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ABSTRACT L=k, t=nT

. . . . y(t) “ s
A high performance ASIC supporting multiple modulation, er- Gue (KT, —€T) E—
ror correction, and frameformatsis under development at Hughes 2(nT +€T)

Network Systems, Inc. Powerful and generic data-aided (DA)
estimators are needed to accommaodate operation in therequired
modes. In this paper, a simplified DA maximum likelihood
(ML) joint estimator for carrier phase and symbol timing offset
for QPSK/OQPSK burst modems and a sample systolic VLS|
implementation for the estimator are presented. Furthermore,
the Cramer-Rao lower bound (CRLB) for DA case is inves-
tigated. The performance of the estimator is shown through
simulation to meet the CRLB even at low signal-to-noiseratios
(SNR). Compared with theoretical solutions, the proposed es-
timator isless computationally intensive and istherefore easier
to implement using current VLS| technology.

1. INTRODUCTION

A high performance ASIC supporting Hughes Network Sys-
tem’s Universal Modem product line is under development.

ThisASIC will support avariety of bit rates, modulations (BPSK,

QPSK, 8PSK, OQPSK), forward error correction, and frame
formats. The ASIC will use severa burst parameter estimation
algorithms, these algorithms are generic enough to be applica
blein all of the various modes and can be readily implemented
in hardware.

An expression for the DA ML joint carrier phase and tim-
ing offsets estimator in time-domain was derivedin [1] (p.296).
Implementing the estimator is however, somewhat hardwarein-
tensive. Based on the work in [1], a new algorithm has been
derived that can be also extended to the OQPSK case. This
algorithm is relatively simple and is suitable for systolic VLS
implementation. The performancelower bound for ML estima-
tion is the CRLB. An expression for the CRLB for timing re-
covery in the non-DA caseisgivenin [3]. Jiang has derived an
expression for an ML joint phase and timing offset estimator,
and the CRLB for the DA timing recovery case based on afre-
quency domain approach in [2]. In the DA case, the CRLB pa

Figure 1: Matched Filter of Optimal Receiver

(for DA case) which provides insight on data pattern selection
for faster timing recovery is investigated further in this paper.

In section 2 a derivation of the estimation algorithm is pre-
sented. Section 3 presents aficé¢nt VLS| implementation of
the estimator. In the last section the CRLB for the non-DA case
and theCRLBp, are investigated, and the performance of the
new estimator is shown through computer simulation and com-
pared withCRLBp4 .

2. ESTIMATION ALGORITHM

The baseband received signal is modeled as:

N-1
y() = VB 3. gt —nT) + jagug(t —nT
n=0
—7T)) explj (27 ft + 8)]] + n(t) (@)

whereg(t) = gr(t)@c(t)® f(t), gr(t) is the transmitter shap-
ing function,c(t) is the channel responsg(t) is the prédilter,
n(t) is the additive white Gaussian noise (AWGN) with two-
sided power spectral density,/2, anda,, = ar, + jagn iS
the data symbol from complex plane{ = v/2/2(+1 + j) for
QPSK/OQPSK signaling)T' is the symbol intervalf is the
carrier frequency offset, andis the delay factor that is 0 for
QPSK and 0.5 for OQPSK. The estimation algorithm for the
QPSK case is as follows. The matcHdter for an optimal re-
ceiver can be modeled as [1] shown in Figureylt) is down
converted by carrier frequency offset estimﬁteand then sam-
pled at rate ofl /T, typically T = LT, with L an integer.
The sampled signal ifsltered by a matched shapiffigter with



responsg/(—t) and timing offsetT". The output is then deci- - ‘ ‘ _ lu@lvs. tming offsete
mated down to a rate df/ T to obtain a one sample per symbol
signalz(nT + T'). The demodulator corrects the phase offset
6 and timing offset of z(nT +¢T') prior to making symbol de- 20p A
cisions and recovering the transmitted symbgl z(nT +T")
is given by:

oo
2(nT +eT) = Z y(KTs)e ™ IRT) g (0T +
k=—o00 10+ )

eT — kTy) 2

Assuming zero frequency offset estimation error, therefare st ]
(K = LN) observations of(kTs +¢T) (k=0,---, K — 1)
available for estimating andé, € € [—0.5,0.5). According to
the work done in [1], the maximization object function of ML 85 04 03 0z o1 0 01 o0z o0s o4 o5
joint phase and timing offsets estimation in AWGN channel is i Ofet (e smbolpenodts ) nonose, e pese

el

= . Figure 2: Correlation Magnitude(e)| vs. Timing Offset
L(a,e,0) = Cexp {—Re > apz(nT +eT)e™" } (3)

n=0
whereC is a positive constant and= [ao, -- -, an—i] which  Wherelas|* =1 (n = 0,---, N —1). Furthermore by letting

is the data pattern and is known to the estimator. Let timele ¢ = €1 and using Taylor series approximations for sine and

u(e) as: cosine functions and after some sinfigiation, we arrive at
N-1 w242
u(e) = Y ajz(nT +T) (4) () ~ NE, (1 - W) ©)
n=0
The ML joint phase and timing estimator is given by [1]: Figure 2 shows the result of numerical evaluation/ )|
which follows a quadratic form. From eqg. (9) we can use a sec-
€ = argmax |u(e)] (®)  ond order polynomial to approximate the relationship between

0 argl1u(é)] ©) sampling time and the magnitude of correlatigsit)| given

that these sampling points are close enough to the ideal sam-
According to the Equivalence Theorem [1], and assuming thgling point (i.e.t is close enough to 0). Using a general form
c(t) and f(t) are all-passilters, z(nT" + £T') is equivalent to  of the second order polynomial

the following: A
N-1 |u(t)] = bat? + byt + bo (10)
_ _ —j0
2T +eT) = 2_: agr(nT +eT = kT)e™"" + Nn(7) suggests that a joint phase and timing estimator can be derived
h P '”_Ot ’ based on three adjacent samplegidf)|. These samples are
wherer(t) = gT( ) ®gr(=1) the closest ones to the ideal sampling point as shown in Figure
_ sin(xt/T) cos(ant/T) 3. In order to meet the condition thiais close enough to 0, two
mt/T 1 —4a22/T?
The above expression also assumes that raised cosine shaping X el sample
is adopted withr denoting the rolloff factorV,, is the sampled Ikl |

version ofn(t), Gaussian noise, after beififered byg ys r(¢).
Arriving at a solution to eq. (5) is a di€ult task and the
resulting hardware structure presented in [1] is quite compli-
cated. It is well known that a quadratic form can be used to s
approximate the central segment of a convex function around
its peak. The expression far() can be approximated by a Figure 3: Three Sampling Points Model
guadratic equation as shown belowe i+ 0, the inter-symbol-
interference (1SI) and nois¥,, can be ignored and we can sim-measures are adopted: one is that the samplinglrggam-
plify |u(e)| as ples per symbol) is large enough (simulation shows that 4
N1 can achieve good performance); second is locating the largest
\u(e)| ~ E, Z \an|?r(eT) = NE;r(T) 8) available magnitude; through peak search. Let usfae the
o sampling time ofc; as nominal 0 on time axis. Therefore the




sampling times of:, andz, are—T, andT, respectively. A vy KT . p—
LaGrangeinterpolating polynomial can be adopted based or e TS_ST)H
the values oft, (k = 0,1, 2): expl- | (2T, ] fo XX

4(2x, — 4x, +2X,)
t—1t; = arctan|
)| = Z T H ﬁ (11) ? el
= i=0,i#k t
= b2t2 +bit+ bo Figure 4: Joint Carrier Phase and Timing Offsets Estimator
where
2 where
Tn
DS T (2 =
=0 1=0in a1 = am+j Y agrr((n—k—1/2)T)
D I i =
- 2 N—
— _ th — 1t
2n70 HZHOQ,lsén( l) Ap2 = Z Ikr n —k+ ]_/2) ) + jaQn
Tn | L1010 ti =0
bo = Z D) ; (14)
=0 Li—o,izn(tn — t0) an1 anda,» are déined to combine the effect of inter-channel
Using the fact thaty = — T}, #, = 0, ¢, = T}, we can get and mter-symbpl mterferenc_es. The_ apove however requires
more computational power since multipliers are needed instead
by = 1 (ﬂ — 2+ 2) of just adders for the QPSK case. We can get a siegliver-
T2 \ 2 2 sion by lettinga,1 = ar, anda,2 = jagn.
b = 1 (2 _ @) Computer simulations show that the performance degrada-
LT T, \ 2 2 tion is small and we can conserve hardware and make the im-
by = 1 plementation compatible with QPSK. After rdideng u(c), we

. . ) : . just need to follow the same procedure derived for QPSK for
The ML timing offset estimator (5) is th& which maximizes estimating timing and phase offsets.

|(g)]. Itis easy to compute the sampling time of the peak of

|£(¢)| from a second order polynomial, i.e.
3. VLSI IMPLEMENTATION

bpente = — e = (0= T2)Ts (15)
Peak oy T 2m0 — dxy + 229 The hardware block diagram for the estimator is shown in Fig-
therefore, the ML estimate afis ure 4. The multi-sample correlator genera?es outputs at_a higher
rate than one sample per symbol. Let ufimethe following
&= _lpeak _ L2 — o (16) complex correlation computation:
T L(QI'O — 4:.1’1 + 2.1’2) ~
-1

The phase estimator is shown in ed. (§). Interpolation tech- ,(c) = Z (arn — jagn)(z1(n) + jzg(n))
nigues can be applied to correct the timing offset before phase 0
estimation. This however, introduces an additional delay in the -1

demodulation process. Simulations show that using the time
for the non-ideal sample of; is suficient for meeting the
CRLB (sampling time of; is ¢;). This leads to aQnZ,( )))

6 = arg [u(t1)] (17) = Ci+Coq +J(Ciqg — Car) (19)

Z aInZI + aQnzQ (n) + j(aInZQ (TL) -

In order to locate the largest available valtieeasily, a highly A systolic [4] VLSI implementation of the correlator is shown

correlated data patternis selected. [2] discusses this problemin Figure 5 for both QPSK and OQPSK cases, whegede-

in depth. Here unique word (UW) and alternating (one zerojotes theith symbol { = 0,---,N — 1), jth sample { =

data patterns are investigated. 0,---,3) of the output from the matched shapifiger. In

The same algorithms can be applied to OQPSK modulaticRPSK/OQPSK casey;; = 1, ag; = %1, only adders are

with minor modfications. u(e) is slightly modfied from eq. necessary therefore the computational complexity is relatively

(4) as: small especially when using the correlator as soft-decision UW
N1 detector. Through peak search module, we can loegter;

_ . T 4 eT) + a*oz(nT +T/2 + =T (18 andz». An ArctanLookup table (LUT) is used when estimat-
w(e) Z[amz(" eT) + apyz(n / eT)] (18) ing the phase offset.

n=0
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Figure 5: Multi-Sample Correlator for QPSK/OQPSK
4. PERFORMANCE BOUNDS AND SIMULATION - Ry o Peeuo Random Bata petern
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0O a=0.50
¢ 0=0.25

The performance lower bound for unbiased ML estimation is
the Cramer-Rao lower bound (CRLB). WWest address the CRLB
for the QPSK case analytically. Then the performance of QPSK
and OQPSK is shown through simulations. TBRLB 4 for
phase estimation is given by [1] as follows:

CRLB,, Standard Deviation

—1
Bl(6 - 6)) > {EN} (20)
No
Moeneclaey proposed the CRLB for i.i.d. random data pattern
(i.e., noinformation about available) in [3]. The bound for the ‘ ‘ ‘ ‘ ‘
case where the sampling ratg7’s > 2B (B is the bandwidth 0 ! 2 Signaito Noise Ratio £, (). s e

of r(t)) andN large enough is given by

. Figure 6: TheCRLBp4 for Timing Estimation with UW Pat-
e [ 4w2f2R(f>df} (21) tem
0

El(r — 7] > T {

with R(f) the Fourier transform of(t). Jiang has proposed and thus the performance is independent of rolloff factor
the following expression foERLBpy in [2]: given thata. > 0. For the UW pattern, the timing estimation

CRLBp, is closely related to the rolloff factor. It follows from
—1

K/2—1 2 eg. (22) that the larger the rolloff factor, the smalleRLB p4 .
2F [ ok k : -
8 TR (5 AlE]? 22) Figure 6 shows eq. (22) plotted as a function of SNR for three
|ALK]| (22)
NoNT N NT different values of rolloff factor.

k=—K/2
! The parameters for the computer simulations for QPSK and
whereA[k] is thekth element ofV-point discrete Fourier trans- OQPSK signaling wer&y = 48 andL = 4 in an AWGN chan-
form (DFT) ofg, i.e. A[k] = 25;01 ane—i2m™k/N) Accord- nel. Figure 7 shows the saw tooth characteristics of eq. (16)
ing to eq. (22)CRLBpa has different values for different data under no noise conditions with random phase. From simula-
patterns. Two data patterns have been investigated: alternatii@ns we can see that (16) is an unbiased estimate ¢feak
one-zero pattern (i.e; = (—1)%v/2/2(1 + j)), and a unique search (i.e. locating;) resolves then/4 (m = £1, +2) am-
word pattern. A 48-symbol UW was selected. According to edpiguity.

(22) for the alternating one-zero data pattern Different rolloff factors for the raised cosine shaping func-
tion were also tested. Simulation shows that the root mean

5 By -t squared (RMS) timing estimation error of QPSK meets the
CRLBpa o = {2” EN} (23) CRLBpj forall as and data patterns. Simulations also support
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0 Timing Offset Estimation Simulation: rolloff factor 0.5 5, CONCLUS'ON
‘ ‘ ‘ ‘D CRLB10
5 s In this paper an ML joint phase and timing offsets estimator for
Sl QPSK/OQPSK burst modems along with a systolic VLSI im-

plementation has been presented. The performance of timing
recovery meets the CRLB for the DA case at low SNR, there-
fore it verifies the correctness of thiSRLBpa [2]. The joint
estimator is relatively simple to realize.
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