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1. INTRODUCTION

The complementary error function is defined as follows (see Figure 1) [Abramowitz
and Stegun 1972]

erfc(z) =
2√
π

∫ ∞

z

e−t2dt. (1)

Consider the following weighted summation of N erfc functions each centered at
{xi}N

i=1.

E(y) =
N∑

i=1

qi erfc(y − xi). (2)

The scalars qi will be referred to as the weights. Direct computation of (2) at M
points {yj}M

j=1 is O(MN). In this report we will derive an ε-exact approximation
algorithm to compute the same in O(M + N) time.

For any given ε > 0, Ê is an ε − exact approximation to E if the maximum
absolute error relative to the total weight Qabs =

∑N
i=1 |qi| is upper bounded by ε,

i.e.,

max
yj

[
|Ê(yj)− E(yj)|

Qabs

]
≤ ε. (3)

The constant in O(M + N), depends on the desired accuracy ε, which however can
be arbitrary. In fact for machine precision accuracy there is no difference between
the direct and the fast methods. The algorithm is inspired by the fast multipole
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Fig. 1. The erfc function.

methods proposed in computational physics [Greengard 1994]. The fast algorithm
is based on using a infinite series expansion for the erfc function and retaining only
the first few terms contributing to the desired accuracy ε.

2. SERIES EXPANSION

Several series exist for the erfc function (See for e.g. Chapter 7 in [Abramowitz
and Stegun 1972]). Some are applicable only to a restricted interval, while other
need a large number of terms to converge. We use the following series derived by
Beauliu [Beauliu 1989; Tellambura and Annamalai 2000].

erfc(x) = 1− 4
π

2p−1∑

n=1
n odd

e−n2h2

n
sin (2nhx) + error(x), (4)

where

|error(x)| <

∣∣∣∣∣∣∣
4
π

∞∑

n=2p+1
n odd

e−n2h2

n
sin (2nhx)

∣∣∣∣∣∣∣
+ erfc

( π

2h
− |x|

)
. (5)

Here, p is the truncation number and h is a real number related to the sampling
interval. These kind of series are of interest in the field digital communications
wherein the noise is modeled as a Gaussian random variable. The series is derived
by applying a Chernoff bound approach to an approximate Fourier series expansion
of a periodic square waveform [Beauliu 1989].

This series converges rapidly especially as x → 0. Figure 2(a) shows the max-
imum absolute error between the actual value of erfc 1 and the truncated series

1There is no closed form expression to compute erfc directly. The implementation in MATLAB
uses a rational Chebyshev approximation and the accuracy is not adequate enough. In order to
compare the error between the actual and the series approximation we use the Maple implemen-
tation(feval(maple(’erfc’),x))) which provides very high precision using symbolic integration.
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Fig. 2. (a) The maximum absolute error between the actual value of erfc and the truncated
series representation (Eq. 4) as a function of the truncation number p for any x ∈ [−4, 4].
The error bound (Eq. 6) is also shown. (b) A sample plot of the actual erfc function and
the p = 3 truncated series representation. The error as a function of x is also shown in
the lower panel.

representation as a function of p. For example for any x ∈ [−4, 4] with p = 12 the
error is less than 10−6. We have to choose p and h such that the error has to be
less than ε. We further bound the first term in (5) as follows (See Appendix 1 for
a derivation).

|error(x)| < 2√
πh

erfc ((2p + 1)h) + erfc
( π

2h
− |x|

)
. (6)

For a fixed p and h as |x| increases the error increases. Therefore as |x| increases,
h should decrease and consequently the series converges slower leading to a large
truncation number p.

3. FAST SUMMATION ALGORITHM

We will now derive a fast algorithm to compute E(y) based on the series (4).

E(y) =
N∑

i=1

qierfc(y − xi)

=
N∑

i=1

qi


1− 4

π

2p−1∑

n=1
n odd

e−n2h2

n
sin {2nh(y − xi)}+ error


 . (7)

Ignoring the error term the sum E(y) can be approximated as

Ê(y) = Q− 4
π

N∑

i=1

qi

2p−1∑

n=1
n odd

e−n2h2

n
sin {2nh(y − xi)}, (8)
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where Q =
∑N

i=1 qi. The terms y and xi appear together in the argument of
the sin function. We separate them using the trignometric identity sin (α− β) =
sin (α) cos (β)− cos (α) sin (β).

sin {2nh(y − xi)} = sin {2nh(y − x∗)− 2nh(xi − x∗)}
= sin {2nh(y − x∗)} cos {2nh(xi − x∗)}
− cos {2nh(y − x∗)} sin {2nh(xi − x∗)}. (9)

Note that we have shifted all the points by x∗. Substituting the separated repre-
sentation (9) in Eq. 8 we have

Ê(y) = Q− 4
π

N∑

i=1

qi

2p−1∑

n=1
n odd

e−n2h2

n
sin {2nh(y − x∗)} cos {2nh(xi − x∗)}

+
4
π

N∑

i=1

qi

2p−1∑

n=1
n odd

e−n2h2

n
cos {2nh(y − x∗)} sin {2nh(xi − x∗)}. (10)

Exchanging the order of summation and regrouping the terms we have the following
expression.

Ê(y) = Q− 4
π

2p−1∑

n=1
n odd

[An sin {2nh(y − x∗)} −Bn cos {2nh(y − x∗)}] . (11)

where

An =
e−n2h2

n

N∑

i=1

qi cos {2nh(xi − x∗)} and Bn =
e−n2h2

n

N∑

i=1

qi sin {2nh(xi − x∗)}

(12)

4. RUNTIME AND STORAGE ANALYSIS

Note that the coefficients {An, Bn}2p−1
n=1(n odd) do not depend on y. Hence each of An

and Bn can be evaluated separately is O(N) time. Since there are p such coefficients
the total complexity to compute A and B is O(2pN). The term Q =

∑N
i=1 qi can

also be precomputed in O(N) time. Once A, B, and Q have been precomputed,
evaluation of Ê(y) requires O(2p) operations. Evaluating at M points is O(2pM).
Hence the computational complexity has reduced from the quadratic O(NM) to the
linear O((2p + 1)N + 2pM). We need space to store the points and the coefficients
A and B. Hence the storage complexity is O(N + M + 2p).

5. DIRECT INCLUSION AND EXCLUSION OF FARAWAY POINTS

Note that z = (y − xi) ∈ [−∞,∞]. The truncation number p required to approxi-
mate erfc(z) can be quite large for large |z|. Luckily erfc(z) → 2 as z → −∞ and
erfc(z) → 0 as z →∞ very quickly [See Figure 3(a)]. Since we are interested in the
CS-TR-4848/UMIACS-TR-2007-03
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Fig. 3. (a) The erfc function (b) The value of r for which erfc(z) < ε, ∀z > r

result only to a certain precision ε we can use the following approximation.

erfc(z) ≈




2 if z < −r
p-truncated series if −r ≤ z ≤ r
0 if z > r

(13)

The bound r and the truncation number p have to be chosen such that for any z
the error is always less than ε. From Figure 3(b) we can see that for error of the
order 10−15 we need to use the series expansion for −6 ≤ z ≤ 6.

However we cannot check the value of (y − xi) for all pairs of xi and y. This
would lead us back to the quadratic complexity. To avoid this, we subdivide the
points into clusters.

6. SPACE SUB-DIVISION

We uniformly sub-divide the space into K intervals of length 2rx. The N source
points are assigned into K clusters, Sk for k = 1, . . . , K with ck being the center of
each cluster. The aggregated coefficients are now computed for each cluster and the
total contribution from all the influential clusters is summed up. For each cluster
if |y − ck| ≤ ry then we will incorporate the series coefficients. If (y − ck) < −ry

then we will include a contribution of 2Qk. If (y− ck) > ry then we will ignore that
cluster. Hence

Ê(y) =
∑

|y−ck|≤ry


Qk − 4

π

2p−1∑

n=1
n odd

[
Ak

n sin {2nh(y − ck)} −Bk
n cos {2nh(y − ck)}]




+
∑

(y−ck)<−ry

2Qk. (14)
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where

Ak
n =

e−n2h2

n

N∑

i=1

qi cos {2nh(xi − ck)},

Bk
n =

e−n2h2

n

N∑

i=1

qi sin {2nh(xi − ck)}, and

Qk =
∑

∀xi∈Sk

qi. (15)

The computational complexity to compute A,B, and Q is still O((2p + 1)N) since
each xi belongs to only one cluster. Let l be the number of influential clusters, i.e.,
the clusters for which |y − ck| ≤ ry. Evaluating Ê(y) at M points due to these l
clusters is O(2plM). Let m be the number of clusters for which (y − ck) < −ry.
Evaluating Ê(y) at M points due to these m clusters is O(mM). Hence the total
computational complexity is O((2p + 1)N + (2pl + m)M). The storage complexity
is O(N + M + (2p + 1)K).

7. CHOOSING THE PARAMETERS

Given any ε > 0, we want to choose the following parameters,

—rx (the interval length),
—r (the cut off radius ),
—p (the truncation number), and
—h such that

for any target point y
∣∣∣∣∣
Ê(y)− E(y)

Qabs

∣∣∣∣∣ ≤ ε, (16)

where Qabs =
∑N

i=1 |qi|.
Let us define ∆i to be the point wise error in Ê(y) contributed by the ith source

xi. We now require that

|Ê(y)− E(y)| =
∣∣∣∣∣

N∑

i=1

∆i

∣∣∣∣∣ ≤
N∑

i=1

|∆i| ≤
N∑

i=1

|qi|ε. (17)

One way to achieve this is to let |∆i| ≤ |qi|ε ∀i = 1, . . . , N.
For all xi such that |y − xi| ≤ r we have

|∆i| < |qi| 2√
πh

erfc ((2p + 1)h)
︸ ︷︷ ︸

Te

+ |qi|erfc
( π

2h
− r

)

︸ ︷︷ ︸
Se

. (18)

We have to choose the parameters such that |∆i| < |qi|ε. We will let Se < |qi|ε/2.
This implies that

π

2h
− r > erfc−1 (ε/2) . (19)
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Hence we have to choose

h <
π

2
(
r + erfc−1 (ε/2)

) . (20)

We will choose

h =
π

3
(
r + erfc−1 (ε/2)

) . (21)

We will choose p such that Te < |qi|ε/2. This implies that

2p + 1 >
1
h

erfc−1

(√
πhε

4

)
. (22)

We choose

p =
⌈

1
2h

erfc−1

(√
πhε

4

)⌉
. (23)

Note that as r increases h decreases and consequently p increases. If x ∈ (r,∞] we
approximate erfc(x) by 0 and if x ∈ [−∞,−r) then approximate erfc(x) by 2. If we
choose

r > erfc−1(ε), (24)

then the approximation will result in a error < ε. In practice we choose

r = erfc−1(ε) + 2rx, (25)

where rx is the cluster radius. For a target point y the number of influential clusters

(2l + 1) =
⌈

2r

2rx

⌉
. (26)

Let us choose rx = 0.1erfc−1(ε). This implies 2l + 1 = 12. So we have to consider
n = 6 clusters on either side of the target point. Summarizing the parameters are
given by

(1) rx = 0.1erfc−1(ε).
(2) r = erfc−1(ε) + 2rx.
(3) h = π/3

(
r + erfc−1 (ε/2)

)
.

(4) p =
⌈

1
2herfc−1

(√
πhε
4

)⌉
.

(5) (2l + 1) = dr/rxe.

8. NUMERICAL EXPERIMENTS

In this section we present some numerical studies of the speedup and error as a
function of the number of data points and the desired error ε. The algorithm was
programmed in C++ with MATLAB bindings and was run on a 1.6 GHz Pentium
M processor with 512MB of RAM.

Figure 4 shows the running time and the maximum absolute error relative to Qabs

for both the direct and the fast methods as a function of N = M . The points were
normally distributed with zero mean and unit variance. The weights qi were set to
1. We see that the running time of the fast method grows linearly, while that of the

CS-TR-4848/UMIACS-TR-2007-03
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Fig. 4. (a) The running time in seconds and (b) maximum absolute error relative to Qabs

for the direct and the fast methods as a function of N = M . For N > 3, 200 the timing
results for the direct evaluation were obtained by evaluating the sum at M = 100 points
and then extrapolating (shown as dotted line).
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Fig. 5. (a) The speedup achieved and (b) maximum absolute error relative to Q for the
direct and the fast methods as a function of ε for N = M = 3, 000.

direct evaluation grows quadratically. We also observe that the error is way below
the desired error thus validating our bound. For example for N = M = 51, 200
points while the direct evaluation takes around 17.26 hours the fast evaluation
requires only 4.29 seconds with an error of around 10−10. Figure 5 shows the
tradeoff between precision and speedup. An increase in speedup is obtained at the
cost of reduced accuracy.
CS-TR-4848/UMIACS-TR-2007-03



Fast weighted summation of erfc functions · 9

Appendix 1 : Error bound

We will bound the first term in (5) as follows.
∣∣∣∣∣∣∣
4
π

∞∑

n=2p+1
n odd

e−n2h2

n
sin (2nhx)

∣∣∣∣∣∣∣
≤ 4

π

∞∑

n=2p+1
n odd

e−n2h2

n
|sin (2nhx)|

≤ 4
π

∞∑

n=2p+1
n odd

e−n2h2

n
[ Since |sin (2nhx)| ≤ 1]

<
4
π

∞∑

n=2p+1
n odd

e−n2h2

<
4
π

∫ ∞

2p+1

e−x2h2
dx <

2√
πh

[
2√
π

∫ ∞

(2p+1)h

e−t2dt

]

=
2√
πh

erfc((2p + 1)h)

Appendix 2 : Gradient computation in ranking problem

This is an appendix to the paper [Raykar et al. 2007]. We show how the gradient
computation in a ranking problem boils down to summation of erfc functions. Refer
to the paper for more details regarding the ranking problem.

We will isolate the key computational primitive contributing to the quadratic
complexity in the gradient computation. The following summarizes the different
variables in analyzing the computational complexity of evaluating the gradient.

—We have S classes with mi training instances in the ith class.
—Hence we have a total of m =

∑S
i=1 mi training examples in d dimensions.

—|E| is the number of edges in the preference graph, and
—M2 =

∑
Eij

mimj is the total number of pairwise preference relations.

For any x we will define z =
√

3wT x/(π
√

2). Note that z is a scalar and for a given
w can be computed in O(dm) operations for the entire training set. We will now
rewrite the gradient as

g(w) = −λw −∆1 +
1
2
∆2 − 1

2
∆3, (27)

where the vectors ∆1, ∆1, and ∆3 are defined as follows–

∆1 =
∑

Eij

mi∑

k=1

mj∑

l=1

(xi
k − xj

l ).

∆2 =
∑

Eij

mi∑

k=1

mj∑

l=1

xi
kerfc(zi

k − zj
l ).

∆3 =
∑

Eij

mi∑

k=1

mj∑

l=1

xj
l erfc(z

i
k − zj

l ). (28)

CS-TR-4848/UMIACS-TR-2007-03
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The vector ∆1 is independent of w and can be written as follows–

∆1 =
∑

Eij

mimj(xi
mean − xj

mean), where xi
mean =

1
mi

mi∑

k=1

xi
k

is the mean of all the training instances in the ith class. Hence ∆1 can be pre-
computed in O(|E|d + dm) operations.

The the other two terms ∆2 and ∆3 can be written as follows–

∆2 =
∑

Eij

mi∑

k=1

xi
kEj

−(zi
k) ∆3 =

∑

Eij

mj∑

l=1

xj
l E

i
+(−zj

l ) (29)

where

Ej
−(y) =

mj∑

l=1

erfc(y − zj
l ).

Ei
+(y) =

mi∑

k=1

erfc(y + zi
k). (30)

Note that Ej
−(y) in the sum of mj erfc functions centered at zj

l and evaluated at
y–which requires O(mj) operations. In order to computed ∆3 we need to evaluate
it at mi points, thus requiring O(mimj) operations. Hence each of ∆2 and ∆3 can
be computed in O(dSm +M2) operations.

Hence the core computational primitive contributing to the O(M2) cost is the
summation of erfc functions. In the next section we will show how this sum can
be computed in linear O(mi + mj) time, at the expense of reduced precision which
however can be arbitrary. As a result of this ∆2 and ∆3 can be computed in
linear O(dSm + (S − 1)m) time. In terms of the optimization algorithm since the
gradient is computed approximately the number of iterations required to converge
will increase. However this is more than compensated by the cost per iteration
which is drastically reduced.
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