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A high fidelity object-oriented C++ solver was developed in OpenFOAM® for the 

solution of low Mach number variable density Navier Stokes equations.  Employing 

the Large Eddy Simulation (LES) methodology to compute the turbulent flowfield, 

the filtered LES equations were subsequently utilized to study buoyancy affected 

spatially developing boundary layers in natural and mixed convection spatially 

developing boundary layer flows.  For the subgrid scale (SGS) closure, a locally 

dynamic Smagorinsky SGS model was implemented into OpenFOAM® to enable the 

backscatter phenomenon intrinsic to transitioning boundary layers. 

  As a precursor to simulating the intricate aero-thermal flowfield of an in-

flight aircraft engine pool fire due to a fuel leak, detailed investigations of two 

canonical problems in the absence of flames were conducted to assess the robustness 



  

of the C++ solver and to elucidate the turbulent flow physics; these test cases 

consisted of a natural convection turbulent boundary layer over an isothermal vertical 

plate without any forced flow and the mixed convection turbulent boundary layer 

over an isothermal vertical plate where the effects of a gradually increasing forced 

flow in the direction opposite to the gravitational vector were assessed.  A third 

canonical case, the mixed convection over an isothermal horizontal plate, was also 

investigated as an extension of this thesis. 

 For the first two cases, wall-resolved LES computations were compared with 

experimental data for first and second order turbulent statistics, along with available 

experimental frequency spectra of temperature and streamwise velocity fluctuations.  

In an effort to reduce the computational cost, wall-layer modeled LES computations 

were performed by implementing new wall models into OpenFOAM®.  The fidelity 

of the wall-resolved and wall-layer modeled LES successfully confirmed the ability 

of the solver in computing high Grashof number transitioning natural and mixed 

convection spatially developing boundary layers.    

 As it pertains to the third case, while experimental measurements in air of 

mixed convection over an isothermal horizontal plate is lacking in the literature, the 

fundamental structure of the boundary layer was qualitatively validated by examining 

the near-wall vortical flow topology and employing available empirical data.  The 

accuracy of the results acquired for this flow configuration was deemed reliable due 

to the excellent agreement attained with the prior two test cases. 

  Overall, the level of fidelity illustrated in this thesis has not been previously 

demonstrated for spatially developing turbulent boundary layers in natural and mixed 



  

convection wall flows, especially for LES.  Thus, with the establishment of the 

methodology employed in this work, it can be further utilized as a reliable tool in 

computing buoyancy affected flame spread problems aboard in-flight aircraft engine 

fires to shed light upon the complex flow physics inherent to such flows. 
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Chapter 1: Introduction 

 

1.1 Buoyancy Affected Flows 

Many fluid transport processes encountered in nature are strongly affected by the 

presence of buoyancy.  The buoyancy effect can be largely a consequence of 

temperature gradients within the flowfield.  The flowfield may be driven primarily by 

the buoyancy force or it can be a combination of the buoyancy and a weakly forced 

ambient flow induced via some mechanical means.  In the former flow, it is 

essentially a natural convection and in the latter, it is a mixed convection type flow.  

Nonetheless, both flows are profoundly affected by buoyancy.  For both types of 

flows, the structural characteristics of the boundary layer is profoundly intricate and 

is a consequence of the non-linear effects and mutual coupling of the velocity and 

thermal flowfields.  Moreover, many such strongly affected buoyancy flows are 

largely unstable and the flow mechanism becomes turbulent.  In the case of a purely 

natural convection boundary layer flow, the turbulent heat transfer is only 

characterized by the buoyancy induced flowfield, i.e. temperature fluctuations.  

However, in the mixed convection flow, the turbulent heat transfer characteristics not 

only depend upon the buoyancy induced temperature fluctuations, but also on the 

direction of the weakly moving ambient fluid.  The direction of the ambient fluid can 
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be the same as the upward motion induced by buoyancy over a vertically heated flat 

plate (aiding flow) or in the opposite direction (opposite flow).  As such, the turbulent 

heat transfer in the aiding and opposite flows differ significantly; it has been 

determined that it is suppressed in the aiding flow and augmented in the opposite flow 

[1].  

 In this thesis, we focus on strongly affected buoyancy flows in spatially 

developing natural- and mixed convection turbulent boundary layer flows over an 

isothermal heated vertical plate and mixed convection turbulent boundary layer flow 

over an isothermal horizontal flat plate in which the buoyancy force acts orthogonally 

to the forced convection. For the mixed convection turbulent boundary layer over a 

vertical plate, only aiding flows are considered.     

1.2 Physical Mechanisms of Buoyancy Driven Flows 

 

Let us briefly consider how the upward movement of mass flow over the heated 

vertical flat plate develops into a boundary layer without the inclusion of a freestream 

velocity.  We can definitely conclude that the upward movement of mass is due to an 

upward force that pushes the flow in that direction.  Thus, Figure1.1 depicts the force 

balance over a control volume within the boundary layer and in the quiescent region.  

Let us assume the control volumes are of identical sizes, with their volume       , 

where we have supposed     .  In the quiescent region, the weight of the fluid, 

  , is         , where   and g represent the density and gravity force, respectively 

and the fluid element is in hydrostatic equilibrium, i.e. the upward pressure force 

balances the net downward force.  Hence, the mathematical expression for the force 

balance in the quiescent region reads as 
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                      ( 1.1) 

 

From boundary layer theory, it is well known that the pressure outside the boundary 

layer is imposed onto the boundary layer region.  Thus, the pressure forces acting 

upon the fluid element in the quiescent region is identical to the pressure forces 

within the boundary layer.  However, the fluid element is not in hydrostatic 

equilibrium as the net downward force does not balance the upward pressure force.  

The weight of the fluid element within the boundary layer is            , where 

  is the local density.  Due to the diffusion of heat caused by the heated plate, there is 

a density gradient within the boundary layer whereby fluid elements near the wall are 

less dense than those farther away from it.  The imbalance of forces in the streamwise 

direction causes an upward acceleration of fluid elements.  Thus, we can write 

                      ( 1.2) 

 

The net upward force is typically referred to as the buoyant force.  The viscous shear 

force Fv shown acting upon the fluid element within the boundary layer is a 

consequence of the moving fluid element in the presence of viscous shear.  
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Figure 1. 1  Force balance illustration of buoyant force emergence within boundary 

layer. 

 

 

Similarly, we can consider the presence of an isothermal hot wall in a cooler ambient 

without any incoming freestream, as shown in Figure1.2.  As opposed to the heated 

vertical plate, the gravitational force is normal to the surface.  Upon exposure of the 

hot horizontal plate to the surroundings, the temperature of the air adjacent to the 

surface will increase because of heat conduction.  As such, the plate will be 

completely engulfed by a thin layer of hot air.  At constant pressure, the density of air 

is inversely proportional to its temperature; thus, the situation arises whereby less 

dense air is surrounded by heavier colder air.  Consequently, the lighter warm air rises 

due to buoyancy and the heavier unheated air nearby replaces the space vacated by 

the lighter air.    
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Figure 1. 2  Schematic of natural convection process over isothermal flat plate. 

 

1.2.1 Mathematical Description of Buoyancy Affected Flows 

 

The resulting imbalance in force causes the upward motion of fluid near the heated 

vertical plate and the subsequent motion becomes subjected to viscous shear forces.  

As such, the net force comprising pressure, gravity and viscous shear ought to 

balance the net flux of momentum through the control volume as dictated by the 

momentum conservation equation.  Due to the influence of the buoyancy force in the 

momentum equation, there is a strong coupling between the conservation of energy 

and momentum equations.  Essentially, the energy equation describes the temperature 

flowfield, which consequently affects the distribution of density.  Let us quickly 

examine the streamwise momentum conservation equation for a two dimensional 

incompressible laminar boundary layer governing the flow over a vertically heated 

flat plate.  The equation reads as 

  
  

  
  

  

  
  

 

 

  

  
    

   

   
   ( 1.3) 
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where x and y are the streamwise and wall-normal axis and u, v,   , g and ν are the 

streamwise velocity, wall-normal velocity, density, gravity and kinematic viscosity 

respectively. 

In an effort to directly illustrate the coupling, we make mention of the 

Boussinesq approximation.  The assumption assumes constant properties except for 

the density, which will be assumed to be a linear function of temperature.  Thus, the 

pressure gradient term can be eliminated as follows: 

 
  

  
        ( 1.4) 

To proceed, we can write 

  
 

 

  

  
   

 

 
       ( 1.5) 

and approximate the coefficient of volumetric thermal expansion as 

    
 

 
   

  
 
 

  
 

 
 
    

    
    ( 1.6) 

Thus, the streamwise momentum can be re-written using the Boussinesq assumption 

as 

  
  

  
  

  

  
           

   

   
   ( 1.7) 

where the coupling between the energy and momentum equations can be clearly seen 

with the presence of the temperature term.  A discussion pertaining to the coefficient 

of volumetric thermal expansion    is warranted and proceeds hereafter.  As opposed 

to forced convection boundary layer flows where the Reynolds number,      , can 

be employed as an indication of inertia to viscous shear forces, this parameter cannot 

be explicitly utilized in natural convection boundary layer flows.  This is due to the 
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absence of a freestream velocity in natural convection boundary layer flows; instead, 

the dimensionless parameter, Grashof number, is typically employed.  The Grashof 

number is essentially a ratio of the buoyant force to viscous force and reads as 

    
      

  
   ( 1.8) 

with g, x,    and ν being the gravitational acceleration, characteristic length, absolute 

temperature difference between the wall and ambient and kinematic viscosity 

respectively.  The parameter  , is the coefficient of volumetric thermal expansion and 

is defined as  

    
 

 
   

  
 
 
  ( 1.9) 

and can be further simplified if the assumption is made that the working fluid is an 

ideal gas: 

    
 

 
   

  
 
 

  
 

 
 
       

  
 
 

 
 

 
   ( 1.10) 

A dimensionless parameter employed that can be stated to be a counterpart of the 

Reynolds number is the Rayleigh number, which is  

         
      

  
   ( 1.11) 

Just as the critical Reynolds number is usually employed in forced convection flow 

for the point of transition to turbulence in wall bounded turbulent flows, the critical 

Rayleigh number is similarly applied to free convection turbulent boundary layers.  

To the extent that [2] discovered that transition typically occurs when        for 

natural convection boundary layers over a vertically heated flat plate.  This transition 

criterion was previously confirmed experimentally by [3].  
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 In the analysis of potentially mixed convection boundary layer flows, the 

dimensionless parameter called the Richardson number, Ri, is employed.  The 

Richardson number is defined as 

    
  

   
 

     

  
 

 ( 1.12) 

and is essentially a measure of the relative strength of free and forced convection.  

Furthermore, as illustrated by Eq.1.12, the Richardson number is a ratio of the 

Grashof number to the square of the Reynolds number; the parameter can be 

interpreted as a ratio of buoyancy to inertia forces.  Thus, forced convection becomes 

negligible when     , natural convection effects can be ignored when      and 

when     , a mixed convection flow dominates in the boundary layer. 

 

1.3 Prior and Related Studies  

 

The subsequent three subsections cover some of the pertinent previous theoretical, 

experimental and computational investigations that have been conducted on natural – 

and mixed convection turbulent boundary layer flows along a heated vertical plate, 

and mixed convection wall bounded turbulent flow over a horizontally heated plate. 

1.3.1 Natural Convection along Heated Vertical Plate 

 

Theoretical work 

The pioneering work of [4] formulated the analytical equations for the streamwise 

velocity, temperature and heat flux over an isothermal vertical heated flat plate for the 

laminar free convection boundary layer.  These ordinary differential equations were 
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developed for the laminar free convection boundary layer and are similar to its forced 

convection counterpart given by Blasius. 

Experimental work 

One of the earlier wall heat transfer measurements were made by [5] over an 

isothermal vertical flat plate in air.  The data acquired was mentioned to be in good 

agreement with a heat transfer analytical correlation for the natural convection 

turbulent boundary layer.  Meanwhile, the measurements of [6] acquired data over a 

vertical heated flat plate held at uniform temperature.  These measurements provided 

the first heat transfer data in the transition and fully developed turbulent regions of 

the natural convection boundary layer.  The local heat transfer rate data taken in the 

turbulent boundary layer were comparable to the power law theory of [7].      

The natural convection turbulent boundary layer in water over a uniform heat 

flux heated vertical plate was assessed experimentally by [8].  Their measurements 

indicated in the fully developed turbulent region, the turbulence was profoundly 

affected by the buoyant production of turbulence, i.e. large temperature fluctuations 

dominated the generation of turbulence.  The experimental work of [9] carried out 

measurements in a turbulent free-convection boundary layer using water and air as 

the medium over a vertical heated flat plate at uniform heat flux.  The profound 

finding of their work was the observation of passing high- and low-temperature 

streaky structures near the wall.  Their conclusion was the existence of similarity 

between forced- and free-convection turbulent boundary layers in possessing these 

streaking coherent structures near the wall.  However, given their work utilized a wall 
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at uniform heat flux, they stated the same conclusion can be drawn for walls at a 

uniform temperature.   

Even though measurements of turbulent quantities have been taken in the 

natural convection turbulent boundary layer, the fundamental understanding of the 

boundary layer was significantly lacking, in addition to reported discrepancies in the 

experimental data reported.  Consequently, new sets of experiments were undertaken 

to comprehend the complicated near-wall turbulent field of a natural convection 

boundary layer.  Chief among these were the ground breaking efforts of [10,11]. [10] 

[11].  Their measurements employed air as the working fluid and the flat plate was 

maintained at a uniform temperature.  The experiments shed light upon the peculiar 

characteristics inherent to the free-convection turbulent boundary layer.  Some of 

these peculiarities are: i) as opposed to forced-convection where velocity attains a 

linear profile in the viscous sub-layer up to     , in free-convection, this linear 

profile was observed to be much closer to the wall region,     , ii) unlike the 

analogy that exists between momentum and heat transport in forced-convection 

turbulent boundary layer flows, this cannot be stated to exist in the free-convection 

case; it was observed that the wall shear stress increases with increasing Grashof 

number and the heat transfer coefficient, i.e. heat flux remained nearly constant as 

Grashof number increased, iii) in forced-convection, the close relation between the 

Reynolds shear stress           and mean velocity gradient       exists, i.e. if       

  then              , where the opposite relation holds as well.  However, in free-

convection, very near the wall where the condition         holds,              ; thus 

this relationship between the two quantities is lacking, and iv) in forced-convection, 
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the maximum of the velocity and temperature intensity fluctuations or rms values, 

occurs in the inner layer.  For the free-convection turbulent boundary layer, the 

maximum of the temperature fluctuation occurs in the inner layer and the velocity 

fluctuation maximum was observed in the outer layer.  Moreover, detailed 

measurements of heat transfer rates in the turbulent boundary layer were performed 

and correlated with an empirical formula that was employed in this thesis.  In an 

effort to acquire further comprehension into the structure of the turbulence in the free-

convection boundary layer over a heated vertical plate, measurements in air were 

conducted by [12].  In their experiment, it was observed that the instantaneous 

temperature fluctuation field was preserved in the streamwise direction.  In addition, 

the invasion of low-temperature fluid into the near wall region was observed along 

with the absence of passing high- and low-temperature streaky structure near the wall 

as was observed in the work of [9].  The measurements also illustrated the wall-

normal spatial correlation of the thermal field decreases rapidly and attain a near 

constant value in the outer layer independent of the wall-normal distance; whereas, 

the velocity field wall-normal spatial correlation continually decreased with distance 

from the wall.   

To ascertain the effects of heated vertical flat plate at high temperatures in the free-

convection turbulent boundary layer, [13] conducted experiments in air.  It was 

determined that the temperature difference between the plate surface and ambient did 

not significantly affect the location of transition to turbulence and the turbulence 

structure in the spatially developing free-convection turbulent boundary layer. 
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Numerical Work 

The     and ASM turbulence models were utilized by [14] to numerically simulate 

a two dimensional free-convection turbulent boundary layer over a heated vertical 

plate in air.  Aside from the mean streamwise and temperature wall profiles that were 

reasonably in agreement with experimental measurements, the predicted 2
nd

 order 

statistics were mostly in qualitative agreement with the experiment. 

In 1992, [15] performed two dimensional Reynolds Averaged Navier Stokes (RANS) 

computations of the turbulent boundary layer over a heated vertical surface using the 

Reynolds stress, Algebraic stress and k-ε turbulence models.  Their numerical 

predictions were compared to the measurements of [10,11] [10] and [11].  In their 

comparisons, the Reynolds stress model was superior to the other two turbulence 

models employed for the study.  Moreover, the comparisons with the streamwise 

turbulent heat flux and Reynolds shear stress very near the wall were markedly 

different from the experimental measurements.  Significant discrepancies were 

observed near the wall for the computed results when compared to the experimental 

data.  To conclude, the authors surmised that more advanced near wall models might 

be required for simulating natural convection turbulent boundary layer and since the 

inner layer is rather thin, high fidelity measurements might be a challenging task to 

perform. 

 Direct numerical simulation over a heated vertical plate was performed by 

[16].  Instead of solving for the spatially developing turbulent boundary layer, the 

authors employed time-developing conditions to significantly reduce the 

computational cost.  To compare their numerical predictions with the measurements 



 

13 

 

of [11], their time-developing flow results were converted to space-developing flows.  

Moreover, the Boussinesq approximation was implemented in solving the 

incompressible Navier-Stokes equations.  As a whole, the numerical simulations were 

in good quantitative agreement with the experimental data.  However, similar trends 

in their prediction of the Reynolds shear stress and streamwise turbulent heat flux 

were observed as those of [15].  Negative values of these quantities very near the wall 

were observed and were markedly different from the measurements.  The authors 

conjectured that perhaps the Boussinesq approximation might be inappropriate in the 

very near wall region. 

1.3.2 Mixed Convection along Heated Vertical Flat Plate 

 

Experimental work 

The inception of experimental investigation of turbulent mixed convection boundary 

layer flow over a heated vertical surface was the measurement of [17].  The 

measurements were for an aiding flow over an isothermal flat plate and it was 

concluded that the turbulence was suppressed with the addition of a freestream 

velocity to the turbulent natural convection boundary layer.  To elucidate the 

fundamental structure of the mixed convection turbulent boundary layer over a heated 

vertical flat plate, [18] conducted experiments employing water as the working fluid.  

The flat plate was heated by prescribing a uniform heat flux and it was observed that 

the Nusselt number decreased as the forced flow increased.  The decrease in heat 

transfer was stated to be attributed to suppression of turbulence in the mixed 

convection turbulent boundary layer. 
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The experimental investigation of mixed convection turbulent boundary layer over a 

uniform heat flux vertical plate was undertaken by [19].  The measurements 

employed a freestream velocity of 5 cm/s and it was observed that imposing small 

forced convection effects has a stabilizing effect on the boundary layer thereby 

delaying the transition to turbulence.  The experimental work of [20] [21] was 

ground-breaking in that much needed reliable data in the turbulent mixed convection 

boundary layer over a vertical heated plate were provided.  The measurements 

employed air as the working fluid and the aiding freestream velocity was increased up 

to 1.10 m/s.  In their experiment, it was determined that the cause of the turbulence 

suppression, which consequently reduces the heat transfer, was attributable to the 

stabilizing effect of the freestream on the large turbulence scales in the outer layer.  It 

was observed that the low frequency turbulence scales, i.e. large length scales, were 

gradually destroyed with the addition of a freestream velocity.  Similarly to the 

numerical observations of [22], as the freestream continually increased, the turbulent 

boundary layer relaminarizes and becomes a forced convection boundary layer flow. 

Numerical Work 

Direct numerical simulations were performed by [1] on a vertical parallel channel at 

two different isothermal temperatures.  Aiding and opposing flows were simulated 

during the investigation.  As it pertains to aiding flows, it was numerically observed 

that the Nusselt number decreased as the freestream velocity was introduced.  

Furthermore, it was reported that even though the skin friction coefficient increased, 

the turbulent fluctuations were reduced.  Another approach was undertaken by [22] to 

comprehend the effects of gradually increasing the freestream velocity in a turbulent 
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natural convection boundary layer.   The     turbulence model was utilized to 

simulate the spatially developing boundary layer over a heated vertical plate in air.  

Due to the absence of any dependable experimental data, their results were not 

compared with any measurements.  Nonetheless, their numerical predictions were 

able to show that adding freestream velocity suppresses the turbulent heat transfer in 

the mixed convection boundary layer.    

In 2010, [23] performed direct numerical simulation of a mixed convection turbulent 

boundary layer over a heated vertical flat plate for aiding flow.  The authors 

employed the identical approach to the prior study of turbulent natural convection 

boundary layer over a flat plate as discussed in [16].  The numerical results were 

compared to the measurements of [24].  The results that were compared to the 

measurements were in quantitative agreement; however, the direct numerical 

simulation predictions were not compared to the streamwise turbulent heat flux 

measurements of [24].  The numerical simulation illustrated that increasing the 

freestream velocity caused the streamwise turbulent heat flux to become more 

negative in the near wall region.  However, it seems the numerical predictions 

exaggerated the measurements in this region.  The contours of streamwise velocity 

fluctuations were assessed near the wall and it was observed that as the freestream 

velocity increased, long-drawn high- and low-speed regions orderly appeared in the 

spanwise region.  These high- and low-speed regions were similar to those observed 

in forced convection flows, although not as clearly and distinctively defined. 
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1.3.3 Mixed Convection along Heated Horizontal Flat Plate  

 

Theoretical Work 

A theoretical analysis based upon linear stability theory was undertaken by [25] to 

study the flow conditions conducive to the onset of longitudinal vortices.  During the 

course of their study, different Prandtl number fluids were utilized and it was 

discovered that the 
   

   
     ratio was essential in correlating the relative significance of 

buoyancy effects (Grashof number) over forced convection (Reynolds number) 

effects.  The ratio,       
    , is essentially equal to a critical Grashof number,    

  

and can be elaborated as follows: 

    
  

   

   
    

      

  
   ( 1.13) 

where             . 

Linear stability analysis theory was employed by [26] to study laminar forced 

convection flow over a heated horizontal flat plate in the presence of appreciable 

buoyant force effects.  In their theoretical analysis, it was noted that streamwise 

vortex instability can easily occur in the presence of buoyancy and the main flow 

becomes quite susceptible to this mode of instability as the temperature difference 

between the isothermally heated flat plate and freestream increases.   

Experimental Work 

The mixed convection boundary turbulent boundary layer flow in air over a strongly 

heated horizontal plate was experimentally investigated in a square duct by [27].  The 

measurements indicated that the temperature fluctuation intensity attained its 

maximum value near a region referred to as a viscous-conductive layer.  Furthermore, 
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it was observed that the variation between the mean temperature and streamwise 

velocity was remarkably similar and it was concluded there was analogy between heat 

and momentum transfer.  The measurements also illustrated the majority of the 

variation in mean temperature and streamwise velocity occurred within the viscous-

conductive layer; the length scale of the viscous-conductive layer was also for the 

fully turbulent region.   

The experimental measurements of [28] of a mixed convection boundary layer 

over an isothermally heated horizontal plate attempted to ascertain the buoyancy 

effects on the developing flow.  As such, they were able to locate three different flow 

regimes present within such a flowfield.  Their measurements depicted an initial 

region of laminar forced convection where buoyancy effects were insignificant at the 

leading edge of the flat plate.  The second regime was termed the transition region, 

which is the onset and inevitable breakup of longitudinal vortices.  The third regime 

of the developing boundary layer was called the turbulent free convection region and 

was labeled as such due to the constant heat transfer coefficient observed subsequent 

to the transition region.  The constant heat transfer coefficient is usually observed in 

turbulent free convection boundary layer flows.  To quantify the different flow 

regimes, empirical scaling laws were proposed along with the Nusselt number 

correlations when appropriate and read as follows: 

 

  

   

   
        

                 
   

         ( 1.14) 
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               ( 1.15) 

  

   

   
       

                  

         ( 1.16) 

 

These three regimes can be seen in Figure 1.3.  The image illustrates the experimental 

data and empirical scaling along the horizontally heated flat plate.    

 

 

Figure 1. 3 Heat transfer scaling of thermal instability flow indicating the different 

flow regimes present within the flowfield.  Image adopted from [28]. 

 

 

Experimental measurements in air were taken of a mixed convection boundary 

layer flow over a 1.0 m heated flat plate by [29].  By varying the freestream velocity 

and temperature difference between the plate and fluid, it was observed that the local 

heat transfer coefficient was significantly dependent upon these two parameters.  The 
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measurements indicated that the local heat transfer coefficient decreased with 

increasing streamwise distance as observable in laminar forced convection near the 

leading edge of the plate.  It was also observed that further downstream, the heat 

transfer coefficient deviates from the laminar forced convection trend with an 

inflectional point and rapidly increases.  Subsequently, the heat transfer coefficient 

remained nearly constant as observed in turbulent free convection.  The author 

conjectured the likelihood of an instability mechanism being the cause of the 

inflection and abrupt increase seen in the local heat transfer coefficient.  

Measurements were taken in the transition regime of a mixed convection 

boundary layer over an isothermal horizontal flat plate in an effort to obtain 

quantitative measurements of velocity and temperature distributions.  The 

investigators, [30], established a criterion that predicted the onset of streamwise 

vortex instability to be 

 
   

   
          ( 1.17) 

The onset of streamwise vortex instability was explained to be the inception of 

transition from two dimensional laminar flow to three dimensional vortex flow.  The 

measurements taken illustrated that the vortex flow regime starts with ordered and 

stable pairs of laminar streamwise vortices in clockwise and counter-clockwise 

directions.  The vortices grow and an unstable flow region emanates whereby the 

structures mix and an eventual vortex collapse occurs that forms fully developed 

turbulent flow.   
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Numerical Work 

The turbulent mixed convection boundary layer over an isothermal horizontal flat 

plate was numerically investigated with RANS by [31].   The flowfield was resolved 

by solving two dimensional RANS equations and it was observed that such an 

approach was inherently inadequate.  The inadequacies of assuming a two 

dimensional flowfield was attributed to its inability to reasonably capture the 

transition region which comprises the onset of longitudinal vortices and their eventual 

breakup into full turbulence. 

Summary of Previous Work 

Although  there has been a great deal of work, both experimentally and numerically 

that has been put forth to the investigation of buoyancy affected turbulent natural and 

mixed convection boundary layer flows, most of these investigations were for vertical 

passages such as channels and pipes.  The prior works cited in the above literature 

survey, primarily spatially developing natural and mixed convection turbulent 

boundary layers, was meant to highlight the lack of sufficient numerical studies in 

this area especially for Large Eddy Simulation (LES).   
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1.4 Motivation for Studying Buoyancy Affected Flows 

As was previously mentioned, buoyancy effects can be largely a consequence of 

temperature gradients in the flowfield.  These significant temperature gradients can be 

induced by a fire aboard an aerospace vehicle, such as an aircraft.  Even though the 

risk associated with aircraft fires has been greatly reduced over the past couple of 

decades, the same cannot be said regarding the next generation of aircrafts.  Due to 

the vast amount of composite materials and components utilized in the construction 

and manufacturing of these next generation aircrafts, the fire safety of such aerospace 

vehicles have not been extensively investigated.  According to the Federal Aviation 

Administration (FAA), the primary areas of research regarding the next generation 

aircrafts are in-flight fires in specific zones and post-crash aircraft fires.  Post-crash 

aircraft fires occur when the structural integrity of the aerospace vehicle has been 

compromised either by the forceful impact of an airborne object or with the ground 

and the subsequent fire is initiated by the ignition of leaking aircraft fuel.  An image 

of a post-crash aircraft fire that occurred in 2005 can be seen Figure 1.4.  The airplane 

was reported to catch on fire once it crashed.  In Figure 1.5, a more recent post-crash 

aircraft fire, which occurred in July 2013, is depicted.  
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Figure 1. 4 Post-craft fire of Air France A340 that occurred in 2005.  Image adopted 

from Wikipedia. 

 

Figure 1. 5 Post-crash fire of Asiana Flight 214 that occurred at San Francisco 

International Airport in July 2013.  Image adopted from NYDailyNews.com. 

 

The great damages caused by the initiation of the fire and the subsequent growth of 

the flame can be readily seen from the Figures 1.4 and 1.5.  The impact of these 

advanced composites on aircraft fire safety and fire growth in these aerospace 
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vehicles is an unanswered question that requires extensive on-going thorough 

research and investigation.   

In-flight aircraft fires in specific zones can occur in the engine compartment 

and areas not easily accessible, such as the ceiling panel, ventilation ducts, just to 

name a few.  Of these, in-flight aircraft fires on composite surfaces within and near 

the engine compartment is a complex aero-thermal environment that is particularly 

susceptible to a pool fire outbreak caused by the ignition of fuel leaking within the 

engine nacelle [32].  The flow encompasses partial oxygenation at higher altitudes, 

lower atmospheric pressure and ambient air that enters the engine compartment 

through vents that significantly affect the characteristics of the flame.  In addition, as 

ambient air flows through the engine compartment, it flows through a highly cluttered 

and irregular environment which consequently gives rise to intricate flow 

irregularities.  Consequently, a pool fire guarded by the cluttered environment can 

grow and spread within the engine nacelle and potentially result in a loss of the 

aircraft. 

 As part of a building block to eventually simulating and enhancing the 

comprehension of in-flight aircraft engine compartment fires inherent to next 

generation aircrafts, we take a step back in this thesis and perform a detailed 

investigation of canonical configurations in the absence of a flame.  The aim will be 

to study buoyancy effects in a developing flow near heated walls, representative of 

hot plumes emerging from the flame.  Furthermore, we attempt to gain a deeper 

understanding of the flow physics and dynamics with the utilization of Large Eddy 

Simulation.  Moreover, since the literature is greatly lacking in numerical simulations 



 

24 

 

of buoyancy affected flows using Large Eddy Simulation, an effort will be put forth 

to add to enhance existing knowledge in this particularly lacking area.  The 

subsequent subsection delves into the objectives of this thesis.  

1.5 Research Objectives 

 

The global objective of this research was the study of three flow configurations.  The 

first two cases, which represent the bulk of this thesis, are the spatially developing 

natural convection (Tsuji & Nagano case) and mixed convection (Hattori case) 

boundary layer flow experiments over the isothermal vertical plate.  As an extension 

of this research effort, the third case, mixed convection over the isothermal horizontal 

flat plate, will be studied as well in the absence of valuable experimental data.  The 

objectives of all these cases will now be discussed.  

One of the primary goals of this computational effort was to assess the 

predictive capabilities of Large Eddy Simulation for spatially developing natural 

convection turbulent boundary layers over a vertically heated flat plate at high 

Grashof numbers.  To this end, wall-resolved LES computations will be performed 

and since the large eddy structure in the turbulent boundary layer are three 

dimensional and time-dependent, the wall resolved simulations have to be as well.  

This can be very computationally expensive.  Consequently, in order to make the 

computational costs more applicable to engineering calculations, more 

computationally efficient means will be developed as well.  Thus, the implementation 

and utilization of economical near-wall treatments, i.e. wall-layer modeling LES will 

also be undertaken. 
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 In this thesis, an additional field of investigation was the assessment of LES in 

accurately reproducing the effects of weak freestream addition to a spatially 

developing natural convection turbulent boundary layer over a vertically heated flat 

plate, i.e. turbulent mixed convection boundary layer.  These effects include the 

delayed transition to turbulence, reduction in turbulent heat transfer and suppression 

of the large turbulence scales.  In at least that these effects will be investigated, the 

development and/or modification of the LES computational code (OpenFOAM®) to 

assess the addition of a weak freestream to the turbulent natural convection boundary 

layer will be required to further the codes’ capability.  Furthermore, economical near-

wall treatments (wall-layer modeling LES) will be developed and implemented to 

lessen the computational cost of wall-resolved LES computations to enable an 

efficient means of conducting engineering simulations for the turbulent mixed 

convection boundary layer.  Lastly, the fidelity of the LES solver in resolving the 

mixed convection flow over the horizontally heated flat plate will be investigated.  

Though this particular flow set-up may seem to be “classical” and not of a 

complicated nature, the contrary is actually the reality.  The transition and turbulent 

free convection regimes are not fully understood and much research is required to 

shed light on the complicated physics inherent to this flow.  In addition, due to the 

lack of ample experimental data of the turbulence quantities downstream of the 

transition region, the available empirical data will be employed to further the 

understanding of this problem numerically.    

 It will be worthwhile to mention as well that the implementation of high 

fidelity LES subgrid scale models will be compulsory to improve the computed 
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turbulent boundary layers.  Hence, in doing so, the LES solver will be enhanced with 

more advanced subgrid scale models.   

1.6 Outline of Thesis 

 

Subsequent to the introductory chapter, this thesis consists of seven chapters and is 

sub-divided primarily into two parts based upon the subject matter.  The initial part of 

the thesis covers the theory, derivations and computational methodology used in the 

course of this effort.  The latter part of the thesis entails results acquired from the 

implementation of the theories and methodology employing the test cases.  A 

summary of primary results along with proposal for future efforts will be included as 

well. 

1.6.1 Theory and Methodology 

 

In Chapter 2, the fundamental structure of wall bounded turbulent flows for forced 

convection is examined and reviewed using the work of prior researchers in the field 

of turbulence.  Subsequently, Chapter 3 covers the numerical techniques employed in 

computing wall bounded turbulent flows.  This chapter takes a brief look at a few 

well known methods of predicting turbulent boundary layer with the emphasis placed 

upon Large Eddy Simulation.  The governing equations, assumptions and Sub-Grid 

Scale (SGS) models employed in LES are examined including an overview of models 

employed in this thesis.  The discretization of the partial differential equations solved 

in the course of this research are introduced and elaborated upon in Chapter 4.  In 

addition, the numerical schemes and solution approach are also discussed in this 

chapter. 
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 1.6.2 Test Cases  

 

Chapters 5, 6 and 7 include the numerical predictions of test cases compared with the 

available experimental data.  To be more specific, Chapter 5 consists of wall-resolved 

and wall-layer modeled LES of spatially developing natural convection turbulent 

boundary layer over a heated vertical plate that were compared to the detailed 

measurements of [10].  In Chapter 6, the mixed convection measurements of [24] are 

employed for comparisons with wall-resolved and wall-layer modeled LES 

computations.  Chapter 7 will cover wall-resolved LES of the mixed convection 

turbulent boundary layer over an isothermal horizontal heated plate and will be 

referred to hereafter as the thermal instability of Blasius flow to be consistent with 

literature.  In conclusion, Chapter 8 comprises the pertinent summary of this effort in 

addition to potential areas of future efforts.  It must be stated that the results displayed 

in Chapters 5 and 6 consist of the bulk of this research effort due to the availability of 

experimental data.  After illustrating the accuracy of the computational methodology 

and approach, the test case of Chapter 7, due to lack of experimental measurements, 

is presented as an extension of this work. 

1.7 Thesis Contributions 

 

Aside from the goal of assessing the capability of Large Eddy Simulation in 

computing turbulent boundary layer flows affected by buoyancy in different flow 

configurations, several contributions were made to the compressible LES framework 

in the high level advance fluid dynamic solver, OpenFOAM®.  In as much that these 

contributions significantly aided in the completion of this research effort, they also 
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assist the growth and advancement of the OpenFOAM® code.  The primary 

contributions made were: 

 Implementation of the wall adaptive local eddy viscosity subgrid scale model; 

in addition, the locally dynamic Smagorinsky subgrid scale LES model was 

also implemented and validated.  To further the subgrid scale model’s 

capability to combustion problems that employ eddy dissipation concept, 

which require a subgrid scale turbulent kinetic energy field, a hybrid means 

of doing as such was implemented by allowing for the locally dynamically 

computed subgrid viscosity to be fed to the subgrid scale turbulent kinetic 

energy.   

 To enable computationally efficient means of resolving turbulent natural and 

mixed convection boundary layer flows especially for engineering 

calculations, two new wall layer models were implemented and validated.  

These wall layer models can be applied to academic and industrial turbulent 

boundary layers strongly affected by buoyancy effects. 

 The modification of the dynamic pressure equation solved to aid in the 

correction of the momentum equation in mixed convection turbulent 

boundary layers.  

 The development of a low Mach number solver within the OpenFOAM® 

framework, fully capable of computing turbulent natural and mixed 

convection boundary layer flows over isothermal vertical and horizontal flat 

plates. 
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 The demonstration of Large Eddy Simulation as a high fidelity predictor of 

turbulent mixed convection boundary layer flows in vertical and horizontal 

geometries. 
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Chapter 2: Turbulent Boundary Layers 
 

2.1 Basics of Turbulent Flow 

 

The majority of flow dynamics encountered in engineering applications and those 

observed in nature are turbulent.  To put forth an attempt to formally and concisely 

define turbulence has posed to be of profound challenge.  Though a succinct 

definition is lacking, the characteristics of turbulence are rather distinguishable.  

Turbulence is highly dissipative, viscous effects perform deformation work on the 

small length scales thereby converting turbulent kinetic energy into an increase in the 

flow’s internal energy; turbulence comprises a wide array of spatial and time scales; it 

is profoundly diffusive, i.e. there is increased mixing in mass, momentum and heat; 

turbulent flow is not deterministic, the flow is usually characterized by rapid 

fluctuations in time and space; thus, statistical methods have to be employed to 

acquire any detailed information on the flow physics. 

     Generally, turbulence is only able to emerge and persist in the presence of 

relatively significant shear.  By choosing to ignore how turbulence is generated, one 

can still appropriately assume that the majority of the turbulent kinetic energy is 
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highly concentrated around some spatial scale.  As was aforementioned, turbulent 

flow is hugely dissipative and viscous effects convert turbulent kinetic energy into 

internal energy of the flow at the small turbulence scales.  Moreover, it was stated 

above that turbulence consists of many spatial scales.  Hence, there is apparently a 

mechanism that enables a transfer of energy from the large energy containing 

turbulence scales to the sufficiently small dissipative scales of turbulence.  This is 

essentially the well-known energy cascade process of turbulence.  The cascade was 

initially thought to be a process where small turbulence scales emerge via vortex 

stretching by the mean strain rate.  Subsequently, smaller length scales develop 

containing turbulent kinetic energy as well until these spatial scales are dissipated into 

heat by viscous effects.  However, it has been discovered that the energy cascade 

process proceeds in both directions [33].  There is a flow of energy from the small 

scales to the large length scales; this process occurs probably through vortex merging 

or compression.  Even though the energy cascade proceeds in both directions, the net 

energy cascade is from the large to small turbulence scales.  It must be mentioned that 

the energy cascade is essentially an inviscid process.  

 In an analysis performed by [34], it was proposed that in the case of high 

Reynolds number, the small dissipative scales have identical structural and statistical 

properties for all turbulent flows.  Implicit in this notion is that the small scales are 

independent of the mechanisms that affect the large energy containing scales and the 

scale separation increases with increasing Reynolds number.  Another assumption 

and analysis was proposed by Kolmogorov pertaining to the energy cascade process.  

The mathematician proposed the notion of an inertial subrange; this region of the 
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energy spectrum comprises wave numbers that are only dependent upon the 

dissipation rate.  Moreover, in the inertial range of the spectrum, the premise is that 

energy cascades only from the large eddies to the small length scales without 

significant loss of turbulent kinetic energy.  The length scales contained within the 

inertial subrange essentially transfer energy from larger to smaller scales in the 

absence of viscosity and were assumed to obey the decay law of [35].  The decay law 

is representative of a line with constant slope of      and is given as       

         
  

   
 

     ( 2.1) 

with    being the Kolmogorov constant,   is wave number and   is the dissipation 

rate of turbulent kinetic energy.  Figure 2.1 illustrates the different regions of the 

energy spectrum that were aforementioned.  These regions are, i) the large energy 

containing turbulence scales, i.e. low wavenumber eddies; turbulence is introduced 

into the system via these large eddies that extract energy from the mean flow and are 

greatly dependent upon the length scale of the system, ii) the second region consists 

of the transitive length scales in the inertial subrange; energy is transferred to smaller 

eddies via vortex stretching without much loss of turbulent kinetic energy; this region 

obeys the decay law given in Eq.2.1 and iii) the third region comprises the smallest 

eddies affected by viscous effects that perform deformation work by transforming 

turbulent kinetic energy into  internal thermal energy.  An additional assumption to 

point out shown in Figure 2.1 is the universal equilibrium range.  It is merely the 

notion that the smaller turbulence scales have no preferred directionality and its 

motion is independent of the geometry.  Furthermore, it is supposed that the smaller 

length scales instantaneously dissipate the energy transferred from the large eddies.   
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Figure 2. 1  Idealized energy spectrum of turbulence.  Image adopted from [36]. 

 

 The concept of the energy spectrum employed in the theory of Kolmogorov is 

based upon the premise that most of the turbulent kinetic energy is concentrated 

around large scale eddies, i.e. turbulence is introduced into the system via the integral 

scales.  Despite its prevalence, the described energy spectrum is by far, minimally 

universal.  In free-shear turbulent flows such as mixing layers and wakes, the most 

energetic containing turbulent structures are of large scales.  This can be seen in 

Figure 2.2.  Figure 2.2 depicts a mixing layer initially at two different parallel streams 

that has transitioned to turbulence downstream as a result of the growth of small 

perturbations in the unstable shear layer.  This instability, known as the Kelvin-

Helmholtz instability, is a typical feature of the initial stages of the mixing layer and 

is a profound consequence of an inflection in the velocity profile [37].  As illustrated 

in Figure 2.2, the wave instability continues to grow and subsequently results in the 

generation of large scale roller-type vortices.  The mixing layer grows as these roller-
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type vortices are convected downstream and vortex paring recurs.  Thus, free shear 

flows transition to turbulence due to an inviscid instability [38].  The idealized energy 

spectrum applies to turbulent free shear flows where large scale eddies eventually 

degenerate into much smaller eddies via the Kolmogorov energy cascade.   

 

Figure 2. 2  Shadowgraph of a mixing layer between parallel streams at ~10 m/s and 

~4 m/s flowing from left to right.  Image from [39]. 

 

 

However, in wall bounded flows, solid boundaries have profound effects on 

the turbulence dynamics.  The presence of the wall imposes a physical limit on the 

spatial turbulence scales near the wall to a fraction of the wall distance.  Due to the 

high shear region near the wall, the production of turbulent kinetic energy peaks very 

near the wall [40].  Thus, turbulence is introduced into the system via the small scale 

eddies near the wall.  In light of this, it is quite reasonable to wonder of the 

mechanism that induces turbulence transport away from the wall to the core flow in 

the boundary layer.  To illuminate upon this issue, let us consider the equation for 

turbulent kinetic energy for an incompressible flow; the turbulent kinetic energy 

  
 

 
           and the transport equation is given by   
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                                     ( 2.2) 

where the viscous dissipation of turbulent kinetic energy             .        is 

essentially the spatial flux of turbulent kinetic energy transport due to pressure and 

velocity fluctuations and reads as 

                             ( 2.3) 

The turbulent kinetic energy production and spatial energy flux budgets for three 

DNS simulations of channel flow at increasingly high Reynolds number are 

illustrated in Figure 2.3.  Since the wall-normal component of the spatial energy flux 

is significant in parallel flows, only         survives and thus is depicted.   

 

 

Figure 2. 3  a) Net turbulent kinetic energy production,             , b) turbulent 

energy flux         .  Images adopted from [41]. 
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Thus, it can be seen that the net turbulent kinetic energy production peaks around the 

buffer layer region and dissipation exceeds production of turbulence in the outer 

portion of the boundary layer.  An inspection of the spatial energy flux budget in 

Figure 2.3 further expounds upon the spatial flux of energy away from the buffer 

region into the boundary layer.  Very near the wall, the spatial energy flux is negative, 

indicating turbulent energy transport is leaving this region; the flux is mostly positive 

outside the buffer layer region, alluding to an influx of turbulent energy.  Thus, it can 

be said that there are two turbulence cascades in wall bounded turbulent flows, 

namely spatial and spectral energy transfer.  Some of the turbulence generated very 

near the wall region is dissipated as a result of high shear; however, an immense 

amount of the production is spatially transported via turbulent diffusion into the core 

region of the boundary layer as shown in Figure 2.3.  This is the spatial energy 

cascade.  The spectral energy cascade in wall bounded turbulent flows is identical to 

the Kolmogorov cascade; there is a flow of energy locally from the larger to smaller 

turbulence scales across an inertial range where neither the effects of viscosity nor the 

character of the largest scales affects the energy transfer [41]. 

2.2 Coherent Structures 

 

The prior section elucidated the sensitivity of the outer core flow of the boundary 

layer to the near wall flow structures and dynamics.  The converse is not so as the 

near wall turbulent dynamics         seem to recur without any need for feedback 

from the core flow, i.e. it operates autonomously [42].  The most prominently 

accepted near wall structures, namely the low-speed streaks and quasi-streamwise 

vortices [40], [43] and the quasi-streamwise vortices are profoundly responsible for 
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the increase in skin friction and heat transfer [44] in wall bounded turbulent flow.  

These wall structures are spatially coherent and temporally evolving vortical motions 

of fluid and are commonly referred to as coherent structures (CS).  The incoherency 

in turbulence tends to decay relatively rapidly in comparison to the CS [45]; thus, the 

transport of fluid properties is dominated by these coherent structures and their exact 

nature upon the generation of turbulence will be examined further in the subsequent 

subsections.   

2.2.1Structure of the Wall Layer 

 

As aforementioned, the salient features in the near wall region of a turbulent 

boundary layer are the quasi-streamwise vortices and low-speed momentum streaks.  

Moreover, it was stated that these quasi-streamwise vortices were primarily 

responsible for the increase in skin friction and heat transfer near the wall.  The 

ability of these primarily longitudinal vortices in enhancing mixing can be easily 

expounded.  The vortices induce high-speed and lower temperature fluid towards the 

wall during the downwash motion and this motion steepens the wall velocity and 

thermal fields gradients [44].  Although the wall gradient is reduced during the 

upwash motion of the vortices, this gradient reduction is significantly smaller [44].  

Thus, there is a net increase in the wall gradients.  

    The kinematics of the quasi-streamwise vortices and low-speed streaks was 

depicted by [46] as shown in figure 2.3.  Figure 2.3 illustrates a pair of counter-

rotating streamwise vortices with opposite signed vorticity that span roughly 1000 

wall units.  In their model, it was conceptualized based upon their experimental 

observations that these streamwise vortices pump low-speed fluid away from the wall 
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during the upwash motion.  The low-speed fluid is essentially the low-speed streak 

depicted as the shaded structure between the vortices.  The violent ejection and break-

up of the low-speed streaks was conjectured to be the dominant cause of turbulent 

production [47].  This near-wall event has been referred to as the bursting 

phenomenon and is a quasi-cyclic process.  The bursting process that contributes to 

the production of turbulence recurs through a process whereby the low-speed streaks 

gradually drift away from the wall and subsequently starts oscillating once it reaches 

       . 

 

Figure 2. 4 Model of counter-rotating streamwise vortices along with low-speed 

streak.  Images adopted from [46]. 

 

The oscillation of the low-speed streaks amplifies as it continues to move outwardly 

and terminates in an abrupt break-up around         .  Following the break-up, 

the streak is contorted and stretched; a depiction of this process is shown in figure 2.4 

according to the observation of [40].  The eventual occurrence of the amplified 
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oscillation and subsequent break-up was reported to be caused by some sudden 

instability.  This instability has been argued to be a consequence of localized shear-

layer instability present in the near-wall region and has a profound impact upon the 

evolution of the CS near the wall [43]. 

 
Figure 2. 5 Illustration of low-speed streak break-up process with a dye.  Images 

adopted from [40]. 

 

 

 A schematic of such localized shear-layer instability was illustrated by [48], 

refer to figure 2.5.  In figure 2.5, a packet of high-speed fluid is shown penetrating the 

near-wall region in the midst of the low-speed streak prior to the break-up of the low-

speed streak; thus, the sharp interface between the high- and low-speed fluid regions 

results in a localized shear-layer prone to instability due to the apparent inflection in 

the mean velocity profile.  
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Figure 2. 6   Localized shear-layer instability between lifted low-speed streak and 

inrushing high-speed fluid.  Images adopted from [48]. 

 

 

 

Figure 2.6 illustrates the prominent near-wall structures of a fully developed 

turbulent boundary layer within the buffer region           as computed by 

[42].  The base layer depicts elongated streaks of low momentum fluid that have been 

lifted from the edge of the viscous sublayer into the buffer region; the overlay shows 

quasi-streamwise vortices flanking the elongated low-speed streaks.  It should be 

noted that further downstream, it seems the low-speed streaks are devoid of quasi-

streamwise vortices.  This means as the vortices are convected downstream, low-

speed fluid elements are left underneath their wake; thus the streaks are elongated.  

As previously stated, the proximity of the low-speed streaks to the vortices is 

attributable to the vertical velocity induced by the vortices which lifts up the low-

momentum fluid near the wall.  
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Figure 2. 7  Near-wall structures comprising lifted low-speed streaks (black) and 

quasi-streamwise vortices (grey).  Images adopted from [42]. 

 

 

The formation mechanism of the well-accepted near-wall quasi-streamwise 

vortices still remains hugely uncertain; many of the mechanisms proposed are either 

based upon parent-offspring or instability-based mechanisms.  These streamwise 

vortices generation mechanisms tend to widely disparate.  Parent-offspring 

mechanisms are essentially based upon the premise that new streamwise vortices are 

generated by the direct induction of existing vortices.  The latter, instability-based 

mechanisms, is based upon the presence of local instability in the base flow in the 

absence of parent vortices.  For present purposes, a detailed comprehensive overview 

of quasi-streamwise vortex generation mechanisms can be seen in [49].  
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2.2.2 Distribution of Near-wall Coherent Structure 

 

As opposed to the counter-rotating pairs of longitudinal vortices proposed by [46], the 

conceptual models of [45]  and [50] proposed similar kinematics of the near-wall 

coherent structures that were not in pairs in the streamwise.  The near-wall coherent 

structure model of [45] can be seen in figure 2.7.  To generate the near-wall 

conceptual model, the instability regeneration mechanism was assumed and aided in 

developing the spatial relationship of the quasi-streamwise vortices.  Interestingly 

enough, the conceptual model of [50] employed the parent-offspring regeneration 

mechanism and educed similar near-wall structures, see figure 2.8.  Both conceptual 

models depict a train of alternating overlapping quasi-streamwise vortices with the 

downstream end of each vortex inclined away the wall.  The SP and SN labels in 

figure 2.7 are indicative of coherent structures with     and –   , respectively.  

Similarly, the alternating signs of streamwise vorticity can be seen in figure 2.8; 

vortices A and C are     structures and vortex B is a  –   structure.  In figure 2.7a, 

the low-speed streak is illustrated beneath the tilted quasi-streamwise vortices; the 

apparent tilting observable in the (x, z) plane is a consequence of mutual induction.  

For example, the SP structure induces motion on the SN structure whereby point A of 

structure C is advected in the -z direction and point B in the +z direction.  Hence, 

mutual induction results in SN structures being convected in the clockwise direction 

and the SP structures in the counter-clockwise in the (x, z) plane.  Quadrants Q2 and 

Q4 events are associated with ejection and sweep events, are shown in figure 2.7a as 

well.  The quadrant events Q2 and Q4 are representative of                and 

              , respectively.  The presence of an internal shear layer with  
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        located at E is indicated in figure 2.7.  The internal shear layer tends to 

occur at sharp          interfaces in the streamwise direction [44].  The emergence 

of the internal shear layer is due to the overlapping and tilting in the (x, z) plane; thus, 

the shear layer arises as a result of the sweep and ejection events that occur from 

structures C and D, respectively.  These internal shear layers are quite prevalent and 

persistent in the near-wall region and are part of the near-wall quasi-streamwise 

vortices regeneration cycle [51].      

 
 

Figure 2. 8  Conceptual model of near-wall coherent structures and associated events.  

Images adopted from [45]. 

 
 

Figure 2. 9 Conceptual model of near-wall coherent structures.  Images adopted from 

[50]. 
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2.3 Feature Identification 

 

Most of the features that occur in the turbulent boundary layer flow field can be 

defined precisely.  There are other features that are not completely understood and do 

not lend themselves to precise definitions.  One such example is the swirling feature 

that is of profound significance in turbulent boundary layers, i.e. the vortex, is one 

such feature whereby a precise definition is presently lacking.  The characterization 

of a vortex is of a swirling fluid motion around a central region; however, a formal 

definition of the vortex has posed to be a formidable challenge and has been the 

source of many debates over the years.  To overcome this challenge, [52] proposed an 

intuitive definition of the vortex as rotation motion of a multitude of material particles 

around a common center.  Such an intuitive definition illustrates a vortex in terms of 

spiraling streamlines and such a frame of reference is only available to an observer 

moving with the core of the vortex.  Thus, due to the vague definition proposed by 

[52], [43] put forth a more precise definition to identifying vortices in three 

dimensional flowfields and is reproduced here in brief: A vortex exists when 

instantaneous streamlines mapped on a plane normal to the vortex core exhibit a 

roughly circular or spiral pattern, when viewed from a reference frame moving with 

the center of the vortex core.  To proceed, the debates pertaining to the many 

definitions of the vortex is directly irrelevant to this thesis and can be sidestepped.   
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2.3.1 Vortex Detection Methods 

 

 Despite the lack of a widely accepted definition for a vortex, various methods 

of detecting these vortices have been implemented.  Some of these algorithms have 

been relatively able to effectively capture vortical structures in a 3D flowfield.  The 

overview of vortical structure detection methods subsequently given is by no means 

comprehensive, but a few of these detection schemes will be discussed in this section.  

Local Pressure Minimum 

Since the vortex core tends to be a region of local pressure minimum, this criterion 

has been shown to effectively detect vortical structures in the turbulent boundary 

layer [43].  However, it was shown that it is quite challenging to adequately capture 

all the vortical structures by prescribing an appropriate cutoff pressure level. 

Vorticity Magnitude 

The vorticity magnitude,        ,  has been employed with success in free shear 

flows in effectively identifying vortical CS.  The same approach may not suitable for 

wall bounded turbulent flows, especially if the background shear is comparable to the 

vorticity magnitude inside the vortex.  Thus, such a criterion is quite problematic 

since the maximum of the vorticity is near the wall in turbulent boundary layers due 

to the high shear and it will be difficult to identify the core of the vortical structure.  

Hence, the vorticity magnitude may not be a suitable measure of identifying CS in 

wall bounded turbulent flows. 
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Complex Eigenvalues of     

The eigenvalues of the velocity gradient tensor,   , were employed by [53] to derive 

a general classification of varying streamline patterns that can occur in three 

dimensional flowfields.  The classification made use of the premise that the 

coordinate system translates with the origin following a fluid particle and the 

structural features educed will be frame-independent.  In order to identify a vortex 

core, it was proposed that such a region will be defined by possessing complex 

eigenvalues of   .  The implications of this definition is that the local streamlines 

observed will be closed or have a spiral pattern based upon the topology of the three 

dimensional flow pattern defined by the invariants of the eigenproblem.  The 

corresponding eigenproblem for the 3D flowfield problem satisfies the following 

characteristic equation 

                 ( 2.4) 

which can have: (i) distinct real roots, (ii) all real roots with at least two roots being 

equal, or (iii) one real root in addition to a conjugate pair of complex roots.  The first 

invariant           and the assumption can be made that the flow is 

incompressible, making this term zero.  The second and third invariants are   

 

 
            and           , respectively.  The quantities,   and   are the 

anti-symmetric and symmetric parts of    and are given as 

   
 

 
             ( 2.5) 

 

                ( 2.6) 
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            ( 2.7) 

and  

                ( 2.8) 

The anti-symmetric and symmetric parts of the velocity gradient tensor are the 

rotation rate and strain rate tensors, respectively.  Thus, to attain complex 

eigenvalues, the discriminant D has to be positive, i.e. 

    
 

 
  

 

  
 

 
  

 

    ( 2.9) 

and there is one real root and a conjugate pair of complex roots             .  The 

physical significance of these eigenvalues are as follows: i) the inward or outward 

axial acceleration of the fluid particle along a vector perpendicular to the vorticity 

plane is given by the sign and magnitude of    , ii) the fluid particle can either spiral 

towards or away from the center at a certain rate and the sign and magnitude of     

dictates this event and iii) the vortical strength of the swirling fluid is given by     .  

The physical descriptions of the three eigenvalues are depicted in figure 2.9. 

 

 

Figure 2. 10  Eigenvalues of    and physical significance, reproduced from [54]. 
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Positive Second Invariant Q 

This vortex detection method, as implemented by [55], defined an eddy as a region 

with the second invariant of   , Q is greater than zero.  As previously given in 

Eq.2.*, Q is representative of the balance between the magnitude of rotation and 

strain rates; thus, the criterion that    , means swirling motion dominates the shear 

strain rate.  The     criterion is essentially stricter than the     condition; this 

can be seen in figure 2.10.  The figure illustrates that any region of the flowfield 

identified as comprising a vortex by the     detection scheme will be subsequently 

captured by the     method.  However, the converse is not so; thus, this thesis 

makes use of the Q criterion in the identification of coherent structures.      

 

 
Figure 2. 11 3D flow topology for an incompressible flow, reproduced from [56]. 
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2.4 Closing Remarks 

 

This chapter presented an overview of the fundamental nature of turbulent flow with 

emphasis upon wall bounded turbulence.  Although the succinct definition of 

turbulence is not currently available, some of its intrinsic characteristics were 

elucidated along with the intricacies present in the near-wall region.  The most 

complex part of a turbulent boundary layer is the near-wall high-shear region where 

severe viscous effects results in turbulent processes.  These turbulent processes 

involve the near-wall coherent structures dynamics which seemingly proceed 

autonomously of the outer boundary core flow.  The dominance and prominence of 

quasi-streamwise vortices in the near-wall region is now generally accepted in the 

field of turbulence; there is profound disagreement regarding the mechanisms 

responsible for the regeneration of these flow structures.    

 The swirling feature of fluid motion, i.e. the vortex, has not lent itself to a 

precise definition due to the lack of its complete understanding.  Many vortex 

identification schemes have been proposed based upon different definitions.  Thus, 

the vortices (coherent structures) educed from a turbulent flowfield is greatly 

dependent upon how it is mathematically defined.  In increasing the current 

understanding of the near-wall turbulent cycle, a precise definition of the vortex will 

be compulsory. 

 The features of wall-bounded turbulent flows dominated by forced-convection 

were introduced in this chapter.  The current thesis consists of turbulent boundary 

layers greatly affected by buoyancy and the turbulent dynamics of such near-wall 

flows have not been investigated like its counterpart, forced-convection.  Thus, 
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implicit in this chapter is that the structure of near-wall turbulence is similar to those 

expected in buoyancy affected turbulent boundary layers.      
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Chapter 3: Computing Turbulent Boundary Layers 

 

 

3.1. Modeling Turbulent Flows 

 

 Advances made with computational fluid dynamics (CFD) in the modern era have 

enabled the ability to simulate turbulent boundary layer flows using different 

approaches.  The simulation of turbulent boundary layers commences with the 

Navier-Stokes equations, which typically consists of the conservation of mass, 

momentum, and energy equations.  The numerical approach adopted in resolving the 

turbulent flowfield is dictated by the form of Navier-Stokes equation solved.  To date, 

a number of techniques are commonly utilized to compute turbulent flows; these 

methods include Direct Numerical Simulation (DNS), Large Eddy Simulation, 

Reynolds-Averaged Navier-Stokes (RANS), and hybrid LES/RANS. 

 Direct Numerical Simulation computes the instantaneous turbulent boundary 

layer without approximating or averaging the Navier-Stokes equations.  As a result, 

turbulence modeling is not required and all the varying length and time scales have to 

be resolved with the spatial resolution and time advancement scheme.  DNS has to 

resolve the largest and smallest length scales dictated by the geometry and physics of 
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the flow.  Typically, the Kolmogorov length scale, η = (ν
3
/ε)

1/4
, is adopted as the 

smallest spatial scale needed to capture in DNS, where ν and ε are the kinematic 

viscosity and dissipation rate of small scale turbulence.  However, the DNS mesh 

does not have to resolve the length scale η, the grid criterion that is required to 

resolve the smallest scale should be O(η) [57].  With the utilization of significantly 

fines meshes to resolve the small dissipative scales, DNS can be very valuable in 

understanding the flow physics of turbulence and gives the most accurate predictions 

to the Navier-Stokes equations; however, it is intrinsically computationally 

expensive.  The number of grid points required in each spatial direction is 

proportional to the ratio of the largest to smallest scales which is proportional to 

ReL
3/4

 [58].  ReL is the Reynolds number based upon the integral scale or domain 

length.  In addition to the spatial resolution cost, DNS computations are also quite 

stiff.  The stiffness is attributable to the presence of high frequency motions (smallest 

length scale motion) that have to be resolved and the utilization of larger time steps 

can introduce significant small length scale errors into the solution. 

 Rather than calculating the instantaneous flowfield, the statistical evolution of 

the boundary layer can be computed [57].  The Reynolds-Averaged Navier-Stokes 

equations use such an approach by averaging all of the unsteadiness in the flowfield.  

A specified unknown, the Reynolds stress tensor term,      , emerges as a result of 

averaging non-linear terms in the Navier-Stokes equations.  The RANS momentum 

equation for a flow with variable density in Favre mass averaged quantities is given 

as:   
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( 3.1) 

The emergence of the Reynolds stress tensor term is known as the turbulence closure 

problem.  In order to completely solve the averaged equations, a closure model has to 

be employed in conjunction with the RANS equations.  Several RANS equations 

turbulence closure models have emerged in the past decades, such as one-equation, 

two-equation, algebraic, and Reynolds Stress models.  It must be mentioned that a 

major drawback of simulating turbulence with RANS equations is the inadequacies of 

the closure models in resolving all the turbulence length scales.  These closure models 

are required to capture the largest and smallest scales in the flowfield and are 

typically tuned for a particular flow due to the model constants.  It is well known that 

the smallest turbulence scales are primarily a function of viscosity and can be 

assumed to be independent of the geometry, but the largest scales are usually a 

function of the geometry and boundary conditions.  Hence, it can be easily deduced 

how ineffective a RANS closure model can be in solving different types of turbulent 

flow. 

 The simulation of turbulent boundary layer flow with LES, which is the 

primary subject matter of this thesis, is essentially bracketed by DNS and RANS.  

Large Eddy Simulation solves the spatially filtered Navier-Stokes equation by 

removing the high frequency motion. The filtered equations resolve the large 

turbulent scales and the smallest scales are modeled via sub-grid scale (SGS) terms 

that emerge from filtering the non-linear terms.  As previously mentioned, the large 

turbulent scales are dependent upon the geometry and boundary condition and the 
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smallest scales can be assumed to be statistically and structurally universal to all 

turbulent flows [59].  Hence, the usage of LES to model turbulence makes it 

inherently more accurate than RANS, although a tad more computationally 

expensive.  Since the smallest scales are computed with SGS models, LES is neither 

as computationally expensive nor possess the fidelity of DNS.  The small scales 

effects in LES are modeled as an energy drain that occurs in turbulence from the 

largest to the smallest scales where viscous effects are more pronounced.   

 Aside from the commonly used turbulence simulation methods, the hybrid 

RANS-LES approach combines the two techniques in order to lessen the 

computational cost as opposed to performing a full LES computation.  Since time-

dependent turbulence simulations such as LES requires resolving small length and 

time scales for wall bounded turbulent flows, LES is more expensive than RANS 

simulations [60].  In an effort to circumvent the cost associated with full LES 

simulation, the hybrid RANS-LES approach employs RANS equations near the wall 

and LES in the outer portion of the boundary layer where the turbulence structures are 

larger.  The coupling of RANS and LES in the boundary layer is quite challenging 

and still remains an open problem [61]. 

3.2. Principles of LES 

 

The basic premise of Large Eddy Simulation is the application of a low-pass filter in 

frequency to the Navier-Stokes equation and was initially proposed by Smagorinsky 

for weather modeling application [62].  Once the filter is applied, a set of partial 

differential equations describing the large scale motion of turbulence emerges, with 

the smallest scales ostensibly discarded [33].  The large scales of turbulence, as 
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aforementioned, are profoundly dependent upon the geometry and boundary 

conditions of the flow set-up.  Moreover, the large scales contain most of the 

turbulence kinetic energy and perform most of the transport of momentum and energy 

in the flowfield [63].  Without loss of instructional value, the effects of the smallest 

scales of turbulence have to be accounted for and this is usually done by SGS 

modeling.  The modeling approach of the more “nearly isotropic length scales” is a 

consequence of the Kolmogorov theory of turbulence [35].  The theory presumes that 

small scale turbulence is statistically invariant under rotations and translations [64].  

Hence, to summarize the entire concept of Large Eddy Simulation, we explicitly 

resolve the geometry and boundary condition dependent large energy containing 

turbulent scales and assume without significant loss of accuracy, the effects of the 

smallest turbulent scales are isotropic and modeled numerically. 

 3.2.1 LES Filters 

 

To separate the large turbulent scales from the small scales, a scale separation is 

compulsory and is accomplished with the use of filters.  The filtering process 

essentially “averages out” the small scale with one of the filtering properties, the 

spatial cutoff lengthscale or filter width, ∆.     

 The grid scale (GS) or resolved variable denoted by an overbar can be 

formally defined as  

                       
 

     ( 3.2) 
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where D is the computational domain, x   D,           is the convolution kernel of 

the characteristic filter function associated with the spatial cutoff lengthscale.  

 Three classical explicit convolution filters are typically utilized in Large Eddy 

Simulation for spatial scale separation and are characterized by a filter width: the box 

or top-hat filter, Gaussian filter, and spectral or sharp cut-off filter [65].  In what 

follows, the mathematical properties of these filters will be briefly discussed.     

Top-Hat Filter 

 

The top-hat filter is commonly employed in Finite Volume Large Eddy Simulation 

computations.  The filter is essentially an average over some specified filter width ∆ 

and also represents an implicit grid filter introduced by the computational mesh.  Top 

hat filter function can be expressed in physical space as:  

         

 

 
            

 

 
   

                          

  ( 3.3) 

and the filter function in spectral space is: 

       
    

  
  

  
 

   ( 3.4) 

 

where k is the wave number and is formally defined as:  

 

 
   

 

 
   

 
( 3.5) 
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Gaussian Filter 

 

The Gaussian filter in physical space is given as: 

 

         
 

   
 

   

       
 

 
 

 

    ( 3.6) 

and the corresponding filter function in spectral space is:  

 

 
           

    

  
    ( 3.7) 

 

 

Spectral Cut-off Filter 

The sharp cutoff filter is usually employed for spectral LES computations and its 

filter function in physical space is:  

        
         

  
   ( 3.8) 

and the filter function in spectral space is expressed as: 

        
           

 

 
             

  ( 3.9) 

To exemplify the differences between the various filters, they were applied to a test 

function and the energy spectra of the filtered quantities are depicted in Figure 3.1.  

The spectra cut-off filter only affects the spatial scales below the cutoff wavenumber; 

the top hat and Gaussian filters can be seen to smear spatial scales at low and high 

wavenumbers.  The smearing behavior of the top-hat and Gaussian filters necessitates 

a relative increase in grid resolution to capture the high frequency eddies as their 

spectral cutoff counterpart.  Hence, this makes spectral LES more accurate than 

physical space filtered LES computations. 
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Figure 3. 1  Energy spectra of a test function,         unfiltered, + spectra cut-off,                                

Gaussian,     top-hat, - - -      .  Image adopted from [66]. 

 

3.2.2 Favre-Filtered Governing Equations 

 

The fundamental equations governing the low speed motion of a single phase non-

reacting flow with variable properties can be based upon the compressible Navier-

Stokes system of equations and will be given in this section.  These equations are the 

conservation laws of mass, momentum and energy. 

The conservation of mass equation given in Eq.3.10, basically states that the 

rate of change of mass in a fluid element must be in equilibrium with the net rate of 

flow of mass across the fluid element. 

 
  

  
         ( 3.10) 

where ρ, u = (u, v, w), t are the density, three components of velocity and time, 

respectively.  The conservation of momentum equation states the rate of momentum 

increase of a fluid element is equal to the net forces acting on it.  The equation is 

mathematically expressed as follows: 
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                     ( 3.11) 

where p and g are the pressure and gravity vector, respectively.    is the viscous stress 

tensor and is defined as 

        
 

 
           ( 3.12) 

where        is the dynamic viscosity term due to molecular motion and is 

temperature dependent quantity.  The strain rate tensor,   is defined as 

   
 

 
           ( 3.13) 

The conservation of energy equation, which is essentially the first law of 

thermodynamics, states that the rate of change of energy of a fluid element is in 

equilibrium to the difference between the rate of heat added to the fluid element and 

work done by the fluid element.  As such, the enthalpy form of the conservation law 

is given by: 

 
   

  
       

  

  
                      ( 3.14) 

where h is the sensible enthalpy and is defined as 

           

 

    

   ( 3.15) 

The definition of enthalpy given in Eq.3.15, which can be called the sensible 

enthalpy, is a function of T and CP, the temperature and specific heat at constant 

pressure, respectively.  In the energy equation, the term κ is the thermal conductivity 

and dictates a material’s ability to conduct heat.  The enthalpy form of the energy 

conservation law given in Eq.3.14 was acquired by subtracting the kinetic energy 
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equation from the total energy equation to get the internal energy equation.  The 

kinetic energy equation can be derived by multiplying the momentum conservation 

equation by its corresponding velocity component and adding all three equations to 

form the resulting kinetic energy equation.  Furthermore, by using the following 

definition for internal energy, i,  

     
 

 
    ( 3.16) 

the substitution can be made in order to have the enthalpy form of the energy 

conservation equation.  

 To account for the unknown pressure p, the fluid was assumed to be a perfect 

gas enabling the following equation of state to be utilized: 

    
   

 
   ( 3.17) 

where R and W are universal gas constant and molar mass of the gas, respectively. 

  

 The spatial filtering approach given in Eq.3.2 can be utilized for scale 

separation of the governing differential equations in addition to a change of variable 

technique where the filtered variables are density weighted using Favre filtering [67].  

The utilization of Favre filtering disallows the presence of SGS terms in the 

conservation of mass equation.  The Favre filtered variable    , can be defined as 

    
      

  
   ( 3.18) 

Using the Favre filtered methodology, the governing equations of motion for flows 

with non-negligible density gradients [68], [69] can be expressed as: 
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Mass Conservation: 

 
   

  
            ( 3.19) 

 

Momentum Conservation: 

 

     

  
              

                              

( 3.20) 

where   

                
 

 
           ( 3.21) 

and 

             
 

 
          

                                   
 ( 3.22) 

The divergence of the         term in the filtered momentum equation is a 

consequence of the non-linearity of the viscous stress term; it is usually considered 

negligible by assuming           and its magnitude was shown to be an order of 

magnitude lower than      [69]. 

The subgrid-scale stress term,    , exists as a result of applying the filtering 

operation to the non-linear convection term in the momentum equation.  It is a 

consequence of              and leads to a modeling approximation to account for the 

difference between the two sides of the inequality.  The modeling approach lends 

itself to the aforementioned SGS stress term: 

                     ( 3.23) 
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The SGS stress,      can be decomposed into three residual stresses.  These residual 

stresses are the Leonard (L), Cross (C) and Reynolds (R) stresses.  Hence, the 

decomposition proceeds as follows: 

               ( 3.24) 

where 

                   ( 3.25) 

 

                    ( 3.26) 

and 

             ( 3.27) 

It can be seen from the residual stress decomposition that L, C and R represent the 

interaction of the resolved quantities, interaction between resolved and SGS 

quantities and interaction between subgrid scales, respectively.  The decomposition of 

      given in Eq.3.23 using        , with    being the resolved scales and    

denoting the subgrid scales, results in  

                                      ( 3.28) 

Thus, we can see that 

                                          ( 3.29) 

The Leonard stress term will be shown to be of great significance when dealing with 

dynamic subgrid scale LES models. 
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Energy/Enthalpy Conservation: 

 

     

  
           

   

  
                   

                      

                                                     

( 3.30) 

 

The enthalpy equation apparently has four SGS terms that emanated from the filtering 

operation.  Some assumptions that have been made to simplify the above equation 

will be discussed as follows: 

 The term           is a result of non-linearity inherent in the heat flux term.  

Proceeding in a similar fashion of the removal of the         term in the 

filtered momentum equation, an identical assumption can be made to neglect 

its contribution [69]. 

  The term                    is equal to the divergence of the SGS heat flux, 

     [66].  The approach normally taken to modeling      is based upon the 

premise that the energy transfer from resolved to unresolved turbulence scales 

is proportional to the GS temperature,    [70] and is modeled as 

                   ( 3.31) 

where      is the subgrid scale thermal diffusion coefficient and can be 

defined as  

       
    

     
   ( 3.32) 

where       and       are the subgrid scale kinematic viscosity and Prandtl         

number, respectively.  The modeling of      is connected to      models and 
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will be discussed in the subsequent section.        can be acquired either 

dynamically or it can be set to a constant value [70].  The range of values 

chosen for a fixed       is [0.3,0.9] [68].  The present work utilized a fixed 

value of 0.9 for      . 

 The velocity pressure gradient term                      , can be decomposed into 

SGS pressure dilatation and temperature flux terms [66].  The mathematics is 

as follows and is based on the derivation in : 

                                                     ( 3.33) 

                              ( 3.34) 

                                         ( 3.35) 

                                             ( 3.36) 

   

 

                    

                

                         

 
 

( 3.37) 

 

The SGS temperature flux term,                can be combined with 

               to model the SGS heat flux as a whole in the following 

manner [71]: 

                                               ( 3.38) 

where    is the specific heat at constant volume.  We can define the SGS 

temperature flux as 



 

65 

 

                ( 3.39) 

            and the SGS heat flux can be expressed as 

              ( 3.40) 

The simplest approach employed to modeling      was given in Eq.3.* and 

that is the formulation implemented in the current work. 

Pressure dilatation is largely due to compressibility effects, i.e., heating due to 

compression.  As a result, this term can be neglected given the flow regime 

considered in this thesis.  Moreover, previous efforts have indicated that at 

low Mach numbers, this term can be ignored [72] , [73]. 

 The fourth SGS term in the Favre-filtered enthalpy equation,                      , 

is subgrid scale viscous dissipation and while on this topic, it will be 

appropriate to discuss the resolved scale viscous dissipation term        as 

well.  Viscous dissipation is essentially viscous heating; the kinetic energy of 

the flow is deformed and brought to a rest, thereby increasing the internal 

energy of flow.  It can be safely assumed that the effects of viscous heating 

will be quite pronounced near solid boundaries.   Furthermore, this profound 

heating attributed to viscous dissipation is significant in high speed 

compressible boundary layer flows [74], such as the re-entry of a space shuttle 

or rocket into the earth’s atmosphere.  However, viscous heating and natural 

convection effects are seldom of the same of order of magnitude 

simultaneously [75].  In the present work, an assumption was made that the 

viscous heating was negligible to the heat release rate of the hot wall.  To that 
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effect, both the GS and SGS viscous dissipation terms were neglected in the 

current work. 

To summarize, the Favre-filtered differential equations with the proposed 

assumptions for the conservation of momentum and energy, respectively are: 

      

  
                                 

( 3.41) 

 

 

 
     

  
           

   

  
                        ( 3.42) 

 

where further simplifications made to the filtered energy equation pertaining to the 

pressure terms will be discussed in the subsequent chapter. 

We can re-write the filtered momentum equation by introducing an effective dynamic 

viscosity as             and upon substitution into Eq.3.41 

 
     

  
                          

 

 
                      ( 3.43) 

From the filtered momentum equation given in Eq.3.43, one can see that an 

assumption has been made to relate the SGS stress tensor to a SGS dynamic viscosity 

and the resolved strain rate tensor.  The reasoning behind this newly developed 

equation will be expounded upon in the next section. 

The Favre-filtered energy equation can be re-written by expanding and combining the 

resolved and subgrid scale heat flux vectors as follows: 

 
      

 

  
       ( 3.44) 

 

Inserting Eq.3.31 and Eq.3.44 into the filtered enthalpy equation results in 
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        ( 3.45) 

3.3 Sub-Grid Scale Stress Tensor Turbulence Models 

 

The modeling of the SGS stress tensor term,     , is of the utmost importance when 

compared to other subgrid scale terms since it is the only quantity modeled in the 

filtered incompressible Navier-Stokes equations.  As such, considerable effort has 

been put forth by different researchers to formulate high fidelity SGS models: 

algebraic constant coefficient models [62], [76], dynamic models [77] and [78], and 

one equation models [79]. 

 The majority of SGS stress tensor models are based upon the eddy viscosity 

concept, wherein the subgrid scale stress is expressed linearly in terms of the resolved 

velocity gradient and coefficients that depend on some defined flow characteristics 

[80].  The SGS stress tensor is modeled with the following mathematical expression:  

 
          

 

 
                    

          

 
 

 
                
         

   
( 3.46) 

where the SGS tensor is split into its deviatoric and isotropic parts.  The isotropic part 

of the SGS stress tensor,         , can either be modeled [81] or incorporated in the 

filtered pressure.  The deviatoric part of the SGS stress tensor employing the eddy 

viscosity concept assumes that it is locally aligned with the deviatoric part of the 

resolved strain rate tensor [82] and reads as:   

     
              

 

 
          ( 3.47) 

This approach is based on the premise that is analogous to how molecular motion 

drains energy from the flow via the molecular viscosity.  Therefore, it can be 
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supposed that the SGS motion extracts energy from the resolved turbulence scales via 

a subgrid scale viscosity,      to emulate the energy drain associated with the 

dissipation of turbulent kinetic energy.  Regarding the isotropic part of the SGS stress 

tensor, 
 

 
          , this quantity has been shown to be insignificant for low speed 

turbulent boundary layers [83].  Hence, its implementation will be neglected in this 

thesis.    

In this section, we consider four SGS stress models: the Smagorinsky model, Wall-

Adapting Local Eddy Viscosity (WALE) model, turbulent kinetic energy (K) 

equation model and locally dynamic Smagorinsky model (LDSMG).   

3.3.1 Static Sub-Grid Scale Models 

 

In the present section, we will consider SGS models that utilize constant coefficient in 

computing the subgrid scale viscosity.  Such models typically employ some particular 

flow set-up to determine the optimum value for the constant and as a result, the 

constant will not be well suited the varying types of flows numerically solved using 

LES.  To proceed, a discussion of the Smagorinsky and WALE SGS models will 

follow. 

The Smagorinsky Model 

The Smagorinsky model was formulated by assuming that the small scales are in 

equilibrium, i.e., all the energy received by these scales are instantaneously dissipated 

so that production and dissipation are balanced.  This model gives the subgrid scale 

eddy viscosity as 

                   ( 3.48) 
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where    is the Smagorinsky constant,   is the filter width, which is proportional to 

the grid size and for an anisotropic grid, is defined as 

           
 
    ( 3.49) 

 and      is the magnitude of the strain rate tensor given  

                 ( 3.50) 

Different values have been suggested to prescribe the Smagorinsky constant,   : for 

example, a value of 0.1 was suggested for turbulent channel flow [84]  and value of 

0.2 for isotropic turbulent flow [85].  A profound drawback of the Smagorinsky 

model is its inherent excessive dissipative behavior in regions of large strain, thereby 

causing unphysical damping of large scale turbulent motion [86].  In addition, due to 

the presence of the viscous sublayer in the wall region where turbulence should be 

essentially non-existent,      should tend to zero.  However, the Smagorinsky model 

does not give this behavior in the near-wall region and a damping function is typically 

employed in conjunction with this model to force      to zero as the wall is 

approached [86].  The van Driest damping function [87], which is a function of the 

wall-normal distance, is normally utilized by multiplying it to   .  Consequently, this 

function is unable to capture the cubic rate of decay of subgrid scale eddy viscosity at 

the wall [36].  

WALE Model 

To circumvent the shortcomings of the Smagorinsky model associated with 

approximating the subgrid scale viscosity using only the symmetric part of the 

velocity gradient tensor, S, the WALE model employs the anti-symmetric part of the 

velocity gradient as well.  The anti-symmetric part, the rotation rate tensor, was 
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included so that in the region of large strain and/or rotation rate, the LES model can 

sufficiently capture the turbulence structures [88].  Moreover, the SGS model was 

shown to produce no subgrid scale viscosity in two dimensional laminar flows.  As it 

pertains to the cubic rate decay of the eddy viscosity, the WALE model is able to 

recover this behavior without a damping function or dynamically computed 

coefficient [88].  The expression for       reads as: 

            
    

    
  

 
 

    
    

  
 
      

    
  

 
 

   ( 3.51) 

 

 where    is a model constant taken to be [0.55,0.60],    
  is given by 

    
     

    
     

    
  

 

 
       

    
     

    
    ( 3.52) 

The strain rate tensor has been defined here in tensor notation as 

    
  

 

 
 
    

   
 

    

   
   ( 3.53) 

the rotation rate tensor,    
  is defined as 

    
  

 

 
 
    

   
 

    

   
   ( 3.54) 

and     is the Kronecka delta, which is equal to 1 if     and 0 otherwise. 

K-Equation Model 

As opposed to the Smagorinsky model, whereby an algebraic expression is derived to 

obtain the velocity scale utilized to describe the eddy viscosity by assuming the 

production and dissipation of small scales were balanced, the subgrid scale turbulent 

kinetic energy equation model solves a transport equation to calculate the velocity 
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scale.  The transport equation can be derived by adopting the approach of [79]: 

subtract the product of filtered velocity and filtered momentum equation from filtered 

product of velocity and momentum.  The resulting equation can be reduced and 

rearranged to acquire the        transport equation.  Further simplification can be 

made [89] to obtain the following equation:  

 
       

  
                                        ( 3.55) 

where the three terms on the right-hand-side of the Eq.3.55, represent, respectively, 

the diffusion, dissipation and production of       .  The dissipation of subgrid scale 

turbulent kinetic energy,  , can be modeled as 

 
  

        

 
 

 
   ( 3.56) 

where the dissipation term model coefficient,         .  The subgrid scale 

viscosity for the K equation model reads as 

             

 
    ( 3.57) 

where the         .  The production term, P, is mathematically expressed as 

             ( 3.58) 

3.3.2 Dynamic Sub-Grid Scale Models 

 

It would be rather challenging to effectively apply the constant coefficient SGS model 

to the wide range of turbulent flows.  The model coefficients can be calculated as part 

of the turbulence simulation instead of as a priori input.  Such a dynamic procedure 

ensures that the coefficient is directly approximated by the local transient flow 

conditions.  Local flows condition that constant coefficient SGS model cannot capture 
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is the backscatter phenomenon [90] whereby the spectral energy transfer is from 

small to the large scales.  This phenomenon will result in a local negative value for 

     which the Smagorinsky and similar SGS models cannot compute. 

 To formally describe the dynamic procedure, a second, coarser spatial filter or 

“test filter” is applied to the filtered equations of motions.  The test filter width is 

usually defined as      ; the caret     will henceforth denote the test filter.  The 

subtest stress term T that emerges subsequent to the application of the test filter to the 

already filtered governing differential equations is given by 

 

                     ( 3.59) 

 

         
          

   
   ( 3.60) 

Recall that the SGS stress term was given as  

                    ( 3.61) 

                
        

  
 ( 3.62) 

and an expression for the Leonard stress, L, can be mathematically stated using the 

Germano identity [91] and adopting the approach of [92]: 

           ( 3.63) 

   
        

  

 
  

          

   
 ( 3.64) 

            
 

   
              ( 3.65) 



 

73 

 

The Leonard stress defined for the dynamic procedure is basically the contribution to 

the Reynolds stresses by turbulence scales intermediate between the grid filter and 

test filter scales.  To proceed, we can suppose that   and      can be modeled with 

the same constant,    for both filtering levels, by defining a general eddy viscosity 

model as follows: 

            ( 3.66) 

 

           ( 3.67) 

where   and   are the resolved fields at the subgrid scale and subtest filter scale, 

respectively.  Eqs.3.66 and 3.67 can be substituted into Eq.3.63 and the following 

expression emerges 

           ( 3.68) 

where       .  Since Eq.3.68 is an over-determined system, i.e. more equations 

than unknowns, the method of least squares proposed by Lilly [77] to minimize the 

error   from the approximation of    can be found via 

            ( 3.69) 

The least squares approach can be formally implemented, resulting in 

 
      

   
     

  

   

      ( 3.70) 

and substituting Eq.3.69 into Eq3.70 gives the following expression: 

                 ( 3.71) 

 

     
 

 

     

     
 ( 3.72) 
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where the    denotes some ensemble average.   The ensemble averaging procedure 

is required to avoid excessively large fluctuations of the coefficient [77] that can 

otherwise destabilize the numerical simulation.  The averaged least squares approach 

of [77] has been able to improve upon earlier dynamic models that suffered from 

spuriously large and negative eddy viscosity.  Several dynamic models have 

attempted to resolve this problem; one of these SGS model [86], recommended 

averaging the dynamic coefficient in all homogeneous directions.  Such a suggested 

SGS model is only feasible for homogeneous turbulence flows.   

To this end, it is appropriate to note that the advent of dynamic SGS models 

have caused marked progress in the modeling of turbulent boundary layers, especially 

transitional flows.  Dynamic models are able to automatically reduce the coefficient 

in high shear and near wall regions; moreover, the eddy viscosity is “driven” to zero 

in the laminar flow region without the need of a damping function usually required in 

static SGS models.        

Dynamic Smagorinsky Model 

Let us introduce the dynamic procedure to the Smagorinsky model employing just the 

deviatoric parts of the stress tensor and recalling that  

      

 

 
                          

 

 
         ( 3.73) 

We can proceed to respectively define   and   as: 

               
 

 
         ( 3.74) 
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          ( 3.75) 

and with quantities  ,   and   defined, the dynamic Smagorinsky coefficient     can 

be easily computed.  In this thesis, subsequent to the computation of the dynamic 

coefficient, this quantity was locally averaged to smooth out the potentially large 

fluctuations.  Following the local averaging of   , backscatter was enabled by 

allowing the SGS viscosity to acquire a minimum value of    . 

3.3.3 Choice of SGS Model 

The locally dynamic Smagorinsky LES model will be primarily employed throughout 

this thesis.  Aside from its well-known ability to accurately capture the correct near-

wall behavior for the SGS viscosity, it also enables the back-scatter phenomenon that 

often occurs in transitional boundary layers.  Hence, since all the test cases in this 

research effort comprises laminar to turbulent boundary layer transition, the dynamic 

model will be best suited to capture the expected physics with relatively high fidelity. 

3.4. Wall Layer Treatment in LES 

 

To mitigate the computational expense of resolving the viscous sublayer in an LES 

calculation, many different approaches are currently in use to approximate the near 

wall region.  The discussion put forth on wall layer treatments is not meant to be 

exhaustive and comprehensive; the wall layer treatments discussed are those that have 

bearing on the current work and some of the wall models are directly relevant to the 

approach utilized over the course of this research.  To proceed, we will consider 

primarily equilibrium wall models, whereby the core assumption is that the wall 

stress and wall heat flux are in some kind of average or instantaneous equilibrium.  
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Moreover, it is appropriate to note that most of the wall layer models implemented in 

LES are based upon Reynolds-Averaged equations.  The justification is that near-wall 

turbulent structures go through several life cycles and the simulation time-step is 

typically too large to capture the transient evolution of these structures.  Hence, as 

long as the near-wall grid size is sufficiently coarse to comprise a sufficiently large 

sample of near-wall turbulent structures, we can reasonably assume that only the 

average effect or evolution of the eddies is captured at each computational time-step. 

3.4.1 Wall Layer Models (Forced Convection) 

 

In this section, we present some of the well-known wall layer models employed in 

LES for momentum driven flows.  These models approximate the wall stress by 

correcting the velocity gradient at the wall; subsequently, the corrected wall stress can 

be utilized to recalculate the wall heat flux for forced convection flows with heat 

transfer. 

Standard Momentum Wall Model 

The boundary layer region according to [63] can be separated into the viscous, buffer 

and inertial sublayers.  The viscous layer being a region that turbulence fluctuations 

are essentially damped and the majority of the stress is attributable to viscous effects.  

The viscous sublayer is a very thin region next to the wall and diminishes as the 

Reynolds number increases.  The approximate boundary condition for viscous 

sublayer reads as 

                 ( 3.76) 

with         ,         ,          (friction velocity), while   is the 

velocity at the first grid node off the wall and             .  The buffer layer, a 
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region where viscous and turbulence transport are both significant, lies within 

        and there isn’t an explicit approximated boundary condition expression 

for it.  The inertial sublayer, also referred to as the logarithmic layer, is a region near 

the wall where turbulence transport dominates.  The approximated boundary 

condition, widely known as the logarithmic law of the wall, is given by:  

    
 

 
                        ( 3.77) 

with the constants   and   are 0.41 and 5.3, respectively.  The utilization of the 

logarithmic law of the wall places the restriction of having the first grid node off the 

wall at      .  To circumvent this restriction, a unified law of the wall which fitted 

the viscous, buffer and inertial sublayers into one equation iteratively solvable for the 

wall shear stress can be employed.  The unified law, known as Spalding’s law [93] is 

given by  

 

                              
      

  

 
      

  
    

( 3.78) 

The unified law prevents the restriction of placing the first grid node off the wall at 

     , thus enabling the usage of the same wall function by simply refining the 

mesh locally in the wall-normal direction to place nodes in the buffer layer.  The 

limitations of the approximated boundary conditions given are the absence of 

pressure gradient effects and the assumption that the wall stress is constant in the 

region adjacent to the wall.    
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Standard Thermal Wall Model 

Approximate boundary conditions similar to those given for the standard momentum 

wall models can be prescribed for the thermal viscous and inertial sublayers.  The 

streamwise momentum and energy equations governing the near-wall region for 

forced convection boundary layer are given in Eqs.3.79 and 3.80.  Upon inspection of 

these two equations, it is apparent their structures are vastly similar.  Hence, one can 

contend that if the molecular and turbulent Prandtl numbers are     , i.e., 

momentum and heat diffuses through the fluid at the same rate, the thermal and 

velocity profiles near the wall will be identical.  With the use of the Reynolds 

analogy, which attempts to draw similarities between momentum and energy transfer 

and supposes that the turbulent momentum diffusivity and turbulent thermal 

diffusivity are equal, so that the turbulent Prandtl number              .  

   
 

  
  

  

  
              ( 3.79) 

 

   
 

  
  

  

  
             ( 3.80) 

The thermal wall model comprises a linear law where molecular transport dominates 

and a logarithmic law where turbulence transport dominates and has the following 

form: 

     
                                          

 

    
 

 
                 

    
 
    ( 3.81) 

where E is a model constant typically equal to 9.8,    is the computed by using a 

formula acquired from pipe flow measurements [94] as: 
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    ( 3.82) 

and is essentially a measure of resistance to heat transfer across the thermo-viscous 

sublayer [95].  The non-dimensional temperature   , is given as:  

    
            

  
   ( 3.83) 

where       is the temperature difference between the isothermal wall and the 

temperature at the first computational node off the wall,    is the specific heat at 

constant pressure of the fluid, and    is the wall heat flux.  The parameter   
  is taken 

to be the normal distance from the wall where the values of     predicted by the 

linear and log laws given in Eq.3.81 equalize.   

Deardoff Wall Model 

A wall model implemented for LES of wall bounded turbulent flow at infinite 

Reynolds number was introduced [96], by prescribing the second derivatives of the 

streamwise and spanwise velocities at the first grid node from the wall in addition to a 

zero penetration velocity as:  

 
    

   
  

 

   
  

    

   
   ( 3.84) 

 

 
    

   
 

    

   
   ( 3.85) 

with    and    being the filtered streamwise and spanwise velocity components, 

respectively, while    is the first off-wall grid node.  The second derivative equation 

given in Eq.3.84 satisfy the logarithmic law of the wall in the mean at   .  The wall 
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model was utilized to simulate infinite Reynolds number channel flow with some 

success; however, it is limited in that it is only applicable at infinite Reynolds 

number, meaning the effects of viscosity were neglected. 

Schumann Wall Model 

The wall model implemented by [97] assumed that the streamwise wall stress was in 

phase with the velocity at   .  The boundary conditions were approximated as 

follows: 

            
    

            
             ( 3.86) 

 

              

          

  
   ( 3.87) 

with    and     being the streamwise and spanwise wall stress, respectively, while 

   denotes plane averaging.  The plane averaged wall stress,     , can be assigned a 

value equal to the prescribed pressure gradient for channel flows or calculated 

iteratively by imposing the constraint that              satisfy the logarithmic law of 

the wall at   .  The spanwise wall stress,    , was prescribed as a function of a 

constant turbulent viscosity,   , and spanwise velocity at   . Since this model 

imposes the logarithmic law of the wall in the mean,   
  has to be at least    .  

Shifted Wall Model 

Schumann’s wall model was modified [98] by moving the correlation point of the 

wall stress to instantaneous velocity downstream to account for the presence of 

inclined elongated turbulence structures near the wall.  In addition, the spanwise wall 

stress was also modified to resemble that of Eq.3.87, as this boundary condition 
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enhanced the fidelity of the numerical predictions.  The modified wall model is given 

by: 

            
    

            
                ( 3.88) 

 

            
    

            
               ( 3.89) 

with    being the downstream displacement and its optimum value can be acquired 

with experimental or DNS data [99], to be approximately                  for 

     
        and                    for   

    .  It should be noted that 

the utilization of large near wells    
      will be unable to capture the any of the 

near-wall turbulence structure dynamics.  

3.4.2 Wall Layer Models (Natural Convection) 

In contrast to forced convection wall models, the formulation of wall layer models for 

turbulent natural convection boundary layers is still in its developing stage.  This is 

attributable to the different intricate physics entailed in the near-wall driven by 

buoyancy; as opposed to forced convection for which the constant wall stress 

assumption is somewhat valid near the wall; such a condition is non-existent in 

natural convection.  Moreover, the lack of a logarithmic region for the velocity profile 

further complicates the development of well established natural convection wall 

models.  We will consider some of the wall models that have been developed and 

established for natural convection turbulent wall flows.  Hence, we are herein 

interested in equations of motion for turbulent natural convection flows.  To proceed, 

we make the assumptions that all streamwise gradients are negligible; the wall normal 
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momentum equation is used to eliminate the pressure term in the streamwise direction 

and we assume constant properties with the exception of density in the buoyancy 

term,     .  The aforementioned assumptions reduce the equations of motion to 

   
 

  
  

  

  
                         ( 3.90) 

 

   
 

  
  

  

  
             ( 3.91) 

George & Capp Wall Model (GC) 

The wall model postulated by [100] was one of the pioneering wall functions for 

turbulent natural convection boundary layers on vertical surfaces.  The GC model 

assumed the near wall region consisted of an inner layer (molecular and turbulent 

transport) and an outer layer where turbulent transport dominates; in addition, the GC 

model employed different characteristic temperature and velocity for the inner and 

outer layers.  The inner and outer layers merge in the overlap layer; assuming that the 

temperature gradients from both sides are equal as they approach the overlap layer, 

the temperature profile in the overlap layer can be approximated as follows:  

       
 

  
          ( 3.92) 

where              , with    being the inner characteristic temperature defined 

as  

 
   

 
  

   
 

 
  

     
 

  
   ( 3.93) 

The model constants,    and   were later determined to be -4.2 and 5.0 respectively 

and        , with   being the inner layer length scale and can be written as   
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   ( 3.94) 

Similarly, the velocity in the overlap layer can be approximated by matching the 

velocity gradients in the overlap layer.  The approximated boundary condition yields    

       
 

 
          ( 3.95) 

where         and the characteristic velocity for the inner layer    is 

     
     

   
 

 
  

   ( 3.96) 

The constant    was prescribed a value of 27 and    was an undetermined constant.  

The temperature profile in the thermo-viscous sublayer was easily attainable by 

integrating the near-wall region energy equation, Eq.3.91 and assuming the turbulent 

heat flux vanishes as the wall is approached.  The resulting linear temperature profile 

is  

          ( 3.97) 

The velocity profile in the thermo-viscous sublayer can be approximated by 

integrating Eq.3.90 twice and neglecting the           term, the following equation is 

obtained: 

    
 

  
      

  
  

 
    

   

 
    ( 3.98) 

where the friction coefficient         
   and                 

 The GC model approximate boundary conditions are able to capture the 

thermo-viscous sublayer with good fidelity; however, the temperature and velocity 

profiles were shown to deviate appreciably from experimental data at     .  

Hence, the GC model prevents the usage of larger wall-normal grid cells and this 
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contradictory to the essence of implementing approximate boundary conditions in 

wall bounded turbulent flows. 

Hölling & Herwig Wall Model (BWF) 

Utilizing an approach similar to the logarithmic law of the wall for forced convection, 

[101] formulated approximated boundary conditions for natural convection flows as 

    .  The temperature profile was acquired by assuming a two-layer structure in 

the near wall region, an inner layer where molecular and turbulent heat transport were 

significant and an outer layer that is dominated by turbulent heat transport.  The inner 

and outer layers merge in an overlap layer whereby temperature gradients 

approaching the overlap layers from both sides should equal.  To proceed, an 

approximate boundary condition for the temperature profile in the overlap layer is 

given by     

                         ( 3.99) 

with C and D being 0.427 and 1.93, respectively.    is formally defined as 

    
 

  
   ( 3.100) 

where    is expressed as 

 
   

  

 
  
  

 
 

   
( 3.101) 

with    being the characteristic temperature and is thus defined as  

     
  

  
 
  

  
 
 

 

 

 
  

  ( 3.102) 
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where  
  

  
 
 

 is the magnitude of the wall normal temperature gradient.  The non-

dimensional temperature,    is given by 

    
     

  
   ( 3.103) 

where    is the wall temperature and    is the temperature of the first grid node off 

the wall.  The temperature profile in the thermo-viscous sublayer can be acquired by 

assuming the turbulent heat flux completely vanishes, resulting in the following 

equation: 

                  ( 3.104) 

The velocity profile in the viscous sublayer can be approximated by assuming 

velocity fluctuations are damped by the wall resulting in the non-linear boundary 

condition 

    
 

 
    

 

 
  

         

   
 
 

     ( 3.105) 

where the non-dimensional velocity         and    is the characteristic velocity  

    
    

 

 
 
  

  
 
 

  

   ( 3.106) 

The non-dimensional velocity gradient at the wall is represented by     

    
 

 and 

  
               , with      taken to be the ambient temperature. 

The velocity profile in the overlap layer can be acquired by neglecting viscous effects 

because they “fade” further away from the wall in Eq.3.90, assume an eddy viscosity 

closure for –            
 and integrate twice to yield the following equation 
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               ( 3.107) 

where E and F are assumed to be dependent upon  
   

    
 

 only and are given by: 

         

   
 
 

    ( 3.108) 

         

   
 
 

     ( 3.109) 

To fully determine the functions E and F, experimental velocity data was employed 

and e1, e2, f1 and f2 were found to be 0.49, -2.27, 1.28 and 1.28, respectively.   

Kiš & Herwig Wall Model (KHWF) 

Recently, results acquired from Direct Numerical Simulation were employed in 

formulating a new wall layer model by [102] .  Outside of the thermo-viscous 

sublayer, an approximate boundary condition for the wall heat flux was postulated 

that combined a logarithmic and an error function as follows: 

 

          
  

  

  

 
                               

                                    
        

 

 
  

  

  

 
           

          
    

  

 

( 3.110) 

where the model constants   ,   ,    and    respectively are 0.295, 0.8, 0.877 and 

0.64.  The edge of the thermo-viscous sublayer where the linear temperature profile 
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no longer holds is denoted by   
      and the non-dimensional wall-normal 

distance     is thus defined as 

    
 

   
   ( 3.111) 

where     is the characteristic length for the temperature profile given by 

 
    

  

 
  
  

 
 

   
( 3.112) 

with    similarly defined as in the BWF wall model.  The logarithmic and error 

function terms seen in Eq.3.110 is a result of       

    almost perfectly approaching a 

probability density functional form with increasing Grashof number; thus, integrating 

     

    led to the combination of the logarithmic and error functions.  The KHWF 

model integrates the time-averaged momentum equation twice and the velocity 

profile outside the thermo-viscous sublayer was formulated using DNS data.  The 

wall model for the velocity profile is thus:    

 

      
 

 
   

 
  

  
 
   

  
 
 

  

             
  

 
 

 
  

       
   

  
 
 

 

 
  

 
  

  
 
   

  
 
 

  

                       
    

( 3.113) 

with         ,      ,         , while the characteristic velocity    is given 

by 
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       ( 3.114) 

 

 
  

  
 
 

is the magnitude of the time-averaged velocity gradient at the wall,  
   

  
 
 

is the 

time-averaged non-dimensional wall temperature gradient, with            , 

             and         .     and     are usually taken to be the wall and 

ambient temperatures, respectively.  The reference velocity         , where L is 

the plate height, the non-dimensional wall-normal distance          , while     is 

the characteristic length for the velocity profile defined as 

     
  

  
 
  

  
 
 

    ( 3.115) 

The ratio of velocity and temperature profiles characteristic length,    given in 

Eq.3.*, is           .  The functions   and   in the wall function for the velocity 

profile are formally given in Eq.3.115 and Eq.3.116 respectively as: 

 

 

      
 

 
       

  

  
     

  
 

 
           

   

        
 

   
             

 

   
   

         
 

  
           

 

  
      

( 3.115) 
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( 3.116) 

The function g in Eq.3.115 is mathematically expressed as 

       
  

  

  

 
                   ( 3.117) 

It should be noted that a boundary condition for the turbulent shear stress           was 

included in the velocity profile to extend the applicability of the wall model.  The 

constants a, b, c, d and     respectively are: 

          
   

  
 
 

    

          ( 3.118) 

 

           
   

  
 
 

    

                        
   

  
 
 

   

   ( 3.119) 

 

          
   

  
 
 

   

         ( 3.120) 

 

          
   

  
 
 

    

                         
   

  
 
 

   

   ( 3.121) 
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( 3.122) 

The KHWF wall model is supposed to be a more robust boundary condition in 

comparison to the BWF wall model due to the “improved” approximation of the wall 

heat flux,   .   

3.4.3 Wall Layer Models (Mixed Convection) 

Approximate boundary conditions for wall bounded mixed convection turbulent 

flows are nearly non-existent.  Being able to formulate a wall model that equally 

accounts for forced convection effects and the complex near-wall nature of natural 

convection flows has proved to be challenging.  In the discussion that follows, the 

proposed mixed convection wall model of [103] will be introduced. 

Balaji, Hölling & Herwig Wall Model (MCWF) 

The mixed convection wall model blended the standard forced and natural convection 

wall functions by employing a blending parameter ϒ to distinguish between forced, 

natural and mixed convection flow regimes.  The blending parameter is essentially 

based upon local wall conditions and is defined as 

      
  

  
   ( 3.123) 

with the characteristic velocities    and    respectively repeated here for convenience 

    
    

 

 
 
  

  
 
 

  

  ( 3.124) 
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   ( 3.125) 

An inspection of the blending parameter illustrates that the forced convection flows in 

consideration have non-zero wall stress.  The blending parameter becomes zero when 

the flow is purely forced convection.  For strictly natural convection flows, the DNS 

data of [104] showed that the ratio of the characteristic velocities,           , 

assuming       ,        .  Hence, by non-dimensionalizing the blending 

parameter so that it varies between 0 and 1, we can subsequently characterize the 

different regimes of flow as: 

  

                      
                        

                       

  ( 3.125) 

To proceed with the blending of the wall functions, temperature and velocity profiles 

for natural convection were transformed into the coordinates employed for forced 

convection profiles.  Upon transforming the BWF natural convection profiles, the 

following temperature profile in the overlap layer was acquired: 

     
  

 

  

  

  
             

 

   

  

  
     ( 3.126) 

The temperature profile in the overlap layer for forced convection has the form 

     
      

 

 
              (3.127) 

To blend these two approximate boundary conditions, the MCWF wall model utilized 

in this thesis proceeded with the following approach: 

       
      

           
     ( 3.128) 

 



 

92 

 

A similar approach can be employed to derive the mixed convection velocity profile 

      
 which was not given in the proposed mixed convection wall model.  We can 

define the following velocity profile in the overlap layer by adopting the method 

utilized for the temperature profiles as 

       
      

           
     ( 3.129) 

where the unified law will be used to define     
  as 

 

    
                       

          
 

 
      

  
 

  
 

      
  

 

  
    

( 3.130) 

To transform the natural convection velocity profile into the appropriate units, let us 

repeat the BWF model velocity profile here explicitly: 

   
   

   
                   

           

   
 
 

           

         

   
 
 

       

Upon transforming the Eq.3.107 into the coordinates widely employed for forced 

convection flows, the resulting equation emerges: 
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( 3.131) 

 

3.4.4 Choice of Wall Layer Treatment  

The turbulent boundary layer flowfields resolved in this thesis are primarily of the 

natural and mixed convection type.  In the case of turbulent natural convection 

boundary layers and wall-layer modeling, it is essential to implement approximate 

boundary conditions that can reasonably correct the wall heat flux.  This is because 

the corrected wall heat flux will be employed to correct the   
  

  
 
 

.  Thus, in the 

forthcoming wall modeling LES computations that will be covered in later chapters, 

the BWF and ErfWF models will be appropriately applied to the purely natural 

convection turbulent flow.  The ErfWF model is essentially a hybrid wall layer model 

that corrects the wall heat flux,   , using combined logarithmic and error functions of 

Eq.3.110 and feeding the corrected     into Eqs.3.107-109 to correct  
  

  
 
 

.  The 

primary reason for implementing the ErfWF was due to unfavorable near-wall 

behavior observed with the use of Eq.3.113 given in the KHWF model.  As it pertains 

to the mixed convection turbulent flows, the MCWF approximate boundary condition 
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will be applied for the near-wall region.  This wall model is supposed to account for 

free and forced convection effects near the wall with the utilization of a local 

blending parameter dependent upon the wall shear stress and near-wall buoyancy 

effects.   

3.5. Sources of Error in LES 

 

The fidelity of turbulence simulations profoundly depends upon the ability of the 

CFD practitioner to minimize and control the numerical errors intrinsic to these 

computations.  Although all computation of turbulence (RANS, LES or DNS) does 

involve numerical errors, some errors are quite particular to Large Eddy Simulation 

and we will consider what some of these errors are in this section.  These errors are 

discretization, modeling and filtering errors; this discussion is by no means 

exhaustive and is meant to only give a “feel” for some of the errors that will be 

encountered by an LES practitioner.   

Discretization Errors 

As previously mentioned, it is widely accepted that turbulence computations of 

RANS, DNS or LES inherently possess discretization errors to some extent.  But, 

discretization errors pertaining to Large Eddy Simulation are unique due to the 

presence of the SGS term.  Typically, if the mesh resolution of the computational grid 

is increased, it ought to increase the fidelity of a turbulence simulation; this would be 

the case for a RANS or DNS calculation.  This is quite the contrary for an LES 

computation.  Increasing the spatial resolution makes the discretization errors 

increase faster than the SGS term as long as the grid cut-off lies in the inertial sub-

range [105].  This is typically the case when an implicit filter is employed and the 
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discretization error can be larger than the SGS term [106].  To elaborate, consider two 

length scales, the filter width      and grid width     .  The common approach is to 

assume         , which is essentially the implicit filter.  Now, if we expect to 

sufficiently capture the smallest resolved scales down to a pre-determined     ,    has 

to be several times smaller than     [105].  Therefore it is preferred that        and 

assuming         means that the smallest resolved scales or marginal eddies will not 

be adequately represented on the computational mesh.  Moreover, mesh refinement 

will result in more near-grid scales structures being exposed to this inaccuracy as long 

as the grid cutoff lies in the inertial range of the energy spectrum.   

Modeling Errors 

Modeling errors in Large Eddy Simulation can arise due to inaccuracies in models 

utilized to simulate the turbulence physics and improper implementation of boundary 

conditions.  Some of these errors can be further elaborated upon and classified as 

subgrid scale anisotropy, subgrid scale back-scatter, and near-wall treatment.  A 

discussion on each of these modeling errors follows: 

 Subgrid scale anisotropy:  The whole premise of Large Eddy Simulation is 

based upon an assumption that the small turbulence scales can be modeled 

because they are largely isotropic.  Such an assumption dates back to 

Kolmogorov’s postulate of local isotropy (PLI) [35].  The postulate basically 

states that as the Reynolds number approaches infinity, as the energy cascade 

from the large energy containing scales (geometry and boundary condition 

dependent) which are anisotropic, to the small scales, the directional 

information is lost and the small scales are locally isotropic independent of 
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viscosity.  The local isotropic behavior is assumed to occur in the inertial 

subrange and statistical quantities are invariant with respect to coordinate axis 

reflection or rotation. As such, the filter cut off is typically prescribed to be in 

the inertial subrange so that the assumption of local isotropy can be employed 

for SGS models.  However, a number of works [107] & [108] have indicated 

that the small turbulence scales are in fact anisotropic.  It has been stated that 

the large scale anisotropies is persistent even at the small turbulence scales 

and that they actually decay much more slowly [109].  Therefore, these 

observations can potentially have profound bearing on the underlying 

assumption of SGS models utilizing the local isotropy of the small scales in 

the inertial and dissipation ranges.  Commonly used SGS models do not 

account for anisotropic turbulence of the small scales and its inclusion in 

future models can possibly increase the fidelity of LES calculations. 

 Subgrid scale back-scatter: The role of most SGS models is to drain energy 

from the large energy containing eddies or resolved scales and this role is 

meant to be dissipative.  The cascade of energy from large to small scales can 

be termed forward-scatter and is typically duplicated by all subgrid models, 

some more than others.  There is also a reverse phenomenon, back-scatter, 

whereby subgrid turbulence scales feed energy to the large resolved 

turbulence scales locally and intermittently [90].  The contribution of both the 

back-scatter and forward-scatter to the net SGS dissipation was found to be 

comparable.  Moreover, it was suggested that back-scatter effects on the net 

SGS dissipation can be profound in the case that a wall model is employed to 
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resolve the near wall region [110], i.e. SGS effects become more profound as 

the grid resolution decreases.  Since the physics of back-scatter is not well 

understood, there are not that many SGS models that are able to account for 

its effect. 

 Near-wall Treatment:  High fidelity calculations can be acquired with LES if 

the near wall region is adequately resolved [111].  However, resolving the 

wall region can be prohibitively costly when the Reynolds number becomes 

increasingly large; as Reynolds number increases, the viscous sublayer 

decreases and the length scales of vortical structures in the near-wall region 

scale with the viscous length scale.  Moreover, beyond the viscous sublayer, 

the near wall eddies scale with the distance from the wall [112], but their 

length scales is limited by the viscous scales [113].  Hence, resolving the 

vortical structures in the near wall region at high Reynolds number is 

impractical because DNS level grid resolution will be required in the wall-

normal and horizontal directions [113].  To circumvent the impracticality, the 

use of wall layer models to approximate the near-wall flow is typically 

implemented.  But, the addition of wall modeling to an LES calculation comes 

with limitations and some degree of error as well.  Firstly, the implementation 

of the wall layer model adds empiricism to the LES.  Secondly, the utilization 

of a coarser mesh near the wall implies that the SGS model will have to 

account for more anisotropic flow behavior.  The contribution of these two 

factors can potentially lead to errors that will corrupt the LES computation.  

 

 



 

98 

 

Filtering Errors 

 Aliasing Errors:  The context of including aliasing errors in the realm of 

filtering errors is not to imply that the filtering procedure directly induces 

aliasing, but that the commonly employed implicit filter is not conducive to 

mitigating aliasing errors.  Aliasing errors emerge when nonlinear terms are 

computed numerically in physical space [114].  The contribution to aliasing 

errors by the bilinear products of the nonlinear terms in the filtered 

momentum equation,     , is profound at the highest wavenumbers [115].  The 

bilinear product can result in the generation of high frequencies not resolvable 

on the computational mesh and can “fold over” into low resolved frequencies 

[116].  According to [116], one of the elements in the bilinear product has to 

be in the upper third of the wavenumber range for the product to alias and the 

aliasing error can be reduced or eliminated if the energy in the high 

wavenumber spectrum can be damped.  However, the utilization of an implicit 

filter does not enable the damping of the energy in the high frequency portion 

of the spectrum since the filter is essentially the grid size [117].  We can 

consider the region near the wall that typically requires high spatial resolution 

in LES; using an implicit filter means that the high frequencies in the 

wavenumber spectrum are not filtered out of the simulation and will adversely 

affect the solution via aliasing errors.  A way of circumventing this problem is 

to implement an explicit filter that is larger than the nominal grid size that will 

consequently remove or reduce the upper portion of the wavenumber 

spectrum [118].  Decoupling the filter width from the local grid size means 
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that as we continually refine an LES mesh, our filter width can remain 

constant.  As such, a true LES computation can be performed.  However, 

implementing an explicit filter would require some weighted averaging over 

neighboring cells [119] and can easily become computationally expensive and 

cumbersome.  Moreover, there is a lack of straightforward and robust filtering 

procedure that can be utilized for wall bounded turbulent flows [120].         

 Commutation Errors:  The commutation with differentiation i.e. 
     

  
 

   

  
   is 

only satisfied when the filter width,   is homogeneous.  LES computations 

that utilize an implicit filtering typically do not employ a uniform grid over 

the entire computational domain, especially in wall bounded flows.  Since the 

grid size is essentially used as a filter when the implicit filtering approach is 

implemented for an LES calculation, the non-commutation of the filtering 

introduces additional terms in the LES governing equations known as the 

commutation error.  A fairly elementary example will be given to illustrate the 

concept of the commutation error by performing the filtering of a quadratic 

polynomial as follows: 

Let us consider the quadratic polynomial         
           where 

                   .  Therefore, 

              ( 3.132) 

and we can filter this function in one spatial dimension at computational nodes 

P and N and assume a constant filter width of 1 for both nodes: 
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 ( 3.133) 

 

     
 

 
        

 

 

 

 

   ( 3.134) 

To proceed, the gradient of the filter, 
   

  
 at x = 0 can be calculated along with 

the filter of the gradient, 
     

  
 at x = 0 as well. 

     

  
 
 

 
       

     
   ( 3.135) 

 

     

  
 
 

 
 

 
 

     

  
      

   

    

 ( 3.136) 

where 
     

  
     .  It can be readily seen that 

     

  
 

   

  
  when the filter width 

is homogeneous and the contrary will now be proven by filtering      at node 

M with    0.5 as follows: 

       
 

  
        

  

  

   

 

  ( 3.137) 

and re-computing  
   

  
 
 
results in 

     

  
 
 

 
         

     
 

 

 
   ( 3.138) 
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The utilization of different filter widths clearly proves that the filtering            

operation does not commute with differentiation and we can define a measure 

for the commutation error by 

  
  

  
 
     

 
   

  
 

   

  
   ( 3.139) 

Hence, abrupt mesh refinement in LES would not be appropriate as this 

increasingly enhances the commutation error.  If grid refinement changes 

smoothly and gradually, the commutation error can be kept to a minimum or 

approach zero. 

3.6 Closing Remarks 

 

This chapter has presented the commonly employed approaches to computing 

turbulent boundary layers together with the governing equations of fluid motion.  The 

filtered LES equations and SGS models were introduced along with the various 

assumptions made to simplify the otherwise complex filtered momentum and energy 

equations.  Instead of fully resolving the near-wall region in an LES computation, 

applicable wall layer models were presented.  These models were shown to be a 

plausible approach to greatly reduce the computational cost associated with fully 

resolved LES calculations.  Furthermore, though the accuracy of the numerical 

simulation will diminish to some degree, the achievable fidelity with the 

implementation of wall layer models deems it an attractive option for full-scale 

engineering calculation.  Lastly, possible sources of error in LES computations were 

discussed as well.  This is of prime importance to the LES practitioner, as it will be 

profoundly beneficial to be aware of the errors that can possibly corrupt the numerical 
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simulation.  With the awareness of these errors, it is quite possible they can be 

mitigated during the computational setup process.  
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Chapter 4: Computational Methodology 
 

4.1 Discretization Practices  

 

The mathematical equations given in the previous chapter cannot be readily solved as 

is.  The governing differential equations have to be transformed into algebraic system 

of equations that can be solved on a computer and this is the essence of discretization 

practices.  The discretization process, according to [121], consists of discretizing the 

computational domain and governing transport equations.   

Careful consideration must be given to choosing a discretization method.  The 

discretization method greatly impacts the approximated discrete algebraic equations 

and the discretized solution domain.  Prevalently employed discretization methods 

include the finite difference (FD), finite volume (FV), and finite element (FE) 

methods.  

Finite Difference Discretization 

Finite difference discretization approach utilizes the differential form of the 

conservation equations to formulate discrete algebraic equations.  The discrete 

algebraic equations are acquired using truncated Taylor series expansion or 
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polynomial fitting of the first and second derivatives of the governing differential 

equations at each grid point.   

Finite difference methods are typically employed for structured grids and it is 

relatively simple to obtain higher-order schemes [122], [123] and [124] .  Some of the 

drawbacks of finite difference methods are its difficulty of use for complex 

geometries and conservation laws are not necessarily guaranteed to be conserved by 

numerical schemes.  

Finite Volume Discretization  

Finite volume (FV) discretization employs the integral form of the conservation 

equations to develop discrete algebraic equations for each cell center, which is the 

computational node.  The discretization method divides the computational domain 

into non-overlapping control volumes (CV), whereby the conservation laws are met 

in a discrete manner.   

As previously stated, the computational node is defined as the cell center of each 

control volume.  The mesh for the solution domain only defines the boundary of each 

control volume which can either be a face, i.e. it is shared with a neighboring control 

volume or the boundary of the domain itself.  

Finite volume discretization is suitable for structured and unstructured meshes 

because the computational mesh does not have to be aligned with any coordinate 

system; hence, they can be easily implemented to complicated geometries.  However, 

acquiring numerical schemes higher than second order is typically challenging for 3D 

geometries attributable to the inherent need to integrate, interpolate, and differentiate 
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within finite volume methods.  Nonetheless, finite volume discretization is a 

popularly used method due to the ease of implementation.   

Finite Element Discretization 

The Finite Element (FE) method is quite similar to FV discretization, the 

computational domain is divided into non-overlapping sub-volumes or finite 

elements.  The distinguishing feature of the FE discretization is the introduction of a 

weight function.  Prior to the integration of the conservation equations over the 

solution domain, they are multiplied by the weight function.  The solution within each 

element is assumed to be of a linear shape function and such an assumption ensures 

there is continuity of the solution across element boundaries, i.e. differentiability.  

The linear shape function is normally similar to the weight function.  Similarly to the 

FV discretization method, the FE method can be easily applied to arbitrary 

geometries.   

4.1.1 Finite Volume Discretization of Computational Domain 

 

The computational domain is discretized into a collection of non-overlapping sub-

volumes.  These sub-volumes, also referred to as control volumes, fill the entire 

computational domain and are generally convex polyhedral.  Figure 4.1 depicts an 

arbitrary control volume bounded by a set of convex flat faces f, where the node P is 

the centroid and N is the centroid of the neighboring CV.  Each face f of the control 

volume P has an outward pointing face normal area vector  .  As is illustrated in 

Figure 4.1, even though the face f  is shared between control volumes P and N , this 

face is owned by control volume P.  
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Figure 4. 1 An arbitrary control volume. 

 

All the dependent variables of the transport equations are stored at the computational 

node P and since it was designated as the centroid of the control volume, the 

following equation holds: 

        
  

       ( 4.1) 

 

To proceed, it will appropriate to note that the cell shapes employed in this research 

were primarily regular hexahedra.  

4.1.2 Finite Volume Discretization of Transport Equations 

 

The Favre-filtered equations of motion previously given will be restated here for 

convenience where the temporal derivative, convection and diffusion terms have been 

placed on the left hand side and the right hand side contains the remaining terms: 
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These equations can be put into a generic form of the conservation transport equation 

in differential form as:  

 
   

   
                   

                
           

                 
         

        
       

    
( 4.2) 

 

Before we proceed, a discussion is warranted on the treatment of the pressure term, 

   .  Let us consider decomposing the pressure term by employing a similar procedure 

proposed by [125]; the pressure is split into a reference or ambient pressure, 

hydrostatic pressure and a “modified dynamic” pressure respectively, as follows: 

                        ( 4.3) 

 

This definition can be substituted into the pressure term in the filtered momentum 

equation and the resulting differential equation emerges 

                           ( 4.4) 

                         ( 4.5) 

 

     

  
                                 

 

 
          

                  

( 4.6) 

The equation employed to calculate the modified pressure       will be discussed in a 

later section.  

The temporal and spatial discretization of each term in the conservation 

transport equation requires at least a second-order accurate numerical scheme in order 
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to achieve acceptable accuracy in LES computations.  To formulate a second-order 

accurate scheme in time and space, an assumption will be made that the profile of   

varies linearly around the computational node P spatially and temporally.  With such 

an assumption, the following equations can be written for a second-order scheme:  

                         ( 4.7) 

                
  

  
 

 
   ( 4.8) 

with  

             ( 4.9) 

            ( 4.10) 

 

The second order accuracy of the scheme given in Eq.4.7 can be shown via a Taylor 

series expansion.  Let us suppose that      is a continuously differentiable function 

around   , we can subsequently express the function in the neighborhood of     as: 

                         
 

 
                    ( 4.11) 

where it can be easily seen that the first term of the truncation error is of the order 

             and   is representative of higher order terms.  The same Taylor series 

expansion can be performed to illustrate the second-order accuracy of the temporal 

scheme is of the       .   

Utilizing the finite volume methodology, Eq.4.2 has to be put into integral 

form where the integral has to be satisfied over the control volume   .  The integral 

equation written for a scalar property   can be given by: 
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( 4.12) 

In the subsequent sub-sections, the discretization of each term in Eq.4.12 will be 

given and discussed. 

4.2 Spatial Terms Discretization 

 

The convection, diffusion, and source terms given in Eq.4.12 have to simplified prior 

to their discretization.  The simplification commences by utilizing the Gauss theorem 

to convert volume integrals to surface integrals and is as follows: 

    
 

         
  

     ( 4.13) 

    
 

      
  

     ( 4.14) 

with   being the region in space with a bounded surface   . 

 Using Eq.4.7, we can integrate the equation to get an approximate for volume 

integrals of   as [126]: 

                               
  

 
  

 ( 4.15) 

                    
  

 
  

       ( 4.16) 

 

 

         ( 4.17) 
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where    is the value of   at the computational node and     is the volume of the 

control volume enclosing the node P. 

We can similarly approximate the terms under the divergence operator by taking the 

same approach; employing the assumption that the variables vary linearly over each 

face of the computational node P so that it can be represented by its value at the cell 

face center and summing over each cell face.  Thus,   

    
  

          
 

         
 

 

 

      

 

 ( 4.18) 

with   being the outward pointing surface area vector of each face of node P and 

implicit in this approach is the assumption that    is the mean value of the surface.  

Such an approximation to the surface integral is of second-order accuracy and is 

identical to the midpoint rule.  This can be further illustrated by employing the second 

order accuracy scheme from the Taylor series expansion of Eq.4.7 as: 

      
 

       
 

          
 

               ( 4.19) 

where a similar definition to Eq.4.** has been made for the face center: 

          
 

     ( 4.20) 
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4.2.1 Convection Term 

 

The discretization of the convection term can be undertaken utilizing Eq.4.18 in the 

following manner: 

                        

   

 ( 4.21) 

              

 

 ( 4.22) 

         

 

 ( 4.23) 

 

the convection term is approximated within the control volume at point P by 

summing the fluxes over all the faces that share the control volume, where  

 
            ( 4.24) 

 

is the mass flux through each face f.  Since variable quantities are stored at 

computational nodes,     has to be acquired with interpolation schemes and that will 

be the next topic of discussion. 

Upwind Differencing (UDS) 

In contrast to central differencing second order scheme, boundedness can be 

guaranteed by decreasing the order of the interpolation to the first order.  Even though 

the nonphysical oscillatory behavior is no longer an issue, the first order scheme is 

numerically diffusive because the leading truncation error term resembles a diffusive 

flux [127].  This can be readily seen in the Taylor series expansion around 

computational node, P: 
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     ( 4.25) 

The utilization of the upwind differencing interpolation can be mathematically 

expressed as follows: 

      
            
            

  ( 4.26) 

The expression given in Eq.4.26 clearly illustrates that the value of   at the face is 

approximated based on the direction of the velocity vector (upwind differencing). 

Central Differencing (CDS) 

The utilization of the central differencing scheme to compute the value of   at the 

face results in a second order scheme.  The value of   at the face is approximated 

using 

                      ( 4.27) 

where the linear interpolation factor fx is given as: 

    
  

  
 ( 4.28) 

and is essentially a ratio of the distances as depicted in Figure 4.2.   

 

 

Figure 4. 2 Interpolation of face values for convection scheme. 
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The second order accuracy of Eq.4.27 can be shown by taking the Taylor series 

expansion of N around P and subsequently substituting for  
  

  
 

 
 in Eq.4.25.  The 

resulting Taylor series reads as: 

 
                   

               
   
    

  

 
    

( 4.29) 

Due to the second order accuracy of this differencing scheme, it is widely known that 

any scheme higher than first order can potentially produce nonphysical oscillatory 

behavior and violate the boundedness of the solution especially in convection 

dominated flows.  However, the flows treated in the current work are not convection 

dominated; it can be surmised that the usage of this scheme should not pose much 

problem with the boundedness of the solution.  

Blending Differencing (BD) 

In an attempt to merge the benefits of the two preceding interpolation schemes, i.e. 

maintaining the boundedness and order of accuracy, the CDS and UDS schemes can 

be linearly blended.  A blending factor, γ, is introduced into the scheme that ranges 

from 0≤ γ ≤1.  Methods that have been proposed in setting the blending parameter 

includes prescribing a constant value of γ for all the faces [128] and making γ 

dependent upon the gradient at the face,      .  Using the face gradients as a setting 

criterion stems from the logic that in the presence of sharp gradients, the blending 

factor will be close to 0 in order to prevent unphysical oscillations.  In uniform flow 

regions, γ will be close to 1 where CDS can be effectively employed.  The linearly 

blended differencing is given as: 
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     ( 4.30) 

The contribution of the convection term to the solution matrix is a diagonal and an 

off-diagonal term because the approximated face values are dependent upon 

computational nodes P and N.  For example, if the central differencing scheme was 

employed to discretize the convection term, the diagonal and off-diagonal 

contributions, respectively are            and       . 

4.2.2 Diffusion Term 

 

Let us now discretize the diffusion term using Eq.4.18 and making use of the 

assumption that   varies linearly around the computational node,  .  The 

mathematical representation is given by: 

          
  

       

 

               

 

          ( 4.31) 

 

where         can easily be computed if the mesh is orthogonal, i.e. the vectors 

  and     parallel (refer to Figures 4.1 and 4.2), and the dot product of the surface 

area vector with the face gradient can be performed with the following expression: 

              
       

      
   ( 4.32) 

Similarly, the contribution of the diffusion term to the solution matrix consists of a 

diagonal and an off-diagonal term; thus,                     and    

               .  The term       is approximated from nodal values using an 

interpolation scheme.  ` 
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Source Terms 

 

Source terms are classified as those expressions in the filtered conservation equations 

that cannot be written as convection, diffusion and temporal contributions to the 

evolution of the partial differential equations.  To discretize the source terms, we 

assume the source at the computational node P represents the mean value over the 

control volume and the integration is performed by multiplying it with the cell 

volume.  Thus,    

         
  

      ( 4.33) 

From the filtered momentum equation, the gradients of density and modified pressure 

will be discretized as source terms.  Similarly, in the filtered energy equations, the 

two pressure terms on the right hand side of the equation will be discretized as such.  

Hence, the contribution to the solution matrix due to the source terms is         .   

 4.2.3 Temporal Terms Discretization 

 

Let us now consider the temporal discretization of the generic conservation equation 

given in Eq.4.12 which is given as follows: 

 

  
 

  
             

    

    
    

 

       
  

          

           
  

 
    

 

      

( 4.34) 

Employing the spatial discretization approximation for the convection, diffusion, and 

source terms, a semi-discrete form of the transport equation according to [121] is  
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( 4.35) 

 

Crank Nicholson Time Integration 

 

Crank Nicholson time integration is a 2
nd

 order scheme and requires the values at the 

present and previous times in order to evaluate spatial terms.  Consequently, this 

scheme has to be implemented by solving a system of algebraic equations.  But, 

firstly, let us consider the temporal integral and its evaluation having in mind the 

prescribed variation given in Eq.4.8,  

   
   

  
 

 
  

    

 

       
          

    ( 4.36) 

Let us consider making a profile assumption for the time variation of the flux terms 

by supposing the fluxes can be interpolated between   and      and using a 

constant χ between zero and one: 

          
    

 

                    ( 4.37) 

where χ = 0.5 is representative of the Crank-Nicholson time integration scheme.  

With the application of Eq.4.36 and 4.37 and dividing through by   , Eq. 4.35 

becomes 
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( 4.38) 

The temporal derivative of the algebraic system of equations will contribute a 

diagonal and a source to the matrix representation and respectively are    

          and         
      . 

4.2.5 Algebraic System of Equations 

 

The spatial and temporal discretization of any set of differential equations results in 

algebraic equations.  These algebraic equations can either be linear or non-linear and 

is determined by the parent differential equations.  To this end, the discretization 

process of the generic transport equation gives an algebraic equation that can be 

written as  

                 

 

  ( 4.39) 

P denotes the cell-center of the control volume where the differential equation is 

approximated, the index N denotes the grid node of all surrounding control volumes 

involved in the discretization and    comprises all the known and right hand side 

terms that emerged from the discretization.  With the utilization of the temporal and 
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spatial discretization schemes given in the prior sections, we can explicitly write the 

following coefficients for the previously mentioned algebraic set of equations: 

      
   

  

  
 

 

 
            

 

 

   

     
            

   
   ( 4.40) 

where                   
   

, 

    
 

 
    

    
 

 

   

     
             ( 4.41) 

where                     

and  

 

        
 

  

  
 

 

 
         

 

 
 

 
                     

 

 
     

( 4.42) 

where                              and                       .  The 

central differencing scheme has been utilized to approximate face quantities needed 

for the convective and diffusive spatial terms.  

An equation of the form given in Eq. 4.39 has to be assigned for each control 

volume in the computational domain and can be expressed in matrix notation by 

        ( 4.43) 

  and    are both vectors; the matrix   is sparse, which is attributable to the algebraic 

equations that emerged from the finite volume discretization.  The   matrix has 

diagonal coefficients    and off-diagonal coefficients   .  Let us consider the 

methods commonly used to solve the algebraic set of equations given in Eq.4.39 

namely direct and iterative methods. 
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Direct methods can be utilized to compute a solution to the system of 

equations in a finite number of arithmetic operations and are quite attractive for small 

linear systems.  The method becomes expensive for the type of equations solved in 

this thesis, thereby making iterative methods more preferable.  Some direct methods 

available in literature comprise Gaussian Elimination, LU Decomposition and 

Tridiagonal Matrix Algorithm (TDMA) [129].  

Iterative methods initially guess a solution and utilize the system of equations 

to subsequently improve upon the solution until the residual criterion is met.  In CFD, 

the errors inherent in the discretization of differential equations are larger than 

machine error [129].  Thus, solving the matrix exactly with direct methods is 

unnecessary and this makes the usage of iterative methods more economical for CFD 

applications. 

  An iterative method should to be effective and robust in solving Eq.4.39.  The 

efficiency and robustness can be greatly enhanced with the use of preconditioning 

[130].  Preconditioning is essentially a methodology employed to transform Eq.4.39 

into an equation with an identical solution, except this new equation ensures 

convergence is accelerated.  In this thesis, the preconditioned biconjugate gradient 

iterative method was utilized.  For details on such iterative solvers, see [130].  

 To improve upon convergence when iterative matrix solvers are employed for 

obtaining solutions, underrelaxation can be profoundly useful to prevent divergence 

of the iterative solution [131].  This is attributable to the mere fact that the inclusion 

of underrelaxation parameters enhances the diagonal dominance of the    matrix.  

Thus, we can show that after Eq.4.39 has been solved for the current iteration,  
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    ( 4.44) 

The change in the solution between iterations can be defined as 

    
       

  ( 4.45) 

                               
         

  
   

   ( 4.46) 

Since we are want to control how much the solution changes during iterations, the 

change is simply multiplied by an underrelaxation parameter    and the following 

equation emerges 

      
     

         

  
   

     ( 4.47) 

which can be simplified to  

 
  

  
              

    

  
    

  

 

 ( 4.48) 

The underrelaxation parameter    is typically between 0 and 1. 

4.3 Navier-Stokes Equations Discretization 

 

The discretized general transport equation given in Eq.4.2 resulted in algebraic set of 

equations and if one presumes that    and    are known, then an equation identical 

to that of Eq.4.39 can be employed to solve the linear system of equations.  However, 

it ought to be stated that the flowfield cannot be known a priori.  In addition, all the 

filtered flow variables                      are interdependent and the discretized 

governing differential equations are a tightly coupled set of nonlinear algebraic 

equations.  These coupled set of algebraic equations can either be solved using the 

simultaneous or segregated approach.  The simultaneous approach solves for all the 
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flow variables concurrently and is more suitable for linear sets of equations and small 

computational points.  Segregated approaches assumes each equation only has one 

unknown and employs the most current values for the other flow variables.  The 

equations are then sequentially solved until convergence is reached.  The segregated 

approach was employed in this research because it was deemed more economical and 

computationally efficient. 

 Before embarking on a discussion pertaining to segregated solvers, it would 

be appropriate to note that there are some specific aspects of the filtered equations of 

motions that need further elaboration.  The convection term         , which is 

basically velocity    transporting linear momentum     , introduces non-linearity into 

the discretized solution matrix which would be quadratic in the velocity.  It would be 

preferred to linearize this term to enable the utilization of a linear matrix solver 

instead of the more expensive non-linear solver. 

Linearization of Convection Term   

To linearize the convection term, we can employ the discretization approach given for 

the generic convection term and substituting the flux from the previous iteration or 

time-step into the equation.  Thus, the velocity is lagged as follows: 

                             
  

               

   

 ( 4.49) 

               
 
    

 

        

 

   ( 4.50) 

The interpolation schemes given previously can be used to approximate the flux and 

velocity at each cell face of computational node P.  Using any of these schemes 
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produces the following discretized equation for each computational node for the 

convection of linear momentum with       : 

        

 

               

 

   ( 4.51) 

where the coefficients     and     are functions of             
 
. 

4.3.1 Segregated Solver 

 

As aforementioned, the segregated approach solves the discretized equations 

sequentially as opposed to simultaneous solvers.  The utilization of such solvers 

requires inter-coupling of the individual equations.  SIMPLE (Semi-Implicit Method 

for Pressure-Linked Equations) [131] and PISO (Pressure Implicit with Splitting of 

Operators) [132] are the most popularly employed segregated solvers that uses 

pressure-velocity coupling for linking the equations. 

PISO Approach 

The PISO algorithm is particularly suited for unsteady flows, whereby it is 

compulsory to capture the transients inherent to the flowfield.  The numerical scheme 

is essentially implicit; it comprises an implicit predictor step and multiple explicit 

corrector steps as needed.  The sequence of steps as proposed by [132] will be given 

for incompressible flows to give a flavor of the numerical scheme before applying it 

to the equations used in this thesis. 

Implicit momentum predictor step 

To predict the velocity field    implicitly, the prevailing pressure    
  from the prior 

time-step can be employed.  Thus, using a semi-discrete form of the discretized 

momentum equation, where        , the following emerges: 
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    ( 4.52) 

where        is representative of the off-diagonal parts of the solution matrix, i.e. 

spatial convective and diffusive fluxes and any terms associated with the right hand 

side of the equation,   .  The matrix    can be easily inverted since it consists of 

only diagonal elements. 

First explicit corrector step 

Using the divergence free continuity equation,       , the pressure can be corrected 

employing the predicted     field as follows: 

      
      

        
            ( 4.53) 

 

The face fluxes,         , can be assembled once the pressure equation has been 

solved and corrected.  Thus,  

     
             

      
      ( 4.54) 

which can be simplified to: 

     
              

  
   

   
     

        
       ( 4.55) 

The velocity    can be corrected utilizing the newly computed pressure as 

   
      

           
       

   ( 4.56) 

Second explicit corrector step 

A second corrector step can be implemented similarly as follows: 

      
      

         
           ( 4.57) 

   
       

            
      

    ( 4.58) 
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and the face fluxes can be updated similarly to the initial corrector step employing the 

new pressure and velocity fields.  The recommendation of [132] proposed only two 

corrector steps for the solution to be time-accurate; however, multiple corrector steps 

can be implemented until the prescribed convergence criteria is met. 

SIMPLE Approach 

The SIMPLE algorithm is rather similar to PISO as they are part of the pressure-

velocity coupling family of algorithms.  SIMPLE algorithm is suited for steady flows 

or when time accuracy of the solution is not required.  The sequence of calculations 

necessary when employing the SIMPLE algorithm is essentially undertaken with the 

utilization of Eqs.4.52-4.56.  The SIMPLE algorithm corrects the momentum and 

pressure only once during the iteration and underrelaxation is usually required to 

dampen the large oscillations in the corrected pressure and the velocity fields.  Hence, 

to attain convergence, the underrelaxation is often utilized as suggested in [126]. 

 Before delving into the segregated solution algorithm employed in the current 

work, it would be imperative to have a discussion on the derivation of the modified 

pressure term,        .  The subsequent subsection will also cover some assumptions 

made to further simplify the equations solved in this thesis. 

4.3.2 Derivation of the Modified Dynamic Pressure Term 

 

We proceed initially by discussing the original pressure equation implemented into 

OpenFOAM®.  To derive the equation for the modified pressure term, an equation 

for the pressure         that accounts for compressibility effects will be derived following 

the approach of [126].  The filtered continuity equation will be employed to perform 



 

125 

 

the derivation.  The time derivative term in the continuity equation will be 

transformed utilizing the chain rule as follows: 

 
   

  
     

   
 
 

   

  
     

   
 
 

   

  
   ( 4.59) 

In order to proceed, the assumption will be made to neglect the second term on the 

right of Eq.4.59.  The reason for such an assumption is because the pressure term, due 

to only fluid motion,        , is being considered here.  Thus, the premise is that the 

density changes due to compressibility effects are only a function of the pressure term 

due to dynamic fluid motion.   As such, the isothermal compressibility term   
 

  
 

    

    
 
 
 was derived using the ideal perfect gas law and the original equation given in 

Eq.4.59 simplifies to 

 
   

  
  

   

  
  ( 4.60) 

The velocity term in the divergence term in the continuity equation       , can be 

substituted by employing the semi-discrete form of the filtered momentum equation. 

                  ( 4.61) 

and since    is a diagonal matrix and can be easily inverted, we get 

       
                ( 4.62) 

The velocity term can be plugged into the divergence term of the continuity equation 

and using       , it reads as 

               
               ( 4.63) 

         
            

         ( 4.64) 
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The pressure equation that accounts for dynamic fluid motion can be mathematically 

expressed as 

 
    

  
        

               
       ( 4.65) 

and the pressure decomposition can be applied as follows: 

 

       

  
     

  

  
    

    

  
        

         

        
                 

            

 

( 4.66) 

It is imperative to mention that over the course of this research, it was discovered that 

Eq.4.66, which was the originally implemented dynamic pressure implementation in 

OpenFOAM®, was profoundly sensitive to the initial flow conditions employed in 

this thesis.  This sensitivity led to an inherent instability and divergence of the 

simulation after several time-steps; thus, to implement a new pressure equation 

required for the pressure-velocity coupling, it was determined to derive a pressure 

equation similar to that employed for incompressible flows, except with the inclusion 

of density gradients.  The equation was derived by employing the divergence term in 

the continuity equation,       , and plugging the discretized momentum equation for 

the velocity term and decomposing the pressure accordingly.   Proceeding in this 

manner results in the following modified pressure term: 

 

       
                 

                
         

                 
( 4.67) 

 Hence, the use of Eq.4.67 was deemed profoundly more appropriate for natural and 

mixed convection turbulent boundary layers. 
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4.3.3 Low Speed Flow Assumption 

 

The fundamental equation of state given in the prior chapter can be readily applied to 

compressible flows where the propagation of information is dictated by the acoustic 

speed and speeds comparable to the flow velocity.  To proceed with the equation as is 

will be fairly impractical for the types of flow considered in the current work.  Thus, 

some assumptions were made to allow the solver to compute flows with negligible 

compressibility, such as low-Mach number flowfields.  To this end, assumptions were 

implemented to simplify some of the equations presently examined.  The purposes of 

the low-Mach number assumptions are twofold: (1) eliminate compressibility effects 

by filtering acoustic waves.  Consequently, the numerical calculation will be affected 

and dictated only by speeds comparable to the flow velocity as opposed to the sound 

speed and (2) the modified equations will consist of fewer terms, thereby reducing the 

computational effort during the numerical simulations.  Hence, the assumptions 

implemented for low-Mach number flows applicability are: 

 Since the assumption that the coupling between pressure and density is non-

existent, we can assume that temperature and density are inversely 

proportional in low-Mach number flows [133].  To be more specific, the 

pressure-density decoupling assumes the density is not dependent upon the 

modified pressure or “dynamic pressure” term,       , since it is linked to the 

speed of the flow.   Moreover, this essentially means that density is a function 

of the thermodynamic pressure,        .  Thus, we can define the equation of state 

as follows for low-Mach number flows: 
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   ( 4.68) 

 where                   .  

 The filtered energy equation can be simplified as well by substituting         for 

the pressure term.  As previously stated, the substitution enables the filtering 

of fast traveling sound waves from the solution process.  

4.3.4 Segregated Solution Algorithm Approach 

 

The segregated solution process employed in the present work was the compressible 

variant of the PISO algorithm.  The solution process comprised one predictor step and 

two corrections for the momentum and modified pressure equations.  The steps taken 

to implement the scheme are as follows: 

Predictor Steps 

The initial predictor step explicitly solves for the density using the conservation of 

mass equation: 

    
     

  
  

   
          

 

 

   ( 4.69) 

 

Subsequently, all three filtered velocity components are sequentially solved implicitly 

employing the momentum equation.  The momentum equation is restated here for 

convenience and reads as: 

     

  
                          

 

 
                          

Let us rewrite the diffusive fluxes in a more compact form as follows: 
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            ( 4.70) 

Thus,  

                 
  

          
 

 

           
 
 ( 4.71) 

and using the discretization given in prior sections, we can write the semi-discrete 

form of the momentum equation as: 

 
               

  
                            

              
    ( 4.72) 

The filtered momentum equation can be put into semi-discrete formulation and reads 

as 

   
     

           
                

      
    ( 4.73) 

The energy equation is subsequently solved implicitly to approximate the sensible 

enthalpy using the “newest” velocity and density fields: 

 

 

               

  

                                
    

        
 

  

          
      

( 4.74) 

where     
                and     

             .  The semi-discrete form of the 

filtered sensible enthalpy equation used is: 

    
      

             
  

    
        

 

  
   

           
      ( 4.75) 
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where           consists of the off-diagonal parts of the convective and diffusive 

fluxes and the associated right hand side terms.  Once the sensible enthalpy,      , is 

known, the filtered temperature field can be approximated utilizing     
  

    
     

          
  

    
 and the following assumption to represent the specific heat as a linear 

function of temperature has been made: 

              ( 4.76) 

with    and    being the coefficients for air.  To proceed, the Newton iteration root 

finding method was employed in order to calculate the filtered temperature   .  

Having computed the temperature, the equation of state was used to update the 

density accordingly: 

       
     

   

      
   ( 4.77) 

 

Explicit Corrector Steps 

The corrector step solves the modified pressure equation for       . 

 

          
      

  

           
                    

            

                

( 4.78) 

The velocity components are corrected by solving the velocity corrector equations. 

   
      

                       
      

  ( 4.79) 

The solution process utilized in the present work implemented two explicit corrector 

steps for the pressure and momentum equations and it was deemed adequate for the 

numerical simulations.  Furthermore, only one implicit predictor step was 
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implemented during the course of this work.  In an effort to ascertain the effects of 

increasing the outer predictor steps, two implicit predictor steps were used and its 

effects on the solution was completely insignificant.  Hence, the utilization of an 

implicit predictor step sufficed and resulted in profoundly cheaper simulation costs. 

4.4  Boundary Conditions 

 

The proper implementation of boundary conditions in a complex flow field is critical 

in CFD.  The computational mesh employed during the course of this work includes 

computational faces which coincide with boundaries of the domain and the equations 

prescribed to account for this will be elaborated. The varying boundary conditions 

that were utilized during the course of this research will be introduced as well. 

 

4.4.1 Basic Boundary Conditions 

 

Numerical boundary conditions fall into two categories: Dirichlet and Von Neumann 

boundary conditions.  Dirichlet boundary condition prescribes a fixed value of the 

variable on the boundary.  Von Neumann boundary condition assigns the gradient of 

the variable normal to the boundary.  The mathematical representation of these two 

numerical boundaries is given below. 

Fixed Value Boundary Condition 

With the implementation of the fixed value boundary condition, the value of a generic 

variable   is prescribed on the boundary face b to be   .  The discretization of the 

convection term as given in eq.** is  
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The fixed value boundary condition enforces the value at the boundary face, b, to be  

       ( 4.80) 

where    is the flux at the boundary face.  The discretization of the diffusion term 

given by Eq.4.**                                                                             

      
  

             

 

         

To compute the normal gradient on the boundary face b, the subsequent equation is 

utilized: 

             
     

   
  ( 4.81) 

 

Fixed Gradient Boundary Condition 

The fixed gradient boundary condition prescribes the normal gradient,      , at the 

face boundary and when this boundary condition is applied to the convection term, 

the quantity    is computed from the cell centered value,    and prescribed face 

gradient as 

                   ( 4.82) 
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Figure 4. 3  Schematic representation of control volume with a boundary face. 

 

A schematic of a control volume with a face that coincides with a boundary is 

depicted in Figure 4.3.  The vector   is normal to the boundary face b, thus       

and is the normal distance from the centroid of the CV to the face of the boundary.  

Similarly, when the fixed gradient boundary condition is implemented for the 

diffusion term, the following equation emerges 

                ( 4.83) 

Mixed Boundary Conditions 

 

Since the object of this thesis is computing wall bounded turbulent flows affected by 

buoyancy, a combination of fixed value and fixed gradient boundary conditions were 

compulsory at particular boundaries, especially at the inflow, outflow, and 

entrainment boundaries.  Prescribing the appropriate boundary conditions for strongly 

affected buoyant flows are more challenging than momentum driven flows. 

inletOutlet Boundary Condition  

An inletOutlet boundary comprises the fixed value and fixed gradient boundary 

condition.  To the fact that natural convection flows do not have a dominant 
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downstream convective flow, an inletOutlet boundary can be prescribed at the 

necessary boundaries of a computational domain.  At a given time during the 

simulation, either a fixed value or fixed gradient is assigned on the boundary based 

upon the direction of the boundary normal velocity vector.  If the boundary is 

supposed to be an outflow and the possibility of backflow exists during the 

simulation, a fixed value is appropriately given and is typically prescribed to diffuse 

any inflow that can potentially corrupt the simulation, as this is the goal of any 

numerical simulation performed.  

pressureInletVelocity 

This is typically prescribed for a boundary without the possibility of outflow during 

the numerical simulation.  The boundary condition basically computes the velocity 

normal to the computational boundary from the flux acquired from the pressure 

condition given at that boundary.  The tangential velocities at the inflow boundary are 

usually set to zero since the flux is only assumed to be normal to the boundary. 

pressureInletOutletVelocity 

 

This is a velocity boundary condition that’s a combination of the inletOutlet and 

pressureInletVelocity boundaries.  The boundary condition is appropriate for a 

boundary domain that can possibly be an outflow or inflow as the simulation 

progresses.  At some particular time step, if the flux is into the domain, the 

pressureInletVelocity condition will be activated; however, if the flux is out of the 

domain, the velocity gradient normal to the boundary will be set to zero. 

This boundary condition is employed in this research to enable the simulation 

to duplicate the entrainment behavior typically observed in natural convection flows.  
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Due to the higher temperature at the wall, and the subsequent lower density fluid 

adjacent to the wall, there is an accelerated upward movement of fluid and as a 

consequence of mass conservation; fluid from the far-field boundary is induced 

towards the wall.  The induced mass flow is termed entrainment fluid and its effect is 

observed via the aforementioned boundary condition. 

Periodic Boundary Condition 

 

This type of boundary condition is usually prescribed when a particular flow 

direction/s can be assumed to be homogeneous.  By such an assumption, a direction 

can be assumed to be infinite in length.  Numerically, this is implemented by linking 

two opposite boundaries and setting the flow variables to be equal.  Such an 

assumption is typically made in channel flows and flows over flat plates.  In this 

research, the spanwise direction of the flowfield was assumed to be homogeneous 

since the flow isn’t forced in that direction, thereby allowing the usage of a periodic 

boundary.  Periodic boundaries do not require any special discretization in their 

implementation.  

Buoyant Wall Pressure 

The wall-normal pressure boundary condition employed in this research assumes 

 
    

  
  

   

  
      ( 4.84) 

This boundary condition enables for a higher fidelity calculation by including the 

strongly buoyant flow condition near the hot wall; moreover, it allows for a more 

numerically stable simulation instead of assuming the wall-normal pressure gradient 

was zero. 
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 Physical Boundary Conditions 

 

Some numerical boundary conditions have to be properly specified in accordance 

with the actual boundaries that exist in the flow, such as no-slip condition at the wall.  

Let us now consider some of the boundary conditions implemented in this thesis: 

 no-slip impermeable wall - a uniform velocity            is prescribed in 

order to duplicate the no-slip condition present on non-moving impermeable 

walls. 

 isothermal wall - the experimental data employed to assist in this numerical 

effort assigned a constant uniform wall temperature and this boundary 

condition is implemented by prescribing a constant wall temperature over the 

heated flat plate.   

 inlet – typically, a uniform velocity distribution is prescribed at this boundary 

if there is an incoming freestream flow.  

4.5 OpenFOAM® 

Before closing this chapter, it is of the utmost importance to have a brief discussion 

on the solver employed in this research, OpenFOAM®.  OpenFOAM® (Open Field 

Operation And Manipulation), is a high-level object-oriented C++ open source solver 

released by OpenCFD Ltd.  Most CFD flow solvers are written in a procedural 

paradigm, where the code is typically written in a top-down approach.  Essentially, 

there is the top procedure of main, which systematically break down the CFD code 

into many sub-problems or sub-procedures.  One of the drawbacks of procedural 

programming is that if any modifications are made to the main procedure, these 

changes can easily cascade into the sub-procedures of the flow solver.  As such, the 
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maintenance of the software can be become challenging.  As opposed to procedural 

programming, object-oriented programming (OOP) alleviates the problems associated 

with codes based upon procedures.  OOP employs classes as the main module in the 

code and instead of modifying an already existing class to modify the code; an 

additional class can be created that easily inherits (inheritance) all the features and 

capabilities of that class.  A class is essentially consists of various objects and the 

object is an instance of a class.  Without getting into all the intricacies inherent to the 

OpenFOAM® solver, an attempt will be made to illustrate an example of the coding 

methodology utilized.  To proceed, we make mention of the implicit and explicit FV 

discretization in three dimensional space using the finite volume calculus (fvc) and 

finite volume method (fvm) operators.  The fvc operator calculates the partial 

derivatives explicitly and returns a field; the fvm operator is an implicit approach and 

converts the appropriate terns into the matrix equation and return matrix coefficients.  

Thus, let us take the following standard momentum equation: 

   

  
                     

 and represent it in OpenFOAM® language as: 

solve 
( 
fvm::ddt(rho, U) 
+ fvm::div(phi, U) 
- fvm::laplacian(mu, U) 
== 
- fvc::grad(p) 
); 
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with          
 

  
,           

 

   
  and                 

  

   
  .  In this 

formulation, fvm and fvc are classes with the following static functions, ddt( ), div( ), 

laplacian( ) and grad( ), among others not listed here.  The flow variables, rho, phi 

(   , mu and p are objects of a class that fvm and fvc can “work” on.  Clearly, it can 

be seen that an OpenFOAM® programmer has to think quite differently when 

approaching a solver based solely upon objects and classes.  This brief introduction in 

the OpenFOAM® flow solver was not meant to be comprehensive; the reader can 

consult the doxygen and source-code, available at www.openfoam.com , for further 

inquiries. 

4.6 Closing Remarks 

 

 In this chapter, the fundamental concepts of the finite volume methodology applied 

to the filtered governing partial differential equations were introduced.  Using the 

finite volume method, the discretized equations, which resulted in algebraic set of 

equations, were discussed as well.  The assumptions made to enable the discretization 

of the integral equations were elaborated; these assumptions entailed integration, 

differentiation and interpolation approximations required to arrive at reasonably 

developed algebraic equations that can be implemented on computers.  Furthermore, 

the numerical scheme employed to couple the non-linear and inter-dependent 

algebraic equations were discussed to the effect of their computational efficiency 

when compared to simultaneous algorithms.  The modification of the filtered pressure 

into several decomposed quantities and the re-definition of the ideal gas equation that 

is more computationally efficient for low-Mach number flows were discussed in 

detail in this chapter.  In what follows, the theory and computational methodology 

http://www.openfoam.com/
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covered in this chapter will be basis of all the numerical predictions that will be 

presented in the subsequent chapters.  
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Chapter 5:  Tsuji & Nangano Test Case  

 

5.1 Test Case Description 

This test case entails the experimental measurements of [10] over a vertically heated 

isothermal flat plate.  The heated flat plate was 4 m high, 1 m wide and 2 mm thick 

and was held at a constant wall temperature of 333 Kelvin.  The ambient temperature 

was roughly 289 Kelvin.  The physical properties of the flow were assessed at the 

film temperature defined to be             , except for the thermal expansion 

coefficient,  , was defined as     .  Stainless steel strips heaters were employed to 

heat the flat plate and were horizontally implemented at the rear of the plate at some 

determined length intervals.  To attain a two dimensional turbulent natural convection 

boundary layer in the mean, side boards were positioned appropriately to prevent the 

span-wise entrainment of mass flow towards the center of the plate.  Tungsten hot and 

cold wires were employed to measure the fluid velocity and temperature.  In addition, 

platinum thermocouples were utilized to measure the fluid temperature as well.  A 

schematic of the geometry employed for the experimental measurements is illustrated 

in Figure 5.1. 
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Figure 5. 1 Schematic of geometry and coordinate system utilized for experimental 

measurement, from [24]. 

 

 

5.2 Computational Setup 

 

The numerical simulation domain and prescribed boundary conditions are graphically 

represented in Figure 5.2.  The length, width and thickness of the computational 

domain were 5 m, 2 m and 0.3 m respectively.  Due to the presence of a non-existent 

velocity in the freestream and at the inflow boundary, it was ascertained that it was 

not problematic for the boundary layer to commence at the edge of the flat plate.  

Thus, an entrance length was not implemented in the numerical setup.  The far-field 

boundary, which is the entrainment boundary, was positioned 2 m away from the wall 

region to completely mitigate any potential disturbance that can possibly corrupt the 

simulation.  The thickness of the computational domain, i.e. the span-wise length, is 
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0.3 m, it was selected via an iterative process which will be discussed in a subsequent 

section.   

The entrainment boundary condition was prescribed for the far-field to enable 

an inflow of mass towards the wall as buoyancy effects induce upward flow 

acceleration near the wall in the streamwise direction, i.e. conservation of mass effect.  

Since the boundary layer flow over the heated plate is not forced by any mechanism 

in the span-wise direction, we can assume that the flow is homogeneous in the 

spanwise; thus, cyclic or periodic boundaries were implemented for this reason.      

 

                       

Figure 5. 2 Computational domain and boundary conditions for Tsuji & Nagano test 

case. 
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5.2.1 Computational Grid 

 

The grid generation process for the Tsuji & Nagano test case was significantly 

affected by the necessity for the numerical grid to capture the laminar to turbulent 

boundary layer transition.  Therefore, this posed to be a profound challenge due to the 

necessity to resolve the transition region and concurrently generate a mesh that will 

not drastically increase the computational cost of the simulation.  Thus, to reasonably 

resolve the non-linear transition waves and subsequent discrete turbulent spots prior 

to a fully developed turbulent boundary layer without excessive damping that can be 

caused by a coarse mesh, the grid resolution in the laminar-transition is more 

demanding than the fully developed turbulent wall bounded flow.  To account for the 

physics inherent to laminar-turbulent transition region, the streamwise grid resolution 

was          in the laminar region of the boundary layer.  Over the course of this 

research, it was discovered that the streamwise resolution needed to be refined near 

the inception of transition to turbulent location.  Hence, a refinement of         

was implemented and maintained within the transition region.  Subsequently, the grid 

was gradually stretched to          once a fully developed turbulent boundary 

layer was achieved.  The mesh resolution in the streamwise direction was maintained 

at          in the fully turbulent portion of the flowfield.  In order to keep the 

grid as simple as possible without excessive stretching, the span-wise grid resolution 

was uniform and kept at        .  In the wall-normal direction, the grid spacing 

at the wall was        .  At the edge of the boundary layer, at         , the grid 

spacing was        ; this resulted in approximately 120 grid cells within the 

turbulent boundary layer.  A coarse mesh version of the grid is illustrated in Figure 
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5.3.  The majority of grid cells were concentrated in the boundary layer region and 

coarser grid cells were employed away from any region of interest.  Starting at a wall-

normal distance of         to       , the grid cells were          and 

        in the streamwise and spanwise directions in the fully developed 

turbulent region.  The wall-normal grid spacing in this region ranged from    

      to       . 

 The grid generation process just elaborated was utilized for the wall-resolved 

simulations performed in this research.  A similar numerical grid was employed for 

the wall-modeled simulations, except the wall-normal spacing in the fully turbulent 

boundary layer region was coarsened for the utilization of wall layer boundary 

conditions.  This was enabled by having a separate block of mesh in the fully 

developed turbulent region. 
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Figure 5. 3 Coarse mesh version for Tsuji & Nagano test case. 

5.2.2 Simulation Details 

 

The numerical simulations were initialized with a time-step of            and 

the time-step was adjusted accordingly by the evolving flowfield as the solution 

process progressed using the Courant number       criterion,               , 

with    and     being the filtered flow velocity and grid spacing, respectively and the 

subscript   denotes the dimensions of the computational mesh.  The Courant number 

was fixed to a value of 0.5 for the entire duration of the numerical simulations. The 

simulations were conducted by allowing for at least 40 flow-through times and the 

solution was time-averaged after the initial transients were flushed through the 

computational domain which was roughly after 5 flow-through times.  Subsequent to 



 

146 

 

the completion of the simulations, the results that will be presented in the following 

sections were also spatially averaged in the homogeneous span-wise direction. 

 

5.3 Wall-Resolved Simulations 

 

5.3.4 Spanwise Domain Convergence 

 

It was previously mentioned that the width of the heated flat plate was iteratively 

chosen to be 0.3 m in the homogeneous direction.  Moreover, it was stated that the 

assumption of a homogeneous direction was due to the absence of any forcing 

mechanism in the span-wise direction.  To this end, we can suppose that the turbulent 

boundary layer will be homogeneous in the spanwise for the mean flow and 

consequently statistically 2D.  Thus, to safely assume that the flow is statistically 2D 

in the mean, the span-wise width has to be sufficiently wide to contain ample 

turbulent structures.  For this purpose, three grids with varying spanwise lengths were 

employed to ascertain which mesh can be used to acquire high fidelity results while 

still keeping the computational cost at a minimum.  The characteristics of the grids 

are summarized in Table 5.1. All the grids had identical grid spacing and in the fully 

developed turbulent region, they were        ,        and        in the 

streamwise, wall-normal and spanwise directions, respectively.  It should be noted 

that the spanwise widths given in Table 5.1 correspond to 1δ, 1.5δ and 2δ, 

respectively, with δ being the thickness of the turbulent boundary layer or integral 

length scale at a streamwise location of ~ 3.6 m.  
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Grid No. Spanwise (cm) 

One 30 

Two 45 

Three 60 

 

Table 5. 1 Computational domain spanwise length characteristics. 

 

Heat transfer rate 

The wall heat transfer rates as a function of Rayleigh number,      , are illustrated 

in Figure 5.4.  The empirical equations formulated by [10]  for the laminar and 

turbulent portions of the natural convection boundary layer over a heated vertical flat 

plate are shown in Figure 5.4 as well.  The laminar and turbulent heat transfer rate 

equations, respectively read as 

                     ( 5.1) 

and 

                       ( 5.2) 

The calculation of the wall heat transfer rates from the LES results was acquired via 

the following equation 

 
    

 
        

 
   
  

 
 

  
   

( 5.3) 

with    and  
  

  
 
 

 being the difference between the wall and ambient temperatures 

and wall-normal mean temperature gradient at the wall, respectively.  Furthermore,  
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     is the thermal diffusivity due to the small dissipative SGS motion and   is the 

thermal diffusivity of laminar and large scale turbulent motions.   

 

Figure 5. 4 Heat transfer rates of experiment, LDSMG and empirical equation. 

 

Upon examination of the heat transfer rates, all the LES results were able to 

accurately capture the turbulent wall heat transfer.  However, it is apparent from 

Figure 5.4 that the LES calculation predicted a delayed transition from laminar to 

turbulent boundary layer.  In fact, according to the experiments, boundary layer 

transition commenced at a streamwise location of roughly 0.80 m; the CFD results 

computed a transition location that started at 1.20 m.  Furthermore, it ought to be 

mentioned that the boundary layer transition was not “forced” either by tripping the 

flow or feeding turbulent fluctuations at the inflow region of the computational 

domain.  Thus, even though the transition process was briefly delayed in the 
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numerical simulations, it was considered a success given the immense challenge 

posed by capturing natural turbulent boundary layer transition.  This challenge is a 

result of the development of small disturbance waves in the laminar portion of the 

boundary layer that needs to be resolved numerically that subsequently grow into 

turbulent spots and finally into fully developed turbulence further downstream.  The 

experimental results that will be shown were measured at x = 3.244 m; however, due 

to the delayed transition calculated by the LES, numerical data will be assessed at x ~ 

3.6 m, which corresponds to               .  This decision was made in order to 

match the length of fully developed turbulence of the experiment.   

Mean velocity and temperature profiles 

The mean streamwise velocity profiles at               are shown in Figure 5.5.  

The semi-logarithmic scale plots were appended in order to assess the near wall 

region clearly.  All the LES calculations accurately captured the near-wall region and 

the peak of the mean velocity profile.  Moreover, the outer layer was also resolved 

with high fidelity.  In moving forward and keeping with the terminology commonly 

employed for natural convection turbulent boundary layers, we define the inner-layer 

as the region from the wall to the maximum velocity and the outer-layer as the region 

from the maximum velocity to the edge of the boundary layer.  It is apparent that the 

velocity peak occurs near the wall region.   This is attributable to the density gradient 

across the boundary layer caused by the diffusion of heat from the heated flat plate.  

Thus, the air near the plate is less dense and the resulting buoyancy force is able to 

accelerate the fluid pockets further than air in the outer parts of the boundary layer.     
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 The distribution of mean temperature within the turbulent boundary layer at 

the same streamwise location is shown in Figure 5.6.  As is apparent from the 

temperature profiles, the LES results are in very good agreement with the 

measurements in the inner- and outer layers of the boundary layer.   

 

 

     

Figure 5. 5 Mean streamwise velocity profiles at Grx ~ 1.8E+11. 

 

 

 

 

     

Figure 5. 6 Mean temperature profiles at Grx ~ 1.8E+11. 
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Intensities of temperature and velocity fluctuations profiles 

The intensity of temperature turbulent fluctuation is shown in Figure 5.7.  The LES 

predictions are in very good agreement with the experimental data in the entire 

boundary layer.  The peak of the temperature fluctuation, which occurs in the inner 

layer, was accurately captured by the three LES computations.  Figure 5.8 illustrates 

the streamwise velocity fluctuation intensity; excellent agreement between the 

measurements and numerical predictions are apparent throughout the boundary layer.  

It can be seen that the experimental data depicts the maximum streamwise velocity 

fluctuation intensity occurs in the outer-layer of the boundary layer.  However, the 

numerical results predicted the maximum velocity fluctuation within the inner-layer. 

 The wall-normal velocity fluctuation intensity can be seen in Figure. 5.9. The 

agreement between the measurement and LES predictions is excellent in the outer-

layer of the boundary layer.  Within the inner layer, it can be seen from Figures 5.14 

that the wall-normal velocity fluctuation was under-estimated numerically.  It seems 

the LES computations clearly dampen or diffuse the wall-normal velocity turbulent 

fluctuations in the inner-layer and this damping becomes non-existent as the outer-

layer is approached. 
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Figure 5. 7  Intensity of temperature fluctuation profiles at Grx ~ 1.8E+11. 

 

 

   

Figure 5. 8 Intensity of streamwise velocity fluctuation profiles at Grx ~ 1.8E+11. 
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Figure 5. 9 Intensity of wall-normal velocity fluctuation profiles at Grx ~ 1.8E+11. 

 

Reynolds shear stress 

The Reynolds shear stress distribution in the boundary layer is shown in Figure 5.10.  

Again, the LES results are in excellent agreement with the experimental data in the 

inner- and outer layers.  The Reynolds shear stress peaks in the outer layer and the 

numerical predictions accurately captured that feature.  The interesting aspect of the 

Reynolds stress distribution occurs within the inner layer, in the near-wall region.  

Both the measurement and LES results seem to illustrate that           is approximately ~ 

0 over most of the inner layer region.  If we re-examine Figure 5.5, one would see 

that        in that region is greater than 0.  Thus, in the presence of a positive mean 

velocity gradient, the Reynolds shear stress is close to 0.  This may be indicative of 

the fact that the turbulence generation in the inner-layer might not be driven by the 

deformation of mean motion.  In light of this, one may proceed to conclude that the 

eddy viscosity assumption typically employed for forced convection turbulent 

boundary layer flows 
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with    being the turbulent eddy viscosity, cannot be applied to the inner-layer of the 

natural convection turbulent boundary layer.  The generation of turbulent kinetic 

energy in the inner and outer layers of the turbulent natural convection boundary 

layer will be examined in a later section. 

 

      

Figure 5. 10 Reynolds shear stress profiles at Grx ~ 1.8E+11. 

 

 

Summary of spanwise domain study 

 In performing this study, it was concluded that the spanwise width of 30 cm 

would suffice for the computational domain.  The first and second order statistics 

acquired from LES computations using the three different meshes were 

indistinguishable; thus conveying the fact that a domain of size δ can resolve enough 

turbulent structures to represent a statistically 2D turbulent boundary layer flow.  
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5.3.5 Mesh Resolution 

 

The effects of coarsening the baseline mesh on 1
st
 and 2

nd
 order turbulent statistics 

were investigated in this section.  The characteristics of the mesh employed in this 

study are described in Table 5.2.  The Fine Mesh in Table 5.2 will be referred to as 

the baseline mesh and its resolution was decreased by a factor of two (Coarse Mesh).  

The grid labeled Grid One was included in this study to compare its results to the 

baseline mesh because the computational cost of the Fine Mesh was excessively 

expensive.  Thus, the only difference between the two grids is the spanwise spatial 

resolution and one can anticipate insignificant differences between their predicted 

results since Grid One is already a wall-resolved LES mesh. 

 

Case Δx Δy Δz 

Grid One 30 mm ~1 mm 5 mm 

Coarse Mesh 60 mm ~2 mm 6 mm 

Fine Mesh 30 mm ~1 mm 3 mm 

 

Table 5. 2 Wall spatial resolution densities. 

Heat transfer rate 

The effects of spatial resolution on the wall heat transfer rates can be seen in Figure 

5.11.  The heat transfer rate predicted by the baseline mesh is seemingly identical to 

those acquired with the Grid One mesh, as expected.  The Coarse Mesh is able to 

capture the heat transfer rate and is very comparable to the baseline mesh.   
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Figure 5. 11  Effects of spatial resolution on heat transfer rate. 

 

Mean velocity and temperature profiles 

The mean streamwise velocity wall profiles can be seen in Figure 5.12.  The velocity 

distribution in the inner- and outer layers are identical for the Grid One and Fine 

Mesh cases.  The Coarse Mesh underestimates the velocity maximum at the edge of 

the inner layer, but only slightly.  In the outer layer of the boundary layer, the coarser 

mesh under-estimates the streamwise velocity and subsequently overestimates the 

inertia of the flow at the edge of the boundary layer.  The effects of grid resolution on 

the mean temperature wall profile can be seen in Figure 5.13.  All the grids employed 

were able to accurately capture the diffusion of heat in the inner- and outer layers of 

the turbulent boundary layer.    
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Figure 5. 12 Effects of spatial resolution on mean streamwise velocity. 

 

 

 

     

Figure 5. 13 Effects of spatial resolution on mean temperature. 
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Intensities of temperature and velocity fluctuations 

Figure 5.14 illustrates the spatial resolution effects on temperature fluctuation 

intensity.  The temperature fluctuation distributions in the outer layer are essentially 

identical for all the meshes.  However, in the inner layer, the Coarse Mesh 

underpredicted the temperature fluctuation intensity peak in the inner layer.  The 

streamwise velocity fluctuation intensity is shown in Figure 5.15 and it can be seen 

that the Coarse Mesh exaggerates the velocity fluctuation intensity in the inner- and 

outer layers of the boundary layer.  The velocity fluctuation of the baseline and Grid 

One cases are fairly identical throughout the boundary layer region.  The wall-normal 

velocity fluctuation intensity can be seen in Figure 5.16; the inner layer comparisons 

for the three grids are very comparable with hardly any differences.  In the outer 

layer, the Coarse Mesh overestimates the velocity fluctuation intensity as the edge of 

the boundary layer is approached.    

 

 

         

Figure 5. 14 Effects of spatial resolution on intensity of temperature fluctuation. 
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Figure 5. 15 Effects of spatial resolution on intensity of streamwise velocity 

fluctuation. 

 

 

 

 

 

 

    

Figure 5. 16 Effects of spatial resolution on intensity of wall-normal velocity 

fluctuation. 
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Reynolds shear stress 

Spatial resolution effects on the Reynolds shear stress wall profiles are shown in 

Figure 5.17.  The turbulent shear stress distribution is very comparable for all the LES 

cases in the inner layer.  Further out in the outer layer of the boundary layer, the 

Coarse Mesh overestimates the Reynolds stress slightly in comparison to the 

experimental data.  

 

      

Figure 5. 17 Effects of spatial resolution on Reynolds shear stress. 
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One will be employed for the rest of this study regarding wall-resolved LES 

calculations.   

 5.3.6 Effects of Boundary Layer Trip 

Thus far, the LES results that have been presented were shifted approximately 

       downstream to compare with the experimental data.  This was required due 

to the delayed transition captured by the numerical simulation; the delayed transition 

occurred 40 cm beyond the location measured in the experiment.   

The transition process computed was strictly numerical, i.e. initial errors 

(disturbance) intrinsic to the simulation were amplified as the computation progressed 

and finally allowed for the flow to transition.  In the present section, an effort will be 

facilitated to implement some physical disturbance within the spatially developing 

flowfield to induce an earlier onset of transition to match the measurement, which 

will result in a direct comparison at the same streamwise location with the 

experiment.  To achieve this, it was determined after attempting different methods to 

implement a three dimensional surface block upstream, at        , to perturb the 

flowfield.  The boundary layer trip was 30 mm, 6 mm and 300 mm in the streamwise, 

wall-normal and spanwise directions, respectively.  In the wall-normal direction, it 

was ensured that the trip was less than the boundary layer thickness and blockage was 

avoided.  Table 5.3 lists the characteristics of the computational mesh employed in 

the present study.  In Figure 5.18, a magnified view of the mesh near the placement of 

the tripping device can be seen.  The subsequent results acquired from the boundary 

layer trip simulation will be referred to hereafter as LDSMG-Trip. 
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Case SGS model Δx Δy Δz Transition 

LDSMG LDSMG 30 mm ~1 mm 5 mm Numerical 

LDSMG_BLTrip LDSMG  30 mm ~1 mm 5 mm Surface trip 

 

Table 5. 3 Computational domain characteristics employed for boundary layer 

transition study. 

 

 

 

Figure 5. 18 Magnified view of computational mesh employed for boundary layer 

tripping simulation. 

Heat transfer rate 

The heat transfer rates illustrating the effects of tripping the boundary layer can be 

seen in Figure 5.19, along with the measurements and empirical data.  In the upstream 

region, the placement of the tripping device caused a disturbance resembling a 

localized rapid fluctuation.  The fluctuation, however, is not localized; disturbances in 

the form of vortices are shed at the trailing edge of the trip at a particular frequency 
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and convected downstream.  The onset of boundary layer transition was matched with 

the experiment, meaning the convected disturbances were not dissipated by the 

freestream.  The LDSMG-BLTrip solution transitions in a manner similar to the 

experiment.  Once full turbulence has commenced, the magnitude of turbulent wall 

heat transfer predicted by the boundary layer tripped LES matches the experimental 

and empirical data.  However, it should be noted that the wall heat transfer gradients 

of the tripped and untripped LES are essentially identical.   

 

 

 

Figure 5.19 Local heat transfer rates showing effects of tripping boundary layer. 
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Mean velocity and temperature profiles 

The wall mean profiles of streamwise velocity and temperature can be seen in Figures 

5.20 and 5.21.  In Figure 5.20, the comparison between the LDSMG and LDSMG-

BLTrip is nearly indistinguishable in the inner and outer layers of the boundary layer.  

Furthermore, it is apparent that the two LES computations approximate the boundary 

layer thickness identically.  This clearly illustrates that the growth of the turbulent 

boundary layer thickness, δ, beyond the transition region is a reasonable measure to 

consider when performing comparisons with experiments that entail a laminar-

turbulent transition.  The mean temperature profiles seen in Figure 5.21 similarly 

show the comparison is exact between the LES computations. 

 

     

      

Figure 5. 20 Mean streamwise velocity profiles comparing wall profiles of numerical 

and tripped boundary layer transition LES. 
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Figure 5. 21 Mean temperature profiles comparing wall profiles of numerical and 

tripped boundary layer transition LES. 

 

 

Intensities of temperature and velocity fluctuations 
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normal velocity fluctuation intensities are shown and the comparisons are nearly 

exact.  Both figures do illustrate really small differences between the LES results in 

the outer layer.  Nonetheless, the numerical predictions of the numerical and forced 

transition results are in excellent agreement. 
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Figure 5.22 Intensity of temperature fluctuation profiles comparing wall profiles of 

numerical and tripped boundary layer transition LES. 

 

 

 

 

 
  

Figure 5. 23 Intensity of streamwise velocity fluctuation profiles comparing wall 

profiles of numerical and tripped boundary layer transition LES. 
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Figure 5. 24 Intensity of wall-normal fluctuation profiles comparing wall profiles of 

numerical and tripped boundary layer transition LES. 

 

 

Reynolds shear stress and Turbulent heat fluxes 

 

The Reynolds shear stress profiles are depicted in Figure 5.25 and excellent 

agreement between the two LES computations is apparent.  The predictions in the 

inner and outer layers can be seen to be indistinguishable.  Figures 5.26 and 5.27 
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in the inner layer for both components of the turbulent heat fluxes.  Even though 
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Figure 5. 25 Reynolds shear stress profiles comparing wall profiles of numerical and 

tripped boundary layer transition LES. 

 

 

 

 

  
      

Figure 5. 26 Streamwise turbulent heat flux profiles comparing wall profiles of 

numerical and tripped boundary layer transition LES. 
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Figure 5. 27 Wall-normal turbulent heat flux profiles comparing wall profiles of 

numerical and tripped boundary layer transition LES. 

 

 

 

 

Summary of boundary layer trip study 

The boundary layer trip study illustrated that the exact location of the transition to 
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accurate first and second order statistics.  Upon the commencement of full turbulence 

in the spatially developing boundary layer, the growth of the turbulent boundary layer 

thickness, δ, is function of streamwise distance.  Thus, the present study showed that 

shifting the location of comparison downstream by the distance the flow “spends” in 

the fully turbulent boundary layer, is a reasonable physical assumption that lends 

itself to acquiring high fidelity comparisons with the experimental measurements.  
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5.4 Wall-Modeled Simulations 

 

The effects of progressively coarser grids on turbulent statistics and eddy structures 

over the isothermally heated vertical flat plate will be investigated in this section.  

Aside from the wall resolved computational grid employed in the previous section, 

which will be referred to here as RLES, the successive levels of coarse grids were 

employed in conjunction with the wall layer models described in Chapter 4.  The 

results of the under-resolved computational grids will be useful to determine the limit 

of resolution requirements necessary to produce reasonable LES computations of the 

natural convection turbulent boundary layers at high Grashof numbers.  For this 

purpose, different grids were constructed for the computational domain described in 

Figure 5.2.  Of these meshes, three were using to gauge the limits of the necessary 

grid resolution across the boundary layer thickness and the characteristics of these 

grids are summarized in Table 5.4, with emphasis placed upon the sixth column.  For 

the cases that employed wall modeling, it should be noted that the wall-normal 

coarsened mesh was only applied downstream of the transition to turbulence region, 

around         , at        .   

 Prior to discussing the wall-modeled LES results, it would be wise to state that 

with the utilization of wall-models, numerical errors will be inherently introduced 

near the wall as the grid is progressively coarsened.  This is due to the input-output 

nature of the LES wall model [134].  Essentially, the implemented wall model will 

take some instantaneous data/information from the LES at some computational node 

above the wall at each time-step.  Subsequently, the wall model takes this data and 

uses it to calculate the wall heat flux and wall shear stress.  These quantities are then 
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fed into an equation to approximate the SGS thermal diffusivity and eddy viscosity at 

the wall.  Thus, the problem lies in the fact that, as the mesh is progressively 

coarsened, the data given to the wall model will be erroneous unresolved data.  

 

Case no. Wall-Model Δx (mm) Δy (mm) Δz (mm) # Cells in boundary layer 

1 RLES 30 1 5 120 

2 ErfWF 30 5 5 35 

3 BWF 30 5 5 35 

4 ErfWF 30 10 5 15 

5 BWF 30 10 5 15 

6 ErfWF 30 15 5 10 

7 BWF 30 15 5 10 

 

Table 5. 4 Mesh densities, varying wall-normal grid spacings in fully developed 

turbulent flow region of boundary layer. 

Local heat transfer rates 

The heat transfer rate along the heated flat plate of all the cases given in Table 5.4 can 

be seen in Figure5.28 along with the experimental data.  The transition location is 

identical for all these cases solely because the mesh and computational set-up were 

the same up to         .  Beyond          , we can see that the LES wall 

models predicted higher heat transfer than the resolved LES solution.  The equation 

given previously to compute the wall heat transfer rate is a function of the molecular 

and SGS thermal diffusivities and will be repeated here for convenience: 
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Thus, the higher heat transfer given by coarser meshes can be attributed to the 

increase in the near wall SGS thermal diffusivity as the mesh is progressively 

coarsened.  Essentially, as the grid is coarsened, increasingly larger eddies that are 

unresolvable on the LES mesh has to be accounted for by the SGS turbulence model.  

Hence, instead of resolving “mostly” dissipative small turbulence scales, the subgrid 

scale model is also resolving large energy containing eddies near the wall region.  

 

Figure 5. 28 Local heat transfer rates comparison. 

 

Mean velocity and temperature profiles 
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profound differences.  The agreement between the wall-modeled and resolved LES is 

certainly acceptable.  It should be noted that the first grid point off the wall for the 

two coarsest meshes lies within the outer layer of the boundary layer.  The wall-

modeled predictions are in good agreement with the experimental data, although the 

two coarsest grids fractionally underpredicted the streamwise velocity in the outer 

layer.  The mean temperature profiles can be seen in Figure 5.30; the predictions of 

the wall-modeled LES computations are in good agreement with the experiment in 

the inner and outer layer of the boundary layer.  Again, the differences between the 

ErfWF and BWF results are quite marginal.   

 

     

Figure 5. 29 Mean streamwise velocity profiles at Grx ~ 1.8E+11 for various near-

wall turbulence treatments. 

 

 

0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y[m]

U
[m
s
]

 

 
Tsuji&Nagano

RLES y
wall

 = 1mm

Erf WF  y
wall

 = 5mm

BWF  y
wall

 = 5mm

Erf WF  y
wall

 = 10mm

BWF  y
wall

 = 10mm

Erf WF  y
wall

 = 15mm

BWF  y
wall

 = 15mm

10
-4

10
-3

10
-2

10
-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y[m]

U
[m
s
]

 

 

Tsuji&Nagano

RLES y
wall

 = 1mm

Erf WF  y
wall

 = 5mm

BWF  y
wall

 = 5mm

Erf WF  y
wall

 = 10mm

BWF  y
wall

 = 10mm

Erf WF  y
wall

 = 15mm

BWF  y
wall

 = 15mm



 

174 

 

   

Figure 5. 30 Mean temperature profiles at Grx ~ 1.8E+11 for various near-wall 

turbulence treatments. 

 

Intensities of temperature and velocity fluctuations 

The temperature fluctuation intensity profiles are illustrated in Figure 5.31.  The 

second order turbulent statistics predictions of both wall models are in good 

agreement with the experiment.  For the            wall case, the inner layer 

region was underpredicted by both wall models.  However, in the outer layer, all the 

wall modeled LES results were quite comparable to the measurements.  Figure 5.32 

depicts the streamwise velocity fluctuation intensity profile and it readily apparent 

that the wall modeled LES results overpredicted          in the outer layer region.  The 

inner layer was similarly overpredicted by the           mesh; this behavior is 

well known to be a symptom of under-resolved LES computations [135].  It is 

essentially caused by the inability of the coarse LES grid to capture the fine near-wall 

turbulence producing dynamics.  The near-wall profiles of wall-normal velocity 

fluctuation intensity,          , are shown in Figure 5.33.  We can see that by 

successively coarsening the grid,           is further underpredicted in the outer layer.  
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An interesting phenomenon intrinsic to coarse LES computations can be observed by 

carefully assessing the normal stresses, namely          and          depicted in Figures 

5.32 and 5.33.  These two figures clearly show that as the mesh resolution is 

coarsened,          increases and          decreases, especially near the wall.  In order to 

explain this, it should be noted that turbulence is typically introduced into the 

flowfield in the dominant fluctuating flow component, which is the streamwise 

direction.  Subsequently, the turbulent energy is transferred to the other fluctuating 

components (inter-component transfer of turbulent energy) [136].  In light of this, one 

can surmise that mean flow energy is transferred to the fluctuating component in the 

streamwise direction,          and the turbulent energy is then distributed to the other 

components,          and          .  However, in LES, as the mesh is progressively 

coarsened, the mechanism of distributing turbulent energy from          to          and 

          is poorly resolved [137].  As a result,          becomes increasingly overestimated 

and          is further underpredicted, as can be seen Figures 5.32 and 5.33.  As a whole, 

there is good agreement between the LES wall model results and the experimental 

data.  Thus, all the cases illustrated good agreement of temperature and velocity 

fluctuation intensity when compared to the experiment. 
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Figure 5. 31 Intensity of temperature fluctuation profiles at Grx ~ 1.8E+11 for various 

near-wall turbulence treatments. 

 

 

    

Figure 5. 32 Intensity of streamwise velocity fluctuation profiles at Grx ~ 1.8E+11 for 

various near-wall turbulence treatments. 
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Figure 5. 33 Intensity of wall-normal velocity fluctuation profiles at Grx ~ 1.8E+11 

for various near-wall turbulence treatments. 

 

Reynolds shear stress and Turbulent heat fluxes 
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Figure 5. 34 Reynolds shear stress profiles at Grx ~ 1.8E+11 for various near-wall 

turbulence treatments. 

 

 

 

 

    

Figure 5. 35 Streamwise turbulent heat flux profiles at Grx ~ 1.8E+11 for various 

near-wall turbulence treatments. 
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Figure 5. 36 Wall-normal turbulent heat flux profiles at Grx ~ 1.8E+11 for various 

near-wall turbulence treatments. 
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The effects of grid resolution on the instantaneous near-wall turbulent structures are 

illustrated in Figures 5.37 and 5.38.  To perform this analysis, the ErfWF wall model 

was employed along with the resolved LES computation.  On the finest mesh, RLES 

           , long strands of vortical structures can be seen oriented 

predominantly in the streamwise direction.  These structures, educed from the      

criterion, do not seem to have the similar formation as those observed near the wall in 

forced convection turbulent boundary layer.  Overlapping and tilted coherent 

structures are not apparent in the near-wall topology of the natural convection 

turbulent boundary layer.  Furthermore, a densely packed set of near-wall structures 

are observable on the finest mesh.  On the second finest mesh, ErfWF        

    , we easily see a less dense near-wall coherent structure field.  The near-wall 

turbulent structures can be seen to be relatively oriented predominantly in the 

streamwise direction.  Another observation is the appearance of larger near-wall 

structures with this coarsened mesh simulation.  In Figure 5.38, isosurfaces of the 

0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

y[m]

v
0 t

0 [
m

K s
]

 

 
Tsuji&Nagano

RLES y
wall

 = 1mm

Erf WF  y
wall

 = 5mm

BWF  y
wall

 = 5mm

Erf WF  y
wall

 = 10mm

BWF  y
wall

 = 10mm

Erf WF  y
wall

 = 15mm

BWF  y
wall

 = 15mm

10
-4

10
-3

10
-2

10
-1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

y[m]

v
0 t

0 [
m

K s
]

 

 
Tsuji&Nagano

RLES y
wall

 = 1mm

Erf WF  y
wall

 = 5mm

BWF  y
wall

 = 5mm

Erf WF  y
wall

 = 10mm

BWF  y
wall

 = 10mm

Erf WF  y
wall

 = 15mm

BWF  y
wall

 = 15mm



 

180 

 

     criterion near the wall for the two coarsest meshes are depicted.  For the 

ErfWF              case, a progressively enlargement of the near-wall structures 

can be seen.   In addition, turbulent structures seem to be absent near the wall and the 

streamwise orientation of the structures is non-existent.  At the coarsest mesh, ErfWF 

             , the near-wall structures are more enlarged and no preferred 

direction of the coherent structures can be ascertained.  These near-wall vortex 

structures seem to lack any coherence and it is apparent that this computational mesh 

may be too coarse to capture any physical turbulent dynamics near the wall.  The 

enlargement of the near-wall turbulent structures with progressively coarser grids is 

caused by an over-compensation for their lack of resolution due the excess energy 

contained in the large scales.  Thus, larger pseudo-turbulent near-wall structures are 

created.  Moreover, this phenomenon is indicative of insufficient turbulent dissipation 

and the subsequent inaccurate SGS turbulent viscosity predictions of coarse mesh 

LES computations.     
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Figure 5. 37 Instantaneous isosurface of the second invariant of the velocity gradient 

tensor,     , (left) RLES            , (right) ErfWF             at 

     . 
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Figure 5. 38 Instantaneous isosurface of the second invariant of the velocity gradient 

tensor,     , (left) ErfWF             , (right) ErfWF              at 

     . 

 

 We can take a look at the turbulent energy spectrum of the resolved 

streamwise velocity fluctuations shown in Figure 5.38 to further illustrate effects of 

coarsened mesh on the LES calculations.  The aforementioned plot is of one-

dimensional spectra representation of the turbulent kinetic energy at     , which 

corresponds to       ..  It is obvious from Figure5.38 that dissipation of turbulent 

eddies takes place at higher wavenumbers for the resolved LES result, shown in the 

red colored line.  In addition, at lower wavenumbers, the energy content of the 
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resolved LES computation is lower than all the LES wall-modeled simulations.  A 

close examination of Figure 5.39 indicate that dissipation of turbulent eddies occurs 

at slightly larger wavenumbers with successively coarsened grids.  Furthermore, it 

can be seen that the coarse wall-modeled LES computations have significantly excess 

energy at the lower wavenumbers, i.e. large scale eddies.  This observation is 

consistent with the coherent vortex structure visualizations of Figures 5.37 and 5.38.  

 

Figure 5. 39 One dimensional energy spectrum of resolved streamwise velocity 

fluctuations at     . 

 

 

 

 

 

10
-1

10
0

10
1

10
2

10
3

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

wavenumber; k = 2:f

U

E
(k

)

 

 

RLES y
wall

 = 1mm

ErfWF  y
wall

 = 5mm

ErfWF  y
wall

 = 10mm

ErfWF  y
wall

 = 15mm



 

184 

 

5.5 Waveforms for Thermal Fields 

Waveforms of the temperature fluctuation field starting at             , 

       , are depicted in Figure 5.40.  The computational probes were implemented 

at the streamwise locations listed in the aforementioned figure at the center of the 

heated flat plate, i.e.          and a wall-normal distance of 1.7 mm.  From Figure 

5.40, it is apparent that a well preserved thermal turbulent field exists in the 

streamwise direction spanning nearly 10 cm.  In Figure 5.41, a plot identical to Figure 

5.40 is shown, except the instantaneous temperature is depicted with identical 

turbulent fluctuations.   

Waveforms of the temperature fluctuation in the wall-normal direction at 

             can be seen in Figure 5.42.  The waveforms illustrate that high 

       and low        temperature fluid encompass the near wall boundary layer 

region.  Up to 4.4 mm, it is apparent that low temperature fluids frequently invade the 

near wall region.  Farther away from the wall, low temperature fluid signals become 

nearly non-existent.  As opposed to the low temperature fluid, high temperature fluid 

can be seen near the wall and also farther away from the wall.  However, the 

amplitude of high temperature fluid signal diminishes as the wall normal distance 

increases.  Identical waveforms of instantaneous temperature can be seen in Figure 

5.43.  In addition to the temperature fluctuations, these waveforms include the 

average temperature at the probed location and are shown to only illustrate the 

magnitude of temperature at the various locations.      
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Figure 5. 40 Waveforms of temperature fluctuations in the streamwise direction; 

locations are :(a) = 2.4 m, (b) = 2.4012 m, (c) = 2.4039 m, (d) = 2.4068 m, (e) = 2.411 

m, (f) = 2.438 m, (g) = 2.486 m. 

 

 
Figure 5. 41 Waveforms of instantaneous temperature in the streamwise direction; 

locations are :(a) = 2.4 m, (b) = 2.4012 m, (c) = 2.4039 m, (d) = 2.4068 m, (e) = 2.411 

m, (f) = 2.438 m, (g) = 2.486 m. 
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Figure 5. 42 Waveforms of temperature fluctuations in the normal direction at 

            ; wall-normal locations are :(a) = 0.4 mm, (b) = 1.7 mm, (c) = 4.4 

mm, (d) = 7 mm, (e) = 12 mm, (f) = 38 mm, (g) = 86 mm. 

 

 

Figure 5. 43 Waveforms of instantaneous temperature in the normal direction at 

            ; wall-normal locations are :(a) = 0.4 mm, (b) = 1.7 mm, (c) = 4.4 

mm, (d) = 7 mm, (e) = 12 mm, (f) = 38 mm, (g) = 86 mm. 
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5.6 Turbulent Kinetic Energy  

Before closing the discussion on the results acquired in this chapter, a discussion is 

profoundly warranted on the turbulent kinetic energy intrinsic to buoyancy affected 

spatially developing turbulent boundary layer.  In light of this, the turbulent kinetic 

energy was numerically computed and the LES results, along with the experimental 

data are presented in Figures 5.44 and 5.45 at a streamwise location of         

    , i.e.         .  The comparison between the LES and measurements is very 

good in the inner and outer layers.  It is apparent that turbulent kinetic energy peaks 

in the outer layer of the boundary, as opposed to forced convection turbulent 

boundary layers.  It was aforementioned and illustrated in Chapter 2 that the turbulent 

kinetic energy peaks in the near-wall region due to the presence of high shear and 

such a profile is not evident in the natural convection turbulent boundary layer.  In 

order to elucidate upon the mechanisms and physics of the turbulent energy 

production pertaining to turbulent natural convection boundary layers, we can refer 

Figure 5.46.  Figure 5.46 shows the buoyant and shear productions of turbulent 

kinetic energy comparison between the measurements and Large Eddy Simulation at 

            .  We can see that the buoyant production of turbulence peaks near 

the edge of the inner layer.  In this region, 
  

  
  , alluding to the absence of shear 

production, as can be seen in Figure 5.45.  In the outer layer, there is buoyant and 

shear production of turbulence, although shear production is dominant.  The shear 

production predicted by the LES computation is in excellent agreement with the 

experimental data.  In the outer layer of the boundary layer, there is relatively high 

shear, 
  

  
  , and this shear layer region is a source of turbulent kinetic energy.  Also 



 

188 

 

apparent in Figure 5.46 is the discrepancy between the measured and LES shear 

production in the inner layer of the boundary layer.  The measurement illustrate there 

is a loss to turbulent kinetic energy production due to shear near the wall.  In fact, it 

was stated by [138], that the velocity-pressure gradient term,     , found in the 

components of the turbulent kinetic energy equation, was responsible for the majority 

of the production near the wall.  To clarify, the velocity-pressure gradient term is 

known to be the cause of inter-component transfer of turbulent kinetic energy and it 

does not create nor destroy turbulent energy [136].  In the turbulent boundary layer 

considered in this work, turbulent kinetic energy is produced primarily in the 

dominant direction of the flow, i.e. streamwise; turbulence enters the system via the 

shear production term,                , and buoyant production term,            , which are 

the production terms pertaining to the streamwise turbulent kinetic energy equation.  

Thus, it is the velocity-pressure gradient terms that act to exchange turbulent energy 

between the three components of turbulent kinetic energy.  In the inner layer, Figure 

5.46 illustrates that the profile of shear production predicted by the LES is a gain for 

the turbulent energy.  It is obvious that the shear production in the outer layer is larger 

in magnitude than the inner layer shear production.  Even though there are shear 

layers in the inner and outer layers of the flowfield, the shear production of 

turbulence near the wall is impeded due the presence of the wall.  As opposed to the 

shear production in the inner layer, large scale eddies are dominant in the outer layer, 

similar to those observed in free-shear layer turbulent flows.  These large scale eddies 

produce most of the turbulent kinetic energy in the boundary layer.   
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For comparison, Figure 5.47 depicts shear and buoyant productions of 

turbulent kinetic energy in a turbulent natural convection boundary layer acquired 

from the DNS results of [139].  The edge of the inner layer was mentioned to be 

located at  
 

 
     , where  

  

  
  .  The DNS results show there is not any buoyant 

production of turbulence in the outer layer.  In addition, the shear production show 

two peaks, indicative of the two shear layers within the boundary layer.  The profile is 

quite similar to LES result shown in Figure 5.46.  However, in the DNS predictions, 

the shear production of turbulence in the inner layer is shown to be larger than the 

outer layer.  As was previously discussed, this should not be the case given the 

presence of the wall in destroying some of the turbulence generated by the 

deformation of mean motion by the Reynolds stress.   

To further shed light upon the apparent discrepancy in the shear production of 

turbulence between the experimental data and LES, Figure 5.48 shows the Reynolds 

shear stress wall profiles at             .  Excellent agreement between the 

measurement and LES can be seen in the inner and outer layers.  The discrepancy lies 

in the differences between the experiment and LES very near the wall, refer to Figure 

5.49.  In the near-wall region, the LES computes           that is slightly less than zero, 

whereas the measurement gives            higher than zero.  Hence, it can be conjectured 

that since the inner layer is profoundly thin, the accuracy of the measurements near 

the wall might be questionable to some degree.               

 

 



 

190 

 

 

Figure 5. 44 Mean turbulent kinetic energy comparison between measurements and 

LDSMG in linear scale at             . 

 

 

 

Figure 5. 45 Mean turbulent kinetic energy comparison between measurements and 

LDSMG in semi-log scale at             . 
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Figure 5. 46 Turbulent kinetic energy production comparisons of measurements and 

LDSMG at             . 

 

 

Figure 5. 47 Turbulent kinetic energy productions of shear and buoyancy mechanisms 

acquired from DNS computations of [139]. 
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Figure 5. 48 Reynolds shear stress profiles at             . 

 

 

Figure 5. 49 Magnified near-wall view of Reynolds shear stress at             . 
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5.7 Closing Remarks  

The Large Eddy Simulation of the turbulent natural convection over the isothermal 

vertically heated flat plate has led to some conclusions and the highlights will be 

discussed in this section. 

 A spanwise domain study was undertaken in order to ascertain the width 

required to capture sufficient turbulent structures in the spanwise direction and 

to assume a statistically two dimensional flowfield.  By comparing 1
st
 and 2

nd
 

order turbulent statistics, the study revealed that the spanwise width of       

resolved adequate spanwise structures in the boundary layer. 

 The utilization of wall-layer modeling was necessitated by the need to relax 

the wall-normal grid spacing subsequent to the commencement of full 

turbulence; the coarse wall-layer modeling simulations indicated that placing 

the first off the wall computational grid at the edge of the inner layer produced 

relatively accurate results.  In this particular mesh construction, only ~10 grid 

cells were prescribed across the boundary layer thickness. 

 The near-wall flow topology of coherent structures educed using the     

criterion illustrated the structures observed in the turbulent natural convection 

boundary layer were dissimilar to those observed in forced convection 

turbulent boundary layer flows.  Even though predominantly streamwise 

vortices were seen near the wall, the overlapping and spanwise tilting 

orientation noticeable in forced convection, was absent in this flow 

configuration. 
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 Well preserved thermal turbulent field spanning       in the streamwise 

direction was observed in the near-wall region.  In addition, high temperature, 

    , and low temperature,      , encompass the near-wall turbulent 

boundary layer region. 

 The peak of the turbulent kinetic energy occurred in the outer layer of the 

boundary layer.  In addition, shear and buoyant production of turbulent energy 

were observed to be of the same order of magnitude.  Furthermore, 

discrepancy between the LES and experimental data of the shear production 

was observed very near the wall.  This discrepancy stemmed from the near-

wall profiles of the Reynolds shear stress,          .  The near-wall inner layer is 

extremely thin and it is reasonable to question the fidelity of the experimental 

data in this particular region.  Furthermore, the assistance of a detailed non-

Boussinesq Direct Numerical Simulation would be of profound help in 

shedding some light on the near-wall flow region of this turbulent boundary 

layer.   
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Chapter 6:  Hattori Test Case 
 

6.1 Test Case Description 

This test case entails the experimental measurements of [24] over a vertically 

isothermal heated flat plate implemented inside a low-speed vertical wind tunnel.  

The dimensions of the heated plate were 4 m high, 0.8 m wide and 0.02 m thick.  The 

plate was mounted vertically on the back wall of the vertical wind tunnel.  The 

temperature of the plate was kept uniform at 369 Kelvin via electric heaters 

implemented at the rear of the plate.  The ambient temperature was maintained at 

approximately 298 Kelvin.  Temperature and velocity data in the mixed convection 

turbulent boundary layer were measured with tungsten hot wire and cold wire 

measurements using a sampling frequency of 500 Hz.  To observe the instantaneous 

velocity field, particle image velocimetry (PIV) were employed by injecting 30 

micrometer plastic microspheres tracer particles into the boundary layer.  A schematic 

of the coordinate system adopted for the experiment is depicted in Figure 6.1.  In 

Figure 6.2, an image of the vertical wind tunnel utilized to carry out the 

measurements can be seen.  The wind tunnel comprises a blower which can force 

mass into the test section at a maximum freestream speed of 10 m/s equivalent to a 
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local Reynolds number of         at           .  Downstream of the blower 

resides a diffuser with a relatively large cone angle that can possibly slow down the 

flow enough to induce flow separation.  Thus, three safety screens were positioned in 

the diffuser to smooth out variations in the velocity field and maintain a satisfactory 

flow.  To dampen freestream disturbance or turbulence, four fine mesh damping 

screens along with a honeycomb were placed in the settling chamber.   

 

 
 

Figure 6. 1  Schematic of geometry and coordinate system utilized for experimental 

measurement, from [24]. 
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Figure 6. 2 Schematic of experimental apparatus, from [24]. 

 

6.2 Computational Setup 

 

The numerical simulation domain and prescribed boundary conditions are graphically 

represented in Figure 6.3.  As can be seen from the figure, uniform freestream values, 

   and    , were prescribed at the inflow accordingly to match those employed for 

the experiments.  Just downstream of the inflow region is a 0.1 m long entrance 

domain implemented particularly to prevent an abrupt start of the boundary layer 

since a non-zero inflow velocity was prescribed.  The length of the plate was chosen 

to be 5 m to enable the numerical simulation to capture the delayed transitioning 

turbulent boundary layer as the freestream velocity is increased; moreover, a 5 m 

plate was utilized to disallow potentially corrupted solution that can develop near the 

outflow to affect the region of interest.  The spanwise width of the computational 
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domain was selected based upon the integral length scale,  , of the boundary layer 

and will be described in the subsequent subsection.  The wall-normal simulation 

domains spans 2 m.  The far-field boundary was purposely implemented to be far 

away from the wall region because the spatially growing turbulent boundary layer 

will accelerate the prescribed non-zero freestream velocity and its effects can be 

mitigated by positioning the boundary far from the plate.  Similarly to the Tsuji & 

Nagano test case, the entrainment and cyclic boundary conditions were prescribed for 

the far-field and homogeneous boundaries respectively. 

 

                    

Figure 6. 3  Computational domain and boundary conditions for Hattori test case. 
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 The Hattori experiments simulated in this current numerical effort are 

described in Table 6.1, below.  In total, three cases were chosen and their 

corresponding freestream velocity and wall to freestream temperature difference can 

be seen in columns two and three, respectively.  The fourth column consists of 

streamwise location ratios where the measurements were taken; this downstream 

location was around        .  

 

Case    m/s    Kelvin         
   

HT01 0.0  ~70   

HT02 0.53 ~70           

HT03 0.80 ~70           

 

Table 6. 1 Quantities employed for Hattori experimental test cases. 

 

6.2.1 Computational Grid 

 

The numerical grid utilized for the three Hattori test cases were similar to the mesh 

employed for the Tsuji & Nagano test case, except for the presence of the entrance 

length required for the prescribed velocity and temperature freestream quantities at 

the inflow region.  The computational grid wall spacing employed in the fully 

developed turbulent region are described in Table 6.2; it is apparent that successively 

finer grid resolutions are employed with increasing freestream velocity for reasons 

that will be elucidated later.  For each Hattori case simulated, the spanwise width of 

the computational domain was specified to be   , where   was taken to be the wall-
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normal length from the wall to the point the mean streamwise velocity attains its 

freestream value.  The approximate value of   was chosen from the available 

experimental data of [24].   

 

Case    mm    mm     mm   (mm) 

HT01 25 0.53 3.6 500 

HT02 25 0.30 2.0 150 

HT03 7 0.14 0.6 50 

 

Table 6. 2 Grid wall spacing in dimensional units utilized for Hattori simulations 

along with the computational widths. 

 

6.2.2 Simulation Details 

 

The numerical simulations employed were somewhat similar to those implemented 

for the Tsuji & Nagano test case.  For all the simulations, velocity and temperature 

freestream values used for the experiment were prescribed for the internal flowfield 

and inflow at the start of the simulation.  In addition, in the process of achieving 

reasonably accurate results, it was determined to run the simulations initially on 

coarser grids and to map the coarse mesh solution onto successively finer grids until 

the second order turbulent statistics were deemed acceptable when compared to 

experimental data.   
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6.3 Wall-Resolved Simulations 

 

Mean velocity and temperature profiles 

The mean streamwise velocity acquired from the experiments and LES are illustrated 

in Figures 6.4-6.6.  As a whole, there is excellent agreement between the 

measurements and LDSMG results in the inner and outer layers.  It can be seen that 

the maximum mean streamwise velocity increases with the introduction of a low 

freestream.  This is because forced convection effects are augmenting the streamwise 

velocity in a non-linear manner.  Furthermore, it is quite evident that the boundary 

layer progressively becomes thinner as the freestream velocity is increased.  In 

Figures 6.7-6.9, the mean temperature wall profiles of the measurements and LES are 

depicted and the agreement between the results is quite impressive.  The mean 

temperature profiles also indicate that as the freestream velocity is slightly increased, 

there seems to be mechanism that is causing the diffusive action of the large turbulent 

scales to be restricted.  An interesting thing to note is the increase in wall shear, i.e. 

      , as the freestream is added to the turbulent boundary layer.  Usually, 

turbulence is known to emerge as a result of increasing shear and the subsequent 

boundary layer becomes successively more diffusive as the wall shear increases.  

However, we can see from Figure 6.10 that in the presence of increasingly wall shear 

stress, the mixed convection boundary layer thickness diminishes.  Furthermore, the 

wall heat transfer decreases as the freestream velocity increases, refer to Figure 6.11.  

Thus, it is apparent that the nature of the turbulence generated, either by shear 

production or buoyant production is being suppressed by some mechanism with the 

addition of a freestream flow.   
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Figure 6. 4 Mean streamwise velocity profile at Grx ~ 3.40E+11 for       
    . 

 

     

Figure 6. 5 Mean streamwise velocity profile at Grx ~ 3.40E+11 for       
   

         . 
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Figure 6. 6  Mean streamwise velocity profile at Grx ~ 3.40E+11 for       
   

         . 

 

 

     

Figure 6. 7  Mean temperature profile at Grx ~ 3.40E+11 for       
    . 
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Figure 6. 8  Mean temperature profile at Grx ~ 3.40E+11 for       
            . 

 

 

      

Figure 6. 9  Mean temperature profile at Grx ~ 3.40E+11 for       
            . 
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Figure 6. 10  Effects of freestream on wall shear stress of natural and mixed 

convection boundary layer using LDSMG. 

 

 

 

Figure 6. 11  Effects of freestream on local heat transfer rates of natural and mixed 

convection boundary layer using LDSMG. 
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Intensities of velocity and temperature fluctuations 

The intensity of streamwise velocity fluctuations are depicted in Figures 6.12-6.14 for 

the measurements and LDSMG.  The agreement between the experimental data and 

LES predictions are remarkable in the inner- and outer layers of the boundary layer.  

With a slight addition of freestream velocity, at       
              , the 

magnitude of the streamwise velocity fluctuation intensity attains a value less than the 

      
     case.  Furthermore, as was observed with the mean velocity and 

temperature profiles, the intensity of the velocity fluctuation has diminished in the 

entire boundary layer region and is confined to a lower wall-normal region.  Figures 

6.15-6.16 illustrates the temperature fluctuation intensities at       
   

  and          .  The effects of freestream addition can be clearly seen by the 

reduction of temperature fluctuation in the whole boundary layer region.  By further 

increasing the freestream velocity, Figures 6.14 and 6.17 reveals an increasingly 

diminishing velocity and temperature fluctuation intensities globally.  However, in 

Figure 6.14, very near the wall, the experimental data show a higher peak of           

when compared to that of        
             .   As opposed to predicting this 

subtle trend, the LES computed           values approximately of the same magnitude in 

the near-wall region, see Figures 6.13 and 6.14.   Nonetheless, along with an apparent 

decrease in turbulence in the entire boundary layer, a peculiar double-peak can be 

seen in the measurement of velocity fluctuation intensity.  The LDSMG prediction 

was able to capture this behavior in the velocity fluctuation intensity wall profile, 

although the initial peak was underpredicted.  The appearance of the double peak in 

the velocity fluctuation intensity profile was described to be indicative of a beginning 
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transition to turbulence of a mixed convection boundary layer [140], [19].  Thus, it 

can be concluded that at       
            , the mixed convection boundary 

layer did not attain a fully developed turbulence state and is a direct consequence of 

the increased forced flow.  It should be noted as well that the relative difference in 

magnitude of velocity and temperature intensity fluctuations is profoundly 

pronounced for the variation in temperature fluctuations, see Figures 6.15 and 6.17.  

The magnitude of the temperature intensity fluctuation at        
             is 

nearly 50% of the pure natural convection turbulent boundary layer.  Therefore, it 

may be conjectured that in this range of mixed convection regime, buoyant 

production of turbulence might be dominant over shear production.  It is apparent that 

increasing the forced flow suppresses these temperature fluctuations, thereby 

reducing the overall turbulence of the flow.  Another interesting observation from 

Figure 6.17 is the appearance of a double peak in the experimental temperature 

fluctuation intensity.  The LES prediction was unable to capture this transitioning 

phenomenon; similarly, the DNS result of [23] was unable to replicate this behavior 

in their simulations.  
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Figure 6. 12  Intensity of streamwise velocity fluctuation intensity profile at Grx ~ 

3.40E+11 for       
    . 

 

 

 

 

 

 

 

 

Figure 6. 13  Intensity of streamwise velocity fluctuation intensity profile at Grx ~ 

3.40E+11 for       
            . 
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Figure 6. 14  Intensity of streamwise velocity fluctuation intensity profile at Grx ~ 

3.40E+11 for       
            . 

 

 

 

    

Figure 6. 15  Intensity of temperature fluctuation intensity profile at Grx ~ 3.40E+11 

for       
    . 
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Figure 6. 16  Intensity of temperature fluctuation intensity profile at Grx ~ 3.40E+11 

for       
            . 

 

 

 

 

 

 

    

Figure 6. 17  Intensity of temperature fluctuation intensity profile at Grx ~ 3.40E+11 

for       
            . 
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Streamwise Turbulent Heat Flux 

Wall profiles of the streamwise turbulent heat flux,          , are depicted in Figures 6.18-

6.20.  The streamwise turbulent heat flux is essentially a measure of the correlation 

between    and    and is a fairly challenging quantity to numerically capture with 

high fidelity.  At       
     and          , there is good agreement between 

the experimental data and LES predictions, both in the inner and outer layers of the 

turbulent boundary layer.  Although at the edge of the inner and outer layers, the 

turbulent heat flux was minimally over-estimated.  In Figure 6.20, at       
   

         , the LES prediction was unable to accurately resolve the turbulent heat 

flux in the transitioning boundary layer, particularly near the wall.  The LDSMG 

result was able to approximately resolve the streamwise turbulent heat flux in the 

outer layer.  However, the inner layer behavior was unsatisfactory.  The reason for 

this discrepancy was attributed to the lack of sufficient grid cells within the incredibly 

thin transitioning boundary layer to resolve the intricate flow dynamics. 

 An interesting phenomenon is the increasingly negative value of            in the 

very near wall region of the inner layer.  It can be seen from the measurements that 

this trend becomes more pronounced with the addition of forced flow; the LES results 

were able to duplicate this behavior at       
     and          .  This 

occurrence near the wall can be due to an invasion of either low speed fluid,      or 

low temperature fluid,     .  Figures 6.21 and 6.22 depict the probability density 

functions (PDF) of temperature and velocity fluctuations near the wall, respectively.  

The PDF of    is largely skewed towards negative and it can be qualitatively 

concluded that it is indeed low temperature fluid that invades the near-wall region.  
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Figure 6. 18  Streamwise turbulent heat flux profile at Grx ~ 3.40E+11 for       
   

 . 

 

 

 

 

 

 

     

Figure 6. 19  Streamwise turbulent heat flux profile at Grx ~ 3.40E+11 for       
   

         . 
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Figure 6. 20  Streamwise turbulent heat flux profile at Grx ~ 3.40E+11 for       
   

         . 

 

 

Figure 6. 21  Probability density function of temperature fluctuation in the near wall 

region. 
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Figure 6. 22  Probability density function of velocity fluctuation in the near wall 

region. 

 

6.4 Waveforms and Spectra of Velocity and Temperature Fluctuations 

 

Waveforms of temperature and velocity fluctuations are illustrated in Figures 6.23 

and 6.24.  In order to capture the temperature and velocity time-series data, 

computational probes were implemented at a streamwise location of        m, the 
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layer), where the mean streamwise velocity is half of the maximum mean velocity 
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     and          , high and low frequency random fluid motion are 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

u0

P
(u

0 )

Grx

Re3
x

= 1Grx

Re3
x

= 4:68x10!4 Grx

Re3
x

= 1Grx

Re3
x

= 4:68x10!4



 

215 

 

dominant near the wall.  With a slight increase in freestream velocity, at       
   

          , the random fluid motion seem to have been completely destroyed.  

Even though turbulent fluctuations still exist, harmonic fluid motions of a specific 

frequency have become dominant near the wall.  The waveforms given in Figure 6.24 

illustrate that large scale fluid motion, indicative of the long period waves, dominate 

in the outer layer for        
     .  However, by adding a low freestream flow, at 

      
            , large scale eddies of higher frequencies now dominate the 

outer layer.  Furthermore, by increasing the freestream flow to       
        

    , harmonic fluid motion at a single frequency is dominant in the outer layer.        

 To further assess the phenomenon observed in Figures 6.23 and 6.24, the 

frequency spectra of temperature and velocity fluctuations in the outer layer acquired 

from the experiments and LES computations are illustrated in Figure 6.25.   
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Figure 6. 23  Waveforms of temperature and velocity fluctuations in the inner layer 

region. 
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Figure 6. 24  Waveforms of temperature and velocity fluctuations in the outer layer 

region. 
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For the pure natural convection turbulent boundary layer without any freestream flow, 

i.e.       
    , the measurements and LDSMG both predicted large scale eddies 

of approximately 0.8 Hz are the most energetic fluid motion present in the outer layer.  

Moreover, it is also apparent that eddies of lower and higher frequencies than 1 Hz 

are also in motion in this region.  At       
            , eddies of varying 

frequencies are present in the outer layer region; however, the dominant frequency is 

higher than 0.8 Hz and is around 3 Hz.  Thus, it is apparent that with the addition of a 

slight freestream flow, the larger scale eddies in the outer layer responsible for the 

most of momentum and heat transfer are being destroyed.  This is further evident by 

examining the frequency spectra in the outer layer at       
            .  From 

Figure 6.24, it was seen that the random fluid motion was markedly nonexistent and 

harmonic fluid motion was dominant at a specific fundamental frequency.  We can 

see from Figure 6.25 that this fundamental frequency is around 11 Hz.  It can be 

surmised that turbulent fluid motions are less dominant at       
            .   
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Figure 6. 25  Frequency spectra of temperature and velocity fluctuation in outer layer 

region. 

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

f requency[Hz]

f
E

t(
f
)

t0
2

 

 

LDSMG

Hattori

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

f requency[Hz]

f
E

u
(f

)

u
02

 

 

LDSMG

Hattori

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

f requency[Hz]

f
E

t(
f
)

t0
2

 

 

LDSMG

Hattori

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

f requency[Hz]

f
E

u
(f

)

u
02

 

 

LDSMG

Hattori

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

f requency[Hz]

f
E

t(
f
)

t0
2

 

 

LDSMG

Hattori

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

f requency[Hz]

f
E

u
(f

)

u
02

 

 

LDSMG

Hattori



 

220 

 

6.5 Structural Characteristics of Velocity Field 

 

The inner and outer layer characteristics of the mixed convection turbulent boundary 

layer will be assessed subsequently.  Figure 6.26 depicts the mean streamwise 

velocity at        
              with the regions pertaining to the inner and outer 

layers.  The streamwise and wall-normal velocity fluctuation intensities at  

      
              can be seen in Figures 6.27 and 6.28; it is apparent that the 

maximum fluctuation intensity occurs in the outer layer for both turbulence 

quantities.  In Figure 6.29, the Reynolds shear stress profile can be seen to attain its 

maximum value in the outer layer as well.  It is interesting to note that in the inner 

layer, especially near the wall,           is essentially zero, although it attains a slightly 

negative value near the edge of the inner layer.  This is further exemplified with the 

time series signals of    ,    and      given in Figure 6.30.  Clearly, from Figure 6.26, 

the mean streamwise velocity gradient is greater than  .  Thus, in the presence of 

substantial shear, the Reynolds shear stress near the wall is zero in a mixed 

convection turbulent boundary layer.  As it was previously noted in an earlier chapter, 

the production of turbulent kinetic energy near the wall is dominated by sweeps, 

         , in wall bounded forced convection turbulent flow.  These sweeps are a 

profound contributor to Reynolds shear stress producing events and it can be readily 

concluded from the above discussion such localized turbulence producing events are 

not found in the near wall region of a mixed convection turbulent boundary layer.  

Hence, we may conclude that the generation of turbulence in the inner layer is 

primarily driven by buoyant turbulent production. 
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 At the wall-normal location where the mean streamwise velocity reaches its 

maximum value, i.e.        ,            is greater than  .  This behavior is depicted in 

Figure 6.29.  Furthermore, Figure 6.31 illustrated the time series signals at the 

identical location and the dominance of positive amplitude fluctuations of      can be 

observed in the absence of significant shear.  Thus, the production of Reynolds shear 

stress in this region can be ascribed to the temperature fluctuations (buoyant 

production) in the boundary layer.  In the outer layer of the boundary layer, we can 

see that the Reynolds shear stress continues to increase and acquires its highest value 

in that region, see Figure 6.29.  In addition, from Figure 6.26,        becomes 

progressively less than zero and the      signals in that region can be seen to have 

frequent higher amplitude fluctuations, see Figure 6.32.  As such, the conclusion can 

be drawn that the presence of substantial shear in the outer layer contributes to the 

production of Reynolds shear stress, in addition to buoyant turbulent production.  

Therefore, in the outer layer of the mixed convection turbulent boundary layer, a 

behavior similar to that of the forced convection turbulent boundary layer exists, i.e., 

             when         .  
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Figure 6. 26  Streamwise velocity profile at       
               illustrating the 

inner and outer layers of the mixed convection turbulent boundary layer. 

 

 

Figure 6. 27  Streamwise velocity fluctuation intensity profile at       
         

       

10
-4

10
-3

10
-2

10
-1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y[m]

U
[m
s
]

inner layer

outer layer

10
-4

10
-3

10
-2

10
-1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y[m]

p
u

02
[m

s
]



 

223 

 

 

Figure 6. 28  Wall-normal velocity fluctuation intensity profile at        
    

            

 

 

 

Figure 6. 29  Reynolds shear stress profile at       
              . 
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Figure 6. 30  Time series signals of velocity fluctuations,   ,    and      near the wall 

in the inner layer of the boundary layer. 

 

Figure 6. 31  Time series signals of velocity fluctuations,   ,    and      at the edge of 

the inner and outer layers. 
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Figure 6. 32  Time series signals of velocity fluctuations,   ,    and      in the outer 

layer. 

 

6.6 Wall-Modeled Simulations 
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effects of successively coarsened meshes in the wall-normal direction in the mixed 

convection turbulent boundary layer.  The cost-savings computationally lies in the 

ability to prescribe significantly less grid cells across the boundary layer with the use 

of wall layer modeling.  This is due to the correction made to the wall heat flux and 

wall shear stress with approximate boundary conditions; the correction is usually 

applied to the wall-normal gradients of the temperature and velocity. 

 

 

Figure 6. 33 Wall heat transfer along heated vertical flat plate for         m/s and 

      Kelvin. 
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Due to the extremely high cost of simulating this turbulent flowfield, which is 

due to the fact that over half of the flat plate pertains to the laminar-to-turbulent 

transition, only two cases of wall-normal coarsened grids were selected to test the 

mixed convection wall function.  Furthermore, the limiting condition for this flow set-

up is the requirement to capture the transition region, whereby the grid resolution 

needed in the spanwise direction is profoundly high.  Although the mesh could have 

been stretched fairly gradually in the spanwise once a fully turbulent boundary layer 

commences, this would have required a fairly complicated mesh.  In addition, since 

transition occurs so far downstream, it was desired to have a fairly uniform mesh 

upstream of the region of interest in order to not corrupt the turbulent structures 

traveling in the streamwise direction.  

 

Case no. Wall-Model Δx (mm) Δy (mm) Δz (mm) # Cells across boundary layer 

1 RLES 25 0.3 2 130 

2 MCWF 25 4 2 23 

3 MCWF 25 8 2 11 

 

Table 6. 3 Mesh densities, varying wall-normal grid spacings employed in fully 

developed mixed convection turbulence region of boundary layer. 

 

Mean velocity and temperature profiles 

Figures 6.33 and 6.34 show the profiles of mean velocity and temperature, from 

which we can see the predicted wall-layer model results are in good agreement with 

the experimental data, even though the inner layer of the turbulent boundary layer is 
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not resolved.  In Figure 6.33, it is obvious from the green curve,            , has 

the first computational node off wall at the edge of the inner layer.  It is apparent with 

this type of implemented mesh that a lot of near-wall physics and structures will be 

completely unresolved; however, the expectation is that the prescribed wall function 

will correct for some of the missing near-wall dynamics. 

 

 

      

Figure 6. 34 Mean streamwise velocity profile at       
             of resolved 

and wall-layer model results. 

 

 

       

Figure 6. 35  Mean temperature profile at       
             of resolved and 

wall-layer model results. 
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Intensities of velocity and temperature fluctuations 

The streamwise velocity fluctuation intensity can be seen in Figure 6.35.  The usual 

effects of coarse grid LES computations can be seen with the apparent overprediction 

of     .  In the outer layer of the boundary layer, the agreement between the 

experiment and wall layer model results is good.  Figure 6.36 illustrate the profiles of 

temperature fluctuation intensity and we can see that      is fairly overestimated by 

coarsest mesh,            .  However, the agreement in the outer layer of mixed 

convection turbulent boundary layer was deemed acceptable. 

 

 

    

Figure 6. 36  Intensity of streamwise velocity fluctuation profiles at       
   

          of resolved and wall-layer model results. 
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Figure 6. 37  Intensity of temperature fluctuation profiles at       
             

of resolved and wall-layer model results. 
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error contributing to the overestimation of the turbulent quantities.  With all that said, 

the wall-layer model predictions as whole were satisfactory.   

 

      

      

Figure 6. 38  Streamwise turbulent heat flux profiles at       
             of 

resolved and wall-layer model results. 
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intercomponent energy transfer mechanism is said to be due to the velocity-pressure 

gradient term found in the all the components for the turbulent kinetic energy.  As to 

intricacies of how the mechanism transfers energy between components, it is said to 

be not fully understood [141].  Nevertheless, the exact nature of this mechanism is 

beyond the scope of the current effort.  To proceed, Figures 6.38-6.40 show the 

resolved normal stresses in the streamwise, wall-normal and spanwise directions, 

respectively.  In order to facilitate this illustration more clearly, it was decided to 

compare the results of the resolved and              coarse LES results.  As was 

shown before, Figure 6.38 depicts the overprediction of the streamwise velocity 

fluctuation intensity by the coarse mesh.  In Figures 6.39-40, we can see that the wall-

normal and spanwise turbulent intensities were underpredicted, as expected.  It was 

aforementioned that this behavior is a well-known coarse grid LES symptom.  From 

this analysis, it can be concluded that the same intercomponent turbulent energy 

transfer mechanism, quite possibly, exists for buoyancy affected turbulent boundary 

layer flows as well.    

   

Figure 6. 39  Normal stresses in streamwise direction illustrating effects of under-

resolving the boundary layer. 
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Figure 6. 40  Normal stresses in wall-normal direction illustrating effects of under-

resolving the boundary layer. 

 

 

 

Figure 6. 41  Normal stresses in spanwise direction illustrating effects of under-

resolving the boundary layer. 
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6.6 Closing Remarks 

The LES of mixed convection turbulent boundary layer flow over an isothermal 

vertical flat plate has led to some pertinent conclusions that will be subsequently 

summarized: 

 Imposing and increasing the freestream velocity onto a turbulent natural 

convection boundary layer causes the boundary layer thickness to diminish 

despite an increase in wall shear stress.  In addition, as the wall shear stress 

increased, the wall heat transfer decreased. 

 As the freestream flow increased, the peak of            near the wall remained 

near constant; however, the value of           in the outer layer is drastically 

suppressed.  Moreover,          was also suppressed significantly in the outer 

layer. 

 As the freestream velocity was increased to        , the mixed convection 

boundary layer did not transition to full turbulence within the computational 

domain and in the experiment.  Double peaks seen in           and           were 

stated to be indicative of a transitioning flow. 

 Negative values of      were observed very near the wall; the PDF of    and 

   indicated that low speed fluid and high temperature fluid invaded the near-

wall region. 

 Waveforms of streamwise velocity and temperature fluctuations illustrated 

high and low frequency motion encompass the near-wall region at 

      
     and          .   At       

            , turbulent 
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motions of different lengthscales were absent and harmonic fluid motion of a 

specific frequency seems to be dominant near the wall.  In the outer layer, 

large scale eddies were dominant at        
     .  However, increasing the 

forced flow caused high frequency eddies to dominate the outer layer. 

 Frequency spectra of     and    in the outer layer showed that the most 

energetic lengthscale was at 0.8 Hz at       
    .  At       

        

     and          , the most energetic fluid motion in the outer layer 

were 3 Hz and 11 Hz, respectively. 

 The production of turbulent kinetic energy dominated by sweeps in wall 

bounded forced convection turbulence was absent in the near wall region of 

the turbulent mixed convection boundary layer.  In the outer layer, it seems 

buoyant production and shear production contribute to the generation of 

Reynolds shear stress. 

 The implementation of a mixed-convection wall function predicted 

acceptable first and second order turbulent statistics by prescribing the first 

grid node off the wall at the edge of the inner layer. 

 Although the results were not illustrated in this chapter, discrepancies with 

the computed heat flux acquired from the mixed-convection wall model were 

observed.  Since the wall model corrects the SGS thermal diffusivity at the 

wall, which is employed in computing the wall heat flux, it seems there might 

be issues with using a high Reynolds number wall model in a low Reynolds 

number flow.  This further elucidates the lack of available wall models 

specifically for mixed convection turbulent wall flows. 
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 Coarse grid LES results were compared to resolved LES showed that as the 

grid was coarsened,          was overpredicted and and           were 

underestimated.  Typically, this phenomenon is a well-known symptom of 

LES of forced convection turbulent flows and it can be assumed to be caused 

by the poorly resolved intercomponent turbulent energy transfer.  Hence, this 

occurrence is present with buoyancy affected turbulent boundary layers as 

well. 
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Chapter 7: Thermal Instability of Blasius Flow Test Case 
 

7.1 Test Case Description 

The thermal instability of Blasius flow test case is based partly upon the experimental 

measurements of [28] over an isothermally heated horizontal flat plate.  This 

experiment was undertaken in a water tunnel to measure data in the developing mixed 

convection turbulent boundary layer flow.  However, the current effort makes use of 

air exclusively as the working fluid.  Thus, in the absence of any readily available 

experimental data to make direct comparisons to, it was determined to formulate a 

case comparable to those employed for the water tunnel experiments.  This case 

comprises a Reynolds number that disallows for the onset of hydrodynamic 

instability, i.e.            .  An illustration of the hydrodynamic instability 

known to occur in a forced convection boundary layer transition can be seen in Figure 

7.1.  Following the stable laminar flow near the leading edge of the plate, unstable 

Tollmien-Schlicting wave emerge, which form into lambda vortices that eventually 

break-up into full turbulence downstream.   
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Figure 7. 1 Schematic of Tollmien-Schlicting wave mode instability in forced 

convection boundary layer flow from [142]. 

 

The isothermally heated plate was 1.5 m and 0.3 m in the streamwise and 

spanwise directions, respectively.  The freestream velocity prescribed was 0.84 m/s, 

which correspond to             at the downstream end of the flat plate.  The 

freestream temperature was 298 Kelvin and a wall temperature of 394.4 Kelvin was 

used to produce sufficient buoyancy force conducive to the generation of longitudinal 

vortices.  This buoyancy force, similarly to the centrifugal force responsible for the 

emergence of vortex rolls (Görtler vortices) aligned in the streamwise direction over a 

concave wall [143], is the primary cause of the longitudinal vortices in a Blasius flow 

over a heated plate.  As aforementioned, the physics behind this phenomenon lies in 

the fact that whenever there is a force normal to the streamwise direction in a laminar 

boundary layer at a sufficiently low Reynolds number, initial counter-rotating vortex 

rolls situated in the primary flow direction are manifested.  In regards to Görtler 

vortices, Figure 7.2 shows the velocity profile over a concave surface where the 

center of curvature is at a radial location of     .  From Figure 7.2, it is apparent 

that at    ,       and at the wall,      .  Therefore, along the radial direction 
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and away from the center where     , 
     

  
   and a maximum value of     will 

be attained.  Furthermore, a minimum value of    occurs at    .  Thus, there is must 

exist a region along the radial direction where 
     

  
  .  As such, with the utilization 

of disturbance equations, Görtler was able show that the solution resulted in the form 

of streamwise counter-rotating vortices [144].  These counter-rotating streamwise 

vortices can be seen in Figure 7.3. 

 

 

Figure 7. 2 Depiction of streamwise velocity distribution along concave wall surface.  

Image adopted from [144]  

 

 

 

Figure 7. 3 Schematic of streamwise oriented counter-rotating vortices formed above 

concave wall from [144]. 

 

 

 

 



 

240 

 

 

  As it pertains to the current work, the manifestation of the streamwise 

vortices is only realized when the Grashof number excels a critical value for the 

thermal instability Blasius flow.  Figure 7.4 shows a schematic interpretation of a 

typical thermal boundary layer at low Reynolds number. 

 

 
Figure 7. 4  Schematic of flow regimes over isothermally heated flat plate 

experiment, from [28]. 

 

7.2 Computational Setup 

 

A schematic of the computational domain along with the boundary conditions are 

illustrated in Figure 7.5.  As it can be seen from the figure, uniform freestream values 

for the velocity and temperature were prescribed at the inflow boundary.  

Immediately ahead of the freestream boundary, there is a 0.1 m entrance length 

appropriately implemented to avert a sudden start of the boundary layer.  The 

isothermally heated plate length was 1.8 m and the simulation domain spanned 0.30 

m in the spanwise direction.  In the wall-normal direction, the computational domain 

was 1.0 m.  The spanwise and wall-normal computational domain lengths 

corresponds to     and    , respectively.  The size of the simulation domain was 
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iteratively selected by examining the thickness of the thermal boundary layer.  

Similarly to the two prior test cases, the spanwise direction was treated as a 

homogenous boundary. 

 

 

 
 

 
Figure 7. 5  Computational domain and boundary conditions for vortex instability test 

case. 
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7.2.1 Computational Grid 

 

Building upon the previous experiences acquired from the other test cases and the 

relatively small size of the simulation domain needed to capture the growth and 

subsequent breakup of streamwise vortices, the grid generation process was fairly 

straightforward.  In the freestream entrance region,          was employed and a 

uniform grid spacing of          was prescribed along the heated flat plate.  The 

spanwise grid resolution was maintained at         and the wall-normal grid 

spacing was          .  An illustration of the computational mesh can be seen in 

Figure 7.6. 

 

 
Figure 7. 6  Computational mesh illustration employed for thermal instability of 

Blasius flow test case. 

 

7.2.2 Simulation Details 

 

The numerical simulation details utilized for the vortex instability case is identical to 

those implemented for the Tsuji & Nagano test case.  In this test case, however, 

appropriate freestream values for temperature and velocity were implemented at the 

inflow and the internal domain of the simulation field. 
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7.3 Wall-Resolved Simulations 

 

As opposed to the exhaustive and extensive efforts that have been put forth to 

experimentally and numerically investigate the hydrodynamic instability of a Blasius 

flow, the vortex instability of the Blasius flow is incredibly lacking in research 

efforts.  To the author’s knowledge, these LES results are the only relatively 

extensive predictions to date.  Thus, this numerical effort hopes to shed some light 

upon the empirical and experimental results available in current literature.  In moving 

forward, wall resolved LES results will be presented in the subsequent subsections.  

Heat Transfer Correlations 

 Figure 7.7 depicts the heat transfer coefficient in the Blasius flow heated from 

below.  Up to a downstream distance of approximately 0.5 m, it is apparent the 

boundary layer is dominated by laminar forced convection dynamics.  Thus, we see 

the correlation between laminar flow theory and the LES prediction.  In this region, 

the effects of the buoyancy are negligible compared to the momentum of the 

incoming freestream flow.  And without any significant free convection effects, the 

wall heat transfer progressively decreases with increasing streamwise distance, x.  

Subsequently, around the streamwise distance of       , an abrupt increase in wall 

heat transfer is observed.  This rapid increase in heat transfer, as will be illustrated 

later, is ascribed to the onset of longitudinal vortices.  These streamwise vortex rolls 

create a secondary finite amplitude flow that enhances the wall heat transfer 

especially during the downwash motion of the vortices as they bring colder higher 

momentum fluid towards the wall.  Eventually, these ordered counter-rotating 

streamwise vortex rolls become increasingly unstable as they travel downstream and 
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break-up into fully developed turbulence.  The onset and break-up of these vortices 

spans roughly        and a fully developed turbulent boundary layer commences 

around       , see Figure 7.7.  In the fully turbulence region, a relatively constant 

heat transfer coefficient seems to prevail along the heated flat plate.  In contrast to a 

decreasing heat transfer coefficient with increasing x for a fully developed forced 

convection turbulent boundary layer, the constant heat transfer coefficient is typical 

of turbulent free convection boundary layer flow.  In Figure 7.8, wall heat transfer 

rates correlated with       
     and       

     are shown in the laminar forced 

convection, transition and turbulent free convection regimes.  The most profound 

takeaway from Figure7.5 is the ability of the LES to accurately validate the criteria of 

regimes given by [28].  Those criteria indicating the different regimes will be 

repeated here for convenience and are: 
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Figure 7. 7  Variation of heat transfer coefficient along heated flat plate illustrating 

different flow regimes. 

 

 
 

Figure 7. 8   Heat transfer rates correlated with       
     and       
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From Figure 7.8, it can be seen that laminar forced convection flow is the 

mode of dominance for       
         and the LES prediction was able to 

replicate that behavior.  In the transition range,           
        , which 

marks the onset and break-up of the longitudinal vortices, the LES result successfully 

captured this phenomenon.  It is obvious from Figures 7.7 and 7.8 that up to 

      
        , the wall heat transfer is affected by forced convection effects, 

although the effects become increasingly enfeebled as       
     increases.  In the 

transition region, it can be assumed that inertia and buoyancy effects are both 

important.  However, the buoyancy effects become more dominant once the 

longitudinal vortices break-up into full turbulence.  This is quite evident from Figure 

7.4; the heat transfer coefficient is nearly independent of the Reynolds number.  The 

Reynolds number independence is characteristic of the wall heat transfer behavior 

observed in fully developed natural convection turbulence over a horizontal heated 

flat plate without any freestream flow [28].  The Reynolds number independence can 

also be seen in Figure 7.8 as the wall heat transfer increases as a function of       .     

Near-Wall Boundary Layer Structure 

 

Figure 7.9 depict the growth of the instantaneous streamwise velocity and thermal 

boundary layer on the Blasius flow heated from below.  It is interesting to note that 

from Figure 7.7, the onset of longitudinal vortices was observed to occur around a 

streamwise location of       m; from Figures 7.9, the boundary layer does not 

markedly increase in the presence of the streamwise vortices.  However, it can be 

seen that the boundary layer thickness immediately increases at the inception of full 

turbulence, around streamwise distance of        m.   
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 The isosurface of      criterion, which essentially illustrates the presence of 

coherent structures in the near-wall layer, can be seen in Figure 7.10.  Figure 7.10 

show the absence of streamwise structures near the leading edge of the heated flat 

plate, in what seems to be “quiescent region”.  Further downstream, we can see that 

strands of streamwise oriented structures exist around         m.  These streamwise 

structures, i.e. longitudinal vortices, seem to be profoundly coherent up to       m.  

Thereafter, counter-rotating streamwise vortices can still be seen, except they seem to 

be gradually merging with increasing streamwise distance.  Moreover, instances of 

spanwise meandering of the vortices is apparent as well.  Such a behavior classifies 

the transition region.  Eventually, around to       m, the longitudinal vortices have 

apparently disintegrated into full scale turbulence.  A magnified view of the coherent 

structures in the fully developed turbulent boundary layer flow region can be seen in 

Figure 7.11.  It is apparent that the existence of clearly defined quasi-streamwise 

vortices is absent in the near-wall flow topology.  A combination of streamwise and 

spanwise situated structures can be seen near the wall without a dominant directional 

orientation.  These near-wall structures profoundly differ from those typically seen in 

forced convection turbulent boundary layers.  The tilting of structures in the spanwise 

direction, caused by mutual induction, cannot be seen near the wall for this flow 

configuration.      
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Figure 7. 9  Evolution of instantaneous streamwise velocity (left) and instantaneous 

temperature along heated flat plate. 
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Figure 7. 10  Isosurface of     criterion illustrating formation and eventual break-

up of longitudinal vortices. 
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Figure 7. 11  Isosurface of     criterion in fully developed turbulent flow region of 

Blasius flow heated from below. 

 

 

 

Mean and fluctuation intensity profiles of Temperature 

 

To proceed with the analysis of the flowfield following the breakup of the 

longitudinal vortices into full turbulence, it would necessary to do so with the 

utilization of available turbulent free convection flow experiments.   

 Figure 7.12 show a near-wall blown-up view of the mean temperature profile 

at the streamwise location of         .  Following in the footsteps of [145], [146], 

[147], we define the thermal layer thickness,    , as the wall-normal location where 

the extrapolation of the linear part of the mean temperature profile near the wall 

intersects with the line of constant ambient temperature,   .  Doing as such,     was 

approximated to be 3 mm.  In Figure 7.13, the temperature fluctuation intensity is 

shown with a blue line to depict the edge of the thermal layer.  The peak of the 
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temperature fluctuation intensity occurs near the edge of the thermal layer and in 

order to explain the peak, we can take a look at Figure 7.14.  The mean temperature 

profile along the normalized wall-normal distance  
 

   
,  is shown in Figure 7.14.  Also 

depicted in aforementioned figure are the conduction layer, conduction and 

convection layer, and convection layer [148].  The conduction layer is essentially the 

region next to wall where heat transfer is by diffusion only.  In the conduction and 

convection layer, heat transfer occurs via diffusion and rapid mixing (buoyancy 

induced convection) away from the wall.  The convection layer is a region where 

diffusion of heat is absent and convection is dominant.  In the current flow 

configuration, the convection layer commences around  
 

   
   ; the work of [147], 

[148]  reported the convection layer began at approximately  
 

   
   .  We can 

proceed to explain the peak of temperature fluctuation intensity near the edge of the 

thermal layer.  The conduction layer near the wall grows by diffusion and gradually 

becomes unstable.  As a result of the instability within the conduction layer, the layer 

erupts and releases hot blobs of turbulent fluid (thermal).  As such, these recurring 

intermittent events inside the conduction layer is the reason for the temperature 

fluctuation peak near the edge of the thermal layer.     
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Figure 7. 12  Magnified illustration of mean temperature wall profile at         

indicating approximation of thermal layer thickness. 

 

 

 
Figure 7. 13  Temperature fluctuation intensity at          with blue line depicting 

edge of thermal layer thickness. 
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Figure 7. 14  Mean temperature profile at         indicating the three regions in 

the wall-normal direction. 

 

 

Flow Visualization 

It was previously mentioned that the reason for the temperature fluctuation intensity 

peak near the edge of the thermal layer was due to the unstable growth of the 

conduction layer.  The conduction layer subsequently erupts and releases hot 

turbulent buoyant fluid.  In order to illustrate the characteristics of these structures 

near the wall, successive flow grayscale visualization at 
 

  
      intervals at a 

streamwise location of          can be seen in Figure 7.16.  It can be seen from 

Figure 7.16 that the characteristic orientation of the structures is in the vertical 

direction, even though some meandering in the spanwise can be seen as the thermals 

get further away from the wall.  As these structures get further away from the wall, 

they become weaker as they interact with colder turbulent fluid.  Consequently, these 

thermal plumes loose heat to their surroundings and erode as they rise.  Observable 

mushroom type elliptical structures can be seen in some of the structures presented in 
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Figure 7.15 and is indicative of the front of the thermals.  In addition, some of these 

structures are seen to merge as they rise prior to erosion. 

 

 

         
a) t=100 sec                      b) t=100.05 sec                    c) t=100.1 sec 

  

          
       d) t=100.15 sec                  e) t=100.2 sec                      f) t=100.25 sec 

 

          
       g) t=100.3 sec                      h) t=100.35 sec                  i) t=100.4 sec 

 

          
       j) t=100.45 sec                   k) t=100.5 sec                      l) t=100.55 sec 

 

 

Figure 7. 15  Successive flow visualization of temperature fluctuations in y-z plane 

illustrating bursting thermals pattern over heated flat plate at streamwise location 

       . 

 

 

 



 

255 

 

It would be expected to see the thermal plumes shown in Figure 7.15 develop 

along the streamwise direction in the fully turbulent flow region.  With this notion in 

mind, Figure 7.16 illustrates the     isosurface in the x-y plane.  The isosurfaces 

depicts the orientation of the structures in the fully turbulent region of the flowfield 

and it can be seen that these structures are inclined forward, while some seem to be in 

a relatively vertical position.  These structures are due to the thermal plumes bursting 

from the unstable conduction layer.  As they travel away from the near-wall region, 

the streamwise global motion slowly sweeps them horizontally causing the apparent 

forward inclination. 
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Figure 7. 16  Isosurface of     in the x-y plane depicting inclined oriented 

structures due to attenuated thermal plumes. 
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7.4 Closing Remarks 

The thermal instability of the Blasius flow was examined using LES and the 

numerical data was only validated with engineering and empirical solutions due to the 

extensive lack of experimental data.  Nonetheless, the following conclusions were 

drawn and are summarized below: 

 The three flow regimes, laminar forced convection, transition and turbulent 

free convection, were validated with the empirical criteria of [28]. 

 The formation and eventual break-up of the streamwise vortices was 

numerically validated employing the Q criterion feature identification 

scheme.  The break-up of the vortices was seen to occur as they meandered 

in the spanwise direction and merge as they traveled in the streamwise 

direction. 

 The near-wall flow topology observed in the turbulent free convection 

regime did not have a dominant direction and lacked the orientation seen in 

forced convection turbulent wall flows. 

 Bursts of turbulent hot fluid were numerically illustrated to be the dominant 

mechanism for turbulent in the downstream region.  These thermals emerged 

as a result of the unstable growth of the conduction layer near the wall.  In 

addition, the temperature fluctuation intensity attained its maximum value 

near the edge of the conduction layer. 
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Chapter 8: Conclusions and Future Efforts 
 

 

The primary goal of this thesis was to assess the predictability, practicality and 

applicability of the LES methodology to various wall bounded turbulent flows 

strongly affected by the presence of the gravitational buoyancy force in the absence 

and presence of a forced flow.  Through a variety of numerical experiments and 

validations, it was determined that the Large Eddy Simulation approach can definitely 

be of profound use for these types of flow configuration. 

8.1 Summary of Key Observations 

8.1.1 Tsuji & Nagano Test Case 

The wall-resolved and wall-layer modeled LES of natural convection turbulent 

boundary layer over an isothermal vertical plate was performed; based upon the 

acquired results and analysis, the following conclusions were drawn: 

 Excellent agreement was achieved with the experimental data for the first and 

second order turbulent statistics. 

 The study undertaken to ascertain the required width of the simulation 

domain in the spanwise direction needed to sufficiently capture turbulent 

structures revealed δ, the thickness of the turbulent boundary layer, can be 



 

259 

 

used.  This enabled a cost-effective computed turbulent flowfield that resulted 

in high fidelity results.  

 It was discovered that the exact location of transition to turbulent does not 

have to match the experiment.  The important parameter following the start of 

a fully turbulent boundary layer is the growth of the boundary layer thickness, 

δ.  The numerical study of forcing the boundary layer transition to match 

those of the experiment illustrated that it is the “time-spent” in full turbulence 

by the flowfield that ought to match the experiment in order to make a fair 

comparison between the LES and measured data. 

 Wall-layer modeling LES results showed that prescribing approximately 10 

grid cells across the boundary layer thickness can give reasonably accurate 

first and second order statistics, in addition to highly accurate reconstruction 

of the wall heat flux.  The utilization of 10 grid cells across the boundary 

layer resulted in the first computational node off the wall being placed in the 

outer layer of the turbulent boundary layer.  This realization resulted in a 

much cheaper simulation easily applicable to engineering calculations. 

 The production of turbulent kinetic energy was observed to be nearly equally 

impacted by shear and buoyant productions.  The shear production was 

dominant near the wall and in the outer edge of the turbulent boundary layer.  

In the middle of the boundary layer, buoyant production of turbulence was 

dominant. 
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8.1.2 Hattori Test Case 

The Hattori test case comprised the wall-resolved and wall-layer modeled LES of 

mixed convection turbulent boundary layer over an  isothermal vertical flat plate.  For 

this case,  

 Excellent agreement was achieved with experimental measurements for the 

first and second order turbulent statistics.  The only discrepancy in the results 

was due to the near-wall behavior of the streamwise turbulent heat flux 

computed by the LES as the freestream velocity was increased to        .  

This discrepancy was attributed to the inadequate grid resolution required to 

resolve the extremely thin near-wall flowfield. 

 Despite an increase in wall shear stress as the freestream velocity was 

increased, the boundary layer thickness diminished due the suppression of the 

large length scales in the outer layer.  Since larger eddies are mostly 

responsible for the majority of mixing in turbulent boundary layers, it was 

determined that the decrease in wall heat transfer was a consequence of the 

suppression of the outer layer large length scales.  Furthermore, increasing the 

freestream resulted in dominance of higher frequency eddies in the outer 

layer.  The frequency of the most dominant eddies ranged from ~ 1Hz to 11 

Hz as the freestream velocity increased. 

 It was observed during this research that the wall-layer modeling of turbulent 

mixed convection computed acceptable first and second order turbulent 

statistics that were comparable to the experimental data.  However, 

discrepancies in the wall heat flux acquired from the wall model were noted 
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when compared to the wall-resolved wall heat flux.  It can be understood that 

the cause of this discrepancy can be due to the blending of the asymptotic wall 

functions for high Grashof and Reynolds numbers.  For this particular flow 

configuration, a low forced flow was applied resulting in a significantly low 

Reynolds number flow.  Hence, given the non-existence of any suitable 

mixed-convection law of the wall, on-going efforts to derive and implement 

an appropriate wall model will be required to accurately reconstruct the wal 

heat flux.    

8.1.3 Thermal Instability of Blasius Flow Test Case 

Having tested and validated the fidelity of the approach and flow solver employed in 

the current work, it was decided to compute the thermal instability over an isothermal 

horizontal flat plate.  The conclusions drawn are as follows: 

 The three flow regimes, laminar forced convection, mixed convection 

transition to turbulence and turbulent free convection were numerically 

validated with LES. 

 The formation and eventual break-up of the longitudinal vortices were 

qualitatively validated using the Q criterion vortex feature identification 

scheme. 

 The near-wall flow topology in the turbulent free convection regime did not 

have a dominant direction and lacked the orientation seen in forced 

convection turbulent wall flows. 

 Bursts of turbulent hot fluid were numerically illustrated to be the dominant 

turbulent mechanism in the downstream region.  The blobs of hot turbulent 
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fluid, i.e. thermals, emerged as a consequence of the intermittent nature of the 

conduction layer near the wall. 

 

8.2 Recommendations for Future Efforts and Suggestions 

An essential outcome of this research was the insight acquired into the limitations 

posed by the utilized approach and how they could be possibly improved upon.  Some 

of these improvements pertain to the LES methodology as a whole, while some are 

pertinent to the on-going improvement and enhancement of the OpenFOAM® solver.  

These suggestions will be subsequently touched upon and elaborated as follows: 

 The issue of turbulent inlets in LES is a fairly well known problem, to date.  

Even though there are some available methodologies that can be employed to 

prescribe some turbulence at the inlet of a simulation domain, some of these 

methods fail to accurately represent realistic spatial scales between the grid 

spacing and integral length scales of the particular flow topology.  The 

ability of a turbulent methodology to reproduce reasonably accurate turbulent 

and mean statistics of the flow at the inlet is challenging for spatially 

developing turbulent boundary layer flow.  A possible approach will be the 

implementation of the turbulent synthesis inlet method.  Such a methodology 

essentially imposes some random noise over the mean inlet profile by 

artificially reconstructing the turbulent structures with the appropriate scales 

and spacing.  With the implementation of turbulent inlet in the OpenFOAM® 

library of codes, the computational cost of the simulations undertaken in this 

thesis will be profoundly reduced.  Furthermore, such an enhancement will 
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make the code more applicable to engineering calculations that typically 

require fast and efficient numerical simulations. 

 SGS modeling in LES is a crucial aspect of acquiring accurate results.  The 

improvement of SGS models will be required in order to increase the 

utilization and acceptance of LES as the main tool in numerically simulating 

turbulence.  In the aspect of buoyancy affected turbulent boundary layer 

flows, mostly all the SGS models are based upon the premise that production 

of turbulent kinetic energy is attributable to shear.  The inclusion of buoyant 

production in SGS models can possibly have profound effects upon the 

accuracy of results for turbulent flowfields affected by buoyancy.  Another 

issue of SGS models observed in the current effort is the effects of 

intercomponent turbulent energy transfer.  In order to fully enable 

engineering calculations, coarser LES grids will be required; thus, further 

effort may be required to comprehend the phenomenon of intercomponent 

turbulent energy transfer and SGS modeling.  In addition, employing coarser 

LES grids means larger anisotropic length scales will be modeled by the SGS 

model.  In light of this, the utilization and further study of the full Reynolds 

stress closure of the SGS stresses will be necessary.  This essentially 

removes the SGS isotropy assumption and quite possibly, allow for the use 

of much coarser meshes in LES computation.  It should be noted that such an 

approach require the calculation of 6 additional transport Reynolds stress 

equations, 3 equations for the Reynolds normal stresses and 3 equations for 

the Reynolds shear stresses.  The question will be if the accuracy gained with 
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the utilization of such SGS model is worth the additional computational cost; 

this is yet to be determined. 

  A profound limitation encountered in the current work was the extensive 

computational time required to perform the required simulations.  On 

average, approximately 27,000 grid cells were prescribed to each core of the 

computational hardware employed in this research; the number of cores used 

ranged from 32 to 256, depending upon the computational requirements of 

the numerical simulation.  It was observed that more efficient parallel 

algorithms would potentially drastically reduce the time needed in simulating 

wall turbulent flows.  Some of the simulations in this thesis took nearly 2 

months to complete and further optimization of parallel algorithms can help 

to reduce the simulation time. 

 In gaining further comprehension of the current work, a detailed DNS study 

of the natural convection turbulent boundary layer without the use of the 

Boussinesq approximation will be profoundly helpful.  To be more specific, 

the near-wall turbulent structures and flow-dynamics needs to be further 

understood.  Acquiring such knowledge may potentially be helpful in 

developing SGS models for buoyancy affected turbulent wall flows.  

 Since this research effort was part of a building block to enable the 

computation of in-flight next-generation aircraft engines pool fires using 

LES, an extension of the current code will be required to enable flame spread 

simulations in such an environment.  This environment may very well 

consist of a turbulent freestream entering the engine compartment.  In light 
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of this, given the myriad of complexities inherent to such a flow, a 

reasonable path forward would be the initial calculation and understanding of 

ground-test aircraft engine compartment fires. 

8.3 Closing Comments 

This thesis illustrated the impressive accuracy that can be achieved with LES in 

resolving buoyancy affected turbulent boundary layer flows.  Presently, the utilization 

of LES as a practical engineering tool in simulating turbulence is somewhat over-

shadowed by RANS.  In order to take LES to a profound level whereby its 

computational cost will be comparable to that of RANS, a decent amount of future 

work and improvements will have to be made to the SGS models currently being 

used.  Nonetheless, it does seem that LES will be the go-to tool in simulating 

turbulence in the coming years.  Simply put, LES has the ability to surpass RANS and 

DNS as the primary turbulence simulating tool and these capabilities seem to become 

promising with time. 
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