ሾ… , ܿ௔ௗሺߦଷሻ, … ሿࢀ ∀ ܽ ∈  ܣ

∆  = link-path incidence matrix, ∆ൌ ൣ∆௔,௞,௪൧ ∀ ܽ ∈ ,ܣ ݇ ∈ ݓ,௪ܭ ∈
ܹ (∆௔,௞,௪ൌ 1 if path ݇ ∈   (௪ uses link ܽ, and = 0 otherwiseܭ

઩  = OD pair-path incidence matrix, ઩ ൌ ൣΛ௞,௪൧ for ∀݇ ∈ ݓ,௪ܭ ∈
ܹ(Λ௞,௪ ൌ 1 if path ݇ connects OD pair ݓ and Λ௞,௪ ൌ 0 
otherwise) 

મሺߦଷሻ  = post-event damage state matrix of paths under information 
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state ߦଷ,
મሺߦଷሻ ൌ ሾߨ௞,௪ሺߦଷሻሿ for ∀݇ ∈ ݓ,௪ܭ ∈ ଷሻߦ௞,௪ሺߨ) ܹ ൌ 1 if the 
path ݇ ∈ ଷሻߦ௞,௪ሺߨ ଷ, andߦ ௪ is affected givenܭ ൌ 0 otherwise)

દሺߦଷሻ  = disaster type matrix દሺߦଷሻ ൌ ሾ… , ,ଷሻߦ௦ሺ߆ … ሿࢀ, where 
ଷሻߦ௦ሺ߆ ൌ 1 if when reaching information state ߦଷ the disaster 
event that has occurred is of type ߆ ,ݏ௦ሺߦଷሻ ൌ 0 otherwise 

 ܤ = available budget  
ܶ  = response time  
 
1st stage variables  
઻ଵሺߦଵሻ  = vector of first-stage action variables, ઻ଵሺߦଵሻ ൌ

ሾ઻ଵ,ୣሺߦଵሻ, ઻ଵ,୦ሺߦଵሻሿࢀ where ઻ଵ,ୣሺߦଵሻ ൌ ሾ… , ௔ߛ
ଵ,௘ሺߦଵሻ, … ሿࢀ is 

the vector of link capacity expansion levels ∀	ܽ ∈  and ,ܣ
઻ଵ,୦ሺߦଵሻ ൌ ሾ… , ௔,௦ߛ

ଵ,௛ሺߦଵሻ, … ሿࢀ is the vector of link retrofit 
levels ∀ ܽ ∈ ,ܣ ݏ ∈ ܵ . Since ߦଵ is revealed from the start of 
the decision horizon, ઻ଵሺߦଵሻ is given as ઻ଵ for simplicity. 

 
2nd stage variables  
઻ଶሺߦଶሻ  = vector of disaster-specific link preparedness (resource 

availability – second stage) action levels given information 
state ߦଶ, ઻ଶሺߦଶሻ ൌ ሾ… , ௔,௦ଶߛ ሺߦଶሻ, … ሿࢀ ∀ ܽ ∈ ,ܣ ݏ ∈ ܵ 

 
3rd stage variables 
઻ଷሺߦଷሻ  = vector of disaster-specific link response (third-stage) levels 

under information state  ,ଷߦ
઻ଷሺߦଷሻ ൌ ሾ… , ௔,௦ଷߛ ሺߦଷሻ, … ሿࢀ ∀ ܽ ∈ ,ܣ ݏ ∈ ܵ  

,ଷሻߦ୰ሺܠ  ଷሻߦ୰ሺ܋ = vectors of post-response link flows and capacities under 
information state ଷሻߦ୰ሺܠ ,ଷߦ ൌ ሾ… , ,ଷሻߦ௔௥ሺݔ … ሿࢀ and ܋୰ሺߦଷሻ ൌ
ሾ… , ܿ௔௥ሺߦଷሻ, … ሿࢀ ∀ ܽ ∈  respectively ,ܣ

 ଷሻߦ୰ሺܜ = vector of post-response link travel time as a function of link 
flow and capacity, ܚܜሺߦଷሻ ൌ ሾ… , ,ଷሻߦ௔௥ሺݐ … ሿࢀ	∀	ܽ ∈  ܣ

 ଷሻߦ୰ሺ܎ = vector of post-response path flows under information state  ,ଷߦ
ଷሻߦ୰ሺ܎ ൌ ሾ… , ௞݂,௪

௥ ሺߦଷሻ, … ሿࢀ ∀ ݇ ∈ ݓ,௪ܭ ∈ ܹ 
ૌ୰ሺߦଷሻ   vector of post-response path travel times under information 

state	ߦଷ, ૌ୰ሺߦଷሻ ൌ ሾ… , ߬௞,௪
௥ ሺߦଷሻ, … ሿࢀ ∀ ݇ ∈ ݓ,௪ܭ ∈ ܹ 

 ଷሻߦ୰ሺܝ = vector of post-response shortest travel times under information 
state	ߦଷ, ܝ୰ሺߦଷሻ ൌ ሾ… , ௪௥ݑ ሺߦଷሻ, … ሿࢀ ∀ ݓ ∈ ܹ 
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6.2.3. TTRP 

The TTRP formulated as a bi-level, three-stage, stochastic, nonlinear program for 

maximizing travel time resilience of roadway networks is now presented. The program 

involves stochasticity in both upper- and lower-levels.  

Upper-level problem:  

ݔܽ݉
઻భ∈ડభ

కమܧ	 ൜ ݔܽ݉
઻మ∈ડమሺ઻భ,కమሻ

కయหకమܧ ൤ ݔܽ݉
઻య∈ડయሺ઻మ,కయሻ

்ܴ,஻ሺߦଷሻ൨ൠ   (2)

s.t.  

ܿ௔௥ሺߦଷሻ ൌ ൫1 ൅ ௔ߛ
ଵ,௘൯ሼܿ௔ௗሺߦଷሻ ൅ ∑ ଷሻሾܿ௔௢ߦሺ࢙߆ െ ܿ௔ଷሺߦଷሻሿሾߛ௔,௦

ଵ,௛
௦ ൅

௔,௦ଷߛ ሺߦଷሻሿሽ, ∀ܽ ∈   ܣ
(3)

௔,௦ଷݍ ሺߦଷሻ ൑ ܶ, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ   (4)

∑ ሼܾ௔
ଵ,௘ ൅ ∑ ଷሻൣܾ௔,௦ߦሺ࢙߆

ଵ,௛ ൅ ܾ௔,௦ଶ ሺߦଶሻ ൅ ܾ௔,௦ଷ ሺߦଷሻ൧ሽ௦∈ௌ௔∈஺ ൑ (5)  ܤ

 
In the upper-level formulation, the first-stage feasibility set for mitigation 

actions is given by ડଵ ൌ ሼ઻ଵ ቚߛ௔
ଵ,௘ ൑ ௔ߛ

ଵ,௘ ൑ ௔ߛ̅
ଵ,௘, 0 ൑ ௔,௦ߛ

ଵ,௛ ൑ 1, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ	ሽ with 

௔ߛ
ଵ,௘ and ̅ߛ௔

ଵ,௘ for link a as lower- and upper-bounds on capacity expansion level, 

respectively. The retrofit variable ߛ௔,௦
ଵ,௛ sets the desired fortification level for link a for 

each disaster type s. More than one retrofit action can be taken on the same link. ߛ௔,௦
ଵ,௛ 

ranges between 0 and 1, where ߛ௔,௦
ଵ,௛ ൌ 1 refers to the highest fortification level 

obtainable for link ܽ such that no damage will be incurred as a consequence of the 

occurrence of a disaster of type ݏ. The range on second-stage preparedness levels is 

defined by the feasibility set ડଶሺ઻ଵ, ଶሻߦ ൌ ሼ઻ଶሺߦଶሻห0 ൑ ௔,௦ଶߛ ሺߦଶሻ ൑ 1, ∀ܽ ∈ ,ܣ ݏ ∈ ܵሽ, 

where ߛ௔,௦ଶ ሺߦଶሻ ൌ 1 means all resources required to repair damage following a disaster 

of type ݏ are provided in advance upon realizing information state ߦଶ. ડଷሺ઻ଶ, ଷሻߦ ൌ

ሼ઻ଷሺߦଷሻห0 ൑ ௔,௦ଷߛ ሺߦଷሻ ൑ 1, ∀ܽ ∈ ,ܣ ݏ ∈ ܵሽ is the third-stage response level feasibility 
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set for information state ߦଷ, where ߛ௔,௦ଷ ሺߦଷሻ ൌ 1 infers that capacity along link ܽ is 

restored to the pre-event capacity. 

The objective function (2) seeks to maximize the expectation of network 

resilience over all possible scenarios given by each possible information state ߦଷ. The 

numerator of the resilience measure ்ܴ,஻ሺߦଷሻ, ܠ୭, -୭, is constant and scenarioܜ

independent, representing UE-based total travel time under pre-event, pre-action 

conditions. Thus, the objective seeks to minimize the post-response expected total 

travel time forming the denominator of ்ܴ,஻ሺߦଷሻ, ܠ୰ሺߦଷሻ,  ଷሻ. Thus, objectiveߦ୰ሺܜ

function (2) can be replaced by equation (6):  

݉݅݊
઻భ∈ડభ

కమܧ	 ൜ ݉݅݊
઻మ∈ડమሺ઻భ,కమሻ

కయหకమܧ ൤ ݉݅݊
઻య∈ડయሺ઻మ,కయሻ

ܠ୰ሺߦଷሻ,  ଷሻ൨ൠߦ୰ሺܜ (6)

 

Post-response link capacity is defined in equations (3) as a function of the links’ 

pre-action, pre-event capacity, as well as first-stage link expansion and retrofit 

decisions and third-stage link response decisions. The effects of decisions are presumed 

to be linear to the original link capacities. Inclusion of parameter ߆௦ሺߦଷሻ ensures that 

the effects of specialized link retrofit and response actions have effects that are 

consistent with disaster type s and associated information state ߦଷ. Second-stage link 

preparedness actions do not directly affect link capacity, and are not included in the 

equation. 

Constraints (4) guarantee that, for each information state ߦଷ, all response 

actions that are to be taken are completed before the end of the response period, i.e. by 

time ܶ . The budget limitation is assured through constraint (5). Link expansion, retrofit, 

preparedness, and response costs used in constraint (5), as well as response 
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implementation times of constraints (4) are as assumed to be functions of action level 

as described through constraints (7) - (11).  

ܾ௔
ଵ,௘ ൌ തܾ

௔
ଵ,௘ߛ௔

ଵ,௘, ∀ܽ ∈  (7) ܣ

ܾ௔,௦
ଵ,௛ ൌ ൫1 ൅ ௔ߛ

ଵ,௘൯ തܾ௔,௦
ଵ,௛ߛ௔,௦

ଵ,௛, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ  (8) 
ܾ௔,௦ଶ ሺߦଶሻ ൌ തܾ

௔,௦
ଶ ሺߦଶሻߛ௔,௦ଶ ሺߦଶሻ, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ  (9) 

ܾ௔,௦ଷ ሺߦଷሻ ൌ ൫1 ൅ ௔ߛ
ଵ,௘൯൛തܾ௔,௦ଷ ሺߦଷሻ

െ ൣതܾ௔,௦ଷ ሺߦ૜ሻ െ ܾ௔,௦ଷ ሺߦଷሻ൧ߛ௔,௦ଶ ሺߦଶሻൟ ቈ
ܿܽ
݋ െ ܿܽ

݀ሺߦଷሻ
݋ܽܿ

቉ ௔,௦ଷߛ ሺߦଷሻ, 

∀ܽ ∈ ,ܣ ݏ ∈ ܵ 

(10)

௔,௦ଷݍ ሺߦଷሻ ൌ ൫1 ൅ ௔ߛ
ଵ,௘൯ ቄݍത௔,௦ଷ ሺߦଷሻ

െ ቂݍത௔,௦ଷ ሺߦଷሻ െ ௔,௦ଷݍ ሺߦଷሻቃ ௔,௦ଶߛ ሺߦଶሻቅ ቈ
ܿܽ
݋ െ ܿܽ

݀ሺߦଷሻ

݋ܽܿ
቉ ௔,௦ଷߛ ሺߦଷሻ, 

∀ܽ ∈ ,ܣ ݏ ∈ ܵ 

(11)

where തܾ௔
ଵ,௘ and തܾ௔,௦

ଵ,௛ are first-stage unit costs of expanding link a or, for a given 

disaster event of type s, retrofitting link a, respectively. The implications for retrofit 

costs of link expansion are captured in constraints (8). In constraints (9), തܾ௔,௦ଶ ሺߦଶሻ 

denotes second-stage unit costs of link preparedness actions for a given disaster event 

of type s and information state ߦଶ. Third-stage unit costs and times required for 

implementing response actions are defined in constraints (10) and (11), respectively. 

Both are functions of response and preparedness levels, wherein the effects of 

preparedness in advance of an event affect the efficiency of post-event response 

actions. ܾ௔,௦ଷ ሺߦଷሻ	ሾݍ௔,௦ଷ ሺߦଷሻሿ and തܾ௔,௦ଷ ሺߦ૜ሻ	ሾݍത௔,௦ଷ ሺߦ૜ሻሿ are post-disaster (having realized 

information state ߦ૜) costs [times] of complete reconstruction of link ܽ. In the former, 

it is presumed that no preparedness actions were taken, while in the latter all appropriate 

preparedness actions were taken. Thus, cost or time for taking response actions 

accounts for related preparedness actions having been taken. Incurred costs or 

implementation times are also a function of damage-level. Thus, an additional terms, 
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௖ೌ
೚ି௖ೌ

೏൫కయ൯

௖ೌ
೚ , is included in constraints (9) and (1) to capture the increasing expense and 

effort required to address situations with higher damage levels. 

The link flows needed to compute the objective function of the upper-level 

problem are determined through solution of the lower-level problem (12) for each 

information state ߦଷ. The lower-level problem seeks a flow pattern that achieves a PUE 

given actions taken in solution of the upper-level problem. In a PUE, user behavior is 

characterized as semi-adaptive and assumes that only those who are affected are likely 

to reconsider their original route decisions. 

Lower-level problem:  

݉݅݊
ܠ౨∈ஐܠ

౨ሺకయሻ
∑ ׬ ,ݒ௔௥ሺݐ ܿ௔௥ሺߦଷሻሻ

௫ೌೝሺకయሻ
଴ ௔,ݒ݀   (12) 

 

where Ωܠ୰ሺߦଷሻ ൌ ሼܠ୰ሺߦଷሻ|ܠ୰ሺߦଷሻ ൌ ଷሻߦ୰ሺ܎∆ ൅ ∆ሾ۷ െ diagમሺߦଷሻሿ܎୭, ଷሻߦ୰ሺ܎ ൌ diagમሺߦଷሻ܎୭, ઩܎୭ ൌ

۲, ଷሻߦ୰ሺ܎ ൒ 0ሽ is a feasibility vector set of post-response link flows in which the diagonal 

matrix diagમሺߦሻ ൌ ൥
⋱ 0 0
0 3ሻߦ௞,௪ሺߨ 0
0 0 ⋱

൩, ∀	݇ ∈ ݓ,௪ܭ ∈ ܹ, and ۷ ൌ ൥
⋱ 0 0
0 1 0
0 0 ⋱

൩ is the 

identity matrix of the same size. The formulation is path-based and is adapted from 

(Sumalee and Watling (2008). The equation ܠ୰ሺߦଷሻ ൌ ଷሻߦ୰ሺ܎∆ ൅ ∆ሾ۷ െ diagમሺߦଷሻሿ܎୭, 

where ܎୰ሺߦଷሻ ൌ diagમሺߦଷሻ܎୭, defines the link flow as the summation of the post-

response flows of affected paths using that link, as well as the pre-event flows of 

unaffected paths. That is the summation of post-response flows on affected paths 

between an OD pair ݓ equals the total pre-event flow between that OD pair. Note that 

presuming the traffic demand adjusts to pre-event pattern in spite of unrepaired damage 

(Iida et al., 2000), a fixed demand vector, ۲ ൌ ሾ… , …,௪ܦ ሿࢀ for ∀ݓ ∈ ܹ is assigned to 

the network through ઩܎୭ ൌ ۲. 
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6.3. Solving the TTRP 

The bilevel TTRP (2)-(12) is solved by first reducing it to a single-level problem as is 

often done in the literature. To accomplish this, the lower-level problem is eliminated 

and corresponding Karush–Kuhn–Tucker (KKT) conditions are embedded within the 

upper-level problem. Larsson and Patriksson (1995) showed, in a similar context 

involving a bilevel program with a UE in the lower level, that use of the KKT 

conditions in place of the lower-level problem is both necessary and sufficient for 

optimality. Their proof can be directly extended to this application. 

The resulting single-level program is a three-stage stochastic program with 

nonlinear objective and constraints, e.g. complementarity constraints. Obtaining a 

globally optimal solution to such a program is formidable. Thus, linear approximations 

are employed. 

Complementarity constraints are transformed into mixed integer constraints 

through Schur’s decomposition (Horn and Johnson, 1985) using Special Ordered Sets 

of Type 1 (SOS1) variables (Siddiqui and Gabriel, 2013). SOS1 variables are defined 

as a set of variables at most one of which can be non-zero. That is, they are employed 

to mathematically capture the “if-then” condition in UE constraints implying that a path 

can take flow only if it is the shortest path. Alternative methods use a disjunctive 

constraint approach (e.g. Wang and Lo (2010)), employing binary variables and 

exploiting the global optimality of MILP solutions. This type of approach requires 

extensive computational resources. Moreover, the corresponding solutions are highly 

sensitive to the value of a specific constant introduced in their mathematical 

formulation. 



 

 

167 
 

Moreover, cutting-edge linearization techniques from Vielma and Nemhauser 

(2011) are employed to handle non-separable continuous travel time functions, as well 

as nonlinear design decision terms. These transformations are described in the next two 

subsections. They lead to a single-level, three-stage Stochastic Mixed Integer Linear 

Problem (SMILP). An exact solution technique based on concepts of the Progressive 

Hedging Algorithm (PHA) initially introduced in (Rockefeller and Wets, 1991) is 

presented in Subsection 6.3.3. 

6.3.1. Single-level TTRP 

The single-level problem can be formulated encompassing the upper-level problem 

with addition of the UE constraints (14) and (15) given the feasibility set Ωܠ୰ሺߦଷሻ 

representing the lower-level problem:  

݉݅݊
઻భ∈ડభ

కమܧ	 ൜ ݉݅݊
઻మ∈ડమሺ઻భ,కమሻ

కయหకమܧ ൤ ݉݅݊
઻య∈ડయሺ઻మ,కయሻ,ܠ౨∈ஐܠ

౨ሺకయሻ
ܠ୰ሺߦଷሻ,  ଷሻ൨ൠ (13)ߦ୰ሺܜ

s.t.  

(3)-(5)  

ଷሻߦሾૌ୰ሺࢀଷሻߦ୰ሺ܎ െ ଷሻሿߦ୰ሺܝ ൌ 0    (14) 

ૌ୰ሺߦଷሻ െ ଷሻߦ୰ሺܝ ൒ 0  (15) 
 

where, ૌ୰ሺߦଷሻ ൌ ∆ିଵܜ୰ሺߦଷሻ ൌ ሾ… , ߬௞,௪
௥ ሺߦଷሻ, … ሿࢀ, is the vector of post-response path 

travel time, and ܝ୰ሺߦଷሻ ൌ ሾ… , ௪௥ݑ ሺߦଷሻ, … ሿࢀ is the vector of post-response shortest path, 

for ∀݇ ∈ ݓ,௪ܭ ∈ ܹ given information state ߦଷ. The resulting problem is a three-stage, 

nonlinear, nonconvex stochastic problem. 

6.3.2. Linear approximations 

 a) Complementarity constraints  
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The approach for transforming complementarity constraints with linear components 

into an equivalent set of linear constraints using Schur’s decomposition and SOS1 

variables introduced in (Siddiqui and Gabriel, 2013) is employed here for handling the 

UE constraints (14). Specific to the TTRP, this decomposition of constraints (14) is 

given by equations (16)-(18).  

۵୰ሺߦଷሻ ൌ
౨൫కయ൯ሿܝ౨൫కయ൯ାሾૌ౨൫కయ൯ି܎

ଶ
,  (16) 

۶୰ሺߦଷሻ ൌ
౨൫కయ൯ሿܝ౨൫కయ൯ିሾૌ౨൫కయ൯ି܎

ଶ
,   (17) 

۵୰ሺߦଷሻ۵୰ሺߦଷሻࢀ െ ۶୰ሺߦଷሻ۶୰ሺߦଷሻࢀ ൌ 0,  (18) 

 

where ۵୰ሺߦଷሻ and ۶୰ሺߦଷሻ are Schur’s decomposition vector functions. Since 

,ଷሻߦሺܚ܎ ૌ୰ሺߦଷሻ െ ଷሻߦ୰ሺܝ ൒ 0, ۵୰ሺߦଷሻ ൒ 0. Thus, only the positive square root of 

۵୰ሺߦଷሻ ∙ ۵୰ሺߦଷሻࢀ is feasible and bilinear constraints (18) can be reformulated as in (19).  

۵୰ሺߦଷሻ െ |۶୰ሺߦଷሻ| ൌ 0  (19) 

To eliminate the absolute value function, |۶୰ሺߦሻ|, constraints (19) are 

transformed through the introduction of SOS1 variables ۶୰ାሺߦሻ and ۶୰ିሺߦሻ. 

۵୰ሺߦሻ െ ሾ۶୰ାሺߦሻ ൅ ۶୰ିሺߦሻሿ ൌ 0.  (20) 

 

 b) Objective function  

The objective (13) of the TTRP seeks to minimize the expectation of total travel time 

incurred along the shortest time paths over all O-D pairs. The objective requires the 

multiple of flow and travel time variables, and thus, is nonlinear. A technique for 

linearizing the objective function introduced by Wang and Lo (2010) is employed. This 

technique exploits common travel time properties of active paths for each O-D pair 
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under UE conditions. Given fixed demand vector, ۲ ൌ ሾ… …,௪ܦ, ሿࢀ, and information 

state ߦ, objective (13) can be replaced by (21). 

݉݅݊
઻భ∈ડభ

కమܧ	 ൜ ݉݅݊
઻మ∈ડమሺ઻భ,కమሻ

కయหకమܧ ൤ ݉݅݊
઻య∈ડయሺ઻మ,కయሻ,ܠ౨∈ஐܠ

౨ሺకయሻ
۲,ܝ୰ሺߦଷሻ൨ൠ (21)

  

c) Link travel time function  

The link travel time is estimated using the Bureau of Public Roads (BPR) function 

(equation (22)). Given post-response link flow and capacity random variables, for a 

given link ܽ ∈  .this function is a two-dimensional, nonseparable function ܣ

ଷሻߦ௔௥ሺݐ ൌ ଷሻߦ௔଴ሺݐ ൅ ݉௔ ቂ
௫ೌೝ൫కయ൯

௖ೌ
ೝሺకయሻ

ቃ
௡ೌ
, ܽ ∈ (22)   ܣ

where ݐ௔଴ሺߦଷሻ is the link free flow travel time, and ݉௔ and ݊௔ are BPR function 

parameters (herein, ݉௔ ൌ 0.15, and ݊௔ ൌ 4). In this chapter, a novel logarithmic 

piecewise linearization technique introduced by Vielma and Nemhauser (2011) for 

general multidimentional functions is applied herein in linearizing this link travel time 

function. It has been shown to outperform other existing piecewise linearization 

techniques (Vielma et al., 2010). The following describes the application of this 

technique for the TTRP. 

Using this method, link flow and capacity variable domains are partitioned into 

segments. The travel time domain is thus defined by a two-dimensional flow-capacity 

domain. In general, any point in an ݊-dimensional domain can be uniquely represented 

by a convex combination of ݊ +1 points (Carathéodory, 1911). For two-dimensions, 

three points, thus, are required, and therefore, the link travel time domain can be 

partitioned into non-overlapping triangles. 
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 Any flow-capacity pair falls within a single triangle and is given by a convex 

combination of the associated triangle’s corner-point coordinates. The link travel time 

values associated with the corner-points are directly calculated using equation (29). 

Vielma and Nemhauser’s (2011) method identifies the active triangle containing the 

flow-capacity pair under consideration, and approximates the corresponding travel time 

through the convex combination of the travel time values at the corner-points of this 

active triangle. Binary variables and constraints are introduced to determine the active 

triangle. The number of variables and constraints is logarithmic in the number of 

segments, and the active triangle is determined through a binary branching scheme of 

a logarithmic depth in three steps. 

Let ݔ௔௥ሺߦଷሻ and ܿ௔௥ሺߦଷሻ be represented by the vector of segments ܠሷ ൌ

ሾ… , ,ሷ௔,௜ݔ … ሿ and ܋ሷ ൌ ሾ… , ሷܿ௔,௝, … ሿ, for ∀݅, ݆ ∈ ௔ܸ ൌ ሼ0,1, … ,  ௔ݒ ௔ሽ, respectively, whereݒ

is a power of two. The domain of the corresponding travel time function will be ሾ0,  ௔ሿଶݒ

with the segments represented within the matrix ܜሷ ൌ ሾ… , ,ሷ௔,௜ݔ௔௥൫ݐ ሷܿ௔,௝൯, … ሿ, for	∀ܽ ∈  .ܣ

This domain is triangulated using the ܬଵ Union Jack triangulation approach (originally 

proposed by Todd (1977)).  

Figure 6-1 graphically depicts the ܬଵ Union Jack triangulation of the two-

dimensional domain of the link travel time where the domain ሾ0,  ௔ሿଶ is covered byݒ

copies of a 2×2 size square (highlighted in Figure 6-1), each encompassing 8 triangles. 

The entire domain is partitioned into 2ݒ௔
ଶ triangles, accordingly. As shown in Figure 

6-2, there are groups of white and gray triangles such that each square contains one 

triangle of each color.  
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Figure 6-2 ܬଵ Union Jack triangulation of link travel time domain 

 ሷ௔,௜ݔ ଷሻ are formulated as convex piecewise-linear functions ofߦଷሻ and ܿ௔௥ሺߦ௔௥ሺݔ

and ሷܿ௔,௝ points, respectively, in equations (23)-(26).  

ଷሻߦ௔௥ሺݔ ൌ ∑ ሷ௔,௜௜,௝∈௏ೌݔ ߱௔,௜,௝ሺߦଷሻ, ∀ܽ ∈ ܣ   (23) 

ܿ௔௥ሺߦଷሻ ൌ ∑ ሷܿ௔,௝߱௔,௜,௝௜,௝∈௏ೌ ሺߦଷሻ, ∀ܽ ∈  ܣ (24) 

∑ ߱௔,௜,௝ሺߦଷሻ ൑ 1௜,௝∈௏ೌ , ∀ܽ ∈ ܣ   (25) 
߱௔,௜,௝ሺߦଷሻ ൒ 0,			∀ܽ ∈ ,ܣ ݅, ݆ ∈ ௔ܸ (26) 

where ߱௔,௜,௝ሺߦଷሻ are convex combination weights under information state ߦଷ. 

Accordingly,   

ଷሻߦ௔௥ሺݐ ൌ ∑ ,ሷ௔,௜ݔ௔௥ሺݐ ሷܿ௔,௝ሻ߱௔,௜,௝ሺߦଷሻ௜,௝∈௏ೌ , ߱௔,௜,௝ሺߦଷሻ ൒ 0. . (27) 
In the first step, an independent SOS1 type branching is employed to select the 

active column of 1×1 size squares containing the active triangle. Let ܸത௔ ൌ ሼ1,… ,  ௔ሽ beݒ

the set of columns in the link travel time domain for ܽ ∈  A corresponding set is .ܣ

defined as ܮ௔ ൌ ሼ1,… , logଶ  ௔ሽ containing a logarithmic number of columns. Letݒ

:௔ܤ തܸ௔ → ሼ0,1ሽ୪୭୥మ ௩ೌ be a general bijective function with special structure such that 

௔ሺ݆ܤ ௔ሺ݆ሻ andܤ ൅ 1ሻ are allowed to be different in at most one vector element for ∀݆ ∈

 ଷሻߦ௔௥ሺݔ

ߦሷ௔,௩ೌሺݔ
ଷሻ     

ߦሷ௔,௩ೌିଵሺݔ
ଷሻ  

ଷሻߦሷ௔,଴ሺݔ       ܿ௔௥ሺߦሻ 

ଷሻߦሷ௔,ଵሺݔ       

ଷሻߦሷ௔,ଶሺݔ       

ሷܿ௔
,௩
ೌ ሺߦ

ଷሻ

ሷܿܽ,ݒ
ܽ ି
ଵ ሺߦ

3ሻ 

ሷܿ௔
,ଶ ሺߦ

ଷሻ 

ሷܿܽ,1 ሺߦ
3ሻ       

ሷܿܽ,0 ሺߦ
3ሻ 
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௔ܸ\ሼݒ௔ሽ. Let ߪሺܤ௔ሻ be the support of vector ܤ௔. SOS1 type branching is implemented 

on the logarithmic set ܮ௔ to find the active column. 

∑ ∑ ߱௔,௜,௝ሺߦଷሻ௜∈௃మ
శሺ௟,஻ೌ,௩ೌሻ௝∈௏ೌ ൑ ܺ௔,௟ሺߦଷሻ, ∀ܽ ∈ ,ܣ ݈ ∈   ௔ܮ

(28) ∑ ∑ ߱௔,௜,௝ሺߦଷሻ௜∈௃మ
బሺ௟,஻ೌ,௩ೌሻ௝∈௏ೌ ൑ ൣ1 െ ܺ௔,௟ሺߦଷሻ൧, ∀ܽ ∈ ,ܣ ݈ ∈    ௔ܮ

ܺ௔,௟ሺߦଷሻ ∈ ሼ0,1ሽ,			∀ܽ ∈ ,ܣ ݈ ∈  ,௔ܮ
where ܬଶ

ାሺ݈, ,௔ܤ ௔ሻݒ ൌ ሼ݆ ∈ ௔ܸ: ∀݅ ∈ തܸ௔ሺ݆ሻ, ݈ ∈ ଶܬ ௔ሺ݅ሻሿሽ andܤሾߪ
଴ሺ݈, ,௔ܤ ௔ሻݒ ൌ ሼ݅ ∈

௔ܸ: ∀݅ ∈ തܸ௔ሺ݆ሻ, ݈ ∉  ௔ሺ݅ሻሿሽ. Next, a similar SOS1 type branching is employed toܤሾߪ

select the active row of 1×1 size squares which contains the active triangle.  

∑ ∑ ߱௔,௜,௝ሺߦଷሻ௝∈௃మ
శሺ௟,஻ೌ,௩ೌሻ௜∈௏ೌ ൑ ,ଷሻߦ௔,௟ሺܥ ∀ܽ ∈ ,ܣ ݈ ∈   ௔ܮ

(29) ∑ ∑ ߱௔,௜,௝ሺߦଷሻ௝∈௃మ
శሺ௟,஻ೌ,௩ೌሻ௜∈௏ೌ ൑ ൣ1 െ ,ଷሻ൧ߦ௔,௟ሺܥ ∀ܽ ∈ ,ܣ ݈ ∈    ௔ܮ

ଷሻߦ௔,௟ሺܥ ∈ ሼ0,1ሽ,			∀ܽ ∈ ,ܣ ݈ ∈  ௔ܮ
Given a square (i.e. equal number of columns and rows) in the link travel time 

domain തܸ௔ ൌ ሼ1,… , ܽ	,௔ሽݒ ∈  can also be used to represent the rows. The active ,ܣ

square is, thus, determined through the selection of active columns and rows.  

In the final step, the active triangle is determined. A single binary variable, 

ܽ ଷሻ, forߦ௔ሺܫ ∈  is introduced in the following constraints to identify the color (grey ,ܣ

or white) of the active triangle (ܫ௔ሺߦଷሻ ൌ 1 if the active triangle is white, and ܫ௔ሺߦଷሻ ൌ

0, otherwise).  

∑ ∑ ߱௔,௜,௝ሺߦଷሻ௝∈ைೌ௜∈ாೌ ൑ ,ଷሻߦ௔ሺܫ ∀ܽ ∈ ܣ      

(30) ∑ ∑ ߱௔,௜,௝ሺߦଷሻ௝∈ாೌ௜∈ைೌ ൑ ሾ1 െ ,ଷሻሿߦ௔ሺܫ ∀ܽ ∈   ܣ
ଷሻߦ௔ሺܫ ∈ ሼ0,1ሽ,			∀ܽ ∈  ܣ

where ܧ௔ ൌ ሼ0,2, … , ௔ሽݒ ⊂ ௔ܸ and ௔ܱ ൌ ሼ1,3, … , ௔ݒ െ 1ሽ ⊂ ௔ܸ are subsets of even and 

odd elements of ௔ܸ, ∀ܽ ∈   .respectively ,ܣ

A schematic of the logarithmic three-step process for selecting the active 

triangle in a general travel time domain is given in Figure 6-3. Suppose that each axis 

is partitioned into two segments; that is, the domain contains 8 ሺൌ 2 ൈ 2ଶ) triangles 

half of which are white and the other half of which are gray as illustrated in the figure. 
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The gray triangle P is targeted as the active one. One binary variable (=logଶ 2) is 

introduced to select the active column, ଵܺ, and another one to select the active row,	ܥଵ. 

Binary variable, ܫଵ, is added and determines the triangle’s color. First, the active 

column is selected by setting ଵܺ ൌ 0. Setting ܥଵ ൌ 0 in the second step, the active row 

is determined that when coupled with the first step column selection reveals the active 

square.  

Finally, ܫଵ ൌ 0 indicates the gray color of the active triangle and distinguishes 

it for the other white triangle in the active square. Note that the black areas in this figure 

indicate the union of triangles forbidden to be selected in the process based on the 

setting of the corresponding binary variables. 

 

Figure 6-3 The schematic of the three-step process of active triangle selection in Vielma and 

Nemhauser (2011)’s logarithmic piecewise linearization method 

Having ݒ௔ as a power of two involves no loss of generality. One might define 

a link travel time domain ሾ0,max	ሺݒ௔௫,  ௔௖ሻሿଶ in which link flow and capacity areݒ
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generally partitioned into ݒ௔௫ and ݒ௔௖, respectively, with the following extra constraints 

for ∀ܽ ∈  :ܣ

∑ ∑ ߱௔,௜,௝ሺߦଷሻ
ଶඃ೗೚೒మሾ೘ೌೣ൫ೡೌ

ೣ,ೡೌ
೎ ൯ሿඇି௩ೌ

೎

௝ୀ଴
ଶඃ೗೚೒మሾ೘ೌೣ൫ೡೌ

ೣ,ೡೌ
೎ ൯ሿඇି௩ೌ

ೣ

௜ୀ଴ ൑ 0, ∀ܽ ∈      	.ܣ (31) 

 

 d) Design decision terms  

There are bilinear action level terms ߛ௔
ଵ,௘ ∙ ௔,௦ߛ

ଵ,௛ and ߛ௔
ଵ,௘ ∙ ௔,௦ଷߛ ሺߦଷሻ in post-response link 

capacity equations (3) and link retrofit cost equations (8), as well as trilinear terms ߛ௔
ଵ,௘ ∙

௔,௦ଶߛ ሺߦଶሻ ∙ ௔,௦ଷߛ ሺߦଷሻ expressed in response action time and cost equations (10)-(11).  

The bilinear terms are approximated using the LP relaxation of their convex 

envelops introduced by McCormick (1976). Let first-stage variable ߮௔,௦ଵ ൌ ௔ߛ
ଵ,௘ ∙ ௔,௦ߛ

ଵ,௛ 

and third-stage variable ߶௔,௦ଷ ሺߦଷሻ ൌ ௔ߛ
ଵ,௘ ∙ ௔,௦ଷߛ ሺߦଷሻ ∀ܽ ∈ ,ܣ ݏ ∈ ܵ. The convex 

relaxation of the first bilinear terms is implemented through change of variables in (3) 

and (8), and addition of constraints (32) as the outer-approximation of the rectangular 

feasible region ቂߛ௔
ଵ,௘, ௔ߛ̅

ଵ,௘ቃ ൈ ቂߛ௔,௦
ଵ,௛, ௔,௦ߛ̅

ଵ,௛ቃ giving upper and lower bounds on ߛ௔
ଵ,௘ and 

௔,௦ߛ
ଵ,௛, respectively. 

߮௔,௦ଵ ൒ ௔ߛ
ଵ,௘ߛ௔,௦

ଵ,௛ ൅ ௔ߛ
ଵ,௘ߛ௔,௦

ଵ,௛ െ ௔ߛ
ଵ,௘ߛ௔,௦

ଵ,௛, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ 

(32) 
 

߮௔,௦ଵ ൒ ௔ߛ̅
ଵ,௘ߛ௔,௦

ଵ,௛ ൅ ௔ߛ
ଵ,௘̅ߛ௔,௦

ଵ,௛ െ ௔ߛ̅
ଵ,௘̅ߛ௔,௦

ଵ,௛, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ 
߮௔,௦ଵ ൑ ௔ߛ̅

ଵ,௘ߛ௔,௦
ଵ,௛ ൅ ௔ߛ

ଵ,௘ߛ௔,௦
ଵ,௛ െ ௔ߛ̅

ଵ,௘̅ߛ௔,௦
ଵ,௛, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ 

߮௔,௦ଵ ൑ ௔ߛ
ଵ,௘ߛ௔,௦

ଵ,௛ ൅ ௔ߛ
ଵ,௘ߚ௔௦ െ ௔ߛ

ଵ,௘̅ߛ௔,௦
ଵ,௛, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ 

 

Given boundaries ߛ௔
ଵ,௘ ൑ ௔ߛ

ଵ,௘ ൑ ௔ߛ̅
ଵ,௘ and 0 ൑ ௔,௦ߛ

ଵ,௛ ൑ 1, constraints (32) are 

reformulated as in (33).  

߮௔,௦ଵ ൒ ௔ߛ
ଵ,௘ߛ௔,௦

ଵ,௛,			∀ܽ ∈ ,ܣ ݏ ∈ ܵ 
(33) 

߮௔,௦ଵ ൒ ௔ߛ̅
ଵ,௘ߛ௔,௦

ଵ,௛ ൅ ௔ߛ
ଵ,௘ െ ௔ߛ̅

ଵ,௘, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ 
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߮௔,௦ଵ ൑ ௔ߛ̅
ଵ,௘ߛ௔,௦

ଵ,௛,			∀ܽ ∈ ,ܣ ݏ ∈ ܵ 

߮௔,௦ଵ ൑ ௔ߛ
ଵ,௘ߛ௔,௦

ଵ,௛ ൅ ௔ߛ
ଵ,௘ െ ௔ߛ

ଵ,௘, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ 
 

Similarly, ߛ௔
ଵ,௘ ൑ ௔ߛ

ଵ,௘ ൑ ௔ߛ̅
ଵ,௘ and 0 ൑ ௔,௦ଷߛ ሺߦଷሻ ൑ 1 produces constraints (34).  

߶௔,௦ଷ ሺߦଷሻ ൒ ௔ߛ
ଵ,௘ߛ௔,௦ଷ ሺߦଷሻ,			∀ܽ ∈ ,ܣ ݏ ∈ ܵ 

(34) 
߶௔,௦ଷ ሺߦଷሻ ൒ ௔ߛ̅

ଵ,௘ߛ௔,௦ଷ ሺߦଷሻ ൅ ௔ߛ
ଵ,௘ െ ௔ߛ̅

ଵ,௘, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ 
߶௔,௦ଷ ሺߦଷሻ ൑ ௔ߛ̅

ଵ,௘ߛ௔,௦ଷ ሺߦଷሻ,			∀ܽ ∈ ,ܣ ݏ ∈ ܵ 
߶௔,௦ଷ ሺߦଷሻ ൑ ௔ߛ

ଵ,௘ߛ௔,௦ଷ ሺߦଷሻ ൅ ௔ߛ
ଵ,௘ െ ௔ߛ

ଵ,௘, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ 
 

A generalization of McCormick’s relaxation method was proposed by Misener 

and Floudas (1995) for trilinear terms. Their generalized convex envelops are used to 

linearize trilinear terms ߛ௔
ଵ,௘ ∙ ௔,௦ଶߛ ሺߦଶሻ ∙ ௔,௦ଷߛ ሺߦଷሻ. Let ߰௔,௦ଷ ሺߦଷሻ ൌ ௔ߛ

ଵ,௘ ∙ ௔,௦ଶߛ ሺߦଶሻ ∙

௔,௦ଷߛ ሺߦଷሻ, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ and replace the trilinear term in constraints (10)-(11) through a 

change of variables. Given ߛ௔
ଵ,௘ ൑ ௔ߛ

ଵ,௘ ൑ ௔ߛ̅
ଵ,௘, 0 ൑ ௔,௦ଶߛ ሺߦଶሻ ൑ 1, and 0 ൑ ௔,௦ଷߛ ሺߦଷሻ ൑

1, additional constraints (35) are introduced. 

߰௔,௦ଷ ሺߦଷሻ ൒ 0,			∀ܽ ∈ ,ܣ ݏ ∈ ܵ 

(35) 

߰௔,௦ଷ ሺߦଷሻ ൒ ௔ߛ
ଵ,௘ െ ௔ߛ̅

ଵ,௘,			∀ܽ ∈ ,ܣ ݏ ∈ ܵ 
߰௔,௦ଷ ሺߦଷሻ ൒ ௔ߛ

ଵ,௘ߛ௔,௦ଶ ሺߦଶሻ ൅ ௔ߛ
ଵ,௘ߛ௔,௦ଷ ሺߦଷሻ െ ௔ߛ̅

ଵ,௘, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ 

߰௔,௦ଷ ሺߦଷሻ ൒ ௔ߛ̅
ଵ,௘ߛ௔,௦ଶ ሺߦଶሻ ൅ ௔ߛ

ଵ,௘ߛ௔,௦ଷ ሺߦଷሻ െ ௔ߛ̅
ଵ,௘, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ 

߰௔,௦ଷ ሺߦଷሻ ൒ ௔ߛ
ଵ,௘ߛ௔,௦ଶ ሺߦଶሻ ൅ ௔ߛ̅

ଵ,௘ߛ௔,௦ଷ ሺߦଷሻ െ ௔ߛ̅
ଵ,௘, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ 

߰௔,௦ଷ ሺߦଷሻ ൒ ௔ߛ
ଵ,௘ ൅ ௔ߛ̅

ଵ,௘ߛ௔௦ ൅ ௔ߛ̅
ଵ,௘ߛ௔,௦ଷ ሺߦଷሻ െ ௔ߛ2̅

ଵ,௘, ∀ܽ ∈ ,ܣ ݏ ∈ ܵ 
 

The original TTRP (2)-(12), a 3-stage SMPEC, is transformed into an 

equivalent three-stage SMILP:  

 

ݔܽ݉
઻భ∈ડభ

కమܧ	 ൜ ݔܽ݉
઻మ∈ડమሺ઻భ,కమሻ

కయหకమܧ ൤ ݔܽ݉
઻య∈ડయሺ઻మ,కయሻ,ܠ౨∈ஐܠ

౨ሺకయሻ
۲,ܝ୰ሺߦଷሻ൨ൠ   

(36) 
s.t. 

(a) three-stage action decision constraints (3)-(5) 
(b) UE constraints (20)  
(c) Link travel time function linear constraints (23)-(30) 
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(d) LP relaxation of bilinear and trilinear action level terms (33)-(35)} 

6.3.3. Progressive hedging algorithm (PHA) 

Problem (36) contains pure continuous first- and second-stage variables and mixed 

integer third-stage variables. Benders-based decomposition methods, e.g. 

Disjunctive Decomposition-based branch-and-cut (D2-BAC) approach by Sen and 

Sherali (2006), are computationally intensive, and the Lagrangian-based 

decomposition method by Caroe and Schultz (1999) which might ordinarily be 

applicable will not guarantee a globally optimal solution for this problem class. Thus, 

an exact solution method that is based on concepts of progressive hedging (Rockefeller 

and Wets, 1991) is presented. This method decomposes the problem by scenario using 

Lagrangian decomposition.  It is particularly attractive here, because it guarantees 

global optimality for problems with pure continuous first- and second-stage variables; 

convexity is not required.  

In this approach, first- and second-stage variables, ઻ଵ and ઻ଶሺߦଶሻ, are converted 

into third-stage scenario-dependent variables,	઻ଵሺߦଷሻ and ઻ଶሺߦଷሻ, respectively. This 

allows decomposition of the problem by third-stage information states (i.e. scenarios). 

The following non-anticipativity constraints are added to force ઻ଵሺߦଷሻ to take a single 

value ઻෤ଵ over all third-stage information states, ߦଷ, and to force  ઻ଶሺߦଷሻ to take identical 

values ઻෤ଶሺߦଶሻ over those third-stage information states with identical type and spatial 

distribution, i.e. ߦଷ|ߦଶ. 

઻ଵሺߦଷሻ െ ઻෤ଵ ൌ 0  (37) 
઻ଶሺߦଷሻ െ ઻෤ଶሺߦଶሻ ൌ 0 (38) 

 

Note that ઻෤ଵ and ઻෤ଶሺߦଶሻ are vectors of unrestricted variables.  
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The PHA solves each scenario-specific problem (39) separately wherein non-

anticipativity constraints are relaxed. 

݉݅݊
઻భ∈ડభሺకయሻ,઻మ∈ડమሺకయሻ,઻య∈ડయሺకయሻ,ܠ౨∈ஐܠ

౨ሺకయሻ
۲,  ଷሻߦ୰ሺܝ

(39) 

s.t. 
(a) three-stage action decision constraints (3)-(5) 
(b) UE constraints (20)  
(c) Link travel time function linearization constraints (23)-(30) 
(d) LP relaxation of bilinear and trilinear action level terms (33)-(35)} 

 

 If non-anticipativity constraints (37) and (38) are met, identical solutions for 

all first- and second-stage variables regardless of the information state ߦଷ will be 

guaranteed and the problem is solved. However, this is rarely the case. If all first-stage 

variables are equal, then they are also equal to their expected value. Similarly for 

second-stage variables. Given the solutions of (39) for all scenarios ߦଷ, the expected 

values of first- and second-stage variables are computed: ઻ොଵ ൌ కయሾ઻ܧ
ଵሺߦଷሻሿ and 

઻ොଶሺߦଶሻ ൌ కయหకమሾ઻ܧ
ଶሺߦଷሻሿ, respectively. The deviation in their values from the expected 

value is measured. The optimal solution is obtained when the values converge to the 

expected value: ‖઻ଵሺߦଷሻ െ ઻ොଵ‖, ‖઻ଶሺߦଷሻ െ ઻ොଶሺߦଶሻ‖ ൑  is a small number ߝ where ,ߝ

representing the convergence factor.  In future iterations, the relaxed anticipativity 

constraints are penalized in the objective function through Lagrangian relaxation. This 

objective function is given in (40). 

݉݅݊
઻భ∈ડభሺకయሻ,઻మ∈ડమሺకయሻ,઻య∈ડయሺకయሻ,ܠ౨∈ஐܠ

౨ሺకయሻ
۲, ଷሻߦ୰ሺܝ ൅ ીଵሺߦଷሻ, ઻ଵሺߦଷሻ െ ઻ොଵ ൅

ીଶሺߦଷሻ, ઻ଶሺߦଷሻ െ ઻ොଶሺߦଶሻ ൅ ఘ

ଶ
‖઻ଵሺߦଷሻ െ ઻ොଵ‖ଶ ൅ ఘ

ଶ
‖઻ଶሺߦଷሻ െ ઻ොଶሺߦଶሻ‖ଶ  

(40) 

   

where ી૚ሺߦଷሻ and ી૛ሺߦଷሻ are the vectors of dual variables corresponding to non-

anticipativity constraints (37)-(38), and ߩ ൒ 0 is a penalty parameter. The quadratic 

terms ‖઻ଵሺߦଷሻ െ ઻ොଵ‖ଶ and ‖઻ଶሺߦଷሻ െ ઻ොଶሺߦଶሻ‖ଶ are nonseparable and complicate the 



 

 

178 
 

solution process. Thus, these terms are replaced by related absolute terms 

|઻ଵሺߦଷሻ െ ઻ොଵ| and |઻ଶሺߦଷሻ െ ઻ොଶሺߦଶሻ|. These absolute terms are piecewise linear and 

can be expressed through the introduction of pairs of continuous nonnegative variable 

vectors:  ઻ାଵ ሺߦଷሻ and ઻ିଵ ሺߦଷሻ, and ઻ାଶ ሺߦଷሻ and ઻ିଶ ሺߦଷሻ, respectively. Consequently, the 

objective function (40) is replaced by (41), a linear function.  

݉݅݊
઻భ∈ડభሺకయሻ,઻మ∈ડమሺకయሻ,઻య∈ડయሺకయሻ,ܠ౨∈ஐܠ

౨ሺకయሻ
۲, ଷሻߦ୰ሺܝ ൅ ીଵሺߦଷሻ, ઻ଵሺߦଷሻ െ ઻ොଵ ൅

ીଶሺߦଷሻ, ઻ଶሺߦଷሻ െ ઻ොଶሺߦଶሻ ൅ ఘ

ଶ
ሾ઻ାଵ ሺߦଷሻ ൅ ઻ିଵ ሺߦଷሻሿ ൅

ఘ

ଶ
ሾ઻ାଶ ሺߦଷሻ ൅ ઻ିଶ ሺߦଷሻሿ  

(41) 

 

Thus problem (39) is given with its new objective function (41) and the 

following additional constraints. 

 ઻ଵሺߦଷሻ െ ઻ොଵ ൌ ઻ାଵ ሺߦଷሻ െ ઻ିଵ ሺߦଷሻ (42) 
઻ଶሺߦଷሻ െ ઻ොଶሺߦଶሻ ൌ ઻ାଶ ሺߦଷሻ െ ઻ିଶ ሺߦଷሻ (43) 

 

At each iteration	ߤ, the expected values of first- and second-stage variables are 

updated given the new solutions. The penalization terms ીଵሺߦଷሻ and ીଶሺߦଷሻ are revised 

as in (44) and (45).  

ીఓାଵ
ଵ ሺߦଷሻ ൌ ଷሻߦሾ઻ଵሺߩ െ ઻ොଵሿ ൅ ીఓଵሺߦଷሻ   (44) 
ીఓାଵ
ଶ ሺߦଷሻ ൌ ଷሻߦሾ઻ଶሺߩ െ ઻ොଶሺߦଶሻሿ ൅ ીఓଶሺߦଷሻ, (45) 

 

An overview of the PHA is depicted in the flowchart of Figure 6-4. Global 

convergence of the proposed PHA in finite time is assured. A proof is given in 

(Rockefeller and Wets, 1991) for similar two-stage problems with pure continuous 

first-stage variables can be directly extended to this problem with three stages. 
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Figure 6-4 The PHA flowchart 

 

6.4. Numerical experiment 

The model and solution method are illustrated on a test network from (Suwansirikul et 

al., 1987). This network has 6 nodes and 16 links as shown in Figure 6-5 and has been 

used for similar purposes in many works (e.g. Li et al., 2012).  

   

Figure 6-5 Test network (Suwansirikul et al., 1987) 

 

The network is presumed to represent a roadway with highway bridges given 

by links 2, 5, 6 and 9. Four OD pairs are considered and the corresponding travel 

Initialization 

  
  

 Stop 

Solve each scenario w/o penalization 
ીଵሺߦଷሻ, ીଶሺߦଷሻ ൌ 0  

Calculate expected values of 1st-stage variables 
઻ොଵ ൌ కయሾ઻ܧ

ଵሺߦଷሻሿ, ઻ොଶሺߦଶሻ ൌ కయหకమሾ઻ܧ
ଶሺߦଷሻሿ  

‖઻ଵሺߦଷሻ െ ઻ොଵ‖, ‖઻ଶሺߦଷሻ െ ઻ොଶሺߦଶሻ‖ ൑  ?ߝ
Yes 

No

Update penalization terms 
ીଵሺߦଷሻ ൌ ଷሻߦሾ઻ଵሺߩ െ ઻ොଵሿ ൅ ીଵሺߦଷሻ  

ીଶሺߦଷሻ ൌ ଷሻߦሾ઻ଶሺߩ െ ઻ොଶሺߦଶሻሿ ൅ ીଶሺߦଷሻ 
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demand is reported in Table 6-2. The network data, including the values of link travel 

time function parameters from equation (22) are given in Table 6-3, and are identical 

to values suggested in (Suwansirikul et al., 1987). It is presumed that ݉௔ ൌ 4 for all 

links.  

 

Table 6-2 The values of link travel time function parameters 
OD ID  Origin Destination Travel demand  

1 1 6 10  
2 6 1 20  
3 4 1 5  
4 6 2 10  

 

 
Table 6-3 The values of link travel time function parameters 

Link ID Link type ݐ௔଴ ݉௔ ܿ௔௢ 
1 Roadway 1 10 3 
2 Bridge   2 5 10 
3 Roadway 3 3 9 
4 Roadway 4 20 4 
5 Bridge 5 50 3 
6 Bridge 2 20 2 
7 Roadway 1 10 1 
8 Roadway 1 1 10 
9 Bridge 2 8 45 

10 Roadway 3 3 3 
11 Roadway 9 2 2 
12 Roadway 4 10 6 
13 Roadway 4 25 44 
14 Roadway 2 33 20 
15 Roadway 5 5 1 
16 Roadway 6 1 4.5 

 

Three disaster categories (earthquake (s=1), flood (s=2) and malicious 

acts(s=3)) are considered in the numerical experiments. A specialized version of Monte 

Carlo simulation by Chang et al. (1994) is employed to generate disaster scenarios 

while addressing spatial dependencies that relate to each hazard (see Chen and Miller-

Hooks (2012) for more details on the scenario generation process). 30 random scenarios 
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are generated corresponding to each disaster type to capture possible consequences in 

terms of the level of damage to network links, i.e. 90 scenarios in all.    

All network links except for bridges are candidates for capacity expansion with 

lower and upper bounds of 0 and 10 units, respectively. The bridge links (2, 5, 6 and 9) 

can be retrofitted for protection against earthquakes or specific malicious acts. Links 

10, 11 and 13-16 at the eastern end of the network may be subject to flooding, and are 

candidates for related mitigation actions. Second-stage preparedness decisions are 

considered when flooding is predicted. When the event relates to an earthquake or 

malicious act, no preparedness actions will be available in this stage. Finally, response 

actions are considered as options for restoring capacity of all network links that may 

be affected by any disaster type. The unit action costs as well as unit implementation 

times of response actions are given in Table 6-4.   

Table 6-4 Unit cost of actions 

Link 
ID  

 Actions  
 

Expansion 
Retrofit  Preparedness  Response*  

തܾ
௔
ଵ,௘ തܾ

௔,ଵ
ଵ,௛ തܾ

௔,ଶ
ଵ,௛ തܾ

௔,ଷ
ଵ,௛ തܾ

௔,௦
ଶ  തܾ

௔,ଶ
ଶ  തܾ

௔,ଷ
ଶ  തܾ

௔,௦
ଷ ሺݍത௔,௦ଷ ሻ തܾ

௔,௦
ଷ 	ሺݍത௔,௦ଷ ሻ തܾ

௔,௦
ଷ 	ሺݍത௔,௦ଷ ሻ 

1 2 - - - - - - 3.5 (7) - - 
2 -   6 - 2 - - - 5.5 (11) - 4 (8) 
3 5 - - - - - - 8 (16) - - 
4 4 - - - - - - 7 (14) - - 
5 - 8 - 2 - - - 5 (10) - 3 (6) 
6 - 6 - 2 - - - 5 (10) - 3 (6) 
7 4 - - - - - - 4.5 (9) - - 
8 3 - - - - - - 4 (8) - - 
9 - 8 - 2 - - - 6 (12) - 4 (8) 

10 5 - 3 - - 0.5 - 6.5 (13) 4.5 (9) - 
11 6 - 3.5 - - 0.5 - 10 (20) 7.5 (15) - 
12 8 - - - - - - 12 (24) - - 
13 5 - 4 - - 0.5 - 6 (12) 5 (10) - 
14 3 - 2 - - 0.5 - 5.5 (11) 3.5 (7) - 
15 6 - 4 - - 0.5 - 7.5 (15) 5 (10) - 
16 1 - 2 - - 0.5 - 2.5 (5) 1.5 (3) - 
*Note that the perfect preparedness in advance is presumed to reduce response cost (implementation 
time) by 30%, i.e.  ܾ௔,௦ଷ ൌ 0.7തܾ௔,௦ଷ 	ሺݍ௔,௦ଷ ൌ ത௔,௦ଷݍ0.7 ሻ 
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Resilience indifference curves resulting from solution of this problem instance 

for different combinations of limited budget ܤ and response time ܶ are provided in 

Figure 6-6. As depicted in this figure, resilience is generally more sensitive to budget 

than to response time. However, when response times are short, resilience is almost 

unaffected by budget level. Likewise, when the budget is small, resilience is almost 

unaffected by a response time increase. In the former case, this is because time available 

to take action is too restrictive regardless of budget level. In the latter case, funds are 

unavailable to take additional actions.  

Figure 6-6 Resilience indifferent curves for the numerical experiment 

 

Detailed results are given through plotting the cumulative distribution of 

network resilience in Fig. 6-7 for three sample strategies: ሺܤ, ܶሻ ൌ ሺ0,0ሻ, ሺܤ, ܶሻ ൌ

ሺ3,0ሻ, and ሺܤ, ܶሻ ൌ ሺ3,3ሻ. Each point in Fig. 6-7 represents the network resilience 

under a particular scenario, called point resilience. This concept with respect to 

resilience was introduced in Nair et al. (2010).  
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Figure 6-7 Cumulative distribution function of point resilience  

 

This figure illustrates that the range and variance of the distribution decreases 

with larger budget and response time. Moreover, the resilience under the worst-case 

scenario, which occurs at the lowest probability level for each data set, improves with 

increasing budget and response time. For example, given ሺܤ, ܶሻ ൌ ሺ0,0ሻ, the range of 

resilience values is between 0.12 and 1, while with subsequent increases in budget and 

response time in strategy ሺܤ, ܶሻ ൌ ሺ3,3ሻ, the range reduces to between 0.56 and 1.  

Additional runs were conducted assuming a UE could be achieved post-event 

and after the response time has elapsed. Results of these runs are compared in Figure 

6-8 with those assuming only a PUE is obtained. From this comparison of results, it is 

seen that the expected total travel time (the numerator of the resilience measure) is 

slightly larger under a UE than under a PUE. Through further investigation into the 

results, it was found that for results from individual sampled scenarios, response actions 

were focused on different links under the UE and PUE assumptions. In particular, under 
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a PUE, the target of the response was on only impacted arcs, while under the UE 

assumption, unaffected arcs were also improved. 

 

   
Figure 6-8 The network’s total travel time under UE and PUE  

 

6.5. Conclusions 

This chapter proposes a novel stochastic network design formulation for maximizing 

travel time resilience for roadway networks. In particular, it targets freeway networks. 

The problem explicitly addresses the first three stages of the decision processes of the 

disaster management life cycle, specifically pre-event mitigation and preparedness, and 

post-event response. Decisions are taken at each stage based upon the evolution of 

uncertainty over the stages. The problem is formulated as a bilevel stochastic 

mathematical program with user equilibrium constraints. The three-stage decision 

process is embedded within the upper-level problem and user response to the upper-

level decisions is modeled in the lower-level problem.  

This problem differs from previous studies on stochastic transportation network 

design in which supply uncertainty is explicitly modeled in that these prior works have 

primarily addressed long-term mitigation planning applications. In these applications, 

a UE is an appropriate travel behavior model for estimating network travel times. In 
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this application where this behavior seeks travel time estimates for the period 

immediately following a disaster and some quick response actions, a PUE is proposed. 

The PUE accounts for route choice decisions taken by the system users assuming that 

only affected users will have information on the disaster event’s impacts and even these 

users will have limited information on network damage and repairs.  

A multi-hazard approach is employed, and decisions are disaster event-

dependent. Thus, mitigation actions may target different hazard scenarios even before 

the hazard event type is known. In fact, the model accounts for the varying benefits of 

any such action under different hazard classes. Preparedness decisions are taken only 

once the hazard class is known, but the specific event realization is uncertain. Response 

actions are designed for specific disaster event scenarios and are determined once the 

disaster scenario is realized. 
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Chapter 7: Conclusions and Extensions 

7.1. Conclusions 

 
This dissertation provided a general mathematical framework to protect transportation 

infrastructure systems in the presence of uncertain events with the potential to reduce 

system capacity/performance. The framework defined a number of disaster measures 

and clarified their boundaries and possible overlaps. These measures include, coping 

capacity, preparedness, robustness, flexibility, recovery capacity, and resilience. A 

single, general decision-support optimization model was formulated as a multi-stage 

stochastic program and captures the uncertain nature of disasters and their 

consequences. It seeks an optimal sequence of decisions over time based upon the 

realization of random events in each time stage. Exact (or approximate) solution 

methodologies based on concepts of decomposition, simulation, and cutting-edge 

linear approximation methods were presented for use in evaluating system performance 

in terms of these measures as well as optimally allocating the limited resources to 

mitigation, preparedness and response options.  

This dissertation addressed three problems to demonstrate the application of the 

IPP in different transportation environments with emphasis on resilience and 

robustness: Airport Resilience Problem (ARP), Building Evacuation Design Problem 

(BEDP), and Travel Time Resilience in Roadways (TTR). These problems aimed at 

identifying opportunities to support system performance measurement, operational 

decision-making, preparedness planning, and immediate post-disaster actions, given 

their topological and operational characteristics. Potential benefits to transportation 
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system operators were discussed in detail in Chapters 3 through 6, including, for 

example, the tool’s utility in suggesting equipment to have at the ready and identifying 

the critical system components for prioritizing future facility developments. 

The first problem, ARP, was formulated as a stochastic, integer program with 

recourse seeking to measure and optimize the resilience of airport runway and taxiway 

pavement networks under multiple potential damage-meteorological scenarios. The 

mathematical model and solution methodology were embedded within a decision 

support tool, along with a scenario generator for multiple hazard classes. The BEDP 

was formulated as a bilevel stochastic integer program with UE constraints for the 

robust design of shelters, fortified hallways and exits in buildings, and permited exact 

solution that minimizes the exposure of evacuees to risks under various hazard 

scenarios. Variants of the model involved both stochastic programming and robust 

optimization concepts under both user equilibrium and system optimal conditions, 

coupled with a multi-hazard approach to examine designs given various possible future 

emergency scenarios. Both the ARP and BEDP include binary first-stage and mixed 

integer second-stage variables, and the integer L-shaped decomposition was adapted to 

solve them. 

Finally, the TTRP was formulated as a bilevel three-stage stochastic program. 

The upper-level problem included a three-stage decision on pre-event mitigation and 

preparedness, and post-event response, based upon information that is revealed at each 

stage. A specialized user equilibrium, PUE, was presented in the lower level to capture 

users’ semi-adaptive behavior shortly after the event occurrence when short-term 

response actions are implemented and users have received limited information on 
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network damage and completion of repairs. An approximation approach was presented 

involving an efficient piecewise linearization technique to address PUE constraints, 

and an exact solution algorithm was proposed based on concepts of progressive 

hedging for solution of the sequence of decisions over the three stages. 

Numerical experiments were concluded on network representations of a United 

States rail-based intermodal container network, the LaGuardia Airport taxiway/runway 

pavement network, a single-story office building, and a small roadway network. The 

results illustrate the application of the proposed exact (approximate) solution 

techniques to solve small- and moderate-size problems to global optimality.  

7.2. Extensions 

A general mathematical framework along with three specialized problems, ARP, 

BEDP, and TTRP, have been addressed in this dissertation with emphasis on presenting 

exact solution techniques. These problems are all NP-hard. While potential application 

of these methods has been demonstrated, one might use the mechanism of the presented 

exact solution techniques to develop efficient heuristics for solving real-world size 

problems, particularly if decision makers need to make urgent decisions on post-

disaster contingency plans. This research can be extended in several directions. 

Directions for future research are discussed in following section.  

7.2.1. General IPP 

The proposed IPP formulation has as its objective the maximization of system 

performance given budget and recovery period limitations. Alternative formulations 

may be considered in which costs are minimized and performance levels are satisfied. 
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Likewise, the recovery period duration can be minimized under performance and 

budget limitations. While either budget or recovery period parameters would become 

decision variables, program properties of convexity, linearity and separability would 

be unchanged. Thus, applicability of discussed solution methodologies would persist.  

Additionally, for some applications, where a fixed number of actions or 

combinations of actions are to be considered, a discrete representation of the decision 

space might be required. In this case, formulation IPP would require integrality 

constraints and other adaptations. Appropriate solution methodologies would be 

needed. The conceptual framework, however, is developed in a general way and can 

be exploited regardless of the nature of action levels, whether discrete or continuous. 

For applications where the implementation time depends on the price one is 

willing to pay, budget-related equations will need to incorporate cost-related decision 

variables. Period performance measures may be useful in operational decision-making, 

where it is necessary to schedule response actions required to restore system 

performance and benefits can be derived from early improvements or outperforming 

level-of service constraints. Consider IPP-T in which maximum throughput is sought 

through a freight rail network. To encourage solutions that also seek universally 

maximum throughput levels (i.e. throughput levels that are maximal at each point in 

time), problem dynamics must be explicitly considered. This is the subject of future 

work. Finally, it should be noted that concepts given herein provide only one approach 

to thinking about resilience and other related measures in a consistent framework. Other 

structures may be equally beneficial. In that regard, coping capacity can be further 
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divided into resistance, i.e. the ability to endure when confronted by a stressor, and 

excess, i.e. the ability to respond to and absorb disruption impacts within the IPF. 

7.2.2. ARP 

Several assumptions were made in creating the ARP and solution methodology. It was 

presumed that those resources procured in the preparedness stage will be available for 

recovery and, thus, these resources will not be affected by the damage event. 

Additionally, benefits derived from specific ordering of repair actions, and possible 

precedence requirements, were not accounted for in the model. Further assumptions 

related to homogeneity in runway and taxiway materials were made. When multiple 

locations require similar equipment to complete a repair task, that setup times at the 

additional sites may be significantly reduced is not addressed. Likewise, the cost and/or 

time associated with the reconfiguration of runway direction in response to damage 

events is not included. This work can be extended to address many of these limitations. 

To assess the impact on airport pavement network resilience of large infrastructure 

enhancement projects, the model can be run multiple times, each time using a network 

topology consistent with the capital investment strategy. Given customer demand 

forecasts, the return on investment can be analyzed by comparison of the results. On a 

final note, while the tool was designed for civilian applications, the model can also be 

applied for military use, where decisions related to RRR and MOS need systematic and 

methodical support.  

An alternative and more conservative modeling approach based on concepts of 

robust optimization might be considered. With such an approach, one would seek to 

maximize airport resilience under the worst-case scenario. The two-stage structure 
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would be maintained; however, in place of the maximum expected flow over all 

scenarios, the maximum total flow under the scenario leading to the worst performance 

would be sought. This results in a stochastic program with deterministic objective 

function that takes a max-min form. The advantage of such a methodology is that 

scenario occurrence probabilities need not be known. Such an approach was developed 

and applied to the case study. For all tested combinations of Tmax and budget, the 

resulting resilience level was zero, however. This will arise with such an approach 

when even only one extreme scenario exists in which no demand can be met through 

repair actions taken within given budget and time limitations. Thus, such a conservative 

approach is limited in its general utility. Its application further demonstrates that 

concentrating all internal and external resources on improving conditions for the worst-

case scenario may lead to insignificant improvements for the specific worst-case 

scenario and general performance. 

7.2.3. BEDP 

Though the presented BEDP is appropriate for supporting the design of buildings, an 

implementation of the UE approach for the actual management of evacuation events 

would require the development of a dynamic model in which link travel times are 

continuously reassessed, and of a sensor-based system that can capture in detail the 

movements of evacuees and provide in real-time information to each evacuee.  

An implementation of the program in a case study of a geographical evacuation 

problem is planned as well. The use of a program that minimizes the exposure of 

evacuees to risk, through an explicit consideration of the level of protection that 

different evacuation routes and shelters provide, may constitute an improvement on 
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previous geographical evacuation models that did not address such an objective. For 

example, in a flooding scenario, the risks of using different evacuation routes, 

depending on their location and elevation, can be considered when planning the 

location of emergency shelters. 

Additional extensions may be desirable. For example, shelter capacities may be 

uncertain due to their multi-purpose use. That is, a shelter may be used for a community 

activity and, thus, filled to capacity at the time it is needed. Heterogeneity in the 

evacuee population is ignored herein. However, some evacuees may move more 

quickly than others. Some evacuees may put more weight on risk exposure from 

traveling in the corridors versus waiting for help in a shelter than other evacuees. 

Moreover, risk perception may vary by evacuee and may be imperfect. Thus, 

alternative models for handling risk may be appropriate. Individualized risk functions 

may be warranted, and a stochastic UE may be beneficial. 

7.2.4. TTRP 

A A number of assumptions were made in development of the TTRP that can be 

addressed in the future extensions. First, the proposed stochastic problem addressed 

exogenous uncertainties, where disaster event scenarios are generated independent 

from the decision process. In this study, the mitigation actions, particularly network 

link retrofit actions, are assumed to only impact disaster consequences in terms of the 

level of damage to the link and not the disaster probability. As an extension, one might 

model endogenous uncertainties in which scenario probabilities are updated based on 

decisions made at each information state. Secondly, only network supply/capacity 

uncertainties were taken into account and the travel demand pattern was assumed to be 
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fixed and identical to the original pattern pre-event. Additionally, only travel time was 

considered in modeling user behavior. In reality, other factors, such as safety might 

also play a role in the route choice of the users, particularly under disaster events. It 

was assumed that all affected users are homogenous with respect to the evaluation 

function (a utility function) used in route selection in obtaining a PUE. Moreover, it 

was assumed that the users have perfect information on the damaged and repaired 

network links, and that they make decisions on their routes with the aim of selfishly 

minimizing their travel time. Alternative models may be of interest to capture 

uncertainty in user perception, heterogeneity in user route choice and other factors 

affecting users’ decisions. 
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