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ABSTRACT
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Let {Yt} be a stationary stochastic process with values in
the finite set VY.
We model {Yt} as a probabilistic function of a finite state

Markov Chain {Xt} i.e. Xt is such that:

t t-1 ;
PLY, | X7, Y 1= PLy [ X ]

Define the cardinality of the state space of {Xt} as the order
of the model. The problem is to determine the order given the

observations {yl,yz,...,y } . Ve show that under mild conditions

T

on the probability distribution function PY(.) of {Yt} the order

is identifiable and can be consistently determined from the data,
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INTRODUCTION

In 1966 Ulf Grenander posed, and partially answered, in a
little-known paper, the following question: "can we look in-
side an unreliable automaton?",

Grenander's paper is one of the few devoted to the identi-
fication of finite state stochastic systems. Many pecople in
the '"60 contributed to the creation of a finite state stocha-
stic system theory and a considerable corpus of knowledge is
presented in e.g. [Paz] and [Carlyle].

Despite this fact very little work has been done in iden-
tification. Our aim here is to investigate for a restricted
class of such models (probabilistic functions of Markov Chains)
a particular aspect of the identification problem (order de-
termination).

Roughly the problem can be described as follows. Ve obser-
ve a pilece of a trajectory of a finite valued, stationary sto-
chastic process {Yt} and try to model it as a probabilistic
function of a finite Markov Chain, The underlying assumption
is that the mechanism generating {Yt} can be reasonably well
explained in the following way. There is an (unobserved) fini-
te stationary Markov Chain {Xt} such that:

Eovt) o= prx X ] (1)

p £
PIX t+1 Yt+1I t

* Yt+1i X

t+1
Tt follows that the evolution of {Yt} can be probalistically
characterized by the transition matrix of {Xt} and the con-

X 1.
o)

ditional probability distributions P[Yt

Vithout loss of generality we can assume that the Markov Chain

' ! o - 'p _ y
{Rt} is such that ‘IXt+l,Yt+llXt] P[Yt+1!Xt+1]P[Xt+1 kt]
it then follows from (1) that VY t1<t2< ...xty
PlY, ,Y ,...,Y_ 1 =2P[y_IX_ JP[X_ [X_ l...P[Y IX_ IP[X ]
b b tx ety Y Yk t0Y Y

To identifyv this model on the basis of the data {y],y?,...
..,V means therefore:
Tt

- determine the cardinality of the state space of {Xt}

(whieh we c¢all the order of the model)




- determine the parameters i,e. the transition matrix of {Xt}

and the conditional distributions P[Yt|xt]'

Work has been done in the past in the area of parameters
estimation for these models (when the order is supposed known
a priori).

[Baum] and [Petrie] in a series of papers analysed the asym-
ptotic distribution of maximum likelihood estimators showing
consistency. Moreover they produced an algorithm for the effi-
cient computation of the maximum likelihood estimators.

In recent years people working in automatic speech recogni-
tion have been using these models (called Hidden Markov Models
in their jargon) producing many studies on the numerical aspects
of Baum algorithm. For a review see the paperby [Levinson et al.]

To the best of our knowledge nothing has been done for the
problem of order determination. A first basic question is the
following.

Suppose that {Yt} is actually generated by a probabilistic
function of Markov Chain of order mn (such an assumption is pro-
bably only seldom met in practice). Is it possible, on the ba-
sis of the data to determine n 7

Qur results show that, if the probability distribution fun-
ction (pdf) PY(.) of the process {Yt} belongs to a large sub-
class of the class of pdf generated as functions of Markov Chains
then n is identifiable., Moreover it can be estimated in a con-

sistent way from the data,




THE MODEL

In this chapter we will define the class of models chosen
to represent the observed finite valued process {Yt}.

Tet {Zt} be a stationary finite valued process (FVP)
defined on the probability space (2,F,P).

We denote by %:={ﬁ1,52,.,,{r} the set of values of Zt’
and Z® the free monoid generated by Z.

For s€z® let l's|:=length(s). Define the function

P Z® -[0,1] as follows:

P(+) = 1

if s=515253...5k (where eiGZ Y then
P(s) = P[Zt=al,Zt+l=t2, .. Zt+k=€k]

Since {Zt} is supposed stationary P(s) does not depend on t.

The function P(.) i1s called the probability distribution

function (pdf) of {Zt}.

Finite Stochastic Systems

For reasons to be shortly explained, finite stochastic
systems are a natural class of models for FVP,

Definition a.1 (SFSS)

A rair ({Xt},{Yt}) of stochastic processes defined on some
probability apces (7,¥V,P) ds said to be a stalionary “inite
stochazstic sustem (SF¥SS) 4 the following conditione are met:
%) {Xt} the etate proccor, 15 a FVPWILh valuc <n X={1,2,..,k}

The eardirality k of X 10 called the order of Lhe anatom
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it) (Y, } the outputl procoss, fa a VNP with value 70 Y={1,2,..7r}

717) ({Xt},{Yt}) arve doinlly clalionary

. , t ot
7 o] b'¢ { Y = P | X
Lv) IIYt+], t+]!k ¥ [Yt+]’Xt+1‘xt]

This definition was introduced in [Picei]. An important

ronsequence of a.1 dis the following:

~

Lemma o, 2

I

The ctate prozesgs {Xt} of o SFSS 725 a Mariov ol
proof:

From iv) in the definition we have:

. t t , A
jlX ,Yy 1 = P[X —J!xtl

PIX 417 t4+1"

. . c s . . t
Taking conditional expectations with respect to X we have:

X ]

= 3 }
P[Xt+1 ilX,

Lt
P]Xt+1=35x ]

which i1s the desired Markov property. @)
Also it follows immediately from the definition that
a STSS is completely specified by the set of matrices

{M(c),c€ W} where:

= = J =1 N =1 i g o= ..
[N(e)]i’j PIYV, =e. X =3 1X, i] i,i=1,2,..,k

and by the initial (invariant) probability distribution

# for the Markov Chain {Xt}.

This means that all probabilities of the form P[Y§=S,Xo=w]

®

with s€Y, wGK@can be computed explicitely in terms of
IM(#), “€Y} and =
In particular, for future reference, we observe that:

LLemma .3

o opprohabl it dict e bt Tow Cuced Tow of Eho ook

poeo 3 {Yt} of a SVSS Lo ginen by
V(s ) = ' L) e MG e
POy ety )T MO N Ce,) (e

k

ioems e=(1,1,..,1)R ",




The Realization Problem

How can SFSS be used to model a FVP {Yt} ?
The answer depends crucially on what the available data about

{vy ¥ are.
¢

The ideal situation is when {Yt} is probabilistically com-
pletely known, We are given the probability space (&,F,P) and
the maps Yt : (D2,F,P)> ¥ defining {Yt}°

When this is the casec, we can aim at perfect modelling and
try to find a SFSS ({Xt},{Yé}) defined on the same (9 F,P) and
such that YE = Yt (Yt) a.e.l,

This is the still open problem og strong stochastic reali-

zation for FVP,

Another interesting situaticn is when {Yt} is statistically

completely known. We are given the pdf

p WQ »[0,1]

of the FVP to model and the problem is to find a SI'SS ({Xt},{Yt})

such that P(s) = p(s) (VSFW®), where P(,) is as in Lemma a.3
This is the weak stochastic realization problem for FVP.

The status of (weak) realization theory for FVP is rather unsa-

tisfactorv. The main result here is the characterization of

the class of pdf of FVP that admit weak realizations of finite

order, see |Heller], [Piccil.

On the other hand the characterization of minimal realizations

(i.e. of minimum order), the relations between them and how to

construct a realization are still misterious aspects of the the-

orv, sce [Picci, van Schuppenl.




Ve want to briefly explain why it is desirable to build a
Realization Theory for FVP,

Observe that once {Yt} has been realized through a SFSS,
it can be thought as a probabilistic function of the Markov
Chain {Xt} i.e. the present value Yt is a probabilistic

function of the preceding state Xt only and not of all

-1
, t .
the past history Y , from iv):

PIY XN,y ] = Py _|X ]

t-1
Statisticians would say that Xt is a sufficient statistic
for Yt' A stochastic to deterministic transformation [Petrie]
will make this point clearer.

Define the new state space & = X x ¥ and the function

f : & Y as f(i,e) = ¢
The process {XL} = {(Xt,Yt)} is then Markov (follows from iv)
and the process

Y; = f(Xé)
has the same pdf of {Yt}.
Realizable processes can therefore be interpreted as deter-
ministic functions of Markov Chains (at least in the weak
sense).

In Tdentification the first step to take is the choice
of a class of models from which one is to be selected to
represent the data. Tt is at this stage that Realization
Theoryv of FVP (if there were one) would plav its role giving
the rationaile for the choice of the class.
For a discussion of the relevance of Stochastic Realization

Theorv in Tdentification (in the contest of lincar systems)



sec [Kalman] and [Finesso,Piccil.

Unfortunately, the rather poor development of the theory
for FVP will force us to approach the Tdentification pro-
hblem from the classical point of view.

In the classical approach the model of {Yt} is just
its unknown pdf PY(.) which must be inferred on the basis
of the available data {yl,yz,...,yT}. The problem is one
of statistical inference with non-independent samples.

To make the inference problem tractable a parametric
family {PO;PCQ} of pdf is chosen a priori from which one is
to be selected.

Observe that any function:

p W® - [0,1]

satisfying:

i) P(f.")) =1

ii) p(s) %p(sa) (VS€W®)
p(es)  (Vsew®)

”

iii) p(s)

i
2l

.

is the pdf of a stationmary FVP (Kolmogorov Theorem).

A useful by-product of the formulation of the realization
problem is a convenient parametyic family of pdf for TFVP,
We have in fact the following:

Proposition c.4

Let ke€Nbe given, toghoter with a set of v = # W malvrices
M(rl),w(vz),...,M(*T) R REXk and a stochastic vector ER S
TN = TOM(S) A oo wiochastic naleiz oand vEr A Then
the funcldon P WQ 0,1) deTned as




io a pdf of a stationary YVP with valuc in Y.
proof

direct check of the consistency conditions given before.,

An assumption on the structure of the matrices M(«) will
pive us a more economical parametrization,

Assumption A.1l

Ve €Y there exiats BQ= diag{blﬁ,bzﬁ,...bkg} where

bi €fo,1] (¥j,=) and ;bir= 1 (Yi) such that M(s) = AB
. SR I £

Assumption A.1 looses its misterious aspect when interpre-~
ted in the contest of SFSS. In the language of SFSS, A.1

corresponds to the factorization hypothesis:

PIV =Xy =3 IX =2] = PIV g X =3P IX =i 1% =)
Introducing the following notation:
e (Y=o 1% p=d] ”bjgkj=1,..,k
e=1,..,T
= P = =1 A = ! I
3 (X =i ¥ =1 Faysls =1, 0k

then the factorization equation becomes:

M(e) = AB

£

In Stochastic automata literature a system satisfying
this condition is called a Moore machine [Paz].
Civen a general SFSS it is alwavs possible to convert it
to an equivalent Moore machine [Carlvle], there is there-
fore no loss of generality in making asswmption A,1.

We are now in position to define the parametric family

of pdf chosen to represent FVP,




Definition a.5

P = {Pm: W®—>m,1'l : 0€8}

where
Ckxk kxr ok
g =1 AFR , B R , n €T, k €N and
A is a stochastic matrix
B is a stochastic matrix ( B = diagi{b, ,..,b, 1)
£ 1~ kr
m is a stochastic vector and u= A }
and
P R I "AB AB ...AB e
< £ 2 5
1 2 t
We will denote the generic element of 6 as = (k,A,B,n).

Taking P as parametric family of pdf we limit ourselves to the

consideration of FVP that are functions of finite Markov Chains ( FMC ).




IDENTIFIABILITY

In this chapter we define a subfamily Pocop for which

we can prove an identifiability result,

The Petrie Family

Suppose to have available a sample path of the VP {Yt}
whose pdf PY(.) ‘1.
Applying some standard estimation procedure (e.g. max like-

lihood) we would like to determine "the'" value ﬂOGQ such

that PP ~ PY . Unfortunatelyvy this is in general impossible.
2
0

Definition P.1

Two parameters ©,,0, €6 are colled indistinguichable 2f

+ D and P ~ P
7 9
1 61 92

a

Clearly it i1is impossible on the basis of the data to discri-
minate between indistinguishable parameters.

It is possible to construct examples that show that 8
contains indistinguishable pairs. The following assumption

will restrict enough 8 to eliminate the problem.

Assumption A.,?2
A aid B oas defined 4w oa.b oave suel thai
7.) a,. » 0 (v¥i,j)
75 there exists ¢ W such that B  has distinct diagonal

¢lements.

Actually it is A,2 plus regularityv {(see below) that will

give us an identifiable familv.

10




Comments on A.,2

i) can probhably be relaxed to A irreducible aperiodic
of which it is a special casec.

ii) plays a crucial role in the proof of the jdentifiabili-
ty result (theorem £.10), we will thus spend some words
on its interpretation.

Since bjc = P[Yt=n! X =3] it follows that Yt I Xt if and

only if the matrix B has all its rows equal,

Clearly the situation in which Yt i Xt is meaningless from

the modelling point of view, since it corresponds to no mo-

delling at all: P[Yt=a !Xt=j] = P[Y =¢] (Yi,e)

i.e. Xt has no influence on the process Y .

t

The weakest assumption to impose on the matrix B to rule out

the case Yt ﬂ Xt is that at least two rows of B are distinct

. r .
as vectors in IR") or equivalentl that at least one column
q y

of B is not a positive multiple of the vector e,
Assumption 1i) dis stronger than that and hence we have a
(partial) probabilistic interpretation for 1it.

What does iv) add to Yt / Xt ?

We think that the right interpretation is svstemistic.
Assumption iv) is the weakest assumption on the matrix B
under which the map associating states X to transition
probabilities p[Y IX =3l is injective.

We will not go into further details here, but this is 1i-

kely to be related to some notion of observabilitv for the

models under consideration.

11




Definition 2.2

' o= {P[(W ;0 €8' 1}
where
' = {7 g5 A, B satisfy A.2 }
Ve call ™' the Petrice family.
Notice that if = (k,A,B,u)€ 8' then uw is uniquely deter-
mined (in virtue of A.21). We can therefore drop w from the

list of parameters when working in 8°'.

The Regular Family

!

Let P £IP. Define the set of compound cequerce matrices

@9,€= {M €R s Mij = Pe(siatj) , MmN, s,,t.,€ Y }

Notice that to completely specify an element of @Q _we must
. @

give the order m and the 2m words of W7 sl,sz,..,sm;tl,tz,

eesl o
m

The generic element of @6 . will be thus denoted as

b
P (s.,,S,,0..5 3t ,t_ ...t = |IP (s.,et )I.
:( 1°72° m> 12 m) i O( it j)”1,1=1,..,m
Definition #.4
Lot Poep. e lian the pank of P pelative to f €Y ac

rﬁ(‘) = sup ( rank M )
NE @

.
5

Tn general r (#) can assume any value between 1 and

Tt is casily checked that v, (¢) = 1 for Markov chains.

12




Proposition R.5

Lel POG P and n= (n,A,B,u). Then ro(n)f n.

To prove proposition .5 we need to develop a more powerful

t

notation. Let POG'JP and 0= (n,A,B,n). TIf s:r,];:2

13

then from proposition mn.4 we have Pq(s) = ”M(r])M(FO)'°'M(ﬁL)C

where M(s)=AB . The following is an abuse of notation into
S

which we will dindulge. Define the matrix valued function:

ML) s w8 T g

M(s) = M<a])M(a?)...M(at) for SER R, et

In terms of SFSS we have the following interpretation:

N — — ’:'! -
[I(s)]ij PLY,=s.X =7 1X, i]

As a direct consequence of its definition M(.) enjoys of the

composition property: M{st) = M(s)M(t) and:

nM(st)e = rM(s)M(t)e (ys,t¢ YY@ ).

P@(St)

Introduce the vector valued functions:

g(.) ‘H®»ﬁmn ( a row vector)

h(.) : \y®»'mn ( a colum vector)

defined as follows:
g(s) = =M(s)
h(s) = M(s)e

Tunctions g(.) and g(.) have the following interpretation

in terms of SFSS:

I
s
s

i

—t
—
—

I
—
o
-
=
St

|
192
e
I
")
—
—~
]
—
-
™
-
.
.
-
=
~

With this new notation:

P o(st) = +M(s)M(t)e = p(s)h(t) (vs,te w® )



proof of prop. [.5

Observe that P (s.rt,) = nM(si)M(a)M(ti)c

0 i j
Define:
[~ )
— g(s,) ——
g(SZ) mx
G(s,,e.,8 ) = € R
1 m
— g(s ) ——
and:
H(tl,. ,tm) = h(tl) h(tz) h(tm) ¢
Then:
Pe(sl’SZ"'Sm;tl’tz”"tm) = C(sl,sz,..

Since M(eg) ER“X“, Sylvester's inequality ¢

Definition £.6

Let PC € and 0=

Py 18 satid regular if rg(a) = n

(n,A,B,n)

(Y=e6€v)

This definition translates to the case of

of Markov Chains the notion of regulatity

Regular pdf enjoy interesting properties,
then Yr € YW there exist scquences s;,sé,..
such that:
P (s yeeys sto, . t ) =
i’ *n? 71 n
has rank n,.

Therefore (‘-(s;,..,sr), M(r), and Il(t‘]:,..,t

n

A first consequence is that a scet of 2n

C(s],..,sn)M(x)H(tl,..,t )

14

= ?’,(s].)N(f,)h(tj)

n

N
,sm)d(ﬁ)H(tl,t2,..,tm)

ives ro(a)é n.

stochastic functions
introduced in [Gilbert].

If P

N is regular

n

) are dinvertible.

n

. .®
wvords Iin W can
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be determined that achieve maximum rank in @e Ve€ Y.
. F

Lemma f.7
Ir PO ¢ is of order n and regular iLhen there exist

seauciieen (8,8, , 00,8 3t

1259 N J,tz,...,tn) asuch Lhat

P (s, ,c.,8 3t ,..,t 75 non-o1 A Y

t(%], 85t ,tn) non-singular Vo€ W
proof:

Let s, €Y (r#11). With the preceding notation

§ £ £ £ £, £, F,

S . 5 eyt = G(s ,.e,8 )M(p)H R

L5 s sliE e tl) = G, s MG (E ], )

from the last observation regularity implies that

G(s;,..,sg), M(u) and H(tn,..,t;) arc¢ non-singular, hence

P (...) is non-singular. We can therefore choose e.g.

Another consequence of regularity follows from M(eg)
non-singularVe€ ¥W.

Since M(eg) = AB and B = diag{b, ,b, ,..,b } we conclude
€ £ le £

2¢ n

that, under regularity of P9
i) A is invertible
ii) bjg >0 (Vj,e)

The following is a sufficient condition for regularity that

follows immediately from the preceding discussion.

re b].: =00 (Yi,e) end 1 () = o0 for come o €W

Lhcoc L e reqular.,




Definition B.9

]})I'

I

{PO € PO is regular }

™ 7' npY

How big is T ? Consider the parameter space 8 of T, For [ixed n,

. . . nxn nxr
§ consists of the set of all stochastic matrices A (IR , DFIR .

1xn . C . . . .
im €1R , which is isomorphic to the cuclidean n(n+r-2) - 1 dimensional

space, It is shown in [Petrie] that the subset 8 c9 corresponding

— . . +r-2)-1
to TP is open and of full lLebesgue measure in ]Rn(n r=2) .

Notice that -8 1is in bijective correspondence with the parametriza-

£

tion of " through the M(c) matrices (since b_j -~ 0 in 8).
We will thus feel free to abuse a little the notation and write
6= (k,A,B) or, where convenient, (k, M(g) £ €¥W) when referring to

elements of 8.

Identifiability results

The main result of this section is theorem B,10 on the identifiabi-
lity of P, Again special notation has to be developed for its proof.

Let Pe be regular of rank n and let {si,tj}n be sets of sequences

1

R
as in theorem R.7. Remember that g(s) = mM(s) (¥s €W ), a row vector

16

in R", Observe that {g(si)} ? is a basis for the space & = span{g(s) s(?ﬂ®}

. . . n . . .
in fact dim @ =n and {g(si)}l are independent since G(s],...,S])

T
is non-singular., Therefore

n
& N TR _ . e
Y s €W 3 {ak(s)}] such that ¢g(s) WEl ak(s)g(sk)

Consider the special sequences s of the form B=S, We have:

g(Si”) - ﬁ ak(si~)g(sk)

But g(siﬁ) = nN(Sif) = wM(si)M(‘) = ﬂ(si)M(})



Define the matrix:

A= Hai(sin)H

i,j=1,..,n
then:
G(s,yee,8 ) = A G(s,,..,8 )
1 n 3 1 n
(from now on we will write C for G(Sl,..,sn), H for H(t],..,tn),

and Pi for Pn(gl""sn;tl""tn) ).

It is crucial to observe that Ar only depends on P_ and not on § itself.

6

In fact multiplying (1) on the right by h(t) we get:

Pé(st) = g(s)h(t) = ﬁak(S)g(sk)h(t) = 7 a (s)P (s, 0)
Applving the same technique for s=s. 6 and t=tj (i,i=1,..,n)
we obtain the set of equations:

A;GH = P8
and prove the claim.

We make the following:

Observation:

If 6 = (M), 8 = (0,M(e)) €P" and P () = Px(.)

then n = n .

In fact from the equivalence of the two pdf we conclude that the sets of
compound sequence matrices @G and =  coincide. Therefore

s F 5 E

rq(») = r=(¢) (V=€V). From regularity we conclude that n = n.

Theorem 2,10

¥ 1is identitiable modulo permutations of the state space X.

proof:
From the preceding observation it follows that if P _(.) = Pa(.)
then n = n . What remains to be proved is that A and B differ from

A and B for a permutation of the state space X.

From the equivalence of the pdf we get A = A and:
§ i+

17



M(e) H = G M(g) H

]

from which we conclude that G and I arc invertible.

From the definition of AE we get:

D M(e) = A G

—

GM(r) =A G
llence A; = G M(r) G—J and

G M(%) 1@

D
=
~~
ol
~—
il

or, in symmetric form:
-1 —  — -1 -
(G 7 6 ) MC) =M(5) (G~ G) (M

Substitute to M(s) its value AB  and add over £ :

T A=a@®

which substituted in (1) gives:

GCTHE = B (L0 (2)

£ &

Define X = G—l G . To complete the proof we need to show that X

is a pemutation matrix.
First observe that Xe = e ( i.e. X is a stochastic matrix)

Since %GIP' there is %) €Y such that B has distinct elements
0

on the diagonal. Equation (2) now reads:

which means that column j of X (denoted x 1,) satisf{ies:

B LoX L= B: X,
N j % e

Since B is diagonal, B:F = by
0 nJ‘o <%
(the k—-th unit vector of R ). We conclude thot X has exactly a one

for some k, and x , = e,
ol <

in cach column, and since it is a stochastic matrix it has exactlv a

one in cach row., It is therefore a permutation matrix,



ORDER DETERMINATION

In this chapter we will study how to determine the order of

PY(.) from the data.

Preliminaries

For convenience we restate here the problem and the assumptions.
A piece of a sample path of a FMC {Yt} with values in W = {1,..,r}
is observed, Denote the data {yI} where T can be arbitrarily large.
We assume that the pdf PY(.) of {Yt} is such that:

PY € P

Let P.(.) =P (.) where 5. = (n,A",3%)
Y % 0

On the basis of the data determine n.

The generic element of 8 is denoted by 0 = (k,A,B) , and

the parameter set can be decomposed as: 8§ = |} K Qk , Where

’é‘k ={p€8 3 6= (k,A,B)}

Sometimes we denote the generic element of Qk as Gk = (A,B).

For typographical convenience we will denote the measure induced by

6 on W by P(.

8) or by Pe(.)

Let § = inf{ ag,, b?} . It follows from the assumptions that § > 0
and clearly n § = 1 (since AO stochastic), therefore: ns ‘ §fli

Now let & » 0 be given and define

:7(\—6 = {O EQ ; ai],?(s N bj{?-f; v i’,ian }
and K =| 8_1 !
Tf ¢ = (k,A,B) € 56 then k < K., Notice that for 8 < &
0 _0 —
0= ; : el -x).
%0 (n,A",B ) € 98 (i.c n<K)

<

We will assume to know a lower bound on & (and hence an upper bound

on n, i.ec. K)

19
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For the time being we limit our attention to 68 for 506

With obious meaning of the symbols we have:

. K .
S

s

A Kullback type inequality

)
Define the following random variables on W
LBV ()) = By V] n €8
o 970 =T-1 6
(by convention fl({",\’(.)) =P Q[YO] ).
Next lemma, stated and proved for 5;’ a in [Baum] is instrumental
3

for the developments of this section,
Lemma ~.1

f(5Y(.)) = 1im fT(.‘?,Y(.))
- E o
exists “or every Y(.)¢Y  and is a contimvous Ffunction of

wher, restricted to 9 Y€ (1L,K).

Ak
proof:
see corollary 2.5 in [Baum]. To extend the proof to the present case
where the ovrder of € can be different from n, a change is needed in

corollary 2.1 where the quantity Hg must be defined as:

. = 87/157 + K-11

Corollary v.2

Tl Feetdom hk(.) : aé,k > R given as:
h (9 = Hjﬂ[ log FO8,Y(Y))
k 5]

Soowe T e d e cendnpons k€ (1L,K)

We are now in position to make use of the identifiabilitv results

ol chapter 2,
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Theorem v.3

hk(ﬂ) < hn(@O) (V k,0¢ E )
hk(O) = hn(OO) iff k=n and (A,B) = Permutation (AO,BO)
proof:

The {irst cequation follows directly from Jensen incquality.
From theorem 3.1 of |Baum] it follows that the inequality is strict un-

lTess the induced measures P and Pp are cquivalent. Therefore
0
theorem #,9 implies the second equation.

From the abstract point of view theorems (.9 and v.3 solve our

problem, If the regular ¥MC {Yt} is actually generated by P(A with
0

OO€ 9; then the order n of Pe is identifiable and:
’ 0

Corollary .4
n 18 the unique index maximizing the finite sequence

hk sup hk(ﬁ) k € (1,K)
e €8

A,k

proof:

|
Since hk( ) is continuous and 8 is compact,V¥ k 3 Qi such that

5,k
4t
h, = hk(ei)' Conclusion follows from theorem +.3

At this stage the missing link is: how do we compute the sequence
hk starting from the data, i.e. from a trajectory of {Yt} ?
To answer this question we first study the connection between the functions
hk( ) and the data.

Various special cases of the following (elementary) lemma are tacitly

assumed in the litterature,.



Lemma .5

If the statlionary FMC {Yt} has  pdf Pe W and the corresponding
Markov matrix A 18 ivveducible and apeviodic then Y. 70 mining

proof:

consists in a direct verification of the mixing condition:

t t t+mts-1 _s, t ot S .8 t s
lim Pl{Y_ =¢ Y =5 = P{Y_ =e]|P]Y. =5 Vo ’ -, 8
Y =2, t4m | [ 1= 1PY, v]] (Vs Ay, b, )

m*}‘o()
Let T(m) = t+m+ts-1. The LHS is:

t t T(m) _s £t t+m-1 m-1 T(m) _s
= = = = = =5 =
P[Yl €1 Yt+m 51] Zm_l PHl "1 Yt+l Ty K ]

i
=3 ﬂM(aE)M(Ylm_l)M(Si)e =
t - <
= EIC N PR CO 1)]%«(8?)0
= ﬂM(EE)Am_lM(S}i)e

Since A is irreducible aperiodic 1lim Am—l = ew

The conclusion follows,

In our Hypotheses PY(.) satisfy the conditions of lemma v.5

0 . .
since a; i - 0 . The process {Yt} is therefore a fortiori ergodic.
3.

Next lemma shows the connection between hk( ) and the data (for 9=OO

it reduces to the classical Shannon-McMillan-Breiman theorem of ergodic

theory). The comment preceding lemma ~.1 applies here too.

Lemma +v.6
. 1 T
h, (8) = 1lim = log PIV.,i& | a.ce. P
k o 1 1 )
T s 0
proof:

see theorem 3.2 in [Baum| and the observation in the proof of lemma
vol. The use of the ergodic theorem (as made in [Baum]) is justified

Y e

by Temma y.5 .

22



To understand the connection between the sequence hk and the

data {y],yz,..,yT} we have to dwell upon the asvmptotic behaviour

of the maximum of the log-likelihood function,

Define the scauence (wrt T):

1 T, 2 1 T
= = ' [ = as = o PIY_ |6
hk,W‘ 7 log P[Yl,tk’qj :12 - 1,](», [\][ k]
kA, k
T B
Notice that since P[Y]|0k] is continous on 8 y and bounded from

. "
below by ﬁr (see lemma vy.7), 1 log P{Y_ 19 ] 1is continuous on

4
T 1Y%

and therefore we actually have a max.

Lemma v.7

PLIY] ) = PIVI] = w(AB AB_ ...AB_ ) (L-AB_ )e
B ‘ Y1 Y2 Y11 Y
Since § GQS , e = (I-AB e = (1-A)e
YT
Therefore:
T-1 T-1 T T-1
v = - P [V = -5 Y
5P [V, 1 S PIV, ] - BUIVI] S (=M (Y]
Rearranging terms:
T-1 T T=1
Py =< vl = (1-5)P
CLON D SR R A PR N LN P
T
vl = ave: A < P [V ] = ]-&
Trom Pg[ l] jABY e we have PO[ 1] 1

1
(observe that nA=n implies ﬂi>8 i=1,..,k)

Conclusion follows bv finite induction.

ALk

23



24

Proposition .8

h = 1im h, . exists VY k€(1,K)
k,o k,1
T >
p_)j_oro_f‘ :
Ve will show that hk ¢ is (wrt T) a decreasing sequence bounded
*

from below.

T T=1 T-1
T = m: P s = mo y PIY g =
] hk,T gqx log [Yl‘)k] 81X log PJ T[Yl ,(k] PIY1 lok]
k k
T-1 T-1
= m: P Y o) + ‘. =
max { log IY 1Yy "k] log P[Yl k] }
F 1 T-1
= X A + =
< max log P[ 1 s k] max log P[Y] lﬂk]
< max log PIYI—1|9k] -
= (=D hk,T—l
Therefore hk,T is decreasing.
From lemma vy.7 8T = P[YTIG ] = (l—ﬁ)T and since h, = 1 log P[ IP
’ 177k > ’ k, T T k, T
NN Ia y 5 <
for some K, T € Qﬁ,k , we conclude log A__hk,T .
At present we know that:
hk,T ——— - hk’m ¥ k € (1,K)
Tosen
The nicest gituation would be to have:
h = h, ¥ k € (1,K) (*)

because if this is the case we can apply corollary .4 to hk

s 0

and, as we will see there is a practical method to compute hp starting

AR
from the data.

Ohserve that (¥) is equivalent to the following:

1 T, .- ] T
Tim max 7 lToy “[Y]IQI = max_ 1im 7 loo P[Y]!u]
- e : 0, T o

Tk Lk



is

The interchange of limit operations in the preceding formula

legal under uniform convergence of the sequence of functions:

R defined as:

B () 85

1 I

6) = - Y
hk,T(’) T log PJ ]lO]
Proposition y.9

h, . (.) —=———= hk(.) uniformly on Qﬁ,k

proof:

We will check that the sequence hk T
, T

of U, Dini's criterion for uniform convergence.

The functions are defined on a compact set ( QF k)
Jy

they are continous,

h

k,T

<<
hk,T(') = a1

(.) converges pointwise to hk(.) for T-e (lemma v.6)

hK(.) is continous (lemma v.6)

¢.) ¥ 0 eeS’k

last assertion follows from:

T, _ T-1 T-1
T hk’T(e) = Jog P,[Y;] = log PG[YT|Y1 1P Ly, 7]
T-1 T-1
= log %JYTlYl ] + log Polv; 7]
log P.[YI 1] = (1-1) h ()
R | k,T-1

Corollary v.10

= Y € (1,%
hk’m hk k (]’K)

(.) satisfies the conditions

25
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A consistency result

The conclusion that we reached in the preceding section is that
to determine the order, all we need to do is to compute the finite
sequence hl and choose n as the maximizing index.,

o
Tn practice we only have available a finite (hopefully large)
- . T
number T of observations {y]} and therefore the best we can do
is to compute h1 T for T large. We prove here that this is enough
(’

for the correct determination of the order.

Lemma ~,11

Thers exists TO cuch ihat [ TE’TO then

nav h. . = h anl

T G n,T "
hk,T < hn,T for k # n

proof:

Since K is finite the convergence of hk T to hk N
e 0
b4 *

is trivially uniform with respect to k. From corollaries v.4 and

from the proof of .8, hk T is decreasing in T (Yk). It is then
’
easily seen that for ¥, = inf ( h - h ) there exists T
= K n,® k, o 0
> T i i - iy
such that T = TO implies hn,T hn’w < 3 and
-1 -
hn,T ]k,T % Z* ( k#n). Hence
h e b 4w d h i Ex \
n,« - n‘n,T < n,o 3 an k,T - )n,m - 3“ (Yk+n).
The practical computation of h, . can be efficiently done

k,
using the Baum-Eagon algorithm, see [Levinson] for a description

of the algorithm and the analysis of its numerical aspects.
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