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Scene understanding is a high-level vision task which involves not just local-

izing and recognizing objects and people but also inferring their layouts and inter-

actions with each other. However, current systems for even atomic tasks like object

detection suffer from several shortcomings. Most object detectors can only detect

a limited number of object categories; face recognition systems are prone to make

mistakes for faces in extreme poses or illuminations; and automated systems for

detecting interactions between humans and objects perform poorly. We hypothesize

that scene understanding can be improved by using additional semantic data from

outside sources and intelligently and efficiently using the available data.

Given the fact that it is nearly impossible to collect labeled training data

for thousands of object categories, we introduce the problem of zero-shot object

detection (ZSD). Here, “zero-shot” means recognizing/detecting without using any

visual data during training. We first present an approach for ZSD using semantic

information encoded in word-vectors which are trained on a large text corpus. We



discuss some challenges associated with ZSD. The most important of these chal-

lenges is the definition of a “background” class in this setting. It is easy to define

a “background” class in fully-supervised settings. However, it’s not clear what con-

stitutes a “background” ZSD. We present principled approaches for dealing with

this challenge and evaluate our approaches on challenging sets of object classes, not

restricting ourselves to similar and/or fine-grained categories as in prior works on

zero-shot classification.

Next, we tackle the problem of detecting human-object interactions (HOIs).

Here, again, it is impossible to collect labeled data for each type of possible interac-

tion. We show that solutions for HOI detection can greatly benefit from semantic

information. We present two approaches for solving this problem. In the first

approach, we exploit functional similarities between objects to share knowledge be-

tween models for different classes. The main idea is that humans look similar while

interacting with functionally similar objects. We show that, using this idea, even

a simple model can achieve state-of-the-art results for HOI detection both in the

supervised and zero-shot settings. Our second model uses semantic information in

the form of spatial layout of a person and an object to detect their interactions.

This model contains a layout module which primes the visual module to make the

final prediction.

An automated scene understanding system should, further, be able to answer

natural language questions posed by humans about a scene. We introduce the

problem of Image-Set Visual Question Answering (ISVQA) as a generalization of

existing tasks of Visual Question Answering (VQA) for still images, and video VQA.



We describe two large-scale datasets collected for this problem: one for indoor scenes

and one for outdoor scenes. We provide a comprehensive analysis of the two datasets.

We also adapt VQA models to design baselines for this task and demonstrate the

difficulty of the problem.

Finally, we present new datasets for training face recognition systems. Using

these datasets, we show that careful consideration of some critical questions before

training can lead to significant improvements in face verification performance. We

use some lessons from these experiments to train a face recognition system which

can identify and verify faces accurately. We show that our model, trained with the

recently introduced Crystal Loss, can achieve state-of-the-art performance for many

challenging face recognition benchmarks like IJB-A, IJB-B, and IJB-C. We evaluate

our system on the Disguised Faces in the Wild (DFW) dataset and show convincing

first results.
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Chapter 1: Introduction

Scene understanding is the process of reasoning about the humans, objects, and

their spatial, functional, and semantic relationships. This involves localizing and

recognizing all humans, and objects in a scene and understanding their interactions.

Scene understanding will be an essential capability for automated computer vision

systems.

Humans develop an instinctive ability to understand a given scene. A glimpse

at the scene in Figure 1.1 is enough to inform us that Jack Nicholson is typing

on a type-writer while sitting on a chair in the hall at the Overlook Hotel. Also,

there is a book, and a table lamp on the table. Notice all the processes involved in

making these deductions. We localize and may recognize the person, detect all the

objects, recognize the place, and infer relationships among all of these entities. We

achieve this by using common-sense reasoning and knowledge about the properties,

affordances, and physics of objects.

Such an ability to understand the scenes completely has not been replicated

in automated systems. With the huge success of deep learning, computers now have

the ability to perform atomic tasks like detecting a limited set of object categories,

and recognize people in relatively easy circumstances. However, computer vision
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Figure 1.1: Humans can instantaneously understand a scene. We utilize our knowl-
edge about the properties and affordances of objects to reason about interactions
between different objects and people.

systems have a long way to go before they are able to understand relationships

between objects, or recognize humans in extreme poses and illuminations, or detect

objects for which no training data is available.

Lack of training data is a major hurdle in advancing several parts of scene

understanding. The most popular object detection systems [83,134,175] are usually

trained and evaluated on the MSCOCO dataset [130] which contains only 80 object

categories. These systems require labeled training data for all categories. The world

contains thousands of object classes. It is prohibitively expensive to collect labeled

images/videos for all of them. Similarly, humans can interact with each of these

objects in several different ways. This makes the problem of recognizing interactions

between humans and objects combinatorial in nature. Collecting labeled data for

every type of interaction is nearly impossible.

This dissertation is a step towards solving some of these problems for holis-
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tic scene understanding. The main hypothesis is that scene understanding can be

improved by using additional semantic data from outside source and intelligently

and efficiently using the available data. Such semantic information can provide ad-

ditional supervision for computer vision systems. This will eventually enable them

to learn without any labeled data. Also, carefully collecting and merging available

data can significantly improve the performance of different sub-systems.

Here is an overview of the contents of this dissertation.

We start by providing some background to the ideas introduced in this dis-

sertation. In Chapter 2, we briefly discuss some prior works on object detection,

visual relationship detection, and face recognition and detection. We discuss both

hand-designed and CNN-based object detectors including Viola-Jones, DPM, R-

CNN, Faster R-CNN etc. We also explore several recent advances in CNN-based

face recognition.

We introduce and tackle the problem of Zero-Shot Object Detection (ZSD)

in Chapter 3. In this context, the term “zero-shot” means that the models do not

use any labeled visual data for some classes while training and are still able to infer

those classes. In particular, ZSD means that visual supervised data is available

only for a few object classes. The trained model is able to recognize previously

unseen classes. We work with a challenging set of object classes, not restricting

ourselves to similar and/or fine-grained categories as in prior works on zero-shot

classification. We present a principled approach by first adapting visual-semantic

embeddings for zero-shot detection. We then discuss the problems associated with
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selecting a background class and motivate two background-aware approaches for

learning robust detectors. One of these models uses a fixed background class and

the other is based on iterative latent assignments. We also outline the challenge

associated with using a limited number of training classes and propose a solution

based on dense sampling of the semantic label space using auxiliary data with a large

number of categories. We propose novel splits of two standard detection datasets

– MSCOCO and VisualGenome, and present extensive empirical results in both

the traditional and generalized zero-shot settings to highlight the benefits of the

proposed methods. We provide useful insights into the algorithm and conclude by

posing some open questions to encourage further research.

The next two chapters are dedicated to detecting human-object interactions.

In Chapter 4 we present an approach for detecting human-object interactions (HOIs)

in images, based on the idea that humans interact with functionally similar objects

in a similar manner. The proposed model is simple and uses the visual features of the

human, relative spatial orientation of the human and the object, and the knowledge

that functionally similar objects take part in similar interactions with humans. We

provide extensive experimental validation for our approach and demonstrate state-

of-the-art results for HOI detection. On the HICO-Det dataset our method achieves

a gain of over 2.5% absolute points in mean average precision (mAP) over recent

works. We also show that our approach leads to significant performance gains for

zero-shot HOI detection in the seen object setting. We further demonstrate that

using a generic object detector, our model can generalize to interactions involving

previously unseen objects.
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The relative spatial layout of a human and an object is an important cue for

determining how they interact. However, until now, spatial layout has been used just

as side-information for detecting human-object interactions (HOIs). In Chapter 5,

we present a method for exploiting this spatial layout information for detecting

HOIs in images. The proposed method consists of a layout module which primes a

visual module to predict the type of interaction between a human and an object.

The visual and layout modules share information through lateral connections at

several stages. The model uses predictions from the layout module as a prior to

the visual module and the prediction from the visual module is given as the final

output. It also incorporates semantic information about the object using word2vec

vectors. The proposed model reaches an mAP of 24.79% for HICO-Det dataset

which is about 5.4% absolute points higher than the current state-of-the-art. For

zero-shot HOI detection, the proposed approach performs about three times better

than state-of-the-art.

Holistic scene understanding involves being able to answer human questions

about a scene. In Chapter 6, we introduce the task of Image-Set Visual Question

Answering (ISVQA), which generalizes the commonly studied single-image VQA

problem to multi-image settings. Taking a natural language question and a set of

images as input, it aims to answer the question based on the content of the images.

The questions can be about objects and relationships in one or more images or about

the entire scene depicted by the image set. To enable research in this new topic,

we introduce two ISVQA datasets – indoor and outdoor scenes. They simulate the

real-world scenarios of indoor image collections and multiple car-mounted cameras,
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respectively. The indoor-scene dataset contains 91,479 human-annotated questions

for 48,138 image sets, and the outdoor-scene dataset has 49,617 questions for 12,746

image sets. We analyze the properties of the two datasets, including question and

answers distributions, types of questions, biases in dataset, and question-image de-

pendencies. By adapting existing VQA methods, we also build new baseline models

to investigate new research challenges in ISVQA. These challenges necessitate the

development of new methods to understand the image-level relationships and per-

form cross-image reasoning for ISVQA tasks.

Next, in Chapters 7 and 8, we focus on face recognition. We introduce two

large-scale annotated datasets which can help advance research in this area. While

the research community appears to have developed a consensus on the methods of

acquiring annotated data, design and training of CNNs, many questions still remain

to be answered. We use our collected datasets to study the following questions that

are critical to face recognition research: (i) Can we train on still images and expect

the systems to work on videos? (ii) Are deeper datasets better than wider datasets?

(iii) Does adding label noise lead to improvement in performance of deep networks?

(iv) Is alignment needed for face recognition? Further, we use these datasets and the

insights from our experiments to train two different networks to tackle the problem of

recognizing disguised faces. Unconstrained face verification is a challenging problem

owing to variations in pose, illumination, resolution of image, age, etc. This problem

becomes even more complex when the subjects are actively trying to deceive face

verification systems by wearing a disguise. The problem under consideration here

is to identify subjects under disguise and reject impostors trying to look like a
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subject of interest. We fuse features obtained from the two networks and show

that the resulting features are effective for discriminating between disguised faces

and impostors in the wild. We present results on the recently introduced Disguised

Faces in the Wild challenge dataset.

Finally, we summarize our work and discuss some directions for further work to

understanding the use of semantic information for scene understanding Chapter 9.

In particular, we discuss video scene understanding by exploiting objects in a video

and the actions they evoke. We also discuss some work planned for action recognition

from videos using such semantic reasoning.
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Chapter 2: Background

This chapter describes some of the theory and background related to the topics

in this dissertation. We start by describing early and recent methods for object

detection. Our work on ZSD, described in Chapter 3 extends these fully-supervised

methods to the zero-shot learning setting. We then describe the general problem of

visual relationship detection (VRD) and discuss some existing strategies for solving

this problem. Human-object interaction detection (Chapters 4 and 5) is a subset of

VRD where the subject is always a human. Next, we describe some recent advances

in VQA to provide a background for our work on image-set VQA (Chapter 6).

Finally, we discuss CNN-based face recognition to provide a context for our work

on face verification and identification in Chapters 7 and 8.

2.1 Object Detection

Among the earliest methods for object detection, [205] uses hand-designed Haar-like

features as representations of regions in an image. The Viola-Jones detector [205]

combines increasingly complex classifiers into a cascade which improves detection

performance at each step. Such a cascade is able to discard background regions early

and devotes more computational resources to more promising regions. The authors
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also proposed the idea of an integral image which enables the computation of these

Haar-like features at each sliding window location a constant-time operation. The

Viola-Jones detector also uses Adaboost to select a small number of features out of a

large set of features obtained from the sliding windows. Constant-time computation

of features, early rejection of background regions using a cascade of detectors, and

high quality feature selection enable the Viola-Jones detector to detect faces in real-

time and with high accuracy [205,206].

Soon after Viola-Jones, Dalal and Triggs [39] proposed grids of Histograms of

Oriented Gradients (HOGs) as a feature representation for detecting pedestrians

in images. At each sliding window the authors propose to extract HOG feature

vectors over a grid of overlapping blocks. These feature vectors are collected into a

descriptor for the window and a linear SVM is used to classify this feature as human

vs non-human. The authors also describe several tricks and techniques for improving

the quality of HOG descriptors. These include gamma and color normalization,

weighted voting into spatial and orientation cells, and contrast normalization in

overlapping descriptor blocks.

The two methods described above work well for rigid objects. However, these

methods give low performance for highly variable and deformable object classes. To

overcome these issues [53] proposed Discriminately Trained Part-Based Mod-

els for detecting deformable objects. DPM extends the Dalal and Triggs HOG

detector by considering a star-structure for parts and computing the corresponding

part filters and deformation models along with a root filter. DPM looks at the

problem of object detection in a bottom-up manner. An object can be detecting
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by detecting parts of the object and combining those parts. The part filters are

automatically learned in a weakly supervised setting.

DPM paved the way for deep CNN-based object detectors. These object detec-

tors have become ubiquitous. CNN-based object detectors can be typically divided

into two types: two-stage and one-stage. We describe some of the most popular

models of both types next.

Two-Stage CNN Object Detectors

Two-stage detectors are called so because they consist of a region proposal stage and

an object recognition stage. The region proposal stage produces a set of candidate

object bounding boxes. The second stage is responsible for classifying each candidate

region as either belonging to one of the object categories or to “background”. R-

CNN [67] can be considered as the first two-stage object detection model. Every

other subsequent model has been derived from R-CNN. We start by briefly describing

the R-CNN model and then discuss more recent developments.

Region-based convlutional networks (R-CNNs) [67] first extracts about

2,000 region proposals from an image using selective search [204]. Selective search is

a multiple segmentation approach for object detection. Each segmented region from

Selective Search is considered as a candidate for the next stage of object recognition.

R-CNN crops each region proposal independently and warps it into a fixed shape.

The authors then use a CNN to extract features for each of these independent

cropped regions. Finally, the features are classified into a fixed set of categories

using class-specific linear SVMs.

R-CNNs and other two-stage object detectors also use class-specific bounding
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box regressors to output a new box after a region proposal is classified with class-

specific SVMs. Given a pair of proposal bounding box P = {Px, Py, Pw, Ph}, the goal

of bounding box regression is to produce a new box Ĝ which has a better overlap

with the ground-truth box G. Here, (Px, Py) is the center coordinate, and Pw and

Ph are the width and height of the proposal respectively. The ground-truth box is

represented similarly. The final prediction is obtained using the following equations:

Ĝx = Pwdx(P ) + Px (2.1)

Ĝy = Phdy(P ) + Py (2.2)

Ĝw = Pw exp(dw(P )) (2.3)

Ĝh = Ph exp(dh(P )) (2.4)

where (dx(P ), dy(P )) represent the scale-invariant translation of the center of

P, and dw(P ) and dh(P ) specify the log-space translations of the width and height.

All of the d∗(P ) are modeled as linear transformations of the feature representation

of P from the CNN. The weights of the linear transformations are learned using a

mean-squared error with the targets:
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tx = (Gx − Px)/Pw (2.5)

ty = (Gy − Py)/Ph (2.6)

tw = log(Gw/Pw) (2.7)

th = log(Gh/Ph) (2.8)

A major shortcoming of R-CNN is that it is extremely slow due to the large

number of object proposals and the fact that each object proposal has to be encoded

separately by passing it through a deep network. Fast R-CNN [66] attempts to

overcome this issue by using a fixed convolutional map for the whole image. The

authors introduce the RoI pooling layer which pools the feature for each proposed

region of interest into a fixed spatial dimension. This enables the re-use of the fea-

tures obtained from the whole image. Each RoI is mapped to the fixed convolutional

map for the image and the corresponding location is pooled to a fixed spatial ex-

tent. Fully-connected layers are applied to the RoI-pooled feature to obtain a fixed

dimension feature vector for each RoI. This feature vector is finally passed to the

two heads of the network: classification and bounding box regression. The whole

network is trained using the following multi-task loss:

L(p, u, du, t) = Lcls(p, u) + λLloc(du, t) (2.9)

where p is the probability distribution estimated by the classification head, u
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is the ground-truth class, du = {dux(P ), duy(P ), duw(P ), duh(P )} are the translations of

P for the class u as described above, Lcls is the cross-entropy loss, Lloc is a smoothed

L1 loss with targets t = {tx, ty, tw, th} described in Equation 2.8, and λ is the scaling

factor.

Even though RoI-pooling helped in making object detection with Fast R-CNN

slightly more efficient than R-CNN, the speed of the model was still limited by the

time taken to generate high quality proposals. Implementations of selective search

are slow. The authors of Faster-RCNN [175] proposed region-proposal network

(RPN) to overcome this limitation. The idea behind RPN is that the “objectness”

of a region can be predicted by a neural network. The authors incorporated a small

CNN which can take a convolutional feature map and output a small number of

region proposals which are highly likely to contain objects. This region-proposal

network can share most of the weights in the trunk of the network with the Fast

R-CNN. Such a process eliminates the need for a separate bounding box proposal

step and can be trained end-to-end.

Mask R-CNN [83] further improves the speed and accuracy of Faster R-

CNN by jointly learning multiple tasks like detection and segmentation. The authors

showed that the Mask-RCNN framework can be further extended to tasks like human

pose estimation.

One-Stage CNN Object Detectors

In one-stage object detectors, the most important difference from two-stage object

detectors is the lack of an explicit region proposal step. Most of the methods that we

discuss here contain implicit regions of interest instead. A major advantage of one-
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stage detectors is the high speed compared to the two-stage detectors. For example,

SSD [134] can run at upto 60 fps and YOLO [173] at around 45 fps compared to

about 7 fps for Faster R-CNN.

Redmon et al. proposed YOLO [173] as a unified framework for object detec-

tion. YOLO frames object detection as a regression problem instead of a classifica-

tion problem as typically done in two-stage detectors. After the last convolutional

layer in the network, YOLO consists of two fully-connected layers: the first one

takes the convolutional feature map to a fixed length feature vector, and the second

projects the feature vector into a S × S × (5B + C) tensor of predictions. Here S

is the grid-size, B is the number of bounding boxes predicted for each grid cell, and

C is the number of object classes.

In contrast to YOLO, the Single-Shot Multibox Detector (SSD) [134]

considers a set of default boxes at different scales and aspect ratios at each feature

map location. The model obtains such default boxes at various levels in the network

to enable detection of objects at different resolutions. Object detections are made

by classifying each default box and adjusting the bounding box. Similar to Faster

R-CNN, the network is trained with a multi-task loss comprising of a cross-entropy

term for classification and smoothed L1 loss for bounding box regression.

More recently, Lin et al. [129] introduced Focal Loss which deals with the issue

of class and easy-hard imbalance. Focal loss is a modification of cross-entropy loss

and uses a focusing parameter to balance the imbalance between easy and hard

samples. The authors also proposed a one-stage model, called RetinaNet, which is

a modification of Feature Pyramid Network [128] and showed that such a one-stage
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model can achieve higher speeds and accuracies that two-stage object detectors.

2.2 Visual Relationship Detection

A visual relationship is typically represented as the triplet 〈subject, predicate,

object〉, i.e., visual relationships can be considered as a pair of objects linked by a

predicate. The task of VRD requires correct localization of the two objects involved

and the correct identification of the predicate. Due to the combinatorial nature of

the problem - the number of possible relationships is the product of the square of the

number of possible objects and the number of possible predicates - VRD is a much

more challenging problem than object detection. For the same reasons, VRD cannot

simply be considered as just a combination of atomic tasks of object detection and

predicate recognition. In fact, relationships can provide important cues for detecting

objects based on proximities and relationships with other objects.

In [99], the authors presented a framework for semantic image retrieval using

scene graphs. Such scene graphs are constructed using the objects present in the

image (e.g. person, car, building, bench), their attributes (e.g. car is red), and

visual relationships between objects (e.g. 〈person, sitting, benchrangle). The

proposed model uses scene graphs as queries for retrieving similar images. VRD

is an essential component for such a system for inferring the relationships between

each pair of objects.

Long tail distribution of visual relationship categories is a highly apparent

challenge for VRD. With increasing numbers of objects and predicates, the possible
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number of interactions between objects increases rapidly. This hinders the collec-

tion of large amounts of labeled data for all relationship categories. Therefore, there

is a need for models which can exploit similarities between objects and predicates

to generalize from labeled samples for one category to rarer categories. For exam-

ple, having seen a person riding a horse, and a camel walking on the ground, it

should not be difficult to recognize a human riding a camel. With their VRD with

Language Priors model [137], Lu et al. attempt to do exactly this. They propose

to train visual models for objects and predicates separately. These models can be

combined together to detect relationships between objects. The authors propose to

use language priors in the form of word embeddings to model the likelihood of a

predicted relationship.

Human-Object Interaction detection is a special case of Visual Relationship

Detection. In HOI detection, the subject is a human. This reduces the complexity

of VRD to only those relationships which involve a human. However, HOI detection

is still an immensely challenging problem due to the varied poses taken by humans

and the varied uses that they find for different objects. In this dissertation, we target

the problem of HOI detection and propose two approaches - one based on the idea

that humans tend to interact with functionally similar objects in a similar manner;

and the other based on insight that the relative spatial layout of the subject and

the object can provide enough information to form a prior prediction quickly. We

discuss some background for HOI detection in Chapters 4 and 5.
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Figure 2.1: Standard approach for training a CNN for face verification and identi-
fication.

2.3 Face Recognition and Detection

Automatic face recognition is the problem of identifying a person from an image or

a video. The problem of face recognition can be divided into face identification and

face verification. The standard approach for training a CNN for solving these prob-

lems include four steps: face detection, alignment, representation, and classification

(Figure 2.1). Identification is the problem of assigning an identity to an image from

a list of identities. From another perspective, this can be considered as trying to

retrieve the best matching face from a gallery for a given probe image. On the

other hand, face verification involves verifying whether two face images are of the

same person. This is usually performed by computing the similarity between feature

representations of the two faces. Both identification and verification have benefited

immensely from developments in deep learning algorithms and more advanced CNN

architectures.
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2.3.1 Datasets for Face Recognition

A face recognition system starts with detecting faces, then localizes landmarks which

are used to align the faces to canonical views, and then classifies the detected faces.

All three parts of the system require different level of information and data types.

In this section, we explore some recently released public datasets targeted these.

In the wild face recognition at a large scale essentially started with the release

of the Labeled Faces in the Wild (LFW) dataset [91]. Recent years have seen

several large datasets being released to help the training of deep networks and to

provide stronger benchmarks. Some examples of such include CelebA [136], CASIA-

WebFace [237], MS-Celeb-1M [73], VGGFace [156], VGGFace2 [26], DFW [115]

etc. However, these are still constrained because they only contain still images of

mainly celebrities. Such photos are typically frontal and taken under good lighting.

However, evaluation datasets like IJB-A [107], IJB-B [216], IJB-C [144], IJB-S [102],

and Megaface [105] contain videos and images in varied conditions. To fill this gap,

several video datasets have been proposed over the years. Among these, YouTube

Faces (YTF) [217] is currently the largest publicly available annotated video dataset.

The most popular and the largest dataset for training and evaluating face

detection models is the WIDER FACE dataset [231]. Another standard benchmark

is FDDB [95]. The IARPA JANUS Benchmark datasets [107,144,216] also contain

a large number of face annotations for evaluating face detection and recognition in

completely unconstrained settings. Due to the difficulty in labeling and verifying

facial keypoints in images, there are only a few large-scale public datasets available
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which include such annotations. These include: Annotated Face in the Wild (AFW)

[253], 300 faces-in-the-wild dataset [179], Labeled Face Parts in-the-wild (LFPW)

[23], and Annotated Facial Landmarks in the Wild (AFLW) [110].

In addition to these, there are some 3D datasets [49], age datasets [122,176], at-

tribute datasets [81,136], and expression datasets [136].

2.3.2 Face Detection

Face detection is the process of finding a bounding box for each face in an image.

This is often the first step in any face recognition or tracking system. Counting

the number of people in a crowded scene [22, 190] can also benefit from robust

face and head detection. Large real-world datasets like [231] and deep CNN-based

representations have led to significant improvements in face detection performance.

Most of the popular face detection methods have been adapted from general object

detectors and can be classified as either proposal-based or single-stage detectors.

Proposal-based object detection methods start with a class-agnostic object

proposal generator like selective search [204], edge-boxes [257], or a region-proposal

network (RPN) [175]. These proposals are then classified into object classes by a

CNN. Proposal-based face detectors follow a similar approach and generate face

proposals which are then classified as face vs non-face by a CNN. Examples of

such face detectors include All-in-One Face [172], Hyperface [171], Finding Tiny

Faces [89], and Supervised Transformer Network [33].

Unlike proposal-based detectors, single-stage object detectors do not contain
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an explicit proposal generation step. Such detectors typically include a single-pass

through a CNN and processing multi-scale image pyramid or multiple layers of a

CNN. Single-shot multibox detector (SSD) [134] and YOLO [173,174] are examples

of recent single stage object detectors. Several recent face detectors adapt these

methods. These include DPSSD [168], SSH [149], CNN Cascade [123], ScaleFace

[232], S3FD [242].

After a face has been detected, the step in most face recognition pipelines

in facial landmark detection and face alignment. Landmarks determine the most

discriminative locations on a face. We refer the reader to the brief overview in [168]

and a comprehensive review in [211] for a better coverage of the topic.

2.3.3 Loss Functions

The loss function is an important factor in determining the performance of deep

networks. Most face recognition networks are trained to perform a C−way classifi-

cation of faces with the hope that the learned features can be used as discriminative

representations. Many existing works use the standard cross-entropy loss with soft-

max for training face recognition networks. Variants of the cross-entropy loss aim to

address issues like preference for high quality images, early saturation, lack of margin

between intra and inter-class samples etc. Some methods instead focus on directly

optimizing the features for face verification. Metric learning approaches optimize

the features to reduce intra-class separation and increase inter-class separation.

We start with a description of the standard softmax based cross-entropy loss.
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Suppose there are M training samples in a batch. Let, xi be the ith face image in

the batch with the label yi and f(xi) be the feature representation of the face. The

feature representation is typically a deep CNN. The feature vectors are projected

into logits using weights W and bias b. Then, the softmax loss is given by:

LSoftmax = − 1
M

M∑
i=1

log eW
T
yi
f(xi)+byi∑C

j=1 e
WT

j f(xi)+bj
(2.10)

where, C is the total number of classes, Wj is the jth column of the weight

matrix W and bj is the corresponding bias. Note that the bias term in Equation 2.10

can be absorbed into the weights by appending 1 to f(xi). Now, since aTb =

‖a‖‖b‖ cos(θ), where θ is the angle between a and b, the equation above can be

re-written as:

LSoftmax = − 1
M

M∑
i=1

log e‖Wyi‖‖f(xi)‖ cos(θyi )∑C
j=1 e

‖Wj‖‖f(xi)‖ cos(θj) (2.11)

At test time, a probe face xp is compared to a face in the gallery, xg using

cosine similarity:

s = f(xp)Tf(xg)T
‖f(xp)‖2 ‖f(xg)‖2

(2.12)

A-Softmax [135] incorporates an angular margin to the softmax formulation.

This is based on the idea that at test time, we usually want dissimilar features to

be angularly separated (since our distance metric is cosine distance). A-Softmax

starts by normalizing the weight vectors ‖Wj‖ = 1, ∀j. Let, ‖f(xi)‖ = s, then the
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A-Softmax loss is give as:

LSphereFace = −1
M

M∑
i=1

log es cos(mθyi,i)

es cos(mθyi,i) +∑
j 6=yi

es cos(θj,i)
(2.13)

where m is the size of the margin and θyi,i is in the range
[
0, π

m

]
. However, training

a CNN under this constraint is difficult. Therefore, the authors in [135] propose to

generalize cos(θyi,i) to a monotonic angle function ψ(θyi,i) which equals cos(θyi,i) in[
0, π

m

]
. So, A-softmax can be written as:

LSphereFace = −1
M

M∑
i=1

log esψ(θyi,i)

esψ(θyi,i) +∑
j 6=yi

es cos(θj,i)
(2.14)

where ψ(θ) is a piecewise function:

ψ(θ) = (−1)k cos(mθ)− 2k, θ ∈
[
kπ

m
,
(k + 1)π

m

]

and k ∈ [0,m− 1]
(2.15)

Large Margin Cosine Loss [210] uses an additive margin term instead of

a multiplicative margin as used above. In addition to fixing ‖Wj‖ = 1 by L2

normalization, the authors propose to fix ‖f(xi)‖ = s. This puts the learned features

on a hypersphere were they need to be separable in the angular space. Fixing the

norm of the features is a commonly used technique, e.g. [167]. Adding the margin

in Equation 2.11 thus gives the formulation:

LCosFace = − 1
M

M∑
i=1

log es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +∑
j 6=yi

es cos(θj,i)
(2.16)

22



The margin m and the feature scale s are inter-dependent.

Additive Angular Margin Loss [42] also starts by normalizing Wyi
and

scaling the feature such that ‖f(xi)‖ = s. However, instead of directly adding an

additive cosine margin as in Equation 2.16, [42] proposes to use an additive angular

margin. This is again done with the aim of increasing inter-class discrepancy and

intra-class compactness. The proposed loss can be written as:

LArcFace = −1
M

M∑
i=1

log es(cos(θyi,i+m))

es(cos(θyi,i+m)) +∑
j 6=yi

es cos(θj,i)
(2.17)

where m is the additive angular margin. Additionally, the authors also propose a

loss which combines SphereFace (Equation 2.13), CosFace (Equation 2.16), and the

proposed ArcFace (Equation 2.17):

LCombined = − 1
M

M∑
i=1

log
(

es(cos(m1θyi,i+m2)−m3)

es(cos(m1θyi,i+m2)−m3) +∑
j 6=yi

es cos(θj,i)

)
(2.18)

where m1,m2, and m3 are the corresponding margins for SphereFace [135], ArcFace

[42], and CosFace [210].

Several other loss functions have been proposed for training face recognition

networks. However, space limitations do not allow a more detailed exposition of

those methods. We refer the reader to the original papers for Noisy Softmax [32],

Center Loss [215], Center Invariant Loss [219], Range Loss [243], Centralized Coor-

dinate Learning [163], Ring Loss [248], Triplet Loss [184].
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Figure 2.2: A face verification training and testing pipeline. A dataset of aligned
faces is used to train a deep CNN with a classification loss. At test time, features
are extracted from two faces and their similarity is computed to determine whether
the two faces are of the same person.

2.3.4 Applications

In this section we describe some recent face recognition applications which utilize

some of the techniques described above. We note that both face identification and

verification can be formulated as the same problem. In identification, given a probe

image, the goal is to find the closest image from a gallery. This is achieved by

computing the similarities between the feature representation of the probe image and

feature representations of the gallery images. The image with the highest similarity

with the probe images is given as output. In verification, the aim is to determine if a

given pair of images belong to the same person. This is also achieved by computing

the similarity between the feature representations of the two images. The basic

operation in both identification and verification is to extract a feature representation

and compare with representations of the other image/images. We focus on face

verification in this section. Similar methods can be used for face identification too.

A typical face verification training and testing pipeline is shown in Figure 2.2.
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A training set of aligned faces is used to train a deep network for C−way classifica-

tion. The layer before the classification layer is used to extract a feature represen-

tation for a face at test time. Representations from two faces are compared using a

similarity metric.

DeepID [197] proposes to train a deep network on a large number of classes

to obtain discriminative features which can be used for face verification. It extracts

features from 60 face patches from different scales, different regions, and RGB or

gray channels. Features for each patch and their flipped versions are extracted and

concatenated into a 19,200 dimension feature. All neural networks are trained with

softmax loss over a training dataset containing 10,177 identities.

DeepFace [199] uses explicit 3D modeling, starting from 2D keypoints, to

apply a piecewise affine transformation for aligning faces. The aligned face is fur-

ther warped to the image plane of a generic 3D face shape. After the alignment,

DeepFace uses a nine layer deep network with 120 million parameters to learn the

face representation. The network is trained using a dataset of four million images

from over 4,000 identities. This network is trained with the standard softmax cross-

entropy loss.

FaceNet [184] uses a triplet loss to directly optimize the embedding instead

of using the surrogate task of C−way classification. The authors claim that this

leads to greater representational efficiency and this feature embedding can improve

face verification and clustering performance.

VGGFace [156] model uses a large dataset of over 2.6 million images from

about 2,600 identities to train a CNN with softmax loss. The features obtained from
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this network are embedded using a triplet loss similar to [132].

All-in-One Face [172] proposes a multi-task learning approach for face de-

tection, keypoint detection, pose estimation, smile detection, gender classification,

age estimation and face recognition. The network contains several heads which are

responsible for learning different functionalities. The idea is that each modality will

benefit from other modalities. The separate heads are trained with the correspond-

ing losses and gradients from all heads are accumulated to train the trunk of the

network. The face recognition/feature learning branch uses a standard softmax loss.

ArcFace [42] uses the Additive Angular Margin Loss and the large-scale,

and clean MS1MV2 dataset to achieve state-of-the-art performance on several face

recognition and verification benchmarks. The MS1MV2 dataset is a refined version

of the MS-Celebl-1M dataset and contains about 5.8M faces for 85,000 identities.

ArcFace uses the popular ResNet-100 network architecture.

Some other recent methods include [6, 28,142,143,194,209,218,225,230].
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Chapter 3: Zero-Shot Object Detection

Humans can effortlessly make a mental model of an object using only textual descrip-

tion, while machine recognition systems, until not very long ago, needed to be shown

visual examples of every category of interest. Recently, some work has been done

on zero-shot classification using textual descriptions [222], leveraging progress made

on both visual representations [198] and semantic text embeddings [100, 146, 158].

In zero-shot classification, at training time visual examples are provided for some

visual classes but during testing the model is expected to recognize instances of

classes which were not seen, with the constraint that the new classes are semanti-

cally related to the training classes.

This problem is solved within the framework of transfer learning [57, 161],

where visual models for seen classes are transferred to the unknown classes by ex-

ploiting semantic relationships between the two. For example, as shown in Fig-

ure 3.1, the semantic similarities between classes “hand” and “arm” are used to

detect an instance of a related (unseen) class “shoulder”. While such a setting has

been used for object classification, object detection has remained mostly in the fully

supervised setting as it is much more challenging. In comparison to object classifica-

tion, which aims to predict the class label of an object in an image, object detection
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aims at predicting bounding box locations for multiple objects in an image. While

classification can rely heavily on contextual cues, e.g. vehicles are usually on roads,

detection needs to exactly localize the object of interest and can potentially be

degraded by contextual correlations [240]. Furthermore, object detection requires

learning additional invariance to appearance, occlusion, viewpoint, aspect ratio etc.

in order to precisely delineate a bounding box [86].

In the past few years, several CNN-based object detection methods have been

proposed. Early methods [66, 67] started with an object proposal generation step

and classified each object proposal as belonging to a class from a fixed set of cat-

egories. More recent methods either generate proposals inside a CNN [175], or

have implicit regions directly in the image or feature maps [134, 173]. These meth-

ods achieved significant performance improvements on small datasets which contain

tens to a few hundreds of object categories [47, 130]. However, the problem of de-

tecting a large number of classes of objects has not received sufficient attention.

This is mainly due to the lack of available annotated data as getting bounding box

annotations for thousands of categories of objects is an expensive process. Scal-

ing supervised detection to the level of classification (tens to hundreds of thou-

sands of classes) is infeasible due to prohibitively large annotations costs. Recent

works have tried to avoid such annotations, e.g. [174] proposed an object detection

method that can detect several thousand object classes by using available (image-

level) class annotations as weak supervision for object detection. Zero-shot learning

has been shown to be effective in situations where there is a lack of annotated data

[56, 58, 133, 155, 222, 226, 245, 246]. Most prior works on zero-shot learning have ad-
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Figure 3.1: We highlight the task of zero-shot object detection where objects “arm”,
“hand”, and “shirt” are observed (seen) during training, but “skirt”, and “shoul-
der” are not. These unseen classes are localized by our approach that leverages
semantic relationships between seen and unseen classes along with the proposed
ZSD framework. The example has been generated by our model.

dressed the classification problem [24,29,46,55,94,108,117,118,154,164,166,193,221],

using semantic word-embeddings [55,108] or attributes [56,118,125,245] as a bridge

between seen and unseen classes.

In the present work, we introduce and study the challenging problem of zero-

shot detection for diverse and general object categories. This problem is difficult

owing to the multiple challenges involved with detection, as well as those with oper-

ating in a zero-shot setting. Compared to fully supervised object detection, zero-shot

detection has many differences, notably the following. While in the fully supervised

case a background class is added to better discriminate between objects (e.g. car,

person) and background (e.g. sky, wall, road), the meaning of “background” is not

clear for zero-shot detection, as it could involve both background “stuff” as well as

objects from unannotated/unseen classes. This leads to non-trivial practical prob-

lems for zero-shot detection. We propose two approaches to address this problem:

one using a fixed background class and the other using a large open vocabulary
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for differentiating different background regions. We start with a standard zero-shot

classification architecture [57] and adapt it for zero-shot object detection. This ar-

chitecture is based on embedding both images and class labels into a common vector

space. In order to include information from background regions, following super-

vised object detection, we first try to associate the background image regions into

a single background class embedding. However, this method can be improved by

using a latent assignment based alternating algorithm which associates the back-

ground boxes to potentially different classes belonging to a large open vocabulary.

Since most object detection benchmark datasets usually have a few hundred classes,

the label space can be sparsely populated. We show that dense sampling of the

class label space by using additional data improves zero-shot detection. Along with

these two enhancements, we provide qualitative and quantitative results to provide

insights into the success as well as failure cases of the zero-shot detection algorithms,

that point us to novel directions towards solving this challenging problem.

To summarize, our main contributions are: (i) we introduce the ZSD problem

in real world settings and present a baseline method for ZSD that follows exist-

ing work on zero-shot image classification using multimodal semantic embeddings

and fully supervised object detection; (ii) we discuss some challenges associated

with incorporating information from background regions and propose two methods

for training background-aware detectors; (iii) we examine the problem with sparse

sampling of classes during training and propose a solution which densely samples

training classes using additional data; and (iv) we provide extensive experimental

and ablation studies in traditional and generalized zero-shot settings to highlight
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the benefits and shortcomings of the proposed methods and provide useful insights

which point to future research directions.

3.1 Related Work

Word embeddings. Word embeddings map words to a continuous vector repre-

sentation by encoding semantic similarity between words. Such representations are

trained by exploiting co-occurrences in words in large text corpuses [100, 146, 147,

158]. These word vectors perform well on tasks such as measuring semantic and

syntactic similarities between words. In this work we use the word embeddings as

the common vector space for both images and class labels and thus enable detection

of objects from unseen categories.

Zero-shot image classification. Previous methods for tackling zero-shot clas-

sification used attributes, like shape, color, pose or geographical information as

additional sources of information [54, 117, 118]. More recent approaches have used

multimodal embeddings to learn a compatibility function between an image vector

and class label embeddings [9, 10]. In [221], the authors augment the bilinear com-

patibility model by adding latent variables. The deep visual-semantic embedding

model [55] used labeled image data and semantic information from unannotated text

data to classify previously unseen image categories. We follow a similar methodol-

ogy of using labeled object bounding boxes and semantic information in the form of

unsupervised word embeddings to detect novel object categories. For a more com-

pehensive overview of zero-shot classification, we refer the reader to the detailed
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survey by Fu et al. [57].

Object detection. Early object detection approaches generated object proposals

for each image and classified those object proposals using an image classification

CNN [66, 67, 175]. More recent approaches use a single pass through a deep con-

volution network without the need for object region proposals [134, 173]. Recently,

Redmon et al. [174] introduced an object detector which can scale upto 9000 ob-

ject categories using both bounding box and image-level annotations. Unlike this

setting, we work in a more challenging setting and do not observe any labels for

the test object classes during training. We build our detection framework on an

approach similar to the proposal-based approaches mentioned above.

Multi-modal learning. Using multiple modalities as additional sources of infor-

mation has been shown to improve performance on several computer vision and ma-

chine learning tasks. These methods can be used for cross-modal retrieval tasks [48],

or for transferring classifiers between modalities. Recently, [15] used images, text,

and sound for generating deep discriminative representations which are shared across

the three modalities. Similarly, [244] used images and text descriptions for improved

natural language based visual entity localization. In [79], the authors used a shared

vision and language representation space to obtain image-region and word descrip-

tors that can be shared across multiple vision and language domains. Our work also

uses multi-modal learning for building a robust object detector for unseen classes.

Another related work is by Li et al. [125], which learns object-specific attributes

to classify, segment, and predict novel objects. The problem proposed here differs

considerably from this in detecting a large set of objects in unconstrained settings
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and does not rely on using attributes.

Comparison with recent works on ZSD: Two concurrent works by Zhu et

al. [251] and Rahman et al. [165] that address a similar problem. Zhu et al. focus

on a different problem of generating object proposals for unseen objects. Rahman

et al. [165] propose a loss formulation that combines max-margin learning and a

semantic clustering loss. Their aim is to separate individual classes and reduce the

noise in semantic vectors. A key difference between our work and Rahman et al.

is the choice of evaluation datasets. Rahman et al. use the ILSVRC-2017 detec-

tion dataset [177] for training and evaluation. This dataset is more constrained in

comparison to the ones used in our work (MSCOCO and VisualGenome) because

it contains only about one object per image on an average. We would also like to

note that due to a relatively simpler test setting, Rahman et al. does not consider

the corrruption of the background class by unseen classes as done in this work and

by Zhu et al.

3.2 Approach

We first outline our baseline ZSD approach that adapts prior work on zero-shot

learning for the current task. Since this approach does not consider the diver-

sity of the background objects during training, we then present an approach for

training a background-aware detector with a fixed background class. We highlight

some possible limitations of this approach and propose a latent assignment based

background-aware model. Finally, we describe our method for densely sampling
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labels using additional data, which improves generalization.

3.2.1 Baseline Zero-Shot Detection (ZSD)

We denote the set of all classes as C = S ∪ U ∪ O, where S denotes the set of

seen (train) classes, U the set of unseen (test) classes, and O the set of classes that

are neither part of seen or unseen classes. Note that our methods do not require a

pre-defined test set. We fix the unseen classes here just for quantitative evaluation.

We work in a zero-shot setting for object detection where, during training we are

provided with labeled bounding boxes that belong to the seen classes only, while

during testing we detect objects from unseen classes. We denote an image as I ∈

RM×N×3, provided bounding boxes as bi ∈ N4, and their associated labels as yi ∈ S.

We extract deep features from a given bounding box obtained from an arbitrary

region proposal method. We denote the extracted deep features for each box bi as

φ(bi) ∈ RD1 . We use semantic embeddings to capture the relationships between

seen and unseen classes and thus transfer a model trained on the seen classes to the

unseen classes as described later. We denote the semantic embeddings for different

class labels as wj ∈ RD2 , which can be obtained from pre-trained word embedding

models such as Glove [158] or fastText [100]. Our approach is based on visual-

semantic embeddings where both image and text features are embedded in the same

metric space [55, 193]. We project features from the bounding box to the semantic
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embedding space itself via a linear projection,

ψi = Wpφ(bi) (3.1)

where, Wp ∈ RD2×D1 is a projection matrix and ψi is the projected feature. We use

the common embedding space to compute a similarity measure between a projected

bounding box feature ψi and a class embedding wj for class label yj as the cosine

similarity Sij between the two vectors. We train the projection by using a max-

margin loss which enforces the constraint that the matching score of a bounding

box with its true class should be higher than that with other classes. We define loss

for a training sample bi with class label yi as,

L(bi, yi, θ) =
∑

j∈S,j 6=i
max(0,m− Sii + Sij) (3.2)

where θ refers to the parameters of the deep CNN and the projection matrix, and m

is the margin. We also add an additional reconstruction loss to L, as suggested by

Kodirov et al. [108], to regularize the semantic embeddings. In particular, we use

the projected box features to reconstruct the original deep features and calculate

the reconstruction loss as the squared L2-distance between the reconstructed feature

and the original deep feature. During test we predict the label (ŷi) for a bounding

box (bi) by finding its nearest class based on the similarity scores with different class
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embeddings, i.e.

ŷi = arg max
j∈U

Sij (3.3)

It is common for object detection approaches to include a background class

to learn a robust detector that can effectively discriminate between foreground

and background objects. This helps in eliminating the bounding box proposals

that clearly do not contain any objects of interest. We refer to these models as

background-aware detectors. However, selecting a background for ZSD is a non-

trivial problem as we do not know if a given background box includes background

“stuff” in the classical sense e.g. sky, ground etc. or an instance of an unseen object

class. We thus train our first (baseline) model only on bounding boxes that contain

seen classes.

3.2.2 Background-Aware Zero-Shot Detection

While background boxes usually lead to improvements in detection performance for

current object detection methods, for ZSD to decide which background bounding

boxes to use is not straight-forward. We outline two approaches for extending the

baseline ZSD model by incorporating information from background boxes during

training.

Statically Assigned Background (SB) Based Zero-Shot Detection. Our first

background-aware model follows as a natural extension of using a fixed background

class in standard object detectors to our embedding framework. We accomplish this
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by adding a fixed vector for the background class in our embedding space. Such

‘statically-assigned’ background modeling in ZSD, while providing a way to incor-

porate background information, has some limitations. First, we are working with

the structure imposed by the semantic text embeddings that represent each class by

a vector relative to other semantically related classes. In such a case it is difficult

to learn a projection that can map all the diverse background appearances, which

surely belong to semantically varied classes, to a single embedding vector represent-

ing one monolithic background class. Second, even if we are able to learn such a

projection function, the model might not work well during testing. It can map any

unseen class to the single vector corresponding to the background, as it has learned

to map everything, which is not from seen classes, to the singleton background class.

Latent Assignment Based (LAB) Zero-Shot Detection. We solve the prob-

lems discussed above by spreading the background boxes over the embedding space

by using an Expectation Maximization (EM)-like algorithm. We do so by assigning

multiple (latent) classes to the background objects and thus covering a wider range

of visual concepts. This is reminiscent of semi-supervised learning algorithms [185];

we have annotated objects for seen classes and unlabeled boxes for the rest of the

image regions. At a higher level we encode the knowledge that a background box

does not belong to the set of seen classes (S), and could potentially belong to a

number of different classes from a large vocabulary set, referred to as background

set and denoted as O.

We first train a baseline ZSD model on boxes that belong to the seen classes.

We then follow an iterative EM-like training procedure (Algorithm 1), where, in the
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Algorithm 1 LAB algorithm
Given: annoData (annotated data), bgData (background/unannotated data), C (set of

all classes), S (seen classes), U (unseen classes), O (background set), initModel
(pre-trained network)

currModel ← train(initModel, annoData)
for i = 1 to niters do

currBgData ← φ
for b in bgData do

// distribute background boxes over open vocabulary minus seen classes
bnew ←predict(b, currModel, O)
// O = C \ (S ∪ U)
currBgData ← currBgData ∪{bnew}

end for
currAnnoData ← annoData ∪ currBgData
currModel←train(currModel,currAnnoData)

end for
return currModel

first of two alternating steps, we assign labels to some randomly sampled background

boxes in the training set as classes in O using our trained model with Equation 3.3.

In the second step, we re-train our detection model with the boxes, labeled as

above, included. In the next iteration, we repeat the first step for another part of

background boxes and retrain our model with the new training data. This proposed

approach is also related to open-vocabulary learning where we are not restricted

by a fixed set of classes [94, 241], and to latent-variable based classification models

e.g. [186].

3.2.3 Densely Sampled Embedding Space (DSES)

The ZSD method, described above, relies on learning a common embedding space

that aligns object features with label embeddings. A practical problem in learning

such a model with small datasets is that there are only a small number of seen
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classes, which results in a sparse sampling of the embedding space during training.

This is problematic particularly for recognizing unseen classes which, by definition,

lie in parts of the embedding space that do not have training examples. As a result

the method may not converge towards the right alignment between visual and text

modalities. To alleviate this issue, we propose to augment the training procedure

with additional data from external sources that contain boxes belonging to classes

other than unseen classes, yi ∈ C − U . In other words, we aim to have a dense

sampling of the space of object classes during training to improve the alignment

of the embedding spaces. We show empirically that, because the extra data being

used is from diverse external sources and is distinct from seen and unseen classes,

it improves the baseline method.

3.3 Experiments

We first describe the challenging public datasets we use to validate the proposed ap-

proaches, and give the procedure for creating the novel training and test splits1. We

then discuss the implementation details and the evaluation protocol. Subsequently,

we present the empirical performance for different models followed by some ablation

studies and qualitative results to provide insights into the methods.

MSCOCO [130] We use training images from the 2014 training set and randomly

sample images for testing from the validation set.

VisualGenome (VG) [112] We remove non-visual classes from the dataset; use

images from part-1 of the dataset for training, and randomly sample images from
1Visit http://ankan.umiacs.io/zsd.html
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part-2 for testing.

OpenImages (OI) [111] We use this dataset for densely sampling the label space

as described in Section 3.2.3. It contains about 1.5 million images containing 3.7

million bounding boxes that span 545 object categories.

Procedure for Creating Train and Test Splits: For dividing the classes into

seen (train) and unseen (test) classes, we use a procedure similar to [13]. We begin

with word-vector embeddings for all classes and cluster them into K clusters using

cosine similarity between the word-vectors as the metric. We randomly select 80%

classes from each cluster and assign these to the set of seen classes. We assign

the remaining 20% classes from each cluster to the test set. We set the number of

clusters to 10 and 20 for MSCOCO and VisualGenome respectively. Out of all the

available classes, we consider only those which have a synset associated with them

in the WordNet hierarchy [148] and also have a word vector available. This gives

us 48 training classes and 17 test classes for MSCOCO and 478 training classes and

130 test classes for VisualGenome. For MSCOCO, to avoid taking unseen categories

as background boxes, we remove all images from the training set which contain any

object from unseen categories. However, we can not do this for VG because the large

number of test categories and dense labeling results in most images being eliminated

from the training set. After creating the splits we have 73, 774 training and 6, 608

test images for MSCOCO, and 54, 913 training and 7, 788 test images for VG.
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3.3.1 Implementation Details

Preparing Datasets for Training: We first obtain bounding box proposals for

each image in the training set. We construct the training datasets by assigning each

proposal a class label from seen classes or the “background” class based on its IoU

(Intersection over Union) with a ground truth bounding box. Since, majority of the

proposals belong to background, we only include a part of the background boxes.

Any proposal with 0 < IoU < 0.2 with a ground truth bounding box is included

as a background box in the training set. Apart from these, we also include a few

randomly selected background boxes with IoU = 0 with any ground truth bounding

boxes. Any proposal with an IoU > 0.5 with a ground-truth box is assigned to

the class of the ground-truth box. Finally, we get 1.4 million training boxes for

MSCOCO and 5.8 million training boxes for VG. We use these boxes for training

the two background aware models. As previously mentioned, we only use boxes

belonging to seen classes for training the baseline ZSD model. In this case, we have

0.67 million training boxes for MSCOCO and about 2.6 million training boxes for

VG. We train our model on these training sets and test them on the test sets as

described above.

Baseline ZSD Model: We build our ZSD model on the RCNN framework that first

extracts region proposals, warps them, and then classifies them. We use the Edge-

Boxes method [257] with its default parameters for generating region proposals and

then warp them to an image of size 224× 224. We use the (pre-trained) Inception-

ResNet v2 model [198] as our base CNN for computing deep features. We project
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image features from a proposal box to the 300 dimensional semantic text space by

adding a fully-connected layer on the last layer of the CNN. We use the Adam

optimizer [106] with a starting learning rate of 10−3 for the projection matrix and

10−5 for the lower layers. The complete network, including the projection layer, is

first pre-trained on the MSCOCO dataset with the test classes removed for different

models and datasets. For each algorithm, we perform end-to-end training while

keeping the word embeddings fixed. The margin for ranking loss was set to 1 and

the reconstruction loss was added to max-margin loss after multiplying it by a factor

of 10−3. We provide algorithm specific details below.

Static Background based ZSD: In this case, we include the background boxes

obtained as described above in the training set. The single background class is

assigned a fixed label vector [1, . . . , 0] (this fixed background vector was chosen so

as to have norm one similar to the other class embeddings).

LAB: We first create a vocabulary (C) which contains all the words for which we

have word-vectors and synsets in the WordNet hierarchy [148]. We then remove

any label from seen and unseen classes from this set. The size of the vocabulary

was about 82K for VG and about 180K for MSCOCO. In the first iteration, we

use our baseline ZSD model to obtain labels from the vocabulary set for some of

the background boxes. We add these boxes with the newly assigned labels to the

training set for the next iteration (see Algorithm 1). We fine-tune the model from

the previous iteration using this new training set for about one epoch. During our

experiments we iterate over this process five times. Our starting learning rates were

the same as above and we decreased them by a factor of 10 after every 2 iterations.
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Dense Sampling of the Semantic Space: To increase label density, we use

additional data from OI to augment the training sets for both VG and MSCOCO.

We remove all our test classes from OI and add the boxes from remaining classes to

the training sets. This led to the addition of 238 classes to VG and 330 classes to

MSCOCO during training. This increases the number of training bounding boxes

for VG to 3.3 million and to 1 million for MSCOCO.

3.3.2 Evaluation Protocol

During evaluation we use Edge-Boxes for extracting proposals for each image and

select only those proposals that have a proposal score (given by Edge-Boxes) greater

than 0.07. This threshold was set based on trade-offs between performance and

evaluation time. We pass these proposals through the base CNN and obtain a

score for each test class as outlined in Section 3.2.1. We apply greedy non-maximal

suppression [67] on all the scored boxes for each test class independently and reject

boxes that have an IoU greater than 0.4 with a higher scoring box. We use recall

as the main evaluation metric for detection instead of the commonly used mean

average precision (mAP). This is because, for large-scale crowd-sourced datasets

such as VG, it is often difficult to exhaustively label bounding box annotations for

all instances of an object. Recall has also been used in prior work on detecting

visual relationships [137] where it is infeasible to annotate all possible instances.

The traditional mAP metric is sensitive to missing annotations and will count such

detections as false positives. (However, for MSCOCO we report the mAP too since
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Table 3.1: |S|, |U|, and |O| refer to the number of seen, unseen and the average num-
ber of active background classes considered during training respectively. BG-aware
means background-aware representations. This table shows Recall@100 performance
for the proposed zero-shot detection approaches (see Section 3.2) on the two datasets
at different IoU overlap thresholds with the ground-truth boxes. The numbers in
parentheses are mean average precision (mAP) values for MSCOCO. The number of
test (unseen) classes for MSCOCO and VisualGenome are 17 and 130 respectively.

MSCOCO Visual Genome
ZSD Method BG- #classes IoU #classes IoU

aware |S| |U| |O| 0.4 0.5 0.6 |S| |U| |O| 0.4 0.5 0.6
Baseline 48 17 0 34.36 22.14 (0.32) 11.31 478 130 0 8.19 5.19 2.63
SB X 48 17 1 34.46 24.39 (0.70) 12.55 478 130 1 6.06 4.09 2.43
DSES 378 17 0 40.23 27.19 (0.54) 13.63 716 130 0 7.78 4.75 2.34
LAB X 48 17 343 31.86 20.52 (0.27) 9.98 478 130 1673 8.43 5.40 2.74

all object instances in MSCOCO have been annotated.) We define Recall@K as the

recall when only the top K detections (based on prediction score) are selected from

an image. A predicted bounding box is marked as true positive only if it has an IoU

overlap greater than a certain threshold t with a ground truth bounding box and

no other higher confidence predicted bounding box has been assigned to the same

ground truth box. Otherwise it is marked as a false positive.

3.3.3 Quantitative Results

We present extensive results (Recall@100) for different algorithms on MSCOCO

and VG datasets in Table 3.1 for three different IoU overlap thresholds. We also

show the number of seen, unseen, and background classes for each case. During

our discussion we report Recall@100 at a threshold of IoU ≥ 0.5 unless specified

otherwise.

On the VG dataset the baseline model achieves 5.19% recall and the static
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background (SB) model achieves a recall of 4.09%. This marked decline in perfor-

mance is because all the background boxes are being mapped to a single vector. In

VG some of these background boxes might actually belong to the seen (train) or

unseen (test) categories. This leads to the SB model learning sub-optimal visual

embeddings. However, for MSCOCO we observe that the SB model increases the

recall to 24.39% from the 22.14% achieved by the baseline model. This is because

we remove all images that contain any object from unseen classes from the training

set for MSCOCO. This precludes the possibility of having any background boxes

belonging to the test classes in the training set. As a result, the SB model is not

corrupted by non-background objects and is thus more robust than the baseline.

When we densely sample the embedding space and augment the training

classes with additional data, the recall for MSCOCO increases significantly from

22.14% (for baseline) to 27.19%. This shows that dense sampling is beneficial for

predicting unseen classes that lie in sparsely sampled parts of the embedding space.

With dense sampling, the number of train classes in MSCOCO are expanded by a

factor of 7.8 to 378. In contrast, VG a priori has a large set of seen classes (478 ver-

sus 48 in MSCOCO), and the classes expand only by a factor of 1.5 (716) when using

DSES. As a result dense sampling is not able to improve the embedding space ob-

tained by the initial set of categories. In such scenarios it might be beneficial to use

more sophisticated methods for sampling additional classes that are not represented

well in the training set [62, 127,161].

The latent assignment based (LAB) method outperforms the baseline, SB, and

DSES on VG. It achieves a recall of 5.40% compared to 5.19%, 4.09% and 4.75%
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achieved by baseline, SB, and DSES respectively. The consistent improvement across

all IoUs compared to SB, confirms the benefits of spreading background objects

over the embedding space. However, LAB gives a lower performance compared

to the baseline for MSCOCO (20.52% by LAB versus 22.14% by baseline). This

is not surprising since the iterations for LAB initialize with a larger set of seen

classes for VG as compared to MSCOCO, resulting in an embedding that covers a

wider spectrum of visual space. As a result, LAB is able to effectively spread the

background boxes over a larger set of classes for VG leading to better detections.

On the other hand, for MSCOCO a sparsely sampled embedding space restricts

the coverage of visual concepts leading to the background boxes being mapped to

a few visual categories. We also see this empirically in at the average number

of background classes (set O) assigned to the background boxes during iterations

for LAB, which were 1673 for VG versus 343 for MSCOCO. In the remainder of

this chapter we focus on LAB method for VG and SB for MSCOCO due to their

appropriateness for the respective datasets.

We observe that the relative class-wise performance trends are similar to object

detection methods, such as Faster RCNN2 trained on fully supervised data. For

example, classes such as “bus” and “elephant” are amongst the best performing

while “scissors” and “umbrella” rank amongst the worst in performance. In addition

to these general trends, we also discover some interesting findings due to the zero-

shot nature of the problem. For example, the class “cat”, which generally performs

well with standard object detectors, did not perform well with SB. This results from

2http://cocodataset.org/#detections-leaderboard
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having an insufficient number of semantically related categories for this class in the

training set which does not allow the model to effectively capture the appearance of

class “cat” during testing. For such cases we find dense sampling to be useful during

training. The class “cat” is one of the top performing categories with DSES. Based

on such cases we infer that for ZSD the performance is both a function of appearance

characteristics of the class as well as its relationship to the seen classes. For VG,

the best performing classes, such as “laptop”, “car”, “building”, “chair”, seem to

have well defined appearance characteristics compared to poorly performing classes,

such as “gravel”, “vent”, “garden”, which seem to be more of “stuff” than “things”.

We also observe that the model is unable to capture any true positive for the class

“zebra” and is instead detecting instances of “zebra” as either “cattle” or “horse”.

This is because the model associates a “zebra” with a “giraffe”, which is close in

the semantic space. The model is able to adapt the detector for the class “giraffe”

to the class “zebra” but fails to infer additional knowledge needed for a successful

detector that a zebra differs from a giraffe in having white stripes, lower height, and

has a body structure similar to a horse. Finally, we also observe that compared to

the baseline, LAB achieves similar or better performance on 104 of 130 classes on

VG. While for MSCOCO, SB and DSES achieve better or similar performance on

12 and 13 classes respectively out of 17 classes, highlighting the advantages of the

proposed models.
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3.3.4 Generalized Zero-Shot Detection (GZSD)

The generalized zero-shot learning setting is more realistic than the previously dis-

cussed zero-shot setting [222] because both seen and unseen classes are present

during evaluation. This is more challenging than ZSD because it removes the prior

knowledge that the objects at test time belong to unseen classes only. We use a

simple novelty detection step which does not need extra supervision. Given a test

bounding box, bi, we first find the most probable train and test classes (see (3.3))

(ŷsi and ŷui respectively) and the corresponding similarity scores (si and ui). As the

novelty detection step, we check if ui is greater than some threshold nt. We assign

the given bounding box to class ŷui if ui ≥ nt, otherwise to ŷsi . For MSCOCO, DSES

gives the best performance in the GZSD setting too. At nt = 0.2, DSES achieves

a Recall@100 of 15.02% for seen classes and 15.32% for unseen classes (harmonic

mean 15.17% [222]) at IoU ≥ 0.5 compared to 14.54% and 10.57% (HM 12.24%)

for the LAB model and 16.93% and 8.91% (HM 11.67%) for baseline.

3.3.5 Ablation Studies

We compare results when considering different number, K, of high-confidence de-

tections.We define K = All as the scenario where we consider all boxes returned

by the detector with a confidence score greater than the threshold for evaluation.

We compare LAB and the SB models for VG and MSCOCO respectively, with the

corresponding baseline models in Table 3.2.

The difference in performance between the cases K = All and K = 100 is
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Table 3.2: Ablation studies on background-aware approaches for ZSD. We highlight
results where the performance is higher for background-aware approaches compared
to the corresponding baseline. For MSCOCO, the values in parentheses are mAP.

MSCOCO
Baseline SB

K↓ IoU→ 0.3 0.4 0.5 0.3 0.4 0.5
All 47.91 37.86 24.47 (0.22) 43.79 35.58 25.12 (0.64)
100 43.62 34.36 22.14 (0.32) 42.22 34.46 24.39 (0.70)
80 41.69 32.64 21.01 (0.38) 41.47 33.98 24.01 (0.72)
50 36.19 27.37 17.05 (0.50) 39.82 32.6 23.16 (0.81)

VisualGenome
Baseline LAB

0.3 0.4 0.5 0.3 0.4 0.5
13.88 9.98 6.45 12.75 9.61 6.22
11.34 8.19 5.19 11.20 8.43 5.40

10.41 7.55 4.75 10.45 7.86 5.06

7.98 5.79 3.68 8.54 6.44 4.14

small, in general, for the background-aware algorithms unlike the baseline. For

example, on MSCOCO the recall for SB falls by an average (across IoUs) of 1.14%

points, compared to a fall of 3.37% for the baseline. This trend continues further

down to K = 80 and K = 50 with a gradual decline in performance as K decreases.

This shows that high confidence detections from our model are of high quality.

We observe that the background-aware models give better quality detections

compared to baselines. The Recall@K for the corresponding background-aware mod-

els are better than the baseline at lower K and higher IoU threshold values for both

datasets. This region represents higher quality detections.This shows that incor-

porating knowledge from background regions is an important factor for improving

detection quality and performance for ZSD.

3.3.6 Qualitative Results

Figure 3.2 shows output detections by the background aware models, i.e. LAB on

VisualGenome (first two rows) and SB on MSCOCO (last row). Blue boxes show

correct detections and red boxes show false positives. These examples confirm that
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Figure 3.2: This figure shows some detections made by the background-aware meth-
ods. We have used Latent Assignment Based model for VisualGenome (rows 1− 2)
and the Static Background model (row 3) for MSCOCO. Reasonable detections are
shown in blue and two failure cases in red.

the proposed models are able to detect unseen classes without observing any samples

during training. Further, the models are able to successfully detect multiple objects

in real-world images with background clutter. For example, in the image taken in

an office (1st row 3rd column), the model is able to detect object classes such as

“writing”, “chair”, “cars”. It is also interesting to note that our approach under-

stands and detects “stuff” classes such as “vegetation”, and “floor”. As discussed in

Section 3.3.3, we have shown a failure case “zebra”, that results from having limited

information regarding the fine-grained differences between seen and unseen classes.
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3.4 Discussion and Conclusion

We used visual-semantic embeddings for ZSD and addressed the problems asso-

ciated with the framework which are specific to this problem. We proposed two

background-aware approaches; the first one uses a fixed background class while the

second iteratively assigns background boxes to classes in a latent variable framework.

We also proposed to improve the sampling density of the semantic label space us-

ing auxiliary data. We proposed novel splits of two challenging public datasets,

MSCOCO and VisualGenome, and gave extensive quantitative and qualitative re-

sults to validate the methods proposed.

51



Chapter 4: Detecting Human-Object Interactions using Functional

Generalization

Human-object interaction detection is the task of localizing and inferring relation-

ships between a human and an object, e.g., “eating an apple” or “riding a bike.”

Given an input image, the standard representation for HOIs [30, 69, 76, 178] is a

triplet 〈human, predicate, object〉, where human and object are represented by

bounding-boxes, and predicate is the interaction between this (human, object)

pair. At first glance, it seems that this problem is a composition of the atomic prob-

lems of object detection [66, 134, 173, 175] (independently localizing humans and

objects) and classification [69, 187] (post-hoc classifying their interaction). These

atomic recognition tasks are certainly the building blocks of a variety of approaches

for HOI understanding [40, 69, 187]; and the progress in these atomic tasks directly

translates to improvements in HOI understanding. However, the task of HOI un-

derstanding comes with its own unique set of challenges [30, 137,178].

These challenges are due to the combinatorial explosion of the possible in-

teractions with increasing number of objects and predicates. For example, in the

commonly used HICO-Det dataset [30] with 80 unique object classes and 117 pred-

icates, there are 9,360 possible relationships. This number increases to more than
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Figure 4.1: Illustration of common properties of HOI Detection. (Top row) Datasets
are not exhaustively labeled. (Bottom row) Humans interact in a similar fashion
with functionally similar objects - both persons could be eating either a burger, a
hot dog, a sandwich, or a pizza.

106 for larger datasets like Visual Genome [112] and HCVRD [256], which have

hundreds of object categories and thousands of predicates. This, combined with the

long-tail distribution of HOI categories, makes it difficult to collect labeled training

data for all HOI triplets. A common solution to this problem is to arbitrarily limit

the set of HOI relationships and only collect labeled images for this limited subset.

For example, the HICO-Det benchmark has only about 600 unique relationships.

Even though these datasets can be used for training fully-supervised models for

recognizing a limited set of HOI triplets, they do not address the problem completely.

For example, consider the images shown in Figure 4.1 (top row) from the challeng-

ing HICO-Det dataset. The three pseudo-synonymous relationships: 〈human, hold,
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bicycle〉, 〈human, sit on, bicycle〉, and 〈human, straddle, bicycle〉 are all pos-

sible for both these images; but only a subset is labeled for each. We argue that this

is not a quality control issue while collecting a dataset, but a problem associated

with the huge space of possible HOI relationships. It is enormously challenging to

exhaustively label even the 600 unique HOIs, let alone all the possible interactions

among humans and objects. Any HOI detection model that relies entirely on labeled

data will be unable to recognize the relationship triplets that are not present in the

dataset, but are common in the real-world. For example, a näıve model trained on

HICO-Det cannot recognize 〈human, push, car〉 triplet because this triplet does not

exist in the training set. The ability to recognize previously unseen relationships

(zero-shot recognition) is a highly desirable capability for a HOI detection system.

In this work, we address the challenges discussed above using a model that

leverages the common-sense knowledge that humans have similar interactions with

objects that are functionally similar. The proposed model has an inherent ability to

do zero-shot detection. Consider the images in Figure 4.1 (second row) with 〈human,

eat, ?〉 triplet. The person in either image could be eating a burger, a sandwich,

a hot dog, or a pizza. Inspired by this, our key contribution is incorporating this

common-sense knowledge in a model for generalizing HOI detection to functionally

similar objects. This model utilizes visual appearance of a human, their relative ge-

ometry with the object, and language priors [147] to determine which objects afford

similar predicates [64]. Such a model is able to exploit the large amount of contex-

tual information present in language priors to generalize HOIs across functionally

similar objects.
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In order to train this module, we need a list of functionally similar objects

and labeled examples for the relevant HOI triplets, neither of which are readily

available. To overcome this, we propose a way to train this model by: 1) using

a large vocabulary of objects, 2) discovering functionally similar objects automati-

cally, and 3) proposing data-augmentation, emulating the examples shown in Fig-

ure 4.1 (second row). To discover functionally similar objects in an unsupervised

way, we use a combination of visual appearance features [85] and semantic word

embeddings [147] to represent the objects in a “world set” (Open Images Dataset

(OID) [111] in this work). Note that the proposed method is not contingent on the

world set. Any large dataset, like ImageNet [177], could replace the open images

dataset. Finally, to emulate the examples shown in Figure 4.1 (second row), we use

the human and object bounding-boxes from a labeled interaction, the visual features

from the human bounding-box, and semantic word embeddings of all functionally

similar objects. Notice that this step does not utilize the visual features for objects,

just their relative locations with respect to a human, enabling us to perform this

data-augmentation.

The proposed approach achieves over 7% absolute improvement in mAP over

the best published method for HICO-Det. Further, using a generic object detector,

the proposed functional generalization model lends itself directly to the zero-shot

HOI triplet detection problem. We clarify that zero-shot detection is the problem of

detecting HOI triplets for which the model has never seen any images. Knowledge

about functionally similar objects enables our system to detect interactions involving

objects not contained in the original training set. Using just this generic object
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detector, our model achieves state-of-the-art performance for HOI detection on the

popular HICO-Det dataset in the zero-shot setting, improving over existing methods

by several percentage points. Additionally, we show that the proposed approach can

be used as a way to deal with social/systematic biases present in image captioning

and other vision+language datasets [12,247].

In summary, our contributions are: (1) a functional generalization model for

capturing functional similarities among objects; (2) a method for training the pro-

posed model; and (3) state-of-the-art results on HICO-Det in both fully-supervised

and zero-shot settings.

4.1 Related Work

Human-Object Interaction. Early methods [234–236] relied on structured vi-

sual features which capture contextual relationships between humans and objects.

Similarly, [40] used structured representations and spatial co-occurrences of body

parts and objects to train models for HOI recognition. Gupta et al. [74,75] adopted

a Bayesian approach that integrated object classification and localization, action

understanding, and perception of object reaction. Desai et al. [43] constructed a

compositional model which combined skeleton models, poselets, and visual phrases.

More recently, with the release of large datasets [30,31,76,112,256], the prob-

lem of detecting and recognizing HOIs has attracted signification attention. This

has been driven by HICO [31] which is a benchmark dataset for recognizing human-

object interactions. The HICO-Det dataset [30] extended HICO by adding bounding
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box annotations. V-COCO [76] is a much smaller dataset containing 26 classes and

about 10,000 images. On the other hand, HCVRD [256] and Visual Genome [112]

provide annotations for thousands of relationship categories and hundreds of objects.

However, they suffer from noisy labels. Therefore, we use the HICO-Det dataset to

evaluate our approach.

Gkioxari et al. [69] designed a system which trains object and relationship

detectors simultaneously on the same dataset and classifies a human-object pair

into a fixed set of pre-defined relationship classes. This precludes the method from

being useful for detecting novel relationships. Similarly, [227] used pose and gaze

information for HOI detection. Kolesnikov et al. [109] introduced the Box Attention

module to a standard R-CNN and trained simultaneously for object detection and

relationship triplet prediction. Graph Parsing Neural Networks [162] incorporated

structural knowledge and inferred a parse graph in a message passing inference

framework. In contrast, our method does not need iterative processing and requires

only a single pass through a small neural network.

Unlike most prior works, we do not directly classify into a fixed set of relation-

ship triplets but into predicates. This helps us detect completely unseen interactions.

The method which is the closest in spirit to our approach is [187]. The authors used

a two branch structure where the first branch is responsible for detecting humans

and predicting the predicates, and the second branch detects objects. Unlike the

proposed approach, their method does not even consider the object while predicting

the predicate. It solely depends on the appearance of the human. Also, they do not

use any prior information from language. Our model utilizes implicit human pose,
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the object label, human-object geometric relationship, and knowledge about simi-

larities among the objects. Hence, we achieve much better performance than [187]

using the combination of these factors.

We also distinguish our work from prior works [50,65,103,139] on HOI recog-

nition where the task is to recognize the interaction in an image but not to locate

the actors and objects. We tackle the more difficult problem of detecting HOIs.

However, similar to some work on HOI recognition, we also work with the idea of

using language encoded by word vectors to train our generalization module.

Zero-shot Learning. Our work also ties well with recent work on zero-shot

classification [29, 108, 118, 222] and the nascent field of zero-shot object detection

[21, 41, 165]. In Chapter 3 we discussed an approach that projects images into the

word-vector space to exploit the semantic properties of such spaces. A similar idea

was used in [108] for zero-shot classification. Rahman et al. [165], on the other hand,

used meta-classes to cluster semantically similar classes while keeping distinct classes

separate. In this work, we also use word-vectors as additional semantic information

to our generalization module. This, along with our approach for incorporating

generalization during training, helps the model detect previously unseen HOIs.

4.2 Approach

Figure 4.2 represents our approach. The main novelty and contribution of the pro-

posed approach lies in incorporating generalization through a language component.

This is done by using functionally similar objects to train the model. During infer-
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Figure 4.2: We detect all objects and humans in an image. This detector gives
human features fh, and the corresponding labels. We consider all pairs of human-
object and create union boxes. Our functional generalization module uses the word
vectors for the human wh, the object class wo, geometric features fg, and fh to
produce the probability estimate over the predicates.

ence, we first detect humans and objects in the image using our object detectors,

which also give the corresponding (RoI-pooled [175]) feature representations. Each

detected human-object pair is used to extract visual and language features which

are used to estimate the predicate associated with the interaction. We describe

each component of the model in detail and the training procedure in the following

sections.

4.2.1 Object Detection

For our experiment in the fully-supervised setting, we use an object detector fine-

tuned on the HICO-Det dataset. For zero-shot HOI detection and additional ex-

periments, we use a Faster-RCNN [92] -based detector trained on the Open Images

dataset (OID) [111]. This network can detect 545 object categories and we use it

to obtain proposals for humans and objects in an image. The object detectors also

output the ROI-pooled [175] features corresponding to these detections. All human-

object pairs thus obtained are passed to our model which outputs probabilities for

each predicate.
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4.2.2 Functional Generalization Module

Humans interact with objects that are functionally similar in similar ways. Leverag-

ing this fact, the functional generalization module exploits object similarity encoded

in word vectors, the relative spatial location of human and object boxes, and the

implicit human appearance to estimate the predicate. At its core, it comprises an

MLP, which takes as input the human and object word embeddings, wh and wo,

the geometric relationship between the human and object boxes fg, and the human

visual feature fh. The human embedding, wh, helps in distinguishing between dif-

ferent words for humans (man/woman/boy/girl/person). The geometric feature is

useful as the relative positions of a human and an object can help eliminate certain

predicates. The human feature fh is used as a representation for the appearance of

the human. This appearance representation is added because the aim is to incorpo-

rate the idea that humans look similar while interacting with similar objects. For

example, a person drinking from a cup looks similar while drinking from a glass or

a bottle. The four features wh, wo, fg, and fh are concatenated and passed through

the 2-layer MLP which predicts the probabilities for each predicate. All the pred-

icates are considered independent. We now give details of different components in

this model.

4.2.2.1 Word embeddings

We use 300-D vectors from word2vec [147] to get the human and object embeddings

wh and wo. These encode semantic knowledge and allow the model to discover pre-

60



viously unseen interactions between a human and objects by exploiting the semantic

similarities between objects.

4.2.2.2 Geometric features

Following prior work on visual relationship detection [255], we define the geometric

relationship feature as:

fg =
[
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,
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yo2 − yo1

)]
(4.1)

where, W,H are the image width and height, (xhi , yhi ), and (xoi , yoi ) are the

human and object bounding box coordinates respectively, Ah is the area of the

human box, Ao is the area of the object box, and AI is the area of the image. The

geometric feature fg uses spatial features for both entities (human and object) and

also spatial features from their relationship. It is a measure of the scales and relative

positioning of the two entities.

4.2.2.3 Generalizing to new HOIs

We incorporate the idea that humans interacting with similar objects look similar

through the functional generalization module. As shown in Figure 4.3, this idea can

be added by changing the object name while keeping the human word vector wh,

the human visual feature fh, and the geometric feature fg fixed. Each object has

61



a different word-vector and the model learns to recognize the same predicate for

different human-object pairs. Note that this does not need visual examples for all

human-object pairs.

Finding similar objects. An obvious choice for defining similarity between objects

would be to find the closest objects in the WordNet hierarchy [148]. However, this

creates several issues which make using WordNet impractical/ineffective. The first is

defining the distance between the nodes in the tree. The height of a node cannot be

used as a metric because different things have different levels of categorization in the

tree. Similarly, defining sibling relationships which adhere to functional intuitions

is extremely challenging. Another major issue with using WordNet is the lack of

correspondence between closeness in the tree and visual similarity between objects.

To overcome these problems, we consider similarity in both visual and se-

mantic representations of objects. We start by defining a vocabulary of objects

V = {o1, . . . , on} which includes all the objects that can be detected by our object

detector. For each object oi ∈ V , we obtain a visual feature foi
∈ Rp from images

in OID, and a word vector woi
∈ Rq. We concatenate these two to obtain a mixed

representation uoi
for object oi. We then cluster ui’s into K clusters using Euclidean

distance. The objects in the same cluster are considered functionally similar. This

clustering step has to be done only once. We use these clusters to find all objects

similar to an object in the target dataset. Note that there might not be any visual

examples for many of the objects obtained using this method. This is why we do

not use the RoI-pooled visual features from the object.

We would like to point out that using either just the word2vec representations
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Figure 4.3: Generalization module. We can replace “glass” by “bottle”, “mug”,
“cup”, or “can”.

or just the visual representations for clustering gave several inconsistent clusters.

Therefore, we use the concatenated features uoi
. We observed that the clusters

created using these features better correspond to functional similarities between

objects.

Generating training data. For each relationship triplet <h,p,o> in the original

dataset, we add r triplets <h,p,o1>, <h,p,o2>, ..., <h,p,or> to the dataset keeping

the human, and object boxes fixed, and only changing the object name. This means

that, for all these fg and fh are the same as for the original sample. The r different

objects, o1,..., or belong to the same cluster as object o. For example, in Figure 4.3,

the ground truth category “glass” can be replaced by “bottle”, “mug”, “cup”, or

“can” while keeping wh, fh, and fg fixed.

4.2.3 Training

A training batch consists of T interaction triplets. The model produces the proba-

bilities for each predicate independently. We use a weighted class-wise binary cross

entropy loss for training the model.
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We now describe a weighing strategy that can reduce the effects of lack of

available exhaustive labels.

Noisy labeling. Missing and incorrect labels are a common issue in HOI datasets.

Also, a human-object pair can have several different interactions at the same time.

For example, a person can be sitting on a bicycle, riding a bicycle, and straddling

a bicycle. These interactions are usually labeled with slightly different bounding

boxes. To overcome these issues, we use a per-triplet loss weighing strategy. A

training triplet in our dataset has a single label, e.g. <human, ride, bicycle>. A

triplet with slightly shifted bounding boxes might have another label, like <human,

sit on, bicyle>. The idea is that the models should be penalized more if they

fail to predict the correct class for a triplet. Given the training sample <human,

ride, bicycle>, we want the model to definitely predict “ride”, but we should

not penalize it if it predicts “sit on” as well. Therefore, while training the model,

we use the following weighing scheme for classes. Suppose that a training triplet is

labeled <human, ride, bicycle> and there are other triplets in the image. For

the training triplet under consideration, we assign a high weight to the loss for the

correct class (ride), and a zero weight to all other predicates in the image. We also

scale down the weight to the loss for all other classes to ensure that the model is

not penalized too much for predicting a missing but correct label.

The final step of inference is class-wise non-maximal suppression (NMS) of the

union bounding boxes (union of human and object boxes). This helps in removing

multiple detections for the same interaction and leads to higher precision at the

same recall.
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4.3 Experiments

We evaluate our approach on the large-scale HICO-Det dataset [30].

4.3.1 Dataset and Evaluation Metrics

HICO-Det extends the HICO (Humans Interacting with Common Objects) dataset

[31] which contains 600 HOI categories for 80 objects. HICO-Det gives bounding

box annotations for humans, and objects for each HOI category. The training set of

HICO-Det contains over 38,000 images and about 120,000 HOI annotations for 600

HOI classes. The test set has 9,600 images and 33,400 HOI instances.

For evaluation, HICO-Det uses the mean average precision (mAP) metric com-

monly used in object detection [47,130]. Here, a HOI detection is counted as a true

positive if the minimum of the human overlap IOUh and object overlap IOUo with

the ground truth is greater than 0.5. Performance is usually reported for three

different HOI category sets: (a) all 600 HOI categories (Full), (b) 138 categories

with less than 10 training samples (Rare), and (c) 462 categories with more than 10

training samples (Non-Rare).

4.3.2 Implementation Details

We start with a Faster-RCNN-based object detector which is fine-tuned for the

HICO-Det dataset. The base network for this detector is a ResNet-101. This de-

tector was originally trained on the COCO dataset [130] which has the same 80

object categories as the HICO-Det dataset. We consider all detections for which
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the detection confidence is greater than 0.9 and create human-object pairs for each

image. Each detection has an associated feature vector. These pairs are then passed

through our model. The human feature fh is 2048 dimensional. The two hidden

layers in the model are of dimensions 1024 and 512. The model outputs probability

estimates for each predicate and the final output prediction is all predicates with

probability ≥ 0.5.

For all the experiments, we train the complete model for 25 epochs with an

initial learning rate of 0.1 which is dropped by one-tenth every 10 epochs. We re-

iterate that the object detector and the word2vec vectors are frozen while training

this model. For all experiments we use upto five (r) additional objects for data

augmentation. That is, for each human-object pair in the training set, we add upto

five objects from the same cluster while leaving the bounding boxes and human

features unchanged. We also describe zero-shot experiments where we show that

our method can be used to detect previously unseen interactions.

4.3.3 Results

The last row in Table 4.1 show the results obtained by our model. We observe that

our model comprehensively outperforms all existing methods. It achieves an mAP

of 21.96%, an almost 7% absolute improvement over the best published method

[59] and even over 2.5% over the best contemporary work [159]. Also note the

performance for rare classes. Our model achieves 16.43% mAP for rare classes

compared to the existing best of 15.40%. The performance, along with the simplicity,
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Table 4.1: mAPs (%) in the default setting for the HICO-Det dataset. Our model
was trained with upto five neighbors for each object. The last column is the total
number of parameters in the models.

Full Rare Non-rare # Params
Method (600 classes) (138 classes) (462 classes) (millions)
Shen et al. [187] 6.46 4.24 7.12 -
HO-RCNN + IP [30] 7.30 4.68 8.08 -
HO-RCNN + IP + S [30] 7.81 5.37 8.54 -
InteractNet [69] 9.94 7.16 10.77 -
iHOI [227] 9.97 7.11 10.83 -
GPNN [162] 13.11 9.34 14.23 -
ICAN [59] 14.84 10.45 16.15 48.1 + 40.9 = 89.0
Gupta et al. [78] 17.18 12.17 18.68 9.2 + 63.7 = 72.9
Interactiveness Prior [124] 17.22 13.51 18.32 35.0 + 29.0 = 64.0
Peyre et al. [160] 19.40 15.40 20.75 21.8 + 40.9 = 62.7
Ours 21.96 16.43 23.62 3.1 + 48.0 = 51.1

of our model is a remarkable strength and reveals that existing methods may be

over-engineered.

Comparison of number of parameters

In Table 4.1, we also compare the number of parameters in the four closest existing

models against our model. With far fewer parameters, our model achieves better

performance. For example, compared to the current state-of-the-art model which

contains 65.1 million parameters and achieves only 19.40% mAP, our model contains

just 51.1 million parameters and reaches an mAP of 21.96%. Ignoring the object

detectors, our model introduces just 3.1 million new parameters. Note that [78]

and [124] also include a pose estimation model. The number of parameters in

Table 4.1 do not include pose estimation models. Our method provides a simple

and intuitive way of thinking about the problem.
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Next, we show how a generic object detector can be used to detect novel

interactions, even those involving objects not present in the training set. For this,

we use an off-the-shelf Faster RCNN-based object detector which is trained on the

OpenImages dataset and is capable of detecting 545 object categories. This detector

uses an Inception ResNet-v2 with atrous convolutions as its base network.

4.3.4 Zero-shot HOI Detection

Recent work on zero-shot learning aims to either recognize [222] or detect [21] pre-

viously unseen objects in images. Shen et al. [187] take this idea further and try

to detect previously unseen human-object relationships in images. This means that

the aim is to detect interactions for which no images are available during training.

In this section, we show that our method offers significant improvements over [187]

for zero-shot HOI detection.

4.3.4.1 Seen object scenario

We first consider the same setting as [187]. We select 120 relationship triplets

ensuring that every object involved on these 120 relationships occurs in at least one

of the remaining 480 triplets. We call this the “seen object” zero-shot setting, i.e.,

the model sees all the objects involved but not the exact relationships. Later, we

will consider the “unseen object” setting as well where no relationships involving a

particular set of objects will be observed during training.

Table 4.2 shows the performance of our approach in the “seen object” setting

68



Table 4.2: mAPs (%) in the default setting for ZSD. This is the seen object setting,
i.e., it assumes that all the objects have been seen.

Unseen Seen All
Method (120 classes) (480 classes) (600 classes)
Shen et al. [187] 5.62 - 6.26
Ours 10.93 12.60 12.26

for 120 unseen triplets during training. We achieve significant improvement (5.3%

absolute mAP) over the prior method for zero-shot interaction detection. Overall,

on all 600 classes, our model gives 6% absolute improvement in mAP.

4.3.4.2 Unseen object scenario

Now we introduce the “unseen object” setting for evaluating zero-shot HOI detec-

tion. We start by randomly selecting 12 objects from the 80 objects in HICO. We

pick all the relationships containing these objects. This gives us 100 relationship

triplets which constitute the test (unseen) set for zero-shot HOI detection. We train

models using visual examples from only the remaining 500 categories. Table 4.3

gives results for our methods in this setting. We cannot compare with existing

methods because none of them have the ability to detect HOIs in the unseen object

scenario. We hope that our method will serve as a baseline for future research on

this important problem.

In Figure 4.4, we show that our model can detect interactions with objects

for which no images are seen during training. This is because we use a generic

detector which can detect many more objects. We note, here, that there are some
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Table 4.3: mAPs (%) in the unseen object setting for ZSD. This is the unseen
object setting where the trained model for interaction recognition has not seen any
examples of some object classes.

Unseen Seen All
Method (100 classes) (500 classes) (600 classes)
Ours 11.22 14.36 13.84

Figure 4.4: Some HOI detections in the unseen object ZSD setting. Our model has
not seen any image with the objects shown above during training. The first two
rows are correct detections. While the last row shows some mistakes. Many of the
incorrect detections are just slightly off from being correct. For example in the first
image in the last row, the person is actually eating a pizza slice. However, because
our model does not have the ability to reason in 3D, it cannot distinguish between
a pizza in the foreground vs the pizza in the background.

classes among the 80 COCO classes which do not occur in OI. We willingly take

the penalty for missing interactions involving these objects in order to present a

more robust system which not only works for the dataset of interest but is able to

generalize to completely unseen interaction classes (even the object was not seen).

We believe that these are strong baselines for this setting and we will release class

lists and training sets to standardize evaluation for future methods. We reiterate
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Figure 4.5: Some HOI detections in the unseen object ZSD setting but for objects
outside the 80 object categories in HICO-Det.

that none of the previous methods has the ability to detect HOIs in this scenario.

In Figure 4.5, we further show some examples of detections made by our models for

some objects outside the 80 object categories in HICO-Det or COCO.

4.3.5 Ablation Analysis

We point out that the generic object detector used for zero-shot HOI detection can

also be used in the supervised setting. For example, using this detector, we obtain

an mAP of 14.35% on the Full set of the HICO-Det dataset. This is a competitive

performance and is better than most published works (Table 4.1). This shows the

strength of our generalization approach. In this section, we provide further analysis

of our model with the generic object detector.

Number of neighbours. To demonstrate the effectiveness of generalization through

our method, we vary the number of neighboring objects which are added to the

dataset for each training instance. Table 4.4 shows the effect of using different num-
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Table 4.4: HICO-Det performance (mAP %) of the model with different number of
neighbors considered for the generalization module.

r (Number of objects) Full Rare Non-rare
(600 classes) (138 classes) (462 classes)

0 12.72 7.57 14.26
3 13.70 7.98 15.41
5 14.35 9.84 15.69
7 13.51 7.07 15.44

ber of neighbors. The baseline (first row) is when no additional objects are added.

This is the case when we do not use any additional data and rely only on the

interactions present in the original dataset. We successively add more neighboring

objects to the training data and observe that the performance improves significantly.

However, after about five additional neighbors, the performance starts to saturate

because noise from clustering starts to make an impact. Because the clusters are

not perfect, adding more neighbors can start becoming harmful. Also, the training

times increase rapidly. Therefore, as a trade-off between training speed and test

performance, we add five neighbors for each HOI instance in all our experiments.

Clustering method. To check if another clustering algorithm might be better, we

create clusters using different algorithms. From Table 4.5 we observe that K-means

clustering leads to the best performance. Hierarchical agglomerative clustering also

gives close albeit lower performance.

Importance of features. Further ablation studies (Table 4.6) showed that re-

moving fg, or fh from the functional generalization module leads to a reduction

in performance. For example, training the model without the geometric feature fg
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Table 4.5: mAPs (%) for different clustering methods.

Clustering Algorithm Full Rare Non-rare
(600 classes) (138 classes) (462 classes)

K means 14.35 9.84 15.69
Agglomerative 14.05 7.59 15.98
Affinity Propagation 13.49 7.53 15.28

Table 4.6: Ablation studies (mAP %).

Setting Full Rare Non-rare
(600 classes) (138 classes) (462 classes)

Base 14.35 9.84 15.69
Base −fh 12.15 4.87 14.33
Base −fg 12.43 8.02 13.75

gives an mAP of 12.43% and training the model without fh in the generalization

module gives an mAP of just 12.15% showing the importance of both features in

the model. In particular, note that the performance for rare classes in the absence

of fh is very low (4.87%). This shows that using visual information from the human

is essential for detecting rare HOIs.

4.3.6 Dealing with Dataset Bias

Dataset bias leads to models being biased towards particular classes [202]. In fact,

bias in the training dataset is usually amplified by the models [12,247]. Our proposed

method can be used as a way to overcome the dataset bias problem. To illustrate

this, we use metrics proposed in [247] to quantitatively study model bias.

Adopting the bias metric from [247], we define the bias for a object-verb pair,
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(o, v∗) in a set as:

bs(o, v∗, ) = cs(o, v∗)∑
v cs(o, v) (4.2)

where, cs(o, v) is the number of instances of the pair (o, v) in the set, s. This measure

can be used to quantify the bias for a object-verb pair in a dataset or for a model’s

prediction. For a dataset, D, cD(o, v) gives the number of instances of (o, v) pairs in

it. Therefore, bD represents the bias for the pair (o, v∗) in the dataset. A low value

(≈ 0) of bD means that the set is heavily biased against the pair while a high value

(≈ 1) means that it is heavily biased towards the pair.

Similarly, we can define the bias of a model by considering the model’s pre-

dictions as the dataset under consideration. For example, suppose that the model

under consideration gives the predictions P for the dataset D. We can define the

model’s bias as:

bP(o, v∗) = cP(o, v∗)∑
v cP(o, v) (4.3)

where, cP(o, v) gives the number of instances of the pair (o, v) in the set of the

model’s predictions P .

A perfect model is one whose bias, bP(o, v∗) is equal to the dataset bias

bD(o, v∗). However, due to bias amplification [12, 247], most models will have a

higher/lower bias than the test dataset depending on the training set bias. That is,

if the training set is heavily biased towards (resp. against) a pair, then the model’s

predictions will be more heavily biased towards (resp. against) that pair for the test

set. The aim of a bias reduction method should be to bring the model’s bias closer

to the test set bias. Our experiments show that our proposed algorithm is able to
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reduce the gap between the test set bias and the model prediction bias.

We consider a set of (object,predicate) pairs Q = {(o1, p1), . . . , (o2, p2)}.

For each pair in Q, we consider two scenarios: (1) the training set is heavily bi-

ased against the pair; (2) the training set is heavily biased towards the pair. For

generating the training sets for a pair qi = {oi, pi} ∈ Q, for the first scenario, we

remove all training samples containing the pair qi and keep all other samples for the

object. Similarly, for the second scenario, we remove all training samples containing

oi except those containing the pair qi. For the pair, qi the test set bias is bi.

Given two models, the one with bias closer to test set bias is considered better.

We show that our approach of augmenting the dataset brings the model bias closer

to the test set bias. In particular, we consider Q = {(horse,ride), (cup,hold)},

such that b1 = 0.275 and b2 = 0.305.

In the first scenario, baseline models trained on biased datasets have biases

0.124 and 0.184 for (horse,ride) and (cup,hold) respectively. Note that these

are less than the test set biases because of the heavy bias against these pairs in

their respective training sets. Next, we train models by augmenting the training

sets using our methodology for only one neighbor of each object. Models trained

on these new sets have biases 0.130 and 0.195. That is, our approach leads to a

reduction in the bias against these pairs.

Similarly, for the second scenario, baseline models trained on the biased datasets

have biases 0.498 and 0.513 for (horse,ride) and (cup,hold) respectively. Train-

ing models on datasets de-biased by our approach give biases 0.474 and 0.50. In

this case, our approach leads to a reduction in the bias towards these pairs.
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4.3.7 Visual Model

Our generalization module can be complementary to existing approaches. To illus-

trate this, we consider a simple visual module shown in Figure 4.6. It takes the

union of bh and bo and crops the union box from the image. It passes the cropped

union box through a CNN. The feature obtained, fu is concatenated with fh and

fo and passed through two FC layers. This module and the generalization mod-

ule independently predict the probabilities for predicates and the final prediction

is the average of the two. Using the generic object detector, the combined model

gives an mAP of 15.82% on the Full HICO-Det dataset. This is better than the

published best of 14.84%. This experiment shows that the generalization method-

ology proposed here is complementary to existing works which rely on purely visual

data. Using our method in conjugation with other existing methods can lead to

performance improvements.
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Figure 4.6: Simple visual module.
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4.4 Discussion and Conclusion

4.4.1 Discussion

We discuss some limitations of the proposed approach. We have assumed that all

predicates follow functional similarities. However, some predicates might only apply

to particular objects. For example, you can drag a suitcase, but not a backback

which is functionally similar to suitcase. Our model does not capture such con-

straints. Further work can focus on trying to explicitly incorporate such priors into

the model. A related limitation of the proposed approach is the independence as-

sumption on predicates. In fact, some predicates are completely dependent. For

example, straddle usually implies sit on for bicycles or horses. However, due to

the inexhaustive labeling of the datasets, we (and most previous work) ignore this

dependence. Approaches exploiting co-occurrences of predicates can help overcome

this problem.

4.4.2 Conclusion

We have presented a way to enhance HOI detection by incorporating the common-

sense idea that human-object interactions look similar for functionally similar ob-

jects. Our method can detect previously unseen (zero-shot) human-object relation-

ships. We have provided experimental validation for our claims and have reported

state-of-the-art results for the problem.
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Chapter 5: Spatial Priming for Detecting Human-Object Interactions

Detecting human-object interactions involves localizing the interacting humans and

objects and correctly predicting the type of interaction (predicate) between them.

Humans can guess the type of interaction with just a quick glance at an image

by considering the relative locations of the human and the object. For example,

in Figure 5.1, the person on the left is very likely to be sitting on Chair-1 and

not interacting with Chair-2. Similarly, the person in the middle is probably

dragging the suitcase and the human on the right is standing on the snowboard

and possibly riding it. This ability to use spatial relationships helps us in making

guesses and eliminating improbable predictions. With additional visual information,

we can refine these priors to give better predictions. This means that the relative

spatial layout of the human and the object involved in a HOI scenario is greatly

informative and should be exploited for predicting the interaction.

Current deep learning-based approaches either use a small hand-created fea-

ture [78] or binary maps called interaction patterns (IPs) [30]. Using hand-created

features has the potential downside of not being able to encode the fine-grained

spatial relationships among objects. This limitation can be overcome by using in-

teraction patterns, which are binary maps representing the locations of the human
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Figure 5.1: The relative spatial relationship between a human and an object provides
much information about their interaction. We can infer that in the left image, the
human is probably sitting on Chair-1 and not interacting with Chair-2. In the
middle, the human might be dragging the suitcase. And the person on the right is
probably riding a snowboard.

and the object in a HOI. Binary masks for the human and the object, as shown

in Figure 5.1 can be useful for predicting a prior on the interaction. This can be

refined by using more visual information from the image.

In this chapter, we build on this idea for HOI detection. We study the question:

how can we utilize the spatial locations of the entities to improve HOI detection?

Our proposed approach, described in Section 5.2, consists of a layout branch and

a visual branch. The layout module outputs a prediction which is used as a prior

by the visual module. This prior prediction primes the visual branch which then

outputs the final predictions. Priming the visual module using predictions from the

layout module enables our model to fully utilize the spatial layout of the human

and the object. We treat the relative geometry of these entities as high-quality

cues. This idea of priming the visual module is inspired by our interpretation of

Kahneman’s System-1 and System-2 formulation of human decision making [101].

The spatial layout module of our model is comparable to System-1 which is the

“intuitive” part and the visual branch is comparable to System-2 which is the more

“deliberative” part.

79



Our layout and visual modules share information at multiple stages. Such

information sharing between different modalities [52] and at different levels of a net-

work [128, 189] has been shown to make the models learn robust representations.

Lateral connections provide a way to share information between modules process-

ing different types of information. For example, [52] proposed lateral connections

between motion and appearance branches for video action recognition. Our layout

module receives information from the visual branch through lateral connections in

the model. This sharing of information enables the layout module to make stronger

predictions about the predicate.We put the proposed approach in context of prior

work in Section 5.1.

We evaluate our proposed approaches on the challenging HICO-Det dataset

[30]. In Section 5.3, we first present results for a simple baseline algorithm which

uses a good object detector and already achieves state-of-the-art results for HOI

detection. Our proposed model reaches a mean average precision (mAP) of 24.79%

on the HICO-Det dataset, which is about 5.4 absolute points higher than current

state-of-the-art. We also conduct extensive analysis of our proposed method to tease

out the reasons for these improvements.

Finally, we discuss some limitations which are avenues for future research and

conclude in Section 5.4.

The most important contributions of this work are: (1) propose spatial priming

as a way to incorporate spatial layout of the human and object for HOI detection;

(2) propose a model for HOI detection based on spatial priming and information

sharing between a layout and a visual module. In addition, we conduct extensive
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analysis and evaluation of the proposed model to isolate sources of performance

improvement and report state-of-the-art results.

5.1 Related Work

Human-object interaction (HOI) prediction being a special and important subset

of visual relationship prediction [137] is a well-studied problem. Early methods

[43,74,234–236] for HOI prediction had mainly focused on developing hand-designed

features and models. In particular, Yao et al. [235] proposed a random field model

which encodes the idea that humans poses and objects can provide mutual context

for each other. Delaitre et al. [40] built HOI features from spatial co-occurrences

of body parts and objects. Hu et al. [88] used exemplars in the form of density

functions representing an HOI. All of these are somewhat related to the proposed

method owing to the use of the relative layout of humans and objects to reason

about HOIs.

More recently, Mallya et al. [139] used CNN features from local and global

context of a person along with a weighted loss to handle unbalanced training data.

HO-RCNN [30] and InteractNet [69] employed separate human, object, and inter-

action streams for HOI prediction. In particular, [69] jointly learned human and

object detectors along with HOI detectors. However, these methods did not leave

any scope for zero-shot HOI prediction. In [227], Xu et al. utilized gaze and pose

information through a gaze-driven context-aware branch. Gupta et al. [78] also used

human-pose as fine-grained visual layout information. However, these methods re-
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quire an additional model for predicting the pose. Unlike these, we argue that coarse

relative layout along with the object identity provides sufficient cues to form a prior

for interaction. We avoid the additional burden and potential errors of using a pose

estimation model.

Several methods have utilized external semantic knowledge for HOI pre-

diction [103,160]. In this work, we too have used semantic information in the form

of word vectors for object classes. These help transferring knowledge from an object

to other similar object classes. Using semantic knowledge also helps in generalizing

to zero-shot HOI categories. Zero-shot HOI detection has previously been studied

in [187]. This followed several works on zero-shot object recognition [108, 222] and

zero-shot object detection [21].

Like the proposed model, Li et al. [124] had also used priors for refining predic-

tions. However, they learned “interactiveness priors” which only inform whether a

human and an object are interacting or not. We, instead, add a prior which informs

about the class of interaction based on the relative spatial layout of the human and

object.

Spatial layout of the human and object is an important cue for predicting

the interaction. Some prior works have tried to incorporate the spatial relationship

by encoding it as a small hand-designed feature and passing it as input to a neural

network [78]. Chao et al. [30] proposed “interaction patterns” for encoding the

relative spatial location. Gao et al. [59] also used such interaction patterns as a

branch of the model. However, neither of these models combined spatial layout as

a prior for predicting HOI. It can be argued that even these methods considered

82



relative layout as secondary information to the visual features. In this chapter, we

use IPs as binary spatial maps to represent the relative layout of the human and the

object. We present a principled approach for exploiting the information contained

in such spatial maps.

Lateral connections have been used previously for merging information from

different spatial resolutions [128], for fusing optical and visual streams in two-stream

networks for action recognition [52], and for fusing coarse and fine temporal reso-

lutions for video recognition [51]. Shrivastava et al. [188] also used such lateral

connections for priming an object detector by contextual information from semantic

segmentation. Feature Pyramid Network (FPN) [128] used lateral connections for

building high-level semantic feature maps for object detection. Similarly, Shrivas-

tava et al. [189] proposed top-down modulations to incorporate finer details into an

object detection architecture. Their bottom-up and top-down pathways are con-

nected using lateral connections.

5.2 Approach

The proposed model is composed of a relative layout module (L) and a visual

module (V) which share information at multiple stages. Predictions from L are used

to prime V and the final prediction is the output of V. Figure 5.2 shows the entire

pipeline of our approach. Our model takes detections from an object detector in the

form of human-object pairs as input and outputs the probabilities for the predicates.

We describe each component of our model next.
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Figure 5.2: Proposed Pipeline. A Faster R-CNN object detector is used to detect
humans and objects in an image. For each human-object pair, the interaction pat-
tern, and union box are input to L and V respectively. Predictions from L are used
for priming V. The visual module, V takes the union box, predictions from L, RoI
pooled human and object features from the object detector and outputs the final
probabilities over the predicates.

5.2.1 Object Detector

We start by using Faster R-CNN [175] to detect all humans and objects in an

image and create all candidate human-object pairs. Each pair has an associated

human bounding box, bh = {bx1
h , b

y1
h , b

x2
h , b

y2
h } and an object bounding box, bo =

{bx1
o , b

y1
o , b

x2
o , b

y2
o }, giving a union box:

bu = {min(bx1
h , b

x1
o ),min(by1

h , b
y1
o ),max(bx2

h , b
x2
o ),max(by2

h , b
y2
o )} (5.1)

We crop bu from the image and use it as an input to the visual module V.

We generate binary spatial maps (interaction patterns) of the same size as

bu for the human and the object and stack these maps to produce a two-channel

representation as shown in Figure 5.2. These spatial maps are used as inputs to the

layout module L.
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5.2.2 Layout Module

The spatial layout network, L is based on the idea that the relative layout and the

semantic category of the object can provide sufficient cues to determine the prior

probabilities for the interaction between a human and an object (see discussion in

the introduction of this chapter). We use a shallow CNN as the layout network. This

network takes the stacked spatial maps as input. We add features from the visual

module (described next) to intermediate layers in L via 1 × 1 convolutions. This

provides visual context about the human and the object. After the final convolution

layer, we apply global average pooling to get the layout feature f1.

Semantic knowledge. Only the relative spatial layout might not be enough to

correctly determine the type of interaction. For example, in Figure 5.1, it becomes

difficult to predict the relationship without the object identity. Therefore, we incor-

porate the object identity in L. To include semantic information about the object,

we concatenate f1 with the word2vec [147] representation of the object, wo and pass

the concatenated vector through two fully-connected layers which give the proba-

bilities over all predicates. Using semantic information about the object also helps

in improving the generalization of the model to interactions involving previously

unseen objects (zero-shot detection). Using word2vec representations of the objects

implicitly encodes semantic similarities between objects.

The output of the layout module are logits over the predicates which are used

as inputs to the visual module. These logits act as a prior to the visual module

which refines its output based on this spatial prior.
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5.2.3 Visual Module

The visual module V uses the predictions from L along with the visual information

from the cropped union bounding box to make the final prediction. We use a deeper

network as the base network in V. As mentioned above, intermediate features from

V are added to L to provide appearance and contextual information to the layout

module. The base network in V provides a feature vector f2 after global average

pooling of the feature from the last convolution layer. We have two fully-connected

layers at the end of the base convolution layers in V. As input to these layers, we

concatenate the features f2, the prior predictions from the layout module p1, and

the RoI-pooled human and object appearance features from the object detector, fh

and fo. RoI-pooled features from the object detector provide explicit appearance

information about the human and the object. The output of the visual module is

the final output of the model.

5.2.4 Lateral Connections

We add features from intermediate layers in the visual module to intermediate layers

in the layout module via 1 × 1 convolution layers. Adding the visual features to

features in the layout module enables the model to explicitly share visual context not

available the in layout module. Therefore, L can benefit from the spatial layout of the

two interacting entities along with their appearances. This leads to a stronger spatial

prior for the final stages of the visual module. We will empirically demonstrate the

importance of using this layout information in Section 5.3.
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5.2.5 Spatial Priming

Predictions from L prime the visual module based on the relative spatial layout

of the human and the object. The layout module L provides strong priors for the

predicate which are refined by the visual module which uses even more information

about the human, object, and context appearance. Such priming enables the visual

module to gain from the information contained in the relative spatial layout of the

human and the object which is encoded by the binary spatial maps.

5.2.6 Training

We train L and V jointly. For both modules, we consider all predicates as independent

and use a weighted binary-cross entropy loss. The weights are simply inversely

proportional to the number of instances of the predicate in the dataset. The total

loss is the sum of the two losses from L and V.

Note that, unlike many existing works, we predict the probabilities/confidence

scores of each predicate for a human-object pair and not for the triplet <human,

predicate, object> directly. This gives our method the ability to detect pre-

viously unseen HOI categories (zero-shot detection) and removes the limitations

imposed by a particular dataset. To clarify, since we already have the object labels

from the object detector, we only need to output the predicate in order to determine

the interaction triplet. For example, the HICO-Det dataset contains 600 annotated

HOI triplet categories of the form <human,predicate,object> but 117 predicates.

In total, there are 9360 (117 × 80) possible interactions for this dataset. Only 600
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of these are labeled. There might be more types of possible interactions than these.

Our methods can potentially detect such unlabeled HOI categories too.

5.3 Experiments

We start with a brief description of the dataset and evaluation metrics and provide

implementation details for our approach. We then discuss the model performance in

fully-supervised and zero-shot settings. Finally, we discuss and analyze the model

through extensive ablation studies.

5.3.1 Dataset and evaluation metrics

Following prior work, we use the challenging HICO-Det dataset [30] for evaluating

our approach. This dataset contains 600 HOI triplet <human, predicate, object>

categories involving 117 predicates and 80 objects. These categories are divided

into: (a) Rare - 138 categories with less than 10 training samples, and (b) Non-

rare categories. There are about 38, 000 training images containing about 120, 000

interactions and about 9, 600 test images with about 33, 400 HOIs.

Mean average precision (mAP) is used as the evaluation metric. A detected

triplet is considered correct if both human and object overlaps (IoU) with the ground

truth are greater than 0.5. Performance is reported for the full set of 600 classes

and also for the rare and non-rare classes separately.

Due to its inconsequential size (< 6, 000 training images and just 26 predi-

cates), the V-COCO dataset [76] does not provide any new insights into HOI detec-
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tion approaches. Unsurprisingly, most recent state-of-the-art methods [19, 78, 160]

do not use V-COCO. However, for the sake of completeness, we evaluate our model

on the V-COCO dataset as well.

5.3.2 Implementation Details

Following the state-of-the-art [19], we start by fine-tuning a ResNet-101 [85] based

Faster R-CNN [175] object detector for the HICO-Det dataset [30]. The detector was

originally trained on the COCO dataset [130] which has the same 80 object classes.

Fine-tuning enables the detector to confidently detect objects more likely to be

involved in an interaction. This helps in improving the performance of downstream

predicate classifiers. Please see supplementary materials for details.

To create the training dataset, we consider all detections for which the detec-

tion confidence is greater than 0.75 and the overlap with a ground-truth human or

object box is greater than 0.7. We create human-object pairs for each image using

these detections and end up with about 250, 000 training HOI triplets. For test

proposals, we select only those object and human proposals which have a confidence

score greater than 0.9 for a particular class. This ensures that we get only high

confidence object detections and make fewer errors because of incorrectly detected

objects and humans. Each detection has an associated feature vector and bounding

boxes. We use the human and object bounding boxes, bh and bo respectively to

compute the union box and the binary spatial maps.

For our model, the visual module is a ResNet-50 network and the layout mod-
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Table 5.1: Architecture of L. C1-C8 are convolution layers. Layer dimensions
are in the shape kernel width × kernel height × output channels. Numbers in
parenthesis are strides.

Layer Layer Dimensions Output Sizes

C1C2 7×7×64 (2), MaxPool (2), 3×3×256 (1) 56×56×256
C3C4 1×1×128 (1), 3×3×512 (2) 28×28×512
C5C6 1×1×256 (1), 3×3×1024 (2) 14×14×1024
C7C8 1×1×512 (1), 3×3×2048 (2) 7×7×2048
GAP 7×7 1×1×2048
FC1 1024 1024
FC2 512 512

ule is a shallow 8-layer CNN with the layers described in Table 5.1. Each layer of L

contains a ReLU non-linearity and batch-normalization. We add lateral connections

from each Residual block in V to L, i.e., there are three lateral connections. Features

from the residual blocks, Res-1, Res-2, and Res-3 are added to the respective places

in L as shown in Figure 5.2. The fully connected layers are of sizes 1024 and 512

in both L and V. We reiterate that both L and V give the probabilities for the 117

predicates. This is unlike many previous methods which directly predict the HOI

triplets (600 categories). We use the object labels from the object detector to output

the final triplet. This also enables us to detect previously unseen HOIs (zero-shot

detection).

In all our experiments, we train the model for 10 epochs with an initial learning

rate of 0.1 which is dropped by a tenth every 3 epochs. Note that the object detector

and the semantic word-vectors are frozen while training our models, i.e., the detector

needs to be trained only once.
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Table 5.2: Baseline results (mAP %)

Full Rare Non-rare
Method (600 classes) (138 classes) (462 classes)
Baseline ResNet-50 20.80 15.63 22.34
Baseline ResNet-50+fh + fo 21.49 14.43 23.60

5.3.3 Results

Strong Baseline. We start with a baseline CNN which predicts the predicates just

based on the cropped union box. We first use a ResNet-50 (R-50) network as the

classifier which takes a cropped union box as input and outputs the probabilities

for each predicate. This network achieves an mAP of 20.80% for the HICO-Det

test set. This is a strong albeit simple baseline which is already better than the

current state-of-the-art performance of 19.40% (Table 5.3). This reveals that the

existing methods can benefit from simplifying the algorithm and just using a better

object detector and a stronger feature extractor. A simple model like classifying the

union box obtained from detections from an object detector is enough to achieve

better performance than existing methods. Adopting the common practice [69,124]

of using the features from the object detector, we append the RoI-pooled features

to the features from the R-50, and obtain an mAP of 21.49%. We summarize these

results in Table 5.2.

Comparison with Prior Work. We compare the performance of our model with

past work in Table 5.3. Our model achieves an mAP of 24.79%, which is over 2.8

absolute percentage points higher than Functional Generalization (Chapter 4) on
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Table 5.3: Comparison with prior work. The performance (mAP %) obtained by
our method is significantly higher than existing methods.

Full Rare Non-rare
Method (600 classes) (138 classes) (462 classes)
Shen et al. [187] 6.46 4.24 7.12
HO-RCNN + IP [30] 7.30 4.68 8.08
HO-RCNN + IP + S [30] 7.81 5.37 8.54
InteractNet [69] 9.94 7.16 10.77
GPNN [162] 13.11 9.34 14.23
iHOI [227] 13.39 9.51 14.55
Xu et al. [228] 14.70 13.26 15.13
ICAN [59] 14.84 10.45 16.15
Wang et al. [213] 16.24 11.16 17.75
Gupta et al. [78] 17.18 12.17 18.68
Interactiveness Prior [124] 17.22 13.51 18.32
RPNN [249] 17.35 12.78 18.71
PMFNet [208] 17.46 15.65 18.00
Peyre et al. [160] 19.40 15.40 20.75
Functional Gen. (Chapter 4) 21.96 16.43 23.62
Ours 24.79 14.77 27.79
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Table 5.4: Zero-shot HOI detection (mAP %).

Unseen Seen All
Method (120 classes) (480 classes) (600 classes)
Shen et al. [187] 5.62 - 6.26
Functional Gen. (Chapter 4) 10.93 12.60 12.26
Ours 11.06 21.41 19.34

the Full set of the HICO-Det dataset. Our method also performs about 4.2 absolute

percentage points better on Non-rare classes. Interestingly, at the same time, even

though we do not target them explicitly, our model achieves competitive performance

on Rare classes too. Note that the methods in [19] and [160] are explicitly designed

to target rare and unseen classes.

We also point out that, even using the original COCO detector instead of our

fine-tuned detector, our model achieves an mAP of 19.45%. This is the highest

among all methods using an object detector trained on COCO. In particular, the

mAP achieved by the proposed method is significantly higher (2− 12% mAP) than

previous methods [30,59,213] which aim to utilize the relative spatial layout of the

two entities. In addition, we obtain a higher performance than RPNN [249] and

PMFNet [208] which use additional pose information using models trained on large

datasets. This demonstrates the strength of Spatial Priming as a way of modeling

the geometric layout.

Zero-Shot HOI Detection. The proposed approach can help improve the per-

formance for zero-shot HOI detection. Table 5.4 compares the performance of our

method with the state-of-the-art methods [19,187] on zero-shot HOI detection. Prior
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work divides the classes into a set of 120 unseen and 480 seen classes. We use the

same setting here. The model is trained with training data for only the seen classes

and is evaluated on the set of unseen classes. Note that the classes are divided

such that the there is at least one interaction involving each of the 80 objects in the

training set, i.e., the model is trained with at least one HOI involving each object.

From Table 5.4 we observe that our model achieves a higher mAP than Functional

Generalization for Unseen classes while also improving the mAP for Seen classes by

a huge margin. We have used the same train-test splits as [19].

5.3.4 Ablation Analysis

We now extensively analyze our model in Tables 5.5, 5.6, and 5.7.

Importance of wo. Word-vectors wo encode the semantic similarities between ob-

jects. Table 5.5a shows that using the word-vector in the layout module leads to

performance improvement. The complete model which uses the word2vec vectors wo

achieves an mAP 24.79%. Removing this word-vector leads to a lower performance

(24.47%).

Type of Lateral Connection. Table 5.5b illustrates that adding the features from

the visual module to the geometric module achieves higher performance than con-

catenating the features. The mAP in the case of addition of features is 24.79%.

Compare this to the mAP of 24% when the features are concatenated instead. The

reason for this is that adding features from the visual module forces L to explicitly

focus on the human and object. This ensures that the relevant regions of the image
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Table 5.5: Ablation studies for the model. We report mAP (%) in each case. In all
sub-tables “Standard” refers to the model shown in Figure 5.2.

(a) Effect of wo. Row
2 is the standard model
without wo. Note that the
performance without wo is
lower than the Standard
case. This is particularly
true for the Rare classes.
Setting Full Rare Non-rare

Standard 24.79 14.77 27.79
Standard - wo 24.47 12.16 28.14

(b) Lateral connection
methods. Concat is the
model with lateral addi-
tions replaced by concate-
nation. 3x3add uses 3 ×
3 convs in lateral connec-
tions instead of 1 × 1 used
in the Standard setting.

Setting Full Rare Non-rare

Standard 24.79 14.77 27.79
Concat 24.00 13.91 27.02
3×3add 24.21 13.34 27.47

(c) Importance of L.
ImgCNNA-ImgR50 is
the model where in-
put to L is the cropped
union box. Similarly,
in ImgR50-ImgR50, the
layout module is a ResNet-
50 with the union box
as input. (Standard is
IPCNNA-ImgR50)
Setting Full Rare Non-rare

Standard 24.79 14.77 27.79
ImgCNNA-ImgR50 22.28 10.87 25.69
ImgR50-ImgR50 24.07 11.96 27.68

(d) Utility of fh, fo. Concat con-
tains concatenated lateral connec-
tions. Standard−fh−fo has no fh
and fo. Standard-Larger contains
larger hidden layers and no fh and
fo. Similarly for Concat−fh−fo and
Concat-Larger.

Setting Full Rare Non-rare

Standard 24.79 14.77 27.79
Standard−fh−fo 22.32 13.14 25.07
Standard-Larger 24.60 13.58 27.89
Concat 24.00 13.91 27.02
Concat−fh−fo 21.87 13.05 24.51
Concat-Larger 23.41 14.44 26.09

(e) Different lateral connec-
tions. Conn1 is the model with just
one lateral connection from V to L
which is at Res-1. Conn2 has just
one lateral connection at Res-2 and
Conn3 has the lateral connection at
Res-3. L-V has all connections from
L to V.

Setting Full Rare Non-rare

Standard 24.79 14.77 27.79
L-V 23.81 13.44 26.91
Conn1 23.63 10.75 27.48
Conn2 24.01 12.86 27.34
Conn3 22.87 11.42 26.28

are given more importance. Similarly, when using 3× 3 convolutions in the lateral

connections instead of 1×1, the performance is slightly lower. This is because using

3× 3 convolutions increase the receptive field of the features. This dilutes the focus

on the human and the object which in turn leads to a lower performance.

Layout Module. The importance of using the relative spatial layout of the human

and object is demonstrated using the data in Table 5.5c. The first row in the table

is the standard case when the human and object spatial maps are given as input
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to the shallow layout network. This model gives an mAP of 24.79%. Now, if we

remove the binary spatial maps (IP) and input the cropped union box image to the

layout module too, the performance of the model drops to just 22.28% (second row).

Note that this model has the same number of parameters as the previous model.

The only difference is the input to L. To ensure that the drop in performance is not

due to a weak layout network, we replace the small CNN in the layout module with

a ResNet-50 network. Again, the input to both the layout and visual branches is

the cropped union box. Even this model, with a much larger number of parameters

than the standard case, gives an mAP of just 24.07%. This shows that relative

spatial layout of the human and the object provides irreplaceable information for

determining the type of interaction.

Importance of fh and fo. From Table 5.5d, we observe that a model gives a lower

performance if appearance features from the object detector are not used. For

example, the Standard model reaches an mAP of 24.79% while the Standard model

trained without fh and fo reaches only 22.32%. Similarly, the performance for the

Concat model (from Table 5.5b) goes down from 24% to just 21.87% on removing

the features. Clearly, fh, and fo help in achieving higher performance. Recall that

we had observed the same effect with the Baseline model (Table 5.2).

To analyze if these improvements are because of a larger number of parameters,

we removed fh and fo and increase the sizes of the fully connected layers such that

the number of trainable parameters in this model and the Standard model are

roughly the same. We call this model Standard-Larger. This model gives an mAP
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of 24.60%. This is down from 24.79% obtained by the Standard model. Similarly,

the Concat-Larger model gives an mAP of 23.41%, down from the Concat model

which gave 24%. So, even though some of the performance gain when using the

appearance features could be due to a larger number of parameters, it does not

explain the whole difference. We believe that the features fh and fo do, in fact,

provide useful information for predicting the HOI.

Different Connections. We show that having lateral connections at multiple depths

in the network is important for obtaining a good performance. We study whether

having just one lateral connection can be enough. From Table 5.5e, we infer that

the answer is no. Just one lateral connection after either Res-1 block, Res-2 block,

and Res-3 block (rows 3, 4, and 5 respectively) gives worse performance than having

connections at all three places. In particular, having just one connection after Res-3

gives the lowest performance. This is because by this depth the visual module loses

most spatial information and the layout module does not benefit from adding visual

features. This shows that frequent information sharing between the two modules

via lateral connections gives significant performance improvements. We also observe

that passing information from the spatial layout module to the visual module also

achieves a lower mAP.

To analyze the effect of each of the component in our model in more detail,

we conduct ablation studies in two further settings. First, we study the utility

and behaviour of lateral connections without priming. We remove the loss J1 and

instead of adding layout priors, p1 to the visual module, we directly add the global
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Figure 5.3: No priming (NP). This model removes the spatial priming from our
model (Figure 5.2). Human and object bounding boxes from an object detector give
the interaction patterns and the union box. Global Average Pooled (GAP) features
from the geometry and visual networks are concatenated to the human and object
RoI pooled features from the object detector. Two FC layers are used to get the
probabilities/confidences over the predicates.

Table 5.6: NP Results (mAP %). NP is the model shown in Figure 5.3 with
lateral connections from V to L. NC is the same model without lateral connections.
Similarly, L-V has connections from the layout branch to the visual branch. V-L-
concat concatenates the features from V and L instead of adding.

Full Rare Non-rare
Method (600 classes) (138 classes) (462 classes)
V-L-add (NP) 23.41 12.14 26.78
NC 22.56 12.78 25.48
L-V 22.45 12.23 25.50
V-L-concat 22.76 11.78 26.04

average pooled features, f1. This gives the model shown in Figure 5.3. We call this

model NP.

No Priming. The first row in Table 5.6 gives the performance of the NP model

(no priming) shown in Figure 5.3. This model achieves an mAP of 23.41% on the

Full HICO-Det dataset. Notice that this is higher than the Baseline model discussed

earlier (21.49% Table 5.2). This highlights the importance of the spatial layout even

in this simpler setting.
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We further analyze the behavior of this model in different conditions. In

Table 5.6 V-L is the model with lateral connections from the visual module (V) to

the layout module (L). To illustrate the positive impact of these lateral connections,

we remove all lateral connections and train the resulting model. This model is called

“NC” (no connection) in Table 5.6. NC reaches an mAP of only 22.56%. Clearly,

lateral connections enable better utilization of the relative spatial layout of a person

and an object. However, note that this is still higher than the Baseline model

(21.49%), clearly demonstrating that leveraging layout information is important for

improving HOI detection performance.

Further, we observe that connections from layout module to the visual module

(L-V) give almost the same performance as having no connection (NC). Also, the

final row in Table 5.6 is the case where we concatenate the intermediate features

from the visual module to the features of the layout module instead of adding. This

model, though better than having no connections, is still worse than the V-L model.

We believe that in the case of concatenation, the network does not learn to attend

to the human and the object. On the other hand, when we add the features instead,

we explicitly force the network to attend to the human and object regions of the

image. This enables it to learn better mappings from human and object appearances

to the correct predicate. Recall that we had seen similar behavior in Table 5.5b.

Next, we study the effect of removing lateral connections from our model.

This is an important case and will show how informative the layout module is on

its own. This will help us pinpoint how the components of our model behave in
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Figure 5.4: No lateral connections (NL). We remove lateral connections from our
model (Figure 5.2). Now, L predicts the interaction just based on the spatial layout.
These predictions are given as a prior to V which also uses the union bounding box
and the RoI pooled features from the object detector to make the final prediction.

the presence of only spatial priming without lateral connections. We remove the

lateral connections from our model in Figure 5.2. This gives us the model shown in

Figure 5.4. We call this model NL.

No Lateral Connections. Results and ablation studies for the NL model are listed

in Table 5.7. The best model reaches 23.90% in mAP on the HICO-Det dataset. It

contains a shallow layout branch L which predicts the predicate based only on the

spatial layout of the human and the object. This prediction is used as a prior by

the visual network V which gives the final prediction. We highlight the performance

of the layout network L. It achieves an mAP of 18.35% on the Full set of HICO-

Det. This shows that there is significant information about the interaction category

contained in the relative spatial layout of the human and object. When properly

trained, using only this information might be better than most existing methods

(13/15 methods in Table 5.3).

Again, the importance of a layout-based prior is apparent when comparing

the performance of this model with the performance of the baseline R-50 model
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Table 5.7: NL Results (mAP %). First row (NL) is the model shown in Figure 5.4.
NL - fh - fo represents the model trained without the appearance features from the
object detector. NL - wo is NL without the word vector for the object.

Full Rare Non-rare
Method Model (600 classes) (138 classes) (462 classes)
NL L 18.35 8.20 21.38

V 23.90 10.82 27.81

NL - fh - fo L 17.44 10.14 19.62

V 23.19 14.71 25.72
NL - wo L 16.33 8.45 18.69

V 22.91 11.29 26.39

which had reached only 21.49% (Table 5.2). The last row in Table 5.7 shows that

removing the word vector wo from the model leads to a drop in performance. This

is driven down by the reduction in the performance of the layout model L which

went from 18.35% in the usual case to just 16.33%. Removing the appearance

features from the detector, fh and fo, also results in lower performance. We had

seen the same trends even in the presence of lateral connections in Table 5.5. Also,

note that the performance for NL (23.90%) is higher than the performance for NP

(23.41% Table 5.6), showing that the idea of spatial priming is a significant source

of improvement achieved by our proposed model.

5.3.5 Experiments on V-COCO

Similar to prior methods [69,208,249] we use the 24 action classes involving a person

and an object. We use our ResNet-101 object detector to extract the human and

object bounding boxes from each image. For generating the training set, we use all
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Table 5.8: Comparison with prior work for the V-COCO dataset. The performance
(mAProle %) obtained by our method is higher than existing methods.

Method mAProle

Gupta et al. [76] 31.8
InteractNet [69] 40.0
GPNN [162] 44.0
ICAN [59] 45.3
RPNN [249] 47.5
Wan et al. [208] 48.6
RPT2CD [124] 48.7
Spatial Priming (Ours) 49.2

proposals which overlap with a ground-truth entity box with an IoU greater than

0.5. For testing, we use human and object proposals with confidence > 0.8. A

major difference between the HICO-Det dataset [30] and V-COCO is the absence of

annotations for the no-interaction or background class. We generate samples for

no-interaction by considering un-labeled human-object interactions as belonging

to this class. Following the standard practice in object detection [175], we use the

background and labeled classes in a ratio of 3:1.

Table 5.8 shows that the performance achieved by Spatial Priming (49.2%

mAP) is significantly higher than most existing methods. In Table 5.9, we list the

class-wise AP obtained by our method for the 24 classes under consideration.

5.4 Discussion and Conclusion

We discuss some limitations of the approach which can be avenues for further im-

provements and finally conclude.
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Table 5.9: Class-wise AP obtained by our Spatial Priming approach for the V-COCO
dataset.

Class AProle

hold-obj 36.81
sit-instr 32.94
ride-instr 64.34
look-obj 42.34
hit-instr 69.02
hit-obj 39.39
eat-obj 46.70
eat-instr 13.31
jump-instr 52.69
lay-instr 31.66
talk on phone-instr 30.15
carry-obj 37.45
throw-obj 41.72
catch-obj 52.94
cut-instr 34.04
cut-obj 48.30
work on computer-instr 64.85
ski-instr 46.03
surf-instr 76.43
skateboard-instr 86.68
drink-instr 45.01
kick-obj 78.37
read-obj 33.18
snowboard-inst 75.36
Average Role AP 49.15

5.4.1 Discussion

In this chapter, we have not explicitly considered ways of improving detection for rare

classes. The competitive performance for rare classes in Table 5.3 is a by-product

of our approach, particularly, using semantic knowledge in the form of word2vec
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representations. HOI datasets will always suffer from the long-tail problem. Future

research should focus on improving performance for rare classes.

5.4.2 Conclusion

We have presented an approach for using the relative layout information of a human

and an object for detecting the interactions between them. Our proposed model

consists of two modules: one for processing the relative spatial layout of a human

and an object, and the other for processing visual information. The visual module is

primed using the prediction of the layout module. We have systematically analyzed

the model and our experiments shown that this method can significantly out-perform

state-of-the-art methods for HOI detection.

104



Chapter 6: Image-Set Visual Question Answering

Answering natural-language questions about images requires understanding both

linguistic and visual data. Since its introduction [14], Visual Question Answering

has attracted significant attention. Several related datasets [14,93,140,239,254] and

many methods [60,71,131,153,233] have been proposed since.

In this work, we introduce the new task of Image Set Visual Question Answer-

ing (ISVQA). It aims to answer a given free-form natural-language question based

on a small set of images. The proposed ISVQA task could require reasoning over

objects and concepts in different images to predict the correct answer. For example,

for Figure 6.1, a model has to find the relationship between the bed in the top-left

image and the mirror in the top-right, via pillows which are common to both the

images. This example shows the unique challenges associated with image-set VQA.

A model for solving this type of problems has to understand the question, find the

connections between the images, and use those connections to relate objects across

images. Similarly, in Figure 6.2, the model has to avoid double-counting recurring

objects in multiple images. These challenges associated with scene understanding

have not been explored in existing single-image VQA settings but frequently happen

in the real world. Humans require limited effort to solve them but they are difficult

105



Figure 6.1: Given the set of images above, and the question “What is hanging above
the bed?”, in order to answer the question, it is necessary to connect the bed in the
top-left image to the mirror in the top-right image. To answer this question a model
needs to understand the concepts of “bed”, “mirror”, “above”, “hanging”, etc. and
be able to relate the bed in the first image with the headrest and pillows in the third
image.

for machines.

Instances of the ISVQA task include answering questions about images taken

at different times (e.g. videos or sequential images taken at several times like in

camera trap photography), at different locations (e.g. multiple camera streams from

indoor or outdoor locations), or from different viewpoints (e.g. live sports coverage,

multiple views of objects). Some of these settings contain images taken from the

same scene, while others might involve images of a larger span. In this work, we focus

on the setting where the images are taken from different locations or viewpoints in

the same scene.

In this setting, ISVQA may require finding the same objects in different images

and determining the relationships between different objects within or across images.

It can also entail determining which image/images are the most relevant for the
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Figure 6.2: When asked the question “How many rectangles are on the interior
doors?”, the model should be able to provide the ground-truth answer (“four”) and
avoid counting the rectangles multiple times even though they occur in multiple
images.

question and answering the question based only on them, ignoring the other images.

Along with the language-based question, ISVQA asks for solutions to two research

challenges: a) How to use natural language to guide scene understanding across

multiple views/images; and b) how to fuse information from relevant images to

reason about relationships among entities.

To enable research into these problems, we built two datasets for ISVQA - one

for indoor scenes and the other for outdoor scenes. The indoor scenes dataset comes

from Gibson Environment [220] and contains 91,479 human-generated questions,

each for a set of images - for a total of 48,138 image sets. Similarly, the outdoor

scenes dataset comprises of 49,617 questions for 12,746 image sets. The images in

the outdoor scenes dataset come from the nuScenes dataset [25]. We introduce the

datasets, explain the data collection methodology, and the statistics of the datasets

in Section 6.3.
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The indoor scenes ISVQA dataset contains two parts: 1.) Gibson-Room; and

2.) Gibson-Building. This is to facilitate spatial and semantic reasoning both in a

localized region and an extended area in the same scene. The outdoor scenes dataset

contains image sets taken from mostly urban environments.

We propose two extensions of single-image VQA methods as the baseline ap-

proaches to investigate the ISVQA task and the datasets. Such baselines meet

significant difficulties in solving the ISVQA problem, and they reflect the particular

challenges of the ISVQA task. We also present the statistics of the datasets, by ana-

lyzing the types of question, distributions of answers for different types of questions,

and biases present in the dataset.

In summary, we make the following contributions:

- propose ISVQA - Image Set Visual Question Answering as a new setting for

scene understanding via question answering;

- introduce two large-scale datasets for targeting the ISVQA problem. In to-

tal, these datasets contain 141,096 questions for 60,884 sets of images. Each

question has at least three annotations of answers.

- establish baseline methods on ISVQA tasks to recognize the challenges and

encourage future research.

6.1 Related Works

Visual Question Answering settings. The basic free-form open-ended VQA

setting was proposed in [14] and involves answering natural language questions about
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images. This setting was further extended by the VQA2.0 dataset [71] which is a

balanced and extended version of the original VQA dataset. The VisualGenome

dataset [112] also contains annotations for visual question-answer pairs at both

image and region levels. Visual7W [254] built upon the basic VQA setting and

introduced visual grounding to VQA. This enabled inclusion of visual answers in

addition to textual answers for the VQA questions. Several other VQA settings

target specific problems or applications. For example, VizWiz [80] was designed to

help develop algorithms which can answer questions asked by people who are blind.

RecipeQA [229] is targeted for answering questions about recipes from multi-modal

cues. OK-VQA [140] targets questions which require external knowledge in addition

to the images. TallyQA [7], and HowMany-QA [203] specifically target counting

questions for single images. In addition to these works, which use real images

for VQA, the CLEVR [98] benchmark and dataset uses synthetically generated

images of rendered 3D shapes and is aimed towards understanding the geometric

relationships between objects. IQA [70] is also a synthetic setting where an agent is

required to navigate a scene and reach the desired location in order to answer the

question.

Unlike existing work, the proposed ISVQA setting targets scene understanding

and comprises of questions which might require multiple images to answer. This

important setting has not been studied before and necessitates a specialized dataset.

Additionally, answering almost every question in our dataset requires a model to

ignore some of the images in the set. This capability is mostly absent from many

state-of-the-art VQA models. A part of ISVQA also comprises of images rendered
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from 3D scans of houses and offices and contains questions which require geometric

reasoning across images. This requires a model to develop an understanding of the

scene.

We also distinguish our work from the video VQA setting. Unlike many such

datasets (e.g. TVQA [120], TVQA+ [121], MovieQA [201]) which also contain scripts

or subtitles, our dataset does not contain any textual cues. Also, videos are tem-

porally continuous and are mostly taken from a stationary view-point. This makes

finding associations between objects across frames easy, even for datasets which do

not provide textual cues (e.g. tGIF-QA [96]).

VQA methods. Several recent methods have achieved excellent performance for

VQA tasks. Most of these methods use some kind of attention mechanisms to focus

on the regions in an image which are most relevant to the question. For example,

[233] proposed stacked attention networks which use question features as queries to

find the most relevant image regions in several stacked steps. Similarly, [11] proposed

a bottom-up and top-down attention mechanism for answering visual questions.

In addition to such methods, several methods which use co-attention (or bi-

directional) attention over questions and images have been proposed. Such methods

include [60, 138, 150, 212], all of which use the information from one modality (text

or image) to attend to the other. Somewhat different from these is the work from

Gao et al. [61] which proposed the multi-modality latent interaction module which

can model the relationships between visual and language summaries in the form of

latent vectors.
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Unlike these, [44] used reasoning modules over detected objects to answer

visual questions about geometric relationships between objects. Similarly, Santoro

et al. [182] proposed using Relation Networks to solve specific relational reasoning

problems. Neither of these approaches used attention mechanisms. Though these

are interesting and relevant directions of work, in this dissertation, we mostly focus

on attention-based mechanisms to design the baseline models.

6.2 ISVQA Problem Formulation and Baselines

We start by formally describing the problem and then introduce the baseline meth-

ods.

6.2.1 Problem Definition

Refer to Figure 6.3 for some examples of the ISVQA setting. Given a set of images,

S = {I1, I2, . . . , In}, and a natural language question, Q = {v1, v2, . . . , vT}, where vi

is the ith word in the question, the task is to provide an answer, a = f(S,Q), which

is true for the given question and image set. The function f can either output

a probability distribution over a pre-defined set of possible answers, A, or select

the best answer from several choices which are input along with the question, i.e.,

a = f(S,Q,CQ), where CQ is the list of choices associated with Q. The former

is usually called open-ended QA and the latter is called multiple-choice QA. In

this work, we mainly deal with the open-ended setting. Another possible setting is

to actually generate the answer using a text generation method similar to image-
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what the largest object in the room? what is above the toilet wall? what kind of car is in front of the white car?

Figure 6.3: Some examples from our dataset which demonstrate the ISVQA problem
setting. In each case, the input is a set of images and a natural language question.
A model designed to solve ISVQA needs to correctly answer the question based on
the given set of images.

captioning. But, most existing VQA works focus on either of the first two settings

and therefore, we also consider the open-ended setting in this work. We leave the

harder problem of generating answers to future work.

6.2.2 Model Definitions

Now, we describe some baselines for the ISVQA problem. These baselines directly

adapt single image VQA models. The first of these processes each image separately

and concatenates the features obtained from each image to predict the answer. The

second baseline directly adapts VQA methods by simply stitching the images and

using single image VQA methods to predict the answer.

6.2.2.1 Concatenate-Feature Baseline

Starting from a given set of n images S = {I1, I2, . . . , In}, we use a region proposal

network (RPN) [175] to extract region proposals Ri, i = 1, 2, . . . , n and the corre-

sponding RoI-pooled features (fc6). With some abuse of notation, we denote the

region features obtained from each image as Ri ∈ Rp×d, i = 1, 2, . . . , n, where p is
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Figure 6.4: Concatenate-Feature Baseline. This method adapts a single-image
VQA model to an image set S = {I1 . . . In}. We first extract region proposals, Ri

from each image Ii. The model attends over the regions in each image separately
using the question embedding q. Pooling the region features gives a representation
of an image as xi. These are concatenated and combined (element-wise multiplied)
by the question embedding to give the joint scene representation x. We use fully-
connected layers to predict the final answer.

the number of region features obtained from each image and d is the dimension of

the features. We are also given a natural language question Q = {v1, v2, . . . , vT},

where vi is the ith word, encoded as a one-hot vector over a fixed vocabulary V

of size dV . For all the models, we first obtain question token embeddings E =

{W T
w vi}Ti=1, where Ww ∈ RdV ×dq is a continuous word-vector embedding matrix.

We obtain the question embedding feature using an LSTM-attention module, i.e.,

q = AttentionPool(LSTM(E)) ∈ Rdq .

Figure 6.4 shows an outline of the model. For each image, Ii, we obtain the

image embedding, xi by attending over the corresponding region features Ri using

the question embedding q.

xi = AttentionPool(Combine(Ri, q)) (6.1)

where, we use element-wise multiplication (after projecting to suitable dimensions)

as the Combine layer and AttentionPool is a combination of an Attention module

over the region features which is calculated through a softmax operation and a Pool
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operation. The region features are multiplied by the attention and added to obtain

the pooled image representation. For a single image, this model is an adaptation of

the recent Pythia model [192] without its OCR functionality. We concatenate the

image features xi and element-wise multiply by the question embedding to obtain

the joint embedding

x = Combine(Concat(x1, x2, . . . , xn), q) (6.2)

where the Combine layer is again an element-wise multiplication. This is passed

through a small MLP to obtain the distribution over answers, PA = MLP(x).

6.2.2.2 Stitched Image Baseline

Our next baseline is also an adaptation of existing single-image VQA methods. We

start by stitching all the images in an image set into a mosaic, similar to the ones

shown in Figure 6.3. Note that the ISVQA setting does not require the images in

an image set to follow an order. Therefore, the stitched image obtained need not

be panoramic. We train the recent Pythia [192] model on the stitched images and

report performance in Table 6.2.

Using the two baselines, we will demonstrate that ISVQA is not a trivial

extension of VQA. Solving ISVQA requires development of specialized methods.

Even high-performing VQA models perform poorly on ISVQA.
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6.2.2.3 Evaluating Biases in the Datasets

In addition to the two baselines mentioned above, we also evaluate the following

prior-based baselines to reveal and understand the biases present in the datasets.

Näıve Baseline. The model always predicts the most frequent answer from the

training set. For nuScenes, it always predicts “yes”, while for Gibson it predicts

“white”. Ideally, this should set a minimum performance bar.

Hasty-Student Baseline. In this baseline, a model simply finds the most frequent

answer for each type of question. In this case, we define a “question type” as the

first two words of a question. For example, a hasty-student might always answer

“one” for all “How many” questions. This is similar to the hasty-student baseline

used in [126] (MovieQA).

Question-Only Baseline. In this model, we ignore the visual information and

only use question text to train a model. Our implementation takes as input only

the question embedding, q which is passed through several fully-connected layers to

predict the answer distribution. This baseline is meant to reveal the language-bias

present in the dataset.

6.3 Dataset

In this section, we describe the ISVQA datasets – the annotation procedure, the

challenges associated with getting annotations, and the dataset statistics.

The main goal of our data collection effort is to aid multi-image scene un-
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derstanding via question answering. We want to focus on both indoor and out-

door scenes. Therefore, we use two publicly available datasets (Gibson [220] and

nuScenes [25]) as images-sources for our datasets. We select these datasets because

they represent diverse settings both indoors and outdoors, and sets of images can

be obtained from them to represent scenes.

The indoor images in our indoor-scene dataset are obtained from the Gibson

environment. We use the Habitat API [183] to extract view-points from an indoor

scene. On the other hand, we use the nuScenes dataset for the outdoor scenes

dataset. It contains sets of images which represent the 360 degree field of view from

an outdoor urban scene. The images in this dataset are taken from cameras on a

self-driving car.

6.3.1 Annotation Collection

We now describe the methodology used for generating and annotating both paths

of the dataset in detail.

6.3.1.1 Indoor Scenes

The Gibson dataset and environment [220] is a collection of 3-dimensional scans of

indoor spaces, particularly houses and offices. It provides virtualized scans of real

indoor spaces like houses and offices. Using the Habitat platform, we place an agent

at different locations and orientations in scenes from the Gibson dataset and store

the views visible to the agent. We generate a set of images by obtaining several
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views from the same scene. Therefore, together, each image set can be considered

to represent the scene. Now, such scenes can be understood by asking and answering

questions about the corresponding image sets.

From Gibson we collect two types of indoor scenes: 1.) Gibson-Building; and

2.) Gibson-Room. The first part of the dataset contains multiple images taken

from the same building by placing the agent at random locations in a building and

recording its viewpoint while the second (Gibson-Room) is collected by obtaining

several views from the same room.

We show images from Gibson-Building sets to annotators and ask them to ask

questions about the scene. We ask the annotators to try to ask questions which

require at least two images to answer.

From a pilot study, we observed that it is easier for humans to frame questions

if they are shown the full 3D view of a scene, simulating the situation of them

being present in the scene and being able to move around. Humans are able to

frame better questions about locations of objects, and their relationships when they

are given complete information about a scene. Therefore, for Gibson-Room, we

simulate such immersion by creating videos of the scenes by sequentially showing

images from our image sets interspersed with intermediate view-points. This has

the desired effect of providing a complete 360 degree view of the scene, albeit using

many more images than required. We show these videos (see supplementary material

for examples of how these videos are created) to the annotators and ask them to

provide questions and answers about the scenes.

We obtain question-answer annotations for a scene by showing each such video
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to several annotators using Amazon Mechanical Turk. We ask each annotator to ask

a question about the scene and also provide the corresponding answer. We request

that the annotators should ensure that their question can be answered using only

the scene shown and no additional knowledge should be required.

Next, we randomly sample sets of frames from each video and associate the

questions obtained from the video with these image sets. Unlike uniform sampling

of the frames, with random sampling we cannot be sure that a question can be

answered using an image set. Therefore, we refine the image-set data by obtaining

annotations from other annotators as to whether a question can be answered using

the image set provided, and if it can be, then what should be the answer. We discuss

this step in Section 6.3.1.3.

6.3.1.2 Outdoor Scenes

We collect annotations for the nuScenes dataset similar to the Gibson-Building

setting. We show the annotators images from an image set. These represent a 360

degree view of a scene. We, again, ask them to write questions and answers about

the scene as before.

6.3.1.3 Refining Annotations

From the first step of data annotation, we noticed that even though it is likely

that the questions can be answered using the randomly sampled frames from a

video, we cannot be sure this is always true. Therefore, to ensure that we know if
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a question can be answered or not, we showed all the image sets in our datasets

and the associated questions obtained from the previous step to up to three other

annotators. We asked them to provide an answer to the question based only on the

image set shown. We also asked them to say “Not possible” if the question cannot

be answered. This step has the added benefit of increasing the confidence about an

answer if there is a consensus among the annotators. This is based on the idea of

the wisdom of the crowd.

In addition, we also asked the annotators at this stage to mark the images

which are required to answer the given question. This provides us another level of

information about which images are the most salient for answering a question. Such

information can potentially be used to guide models to select and focus more on the

relevant images.

6.3.1.4 Train and Test Splits

After refining, we divided the datasets into training and testing splits. The statistics

of these splits are given in Table 6.1. To create test splits, we select some samples

for which at least two out of three annotators agreed on the answer. We also ensured

that the train and test sets from the same dataset have the same answers (though

distribution of answers might be different.)
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Table 6.1: Statistics of the datasets. Each of our train and test sets is associated
with six images, one question, and up to four answers.

Dataset #Train sets #Test sets #Unique answers
Indoor - Gibson (room + building) 69,207 22,272 961
Outdoor - nuScenes 33,973 15,644 650

Figure 6.5: Question wordclouds for Gibson (left) and nuScenes (right) datasets.
Note that these cover a large variety of concepts. We observe that for indoor scenes
(left) people are interested in objects hanging on walls, kept on beds and couches,
and furniture kept in rooms. For outdoor scenes, as dictated by intuition, we observe
that most questions are about the road, cars, buses, and trucks.

6.3.2 Dataset Analysis

In this section, we present some salient features and statistics of our combined

dataset which reveal unique properties of the datasets.

6.3.2.1 Question word distributions

The question word clouds for both parts of the dataset are shown in Figure 6.5.

Note that we have removed the first few words from each question before plotting

the question wordclouds. This gives us a better picture of which objects people

are interested in. Clearly, for outdoor scenes, people are most interested in objects

commonly found on the streets (cars, trucks, buildings) and their properties (types,
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colors, numbers). On the other hand, for indoor scenes, the most frequent questions

are about objects handing on walls and kept on beds, and the room layouts in

general.

6.3.2.2 Types of Questions

In Figure 6.6a, we plot the distributions of question lengths for the whole dataset

(indoor scenes + outdoor scenes). We observe that a large chunk of the questions

are between 5 and 10 words long. Further, in Figure 6.6b, we plot the numbers

of the most frequent types of questions for the dataset. We observe that the most

frequent questions are about locations of objects, properties of single objects, and

spatial relationships between different entities.

To understand the types of questions in the dataset, we plot the distribution of

the most frequent first five words of the questions in the whole dataset in Figure 6.7.

Note that a large portion of the questions are about the numbers of different kinds

of objects. Another major subset of the questions are about geometric relationships

between objects in a scene. A third big part of the dataset contains questions about

colors of objects in scenes. All of these are important types of questions. Answering

questions about the colors of things in a scene requires localization of the object

of interest. Depending on the question, this might require reasoning about the

relationships between objects in different images. Similarly, counting the number of

a particular type of object requires keeping track of previously counted objects to

avoid double counting if the same object appears in different images.
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Solving such questions simultaneously by reasoning across images demands

developing new algorithms.

6.3.2.3 Answer Distributions

Figure 6.8 shows the distribution of answers in the dataset (combined Gibson and

nuScenes) for frequently occurring questions types. Most types of questions do

not have a dominant answer. Of particular note are the questions about relative

locations and orientations of objects, e.g. “What is on the”, “What is next to”,

and questions about the numbers of objects e.g. “How many cars are”, “How many

chairs are” etc. This means that it is difficult for a model to perform well by lazily

exploiting the statistics of question types.

6.3.2.4 Number of Images Required

In the second stage of the annotation procedure, in addition to refining the an-

notations, we also collect annotations for which images are required for answering

the given question. We ask the annotators to mark only those images in an image

set which are required to answer the associated question and ignore the others. In

Figure 6.9, we plot the histogram for the number of images required to answer each

question for both Gibson-Room and Gibson-Building datasets. Note that, for the

plot in Figure 6.9, we only consider those image sets for which at least 2 annotators

agree about the images which are needed. Approximately one-third of the samples

in the Gibson-Room dataset require at least two images to answer the question. As
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Figure 6.8: Answer distributions for several types of questions in the whole dataset.
The questions plotted are among the most frequent. (Best viewed digitally)
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Figure 6.9: Histogram of the number of images required to answer different types of
questions for a.) Gibson-Room; and b.) Gibson-Building. Observe that the Gibson-
Building dataset is more skewed towards questions requiring only a single image to
answer.

expected, this ratio is lower for Gibson-Building dataset. Many of the questions ob-

tained require the answerer to find the single most-relevant image from the set and

answer the question based only on that. It is difficult for humans to reason across

images and relate multiple objects and view-points. We believe that this is especially

true for hasty crowd annotators who are paid according to the number of tasks that

they complete. This is still a challenging setting and involves rejecting most of the

images in the image set and focusing only on one image. In theory, such questions

can potentially be answered by using existing single-image VQA models.However,

this would require the single-image VQA model to answer “Don’t know” for all the

irrelevant images and find only the most relevant one. Current VQA models do not

have the ability to do this in most cases (see supplementary material for examples).
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6.4 Experiments

6.4.1 Implementation Details

We use Detectron [68] to extract the region proposals and features Ri for each image.

Each region feature is 2048-D and we use the top 100 region proposals from each

image. To obtain the word-vector embeddings we use 300-D GloVe [158] vectors.

The joint visual-question embedding, x is taken to be 5000-D. For evaluation, we

use the VQA-Accuracy metric [14]. A predicted answer is given a score of one

if it matches at least two out of the three annotations. If it matches only one

annotations, it is given a score of 0.5. All of our models are implemented in the

Pythia framework [191] and are trained on two NVIDIA V100 GPUs for 22,000

iterations with a batch size of 32. The initial learning rate is warmed up to 0.01 in

the first 1,000 iterations. The learning rate is dropped by a factor of 10 at iterations

12,000 and 18,000.

6.4.2 Results

We report the answer accuracy for all baselines in Table 6.2. We observe that the

the accuracy achieved by both of the VQA-based baselines is only around 50%. This

highlights the need for advanced models for ISVQA.
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Table 6.2: Baseline results for both datasets.

Method VQA-Accuracy (%)
Gibson nuScenes

Näıve 8.61 22.46
Prior-Based Baselines Hasty-Student 27.22 41.65

Question-Only 40.26 46.06
Baselines Concatenate-Feature 47.57 53.66

Stitched-Image 50.53 54.32

6.4.2.1 Comparison between Baselines

From Table 6.2, we observe that, as expected, the näıve baseline performs worst.

It gives a VQA-Accuracy of only 8.6% for the indoor scenes (Gibson) dataset com-

pared to 47.57% given by the Concatenate-Feature baseline and 50.53% given by the

Stitched-Image baseline model. This shows that ISVQA presents unique challenges

which cannot be overcome trivially.

6.4.2.2 Language Biases

Recent works (e.g. [8]) show that high performance in VQA could be achieved us-

ing only the language components. Deep networks can easily exploit biases in the

datasets to find short-cuts for answering questions using only the language features.

We observe that the VQA-based baselines perform far better than the question-only

baseline. This shows that our datasets are not heavily biased and validates the

utility of developing ISVQA models that can utilize both the visual and language

components simultaneously.
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6.4.2.3 Performance by Question Type

Figure 6.10 shows the accuracy bar-chart of our single-image VQA-based baselines

for various types of questions. Using this chart, we have the following observations

and hypotheses:

Single-image VQA baselines can predict single-object attributes. Both

baseline models can answer questions about colors of single objects well (black and

gray bars). This is expected because no cross-image dependency is needed.

General cases may need cross-image inference. A large portion of questions

involve multiple objects, which may appear in different images. The two baselines us-

ing simple attention do not perform well on such questions. Neither of the baselines

has a sophisticated mechanism to infer across images or do multi-step reasoning.

The solution to ISVQA problems may need multi-step reasoning mechanisms that

understand the geometry of the scene behind the images.

Stitched-Image captures cross-image dependency better. The Stitched-

Image baseline allows direct pooling from regions on all images, which may result

in sightly better ability to capture across-image dependency. It also outperforms

the Concatenate-Feature baseline for most question types, except for the counting

questions about objects likely to appear in multiple images. The Stitched-Image

baseline does not have a mechanism to avoid double counting the same object.

This reveals the limitations of existing methods. VQA methods cannot reason

about relative locations and orientations of objects across several images. VQA-
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Figure 6.10: Performance of the two VQA-based baselines for different types of
questions for the combined Gibson test set. Dark colors represent the performance
for Concatenate-Feature baseline and light colors for Stitched Image baseline. Blue
is used for geometric relationship questions, green for counting questions, red for
location, and black for color questions. We notice that the VQA-based baselines
are able to answer simple questions like those about colors of single objects very
well. However, questions involving spatial reasoning between objects in one image
or across images are extremely challenging for such methods.

129



based methods are not suited for such reasoning and methods specific to ISVQA

need to be developed.

6.5 Discussion and Conclusion

We proposed the new task of image-set visual question answering (ISVQA). This

problem can lead to new research problems like language-guided cross-image at-

tentions and reasoning. To establish the ISVQA problem and enable its research,

we introduced two ISVQA datasets for indoor and outdoor scenes. Large-scale

annotations were collected for questions and answers with novel ways to present

the scene to the annotators. We performed bias analysis of the datasets to set

up performance lower bounds. We also extended a single-image VQA method to

two simple attention-based baseline models. Their limited performance reveals the

unique challenges of ISVQA, which cannot be solved trivially by the capabilities

of existing models. Approaches for solving the ISVQA problem may need to pass

information across images in a sophisticated way, understand the scene behind the

image set, and attend the relevant images.
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Chapter 7: Datasets and Decisions for Deep Face Recognition

Current deep convolutional neural networks are very high capacity representation

models and contain millions of parameters. Deep convolutional networks are achiev-

ing state-of-the-art performance on many computer vision problems [84, 90, 119].

These models are data hungry and their success is being driven by the availability

of large amounts of data for training and evaluation. The ImageNet dataset [177]

was among the first large scale datasets for general object classification and since

it’s release has been expanded to include thousands of categories and millions of im-

ages. Similar datasets have been released for scene understanding [1,238], semantic

segmentation [47,130], and object detection [47,63,177].

Recent progress in face detection, and recognition problems is also being driven

by deep convolutional neural networks and large datasets [119]. However, the avail-

ability of the largest datasets and models is restricted to corporations like Facebook

and Google. Recently, Facebook used a dataset of about 500 million images over

10 million identities for face identification [200]. They had earlier used about 4.4

million images over 4000 identities for training deep networks for face identifica-

tion [199]. Google also used over 200 million images and 8 million identities for

training a deep network with 140 million parameters [184]. But, these datasets are
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not publicly available.

The academic community is at a disadvantage in advancing the state-of-the-art

in facial recognition problems due to the unavailability of large high quality training

datasets and benchmarks. Several groups have made significant contributions to

overcome this problem by releasing large and diverse datasets. Sun et al. released

the CelebFaces+ dataset containing a little over 200,000 images of about 10,000

identities [197]. In 2014 Dong et al. published the CASIA WebFace database for face

recognition which has about 500,000 images of about 10,500 people [237]. Megaface 2

[151] is a recent large dataset which contains 672,057 identities with about 4.7 million

images. YouTube Faces [217] is another dataset targeted towards face recognition

research. It differs from other datasets in that it contains face annotations for videos

and video frames, while other datasets contain only still images. In [156], the authors

released a dataset of over 2.6 million faces covering about 2,600 identities. However,

this dataset contains much more label noise compared to [197] and [237].

In addition to downloading and annotating face images from the internet,

some work has also been done on synthesis of face images for augmenting existing

datasets. In [141,143], the authors use 3D models of faces to modify existing images

to generate novel poses and expressions. Similarly, [180] uses semantic segmentation

to composite 3D face models on face images. These models can be manipulated

to generate more training data. However, the advantage of these methods over

collecting images from the internet has not been effectively demonstrated.

Despite the availability of these datasets, there is still a need for more publicly

available datasets to push the state-of-the-art forward. The datasets need to be
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Figure 7.1: Few samples from the dataset discussed in the chapter. Each column
represents variations in pose and expression of images of a subject.

more diverse in terms of head pose, occlusion, and quality of images. Also, there is

a need to compare performance improvements with deep data (fewer subjects and

more images per subject) against wide data (more subjects but fewer images per

subject).

In this chapter, we introduce two new large-scale datasets1 which will facilitate

the training of deep networks for face identification and verification.

7.1 UMDFaces Dataset

The first of these datasets has 367,888 face annotations of 8,277 subjects.

Similar to [237], our dataset is wide and may be used separately or to complement

the CASIA dataset. We describe the data collection and annotation procedures and

compare the quality of the dataset with some other available datasets. We provide

bounding box annotations which have been verified by humans. Figure 7.1 shows a

1Available from https://www.umdfaces.io

133

https://www.umdfaces.io


small sample of faces in the dataset for five subjects. We provide the locations of

fiducial keypoints, pose (roll,pitch and yaw) and gender information generated by

the model presented in [172]. In addition to this, we also provide human verified

keypoint locations for 115,000 images.

We will discuss the second dataset later in the chapter.

7.1.1 Data Collection

Using the popular web-crawling tool, GoogleScraper 2, we search for each subject

on several major search engines (Yahoo, Yandex, Google, Bing) and generate a list

of URLs of images. We remove the duplicate URLs and download all the remaining

images.

7.1.2 Face detection

We use the face detection model proposed by Ranjan et al. [170] to detect the faces

in the downloaded images. Because we wanted a high recall, we set a low threshold

on the detection score. We kept all the face box proposals above this threshold for

the next stage.

7.1.3 Cleaning the detected face boxes by humans

Several bounding boxes obtained by the process discussed above do not contain any

faces. Also, for each subject, there may be some detected face boxes which do not

belong to that person. These cause noise in the dataset and need to be removed.
2https://github.com/NikolaiT/GoogleScraper
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We used Amazon Mechanical Turk (AMT) which is a widely used crowd-sourcing

platform to get human annotations. These annotations are then used to remove

extraneous faces.

For each subject, we show six annotators batches of forty cropped face images.

Out of these forty faces, thirty-five are face detections which we suspected were

images of the target subject but are not sure and five are added by us and we know

they are not of the target individual. We know the locations of these 5 ‘salt’ images

and use these to verify the quality of annotations by an annotator. We also display

a reference image selected manually by us. The annotators were asked to mark all

the faces which did not belong to the subject under consideration.

We evaluate the annotators by how often they mark the ‘salt’ images that were

presented to them. For example, if an annotator did 100 rounds of annotations and

of the 500 ‘salt’ images presented he/she clicked on 496 of them, his/her vote was

given a weight of 496/500.

To actually determine if a given image is of the target individual or not, we

used the following heuristic which associated with every face a score between 0 and

1:

1. Obtain the three highest vote weights and respective votes of all the annota-

tors that had to decide on this face and call them w1, w2 and w3, and their

respective yes (1) or no (0) votes v1, v2 and v3. For example w3 is the vote

weight of the highest scored annotator for this face, who voted for v3.

2. If w1 + w2 > 0.8, the final score of this face is ∑3
i=1 wivi/

∑3
i=1 wi
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3. If w3 > 0.6, make the final score of this face v3.

4. Otherwise there is no reliable, robust answer for this face; try to annotate it

again.

This score has the following interpretation: closer to 0 means there is a robust

consensus that the image is of the target individual and closer to 1 means there is

a robust consensus that it is an image not of the target individual.

After associating a score with every face we had, we selected faces whose

score was lower than 0.3 (after considering the quality and quantity trade-offs) and

removed all other faces from our dataset.

The procedure presented in this section allowed us to economically and accu-

rately label all the faces we obtained.

In the next section we describe the method for generating other annotations.

7.1.4 Other annotations

After obtaining the clean, human verified face box annotations, we used the All-in-

one CNN model [172] to obtain pose, keypoint locations, and gender annotations.

We give a brief overview of this model.

Figure 7.2 shows some examples of the annotations in our dataset generated

by the All-in-one CNN.

To verify the performance of the keypoints generated by the above model, we

show the generated annotations for 115,000 images to humans and ask them to mark

the images with incorrect keypoint annotations. We show each face to two people

136



Figure 7.2: Some examples with annotations generated by the All-in-one CNN [172].
Blue box indicates that the estimated gender is male and a yellow box means that
the estimated gender is female. Red dots are the detected keypoints and the green
text is the estimated head pose (yaw, roll, pitch).

on Amazon Mechanical Turk (AMT). As a mark of the quality of the keypoints, we

found that for about 28,084 images out of the 115,000 shown did both the annotators

say that the keypoints are incorrectly located.

7.1.5 Final cleaning of the dataset

We notice that even after getting human annotations, the dataset still has some

noisy face bounding boxes. For some individuals there are some boxes that belong

to someone else or are not faces at all. Since we want to provide the cleanest dataset

that we could, we remove these noisy boxes. Here we present the approach that we

took to remove them.

We use the verification model proposed in [181] to remove the noise. For each

subject , we extract the fc7 layer features and calculate the cosine distance between
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Figure 7.3: Overview of the strategy for final cleaning of the dataset. We adopt an
iterative method (described in Section 7.1.5) for removing incorrect faces for each
subject.

each pair of faces for that subject. We find the ten pairs with the maximum distance

between them and sum these ten distances. We observe that if this sum is below a

certain threshold (ten in our tests), then all the pairs are actually images of the same

person. However, if the sum is above the threshold, then most of the times there is

at least one noisy face box in the data for that subject. So, if the sum of distances is

above the threshold, we find the face image that occurs in the maximum number of

pairs out of the ten pairs selected and remove that image from the dataset. If more

than one image occurred the maximum number of times, then we remove the one

which contributes the most to the sum. We again calculate the similarity matrix and

repeat the process till the sum of the ten pairs goes below the threshold. Figure 7.3

summarizes this approach.

If the above procedure leads to the removal of more than five images for a

subject then we remove that subject identity completely. Using this process we

removed 12,789 images and 156 subject identities from the dataset. Finally, our
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dataset has 367,888 face annotations spread over 8,277 subject identities.

The process of training a face recognition system starts with choosing a dataset

of face images, detecting faces in images, cropping and aligning these faces, and then

training deep networks on the cropped and possibly aligned faces. Every step of the

process involves many design issues and choices.

Some issues have received significant attention from researchers. These include

choices about the architecture of neural networks. On the other hand, there are

several other design choices that require more attention. These arise at every stage

of the process from face detection and thumbnail (image obtained after cropping and

aligning the face image) generation to selecting the training dataset itself. We study

some of these design questions. For this, we now introduce a dataset of 22,075 videos

collected from YouTube of 3,107 subjects. These subjects are mainly from batch-

1 of the UMDFaces [18] dataset discussed above. We release face annotations for

3,735,476 frames from these videos and the corresponding frames separately. We use

this dataset to study the effect of using a mixture of video frames and still images

on verification performance for unconstrained face datasets such as the IJB-A [107]

and YTF [217] sets.

Face detection is the first step in any face recognition pipeline. Several CNN-

based face detectors have been introduced which achieve good detection performance

and speeds [89, 170–172, 250]. Each of these detectors learns a different representa-

tion. This leads to generation of different types of bounding boxes for faces. Verifi-

cation accuracy can be affected by the type of bounding box used. In addition, most
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recent face recognition and verification methods [34, 87, 181, 195, 196, 199] use some

kind of 2D or 3D alignment procedure [82,104,172,252]. All these variables can lead

to changes in performance of deep networks. To the best of our knowledge there has

been very little systematic study of effects of the thumbnail generation process [156]

on the accuracy of deep networks. In Section 7.3.4 we study the consequences of

using different thumbnail generation methods. We show that using a good keypoint

detection method and aligning faces both during training and testing leads to the

best performance.

Other questions concern the dataset collection and cleaning process itself. The

size of available face datasets can range from a few hundred thousand images [18,152,

217,237] to a few million [72,73,105,151,156]. Other datasets, which are not publicly

available, can go from several million faces [199] to several hundred million [184].

Much of the work in face recognition research might behave differently with such

large datasets. Apart from datasets geared towards training deep networks, some

datasets focus on the evaluation of the trained models [91,107]. All of these datasets

were collected using different methodologies and techniques. For example, [217]

contains videos collected from the internet which look quite different from still image

datasets like [18,73,237]. We study the effects of this difference between still images

and frames extracted from videos in Section 7.3.1 using our new dataset. We found

that mixing both still images and the large number of video frames during training

performs better than using just still images or video frames for testing on any of the

test datasets [18,107,217].

In Section 7.3.2, we investigate the impact of using a deep dataset against
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using a wider dataset. For two datasets with the same number of images, we call

one deeper than the other if on average it has more images per subject than the

other. We show that the choice of the dataset depends on the kind of network being

trained. Deeper networks perform well with deeper datasets and shallower networks

work well with wider datasets.

Label noise is the phenomenon of assigning an incorrect label to some images.

Label noise is an inherent part of the data collection process. Some authors inten-

tionally leave in some label noise [72,73,156] in the dataset in the hopes of making

the deep networks more robust. In Section 7.3.3 we examine the effect of this label

noise on the performance of deep networks for verification trained on these datasets

and demonstrate that clean datasets almost always lead to a significantly better

performance than noisy datasets.

7.2 UMDFaces-Videos Dataset

Still photos from the internet cannot match the amount of variation that videos

provide. Videos (and frames extracted from the videos) are under-utilized because

of the difficulty in cleaning and annotating the data. There is a need for effective

methods for annotating video data. We describe a new dataset aimed at face recog-

nition research. It contains 22,075 videos of 3,107 subjects collected from YouTube.

We provide bounding box annotations for 3,735,476 frames from the videos. We

explain our methodology of collecting this dataset which, we hope, will be useful to

researchers working on face verification and related problems.
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Figure 7.4: Some sample annotated bounding boxes from the dataset. Each row
contains frames from a video. There is a large amount of pose and expression
variation in each video.

7.2.1 Data Collection

We search YouTube for over 3000 subject identities (from batch-1 of UMDFaces [18])

and try to download the first 20 videos for each person. We use the open source

system youtube-dl [4] for searching and downloading the videos. We downloaded a

total of about 40,000 videos.

7.2.2 Automated filtering

From each video, we extract either all the frames or the first 4,000 frames, whichever

is lower. This process gave us over 140 million frames. We randomly select about

10% of these frames to process further. Next we detect faces in the retained frames.

We use the YOLO detector [173] for detecting faces. We train YOLO on the WIDER
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dataset [231] and fine-tune on FDDB [95]. This gives us over 40 million face boxes

in 14 million frames. We again randomly select 4000 face boxes for each subject

identity finally leaving ourselves with about 14 million boxes.

Our next task is to remove all face box proposals which do not belong to the

person in question. We again use the All-in-one method [172] to detect key landmark

points on each face and use them to align the faces. We use the images in batch-1 of

the UMDFaces dataset [18] as reference images for the subjects. Our problem now

reduces to a verification problem. For each subject we need to verify whether a face

box belongs to that person.

We use the verification method proposed in [34] for filtering the proposal boxes

which are not of the person in question. We extract features (using a network trained

in the same way as [34, 237]) for all images in batch-1 of UMDFaces [18] and take

their average over a subject to obtain one feature vector for the subject. Then, for

each face box in our dataset for the subject, we compare the feature vector with the

reference feature vector obtained above and keep only those boxes with similarity

with the reference feature vector above a threshold. We use cosine similarity as

the similarity metric and use a low threshold to avoid removing the hard-positive

examples from the dataset as these are valuable. This leaves us with about 4 million

face boxes.
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7.2.3 Crowd-sourcing final filtering

To obtain the final dataset, we use Amazon Mechanical Turk (AMT) to filter the

proposals. We show each proposal to 2 ‘mechanical turkers’. Each screen in our

AMT task contains 50 images to be filtered and 3 reference images of a subject

obtained from the UMDFaces dataset [18]. We requested the mechanical turkers to

select images which do not belong to the subject under consideration. We remove

all the faces boxes which are selected by at least one turker. To ensure high quality

annotations, we adopt the following quality control method.

7.2.4 Quality control through sentinels

We used the method similar to the one used earlier for controlling the quality of

annotations. Each screen of 50 images contains 5 known images of another subject.

Depending on whether the turkers select these ‘sentinel’ images, they get an accuracy

score. We only considered the votes of turkers with high accuracy scores.

After the final filtering through human annotators, we have 3,735,476 anno-

tated frames in 22,075 videos.

7.3 Questions and Experiments

We show that judicious decisions about the training set and procedures can lead

to large improvements in verification accuracy of deep networks. We first use the

introduced dataset to show the importance of using video frames while training for

verification. Then we investigate some more questions that will guide researchers
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towards good practices for training deep networks for face verification and identifi-

cation. These include: (i) whether deep datasets are better than wide datasets (Sec-

tion 7.3.2); (ii) whether label noise helps in improving performance ( Section 7.3.3);

and (iii) how important is the thumbnail generation method for training and testing

deep networks (Section 7.3.4).

7.3.1 Do deep recognition networks trained on stills perform well on

videos?

Images in most still image datasets [91,114,136] are taken with high quality cameras

in good lighting. Photos of celebrities on the internet are often selected from among

several taken by a professional photographer. This introduces a bias towards high

quality images. Models trained on only still images perform poorly on frames ex-

tracted from videos [107]. These frames are challenging because of pose, expression,

and lighting variations. At the same time, models trained only on videos perform

poorly on still images. There is a huge amount of video data available and only a

limited number of still images. We show that training on a mixture of images and

video frames is really important for achieving good verification performance.

We train deep networks on the following five sets and compare the verification

performance of these networks:

• Stills: Some part (batch-1) of the UMDFaces [18] dataset. This comprises of

about 140,000 still images. We train an Alexnet-derived architecture [181] on

these images for 100,000 iterations with a batch size of 128 and initial learning
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rate of 0.01 and reduced by half every 15,000 iterations.

• Frames: The same number (140,000) of video frames from our dataset (

Section 7.2). Each subject has the same number of images as the case above

(Stills). We used the same training method as above.

• Frames++: The same number of subjects as above but using many more

video frames per subject for a total of about 1 million video frames. We

trained this model for 100,000 iterations and decreased the learning rate by

half every 20,000 iterations.

• Mixture: A mixture of still images and video frames from UMDFaces and

our dataset. We took 50% of images from batch-1 of UMDFaces and the other

50% from our video frames dataset for a total of about 140,000 images. We

trained this network for 100,000 iterations.

• Mixture++: The same number of still images as ‘Stills’ but about 1 million

video frames. We again train the network on this dataset for 100,000 iterations.

Note that we are using far more images in the Frames++ and Mixture++

cases than the other cases. However, we believe that it is fair to compare these five

methods because it is much easier to obtain millions of video frames than to obtain

millions of still images. There is a lot more variation in 100 images than there is

in 100 continuous video frames. Also, in real world scenarios, the amount of video

data is increasing rapidly and the majority of recognition has to happen in videos.

We use an architecture [181] derived from Alexnet [113] due to it’s easy avail-

ability and practicality. It is fast to train and is perfectly suited for large-scale
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experiments like ours. However, we believe that, in this case, our observations are

general and will be valid for other network architectures too.

We train networks on these five sets and compare performance of the trained

models on IJB-A [107], YouTube Faces datasets [217] and batch-3 of the UMDFaces

[18] dataset. In this experiment and the rest of the chapter, unless otherwise stated,

we train the same architecture of networks on different datasets for a fixed number

of iterations (100,000). We adopt the 1:1 verification protocol similar to the one

introduced in [107] for evaluating the performance of these deep networks. We give

a brief description of the evaluation protocol next.

7.3.1.1 Protocol

The IJB-A 1:1 verification protocol [107] uses a decision error trade-off (DET) curve

for evaluation. The DET curve is equivalent to an ROC curve. In our examples

we evaluate the performance for 1:1 verification on pairs of images or templates for

different datasets [18,91,217]. For all experiments, we use ROC curves for evaluation.

7.3.1.2 Results

Figures 7.5 and 7.6 show the performance of the above five experiments. They

clearly show the importance of using a mixture of video frames and still images for

all cases. We see that while the performance of the ‘Stills’ and ‘Mixture’ cases is

close for both IJB-A and UMDFaces, the performance of ‘Frames’ is poor. This is

because of the presence of many still images in the test sets and the low variety
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in the few training frames. On the other hand, note that the performance of the

‘Mixture++’ case is much better than any other case, even better than ‘Frames++’

which has similar number of images. This shows the importance of using both

still images and the ample number of frames extracted from videos for improving

verification performance on unconstrained faces.

Also, note from Figure 7.6 that when testing on a dataset which contains a

mixture of still images and video frames [107], the performance of ‘Mixture++’ is

the highest and ‘Frames++’ is the second highest. However, when testing on the

UMDFaces dataset [18] which contains only images, ‘Stills’ performs second best

after ‘Mixture++’ ( Figure 7.5). Similarly, when testing on the completely video-

based testing set YTF [217], from Figure 7.7, ‘Mixture++’ performs the best and

‘Frames++’ performs a bit worse than it. Also note that ‘Mixture’ performs better

than ‘Stills’ and ‘Frames’. Collecting millions of still images with enough variations

is extremely difficult. It is much easier to collect and annotate millions of video

frames. Also, using a combination of a large number of video frames and relatively

few still images gives a significant boost in performance over using only still images

or video frames.

7.3.2 What is better: deeper or wider datasets?

For datasets with the same number of total (still) images, we call a dataset with more

images per subject deeper than another dataset with fewer images per subject. We

call the latter dataset wider than the prior. An example of a deep (deeper than many
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Stills vs Frames. Test: UMDFaces

Stills (TPR@FPR=0.01: 0.669)
Frames (TPR@FPR=0.01: 0.505)
Frames++ (TPR@FPR=0.01: 0.633)
Mixture (TPR@FPR=0.01: 0.666)
Mixture++ (TPR@FPR=0.01: 0.706)

Figure 7.5: Verification performance of networks trained on ‘Stills’, ‘Frames’, ‘Mix-
ture’, ‘Frames++’, ‘Mixture++’ and tested on UMDFaces batch-3 [18]. Note that
the test set comprises of only still images. The performance of ‘Stills’ and ‘Mixture’
is similar. However, ‘Mixture++’ performs best. ‘Stills’ performs the next best after
‘Mixture++’ in this case.
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Stills vs Frames. Test: IJB-A

Stills (TPR@FPR=0.01: 0.794)
Frames (TPR@FPR=0.01: 0.710)
Frames++ (TPR@FPR=0.01: 0.845)
Mixture (TPR@FPR=0.01: 0.805)
Mixture++ (TPR@FPR=0.01: 0.874)

Figure 7.6: Verification performance of the five networks (Stills, Mixture, Frames,
Mixture++, and Frames++) on IJB-A test set [107]. The IJB-A test set contains
a mixture of still images and video frames. Again, the performance of ‘Stills’ and
‘Mixed’ are almost the same and ‘Mixture++’ is better than everything else. How-
ever, unlike Figure 7.5, the performance of ‘Frames++’ is better than ‘Stills’.
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Stills vs Frames. Test: YTF

Stills (TPR@FPR=0.01: 0.688)

Frames (TPR@FPR=0.01: 0.621)

Frames++ (TPR@FPR=0.01: 0.756)

Mixture (TPR@FPR=0.01: 0.720)

Mixture++ (TPR@FPR=0.01: 0.780)

Figure 7.7: Verification performance of the five networks (Stills, Mixture, Frames,
Mixture++, and Frames++) on YTF test set [217]. The test set contains only
frames extracted from videos. Again, the performance of ‘Mixture++’ is better
than everything else. Also, ‘Mixture’ performs better than ‘Stills’ in this case.

other still image datasets) dataset is the VGG-Face dataset [156] which has about

2.6 million images of 2,622 subjects. On the other hand CASIA-WebFace [237] can

be considered a wide dataset. An extreme example of a wide dataset is the MegaFace

training dataset [105,151] which has over 670,000 subjects and only about 7 images

per subject.

It is not intuitively clear whether it’s better to use deeper datasets or wider

for training deep networks. Given enough images, both deep and wide datasets can

contain a variety of face images. Deep datasets are more varied in pose, expression,

illuminations etc. On the other hand wide datasets contain large variations because

of the large number of unique identities. In this section, we try to resolve the

dilemma of choosing one kind of dataset over the other.

We use the UMDFaces [18], MS-Celeb-1M [73] and CASIA-WebFace [237]

datasets to analyze the question. We treat batch-1 and batch-2 of UMDFaces as

150



the training set. To explore the question of deeper vs wider datasets, we divide the

training datasets into two as follows: We sort the subjects according to the number

of images they have; then we start with the subject with the maximum number of

images and put the subject in one set (head); we then take the subject with next

highest number of images and add him/her to the head set; we continue this process

till we have collected close to half the total number of images. Now we have divided

each dataset into two parts. The first part (which we call ‘head’) contains the

deeper half of the dataset. The other half is called the ‘tail’. For CASIA-WebFace,

the ‘head’ dataset contains 1,738 subjects and 247,196 images and the ‘tail’ set

contains 8,437 subjects and 247,218 images. Similarly, the UMDFaces ‘head’ set has

2,142 subjects with 144,371 images and the ‘tail’ set has 4,092 subjects and 144,348

images.

We first train the same architecture networks on the ‘head’ and ‘tail’ sets of

both CASIA-WebFace and UMDFaces. We test these networks using the protocol

from Section 7.3.1.1 on the UMDFaces batch-3 [18], IJB-A [107], and Labeled Faces

in the Wild (LFW) [91] datasets. The results are shown in figures 7.8, 7.9, and 7.10.

We note that the performance of the network trained on the ‘tail’ sets is better than

the corresponding network trained on the ‘head’ sets for all three test sets. This

means that, for a given number of images, it is better to have more subjects than

having more images for fewer subjects.

On the other hand, if we train deeper networks, the performance of networks

trained on the ‘head’ sets is better than the corresponding network trained on the

‘tail’ sets. This can be seen in Figure 7.11 where we train ResNet-101 [84] networks
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Deep vs Wide. Train: UMDFaces

head - easy (TPR@FPR=0.01: 0.789)

tail - easy (TPR@FPR=0.01: 0.801)

head - moderate (TPR@FPR=0.01: 0.710)

tail - moderate (TPR@FPR=0.01: 0.733)

head - difficult (TPR@FPR=0.01: 0.610)

tail - difficult (TPR@FPR=0.01: 0.634)

Figure 7.8: Training on UMDFaces [18] batch-1 and batch-2 and testing on batch-
3. Solid lines represent training on the ‘tail’ (wide) set and dashed lines represent
training on the ‘head’ set. We show the performance over three parts of the test
dataset: easy, moderate, and hard. These parts are based on the difference in pose
of the pair of images. The performance of the network trained on the ‘tail’ set is
invariably better.
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tail - moderate (TPR@FPR=0.01: 0.639)

head - difficult (TPR@FPR=0.01: 0.463)

tail - difficult (TPR@FPR=0.01: 0.536)

Figure 7.9: Verification performance of the networks trained on CASIA-WebFace
[237] ‘head’ and ‘tail’ sets. We see similar trends as Figure 7.8.
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Deep vs Wide. Test: LFW

Train: CASIA-head (TPR@FPR=0.01: 0.906)

Train: CASIA-tail (TPR@FPR=0.01: 0.931)

Train: UMD-head (TPR@FPR=0.01: 0.920)

Train: UMD-tail (TPR@FPR=0.01: 0.927)

(b) LFW

Figure 7.10: Performance on (a) IJB-A [107] and (b) LFW [91] of the networks
trained on CASIA [237], and UMDFaces [18] ‘head’ and ‘trail’ sets. The performance
of the networks trained on ‘tail’ are better across the range of false positive rate.
(Best viewed digitally)

on the ‘head’ and ‘tail’ sets of UMDFaces [18] and MS-Celeb-1M [73] datasets and

test on the IJB-A protocol [107].

This observation is important because it can guide researchers towards better

practices to follow while collecting data or selecting data for training deep networks.

Data acquisition is an expensive and time consuming process and these experiments

shine a light on how to obtain the maximum benefit from the investment. This is

an interesting direction for future work.

7.3.3 Does some amount of label noise help improve the performance

of deep recognition networks?

In face identification and verification research, the effect of label noise in the training

set for deep networks has not been studied extensively [72,73]. Label noise essentially

means that some of the images have incorrect labels. Some [73,156] have suggested
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(a) UMDFaces
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Head vs Tail MS1M. Test: IJB-A

HEAD (TPR@FPR=0.01: 0.929)

TAIL (TPR@FPR=0.01: 0.873)

(b) MS1M

Figure 7.11: Performance on IJB-A [107] of ResNets trained on UMDFaces [18], and
MS-Celeb-1M [73] ‘head’ and ‘trail’ sets. The ‘head’ sets are better.

that deep networks are robust to label noise.

We again use CASIA-WebFace [237] and UMDFaces [18] batch-1 and batch-

2 for training the networks and LFW [91], IJB-A [107], UMDFaces batch-3 for

evaluating the performance of these trained networks. We use the protocol explained

in Section 7.3.1.1 for evaluation.

For both training datasets, we train recognition networks with 0, 2%, 5%, and

10% label noise in the dataset. We would like to point out these percentages assume

that the original datasets do not already contain any label noise. This assumption

might not be true for many face datasets like MS-Celeb [73] and VGG-Face [156]

which already contain some label noise.

Figure 7.13 shows the verification performance of networks trained on the

CASIA-WebFace dataset for the UMDFaces test set and Figure 7.12 shows the

same for networks trained on UMDFaces dataset. There is a clear degradation in

performance with increasing noise level. For both datasets, the performance of the
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base - easy (TPR@FPR=0.01: 0.828)
2 - easy (TPR@FPR=0.01: 0.824)
5 - easy (TPR@FPR=0.01: 0.814)
10 - easy (TPR@FPR=0.01: 0.810)
base - moderate (TPR@FPR=0.01: 0.767)
2 - moderate (TPR@FPR=0.01: 0.757)
5 - moderate (TPR@FPR=0.01: 0.752)
10 - moderate (TPR@FPR=0.01: 0.743)
base - difficult (TPR@FPR=0.01: 0.686)
2 - difficult (TPR@FPR=0.01: 0.676)
5 - difficult (TPR@FPR=0.01: 0.667)
10 - difficult (TPR@FPR=0.01: 0.660)

Figure 7.12: Verification performance on UMDFaces [18] batch-3 of deep networks
trained on batch-1 and batch-2 with different noise levels. The colors represent the
difficulty of test set (in terms of the difference in pose). Different line types represent
different amounts of label noise added to the train set. Except for a small region in
easy cases, using clean data is better than using data with label noise.

network trained on clean data is mostly better than the performance of networks

trained with even small amounts of noise. Label noise does not improve performance

over clean data for face recognition. However, the difference in performance between

networks trained on clean data and data with low levels of label noise is relatively

low. But the percentage of noisy labels should be relatively low (less than 5%)

because from figures 7.13 and 7.12, we notice that for a label noise level of 10%, the

performance invariably declines.

Similar trends can be seen for the LFW dataset in Figure 7.14b. However,

when testing on the IJB-A dataset [107], we notice that this observation does not

hold, as shown in Figure 7.14a. We believe that this is because the IJB-A protocol

comprises of video frames which introduces another dimension of complexity for

the model. Sometimes these video frames might not look like the person under

consideration. We believe that such frames might be acting like a kind of label noise
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Figure 7.13: Performance on UMDFaces batch-3 for networks trained on CASIA-
WebFace [237]. Similar to Figure 7.12 the network trained with no label noise
performs best.
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Figure 7.14: Verification results on IJB-A [107] of networks trained on (a) UMDFaces
[18], and (b) CASIA WebFace [237]. Contrary to earlier observations from figures
7.12 and 7.13, the performance on IJB-A seems to improve with adding some label
noise to the train dataset. (Best viewed digitally)
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in the test set. That is why adding label noise to the training set might make the

networks robust to such frames. However, label noise and its removal are definitely

problems worthy of further research.

7.3.4 Does thumbnail creation method affect performance?

Detecting [33, 89, 95, 171, 207, 231], cropping, and aligning the faces in the dataset

is the first step in many face recognition pipelines. Alignment is the process of

transforming a face into some canonical view. This is usually done by detecting

locations of keypoints [104, 172] in the face image and then using some kind of

similarity transform to transform the faces to a canonical view [156]. We refer to

the images of faces obtained after cropping and/or alignment as ‘thumbnails’.

We investigate whether the performance of deep recognition networks is af-

fected by the thumbnail generation process. We compare two popular alignment

techniques [104, 172] against simple thumbnail generation techniques which only

require keypoint locations and do not involve calculating any similarity transforms.

We compare three different types of thumbnails for evaluating verification

performance. These are: (i) Keypoints from All-in-one CNN [172] with similarity

transform alignment, (ii) DLIB keypoint detection and alignment [104], and (iii)

Bounding box using keypoints from [172] without any alignment. In each case,

we also study the effect of using tight thumbnails (tight crop of the face) vs loose

thumbnails (including more context information). We try these methods for both

training and testing and present the accuracies for the best performing cases in
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figures 7.15 and 7.16. We use two different datasets for training: batch-1 and

batch-2 of UMDFaces [18] and CASIA-WebFace [237], and UMDFaces batch-3 for

evaluating the performance of the trained networks.

All the above mentioned variations give us the following seven methods of

thumbnail generation: (1) loose alignment using [172] keypoints (aligned uf loose),

(2) tight alignment using [172] keypoints (aligned uf tight), (3) loose alignment us-

ing [104] keypoints (aligned dlib loose), (4) tight alignment using [104] keypoints

(aligned dlib tight), (5) no alignment with extremely tight crops (max extent of the

keypoints minus 10% of the height and width from both sides) based on keypoints ob-

tained from [172] (unaligned uf minus 10 ), (6) no alignment with moderately tight

crops (max extent of the keypoints) based on keypoints obtained from [172] (un-

aligned uf tight), and (7) no alignment but loose crops of the faces (max extent

of the keypoints plus 10% of the height and width on both sides) using keypoints

from [172] (unaligned uf plus 10 ).

We train neural networks on UMDFaces [18] and CASIA-WebFace [237] using

these 7 thumbnail generation methods and test on batch-3 of UMDFaces [18] using

the same 7 different thumbnail generation methods. Hence, for both training sets, we

have 49 (7×7) pairs of train and test sets. For both training sets, we select the seven

pairs which give the highest performance and plot them in figures 7.15 and 7.16. We

note that there is a clear dependence of performance on the type of thumbnail used

for training and testing. Using a good keypoint detection method and alignment

procedure for both training and testing is essential for achieving good performance.

Note that using a tight alignment using keypoints detected using [172] for both
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TRN:unaligned_uf_plus_10-TST:aligned_uf_tight (TPR@FPR=0.01: 0.711)

TRN:unaligned_uf_plus_10-TST:unaligned_uf_plus_10 (TPR@FPR=0.01: 0.718)

Figure 7.15: The performance of seven sets of train and test thumbnail generation
methods. These seven were selected among all pairs of train-test pairs possible
as explained in Section 7.3.4. The training set was the UMDFaces [18] dataset in
each case and the testing set was batch-3 of UMDFaces. It is clear that tightly
aligning both training and testing sets using the method from [172] gives the best
performance (green). (Best viewed digitally)

training and testing gives the best performance among all the cases of networks

trained on UMDFaces. This pair is also a close second among networks trained

on CASIA-WebFace. As keypoint detection and alignment methods continue to

improve, we expect the face verification performance to improve too.

7.4 Discussion and Conclusion

In this chapter, we studied the effects of certain decisions about datasets and the

training procedures for training deep convolutional neural networks for face verifica-

tion. Carefully making these decisions is important for developing face recognition

systems. This work provides some guidelines about the decision making process.
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Figure 7.16: The performance of seven sets of train and test thumbnail generation
methods with CASIA-WebFace as the training set and UMDFaces batch-3 [18] as
the test set. We again see that aligning both training and testing sets using [172]
gives the best performance. Also, using a loose alignment gives the best performance
(blue) just slightly ahead of using a tight alignment (green).

There is an abundance of video data which contain much more pose and expres-

sion variations than still images. To ensure that researchers can take advantage of

this potential, we introduced two new datasets: UMDFaces and UMDFaces-Videos.

The UMDFaces-Videos datasets consists of of 22,075 videos and 3,735,476 annotated

frames. The importance of removing label noise from the dataset and selecting wider

or deeper datasets cannot be ignored. Similarly, aligning faces using accurate key-

points during both training and testing gives a boost in performance.

In the next chapter, we use the datasets introduced in this chapter and the

insights gained from our experiments to develop fast and accurate face recognition

systems. We will show that careful design of such face recognition systems can lead

to significant performance gains over existing state-of-the-art.
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Chapter 8: Learning Face Representations for Face Verification

In this chapter, we describe a complete algorithm designed using our UMDFaces

datasets and the insights gained from the analysis above. We show that our al-

gorithm can achieve state-of-the-art results for most recent benchmarks. We start

by briefly describing face verification pipeline and the dataset used for training our

model. We then discuss the loss function used. Finally, we present results for a va-

riety of challenging, large-scale face verification and identification benchmarks and

compare the results with existing state-of-the-art models.

8.1 Face Verification Pipeline

Given an image, we first detect all the faces using the DPSSD face detector [168].

Then, we crop out all the detected faces from the image and pass them through

the All-In-One face [172] network to extract facial key-points. These key-points are

used to align the corresponding faces in canonical coordinates. The aligned faces are

then passed through our face DCNN, trained using Crystal Loss [168], to generate

feature descriptors which are later used for verifying or identifying a face.

The proposed system for face identification and verification uses the All-in-

One Face framework [172] for keypoint localization. The All-In-One Face is a recent
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method that simultaneously performs the tasks of face detection, landmarks local-

ization, head-pose estimations, smile and gender classification, age estimation and

face recognition and verification. The model is trained jointly for all these tasks in

a multitask learning framework, which builds up a synergy that helps in improving

the performance of individual tasks.

Due to the lack of a single dataset which contains annotations for each task,

various sub-networks are trained with different datasets. These sub-networks share

parameters among them. This ensures that the shared parameters adapt to all the

tasks instead of being task-specific. These sub-networks are fused into a single All-

in-One Face CNN at test time. The complete network is trained end-to-end using

task-specific loss functions.

Although All-In-One Face [172] provides outputs for seven different face-related

tasks, we use only the facial keypoints generated by this network in our face recog-

nition pipeline. Once we obtain the keypoints for every face in an image or a video

frame, we align the faces to normalized canonical coordinates to mitigate the effects

of in-plane rotation and scaling. These aligned faces are then passed to the face

recognition module for subsequent processing.

To train our face representation model, we use the Universe face dataset from

[20]. This is a combination of UMDFaces images [18], UMDFaces video frames [17],

and curated MS-Celeb-1M [73]. The Universe dataset contains about 5.6 million

images of about 58,000 identities. This includes about 3.5 million images from MS-

Celeb-1M, 1.8 million video frames from UMDFaces videos, and 300,000 images

from UMDFaces. This dataset has the advantage of being the union of different
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datasets which makes networks trained using this dataset generalize better. Another

advantage is that it contains both still images and video frames which makes the

networks more robust to test datasets that contain both images and videos.

Our feature representation model is based on an Inception ResNet-v2 [198].

For pre-processing the detected faces, we crop and resize the aligned faces to each

network’s input dimensions. For data augmentation, we apply random horizontal

flips to the input images. The Inception ResNet-v2 network is trained with the

Universe dataset. This network has 244 convolution layers. We add a 512-D feature

layer after these and then a final classification layer. We use crystal loss (Section 8.2)

with α = 40. The initial learning rate is set to 0.1 and is reduced by a factor of 0.2

after every 50k iterations. We train the network for 120k iterations with a batch-size

of 120 on 8 NVIDIA Quadro P6000 GPUs. We resize the inputs to 299× 299. We

use UMDFaces [18] to train a final 128-D embedding with TPE.

For both face verification and identification, we need to compare template

features. To obtain feature vectors for a template, we first average all the features

for a media in the template. We further average these media-averaged features to

get the final template feature.
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8.2 Loss Function

The Crystal Loss [168] can be written as:

minimize − 1
M

M∑
i=1

log eW
T
yi
f(xi)+byi∑C

j=1 e
WT

j f(xi)+bj

subject to ‖f(xi)‖2 = α, ∀i = 1, 2, ...M,

(8.1)

where xi is the input image in a mini-batch of size M , yi is the corresponding

class label, f(xi) is the feature descriptor obtained from the penultimate layer of

DCNN, C is the number of subject classes, and W and b are the weights and bias

for the last layer of the network which acts as a classifier. Equation 8.1 adds an

additional L2-constraint to the softmax loss.

The most important advantages of using Crystal Loss lie in its ability to rep-

resent each type of face with a feature of similar magnitude. This ensures that both

low-quality and high-quality images are given equal weight.

8.3 Experiments

In this section, we report experimental results for end-to-end face identification and

verification on four challenging evaluation datasets, viz., IJB-A [107], IJB-B [216],

and IJB-C [144]. We show that the proposed system achieves state-of-the-art or

near results on most of the protocols.

We use ROC curves to measure the performance of face verification (1:1 match-

ing) methods, and CMC and TPIR-FPIR curves [107] are used for evaluating face
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Table 8.1: Task descriptions for IJB-A, IJB-B, and IJB-C datasets.

Task Desciption

1:1 Verification Verify if the given pair of templates belong to the same subject.
Templates are comprised of mixed media (frames and stills).

1:N Mixed Search Open set identification protocol using mixed media (frames and
stills) as probe and two galleries G1, and G2.

identification (1:N search) in close-set and open-set settings, respectively. The IJB-

A [107], IJB-B [216], and IJB-C [144] datasets contain a gallery and a probe which

leads to evaluation using all positive and negative pairs. This is different from

LFW [91] and YTF [217] where only a few negative pairs are used to evaluate ver-

ification performance. Another difference between LFW/YTF and the evaluation

datasets here is the inclusion of templates instead of only single images. A template

is a collection of images and video frames of a subject. These datasets are much more

challenging than older datasets due to extreme variations in pose, illumination, and

expression. Table 8.1 gives brief descriptions of the identification and verification

tasks, including 1:1 verification and 1:N search.

The IJB-B dataset [216], which extends IJB-A, contains about 22, 000 still

images and 55, 000 video frames spread over 1, 845 subjects. Evaluation is done for

the same tasks as IJB-A, viz., 1:1 verification, and 1:N identification. The IJB-B

verification protocol consists of 8, 010, 270 pairs between templates in the galleries

(G1 and G2) and the probe templates. Out of these, 8 million are impostor pairs and

the rest 10, 270 are genuine comparisons. Tables 8.4 and 8.5 provide the verification

and identification results respectively.

The IJB-C evaluation dataset [144] further extends IJB-B. It contains 31, 334
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Table 8.2: IJB-A Verification. The best results are in bold.

True Accept Rate (%) @ False Accept Rate
Method 0.0001 0.001 0.01 0.1

Casia [209] - 51.4 73.2 89.5
Pose [6] - - 78.7 91.1

NAN [230] - 88.1 94.1 97.8
3D [143] - 72.5 88.6 -

DCNNfusion [35] - 76.0 88.9 96.8
DCNNtpe [181] - 81.3 90.0 96.4
DCNNall [172] - 78.7 89.3 96.8

All-In-One [172] - 82.3 92.2 97.6
TP [38] - - 93.9 -

RX101l2+tpe [169] 90.9 94.3 97.0 98.4

Ours 91.7 95.3 96.8 98.3

Table 8.3: IJB-A 1:N Mixed Search. The best results are in bold.

TPIR (%) @ FPIR Retrieval Rate (%)
Method 0.01 0.1 Rank=1 Rank=5 Rank=10

Casia [209] 38.3 61.3 82.0 92.9 -
Pose [6] 52.0 75.0 84.6 92.7 94.7
BL [36] - - 89.5 96.3 -

NAN [230] 81.7 91.7 95.8 98 98.6
3D [143] - - 90.6 96.2 97.7

DCNNfusion [35] 65.4 83.6 94.2 98.0 98.8
DCNNtpe [181] 75.3 83.6 93.2 - 97.7
DCNNall [172] 70.4 83.6 94.1 - 98.8

All-In-One [172] 79.2 88.7 94.7 - 98.8
TP [38] 77.4 88.2 92.8 - 98.6

RX101l2+tpe [169] 91.5 95.6 97.3 - 98.8

Ours 91.4 96.1 97.3 98.2 98.5
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Table 8.4: IJB-B Verification. The best results are in bold.

True Accept Rate (%) @ False Accept Rate
Method 10−6 10−5 10−4 10−3 10−2 10−1

GOTS [216] - - 16.0 33.0 60.0 -
VGGFaces [157] - - 55.0 72.0 86.0 -

FPN [28] - - 83.2 91.6 96.5 -
Light CNN-29 [218] - - 87.7 92.0 95.3 -

VGGFace2 [26] - 70.5 83.1 90.8 95.6 -
Center Loss [215] 31.0 63.6 80.7 90.0 95.1 98.4

MN-vc [224] - - 83.1 90.9 95.8 98.5
SENet50+DCN [223] - - 84.9 93.7 97.5 99.7

ArcFace [42] 37.5 89.0 94.2 96.0 97.5 98.4
Ours 27.7 61.6 89.1 94.3 97.0 98.7

Table 8.5: IJB-B 1:N Mixed Search. Note that the retrieval rates for some past
methods are average over G1 and G2. The best results are in bold.

TPIR (%) @ FPIR (For G1, G2) Retrieval Rate (%) (For G1, G2)
Method 0.01 0.1 Rank=1 Rank=5 Rank=10

GOTS [216] - - 42.0 - 62.0
VGGFace [157] - - 78.0 - 89.0

FPN [28] - - 91.1 - 96.5
Light CNN-29 [218] - - 91.9 94.8 -

VGGFace2 [26] 74.3 86.3 90.2 94.6 95.9
Center Loss [215] 75.5, 67.7 87.5, 82.8 92.2, 86.0 95.4, 92.5 96.2, 94.4

Ours 83.1, 75.5 93.6, 89.3 95.5, 90.8 97.5, 94.2 98.0, 95.8
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Table 8.6: IJB-C Verification. The best results are in bold.

True Accept Rate (%) @ False Accept Rate
Method 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Center Loss [215] 36.0 37.6 66.1 78.1 85.3 91.2 95.3 98.2
MN-vc [224] - - - - 86.2 92.7 96.8 98.9

SENet50+DCN [223] - - - - 88.5 94.7 98.3 99.8
ArcFace [42] - - 85.4 92.8 95.6 97.2 98.0 98.8

Ours 16.5 19.5 43.6 77.6 91.9 95.6 97.8 99.0

Table 8.7: IJB-C 1:N Mixed Search.

TPIR (%) @ FPIR (For G1, G2) Retrieval Rate (%) (For G1, G2)
Method 0.01 0.1 Rank=1 Rank=5 Rank=10

Center Loss [215] 79.1, 75.3 86.4, 84.2 91.7, 89.8 94.6, 93.6 95.6, 94.9
Ours 87.7, 82.4 93.5, 91.0 95.7, 92.8 97.4, 95.4 97.9, 96.4

still images and 117, 542 video frames of 3, 531 subjects. There are about 20, 000

genuine comparisons, and about 15.6 million impostor pairs in the verification proto-

col. For the 1:N mixed search protocol, there are about 20, 000 probe templates. In

Table 8.6 we list the results of our system for 1:1 verification. Similarly, in Table 8.7

we give results for 1:N mixed search.

8.4 Disguised Faces in the Wild

The recently announced Disguised Faces in the Wild (DFW) dataset and challenge

[45,115] aims to study another covariate of the face verification pipeline - ‘disguises’.

Disguises and impersonations are part of a sub-field of face recognition where

the subjects are non-cooperative and are actively trying to deceive the system. A
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disguise is defined as a means of altering one’s appearance or concealing one’s iden-

tity. This means that the subject is actively trying to adopt a new identity in order

to hide his or her own. Similarly, an impersonation is the act of pretending to be

another person. A subject might be trying to disguise his or her identity by adopting

another identity or another person might be trying to impersonate the subject of

interest.

This is a challenging face verification problem. The aim of a face verification

system in such cases is to be able to identify disguises and reject impersonators.

The DFW challenge [45,115] was introduced keeping such a target in mind.

Building upon the face verification pipeline described above, we build an en-

semble of two deep CNNs and achieve good preliminary results for this task. We

use a large amount of data for training our models and report results on the DFW

challenge test set [45, 115]. This dataset contains both UMDFaces and UMDFaces-

Videos along with the MS-Celeb-1M [73] dataset. We combine a cleaned version of

the MS-Celeb dataset and the UMDFaces giving us a total of 5.6 million images of

about 58,000 subjects.

There are several factors to consider while designing a face verification system.

One of these is the loss function used to train the deep networks. Most current

methods use softmax loss for training their deep network. Softmax presents several

advantages for training CNNs. It can be easily implemented using existing functions

in various deep learning libraries [5, 37, 97] and does not have any restrictions on

batch-size. It converges quickly. However, it is biased to the sample distribution in

the training set. Unlike triplet loss, it does not specifically attend to hard samples.

169



Figure 8.1: Various disguises worn by Gary Oldman throughout his career as an
actor. Recognizing people under disguises is clearly a challenging problem, even for
humans. Designing autonomous systems for such a problem will be an important
step towards complete face understanding.

It fits well on high quality data and ignores the difficult samples in the mini-batch.

To overcome this limitation, Crystal Loss was introduced in [168]. It pushes samples

from the same class closer and samples from different classes apart. In this work,

we use the Crystal Loss for training our networks.

We build an ensemble of two deep CNNs for the task. The two networks are

trained on the same dataset. We describe the architectures and training details of the

two deep CNNs used in our method in Section 8.4.1 and finally, in Section 8.4.2, we

report the results for the DFW challenge. An overview of a typical face verification

pipeline is shown in Figure 8.2.
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Figure 8.2: A typical face verification system pipeline. During training, a deep
network is trained for classification using a large training dataset (e.g. UMDFaces
[17,18], MS-Celeb-1M [73]). After training the network, a metric learning framework
(e.g. triplet embedding) is used to embed the features obtained from the deep CNN
into a discriminative subspace. At test time, given two faces, the features from
the deep CNN are computed and embedded into the embedding subspace. Finally,
a similarity score (e.g. cosine similarity) is calculated between the two embedded
features.

8.4.1 Architectures

We describe the architectures of the two networks in our ensemble. We also give

the training details and present the fusion algorithm for combining the outputs of

the two networks.

Pre-processing: We use the All-in-one CNN [172] for face detection and align-

ment. We crop and resize each aligned face to each network’s corresponding input

size before sending them through the network. We applied a random horizontal flip

as a data augmentation strategy.

ResNet-101

The first network is a ResNet-101 [84]. This network contains 101 convolutional
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layers followed by a fully-connected layer of dimension 512. We use PReLU [84] ac-

tivation function after every convolutional layer. In total, the training data contains

57, 779 subjects and 5, 554, 906 images. The network was trained using L2-Softmax

Loss [169] with α parameter set to 50. The initial learning rate was set to 0.1, which

was reduced after every 50k iterations by a factor of 0.2. The training was carried

out till 250, 000 iterations with a batch size of 128. We use the Triplet Probabilistic

Embedding (TPE) [181] to learn a 128-dimensional embedding using images from

UMDFaces [18] dataset.

Inception ResNet-v2

We adapt the Inception-ResNet-v2 model described in Section 8.1. For final infer-

ence, we use TPE [181] to learn a 128-dimensional embedding using images from

UMDFaces [18].

For fusion, we take the average of the scores obtained from the two networks as

our final scores for each pair of images. More sophisticated fusion strategies will be

explored in future.

8.4.2 Results

We first evaluate our approach on the relatively simple Disguised and Makeup Faces

Database [214]. This dataset contains 2460 images for 410 identities. The images in

this dataset are mostly celebrities with different disguises and makeups. Our method
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achieves significant performance improvements over the baseline results reported

in [214]. The method achieves a true accept rate (TAR) of 92% at a false accept

rate (FAR) of 0.0001, and a TAR of 96.4% at FAR 0.001. This shows that our

method can recognize people with make-up and disguises with high confidence.

We then evaluate our approach on the Disguised Faces in the Wild (DFW)

challenge [115]. The DFW challenge provides about 7, 800 test images for about 600

identities containing both disguises and impersonations. Each identity in the test

set contains a normal image, some validation images, a few images with the subject

in disguise, and a few images of impersonators i.e. other people who look like the

subject under consideration. The aim of this challenge is to recognize disguised

faces as belonging to the subject under consideration and reject the impersonators.

The challenge follows a standard face verification evaluation strategy. Each pair in

the test set is assigned a similarity score by the algorithm and has an associated

ground-truth label (‘positive’, ‘negative’, or ‘do not care’). The evaluation criterion

is a standard ROC curve which plots the True Acceptance Rate (TAR) against False

Acceptance Rate (FAR).

We present results for our two networks separately and also for the combination

strategy highlighted in Section 8.4.1.

Figure 8.3 shows the ROC curves for both our networks and for the final fused

scores. Table 8.8 gives the TAR values at FAR = 0.01 and FAR = 0.001 for our

fused model and compares it with recent works [116].
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Figure 8.3: Results ROC curve. The plot shows the performance (TAR) of our two
networks and the fused features at different False Acceptance Rates (FAR) for the
DFW dataset.

8.5 Discussion and Conclusion

In this chapter, we presented a fast and high-performance system for face recogni-

tion. We used the Inception ResNet-v2 network as the feature backbone for our

model. We use a large dataset comprising of our UMDFaces datasets and the

MSCeleb dataset to train the network with Crystal loss. We showed that such a

model can achieve near state-of-the-art results for several challenging face recogni-

tion benchmarks like IJB-A, IJB-B, and IJB-C. We further showed that an ensemble

of our model and a ResNet trained in a similar fashion can achieve good performance

on the recent Disguised Faces in the Wild challenge. This demonstrates the impor-

tance of training deep networks using our datasets and Crystal loss. The feature

obtained from these networks are effective for face verification and identification.
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Table 8.8: TAR (%) at different FAR values for the three different features used in
this work for the DFW dataset. The performance in bold is the best in each column
and the underlined numbers are the second best in a column.

Feature FAR = 0.001 FAR = 0.01
AEFRL 63.52 80.52
VGG-Face 17.73 33.76
ByteFace 54.16 75.53
DDRNET 49.08 71.43
DisguiseNet 23.25 60.89
LearnedSiamese 18.79 39.73
MEDC 63.22 81.31
MiRA-Face 75.08 89.04

Ours 68.52 83.49
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Chapter 9: Summary and Suggestions for Future Work

In this dissertation, we focused on improving the recognition of humans, objects,

and their interactions. These are constituent parts of the general problem of scene

understanding. A better understanding of a scene can be gained by asking and

answering questions. Therefore, in this work, we also address the problem of visual

question answering. We summarize some of our most important contributions and

observations here.

We started by introducing ZSD as a novel problem in computer vision (Chap-

ter 3). We discussed the challenges associated with ZSD and proposed several ap-

proaches for dealing with these challenges. In particular, we proposed two background-

aware approaches: 1.) statistically assigned background method; and 2.) latent

assignment based method. We also proposed the densely sampled embedding space

method to deal with the issue of sparse distribution of classes in the semantic space.

We showed that ZSD is a challenging problem which provides several avenues for

research. We also demonstrated that our proposed approaches can give good per-

formance improvements over baselines.

In the next two chapters (Chapters 4 and 5), we proposed two approaches for

HOI detection. The first of these, called Functional Generalization, was based on
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the idea that human-object interactions look similar for functionally similar objects.

We proposed a data augmentation strategy based on this insight. We showed that

a large amount of additional data can be generated using the existing labeled data

and exploiting functional similarities between objects. We proposed a simple model

which could utilize the additional data and obtain state-of-the-art performance for

HOI detection.

Our second HOI detection model was explicitly designed to exploit the relative

locations and orientations of the human and the object in the scene. The proposed

model comprised of a layout module and a visual module. We also introduced the

idea of spatial priming, where the prediction from the layout module is used to

prime the visual module. We showed that this model is able to achieve an even

higher performance than the Functional Generalization model demonstrating the

effectiveness of utilizing the spatial information.

In Chapter 6, we introduced the generalized VQA problem of ISVQA which is

a challenging setting requiring reasoning over several images from a scene together.

We collected an annotated dataset for ISVQA. We provided an exhaustive analysis

of the dataset and proposed several VQA-based baseline methods. We observed

that even these strong baseline methods are not sufficient for ISVQA. This revealed

the unique challenges associated with ISVQA and showed that this problem cannot

be solved trivially.

Finally, in Chapters 7 and 8, we described two large-scale datasets and a fast

and accurate pipeline for face identification and verification. We explored several

important questions that should be considered before designing any face recognition
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system and showed that carefully answering those questions is essential for designing

high-performance face recognition systems. We showed that using the UMDFaces

datasets and Crystal loss, we can design face recognition pipelines that can beat

state-of-the-art methods on the IJB-A, IJB-B, IJB-C, and DFW benchmarks.

9.1 Future Work

Most of the accomplished work presented in this dissertation has focused on scene

understanding from still images. We have not paid much attention to video under-

standing. Future work should focus on using additional semantic information for

video understanding. Future work can also try to improve human-object interaction

detection by using additional semantic knowledge from artwork datasets like the

Flintstones dataset [77].

9.1.1 Frame Semantics for Video Understanding

Most current video and action recognition methods [27,51] rely completely on pixel-

level visual data for making an inference. However, reasoning on the objects present

in a scene can provide important cues about the setting or action in the video.

An event or an activity can be understood on the basis of the description and

interactions of the participants in it. For example, the action of cooking involves

a cook (person), the food, a container, and a heating instrument. If we detect a

person, a stove, a pan, and some vegetables, and we know the typical purpose of

each object, we can infer that the scene probably involves cooking.
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An activity can be understood as a frame [2, 16, 145] and the participant as

frame elements. The frame problem is a classical problem in AI which deals with

the ways of writing the effects of an action in logic formulae [3]. Certain words can

evoke a frame. These words can be considered as specific instances of a general

activity. This structure can be used for video recognition. Frame-level annotations

from the FrameNet [2] lexical database can provide important cues.

9.1.2 Annotated Artwork for Human-Object Interaction Detection

Labeled training data is still a major issue in human-object interaction detection.

We believe that more human-object layout data can greatly benefit our Spatial

Priming model. Recently, Gupta et al. [77] released the Flintstones dataset which

contains annotations for several human-human and human-object interactions. The

authors utilized scripts and character locations to generate this data. We propose

to use the layout information from this dataset to further improve our models.

In addition, we also observed that the HICO-Det dataset [30] contains in-

exhaustive labels. Therefore, some correct HOI detections might be marked as

incorrect. Since HOI detection methods are evaluated in mean average precision

(mAP), missing labels have a negative impact on the performance numbers. Fu-

ture work should quantify this effect by getting a part of the HICO-Det dataset

exhaustively annotated. This will give a better understanding of the performance

of various models and the avenues for improvement.

Further, future research should focus on improving performance for rare classes.

179



Clever class-weighing strategies and using more semantic knowledge as in [160] could

be some ways of going forward. Another limitation of our method is the dependence

on a pre-trained object detector. Future work should also focus on jointly training

the HOI prediction model and the object detector. Since HOI detection and object

detection have complementary objectives (a better object detector leads to better

HOI detection), this line of approach could significantly improve performance for

both HOI detection and object detection.

9.1.3 Lexical Ontology and Hierarchical Prediction for ZSD

For ZSD, it is important to incorporate some lexical ontology information (“is a”

and “is part of” relationships) during training and testing for learning models on

large vocabularies. Most existing object detection frameworks ignore the hierarchi-

cal nature of object classes. For example, a “cat” should incur a lower loss when

predicted as “animal” vs. when predicted as “vehicle”. Although few works have

tried to address this issue [79, 173], we believe further work in this direction would

be beneficial for zero-shot detection. We also feel that additional work is needed to

generalize bounding-box regression and hard-negative mining for new objects.
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