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approaches are either limited to static performance or a lack of behavior foundation. 
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individual behaviors. A land development analysis and a flexible work schedule 

policy analysis are illustrated in this paper. Unlike traditional land development 

impact studies, a great deal of travel behavior shift is obtained via this integrated 

model, which creates a new way for land development and policy analysis. 
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Chapter 1: Introduction 

 

1.1 Background  

Sustainable growth is an pervasive topic in the world of urban planning. Along 

with the increase in population, economy, and technology, urban development may 

also bring in problems such as pollution and traffic congestion. Schrank et al. (1) 

found that the congestion in US urban areas caused Americans to “travel 5.5 billion 

hours more and to purchase an extra 2.9 billion gallons of fuel”. Moreover, they 

claimed that congestion cost in 498 US urban areas was around $121 billion in 2011, 

which is five times as that in 1982 (in 2011 dollars). Even though the congestion peak 

has remained relatively stable during recent economic recession years, the total 

congestion cost is on the rise because of the increase of commuters and freight 

shippers in the system. By predicting  the nation would experience a congestion cost 

growth impact from $121 billion (2011) to $199 billion in 2020 (in 2011 dollars). 

 

In order to make full use of this double-edged sword-- releasing people’s dream 

for modern urban life with the minimal social and individual cost, it is necessary for 

decision makers to have perspective on upcoming developments as well as policies. 

Transportation, which includes accessibility and mobility, is a referential vital 

measurement to urban developments. Traffic Impact Analysis (TIAs) is a tool that has 
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historically been used to evaluate the interplay between existing transportation 

infrastructure with proposed transportation related policies and transportation 

elements of land development projects. TIAs can provide a large amount of 

information that can assist with planning activities and policy adjustments, as well as 

make immediate adjustments during long term planning. 

 

Over decades there have been numerous approaches to evaluate the impact of 

urban developments or demand management policies on transportation infrastructure. 

The ultimate goals of these analyses are to convert land developments/policies to 

transportation demand/supply changes for TIAs. That is, 1) based on local/regional 

economic situation, demographic condition and policies, the employment, population, 

and households in the future can be estimated; 2) these social-demographic data and 

policy assumptions are then incorporated into transportation demand models or 

behavior models to obtain new traffic demand patterns; and 3) with traffic assignment 

models, the changes in demand are finally reflected in roadways. However, there is 

still a weakness within current TIA on land development analyses and transportation 

related policies. Current methods for TIA represents traffic in a static phenomenon. 

The methods do not adequately account for traffic dynamics such as the 

building/discharging of traffic jam and time-dependent travel times along important 

corridors. Even though, dynamic traffic evaluation is conducted by Dynamic Traffic 

Assignment (DTA) model, the pursuit of a user equilibrium solution (UE) ignores 
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behavior changes that may lead to peak spreading. In addition, it is hard for these 

models to zoom in for detailed analysis in small areas, corridors, or even intersections. 

 

Meanwhile, various planning policies have been implemented in terms of urban 

sustainable development, which includes expanding roadway capacity; encouraging 

public transit; and imposing restrictions on auto ownership/usage. These 

countermeasures neglect to deal with people’s desire for travel at certain jammed time 

periods such as AM/PM peak period. As Anthony mentioned (2), traffic congestion 

will not ameliorate until travelers change their daily travel behaviors. An alternative 

way to gradually inspire distributed traffic demands is to popularize flexible work 

schedules. Traditionally, employees should be present at working places during some 

specific daily hours (usually 9:00 a.m. to 5:00 p.m.). Although traditional working 

policy results from several patterns (i.e., human’s common habit of sleeping at night), 

it encourages commuters to centralize their trips during peak hours. Compared with 

the traditional 9 a.m. to 5 p.m. work hours, a flexible work schedule allows employees 

to choose their preferred arrival/departure times. For example, in one flextime 

situation, employees can arrive at offices anytime between 8 and 10 a.m. and leave for 

home anytime between 4 and 6 p.m.; or they can select one day off within weekdays, 

and finish an additional two-hours’ work per day for the rest 4 days. 

 

It is desirable and important for decision makers to understand the impact of 

urban developments or transportation policies, or the combination of them. For 
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example, how cumulative land developments along the same corridor influence 

regional traffic flow, and how purposed transportation related policies shift traveler’s 

behavior. In a previous Maryland State Highway Administration (SHA) research 

project, the University of Maryland (UMD) research team successfully developed a 

mesoscopic model that integrates microscopic dynamic traffic simulation models and 

travel behavior models for the Inter-County Connector (ICC) corridor and a large 

region around the ICC corridor. The study area in that project covered the I-270 and 

MD-355 (Rockville Pike) corridor between the I-495 beltway and the ICC. In terms of 

more comprehensive TIAs, further developments are required for this mesoscopic tool 

to be utilized for this purpose. In the first place, the new tool is expected with the 

ability to capture demand pattern changes such as peak spreading, and route changes 

under cumulative land developments. Here, the word “cumulative” means that the 

traffic impact of the combination of two sector developments is larger than the sum of 

the individual traffic impact under both the two developments. Secondly, behavior 

models are required to be integrated to enhance the sensitivity of developments and 

policies. 

1.2 Research objectives 

In previous research, a mesoscopic TIA approach was developed by this UMD 

research team. Both microscopic simulation and travel behavior models are integrated 

for the analysis of regional traffic level of service (LOS) and behavior changes. The 

research team also integrates the Environmental Protection Agency’s (EPA) emission 
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estimator Motor Vehicle Emission Simulator (MOVES) as a post-processing module 

for environmental analysis. The details of this previous projectwill be described in the 

next chapter. 

 

To take a further step, the main purpose of this research is to continuously 

develop the ICC mesoscopic model to deliver an integrated tool for: 1) cumulative 

land development impact study along the I-270/MD-355 corridor, as well as the 

White Flint area; and 2) the potential impact of a flexible work schedule policy on 

travelers’ departure time choice as well as the traffic congestion mitigation. 

 

A number of cumulative land development plans have been proposed along the 

I-270/MD-355 corridor for next 20 to 30 years. Thus, it is necessary and interesting to 

adopt a tool to reflect traffic conditions under a series of purposed plans (i.e. regional 

traffic impact; dynamic queueing impact for specific roadways; destination changes; 

route choice for main corridor users; and turning movement changes at important 

diverting intersections). In addition, travel behavior models will be integrated into this 

tool to make it capable to recognize behavior shifts under these developments or some 

further policies. As an integrated model, it is interesting to gain perspective on how 

travelers change their travel behavior under a flextime policy, which is another 

feasible solution of traffic congestion. The thesis aims to capture how travelers will 

shift their travel times under different levels of flexibilities in their working schedule, 

and how the behavior change will influence the traffic.. 
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During the development of this integrated model, a number of existing models 

and methods were reviewed. This included land development forecasting models, 

traditional and more advanced traffic demand models. Then the thesis selected DTA 

models and positive departure time choice model for the integration. Although there 

used to be challenges building the linkage between different models, this thesis has 

developed a convenient way and feasible tool for the whole analysis process. 

 

In order to emphasis the value of this purposed TIA tool, it requires several 

features: 1) well incorporated =land development models, making it sensitive to the 

changes of land use variables; 2) quick to conduct the TIA, as well as detailed 

analysis in subareas; and 3) good integration with behavior models. 

1.3 Contribution  

There are two major contributions towards this thesis. Firstly, this is an attempt 

to develop a traffic demand and behavior analysis tool. The integration of 

macroscopic land development forecasts, mesoscopic traffic simulation models, 

microscopic traffic simulation models and agent-based travel behavior models makes 

the tool capable of conducting analysis for both urban development and policy 

scenarios. One major advantage over current TIA models is its ability to capture both 

regional traffic congestion and individual level travel behavior changes. Based on 

dynamic mesoscopic Dynamic Traffic Assignment (DTA), microscopic DTA and 
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behavior choice models, it is possible to obtain a dynamic view of upcoming impacts. 

 

Secondly, this thesis attempts to gain perception about travelers’ reaction towards 

urban developments and flex work schedule policy. Unlike previous studies, an 

agent-based approach is applied to capture individual level behavior change. 

Moreover, the individual knowledge learning and decision making process is 

specified and empirically modeled to understand the potential influence of different 

scenarios on day-to-day traffic dynamics. The DTA model (DTALite or DynusT) is 

integrated with this agent-based positive departure time choice model. One 

remarkable advantage of this integrated model is its ability to provide a feedback 

between individual choice demand side and supply side network performance. The 

analysis in this thesis demonstrates the value of developing a software package for the 

integrated model. 

 

The leading purpose of this thesis is to introduce and illustrate a theoretical 

framework to understand travelers’ reactions towards various management policies, 

urban developments, and even road way incidents. Although departure time is the 

only variable in travelers’ decision making process, this research presents the 

feasibility and necessity to include more behavior alternatives such as route choice, 

mode choice, lane choice, etc. The combination of departure time with other travel 

behaviors could be explored in future study. 
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1.4 Thesis outline 

The remainder of this thesis is organized as follows. Chapter 2 mainly focuses on 

the literature reviewing work of this thesis. This will begin with regional land 

development forecast models, in which both the traditional four step models and 

modern models will be introduced. In this part, the author also includes some previous 

work to integrate DTA with behavior models (2.1). In 2.2, the review on behavior 

foundation in DTA models will be described. Then the author will talk about the 

review of current transportation policies in 2.3.  At last in 2.4, the author will review 

the application of traffic simulation models on large scale networks. 

 

The Chapter 3 of this thesis documents the model development, calibration, and 

case study in the hope that this document can serve as a useful reference for 

researchers and practitioners. In 3.1, the large-scale microscopic traffic simulation 

model is described including a brief description of the methodology for Origin 

Destination (OD) estimation and the calibration/validation. The emission estimation 

model would also be introduced in 3.2. In 3.3, detailed calibration process is 

introduced in a 24-hour time frame, which includes basis data, methodology and 

results. The validation process and results are also briefly mentioned. In 3.4, the case 

study of the new toll facility in Maryland is presented with various MOEs and 

comparisons obtained from the calibrated simulation model. The experiences learnt 

and challenges resolved when modeling and calibrating this large-scale 24-hour traffic 

simulation are discussed in the last section. The conclusions and discussions are 
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offered in 3.5. 

 

The new approaches on cumulative land development study will be shown in 

Chapter 4. This chapter includes the major work and contribution in the thesis. 4.1 

will briefly talk about the regional planning model. A more and more prevalent 

simulation based DTA modeler known as DTAlite will be introduced (4.2) and applied 

for cumulative land development study. In addition, 4.2 will also include the 

mesoscopic traffic simulation model in this thesis. The integration process between 

behavior model and DTA is described in 4.3. Then in 4.4, an application of land 

development impact analysis is showed to demonstrate the advanced features of this 

proposed tool on capturing behavioral changes and other traffic impacts. 

 

The motivation and objective of Chapter 5 is to explore the potential impact of a 

flexible work schedule policy on congestion mitigation. The framework of this 

approach will be introduced which includes a positive departure time choice model 

(5.1), the improvements (5.2), and its integration with  mesoscopic simulation-based 

DTA simulator (5.3). Then in 5.4, a real-world application for different levels of 

flexible schedule scenarios will be described. Both Chapter 4 and Chapter 5 are the 

core of this thesis. Conclusions and future work will be mentioned in the last chapter 

on: 6.1, integrated tool for cumulative land development study; 6.2, flextime policy; 

6.3, limitations and future works. 

  



10 
 

Chapter 2: Literature review 

 

The literature review chapter consists of three parts. Firstly, I would love to 

introduce the existing regional transportation models. Both the capability and 

limitation of these regional planning and transportation forecasting models will be 

discussed. Based on the discussion, I will claim the needs of an integrated model for 

regional transportation modeling. Secondly, since the goal of this thesis is to integrate 

current simulation based DTA models with agent-based behavior models, the 

difficulties and breakthroughs will be talked on the application of traffic simulation 

models. Here, I only focused on the application on large scale networks because the 

purposed integrated model is supposed to work in place of traditional transportation 

forecasting models. Finally, the behavior foundation of DTA models will be discussed 

to explore the feasibility of this integration. I will talk about the basic assumption and 

limitation of rational based traffic assignment theories, followed with some more 

behavior realized models. 

2.1 Regional land use and transportation models 

It is unrealistic to model the change of urban regions in every relevant aspect, 

because they are highly complex entities. Despite the associated difficulties, 

researchers have produced a variety of models forecasting interrelated processes of 

urban changes (3). Embodied in the concept of accessibility, it has been popular to 

model urban changes with the interaction between transportation infrastructure 
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improvement, land developments and the location of economic activities (3). The 

interaction between spatial patterns of land use and transportation networks is referred 

to transportation-land use “link” (4).  

 

It is usually a double level problem when considering land development/policies 

related TIAs. The upper level is the urban planning and forecasting model, which 

includes: 1) spatial interaction/gravity-based models (4-9); 2) econometric models 

(10-16); 3) microsimulation models (17-18); and agent-based models (19-21). The 

lower level of urban development modeling is transportation models, e.g. 1) 

traditional four-step models, also referred as trip-based models (22); 2) advanced 

four-step models (23-25); and 3) tour/activity-based models (26-28); 4) dynamic 

traffic assignment models (29-33). 

 

Spatial interaction models and econometric models are usually linked with 

four-step models for TIAs (3). Thus, most only have static traffic equilibrium models 

(34-36) which are incapable of capturing dynamic traffic performance. In addition, 

trip chaining and scheduling behavior, both of which are important for estimating 

demand responses to a variety of transportation-related policies, are unable to be 

modeled by these models due to the lack of a solid behavioral foundation (37). 

Microsimulation models and agent-based simulation models, on the other hand, 

usually contain the concept of “activity-based” for traffic activities modeling. With 

the emphasis on scheduling behavior, activity-based models theoretically promise a 
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stronger behavioral foundation for demand modeling. They are expected to provide 

more accurate time-dependent estimates of origin-destination (O-D) demand than the 

four-step model. The integration between activity-based models and dynamic traffic 

assignment techniques enforces this time-dependant advantage on both demand side 

and supply side (38-40). 

 

However, two major reasons make behavior realism unavailable for most U.S. 

urban councils of governments (COGs): 1) there are only 11 activity-based models in 

practice, while most COGs are using traditional or advanced four-step models (37); 2) 

even though DTA enhances the capability to analyse traffic dynamics (41,46), it can 

hardly capture behavior responses such as peak spreading (46). Following rational 

behavioral rules, most dynamic traffic assignment models assume travelers have 

perfect network knowledge. Thus, they are able to identify the alternative routes with 

best payoff, and reach a Dynamic User Equilibrium (DUE) in the end. The 

considerations of travelers’ cognitive and decision limitations have not been 

incorporated, even though travelers’ rationality is proyen to be bounded by a series of 

experimental studies (42-44) (see 2.2 for more details). 

 

Zhang et al integrated positive travel behavior models (route choice model and 

departure time choice model) with DTA for a demand pattern study (45-46), and 

showed its application on large-scale networks. But only a fraction of the whole 

population is adopted with the behavior model. So far there is still a gap in the 
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exploration of the integrated DTA models for land development impact studies. This 

thesis is trying to fill this gap by illustrating a tool which is capable of conducting 

urban development TIA from a dynamic and behavior realistic point of view. The 

proposed tool successfully links the MWCOG planning model with a 

behavior-integrated DTA for TIA under future land development. In addition, with 

the adoption of a new DTA simulator DTALite (47), the tool can conduct quick 

analysis for both regional area and specific corridors where development happens. 

2.2 Application of Large-Scale Traffic Simulation 

Microscopic traffic simulation has gradually proved a powerful tool in 

transportation research. This trend moves slowly towards large-scale applications 

while the technology advancement makes the computational burden of microscopic 

simulation of less concern. From 1990s, most applications were on corridor analysis 

problems evaluating queue spillback, weaving, incidents, and signal control (67). 

Toledo et al. (68) presented a case study of a medium size simulation model (298 

nodes and 618 links) in Irvine, California. The model was calibrated by comparing 

observed and simulated sensor counts for every time interval of 15 minutes. Similar 

studies were conducted but none of them ever dealt with large-scale networks (69-70). 

Here the term of “large-scale” indicates a scale that spatially covers multiple corridors 

and temporally covers multiple time periods. Rakha et al. (71) constructed and 

calibrated a 24-hour large-scale micro-simulation model (3365 nodes and 7926 links) 

for the Salt Lake metropolitan region. He applied the All-or-Nothing (AON) traffic 
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assignment algorithm for model calibration. Although the execution time is short, 

AON is unrealistic in capturing varying traffic dynamic. Jha et al. (72) developed a 

large-scale microscopic traffic simulation model for the entire Des Moines 

metropolitan area. Jha applied a route choice and simulation based assignment to 

calibrate time dependent OD matrices for 7:15 to 8:30 a.m. and 4:15 to 5:30 p.m. The 

time scale of Jha’s model was much smaller than Rakha’s. This is reasonable because 

simulation-based assignment required high computation cost in large-scale networks. 

Balakrishna et al. (73) adopted DTA and conducted the simultaneous calibration of a 

micro-simulation model with some 1,700 links for Lower Westchester County, New 

York. In Balakrishna’s study, various measures of calibration goodness were used. 

Smith et al. (74) represented the most recent attempts in large-scale microscopic 

simulation. 

 

Research gap exists in large-scale network calibration and simulation 

applications. While the spatial dimensions of the existing research sometimes involve 

large and complex network systems, very few studies calibrate and simulate multiple 

time periods. As the peak-hour demand grows and spreads to other time period, 

travelers’ commuting departure time decision, as well as the aggregate peak spreading 

effect, become one crucial behavior response to excessive peak-hour congestion and 

time-varying toll policy. Zhang et al. (46) recently studied peak spreading using a 

microscopic simulation model. The study is limited by only allowing departure time 

shifts within the extended AM peak hours. Under this context, a 24-hour model is 
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necessary in order to simulate within-day behavior changes more realistically, in the 

future when behavior/demand models are available to be integrated into the modeling 

framework. 

 

Studies that apply microscopic traffic simulation models to obtain MOEs for 

planning and management are insufficiently seen in literatures. Various performance 

measures in different levels were developed to quantify the impacts of transportation 

planning or management scenarios. Vehicle miles traveled (VMT) is an important 

MOE that indicates both auto usage demand and congestion level. Choo (75) 

investigated the impact of telecommuting on the VMT through a multivariate time 

series analysis of aggregate nationwide data. Nasri and Zhang (76) applied a 

multilevel mixed-effect regression model to study the impact of land use pattern on 

the VMT. Similarly, measures such as average trip time, average trip length, vehicle 

hours traveled (VHT), and gravity-based accessibility, which can be obtained from 

travel demand model (77-78), can also reflect regional-level performance. Although 

these MOEs are capable to evaluate the system, more detailed measures is necessary 

for a better understanding of impacts on specific and smaller study scales and can thus 

highlight the capability of a microscopic simulation model. Level of Service (LOS) 

proved to be a vital tool for agencies to consider a wider range of mitigation measures 

for congestion and growth (79). With graded evaluation, LOS can reflect full-scale 

information for freeway/arterial corridor evaluation, such as vehicle mobility and 

driver psychological comfort. While there is an increasing concern on environmental 
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issues, measures of emission estimation and fuel consumption have been 

indispensable in project planning evaluation. A number of studies have been carried 

out to link emission estimation models to traffic demand models. Haas et al. (80) 

calculated the total VMT and emission of carbon dioxide and analyzed greenhouse 

gases (GHG) reduction in both a single transit zone and whole region in Chicago. 

Similarly, Chen et al. (81) analyzed the change of mode shares, VMT and GHG on 

different land use development policies. As a strong tool for capturing traffic 

dynamics, microscopic traffic simulation models are able to generate all these MOEs 

as well as link with post processing models such as emission estimation models. 

 

In previous work, a 24-hour large-scale microscopic traffic simulation model and 

a case study in Maryland are developed. The analysis differs from other papers in 

several ways. Firstly, one time-varying toll facility, three freeway corridors, and a 

total number of 7,121 links and 3521 nodes consist of our model. High-resolute 

roadway/intersection geometry and a complete set of signal timing information for a 

total number of 466 signalized intersections have been implemented in the model 

followed by a careful calibration procedure. Very few other studies have attempted a 

simulation of the scale and extent of the simulation in this study. Secondly, the study 

employs multiple data sources for validation and calibration. An independent process 

that compares simulated and observed corridor travel times have been done for model 

validation after the model is calibrated using 24-hour field counts data. Thirdly, a case 

study on the newly built toll facility in Maryland has been conducted to investigate 
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the before-and-after effect with various network-level, corridor-level, and 

freeway-level performance measures. After the simulation, Environmental Protection 

Agency (EPA)’s Motor Vehicle Emission Simulator (MOVES) (82) is integrated as a 

post processing model for the estimation of environmental impacts. This is among the 

first attempts to link EPA’s MOVES to large-scale miscroscopic traffic simulations. 

2.3 Behavior foundation in DTA 

The concept of DTA was proposed in 1978 by Merchant and Nemhauser (87), 

who tried to model traffic dynamically in a discretized time-setting. Merchant and 

Nembauser formulated DTA as a deterministic, fixed-demand, single-destination, and 

single-commodity problem, System Optimal (SO) problem. A number of studies have 

been conducted about DTA (details can be found in 88), and researchers at that time 

were more interested in the analytical flexibility and convenience in DTA, such as the 

requirement of “first-in-first-out”, multiple-destinations, the “holding-back” of 

vehicles on links, and how to represent link performance (88). 

 

Janson (89) attempted to seek the temporal static equilibrium in terms of 

experienced path travel times for users. This attempt at applying User Equilibrium 

(UE) to DTA can be regarded as a behavior foundation in this study area (89). Most 

DTA models applied Deterministic User Equilibrium or Stochastic User Equilibrium 

(SUE) as their solutions (89). The behavior foundation of both DUE and SUE is based 

on rational behavior theory (90). Rational behavior theory was first proposed in 1947 



18 
 

in economics (91), which assumed: 1) the set of alternatives are open to choice; 2) 

utility is a function of alternative, and alternative is chosen with preference-ordering 

among utility. In the condition of DUE, travelers’ experienced travel times are 

determined , and travelers have perfect information. The travel times are the same in 

all routes so that travelers share the same preference and no traveler would find 

another route with shorter experienced travel time (92). While in SUE, travelers no 

longer have perfect information. To model “imperfect” information, a random error 

component is added to the utility (travel time), and travelers are assumed to minimize 

their perceived travel time. The assumed distribution of the error component results in 

different preferences among travelers as well as different assignment models (i.e. 

Normal distribution for Probit model, Gumbel distribution for Logit model) (90). 

 

One further progress with SUE over DUE is the way it generates the selection of 

alternative routes (90). The consideration of partial choice set overcame the 

behaviorally unrealistic in previous DUE approachs (Williams and Ortuzar 1982). 

However, SUE is still based on utility maximization, and it does not recognize 

historical dependencies of route searching behavior (90). 

 

Another approach is Bounded Rational User Equilibrium (BRUE) developed by 

Mahmassani and Chang (93). BRUE is founded on Simon’s famous 

bounded-rationality assumption and associated satisficing decision rules (93). Instead 

of seeking necessarily optimal alternative with the maximal utility, BRUE tries to 
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seek an acceptable alternative satisfactory to the traveler. In terms of a bounded 

rational based departure time choice model, an Indifference Band (IB) of tolerable 

schedule delay (SD) is applied to model if a SD is acceptable by traveler. IB is 

allowed to be indifferent among people, which enhances the capability of modeling 

heterogeneousness among individuals. However, the process of alternative departure 

time searching is only modeled using preferred arrival time subtracting perspective 

travel time, which lacks wayfinding behavioral realism (90, 95). 

 

In order to improve the behavior realism in DTA, Behavior User Equilibrium 

(BUE) was developed by Zhang (92). BUE is based on the positive Search, 

Information, Learning. & Knowledge (SILK) theory that has overcome the limitations 

of rationality theory discussed previously. The historicaly dependent modeling is 

achieved by adopting a Bayesian learning to update travelers’ network knowledge and 

subjective beliefs. Travelers’ knowledge and beliefs are applied to determine their 

subjective search gain and perceived search cost, which will decide whether or not to 

conduct a new round of search and decision. Rule based searching increases the ease 

of observing individuals’ wayfinding behavior. The searching process of one 

individual will stop if the perceived search cost exceeds the expected gain from an 

additional search. The BUE is reached on a network when all users stop searching for 

alternative routes. The BUE has more realistic assumptions about wayfinding 

behavior and empirical derivation of behavioral rules (90). Zhang claimed that the 

BUE meets the requirement to more accurately predict behavioral responses in a 
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complex decision environment. This thesis implied the departure time choice model 

under SILK theory. Details can be accessed in Section 5.1. 
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Chapter 3: ICC 24-Hour Simulation Model 

 

3.1 Model development 

Supported by Maryland State Highway Administration (SHA), a simulation 

model was developed, in which all the freeways (I-270, I-495, I-95 and I-370), major 

arterials (e.g. MD355, MD97, MD650, MD28), most minor arterials, and some 

important local streets in the central and eastern Montgomery County and the 

northwestern Prince George's County of the State of Maryland are included (Figure 

3.1). With such a large-scale network, the simulation model could capture the impact 

of several new developments within this area, e.g. the new under construction toll 

road: the Inter County Connector (ICC); the Great Seneca Science Corridor (GSSC) 

in West Gaithersburg; the military base in Fort Meade (46). 

 

Microscopic traffic simulator TransModeler was selected for the modeling. 

Transmodeler (83) has a well-developed interface with geographic information system 

(GIS), which is convenient dealing with various data sources of a large-scale network. 

The simulated network was developed with the accuracy satellite images provided by 

Google Earth and conformations to the true geometry of links and intersections. The 

completed network has a final size of 7,121 links and 3,521 nodes, which includes 

three freeway corridors and one time-varying tolling facility. 
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Figure 3. 1 ICC Microsimulation Network 

 

In OD estimation procedure, the Metropolitan Washington Council of 

Government (MWCOG) planning model was used as the basis. MWCOG includes 

27,743 links, 10,505 nodes, and 2,119 Traffic Analysis Zones (TAZs), while the case 

study contains 162 TAZ centroids within MWCOG area. 39 external centroids were 

divided through which the sub-network is connected with the rest of the MWCOG 

model. With the application of Gradient Projection (GP) path-based traffic assignment 

algorithm (84), hourly simulation OD has been extracted for 24-hour period by 

applying the method developed in the authors’ previous work (46). Important steps of 

obtaining the OD are as follows: 

1. Conduct assignment of HOV using the GP algorithm; 
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2. Conduct assignment of trucks by excluding HOV lanes and keep the path 

flow of HOV; 

3. With the path flow of HOV and trucks, conduct the assignment of SOV; 

4. Compare the difference between the shortest and longest OD travel time, if 

anyone exceeds the predetermined threshold, back to step 1; 

5. Assign path flow between external stations and centroids to corresponding 

OD pair based on the path within the study area. 

 

After deriving 24-hour OD, comprehensive calibration is conducted by adjusting 

the timely OD matrix to match the spatial and temporal traffic pattern with field 

observations. The “Before ICC” network is used for calibration since all the observed 

data was detected before the construction of ICC. After calibration, the model was 

validated with the comparison between observed and simulated travel times on some 

major corridors. More detailed calibration and validation work would be discussed in 

next section. 

3.2 PEA MOVES 

Another highlight of this study is the application of Motor Vehicle Emissions 

Simulator (MOVES) as a post-processing module to process simulation outputs and 

estimate emissions. MOVES is a reliable tool in emission estimation developed by the 

Environmental Protection Agency (EPA) (82). Compared with other models, MOVES 

has a couple of advantages. For example, it has a strong linkage with emission related 
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database for the whole United States which makes the calculation more convenient 

(82). 

 

MOVES model is designed with different estimation scales: nation level, county 

level and link level scale for micro analysis. In this study, county level estimation is 

selected, which calculates the emission and energy consumption effort in one 

specified area during a given period of time. Simulated results and other data sources 

are required for county level estimation. These data requirements are described as 

follows:  

1. Total VMT, available directly from simulated results; 

2. The ratio of different vehicle types, obtained from the regional planning model 

(i.e. MWCOG model, version 2.2); 

3. The ratios of different road types, obtained from the segments data in the 

simulation model; 

4. Average speed distribution, calculated from the simulated counts and average 

speeds for every segment; 

5. Vehicle age distribution and population. This has been obtained from 

2007-2008 TPB/BMC Household Travel Survey, where daily number of trips, trip 

production per household and number of vehicles per household are used to estimate 

population; 

6. Meteorology data (temperature and humidity), posted at weather website “The 

Weather Channel”; 
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7. Fuel formations are set as default. 

After processing these data, MOVES estimates emissions such as greenhouse gas 

emissions, particular matters (PM), and energy consumption within the whole 

network and the corresponding time period.  

3.3 Model Calibration and Validation 

3.3.1 Model Calibration  

As mentioned in the literature review, model calibration turns out to be the most 

time-consuming and critical step in model development. Before we move to 

calibration, complete 24-hour signal timing information for the 466 signalized 

intersections is obtained from SHA and local department of transportation and then 

implemented in the simulation model. In this paper, 24-hour field counts data from 

SHA are used for model calibration. The data comes from 24 freeway and 38 local 

arterial sensors (red dots in Figure 3.1), and are collected for multiple days. From the 

hourly OD, the calibration algorithm (details are listed in (46)) evaluates demand 

adjustment factor αij,r,t associated with each path r between an OD pair i, j and for a 

given time period t by using the following equation: 
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where ij denotes OD pair from origin i to destination j; r ∈ R(ij, t) where R denotes 
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the complete set of all used paths of OD pair ij at time t; S(ij, r, t) denotes the link set 

of path r at time t. Fa,t denotes the actual link flow on link a at time t; fa,t denotes 

simulated link flow on link a at time t; ∆tij,r,a,t denotes travel time from origin i to link 

a starting at time t. ζij,r,a,t is an indicator which equals 1 if a ∈ S(ij, t) and 0 

otherwise. 

 

When attempting to conduct the calibration on 24-hour period at a time, the 

model’s DTA run time tends to be extremely long because during the first few 

iterations the assignment gridlocks the network and considerably slows the simulation. 

Thus, the authors address this by dividing the all-day study period into 6 sub-periods: 

early morning (0 - 6 a.m.), a.m. peak (6 - 9 a.m.), midday 1 (9 a.m. - 1 p.m.), midday 

2 (1 - 4 p.m.), p.m. peak (4 - 7 p.m.) and night (7 p.m. to 0 a.m.) and calibrating them 

separately. The simulation state of the traffic condition by the end of each sub-period 

is saved as an initial state loaded to the simulation of next sub-period to make the 

simulation continuous and consistent. 

 

Various performance measures have been applied to evaluate the accuracy of the 

match between field data and simulated counts: 

1. Root Mean Square Deviation (RMSE) 
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2. Normalized Root Mean Squared Error (NRMSE) 
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3. Pearson correlation coefficient (PCC) 
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where N is the number of independent set data to be compared, 
( )( )if x  and 

( )ˆ( )if x

denotes the observed and simulated count at sensor i. RMSE reflects the absolute 

deviation of counts; NRMSE indicates the relative deviation, where observed counts 

are weighted by volume; PCC is a measurement indicating the correlation between 

field counts and simulated counts. If r
2
 = 1, the model is exactly predicting the test 

data, while r
2
 = 0 indicates there is no correlation between the model results and the 

field measurements. 

 

Finishing the calibration, the performance measures demonstrate a good 

calibration result (Table 3.1). RMSE indicates the average difference of counts was 

595.2 for freeway stations, and 493.4 for all the stations (the average counts on 

freeway stations and all stations are 4,349 and 2,247 respectively). NRMSE shows the 

convergence of normalized relative errors for both freeway and all sensor stations are 

12.95% and 16.77% respectively. The PCC results also imply that simulated counts 
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conform to the observed counts with high accuracy. 

 

Table 3. 1 24-Hour Calibration Results 

Time Period 

RMSE NRMSE (%) PCC 

Freeway All Freeway All Freeway All 

Average 595.2 493.4 12.95 16.77 0.927 0.974 

0:00 to 1:00 72.3 101.2 6.59 14.52 0.978 0.980 

1:00 to 2:00 106.7 86.5 15.58 20.02 0.923 0.974 

2:00 to 3:00 99.0 74.4 17.61 21.06 0.886 0.966 

3:00 to 4:00 94.9 77.8 15.14 19.79 0.914 0.976 

4:00 to 5:00 195.9 155.3 14.40 18.16 0.946 0.982 

5:00 to 6:00 390.9 366.2 9.36 13.90 0.973 0.984 

6:00 to 7:00 899.5 650.5 14.05 15.80 0.918 0.976 

7:00 to 8:00 1,108.7 871.6 16.28 19.54 0.877 0.964 

8:00 to 9:00 1,030.8 844.8 15.33 19.14 0.881 0.962 

9:00 to 10:00 1,134.1 847.1 17.85 20.56 0.866 0.957 

10:00 to 11:00 805.8 585.1 13.99 15.81 0.921 0.977 

11:00 to 12:00 613.6 507.1 11.08 14.21 0.924 0.980 

12:00 to 13:00 513.2 498.8 8.99 13.52 0.946 0.983 

13:00 to 14:00 562.5 507.5 9.59 13.41 0.954 0.984 

14:00 to 15:00 986.0 758.3 14.57 17.42 0.910 0.977 

15:00 to 16:00 1,128.2 901.4 16.18 19.95 0.877 0.964 



29 
 

16:00 to 17:00 861.7 750.6 13.13 17.40 0.930 0.967 

17:00 to 18:00 794.2 782.6 12.46 18.44 0.943 0.967 

18:00 to 19:00 756.8 705.5 11.93 16.90 0.958 0.975 

19:00 to 20:00 560.4 486.5 10.05 13.45 0.956 0.980 

20:00 to 21:00 563.2 445.2 12.92 15.76 0.927 0.974 

21:00 to 22:00 460.0 384.9 11.95 15.46 0.949 0.977 

22:00 to 23:00 329.3 273.4 10.83 14.05 0.939 0.980 

23:00 to 0:00 216.9 179.7 10.93 14.19 0.947 0.981 

 

Figure 3.2 plots the final comparison of field and simulated traffic count data at 

all counting stations. After numerous rounds of error checking and calibration, the 

model appears to do a reasonably good job in replicating observed conditions. Most of 

the comparison points conform to the diagonal line. This implies an accurate 

calibrated model to simulate transportation planning scenarios. 
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(a) AM Peak  

(6 a.m. – 9 a.m.) 

 

(b) Mid-Day 1 and Mid-Day 2 

(9 a.m. – 4 p.m.) 

 

(c) PM Peak 

(4 p.m. – 7 p.m.) 
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(d) Night and Early Morning  

(7 p.m. – 6 a.m.) 

Figure 3. 2 ICC Microsimulation Network 

 

 

3.3.2 Model Validation 

The calibration results have demonstrated the consistency of the simulation 

model with the field measurements on most freeways and major arterials. The authors 

further validate the model’s performance with an independent validation process. 

SHA collected corridor-level travel times using probe vehicle during the AM peak and 

PM peak periods. This paper employs this dataset as an independent validation dataset. 

A total number of 12 corridors (6 routes with both directions) have been included in 

this validation to inspect the model’s consistency. The corridors are shown as the 

yellow curves in Figure 3.1. 
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As shown in Table 3.2, the overall differences between simulated and observed 

travel times are 12.6% and 11.2% for AM Peak and PM Peak, respectively. Validation 

results indicate that, the model calibrated by field counts data performs well on 

corridor travel times. Furthermore, the validation of link level travel speed can also be 

conducted once given related data.  

 

Table 3. 2 Validation results for AM Peak and PM Peak 

 AM Peak PM Peak 

Corridor 

Names 

Direction Simulated 

Time (min.) 

Observed 

Time (min.) 

12.6% 

Difference 

Simulated 

Time (min.) 

Observed 

Time (min.) 

11.2% 

Difference 

MD182 NB 13.9 15.3 -9.3% 17.4 14.0 24.0% 

SB 18.5 17.5 5.7% 11.5 12.8 -10.1% 

MD28 EB 20.4 16.9 20.7% 21.9 22.3 -1.9% 

WB 26.2 23.9 9.6% 22.7 20.0 13.2% 

MD355 NB 18.0 23.0 -21.8% 24.5 30.3 -19.2% 

SB 23.1 27.0 -14.5% 23.7 25.1 5.4% 

MD650 NB 18.1 17.1 5.8% 20.1 19.3 4.0% 

SB 16.8 19.5 13.9% 17.4 16.9 3.0% 

MD97 NB 15.2 12.8 18.8% 17.4 14.2 22.2% 

SB 15.1 17.2 -12.1% 14.7 14.0 5.2% 

US29 NB 14.1 13.8 2.2% 18.9 20.7 -8.6% 
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SB 32.7 27.9 17.2% 15.4 13.1 17.1% 

 

3.4 Case Study of Inter-County Connector, Maryland 

With the calibrated and validated model, the study aims at comprehensively 

investigating the impacts of a new toll road, MD-200 the inter-county connector (ICC, 

the orange link in Figure 3.1), on the overall traffic condition as well as the 

environment in Maryland. ICC was built since 2011, and now it is being expanded 

towards northeastern D.C. connecting a dense and mixed development urban area in 

Montgomery County, Prince George's County, and Baltimore metropolitan and BWI 

airport area. ICC is publicly expected to serve as a time-saving alternative route for 

the already high travel demand in these areas. How ICC could improve traffic safety 

and mitigate emissions pollutions is of research interests. In order to analyze various 

MOEs before and after ICC, both the traffic performances with ICC and without ICC 

are compared by microscopic traffic simulation. Taking advantage of the 24-hour 

large-scale microscopic traffic simulation model, MOEs on different levels of details 

are evaluated in this section. For example, the regional level evaluation, the corridor 

and freeway level analysis. Comprehensive MOEs for multiple time scales not only 

reveal the impacts of ICC, but also demonstrate the capability of the microscopic 

traffic simulation model for dynamic pattern studies, traffic management and policy 

analysis.  
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3.4.1 Regional Level Impacts 

The regional level MOEs include VMT, VHT, delay per vehicle mile, stop time 

per mile, and average speed. These MOEs provide a general vision of network-level 

travel mobility and traffic congestion. The time-varying average delay analysis can be 

employed to capture travel dynamic and potentially used to evaluate broader peak 

spreading effect and departure time choice. Table 3.3 summarizes the traffic impacts 

of ICC at the regional level. For the early AM and night period, there is no obvious 

difference between the two scenarios. This may be due to the light demand (early AM 

only taking up only 8% of the whole day’s demand). Most congestion mitigation 

effects are captured during the day time, especially the PM Peak. In terms of average 

delay per vehicle mile, the introduction of ICC causes a reduction of 7.62%. Better 

traffic condition is proven in ICC scenario from fewer delay and faster speed in the 

table. 

 

Table 3. 3 Comparisons of the Two Scenarios using the Regional Level MOEs 

 Early AM 

0 – 6 a.m. 

AM Peak 

6 – 9 a.m. 

Mid-Day 

9 – 4 p.m. 

PM Peak 

4 – 7 p.m. 

Night 

7 – 0 a.m. 

VMT (k mi) Before ICC 1,061.2 2,265.4 4,589.9 2,671.3 2,536.5 

After ICC 1,052.0 2,291.7 4,596.8 2,722.9 2,515.4 

(% change) -0.87 1.16 0.15 1.93 -0.83 

VHT (k hrs) Before ICC 25.6 75.0 143.1 115.8 76.4 

After ICC 25.4 74.9 139.2 112.2 74.2 
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(% change) -0.78 -0.13 -2.73 -3.11 -2.88 

Avg. Delay 

(sec/mi) 

Before ICC 30.4 61.4 54.3 97.1 50.2 

After ICC 30.7 60.3 51.7 89.7 48.3 

(% change) 0.99 -1.79 -4.79 -7.62 -3.78 

Avg. Stop 

Time 

(sec/mi) 

Before ICC 15.6 28.8 25.5 38.5 23.1 

After ICC 15.4 26.4 24.9 35.6 21.3 

(% change) -1.28 -8.33 -2.35 -7.53 -7.79 

Avg. Speed 

(mi/hr) 

Before ICC 41.5 30.2 32.1 23.1 33.2 

After ICC 41.4 30.6 33 24.3 33.9 

(% change) -0.24 1.32 2.80 5.19 2.11 

 

Figure 3.3 illustrates the average delay per network miles to better visualize the 

impact of ICC. From 8 a.m. to 1 p.m. and from 5 to 8 p.m., ICC helps reduce delay 

per mile by 6 seconds on average. 
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Figure 3. 3 Time-varying Average Delay per Mile 

 

By integrating EPA’s MOVES model with microscopic simulation, the model is 

able to estimate environmental impact of ICC. The emissions and fuel consumptions 

before and after ICC are compared in Table 3.4. In general, with the improvement of 

regional traffic condition such as faster speed and less congestion, “ICC” scenario 

indicates a smaller emission rate on GHG, and higher energy utilization ratio. The 

most significant energy saving and GHG mitigation happens in PM Peak period. The 

total savings on fuel energy consumption per mile can be as large as 3.90 percent, 

while the total reduction on carbon dioxide per mile reaches 1.67 percent. For 

Particular Matters and other gaseous pollutants, the most significant improvement 

occurs in peak hours. For instance, PM10 can be reduced by 1.39 percent during PM 

Peak period. 

 

Table 3. 4 Comparisons of the two scenarios using emissions and fuel consumptions 

Emission Early AM AM Peak Mid-Day PM Peak Night 
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Per Vehicle 

Mile 

0 – 6 a.m. 6 – 9 p.m. 9 – 4 p.m. 4 – 7 p.m. 7 – 0 p.m. 

Befor

e 

ICC 

After 

ICC 

Befor

e 

ICC 

After 

ICC 

Befor

e 

ICC 

After 

ICC 

Befor

e 

ICC 

After 

ICC 

Befor

e 

ICC 

After 

ICC 

GHG emissions 

CO2 (g) 369.4

8 

369.7

8 

386.5

4 

384.4

0 

368.5

8 

368.1

8 

387.8

5 

381.4

0 

358.5

4 

359.8

4 

NOx (mg) 551.3

1 

551.5

3 

529.8

2 

528.1

7 

615.0

5 

611.6

6 

600.7

7 

593.6

6 

545.7

1 

545.9

2 

CH4 (mg) 15.93 15.99 34.76 34.49 33.94 33.58 34.12 33.31 26.39 26.58 

Poisonous emissions 

NH3 (mg) 30.81 30.77 29.99 29.79 30.70 30.07 30.30 30.14 30.11 29.91 

CO (g) 6.098 6.120 10.17

5 

10.10

7 

10.61

2 

10.51

6 

10.70

9 

10.48

4 

8.795 8.827 

SO2 (mg) 7.27 7.27 7.52 7.48 7.17 7.16 7.54 7.41 6.95 6.99 

Particulate matter (PM) contamination 

Total 

PM10(mg) 

25.35 25.43 27.67 27.58 27.96 27.84 27.98 27.59 25.14 25.36 

Total 

PM2.5(mg) 

23.51 23.59 25.53 25.44 25.78 25.67 25.79 25.44 23.18 23.38 

Energy consumption  

Petrol 4890. 4894. 5111. 5083. 4873. 4868. 5128. 5043. 4741. 4758.
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Energy 

(KJ) 

6 6 6 3 8 5 3 1 0 2 

Fossil 

Energy 

(KJ) 

5136.

9 

5141.

0 

5377.

2 

5347.

4 

5127.

5 

5122.

0 

5395.

8 

5306.

2 

4988.

0 

5006.

1 

 

3.4.2 Corridor Level Impacts 

ICC leads to positive impacts on overall traffic condition as well as emissions 

control. The model can further evaluate performances of different corridors. Corridor 

LOS maps make it convenient to spatially assess congestion level and guide project 

planning and management. The LOS maps of PM Peak period before and after ICC 

are displayed in Figure 3.4 as an example of corridor level analysis. LOS A, B and C 

mean free and stable uncongested flow; D is an indicator of approaching unstable 

flow; E means the flow is operating at capacity; F suggests a breakdown flow. 

 

LOS of all the freeways, arterials were presented. Predicted by the model, ICC 

would affect traffic on neighboring and crossing arterials as well as the parallel links. 

For example, the neighboring traffic conditions on MD-97 and MD-182 southbound 

are improved. Meanwhile, initially heavy congestion on segments of the parallel 

corridors (MD-355, I-270, and I-495) has been mitigated to some extent. While for 

some arterials such as US-29, MD-182, the north bound congestion gets worse, 

simulated traffic is observed to grow as more vehicles now access these segments via 
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ICC corridor. The model suggests more vehicles have been diverted from MD-355 

and I-495/I-95 corridor, the most severely congested corridors in D.C. metropolitan 

area, to ICC heading northern sub-urban areas during PM Peak. Next subsection 

presents a freeway-level space-time analysis on I-495 to study this impact in depth. 

 

 

(a) Before ICC 
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(b) After ICC 

Figure 3. 4 LOS map before and after ICC 

3.4.3 Freeway Link Level 

The unique features of 24-hour simulation allow the authors to conduct a 

within-day freeway-level analysis on highway congestion assessment, traffic speed, 

and LOS. Before the construction of ICC, I-495, the Capital Beltway, has long been a 

highly congested corridor which carries intra- and inter-state travel demand from, via, 

and to the states of Maryland, Virginia, and Washington D.C. Once fully operational, 

ICC is believed to serve as an alternative corridor to remit congestion on I-495. To 

better understand the impact of ICC on I-495, comparison between space-time 

diagrams of speed is conducted (Figure 3.5). As the model predicts, ICC would cause 

noticeable effects to remit congestion level on I-495. A Spatial comparison implies 

that the most significant improvements on I-495 East Bound are at the joints of I-270 

(3.2 mi in Fig. 5(a) and 5(b)), MD355 (4.2 mi), and I-95 (10.2 mi). Most significant 
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effects take places during PM Peak (the most congested period on I-495 EB, caused 

by tidal commuting phenomenon in the area), while AM Peak and Mid-Day also show 

noticeable improvement. This before-and-after comparison implies an important role 

of ICC in mitigating I-495 congestion. In the future, this analysis can also be extended 

to other arterial/freeway corridor scenarios, and similar analysis for intersection queue 

length can also be carried. Constrained to the length of the article, these analyses are 

not included in this paper. 

 

(a). Before ICC 

 

 (b). After ICC 

Figure 3. 5 I-495 EB space-time diagram of speed for the two scenarios 
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3.5 Discussion and Conclusion 

A number of practical challenges emerge during the development of this 

multi-period large-scale microscopic traffic simulation model. Some of these issues 

and discussions are presented in the following subsections, along with the limitations 

of these approaches. 

3.5.1 Data Collection 

Developing a large-scale microscopic simulation model with multiple time 

periods requires unimaginable amount of detailed data. Firstly, building the network 

of this scale requires significant amount of workload and coordination. A great 

quantity of GIS data is indispensable to make sure the location of nodes and links, and 

the lane numbers on each segment. The geometry shape of particular areas (e.g. 

merging or separating of freeway and ramps) should be further examined to avoid 

even small geometry errors (which could be extremely troublesome). An early attempt 

of directly converting the network of the metropolitan of Washington (MWCOG) 

regional planning model was proven not successful since the planning model network 

does not define number of lanes for all links and has rough intersection geometry. In 

addition, adjusting the location and timing of signals also requires considerable time: 

all the 466 signalized intersections in our model were consisted with the field-signal 

timing. 

 

Secondly, available traffic data like counts, speeds and travel times are often 
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insufficient to avoid the inconformity from the traffic pattern in reality. This type of 

problems makes it difficult to refine model calibration and validation. These problems 

are ubiquitous among microscopic traffic simulation modeling, and may lead to more 

serious troubles for large scale networks (72). Jha claimed that available data can be 

uncoordinated and cause more inconsistencies because they may be collected and 

measured by various agencies with different devices at different times. In this study, 

we face difficulties when trying to obtain counts data for after-ICC scenario. 

Relatively new field data is not readily available and maintained by different agencies. 

Once the data sources are complete, the calibration and analysis can be further 

justified. 

3.5.2 Computational Time Issue 

With strong dependence on technology such as computer configuration, the 

development and calibration of microscopic traffic simulation models with large scale 

networks can be time consuming. 

 

In this study, neither advanced computational technology nor simplified method 

is dispensable to demonstrate the applicability of micro-simulation model to a 

large-scale, multiple-period network scenario. Having a huge network with over 

2,150,000 trips (all-day period), the simulation model running 24-hour DTA 

demonstrated slow performance even on an Intel Xeon 24-Core CPU server with 12 

GB memory. This computational difficulty is addressed by dividing the simulation 

period into 6 sub-periods as described in model calibration section. Thus, the time 
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spending on dynamic traffic assignment for a complete iteration of calibration has 

been greatly shortened. Even so, the comprehensive calibration framework required a 

number of iterations. The NRMSE of field traffic counts came to a convergence after 

around 8 iterations for each separate period, leading to approximate a total number of 

400 hours for the whole calibration task.  

3.5.3 Network Gridlock Caused by Small Errors 

Single bottleneck at important intersections or merging areas may cause the 

entire network to become gridlocked. When developing and calibrating the model, 

various small errors were found which could lead to unreasonable bottlenecks. These 

issues are picked out and emphasized for microscopic studies. They may seem trivial 

but can cause serious problem for simulation. 

 

 Missing important local links. It is time-consuming to include every local 

street within the study area. As a tradeoff, this may lead to insufficient network supply 

especially during the peak hours. Being a microscopic study restricting the link 

volume/capacity ratio, a considerable amount of travel demand is queued outside of 

the network and results in unrealistic delays. The authors’ parallel study which applies 

DynusT mesoscopic DTA also experiences a similar issue. This paper prioritizes 

different locations using average delay measure and then includes a complete set of 

local links at the most congested regions in the study area. This increases the network 

supply at critical regions and effectively mitigates the gridlock. 
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 Signal timing problems. Limited real signal data may cause unrealistic and 

serious congestion. Optimizing the signals is not feasible given the size of the network. 

The paper employs real-world signal data of all intersections. A compromise when the 

actual signal data are not available can be using Synchro or similar programs to 

optimize the signal timing plan based upon the field turning movement information 

(Smith et al. 2008). 

 

 Lane connectors and intersection geometry problems. In simulation, lane 

connectors and intersection geometry problems can cause the fact that the queue 

spillback block the path of other crossing vehicles at the intersection unrealistically 

and thus result in unreasonable congestion.  

3.5.4 Conclusion and Closing Remarks 

 This study develops a 24-hour large-scale network microscopic traffic 

simulation model for north Washington, DC metropolitan area. The model consists of 

over 7,000 links, 3,500 nodes, over 40,000 OD pairs, and over 2 million vehicles. 

Three freeway corridors, one new tolled highway, and all major/minor arterials are 

included in the simulation network. In addition, more than 400 intersections are 

signalized to simulate real dynamic signal control.  

 

 Real-world signal timing information for all 466 signalized intersections has 

been obtained and implemented in order that the simulation model represents the 

actual situation. Then comprehensive calibration has been conducted for the 
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robustness and reliability of the model. 24-hour field counts at 62 sensor stations data 

are considered as calibration base. Then simulation-based DTA is applied to obtain 

simulated counts. To make the simulated counts converge to the observed counts, OD 

adjustments and signal optimization are applied. With some 2,150,000 demand of 

trips, the NRMSE comes to 16.77%. An independent validation has also been done 

via comparing simulated and observed corridor travel times. Through the 

time-consuming process of calibration/validation of large-scale microscopic traffic 

simulation models, challenges, important lessons, and the way to address these 

challenges have been learnt and offered for discussion.  

 

 Another highlight of this paper is the emissions estimation using simulation 

outputs and EPA’s MOVES simulator. County-level emission estimation has been 

conducted for environmental impact analysis of ICC. With the unique capabilities of 

the model developed in this research, various key conclusions on the policy 

implications of ICC tolling can be drawn from the simulation case study. Following 

the prediction of the model, ICC would save as much as 6 seconds per vehicle mile 

during peak hours. It also cuts down GHG emissions rate and energy consuming rate 

by 1.67% and 3.90% at most. For corridor level, ICC has benignly affected 

neighboring arterials such as MD-182, MD-97 and MD-650. Based on our simulation 

analysis, ICC also has some noticeable and beneficial impacts on the performance of 

I-495, especially during the two peak-hour period. The case study demonstrated the 

value of large-scale multiple-period microscopic simulation model for project 
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planning evaluation. 

 

 The work contributes to the large-scale microscopic simulation research 

literature with a 24-hour model application and a before-and-after case study of a new 

tolled freeway (ICC). It contributes to the practice with empirical experiences and 

suggestions for future applications. Important issues such as data needs, 

computational burden, and simulation gridlocks are discussed and addressed. In 

particular, microscopic simulation network is more “congestible” as the 

volume/capacity ratio is restricted and each vehicle is simulated. Network gridlocks 

should be carefully dealt with before the calibration. Otherwise it is hard to clarify if, 

for instance, an underestimated simulation count is caused by insufficient OD demand 

or by the gridlocks. MOEs on different levels have been obtained for the case study to 

investigate the impact of ICC on dynamic traffic patterns. As one of the few studies 

that link the traffic simulation with emissions models such as MOVES, the paper 

demonstrates the feasibility of employing popular emission simulator as 

post-processor to analyze environmental impacts using simulation outputs. The model 

can be applied in a wide range of policy analysis, control and management, and 

decision-making processes. With the 24-hour traffic simulation, within-day and 

day-to-day behavior dynamics can be researched once agent-based dynamic behavior 

models are linked or integrated. This is a promising research direction to 

microscopically, dynamically, and behaviorally forecast the future. 
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Chapter 4: Cumulative land development analysis tool 

 

4.1 From Land Development Model to Simulation Model 

In the metropolitan Washington DC area, there is a regional planning and traffic 

demand model named the Metropolitan Washington Council of Governments 

(MWCOG) planning model. However, the transportation model of MWCOG is a 

trip-based four-step model, which can hardly acquire the dynamic/behavior 

interaction between traffic activities and transportation infrastructure. To gain a 

dynamic perspective on travel behavior change due to land development, such as 

route and departure time shifts, the land development model of MWCOG (Round 8.2 

Cooperative Forecasting model) is integrated with DTALite. The Round 8.2 

Cooperative Forecasting model estimates population, households, and employment 

for the entire MWCOG area on a Traffic Analysis Zone (TAZ) level. These land use 

data are converted to regional OD via the MWCOG transportation demand model. 

The data hub feature of DTALite makes it applicable to convert and import the 

MWCOG traffic network to mesoscopic simulation model. Then regional OD is 

derived for the study area based on traffic assignment and subarea cut procedure in 

DTALite. 

 

The land development and transportation improvement information was obtained 

from MWCOG regional planning model. We applied the 2010 MWCOG static OD as 
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the travel demand for the base case, and the 2030 static OD as the demand for future 

case. One major effort to integrate these static OD to our mesoscopic simulation 

model is the time dependent OD estimation. The dynamic OD is estimated from 

previous approach. Zhang et al. proposed a Gradient Projection (GP) algorithm based 

systematic approach to derive subarea OD from regional OD matrix (46). In this 

thesis, this process was taken placed by applying “subarea cut” procedure in DTALite. 

That is, the whole transportation network of the regional planning model (MWCOG) 

is coded in DTALite. After the assignment of regional seed OD to the network, 

DTALite is capable to derive sub-OD cut for the study area. 

 

When the static sub-OD is obtained, the overall OD is divided into 

time-dependent OD based on traffic volume. For example, if the static sub-OD for 

AM Peak period (6:00 a.m. to 9:00 a.m.) is derived from regional OD, we need to 

calculate the sum of field traffic hourly volume data from the sensor stations for 6:00 

to 7:00 a.m., 7:00 to 8:00. a.m., and 8:00 to 9:00 a.m. respectively. Then, the 

time-dependent OD would be estimated based on the following equations: 

 

 
6 7 7 8 8 9

= , 6 7,7 8,8 9i
i

V
i

V V V


  

   
 

                               (4.1) 

 , , ,= , 6 7,7 8,8 9 , ,i j k i j kp P i j k S                                    (4.2) 

 

where i  is the factor by time period i, iV  is the sum of field traffic hourly volume 

data from the sensor stations during time period i, , ,i j kp  is the time-dependent OD 
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pair from TAZ j to TAZ k during time period I, 
,j kP  is the static OD pair from j to k, 

S  is the set of TAZs in the network. This simplified OD estimation process ignored 

the difference of time factors among different OD pairs. Such simplification method 

was used for the lack of ground traffic data for such a huge network. After the 

estimation of time dependent OD, comprehensive OD calibration and validation were 

conducted to enhance the robustness of the model. 

4.2 Introduction of DTALite 

DTALite is a light-weighted, open source simulation based mesoscopic DTA 

package (47). The “data hub” feature allows DTALite to import network files or 

transportation project files from a number of on fashion software, i.e. DYNASMART, 

and ArcGIS. 

 

The traffic models in DTALite are queue-based models: point queue model, 

spatial queue model, and Newell’s simplified kinematic wave model (85). Point queue 

model assumes all the vehicles are queued at the end point of a link. When a vehicle is 

loaded to a link, it will travel at the speed limit until it reaches the end point of this 

link. Then, the remaining capacity would determine whether this vehicle would pass 

or queue at the link. There is no spatial constrains in point queue model. Spatial queue 

model adds a spatial queue constrain in point queue model, in which a link has a 

restore capacity defined by jam density multiplying number of lanes and then multiply 

link length. 
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Newell's simplified kinenmatic wave model uses cumulative arrival/departure 

volume to model traffic on road ways. The partial differential equation (equation 2) is 

applied to determine the spreading of traffic jam (traffic wave with 0 speed and jam 

density): 

 

( , )
dq dk

g x t
dx dt

                                                     (4.3) 

 

where q is the volume, k is density, x is the spatial location, t is time, and g is the 

generation function. Based on the definition of ware speed, the change of cumulative 

volume, and the cumulative volume change on a link are: 

 

( , )
q

dN x t k dx
w

 
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 

                                              (4.4) 

 

jamdN k l N                                                      (4.5) 

 

where l is the length, and N is the number of lanes. In order to speed up traffic 

assignment, as well as avoid unrealistic gridlock in early iterations, in DTALite, the 

first few iterations of DTA will be performed on point queue model, and then on 

Newell's simplified model. 
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The simplified traffic model allows DTALite to conduct high speed simulation. 

Another high light of DTALite is agent-based modeling: the travel information of 

every individual traveler (i.e. departure time, origin, destination, travel time, and route) 

is recorded as output, and it can also be loaded as input for simulation. 

4.3 Mesoscopic Traffic Model and Model Calibration 

Many DTA integrated traffic simulators, (e.g., DYNASMART, TRANSIMS, 

DynusT, and DTALite (85)) have been used in previous studies (46). They are all 

endowed with good features for real world applications, and there is no consensus 

superiority of any simulators. DTALite is selected for three main reasons: 1) it is a 

light-weight mesoscopic simulator with parallel computing for rapid simulations; 2) 

the embedded OD calibration system and subarea cut system allows detailed analysis 

for specific subareas; and 3) agent-based modeling is supported for the integration 

with behavior models. 

 

Supported by SHA, a mesoscopic simulation model that includes all freeways, 

most major/minor arterials, and some local connectors/streets is developed for the all 

of Montgomery County, Maryland. The major commuting corridors: I-270, North 

I-495 and MD355 are located in the middle of this study area (Figure 4.1). The 

simulation network, which contains 470 TAZs, 5481 links and 1921 nodes, are 

directly imported and cut from the MWCOG traffic demand model. 
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Figure 4. 1 Mesoscopic Network 

 

The OD is jointly calibrated and validated with hourly volume data provided by 

160 sensors from SHA’s traffic monitoring system and 2007-2008 TPB/BMC 

Household Travel Survey (map see Figure 4.2). The calibration and validation results 

are shown in Figure 4.3 and Figure 4.4. In Figure 4.3, each point represents a volume 

sensor. In Figure 4.4, the blue line denotes the cumulative demand rate (cumulative 

demand divided by total demand from 6:00 to 9:00) for the base case in the DTALite 

simulation model; while the red dash line denotes the cumulative demand rate in 

Figure 1 2007-2008 TPB/BMC Household Travel Survey.  
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Figure 4. 2 2007-2008 TPB/BMC Household Travel Survey Sample Map 
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Figure 4. 3 Validation Results 

 

 

Figure 4. 4 2007-2008 TPB/BMC Household Travel Survey Sample Map 

 

 

4.4 Integration with Behavior Model 

In this study, an agent-based positive departure time choice model is integrated 

with DTALite for behavior analysis. The model was developed by Zhang and Xiong 
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(65), and simulates the goal, knowledge, learning, and search ability of the travelers in 

the system. Based on a series of the learning, searching process and behavior rules, 

the model attempts to estimate how people logically behave rather than a rational 

utility maximization. After modeling travelers’ behavior changes, the individual 

decisions are aggregated for travel demand analysis. The framework of positive 

departure time choice model will be introduced in 5.1. More details of this model are 

available in literature (46) and (65). 

 

The integration flowchart is shown in Figure 4.3. The agent-based modeling 

starts from the static OD estimated via the MWCOG planning model. This regional 

planning OD is loaded into DTALite for regional-level assignment, after which the 

subarea OD can be cut and calibrated through its own procedure. The process to 

estimate dynamic hourly OD is discussed in “additional work”. In order to calculate 

travelers’ current experience, dynamic assignment is initially applied to pursue 

dynamic user equilibrium. This provides travelers’ current travel time and routes. The 

routes are required to calculate free flow travel time (FFTT) as travelers’ subjective 

believed ideal travel time. The subjective believed ideal travel time and current travel 

time will be used in positive model (see 5.1). Heterogeneity is then embedded by 

synthesizing these travelers with socio-demographic variables including: income, 

gender, flexibility of arrival times, search cost, etc. The population is synthesized 

based on 2007-2008 TPB/BMC Household Travel Survey. Under the initialization, 

dynamic assignment is adopted again to simulate the daily traffic for knowledge 
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learning process. Travelers’ experience is updated in the positive model. Every 

traveler learns their travel experience from DTA results; they make a departure time 

choice following positive departure time choice model (5.1). The iterative loops of 

departure time modeling would not finish until only a small number of individuals are 

still searching for alternative departure times. 

 

 

Figure 4. 5 Flowchart of the Integrated Model 

 

In the thesis, the population was synthesized based on 2007-2008 TPB/BMC 

Household Travel Survey. The study area of the survey is shown in Figure 4.1. 

Several socio-demographic variables such as income, gender, flexibility of arrival 

times were used in search rule in positive model, and the distributions of these 

variables are the same with 2007-2008 TPB/BMC Household Travel Survey. Talbe 

4.1 – Table 4.3 show the comparison between the survey sample set and the 
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synthesized population for cumulative land development analysis (2010).  

 

The assignment of agents’ socio-demographic variables was conducted using the 

random number function in Matlab. Firstly, several boundary numbers were 

calculated based on 07-08 TPB/BMC survey. These boundary numbers represented 

the cumulative frequency of different attributes. Secondly, for each agent, three 

random numbers were generated based on which the agent’s income level, gender, 

and flexibility of arrival time were assigned. Take gender as an example: in 07-08 

TPB/BMC survey, 47% of the population in the study area is male (table 4.2). Then 

the boundary number of gender is 0.47, if an agent gets a random number between 0 

to 0.47, the agent will be assigned as a male; while if the random number is between 

0.47 and 1, the agent will be assigned as a female. 

 

Table 4. 1 Income for Synthesized & Survey Population 

Income 2007-2008 TPB/BMC 

Household Travel Survey 

Thesis Scenario 2010 

0 – 29,999 1,806 (11.6%) 49,638 (11.6%) 

30,000 – 59,999 3,405 (22.9%) 97,230 (22.8%) 

60,000 – 124,999 5,996 (42.8%) 183,501 (43.0%) 

125,000 - more 3,158 (22.7%) 96,588 (22.6%) 

 

Table 4. 2 Gender for Synthesized & Survey Population 

Gender 2007-2008 TPB/BMC Thesis Scenario 2010 
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Household Travel Survey 

Male 14,582 (47.0%) 200,997 (47.1%) 

Female 16,748 (53.0%) 225,961 (52.9%) 

 

Table 4. 3 Schedule Flexibility for Synthesized & Survey Population 

Flexibility of Arrival 

Time 

2007-2008 TPB/BMC 

Household Travel Survey 

Thesis Scenario 2010 

Flexible 9707 (29.1%) 124,831 (29.2%) 

Not Flexible 21623 (70.9%) 302,127 (70.8%) 

 

4.5 Land Development Impact on Dynamic Traveler Behavior 

This section illustrates a land development case study via the proposed tool. 

Forecasted by MWCOG’s planning model, the population and employment of 

Montgomery County will increase by 18.6% and 24.4% respectively in 20 year (2010 

to 2030), as shown in Figures 4.4 (a) and (b). Meanwhile, a number of land 

development plans are taking place surrounding the I-270 and MD355 corridors. The 

long term change makes it necessary for urban planners to focus on both region-level 

mobility and corridor-level travel behavior changes. 
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(a) 2010-2030 Population Growth 

 

(b) 2010-2030 Employment Change 

Figure 4. 6 Land Use Changes 2010-2030 
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Provided by the Round 8.2 Cooperative Forecast model, the zone level 

population/employment change is shown is Figure 4.4. In northern Gaithersburg, 

Rockville and the North Bethesda areas, there are several zones along I-270 and 

MD355 which will induce high population/employment growth. In addition, a new 

tolled freeway, the ICC, will be complete by 2015. Parallel to north I-495, the ICC is 

an alternative highway for travelers between Montgomery County and Prince 

George’s County. With these highlighted developments, it is needful and interesting 

to forecast the change on both demand pattern and travel behavior along all these 

corridors (i.e., I-270, MD355, I-495, ICC).  

 

Three scenarios are incorporated into this real world application: 1) 2010 

scenario, which is referred to as the base case, uses the 2010 traffic network and 

demand provided by MWCOG. The base case TIA is only conducted by DTALite, 

and no behavior model is considered. 2) 2030 scenario, in which the differences 

between the 2030 scenario and the base case are the network and traffic demand. In 

2030 scenario, both traffic network and demand are 2030. 3) 2030 departure time 

switch scenario. In this scenario, positive the departure time choice model is 

integrated with DTALite as illustrated in section 3. The last scenario well 

demonstrates the capability of this proposed tool for capturing dynamic behavior 

changes among users.  
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Figure 4.5 shows the overall demand change. Estimated by the static planning 

model, the first two scenarios share a similar demand distribution. However, when 

positive theory is integrated with travelers’ behavior, the demand pattern shows an 

obvious shift: as the traffic situation gets worse in 2030, plenty of travelers will 

switch to earlier departure times to avoid being late. Even though a worse peak period 

shows up between 6:00 to 8:00, people tolerate the congestion to maintain being 

on-time for their work. Taking a further step than a single DTA model, this integrated 

model allows travelers to search for better alternatives based on their current 

experience. The new demand pattern results from individual behavior change, which 

also implies travelers’ adaptation to their new behavior. After obtaining a BUE, the 

regional level traffic performance is summarized in Table 4.1. The land development 

leads to 6.64 minutes delay per traveler, but this delay may reduce to 4.49 minutes 

after they learn, search and finally adapt to new departure times. 

 

..  

Figure 4. 7 Overall Demand Pattern Change 
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Table 4. 4 Regional Performance 

Year 2010 2030 2030 After Switch 

Num. of Trips 426,958 493,308 493,308 

Avg. TT (min) 20.05 26.69 24.54 

Avg. TTI 1.78 2.22 2.05 

Avg. Speed (mph) 36.18 32.02 33.96 

 

Meanwhile, from this integrated model, demand for specific OD pairs can be 

extracted for OD based demand analysis. Figure 6 displays the OD pattern change for 

I-270 and MD355. The demand pattern shown in Figure 4.6(a) and Figure 4.6(b) refer 

to the through traffic on I-270 and MD355 respectively. Similarly with the overall 

demand pattern, there is a shift for those who used to depart after 7:00 a.m. to depart 

earlier. 

 

 

 (a) I-270 OD Demand Pattern               (b) MD355 OD Demand Pattern 

Figure 4. 8 Demand Pattern Change 
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of time-dependent travel time shown in Figure 4.7. Caused by the growth of 

population and employment, travelers commuting via I-270 and MD355 will 

encounter worse bottlenecks than base case. Comparing scenario 2010 with 2030, the 

travel time from the ICC diverting area (point B in Figure 4.8) to I-495 diverting area 

(point C) will increase by at least 5 minutes for both I-270 and MD355 users. 

However, the travel time of these corridors will change when allow departure time 

switches among travelers. In “2030 after switch” scenario, more people will depart 

earlier, building up earlier bottlenecks. The congestion will also encounter an earlier 

drop compared with 2030 scenario. 

 

 

(a) I-270 TT Point A to B                  (b) I-270 TT Point B to C 

 

(c) MD355 TT Point A to B                  (d) MD355 TT Point B to C 

Figure 4. 9 I-270/MD355 Travel Times 
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In addition, the new demand pattern also influences travelers’ route choices. The 

2010 column and 2030 column in Table 4.2 imply an increase in through traffic at 

point B (Figure 4.8.). The construction of the ICC attracts over double the trips from 

I-270/MD355. While at point C, the increase of through traffic volume is not 

significant due to bottlenecks. Interestingly, the diverting traffic from I-270 to I-495 is 

shown to decrease by 6.7%. The increase of through traffic at point C indicates that a 

number of downtown-oriented travelers will switch from I-270 to MD355 in 2030. 

The last column claims that travelers tend to switch from MD355 to I-270 after they 

change departure time. This means travelers will take better advantage of the 

remaining capacity of I-270 for morning commuting, making more room on MD355 

for users who depart later. 

 

Figure 4. 10 I-270/MD355 Diverting Traffic 
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Table 4. 5 Route Choice Change 

 2010 2030 2030 After Switch 

Point B    

    Through 32,682 36,084 (10.4%) 37,260 (14.0%) 

    Through 4,513 5,970 (32.3%) 6,528 (44.6%) 

    Turning 4,333 9,659 (122.9%) 7,573 (74.8%) 

    Turning 1,085 2,927 (169.8%) 2,991 (175.6%) 

Point C    

    Through 25,201 25,800 (2.3%) 27,658 (9.7%) 

    Through 9,323 10,479 (12.4%) 11,985 (7.1%) 

    Turning 14,004 13,043 (-6.7%) 13,990 (-0.1%) 

    Turning 409 639 (56.2%) 694 (69.7%) 
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Chapter 5: Analysis on Potential Impact under Flexible Work 

Schedule Policy 

 

5.1 Positive Model 

Positive travel behavior model is based on SILK theory, which models the 

process of searching, information, learning, and knowledge updating of travelers (45). 

Based on previous studies (46, 65, 66), the positive departure time model provides a 

framework for the flextime policy modeling. For each traveler in the model, he/she is 

able to acquire traffic information from his/her prior travel experience or other 

sources (e.g., traveler information systems). The individual’s knowledge and 

subjective beliefs about traffic conditions are formed through a perception and 

learning process. With knowledge and subjective beliefs the model could determine 

personal attitude towards his/her current traffic conditions. That is, the amount the 

person expects to benefit from additional rounds of searches. Subjective search gain is 

defined to measure this benefit. It is theorized as the gap between the experienced best 

situation and the ideal situation. Correspondingly, search cost is defined to quantify a 

person’s perceived loss in each round of search. This may result from a traveler’s 

searching efforts (e.g., time, monetary, mental efforts, and risk involved). The 

trade-off between the subjective search gain and the perceived search cost determines 

the start and the end of an agent’s searching process (Figure 5.1). 
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Figure 5. 1 Flowchart of Positive Departure Time Choice Model 

 

Once a traveler stops searching, he/she would repeat his/her current departure 

time for the rest of the simulation. This assumption is to model either the traveler has 

found a good enough alternative or the traffic is so congested that he/she has already 

gotten  used to the situation after days of search. Otherwise, the traveler would find a 

new departure time based on current knowledge and a set of search rules. The traveler 

needs to map his/her spatial knowledge to the traffic conditions of the alternative 

departure time. Then a binary decision is made based on a set of decision rules about 

whether or not to switch to the new departure time. After all the travelers have made 

decisions, the individual-level behaviors are aggregated for the traffic modeling of a 

new day. Veldhuisen et al (21) provides a full-scale view about the search rules and 
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decision rules. 

 

To theorize a SILK model that captures how people make decisions, a number of 

assumptions of search gain/cost, and realistic mental rules and heuristics are made: 1) 

search gain is the gap between experienced best situation and ideal situation 2) search 

gain will decrease as people get tired of searching; 3) search cost is fixed for certain 

travelers; and 4) favored departure time alternatives are chosen based on preferred 

arrival time (PAT). The equations about search gain and search cost are as below: 

*

1

best
n

V V
g

n





                                                  (5.1) 

1

1
( )

2
N Nc g g                                                 (5.2) 

where ng  denotes the search gain for day n, bestV  denotes the quantified attitude of 

the best travel situation that has been experienced, 
*V  denotes the quantified attitude 

of the believed best travel situation, n  is the number of day. Here we assumed 

people’s beliefs follow a Dirichlet distribution (divided by n+1 means every day 

contributes the same to subjective search gain). c  denotes the search cost, which is 

fixed for an individual but different among travelers. We assume the search cost for an 

agent is the average between his/her last day’s (the N th day) search gain and his/her 

N+1 th day’s search gain. This is because on day N+1, the agent has stopped 

searching. The calculation of V  will be introduced in 5.2. 
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5.2 Proposed Model 

In this research, three major improvements were considered to enhance the 

robustness for flexible work modeling. Firstly, as individual-level decisions are made 

based on current travel experience, it is necessary to build a linkage between work 

flexibility and the quantitative attitude towards travel experience. In previous studies, 

this attitude was modeled following the rational behavior theory (equation 5.3).  

( ) ( )V t T t SDE SDL      

max(0,( ( )))SDE PAT t T t                                          (5.3) 

max(0,( ( ) ))SDL t T t PAT    

where t is the departure time, ( )V t  is the payoff at t, ( )T t  is the travel time 

associated with t; PAT is the preferred arrival time, SDE / SDL  represent schedule 

delay early/late, and   ,   and   are parameters. In this paper, PAT is replaced 

by preferred arrival time interval (PATI). Illustrated in Figure 5.2, .a traveler arrivals 

earlier than PAT suffers some SDE; however, after he/she has gained flexibility in 

schedule, the traveler no longer has SDE with the same behavior.. 
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Figure 5. 2 PATI v.s. PAT 

 

Secondly, uncertainty of both supply and demand sides is simulated in this paper 

to enhance the authenticity of the scenarios. Due to physical and operational factors, 

such as the road constructions and maintenance, incidents, and weather, some 

roadways may lose capacity or be blocked during certain time periods. In order to 

model supply side uncertainty, the whole 2013 incident data of the study area is 

obtained from Regional Integrated Transportation Information System (RITIS). Based 

on RITIS data, we assume the incident frequency follows Poisson distribution with 

rate 1.74 (times/day). The duration of incidents is assumed to follow Exponential 

distribution with rate 1/37 (1/minutes). The location of an incident is determined by a 

link’s failure probability in direct proportion with its volume. Demand, also varies 

from day to day following the variation of social activities and events. The demand 

side uncertainty is introduced by randomness of the total travel demand from day to 
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day. The coefficient of variation (CV, defined as the demand standard deviation 

divided by the mean travel demand) can be used to measure the demand-side 

fluctuation. In this study, the day to day CV has an Uniform distribution from 0 to 

0.15.  

 

Thirdly multi-day knowledge updating is adopted instead of single-day learning 

and decision making. Before every round of searching and switching, 5 days’ (one 

week) travel experience is simulated in DTA. Travelers cannot change their departure 

time during the 5 days. The average and standard deviation of travel time for every 

travel are calculated as a statistical travel experience. There are two concerns for this 

modification: to avoid simulation noise which may lead to unreasonable behavior 

changes; and to capture the impact of travel reliability on departure time choice.  

5.3 Introduction of DynusT 

DynusT is an open source simulation based mesoscopic DTA model. The traffic 

model built in DynusT is vehicle-based mesoscopic Anisotropic Mesoscopic 

Simulation (AMS) model (86). The simulation based DTA is solved through a gap 

function vehicle-based (GFV) algorithm. The relative gap function value will 

determine whether the travelers change routes or not. Compared with the widely used 

successive average method, GFV can avoid over adjustments of flow and thus lead to 

more consistent and robust assignment results. Meanwhile, DynusT adopts a method 

of isochronal vehicle assignment which divides analysis periods into epochs and 
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sequentially performs vehicle assignment in each epoch. This significantly improves 

the model scalability regardless of the total analysis period. In the newly released 

2012 version, DynusT has been fully parallelized in simulation, time-dependent 

shortest path and assignment algorithms, and therefore boosts the computational 

speed dramatically. However, the current simulator does not address capacity drop 

due to congestion. 

 

DynusT adopts a behavioral response system which assigns drivers to different 

response classes based on the percent distributions defined by the user. (1) Habitual 

users continue on the same path assigned to them unless there is a detour dynamic 

message sign that all cars must take. (2) System optimal users are assigned based on 

optimal system perspective, rather than the individual drivers'. In this system a vehicle 

may be assigned a longer path in order for the majority of vehicles to leave the system 

more quickly. This class of user will only respond to speed warnings or detour 

dynamic message signs. (3) User equilibrium users are assigned the paths that will 

reduce the travel time for the driver. Once the driver has reached user equilibrium the 

travel path is now the habitual path. (4) En-route information users. Two types of 

information are considered for this class: incident or disaster information is presented 

to drivers at the pre-defined frequency; new route information is presented based on 

updated travel time retrieved from the base station. The driver decides on whether the 

new route is chosen based on the bounded rational behavior. A driver considers 

switching routes whenever the en-route travel information is updated at each 
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predefined interval. (5) Pre-trip information users have best path information. They 

know in advance that there is road work or a closure before leaving, avoiding the 

congestion by choosing an alternate route and/or departure time. 

5.4 Integration with DTA 

In this study, the mesoscopic traffic simulator DynusT (86) is integrated with the 

positive departure time choice model to simulate travel experience for departure time 

choice. The integration flowchart is shown in Figure 5.3. The modeling of departure 

time shift begins from the static OD estimated via planning models. Multimodal static 

OD estimation and dynamic OD calibration are then conducted to obtain 

time-dependent OD tables for the study area. Details of these OD estimation 

approaches can be found in Ben-Akiva (23). In order to calculate travelers’ current 

experience, DTA is initially applied to pursue DUE, after which travelers’ travel times 

are collected. Meanwhile, their paths are extracted to calculate free flow travel time 

(FFTT) as their believed best travel condition. Here FFTT and current travel time are 

used to initialize their search gain. Heterogeneity is embedded when synthesizing 

these travelers with socio-demographic variables including: income, gender, 

flexibility of arrival times, search cost, etc. Under such initialization, one iteration 

path fixed dynamic assignment is adopted to simulate weekly traffic knowledge 

learning process. Travelers’ a weekly travel time is updated, and a positive departure 

time choice model is employed for every traveler. In each run of the simulation, every 

traveler learns their travel experience from DTA results; makes departure time search 
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based on the trade-off between search gain and search cost; and adapts behavior via 

decision rules. The iterative loops of departure time modeling would not finish until 

only a few individuals are still searching for alternative departure times, which also 

means a BUE. 

 

 

Figure 5. 3 Flowchart of the Integrated Model 

 

5.5 Flextime Policy Analysis 

In order to demonstrate the capability of the model for flextime study, a real 

world application will be illustrated in this section. The selected study area is shown 

in Figure 5.4, which includes Rockville, North Bethesda, and Gaithersburg in 

Montgomery County, Maryland. Three major roadways (I-495, I-270 and MD355) 

and other minor/local roadways are coded via DynusT in this study. There are 61 
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traffic analysis zones, 201 nodes and 1077 links in total. Already containing the AM 

peak period, the simulation horizon is from 5:00 a.m. to 10:00 a.m. 237,903 vehicles 

were extracted from the previous ICC model (23) during the horizon. The demand has 

already been calibrated and validated in the previous work (46). 

 

 

Figure 5. 4 A Real World Network: I-270/MD-355 Corridor 

 

There are 11 scenarios designed in this paper with 0%, 10%, 20% to 100% of the 

travelers having flexible work schedule. People are randomly assigned with a flextime 

policy and the total number of flextime travelers will make up a certain percentage of 

the population (i.e. 10%, 20% …100%). Socio-demographic variables such as gender 

and income level are generated by the same distribution with 2007-2008 TPB/BMC 

Household Travel Survey (65). In order to reduce the impact of simulation noise, 5 
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simulations are performed for each scenario with different flextime travelers 

(described in 5.2). The 0% scenario is considered as a base case. This base case is 

assumed to be the original traffic situation, in which all travelers have a habitual 

departure time and arrival time provided by DUE. In these scenarios, travelers 

assigned with flexible schedules can arrive any time within their PATI. The PATI is 

assumed to be a two-hour time window with their current PAT being the mean value. 

For example, if a traveler used to arrival at 9:00 a.m., his/her PATI should be 8:00 to 

10:00 a.m.. It takes around 10 weeks (50 iterations) for each simulation to reach 

convergence, so there are around 2750 iterations in total. 

 

At the end, only a fraction of travelers are still looking for new departure times. 

This stable situation among travelers is regarded as BUE. The impacts of flextime 

policy on demand pattern are displayed in Figure 5.5. The blue curves denote the base 

case situation, which means no agents have a flexible schedule; the red curves with 

dots denote the scenarios with different percentages of flexible agents. As the 

percentages of travelers with flexible schedule increase, the total demand during the 

AM peak period (6:00 to 9:00 a.m.) is shifting to later time periods. After the ratio of 

flextime travelers increases to 60%, there is no obvious peak period (compared with 

base case demand). The demand distributes smoothly from 6:00 to 10:00 a.m., which 

is consistent with Xiao’s study (59). Using the integrated model, the step-by-step 

change of demand pattern is captured. 
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Figure 5. 5 Demand Pattern Change 

 

Having a better understanding of such demand pattern changes, Figure 5.6 

separates the flex-agent demand and no-flex demand. Figure 5.6(a) summarizes the 

demand pattern change for travelers with flexible time. The 11 curves from lowest to 

highest refer to the increase in the percentage of travelers with flextime from 0% to 

100%; while in Figure 5.6(b), the 11 curves from the lowest to highest refer to the 

decrease of this percentage (100% to 0%). For travelers who have flexible schedules, 

even though this ratio is low, there is no distinguished peak period; while, for travelers 

without the flexible policy, an obvious peak period can be found between 6:00 and 

9:00 a.m. in nearly every scenario. This phenomenon implies that travelers with 

flexible schedules tend to depart later to avoid the peak hours. As the percentage of 

travelers with flextime increases, the absolute number of travelers who switch out of 

peak hours travel is also growing. This results in a difference in total demand pattern 

(Figure 5.4). It also this policy has little impact on the demand pattern of the travelers 

without a flexible schedule. 
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(a) Demand of agents with flextime 

 

(b) Demand of agents without flextime 

Figure 5. 6 Demand Pattern Change for Both Traveler Groups 

 

Figure 5.7 indicates the interesting finding that flextime travelers choose to 

depart later while there is almost no change on the demand pattern of travelers 

without flexible schedules. The 70% scenario is selected for this analysis because: 1) 

although the total demand is evenly distributed from 7:00 a.m. to 10:00 a.m. (Figure 

5.4); and 2) two groups of travelers obtain different changes in their payoff. Figure 

5.7(a) illustrates the payoff changes of the travelers with flexible schedule: the 

horizontal axis represents the original departure time, while the vertical axis 
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represents the departure time that travelers shifted to, and the color represents the 

payoff change. Obviously, thanks to this peak spreading effect (Figure 5.4) travelers 

who are used to depart during peak hours benefit the most. Figure 5.7(b) shows how 

many people have shifted departure time from/to different time periods. Even though 

these travelers have the flexibility to arrive later, the majority of them still use their 

original departure time. For those who changed behavior, a later departure time is 

much more preferred than an earlier one. When a minority of travelers departs later, 

traffic congestion is eased and there is less incentive for the rest of travelers to change 

their behavior. In Figure 5.7(c), the payoff changes of travelers without flextime are 

displayed: before 9:00 a.m., they may have a small increase in their payoff. Travelers 

departing after 9:00 a.m. will suffer a loss of payoff due to the demand increase. The 

majority of these travelers also stay unchanged (Figure 5.7(d)). And the number of 

travelers switching earlier/later is almost equal, leading to a stable demand pattern.  
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(a) Payoff Change for the Flextime Travelers    (b) Switching Number of Flextime 

Travelers 

 

 (c) Payoff Change for the No-Flextime Travelers (d) Switching Number of No-Flextime 

Travelers 

Figure 5. 7 Payoff Change Under 70% Scenario 

 

The average travel time diagram (Figure 5.8) shows the impact of aggregate 

network performance from individual behavior changes. The traffic during the AM 

peak improves greatly as the level of flextime grows. However, the relationship 

between travel time and flex-share is not monotonic. Travelers departing after 9:30 

am will suffer from some bottlenecks when this ratio surpasses 70%. Unlike the 

traffic congestion during the AM peak in base case, this slight bottleneck results from 

the trade-off between flextime travelers’ gain and non-flextime travelers’ loss in the 

payoff. For the whole simulation horizon, Figure 5.9 shows the overall average travel 

time for different policy scenarios. In this case study, every scenario performs better 

than the base case; the traffic system with 60% flextime travelers reaches an excellent 

situation which can save 10,785 hours (22.3%) in total travel time. 
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Figure 5. 8 Travel Time Change for the Whole Population 

 

 

Figure 5. 9 Network Average Travel Time 
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Chapter 6: Conclusion 

 

6.1 Integrated Tool for Cumulative Land Development Study 

This study integrates DTA with an agent-based positive travel behavior model to 

estimate the transportation impact under land development. In the proposed model 

framework, travelers no longer have perfect network knowledge to maximize their 

travel utility. Instead, they are learning and searching for better choices to decline 

their costs due to delay, schedule delay early, and schedule delay late. The integration 

with a positive model enhances the behavior realism of DTA, resulting in the 

capability to capture dynamic travel behavior changes. This integration can be a 

valuable method for planning agencies to conduct studies on land development, traffic 

related policies and/or a combination of the two. It is also proven as a feasible tool to 

conduct new TIAs which emphasize not only regional/local system mobility, but also 

individuals’ behavior. 

 

A land development case study is illustrated in this paper. Various regional and 

local travel behavior changes are focused on to demonstrate the unique value of this 

tool on dynamic travel behavior analysis. The departure time shifts of travelers come 

from a series of rule-based logic evaluations, which may be biased due to the varying 

of travelers’ attitudes such as value of time. But it still provides a low-cost resource 

for capturing individual reactions on their travel behaviors. Future research will focus 
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on integrating more choice dimensions such as mode choice and destination choice. In 

addition, comparisons between agent-based positive model and utility-based rational 

models are also expected in future efforts. 

6.2 Flexible Schedule Policy Analysis 

This thesis also attempts to gain perception about travelers’ reaction towards 

flexible work schedule policy. Unlike previous flextime studies, the research goal in 

this paper is achieved through further developing the modeling framework of an 

agent-based positive departure time choice model. Individual knowledge learning and 

decision making process is specified and empirically modeled to understand the 

potential influence of this policy on day-to-day traffic dynamics. DTA is integrated 

with this agent-based positive departure time choice model. One remarkable 

advantage of this integrated model is its ability to build a feedback between 

demand-side individual choice and supply-side network performance. The 

disadvantage (we may also call it our future research opportunity) is that the agent 

behavior (search rules and decision rules) already built in this study area may be 

inapplicable for other study areas. Thus, the model requires further calibration before 

applying to other study areas or scenarios. One alternative calibration method is to 

apply simulation based optimization to adjust the probability distribution of the new 

departure time searching (39), which will be explored in future research. 

 

Different scenarios of various percentages of flextime agents are tested in a real 
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world network in Montgomery County, Maryland. It has been found that travelers 

with schedule flexibility tend to make their travel later, which is the same as (12). 

This result is in accordance with the purpose of flextime policy, which aims at 

balancing the conflict between work and family. Travelers’ individual level behavior 

change may lead to significant improvement on traffic system. As these flextime 

travelers switch from AM peak to post-peak periods, the congestion during peak hours 

is alleviated. However, the improvement of traffic condition has few influences on the 

demand pattern of agents without flexible schedules. The network with 60% flextime 

travelers performs the best. Under such condition, original AM peak in the base case 

will spread between 6:00 a.m. and 10:00 a.m.. Compared to the base case, 10,785 

hours (22.3%) of traffic delay would be saved. Since the current flextime ratio is 

around 30%, the 60% or upper flextime ratio seems unpractical. In addition, results 

may not be the same for other areas or networks. This paper holds a theoretical 

analysis for prospect of future demand management policies.  

 

In this research, the assumption in terms of flextime policy is strong: the PATI is 

a two-hour time window based on travelers’ PAT. This is a shallow attempt to 

demonstrate the capability of this integrated agent-based model to capture departure 

time change under behavior related policies. Departure time flexibility modeling can 

be a complex problem because travelers’ flexibility is determined by a variety of 

factors, i.e. travelers’ ability to start work later/earlier, traveler’s house responsibility, 

and social-economic characteristics. All these features can be taken into account for 
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future research. In addition, it will be more interesting and meaningful if monetary 

stimulus is considered in flextime policy study. That is, a traveler can get some 

monetary reward if he/she switches from peak period to off-peak period. Thus, it 

allows us to have perspective view on the monetary cost and welfare gain due to the 

introduction of flextime policy. Furthermore, comparisons can be conducted between 

traffic demand management and other congestion mitigation methods, such as 

roadway capacity extension. 

 

Furthermore, this integrated model is also applicable for studying the impact of 

other management policies, demand increase, and even roadway incidents on travel 

behavior. Since departure time is the only dependent variable in its current framework, 

the model still requests further development to capture travelers’ behavior change in 

route choice, mode choice, lane choice, etc. The authors expect to empirically 

estimate and embed other behavior rules into this framework for more comprehensive 

analysis. 

6.3 Limitations and Future works 

There are two major limitations of current approach. In the first place, the release 

of behavior foundation can be a double-edged sword. The good side is the model 

allows heterogeneity among travelers. The disadvantage is that the behavior pattern 

(search rules and decision rules) already built in this study area maybe inapplicable 

for other study areas. Thus, the model requires calibration before implying to other 



88 
 

study areas or scenarios.  

 

Additionally, the dynamic OD estimation process lack theoretical foundation. In 

the current model, the dynamic OD is obtained by multiplying a “time factor” to the 

whole static OD table. In reality, different specific OD pairs may contribute 

differently by time. For example, a commuting OD pair (mainly connecting resident 

area with employment area) may have more trips during 6-7, while a shopping OD 

pair may contain more trips during 8-9 or even later. Thus, more advanced dynamic 

OD estimation approaches are required. 

 

In terms of the limitation of current model as well as the interest, several 

considerations are made for future research: 1) the calibration process for the positive 

travel behavior model needs to be improved both theoretically and applicably. It is 

necessary to propose an easy-running behavior model calibration approach to enhance 

the robust of this integrated model; 2) other travel behavior models such as mode 

choice model, route choice model, destination choice model, will be considered to 

integrated into this model, resulting in a more behavior realism software package for a 

variety of applications such as the building of transit system, dynamic pricing policies, 

and the implement of ramp metering. 
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