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Pipelines are the most efficient and reliable way to transfer oil and gas in large

quantities. Pipeline infrastructures represent a high capital investment and, if they

fail, a source of environmental hazards and a potential threat to life. Among dif-

ferent pipeline failure mechanisms, pitting corrosion is of most concern because of

the high growth rate of pits. In this dissertation two hybrid prognostics and health

management (PHM) models are developed to evaluate degradation level of piggable

pipelines, due to internal pitting corrosion. These models are able to incorporate

multiple sensors data and physics of failure (POF) knowledge of internal pitting

corrosion process. This dissertation covers both cases when in some pipeline’s seg-

ments the pit density is low and in some segments it is high. In addition, it takes

into account four types of uncertainty, including epistemic uncertainty, variability

in the temporal aspects, spatial heterogeneity, and inspection errors.

For a pipeline segment with a low pit density, a hybrid defect-based algorithm



is developed to estimate probability distribution of maximum depth of each individ-

ual pit on that segment. This algorithm considers change in operational condition

in internal pitting corrosion degradation modeling for the first time. In this way a

two-phase similarity-based data fusion algorithm is developed to fuse POF knowl-

edge, in-line inspection (ILI) and online inspection (OLI) data. In the first phase, a

hierarchical Bayesian method based on a non-homogeneous gamma process is used

to fuse POF knowledge and in-line inspection (ILI) data on multiple pits, and aug-

mented particle filtering is used to fuse POF knowledge and online inspection (OLI)

data of an active reference pit. The results are used to define a similarity index

between each ILI pit and the OLI pit. In the second phase, this similarity index

is used to generate dummy observations of depth for each ILI pit, based on the

inspection data of the OLI pit. Those dummy observations are used in augmented

particle filtering to estimate the remaining useful life (RUL) of that segment after

the change in operational conditions when there is no new ILI data.

For a pipeline segment with a high pit density, a hybrid population-based

algorithm is developed to estimate the probability density function of maximum

depth of the pit population on that segment. This algorithm eliminates the need

of matching procedure that is computationally expensive and prone to error when

the pit density is high. In this algorithm three types of measurement uncertainty

including sizing error, probability of detection (POD), and probability of false call

(POFC) are taken into account. In addition, initiation of new pits between the last

ILI and a prediction time is modeled by using a homogeneous Poisson process. The

non-linearity of the pitting corrosion process and the POF knowledge of this process



is modeled by using a non-homogeneous gamma process.

The estimation of these two algorithms are used in a series system to estimate

the reliability of a long pipeline with multiple segments, when in some segments the

pit density is low and in some segments it is high. The output of this research can

be used to find the optimal maintenance action and time for each segment and the

optimal next ILI time for the whole pipeline that eventually decreases the cost of

unpredicted failures and unnecessary maintenance activities.
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Chapter 1: Introduction

1.1 Background and Motivation

Pipelines are the most efficient and reliable way to transport oil and gas prod-

ucts in large quantities. However, failure of the pipelines could cause an environ-

mental hazard, a potential threat to life, and/or impose a huge cost; hence, their

integrity management becomes very critical [1]. In order to have a comprehensive

pipeline integrity management, it is necessary to consider all pipeline failure mech-

anisms and modes. In oil and gas pipelines, corrosion is one of the main ones and

among different corrosion failure mechanisms, pitting corrosion is more critical be-

cause of the high rate at which pits can grow [2, 3]. According to the data in the

literature, 57.7% of oil and gas pipeline failures in Alberta, Canada between 1980

and 2005, and 15% of all transmission pipeline failures between 1994 and 2004 in

the US were due to internal corrosion [4]. In addition, 90% of corrosion failures

of transmission pipelines in the US, between 1970 and 1984, were due to localized

pitting corrosion [4]. Therefore, in terms of the failure mechanism, the main focus

of this dissertation is on internal pitting corrosion.

The most efficient approach to managing the integrity of pipelines due to in-

ternal pitting corrosion is to develop a hybrid PHM model. In recent years, PHM

1



approaches have emerged and became an essential requirement to improve reliability,

maintainability, safety, and affordability of a component or system [5]. Generally,

PHM approaches have three main steps; observation, analysis and action (Figure

1.1) [6]. Along the way, developing a proper degradation model in the analysis

step plays a critical role to make a bridge between the observations (i.e., collected

condition-based data of the system) and the actions (i.e., decision making to mit-

igate the consequences of the potential failures). Underestimating the degradation

level leads to unpredicted failures and overestimating the degradation level leads to

unnecessary maintenance activities. Most PHM approaches rely on either POF or

data-driven degradation models [7].

POF-based degradation models have advantages in long-term damage behav-

ior prediction. However, when the degradation process is complex (e.g., pitting

corrosion), it is difficult to estimate and validate the parameters of the POF-based

degradation models because usually they are developed based on many approxima-

tions and simplifying assumptions [8]. On the other hand, data-driven models use

information from measured data collected via sensors to evaluate the degradation

process and predict the future state without using any particular physical model [8].

The accuracy of data-driven models is highly dependent on the amount of available

condition monitoring data [6]. For complex systems, in many applications data-

driven models are more practical that the POF-based models. However, since they

have no or less physical meaning, they are less sensitive to real system behavior [6].

Pitting corrosion is a complex stochastic process, which is not well understood

yet [9] and the geometry of the pipelines (i.e., long length, diameter, curvature)

2



makes it infeasible to have enough data about the health condition of the pipeline

in all locations. Therefore, neither a POF-based model [10, 11] nor a data-driven

model alone can capture and model the complexity of this process. The optimal so-

lution is to develop a hybrid PHM degradation model to combine the advantages of

both POF-based and data-driven based models and minimize their disadvantages.

Therefore the focus of this dissertation is on developing hybrid pitting corrosion

degradation models. It is worth noting that this research is a sub-project of a com-

prehensive pipeline integrity management project that includes three main thrust

areas. In Thrust area I, the focus is on data gathering and monitoring technologies.

In Thrust area II, the focus is on physics of failure aspects of pipelines corrosion pro-

cess and failure mechanism sciences. And in Thrust area III, the focus is on predic-

tive models and system-level integrity management. This research as a sub-project

of Thrust area III, is mostly focusing on the data-driven aspect of a hybrid degra-

dation pitting corrosion model, however, the POF aspect of the corrosion process is

also taken into account. The POF aspect of different corrosion failure mechanisms

(i.e., uniform corrosion, pitting corrosion, and microbial induced corrosion) is more

emphasized by Thrust area II of this pipeline integrity management project.

3



Figure 1.1: PHM steps [6]

Despite significant research efforts that have been made to develop a hybrid

PHM model, there is still a high uncertainty in those degradation models and their

corresponding predictions [2, 12–14]. With respect to the POF aspect of those

models, the localized corrosion mechanism (e.g., pitting corrosion) is still not well

understood [9] because of many hydrodynamic, (electro) chemical and metallurgical

parameter combinations that affect localized corrosion initiation and growth [9].

Some of those parameters are pH value in the water phase, the water chemistry,

the protective scale, the CO2 partial pressure, the amount of H2S, the effect of oil

wetting, the metal alloy composition, the temperature, the multiphase flow, and

flow rate, the variation in material properties and of the pipeline geometry [15].

There are some challenges with respect to the data-driven aspect of a hybrid pitting

corrosion degradation model for pipelines because of the special geometry of the

pipeline which is a long asset that cannot be monitored online in all locations. Some

of those challenges are measurement error, probability of not detecting some of the
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existing pits, false positive detection, having a small number of off-line inspection

data points for each detected defect, and matching uncertainty (i.e., uncertainty

in matching the location of the pits identified by sequential ILIs due to different

technologies, vendors, accuracy, etc.). Developing a hybrid model that assimilates

all available knowledge and data is desirable.

The next challenge that has been ignored in the available models in the litera-

ture is to consider potential change in operational conditions in a pipeline’s degrada-

tion level estimation. The available models are developed based on this assumption

that the distributions of the operational parameters are constant during pipeline life-

cycle [13, 16–18]. This assumption is valid only for those pipelines that are designed

and used for a specific content and this usage does not change during the pipeline

life-cycle. However, in practice, even for the above-mentioned pipelines, the nature

of the oil and gas field might change over time. In addition, some pipelines are

designed to transport a specific product, but the usage change after some years of

operation to transport another product. Also, in some occasions flow reversal hap-

pens in a pipeline [19–21]. Therefore, considering change in operational conditions

is a potential area to improve the performance of the pipelines’ pitting corrosion

degradation models.

Generally, pipelines can be categorized as piggable and non-piggable. A pipeline

is considered piggable when there is no limitations which prevent using commercial

smart pigs to inspect them (because of e.g., small diameter, sharp curvature, un-

availability of pig trap). According to [1], approximately 50% of existing pipelines

worldwide are detectable by in-line inspection (ILI) instruments, a term referred to
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Figure 1.2: An example of a smart pig (in-line inspection device) [iecetech.org]

literature as piggable. Smart pigs (Figure 1.2) are the common tools that are used

to inspect oil and gas pipeline. The three common types of sensors that are used

in smart pigs for nondestructive evaluation and testing of oil and gas pipelines are

magnetic flux leakage (MFL), ultrasonic testing (UT), and eddy current [22, 23].

Two approaches have been developed in the literature for degradation level

estimation of piggable pipelines: defect-based (pit-based) and population-based

(segment-based) estimation. The first approach is developed for the scenario when

the density of the existing pits is low (e.g., 62 pits in 80 km of natural gas pipelines

in Alberta, Canada [13]). In this approach the features (e.g., pit depth, length) from

at least two ILIs have to be matched with respect to their location in the pipeline

[24]. This approach is more accurate and more common [18], because the results

of sequential in-line inspections for each specific pit are used to evaluate the degra-

dation level and RUL at each corroded location. The second approach has been
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developed to address another scenario when the density of the existing pits is high

and the matching procedure is time consuming and prone to error [18]. Zhang and

Zhou [13] considered measurement error of ILI data of an aged pipeline by using

a hierarchical Bayesian model in a defect-based approach. They also considered

POD in simulation of degradation for a new pipeline. Maes et al. [16] developed a

degradation model by using a hierarchical Bayesian model and considered FP and

ME in a defect-based approach. Dann and Maes [18], developed a population-based

degradation model and considered POD, FP, and ME in their model. They used

KL divergence method to estimate the parameters of the degradation model and

predict the degradation level in the future. To the best knowledge of the author, a

hybrid (POF and data-driven) population-based approach based on a hierarchical

Bayesian, that consider POD, FP, and ME, is not reported in the literature.

The final task in the analysis step of a PHM analysis (Figure 1.1) is to correlate

the estimated degradation level to a reliability metric (e.g., probability of occurrence

of potential failure modes, RUL, MTTF) to be used in the action (i.e., decision

making) step (Figure 1.1). There are three potential failure modes for oil and gas

pipelines due to internal pitting corrosion: small leak, large leak, and rupture. Small

leak happens when the pipeline degradation level exceeds the pipe wall thickness

(PWT) (in practice 80% of PWT). Large leak and rupture happen because of the

plastic breakdown of the pipe wall due to internal pressure even if the pit depth

is less than the PWT. These two failure modes are referred to as burst. When

an axial propagation is predicated to take place, the failure mode is categorized

as rupture and when no unstable axial propagation is expected to happen, the
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failure mode is categorized as large leak [25]. These two failure modes happen when

the failure pressure of the degraded pipeline is less than the operational pressure.

The most commonly used and well-known models that have been developed to

estimate the failure pressure of a corroded pipeline are ASME B31G (ASME 1991),

RSTRENG [26], PCORRC [27], Fitnet FSS [28]. These models are developed based

on fracture mechanic principals. Pandey [29] used RSTRENG, Bazan and Beck [30],

Zhang and Zhou [13], and Valor et al. [25] used PCORRC to calculate the burst

pressure and RSTRENG to calculate rupture pressure. In all these models, the burst

and rupture pressure are functions of some static random variables (i.e., pipeline

geometry (thickness and diameter), pipeline material properties) and some dynamic

random variables (i.e., pipeline degradation level, and operational pressure). A

probabilistic hybrid reliability analysis model (defect-based and population-based)

that considers variation of those static and dynamic random variables in calculating

probability of occurrence of the potential failure modes is not addressed in the

literature and it is desirable to be developed to help pipeline engineers and asset

managers to prioritize pipeline repairs and/or replacements based on their estimated

probability of failure.

1.2 Research objectives and scope

There are four main objectives of this research to the development of hybrid

PHM models for internal pitting corrosion of oil and gas pipelines.

Objective 1: Compile and assess different pitting corrosion rate models and model-
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ing techniques applicable for oil and gas pipelines.

Objective 2: Develop a hybrid defect-based degradation model for a segment of a

pipeline when the pit density is low, considering change in operational

conditions.

Objective 3: Develop a hybrid population-based degradation model for a segment of

a pipeline when the pit density is high, considering POD, measurement

error and POFC.

Objective 4: Develop a methodology to estimate the reliability and RUL of a pipeline

when the pit density is low in some locations and it is high in other

locations.

1.3 Assumptions

The assumptions that are involved in this research are as follows:

• ILI data (infrequent, discrete and low quality information) are available for

the entire pipeline.

• Matched ILI data and mass ILI data are available for locations with low and

high pit density respectively.

• An OLI (continuous, discrete, and high-quality information) sensor is installed

to monitor a pit continuously.

• The ME, POD, and POFC are known for the ILI and OLI tools.

• The detected pits are stable pits, which means they passed the nucleation,
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re-passivation and metastable phases and their growth are stabilized.

• Pits are not interacting each other.

• The detected pits are not mitigated by the maintenance activities.

1.4 Overview of the research

In this research different stochastic processes for modeling pitting corrosion are

assessed and compiled and the most proper one is selected to take into account four

types of uncertainty (measurement, local, temporal, and epistemic) and two char-

acteristics (time and depth dependency of pit depth growing behavior) in pipeline

pitting corrosion degradation modeling.

Two hybrid (POF and data-driven) degradation models and a hybrid (defect-

based and population-based) reliability model are developed to estimate the degra-

dation level and reliability of aged piggable oil and gas pipelines due to internal pit-

ting corrosion. In those models, different sources of available information and data

(i.e., POF knowledge, ILI and OLI data, operational parameters measurements)

are fused together to reduce the uncertainty in the prediction of pitting corrosion

degradation level. Table 1.1 shows the potential available information and data

for piggable and non-piggable pipelines and their application in different available

pitting corrosion degradation models in the literature and also in this dissertation.

The first model is a hybrid defect-based model that fuses the POF knowledge

with the noisy ILI data of a numbers of individual pits and OLI of a single stable

pit. This model is developed for the case when the density of the pits is low and
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Oil and gas pipelines

Piggable Non-piggable

Available
info./data

defect based population
based

this dis-
sertation

defect-
based

population-
based

POF knowledge
√ √ √

-
√

Matched ILI
√

-
√

-
√

Mass ILI -
√ √

- -
Oper. Param.
Measurements

- -
√

-
√

Corrosion rate
distribution

- - - -
√

Table 1.1: Usage of potential information and data sources in the available pitting
corrosion degradation model in the literature and this dissertation

their sequential ILI data can be matched properly. In addition, a change in opera-

tional conditions is considered in pipeline degradation modeling for the first time by

developing a similarity-based RUL estimation model. This model is developed by

using a hierarchical Bayesian model based on a non-homogeneous gamma process

and augmented particle filtering method.

The second model is a hybrid population-based approach that fuse POF knowl-

edge with the noisy mass ILI data of a population of pits. This model is developed

for the case when the density of the pits is high and matching procedure is time

consuming and prone to error. In this model the measurement error, probability of

not detecting some of the existing pits, and POFC are taken into account.

Finally those two hybrid models are combined to develop a hybrid reliability

model for a pipeline when in some locations the pit density is low and in some loca-

tions the pit density is high. Having a high confidence estimation of the reliability

of a pipeline helps to decrease the frequency of unnecessary maintenance activities
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Figure 1.3: Summary of the proposed PHM degradation models for internal
pitting corrosion of oil and gas pipelines

and unpredicted failures by making an optimal condition-based maintenance deci-

sion. Figure 1.3 shows the summary of the developed PHM degradation models for

internal pitting corrosion of oil and gas pipelines.

1.5 Organization of this dissertation

This dissertation is organized as follows. Chapter 2 presents a literature re-

view on PHM approaches, sensor data fusion, and similarity-based RUL estimation.

Chapter 3 is a review paper which compiles and assesses different pitting corrosion

rate models and modeling techniques applicable for oil and gas pipelines. Chapter 4

presents the development of a hybrid defect-based degradation model for a segment

12



of a pipeline when the pit density is low, considering change in operational condi-

tions. Chapter 5 explains the development of a hybrid population-based degradation

model for a segment of a pipeline when the pit density is high, considering POD,

measurement error and POFC. Chapter 6 develops a methodology to estimate the

reliability and RUL of a pipeline when the pit density is low in some locations and it

is high in some other locations. The dissertation ends with conclusion, contributions,

and suggested future work in Chapter 7.
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Chapter 2: Literature review on PHM approaches, sensor data fusion,

and similarity-based RUL estimation

This section is dedicated to the literature review on application of PHM ap-

proaches, sensor data fusion and similarity-based RUL estimation methods on pit-

ting corrosion degradation modeling. In addition, a comprehensive literature review

has been done on pitting corrosion modeling techniques that is presented in the next

chapter.

2.1 Literature on PHM approaches

Generally, PHM approaches have two parts; prognostics, which is the pro-

cess of predicting the reliability of the component/system, and health management,

which is the process of monitoring the defects and determining a failure’s impact on

the performance of the system and mitigating the effects [5, 6]. In order to perform

PHM, a comprehensive analysis needs to be done. The main steps of this analysis are

shown in Figure 1.1. The first step is data acquisition which includes the process of

data collection and storage from component/system under investigation. This data

can be both sensor data and event data (e.g., failure, maintenance, and repair).

The second step is data processing which includes data cleaning and data analy-
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sis. Extracting useful features that indicate the failure progression of the system is

performed in this step. The third step is to detect failures from collected and ana-

lyzed data. The fourth step is fault diagnostics which is the process of failure mode

identification and degradation level assessment. The fifth step is prognostics which

is the process of predicting the time to failure and RUL of the component/system.

The sixth step is decision making step which includes selecting the proper mainte-

nance action and finally the seventh step is developing a human-machine interface

to visualize component health status [6].

PHM approaches can be categorized as physics-based (i.e., model-based), data-

driven and hybrid approaches. In physics-based models, the degradation behavior

of the component is described by mathematical models or equations derived from

physical systems. Paris-Erdogan law [31] is a well-known physics-based model for

fatigue crack growth. This mathematical model is combined with condition monitor-

ing data to tune the model parameters, and then this model is used to estimate the

RUL of the component. Physics-based models are more accurate in long-term RUL

estimation. However, developing a physics-based model for complex systems with

stochastic degradation behavior of components is challenging. Kalman filter and

particle filters are two common Bayesian methods that are used widely to estimate

the parameter of a physics-based model.

Data-driven prognostics approaches try to predict the RUL using the condition

monitoring data. They can model the complex system, but the accuracy is highly

dependent on the amount of the condition monitoring data. Gaussian Process Re-

gression, Artificial Neural Networks, Fuzzy Logic, and Bayesian networks are some
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examples of data-driven prognostics approaches. For example Zhang et al. [32] used

long short-term memory recurrent neural network for RUL estimation of lithium-ion

batteries.

The hybrid prognostics approaches try to combine the merits of different ap-

proaches while minimizing the limitations to better RUL estimation and health

management [6]. Liao and Kottig [33] categorized hybrid approaches into five cate-

gories as follows. Experience-based model + data-driven based model; for example,

Chinnam and Baruah [34] combined Artificial Neural Networks (ANN) and fuzzy

logics to estimate RUL of a cutting tool. Experience-based model + physics-based

model; for example, Swanson [35] combined Kalman filter and fuzzy logic to estimate

crack growth in tension steels bands. Data-driven model + Data-driven model; for

example Yan and Lee [36] used logistic regression and maximum likelihood estima-

tion to estimate the tool wear condition in drilling operation. Data-driven model +

physics-based model; for example, Rabiei et al. [37] used support vector regression

and particle filtering to estimate RUL in a crack under fatigue load. And finally

Experience-based + data-driven + physics-based models; for example, Gola and

Nystad [38] proposed a hybrid approach to assess the health state of a choke valve

under erosion by combining fluid dynamic model, ANN, and moving maxima filters.

2.2 Literature review on sensor data fusion

The integration of information from different sources is known as data fu-

sion. Data fusion is a multidisciplinary area and many terminologies such as sensor
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fusion, data fusion, information fusion, multi-sensor data fusion, and multi-sensor

integration have been used in the literature interchangeably to address different

techniques, technologies, systems, and applications that utilized data from multiple

information sources [39]. Among different definitions for sensor data fusion exist

in the literature, a well-known definition for sensor data fusion is provided in [40]:

"data fusion techniques combine data from multiple sensors and related information

from associated databases to achieve improved accuracy and more specific inferences

than could be achieved by the use of a single sensor alone." Generally, performing

sensor data fusion has several advantages such as improving detection confidence,

reliability, and extending the temporal and spatial coverage of the sensors. It can

also provide specific benefits in some application such as wireless sensor networks by

decreasing energy consumption and increase the lifetime of the sensors by reducing

the number of transmitted messages [41].

This section reviews the relevant literature related to sensor data fusion tech-

niques and the focus is on those techniques that can be used for RUL estimation of

the pipelines and subsequently optimal maintenance decision making.

2.2.1 Motivation for data fusion

Why data fusion is necessary for oil and gas integrity management? A brief

answer to this question is to overcome the limitations of using a single sensor system.

A single sensor system might suffer from the following problems [39]:

• Sensor Deprivation: the damage of a single sensor system leads to loss of
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perception on the desired object.

• Limited Spatial coverage: Usually there is a limitation on the coverage area of

a sensor. For example, a reading from a fixed ultrasonic measurement tool on

a pipeline just provides an estimation of the depth of the pits near that tool.

• Limited temporal coverage: In some sensors or some applications there is a

limitation on the measurement frequency. For instance, ILI of the pipelines is

an expensive operation and usually carried out every 3-10 years.

• Imprecision: The precision of the measurement is limited to the precision of the

employed single sensor. For example magnetic flux leakage or ultrasonic testing

signals that commonly are used in ILI include both biased and scattering error

[13]

• Uncertainty of detection or POD: which is the probability that a defect be

detected by an inspection tool. In contrast to imprecision, uncertainty of

detection depends on the observed object rather than the sensor. For instance,

in case of pitting corrosion, the probability of detecting a large pit by using

a sensor is higher than the probability of detecting a small pit with the same

sensor.

2.2.2 Categorization of sensor data fusion techniques based on the data

type

Various categorizations for sensor data fusion techniques exist in the litera-

ture. The common categories are relations between inputs [42], input/output types
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and their nature [43], sensor data fusion level [44], and type of architecture [45].

Two of the most well-known categorizations are reviewed here. The following two

paragraphs are adapted from [45].

Durrant-Whyte [42] categorized sensor data fusion techniques based on the

relations between the data sources. According to this approach, when the informa-

tion on the same target provided by two sensors with different fields of view, the

sensor data fusion technique is considered as complementary fusion. When two or

more sensors provide information about the same target and same fields of view,

the sensor data fusion technique is considered redundant. When the provided infor-

mation is combined into new information that is typically more complex than the

original information (e.g., two sensor modalities), the sensor data fusion technique

is considered as cooperative fusion.

Dasarathy [43] proposed one of the most well-known sensor data fusion cate-

gorization systems based on the types of input/output data. This categorization is

composed of the following categories:

• Data in-data out: this category is the most elementary or lowest form of sensor

data fusion techniques. Typically the results are more reliable and accurate

in this level [45] since the level of detail in the information is highest at that

level.

• Data in-feature out: at this level, the raw data from different sources (e.g.,

different sensors at the same time or different signals from a same sensor at

different times) are combined to extract some form of a feature of the object

in the environment. Table 2.1 shows some examples of features that can be
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Domain Type Feature

Time Signal charac-
teristics

Absolute value, Range, Maximum, Minimum, Derivative, In-
tegral, Root mean square error (RMSE), Jerk, Zero crossing

Statistical
characteristics

Mean, Median, Variance, Standard deviation, Skew, Kurtosis,
Percentile, Cumulative histogram, Cross correlation, Entropy

Frequency Fourier coefficients, Energy, Power, Wavelet features, Power
spectral density

Table 2.1: Example features that can be extracted from sensor data [46]

extracted from sensor data.

• Feature in-feature out: at this level, both input and output of the fusion

process are features. The derived features are combined either qualitatively

or quantitatively.

• Feature in-decision out: In this level, the feature from different sensors are the

inputs and a set of decisions are the outputs.

• Decision in-decision out: at this level input decisions are fused to obtain better

or new decisions.

In practical situations, in order to achieve the optimal performance for a sys-

tem, it is likely that sensor data fusion be incorporated in different levels. There is a

persistent school of thought among researcher in sensor data fusion area that fusion

at the data in-data out level is the best approach because at this level the detail in

the information is the highest. However, it should be noted that at this level the

level of the noise is also the highest. Therefore, there is a trade-off to be evaluated

in choosing the optimal sensor data fusion level/s for a given application [43].
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2.2.3 Sensor data fusion algorithms

Selecting a sensor data fusion algorithm depends on the target application.

The common factors that influence selecting a proper sensor data fusion algorithm

include the required output, required accuracy, available input data, computational

complexity, and available processing power [46]. There is a wide range of sensor

data fusion algorithms from low complexity sensor data fusion algorithms, such as

weighted average, k-NN, and K-means, that are well suited for simple clustering ap-

plications, to high complexity algorithms such as support vector machine, ANN, and

Bayesian networks. Different classification systems for sensor data fusion algorithms

exist in the literature [40, 45, 47]. For instance, Klein [47] classified the sensor data

fusion algorithms as Bayesian inference, Dempster-Shafer evidential theory, ANNs,

Voting logic fusion, Fuzzy logic fusion, knowledge-based expert systems and pattern

recognition. In this chapter, Bayesian inference and ANNs as the two more common

algorithms in PHM analysis are discussed briefly and some of their applications in

degradation modeling are reviewed.

2.2.4 Bayesian Inference for degradation level estimation

Bayesian inference is a probability-based reasoning method that is based on

Bayes’ theorem which enables fusion of pieces of data. In sensor data fusion context,

Bayesian inference belongs to the class of sensor data fusion algorithms that calculate

the conditional posterior probability of a hypothesis (e.g., being in a degraded state)

being true, given supporting evidence and a prior knowledge about that hypothesis.
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Bayes’ theorem provides a method to compute the posterior probability distribution

of being at state xk at time k given the set of sensor measurements up to time

k, Zk = z1, ..., zk, and the prior distribution, as following:

Pr(xk|Zk) =
Pr(zk|xk)Pr(xk|Zk−1)

Pr(Zk|Zk−1)
(2.1)

Where Pr(zk|xk) is the likelihood of observing zk, if system is in state xk ,

Pr(xk|Zk−1) is the prior distribution of being in state xk given the sensor measure-

ments up to time k − 1. This prior distribution can be obtained by using Equation

2.2, which incorporates the given state model (Equation 2.3) and measurement

model of the system (Equation 2.4). The denominator is a normalization factor to

ensure that the probability density function integrates to one, which is obtained by

Equation 2.5.

Pr(xk | Zk−1) =

∫
Pr(xk | xk−1)Pr(xk−1 | Zk−1)dxk−1 (2.2)

xk = fk(xk, εk)→ Pr(xk | xk−1) (2.3)

zk = hk(xk, ωk)→ Pr(zk | xk) (2.4)

Pr(Zk | Zk−1) =

∫
Pr(zk | xk)Pr(xk | Zk−1)dxk (2.5)
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where εk and ωk are the state model noise and measurement model noise

respectively.

In general, both the prior distribution and the normalizing factor, contain in-

tegrals that cannot be evaluated analytically. The numerical simulation-based tech-

niques (e.g., MCMC, particle filtering) have been developed to find an approxima-

tion for the posterior distribution. In the following, some works that used Bayesian

inference to fuse the inspection data to model degradation processes are reviewed.

Maes et al., [16] proposed a hierarchical Bayesian framework for corrosion

defect growth. They fused m sets of ILI data of n pits to estimate the degradation

level of each defect. Among different limitations that were mentioned in Section 2.2.1

, this framework addresses the limitations that are related to frequency, uncertainty,

and imprecision of using one sensor data. In [16] pitting corrosion process has been

modeled by using a gamma process, and ILI data sets have been fused to estimate

the parameters of that gamma process to be used for RUL estimation of the pipeline.

Maes et al. [16] framework has been used by Zhang and Zhuo [13] to estimate the

degradation level in a natural gas pipeline that is currently in service in Alberta,

Canada. Zhang and Zhuo [13] proposed a methodology for reliability evaluation

of onshore natural gas pipeline containing multiple active defects due to internal

pressure. The difference between the growth model that proposed in [13] and the

one that proposed by Maes et al. is that, it considers the corrosion initiation time in

pitting corrosion modeling. In other words, Zhang and Zhuo assumed that initiation

time of different pits are different.

Rabiei et al. [37] used augmented particle filtering to fuse two types of sensor
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data (i.e., acoustic emission and modulus of elasticity) from a metallic alloy under

fatigue to estimate the degradation level happening prior to crack initiation in that

metal. Rabiei et al. [37] proposed a new damage prognostics framework based on

the evolution of damage precursors representing the indirect damage indicators when

measurement of conventional direct damage indicator such as crack size is difficult

or impossible. They ([37]) focused on the time period before crack initiation in the

component, for which the conventional crack growth damage models (e.g., Paris

Law) are not applicable and cannot be applied to estimate damage level. Rabiei et

al. [37] showed that their proposed methodology tracks the true damage evolution

effectively based on the variation of modulus of elasticity along with captured AE

signals from experiments they conducted.

2.2.5 Artificial Neural Networks (ANNs)

ANNs mimics the working process of the human brain using interconnections

of a large number of units or nodes called artificial neurons. ANNs are popular be-

cause of their proven ability to find complex relationship between input and output

variables that are most of the time not well understood. They are adaptive and

because of their parallel information-processing structure, they are able to build

functional relationships between data and provide a powerful toolbox for nonlinear,

multidimensional interpolations [48]. Neural networks come in two classes: feedfor-

ward neural network and recurrent neural networks (RNN) [49]. In a feedforward

network, the information flows only in the forward direction. In a graph repre-
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sentation, the graph of a feedforward network is acyclic. It should be noted that

feedforward networks are static. The most general neural network architecture is

the recurrent neural network (RNN), whose connection graph exhibit cycles (i.e.,

at least one cycle). Since the output of a neuron cannot be a function of itself, it

requires that time be explicitly taken into account. A special kind of RNN is Long

Short-Term Memory (LSTM) method. LSTM is an RNN with a hidden layer, but

each hidden node is replaced by a memory cell to store information. LSTM has

achieved great success in machine translation and speech recognition. The main

characteristic that makes LSTM so powerful, is the ability to of remember informa-

tion for long periods of time. Due to the inherent sequential nature of sensor data,

this method is suitable for RUL estimation using sensor data [50].

Generally, ANNs have a good performance in the RUL estimation of complex

systems because they are capable of learning complex nonlinear relationship by

training the multi-layer networks using data. On the other hand, they have some

limitations. Besides their low transparency (i.e., they are black boxes and there is

no meaningful insight into the nature of their prediction), they need a large number

of high-quality training data, which are usually difficult to capture in industrial

applications. Also, their structure and parameters need to be initialized manually

and randomly (i.e., the number of hidden layers and neurons are selected manually

and randomly) [51]. In the following, some works that used ANNs for degradation

models updating and RUL estimation are reviewed.

Sinha and Pandey [52] proposed a fuzzy-ANN-based approach for reliability

assessment of oil and gas pipelines. The input data for ANN include yield strength
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of the pipe, PWT, pipe outer diameter, average crack depth, the standard deviation

of crack depth, average crack length, the standard deviation of crack length, and

operating pressure. The average and standard deviation of defect depth and length

are estimated by using ILI data. The output of this ANN is the probability of failure,

which is mapped into a set of fuzzy membership grades (i.e., very low, low, medium,

high, and very high). The failure takes place when the failure pressure falls below the

pipeline operating pressure. They sampled from the probability distribution of each

input to create training and testing data for the ANN. Basically, the objective of that

work was to see if simulation-based analysis could be replaced by a neural network

to predict the probability of failure. However, to develop this model, simulated data

have been used. This approach can be used in non-piggable pipelines to estimate

the probability of failure where there are some online sensors. However, it is not

suitable for RUL estimation because it does not consider defects’ growing behavior.

Carvalho et al. [53] used ANN for pattern recognition of magnetic flux leakage

(MFL) signals in weld joints of pipelines. They classified signal patterns with three

types of defects in the weld joints: external corrosion (EC), internal corrosion (IC)

and lack of weld penetration (LP). They used four specimens (Figure 2.1) with

artificial defects inserted on them. The LP defect was introduced during the welding

and the EC and IC defects were simulated with shallow grooves inserted manually

by machining (Figure 2.2). They used MFL pig with 136 Hall sensors and a ring of

coil type sensors to inspect those specimens. In this work, ANN is used for defect

classification in weld bead in a reliable and fast way. They combined the signals

of the three specimens in a single set of data and then randomly separated this set
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into a training (70% of data) and test set (30% of data). The signals of the fourth

specimen were used only for network validation. The results showed the constructed

ANN is able to classify signals of defected and non-defected weld joints with 94.2%

success rate, and for corrosion and LP signals with 92.5% success rate. Also, it is

possible to classify the pattern signals of EC, IC, and LP with an average rate of

success of 71.7%. Applying this approach on real ILI data is difficult because the

actual depth of the pits are unknown and they cannot be used to train the ANN.

Figure 2.1: Specimens used to generate ground truth data [53]

Figure 2.2: Sketch of the four studied conditions: a) non-defect; b) lack of
penetration (LP); c) external corrosion (EC); d) internal corrosion(IN) [53]

Baraldi, Compare, Sauco, et al. [54] proposed an approach to extend particle

filtering to the case in which an analytical measurement model is not available but

a dataset containing pairs of state and the corresponding measurement is available.
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They substituted the measurement model in PF with a bagged ensemble of ANNs. In

the bagging method, several, classifiers (e.g., ANNs, SVR) are trained independently

with different training set. The training sets are re-sampled and replaced from

the original training dataset randomly. Then those classifiers are aggregated by a

combination method such as the average of probabilities [55]. Baraldi et al. [54]

applied this approach to a case study dealing with crack propagation in a component

subject to fatigue load. In this case study, it is assumed that the state model is

known. The measurement model is unknown and a dataset formed by N pairs of

state and measurement is available. The verification of this approach shows that

when the training set is sufficiently large, a good approximation of the measurement

model may be obtained and its substitution in the PF does not significantly affect

its performance. This approach is applicable for pitting corrosion in case of having

raw inspection data and the actual depth of the pits to train the ANNs.

Yang et al. [36] proposed a method that fuses the particle filter and long

short-term memory algorithms. Particle filter is used broadly in the literature for

the purpose of prognostics by estimating the system state and identifying the model

parameters. However, it does not have ideal performance due to the lack of mea-

surement in the prediction phase. In this work, LSTM is used to forecast the

measurements and the results are used as the future observations of PF. Then the

predicted value by PF given back to the LSTM as a value for next prediction. This

method is applied to the data of Proton Exchange Membrane Fuel Cell Stack from

IEEE PHM 2014 data challenge. The results show that it can effectively integrate

the advantages of PF and LSTM.
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2.2.6 Literature review on similarity-based methods for RUL estima-

tion

In this research a similarity-based RUL estimation model is developed. To do

so, a literature review has been done on this topic as follows:

The basic idea in similarity-based models is to construct many off-line possi-

ble sub-models for degradation indicator and then choosing which sub-model is an

appropriate one based on online monitoring information [56].

Wang et al. [57] proposed a similarity-based matching algorithm for RUL

estimation. They assumed that a library of degradation patterns with complete

run-to-failure historical data is available for multiple units of a system/component.

Then, in order to predict the RUL of a test unit, instead of fitting a curve and

extrapolating it, they matched the available data for the test unit with a certain life

period of certain training units with the best matching score. They used Euclidian

distance to find out the similarity between the test unit and training units. Finally,

they estimated the RUL of the test unit by using real life data of matched training

units (i.e., those with the highest similarities) minus the current life of the test

unit. They used this approach on run-to-failure data of an unspecified engineering

system to tackle the data challenge problem defined by the 2008 PHM data challenge

competition.

Eker et al. [58] modified the previous approach by considering the most sim-

ilar K percent of training samples rather than using the whole training set. They

employed a genetic algorithm to find the best value for K by minimizing the RMSE
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values out of RUL estimation.

Zio and Di Maio [59] proposed a similarity-based approach to predict the RUL

of a system by defining a fuzzy-based algorithm. In this approach, a library of refer-

ence trajectory patterns to failure is created and a fuzzy-based similarity analysis is

performed to predict the RUL of a newly developing failure trajectory (test trajec-

tory). Based on this approach, the monitored signal for each system/component is

divided into k segments. Then those segments of the reference trajectories that are

most similar to the most recent segment of the test trajectory gain the higher weights

in the extrapolation of the test trajectory to failure. In case of having two or more

similar segments in a reference trajectory, the latest one is selected to have a more

conservative estimation for RUL of the test trajectory. In all the above-mentioned

approaches, the frequency of the observations for both the reference components

and the test component is the same. In this dissertation, the author will propose

a similarity-based approach for RUL estimation of a test component when the fre-

quency of the observation is not equal for the test component (pit) and the reference

components (pits).
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Chapter 3: A Review of Data-Driven Oil and Gas Pipeline Pitting

Corrosion Growth Models Applicable for Prognostic and

Health Management

This chapter has been published in the International Journal of Prognostics and

Health Management as Roohollah Heidary, Steven A. Gabriel, Mohammad Modar-

res, et al. “A Review of Data-Driven Oil and Gas Pipeline Pitting Corrosion Growth

Models Applicable for Prognostic and Health Management”. In: International Jour-

nal of Prognostics and Health Management 9.1 (2018).

3.1 Abstract

Pitting corrosion is a primary and most severe failure mechanism of oil and

gas pipelines. To implement a PHM for oil and gas pipelines corroded by internal

pitting, an appropriate degradation model is required. An appropriate and highly

reliable pitting corrosion degradation assessment model should consider, in addition

to epistemic uncertainty, the temporal aspects, the spatial heterogeneity, and in-

spection errors. It should also take into account the two well-known characteristics

of pitting corrosion growing behavior: depth and time dependency of pit growth
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rate. Analysis of these different levels of uncertainties in the amount of corrosion

damage over time should be performed for continuous and failure-free operation

of the pipelines. This paper reviews some of the leading probabilistic data-driven

prediction models for PHM analysis for oil and gas pipelines corroded by internal

pitting. These models categorized as random variable-based and stochastic process-

based models are reviewed and the appropriateness of each category is discussed.

Since stochastic process-based models are more versatile to predict the behavior of

internal pitting corrosion in oil and gas pipelines, the capabilities of the two popular

stochastic process-based models, Markov process-based and gamma process-based,

are discussed in more detail.

3.2 Introduction

Corrosion is the main failure mechanism of oil and gas pipelines. Of all cor-

rosion mechanisms, pitting corrosion is of most concern in pipelines because of the

high rate at which pits can grow [2]. Failure data, provided in the literature, shows

that 57.7% of oil and gas pipeline failures in Alberta, Canada between 1980 and

2005 [4] and 15% of all transmission pipeline incidents between 1994 and 2004 in

the US were due to internal corrosion [60]. Moreover, 90% of corrosion failures of

transmission pipeline sector in the US, between 1970 and 1984 were due to local-

ized pitting corrosion [4]. Therefore, this review paper primarily discusses pitting

corrosion growth prediction models applicable for PHM of oil and gas pipelines.

Despite significant research efforts in forecasting pitting corrosion, there are
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Figure 3.1: An example of pitting corrosion on X70 carbon steel surface in a
corrosive environment (magnification scale: 200X) [63]

still many unanswered questions due to the highly stochastic nature of the pitting

corrosion mechanism and a large number of dependent and independent influential

parameters [61, 62]. For example, parameters that may influence internal pitting

corrosion are the pH value in the water phase, the water chemistry, the protective

scale, the CO2 partial pressure, the amount of H2S, the effect of oil wetting, the

metal alloy composition, the temperature, the multi-phase flow, and the flow rate.

Due to the large variations in these parameters, inter-dependencies between them,

and also non-monotonic effects of some of them, there is a multitude of degradation

paths for every single pit. In addition to this variation in degradation paths for each

pit, there is usually more than one pit in a segment of a pipeline and each pit must be

analyzed individually (by considering dependencies and correlations between pits)

because the failure at each pit is equal to the failure of the whole pipeline. Figure

3.1 depicts an example of pitting corrosion on X70 carbon steel surface in a corrosive

environment.

In comparison with conventional reliability analysis that mostly gives a population-
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based assessment, PHM approaches can handle corrosion complexity more efficiently,

especially by utilizing fast developing information and inspection technologies that

make it possible to have real-time data management and processing for each indi-

vidual pipeline and also individual pit [5]. Pipeline PHM approaches predict the

RUL of a pipeline based on imprecise past and current degradation data gathered

through some monitoring regime; this imprecision is due to uncertain inspection

date. This estimation of RUL is vital in condition-based maintenance by avoiding

unnecessary maintenance and unpredicted failures [7, 37].

Most PHM methods rely on POF-based or data-driven based models [7]. POF-

based models have advantages in long-term damage behavior prediction, but since

they are based on some approximations and simplifying assumptions when the degra-

dation process is complex (e.g., pitting corrosion), it is difficult to estimate the

model parameters and validate the results [8]. However, studying POF-based mod-

els is important to identify the root causes of pitting corrosion that can provide

useful information for prognostic purposes. Because of the complexity and inher-

ent randomness of pitting corrosion over time, probabilistic data-driven models are

more suitable to describe pitting corrosion behavior especially when the results of

modeling are used to perform reliability analysis [30, 64, 65].

In probabilistic data-driven models, the knowledge about dependencies be-

tween pit depth and independent covariates, and also the uncertainties about the

degrading process, are encapsulated in the inspection data. The extrapolated RUL

prediction is valid and applicable as long as the resulting model from these inspection

data is used for predicting RUL in pipelines with a similar operational condition.

34



Among different probabilistic data-driven PHM approaches [5, 8], this paper dis-

cusses regression-based, gamma process-based, and Markov process-based models

that are usually used to represent pitting corrosion process in oil and gas pipelines.

To emphasize the contribution of this review paper, the readers should make

note of some other review papers [4, 9, 60, 61] that categorize different corrosion

rate models and modeling approaches. Key conclusions of these review papers will

follow.

Nyborg [12] compared the performance of fourteen uniform CO2
1 corrosion

rate models for oil and gas production systems by applying these models to some

reliable data from some operating companies. Some of these models are empirical

and were obtained by using empirical regression analysis. On the other hand, some of

them are mechanistic that take the chemical, electro-chemical or transport processes

into account and some of them are a combination of these two approaches and are

semi-empirical. Among all these models, just four of them have considered the

localized corrosion (e.g., pitting corrosion, crevice corrosion). Nyborg [12] concluded

that none of these fourteen models significantly performed better than the others

for all cases and none of these models can claim better than ±50% accuracy for a

wide range of conditions. Two main factors that cause this variability are corrosion

films and oil wetting effects modeling approaches. As it has been shown in [12],
1It worth noting that internal corrosion of oil and gas pipelines made from carbon steel is

often referred to as ”sweet CO2 corrosion”. However other corrosive species such as hydrogen
sulfide, H2S (sour corrosion), organic acid, etc., might be involved in this corrosion process as well
[9]. Among these corrosion species, presence of H2S, changes corrosion mechanism tremendously
because of production of iron sulfide instead of iron carbonate. Therefore, using sweet corrosion
model, even by adding sulfide correction factor, will not give reliable results [12]. Based on field
corrosion data, H2S is related to the occurrence of localized corrosion, however, the mechanism
and location of happening are not well understood [9].
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Figure 3.2: Hierarchical levels of uncertainty in degrading systems (modified) [16]

those models that are mostly based on regression analysis and POF analysis, cannot

depict the inherent uncertainties in the corrosion process even for uniform corrosion.

One reason for this inaccuracy is that these models mostly have considered level 1

uncertainty in Figure 3.2, which is related to lack of knowledge about the corrosion

process (epistemic uncertainty), and they do not take into account the other three

levels of uncertainty that are discussed later.

Nesic [9] categorized available CO2 corrosion rate models for uniform internal

corrosion of oil and gas pipelines into mechanistic models, empirical models and

semi-empirical models and discussed advantages and disadvantages of each cate-

gory. Mechanistic models have a strong theoretical background and give accurate

and physically realistic interpolation and extrapolation prediction when they are

calibrated with a reliable experimental database. However, the main disadvantage

of mechanistic models is that the prediction results might be unrealistic if many

simplifying assumptions are used. Re-calibrating mechanistic models by adding

correction factors (to expand the range of application) leads to semi-empirical mod-
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els. However, using semi-empirical models for extrapolation can result in having

unreliable or unrealistic results. The third category is the empirical models (e.g.,

regression-based models, neural network-based models) that have very little or no

theoretical background. These models perform very well within their calibration

range but have to be used cautiously outside this range. Localized CO2 corrosion

is considered briefly in [9] as a process that is still not well understood and some

recent works that have been done in this area are addressed

Papavinasam[60], has reviewed different models that predict internal pitting

corrosion of oil and gas pipelines. However, most of the models that are discussed

in that review are addressing uniform CO2 corrosion rate.

In a nutshell, the above-mentioned models, including the probabilistic ones

mostly correspond to level 1 in Figure 3.2 and they do not consider the other three

levels of uncertainty.

Figure 3.2 shows the four hierarchical levels of uncertainty in degrading struc-

tures. Level 1, captures all model uncertainties (epistemic uncertainties) that are

applicable to all points within a pipeline segment. The other three levels, apply

to each local point in that segment; Level 2 indicates location-specific uncertainties

that are related to uncertainties in known covariates (e.g., temperature, pressure,

material properties) or aleatory effects due to unknown or omitted covariates (e.g.,

top of line corrosion that sometimes happens due to water condensation in natural

gas pipelines); Level 3 reflects the temporal uncertainty that models the difference

between two defects, which even have the same load conditions and also in a similar

location but can grow differently; and level 4 represents three kinds of inspection
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uncertainties (measurement error, POD and reportability error) that need to be

taken into account. Measurement error is a function of in-line inspection (ILI) de-

vice and measurement conditions, POD is a function of the actual defect size, and

reportability is a function of the lower detection threshold of the ILI device [16].

This paper defines an appropriate pitting corrosion degradation model for

PHM analysis of oil and gas pipelines as a model that considers all of these four

levels of uncertainty. In addition to the above-mentioned criteria, pitting corrosion

rate has some characteristics all of which should be satisfied by an appropriate

pitting corrosion degradation model. First, the pitting corrosion growth rate is

depth-dependent (characteristic I; the corrosion rate of a deeper pit is greater than

the corrosion rate of a shallower one) and second, the pitting corrosion rate is time-

dependent (i.e., for a single pit the corrosion rate decreases over time [9, 66] and this

declining behavior follows a power law model with a less than one positive exponent

(characteristic II) [2, 17, 63].

To the best of the authors’ knowledge, there is no comprehensive review paper

on pitting corrosion growth models applicable for PHM of oil and gas pipeline. This

paper reviewed the commonly used pitting corrosion growth models; we focused on

most highly cited and also more recently developed models. We then evaluated the

published models by checking if they can model the above-mentioned characteristics

and different uncertainty levels.
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Figure 3.3: Breakdown of probabilistic data-driven based models for internal
localized corrosion in pipelines

3.3 Probabilistic data driven models

Probabilistic data-driven based models can be classified into random-variable

based and stochastic-process based models. The main difference between these two

categories is that the latter one deals with the temporal variability of the degradation

process, which leads to more realistic prediction [13], while the former one does not

consider the third level of uncertainty in Figure 3.2.

Figure 3.3 shows this classification and also the corresponding sub-classes for

each class. These models are the most commonly used probabilistic data-driven

ones that have been used in the literature to model pitting corrosion growth in the

oil and gas pipelines. These models are explained in more detail in the following

sections.
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3.3.1 Random-variable based corrosion growth models

The random variable-based corrosion growth models are the most common

ones in the literature for reliability analysis of corroding pipelines [13]. These mod-

els consider corrosion uncertainty in terms of time-independent random variables.

Linear and nonlinear random variable-based growth models are discussed below.

3.3.1.1 Linear random variable corrosion growth model

By having inspection data for at least two time instances, the growth rate

for each pit depth can be estimated by the linear Equation 3.1 and the probability

distribution function of corrosion rate for a population of defects can be extracted

accordingly.

vd = (D(t2)−D(t1))/(t2 − t1) (3.1)

where vd is the random variable that indicates the growth rate of a specific

pit (d), D(t2) is the maximum depth of that pit (d) at time t2 and D(t1) is the

maximum depth of that pit (d) at time t1. The randomness of the corrosion rate is

due to the large variation in the depth of the pits caused by variations of the metal

properties and the environmental conditions.

Linear random variable models are used commonly because they are simple

and can be adjusted to limited corrosion data easily (i.e., only two sets of data,

however, these models can be applied to one set of data as well, by assuming that
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stable pits start to grow from the beginning of corrosion process) [30]. However,

extrapolating this model over time overestimates the corrosion degradation and may

give a conservative estimation of the reliability of the pipeline, because as mentioned

before, the behavior of pitting corrosion growth follows a nonlinear power function

with a positive exponent of less than one [17, 30, 63]. Another drawback of the linear

models is that if they are projected backward, the pitting initiation time t0 is often

found to be negative which is physically meaningless [30]. This model considers

level 1 in Figure 3.2 nor the above-mentioned characteristics I and II. Temporal

variability can be added to this model by using a Poisson square wave process that

is explained in Section 3.3.2.

3.3.1.2 Non-Linear random variable corrosion growth model

As mentioned above, it is widely accepted that the pitting corrosion growth

can be described by a power function with positive exponents of less than one [17,

30, 63]. Equation 3.2 shows this model that is proposed in [67].

Dmax(t) = ktα (3.2)

Considering the corrosion initiation time, a more accurate version of this model

as shown in Equation 3.3 is used by some other researchers [2, 17].

Dmax(t) = k(t− t0)α (3.3)

where Dmax(t) is the maximum defect depth at time t, t0 is the corrosion
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initiation time, k is a proportionality factor and α is an exponent factor. Note that

in external corrosion, t0 represents the time that is required for coating damage plus

the time period of effectiveness of cathodic protection, and in internal corrosion, t0

represents the initiation time of stable pit growth [66]. In an extension to the model

in Equation 3.3, Velazquez et al. [2] performed a multivariate regression analysis to

correlate the dependent variable (Dmax) and independent variables (e.g., exposure

time, soil and pipeline properties) for external pitting corrosion. They expressed k

and α as linear combinations of the soil and pipe variables as shown in Equation

3.4.

Dmax = k(t− t0)α = [k0 +
n∑
i=1

kixi](t− t0)n0+
∑m

j=1 njxj (3.4)

where xi is the ith random predictor variable (e.g., pH) and ki and nj are

regression coefficients for this predictor.

Based on [2], the proportionality coefficient k is mostly correlated to pH, re-

sistivity, dissolved ion concentrations, and redox potential. On the other hand, the

exponent coefficient α is a function of water content, bulk density, coating type, and

the pipe-to-soil potential.

In order to validate this model, Velazquez et al. [2] plotted actual depth vs.

predicted depth for 123 pits collected from another pipeline. Based on the visual

examination of the plot, they concluded that the scatter of the predicted depth

around the perfect correlation line was acceptable.

Ossai et al. [17] used Equation 3.5 to model internal pitting corrosion of
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sixty non-piggable oil and gas pipelines based on ten years of corrosion data. They

assumed that the pitting initiation time is zero. The regression model that they

used is shown in Equation 3.5.

Dmax = k(t− 0)α = (eγ0+
∑k

j=1 γjyj)tα (3.5)

Here γ0 is the intercept, γj is regression coefficient and yj is jth predictor

variable (i.e., operational parameters) that affects internal pitting corrosion. That

study [17] shows that CO2 partial pressure, flow rate, and chloride ion concentration

are moderately correlated with maximum pit depth. In contrary, water cut, pH and

sulfate ion concentration are weakly correlated with maximum pit depth.

Ossai et al. [17] validated this model by calculating the root mean square

percentage error (RMSPE) for the prediction data from three different pipelines

with pits divided into four different pitting rate categories (low, moderate, high and

severe). They calculated RMSPE for each combination with results ranging from

0.52 ∼ 3.54, 0.59 ∼ 7.26, 0.51 ∼ 1.03 and 0.6 ∼ 1.20 for low, moderate, high, and

severe pitting corrosion rate category respectively. These ranges show the level of

prediction accuracy of this model for each category. This model considers level 1

in Figure 3.2 (epistemic uncertainty) and also characteristics II (having power law

behavior) but it neither addresses the other levels in Figure 3.2 nor the characteristics

I (dependency of the corrosion rate on the depth of the pit). Temporal variability

can be added to this model by using a Poisson square wave process that is explained

in Section 3.2.2.
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3.3.2 Stochastic-process based corrosion growth models

The most commonly used stochastic processes that have been used to charac-

terize the growth of corrosion defects are Markov process and gamma process [13].

Two other stochastic processes, inverse Gaussian process [68] and Bayesian dynamic

linear model [69], also have been used for this modeling purpose and are discussed

briefly at the end of the gamma process section. Before describing these processes,

two other regression-based stochastic process-based models are presented.

3.3.2.1 Linear stochastic process corrosion growth model

As it was discussed in Section 3.3.1, random variable models do not consider

the variability of corrosion growth over time (level 3 in Figure 3.2). To consider

this temporal variability, Bazan and Beck [30] modeled the defect growth rate as a

Poisson square wave process (PSWP). Figure 4 shows a realization of a PSWP that

represents the stochastic behavior of the defect growth rate (blue line). Moreover,

this figure portrays a realization of the resulting stochastic defect size (red line),

which is the accumulation of corrosion degradation at each random time interval.

In this process, both pulse height (Yi ) and pulse duration (ti+1−ti) are expressed as

random variables. Pulse durations are characterized as independent and identically

distributed (i.i.d) random variables that are exponentially distributed (Poisson pro-

cess) and pulse heights (i.e., maximum pit depth growth rate) are characterized as

i.i.d random variables that can be modeled by any strictly positive random variable

distribution (e.g., the gamma distribution [30]). In this model, the maximum pit
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Figure 3.4: Linear stochastic process model [30]

depth at each time instance can be estimated by using Equation 3.6.

Dmax(ti+1) = Dmax(ti) + Yi(ti+1 − ti); i = 0, 1, . . . , n (3.6)

where n is the number of pulses, Dmax(t) is maximum pit depth at time t, and

Yi is the pulse height. Bazan and Beck [30] used a data-fitting optimization algorithm

to find out the parameters of this model (exponential distribution parameter for

pulse durations, scale and shape parameter of gamma distribution for pulse heights)

based on two sets of available inspection data. This model also (similar to the linear

random variable model) has the limitation that backward extrapolation may lead

to negative corrosion initiation time that is meaningless and violates the physics of

the corrosion process.
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Figure 3.5: Non-Linear stochastic process model [30]

3.3.2.2 Non-Linear stochastic process corrosion growth model

To add temporal variability to the model in Section 3.1, Bazan and Beck [30]

used PSWP with pulse heights (Yi) and durations (ti+1 − ti) according to Equation

3.7 that shows the increment in defect size in each interval. Figure 3.5 shows a

realization of this stochastic process.

Dmax(ti+1) = Dmax(ti) + Yi[(ti+1 − t0)α − (ti − t0)α]; i = 0, 1, . . . , n (3.7)

In Equation 3.7, Yi is the proportionality coefficient of maximum pit depth and

operation parameters, α is the exponent coefficient, n is the number of the pulses,

and t0 is the corrosion initiation time.

Having distributions of maximum pit depths at two time instances, parame-

ters of this model were estimated by applying a data-fitting optimization algorithm
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[30]. These parameters include the exponential distribution parameter (for pulse

duration), scale and shape parameters of the gamma distribution (for pulse height),

and scale and location parameters for lognormal distribution (for exponent factor).

In contrast to linear models (Equation 3.6), the non-Linear stochastic process cor-

rosion rate model (Equation 3.7) does not estimate the corrosion initiation time as

a negative value.

Bazan and Beck [30] calibrated these four models (linear random, non-linear

random, linear stochastic and non-linear stochastic models) to the same set of cor-

rosion data to explore the difference between them. They used actual corrosion data

in a pipeline collected for only two inspections. Therefore, without data on the third

set of inspections, they could not evaluate the prediction capabilities of these four

models. However, they showed that non-linear stochastic process model represents

problem physics much better and it matches the available corrosion data reasonably

well.

3.3.3 Markov process based corrosion growth models

Markov processes have been used by many researchers to model corrosion pro-

cess. The stochastic process D(t), t ≥ 0 is a continuous-time Markov chain (Markov

process), if for alls, t ≥ 0, d(u), 0 ≤ u ≤ s, and non-negative integers i and j:

P [D(t+s) = j|D(s) = i,D(u) = d(u), 0 ≤ u < s] = P [D(t+s) = j|D(s) = i] (3.8)

where D(s), represents the condition (state) of the system at time s.
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In other words, given that the system is in state i at time s (D(s) = i), the

future states (D(t + s)) do not depend on the previous states (D(u) = d(u), 0 ≤

u < s). This is the so-called Markovian property and a continuous-time stochastic

process is a Markov process if it satisfies the Markovian property. In addition,

if P [D(t + s) = j|D(s)] = i is independent of s, the Markov process is said to

have homogeneous or stationary transition probability [70]. In a Markov process,

transition rate, λi, between states i and j, are defined in such a way that the

probability of transition between states i and j in the infinitesimal time interval

δt, is λiδt and the probability of more than one transition in this time interval is

negligible. The Kolmogorov differential equation that represents this process is given

in Equation 3.9 [70, 71]

dP1(t)

dt
= −λ1P1(t)

dPi(t)

dt
= −λi−1Pi−1(t)− λiPi(t),

i = 2, . . . , N

(3.9)

Here Pi(t) represents probability of being in state i at time t.

In Markov process-base corrosion rate models, the thickness of the pipeline is

divided into N finite states and presence of the maximum pit depth in each state

at any point in time can be represented by a discrete random variable D(t). The

ultimate goal of the analysis is to predict probability of being in each state at each

point in time (P [D(t) = i] = Pi(t), i = 1, 2, · · ·, N). The important issue in these
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models is how to find the transition rate between states and how to correlate these

transition rates to corrosion rates. In other words, these models try to find a valid

set of transition rates between states by using available corrosion data for a specific

pipeline to predict both the corrosion growth behavior of current pits and also new

pits in the same or comparable pipelines. See [70, 71] for more details on Markov

processes. In the following subsections, some main works that have been done in

this area are presented.

Non-homogeneous Markov process corrosion growth model Provan

and Rodriguez [72] proposed a non-homogeneous (transition rates are time-dependent)

Markov process model to describe the growth of the maximum pit depth over time

for a specific system for the first time. The gist of this model is the proposed

non-homogeneous transition rate relationship shown in Equation 3.10.

λj(t) =
λj(1 + λt)

1 + λtk
; j = 1, 2, · · ·, N (3.10)

where λj is the transition rate from state j to state j + 1, t is exposure time,

and positive values λ and k are the parameters of the pitting corrosion system. As

mentioned before, the thickness of the pipeline is divided into a discretized space

of states and being in each state indicates that the maximum depth of the pit is

in that state. This model satisfies characteristic I and II that were mentioned pre-

viously. In other words, for greater j (i.e., pit depth is in the deeper state) λj is

greater. Also for a constant j, transition rate (which is proportional to corrosion

rate [65]) decreases over time (as long as k is greater than 1, which is the case of
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two examples that have been used in Provan and Rodriguez [72]. To determine the

parameters of the pitting corrosion system (λ and k), Provan and Rodriguez used

an iteration procedure to find the proper values of λ and k (which depend on the

selected number of the states) that give the closest fit to their own experimental

corrosion data for stainless steel [72] and also corrosion data for aluminum given

in [73]. To validate their model, Provan and Rodriguez visually compared the ac-

tual and predicted probability histograms of maximum pit depth at different points

in time and concluded that their results give ample confidence in their proposed

approach. The main drawback of this model (Equation 3.10) is that there is no

physical meaning behind it and also there is no explanation about how to use this

model for more than one pit [65]. Also, this model does not address level 2, 3 and

4 uncertainties in Figure 3.2.

Non-homogeneous Poisson process for pit initiation and non-homogeneous

Markov processes for pit growth Hong [74] proposed a model in which pit ini-

tiation was modeled by a non-homogeneous Poisson process (which is a valid as-

sumption because most of the pits are generating at the beginning of the corrosion

process [73], therefore pit initiation times are not homogeneously distributed). Also,

pit growth process was modeled by a non-homogeneous Markov process. To find a

closed-form solution for the Kolmogorov differential equation (Equation 3.9), first,

the author has assumed homogeneity for both pits initiation times (homogeneous

Poisson process) and pits growth process (homogeneous Markov process) and then

the time dependency that causes non-homogeneity was modeled by using the so-

called time-condensation method [75]. To do this transformation, the variable t
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(that represents time) in the homogeneous equations is replaced by tβ, in which β

is a constant of the pitting corrosion that can be obtained by minimizing the errors

of observed and predicted mean values of the maximum pit depths. This model

(Equation 3.11) gives the probability (θi(t)) that maximum pit depth be in a state

less than or equal to state i at time t by considering all pits that have been generated

in time interval [0, t].

θi(t) = exp(−νtβ(1− 1

λtβ

i∑
j=1

γ(j, λtβ)

(j − 1)!
)),

i = 1, · · ·, N − 1

(3.11)

where ν is pit generation rate, β is the model parameter, λ is the growth rate,

n is the number of discretized states, and γ(j, λtβ) is an incomplete gamma function.

To validate this model, Hong [74] compared the mean of actual and predicted

values of maximum pit depth visually. But Hong did not discuss any validation

against additional data.

One drawback of Hong’s model is that the proposed probability distribution of

maximum pit depth is not a Gumbel distribution as it would be expected according

to the published results in the literature [65]; because it is well-known that extreme-

value analysis using the Gumbel distribution is the most successful application in

statistical analysis to predict the maximum pit depth in a large area by using a

small number of samples within a small area [64]. Another drawback is that the

results of the model depend on the number of states [65]. In addition, it does not
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consider level 2, 3 and 4 uncertainties in Figure 3.2.

Non-homogeneous Linear Pure Birth Markov Process This model [65,

76] proposes, for the first time, a methodology to link pit initiation and pit growth

stages for multiple pits. For pit initiation, the Weibull distribution is used by in-

terpreting the initiation time of each pit as the time to the first failure of a part of

a system [77]. A continuous-time, non-homogeneous linear pure birth Markov pro-

cess was used to model temporal non-homogeneity of pit evolution. In this process,

transition rates from one state to another satisfy the forward Kolmogorov Equation

[70, 71]) with the following equation.

λj(t) = jλ(t) (3.12)

where λj(t) represents the transition rate between the jth to the (j+ 1)th state

during the time interval [t + δt]. δt is an arbitrarily small unit of time that the

probability of more than one transition is negligible. Since λi(t) > λj(t) for i > j,

characteristic I is already satisfied.

An advantage of using linear pure birth Markov process is that it has a closed-

form solution for the transition probability from the mth state to the nth state in

the interval (t0, t). This closed-form solution for this process that represents the

negative binomial distribution is shown in Equation 3.13 [76].

Pm,n(t0, t) =
(n− 1)!

(n−m)!(m+ 1)!
e−(ρ(t)−ρ(t0)m(1− e−(ρ(t)−ρ(t0)))n−m (3.13)
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where ρ(t) =
∫ t

0
λ(τ)dτ .

According to this equation by having λ(t), ρ(t) can be estimated and subse-

quently Pm,n(t0, t) can be calculated by Equation 3.13 and by having the initial pit

depth distribution (pm(t0)), the probability of being in each state at each point in

time (pn(t)) can be estimated according to Equation 3.14.

pn(t) =
n∑

m=1

pm(t0)pm,n(t0, t) (3.14)

The gist of this model is the proposed approach to find the transition rate

λ(t) based on the estimated corrosion growth model. This model is based on this

assumption that the mean of the stochastic process (linear pure birth Markov process

(Equation 3.16) can be assumed to be equal to the mean of the deterministic damage

process (Equation 3.3. This assumption is valid for some processes under specific

assumptions that are given in [78]. By equating these two means, λ(t) can be

obtained from Equation 3.15.

λ(t) =
α

t− t0
(3.15)

where α and t0 are the exponent coefficient and corrosion initiation time in the

power law model (Equation 3.3.

The mean of the linear growth Markov process can be estimated by Eq. (16).

M(t) =
n∑

m=1

mpm(t) (3.16)
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Where n is the number of the states and pm(t) is the probability of being

in state m at time t. In this approach, there is no limitation on the number of

discretized states because there is a closed-form solution for this model. However,

there are two important unanswered questions about this model that have been men-

tioned by the authors of this paper themselves. First, the validity of the assumption

of equating stochastic and deterministic means for the case of pitting corrosion and

second, the applicability of this model for different kind of pit populations.

An important question that has been answered by this model in [65] is that

how to use Equation 3.13 for multiple pits with different pit initiation times. By

assuming that m pits initiate and grow independently and also assuming that all of

them are in state 1 at initiation time, the probability that the deepest pit is in a

state less than or equal to state i at time t can be estimated by Equation 3.17.

θ(i, t) = Πm
k=1[1− (1− e−ρ(t−tk))]i (3.17)

Where pit initiation process is considered by parameters tk and pit growth

process is considered by ρ(t).

Valor et al. [65] showed that for large m, this cumulative distribution function

(Equation 3.17 follows a Gumbel distribution and for a special case (assuming pit

initiation times are equal for all pits) they found a lower bound for m as an important

parameter when pit initiation and growth are combined in their proposed model.

The parameters of the proposed model (tk, ρ(t) and m) can be obtained by
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minimizing a total error function ET given in Equation 3.18.

ET =
N∑
i=1

√
(µie − µip)2 +

√
(σie − σip)2 (3.18)

Where (µip, σ
i
p) and (µie, σ

i
e) are the mean value and variance of the ith predicted

and experimental extreme value distribution; respectively.

Valor et al. [65]) validated this model by calculating the mean MRSE. They

used experimental data published by Aziz [73], Provan and Rodriguez [72], Melchers

[79], Strutt, Nicholls, Barbier [80], and showed that the results of their proposed

model using those experimental data are better (lower MRSE) than reported results

in those works. This model had the most extensive validation in comparison with

the other works that are reviewed in the current paper.

This model considered characteristic I and II. Also, this model considers pit

initiation process, pit growth process, and multiple independent pits growth. How-

ever, it does not consider level 2, 3 and 4 uncertainties in Figure 3.2.

Another drawback of Markov process-based models is that it is not straight-

forward to update these models by Bayesian inference in case of new imperfect ILI

data [69].

3.3.4 Gamma process based corrosion growth models

The gamma process is a stochastic process with independent, non-negative,

gamma distributed increments. Mathematically speaking, a gamma process with

shape function α(t) and scale parameter β is a stochastic process [D(t), t ≤ 0] with
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the following properties:

• α(t) > 0 is a non-decreasing, right-continuous, real-valued function for t ≤ 0

and α(0) = 0

• β > 0

• D(0) = 0 with probability 1

• D(τ)−D(t) ∼ Ga(α(τ)− α(t), β) for all τ > t ≤ 0;

• D(t) has independent increment

Where Ga indicates gamma distribution with following probability density function.

Ga(d | α, β) =
βα

Γ(α)
dα−1exp(−βd)× I(0,∞)(d) (3.19)

where I(0,inf)(d) = 1 for d > 0 and zero otherwise and Γ(α) =
∫∞
t=0

tα−1e−tdt is

the gamma function [3].

Due to the monotonic increasing nature of the gamma process, it is an appro-

priate process for degradation mechanisms such as wear, fatigue, corrosion, creep,

etc. Also, mathematical tractability is another advantage of this process. Using this

process implies that the defect size is always increasing when there is no maintenance

[81, 82].

Van Noortwijk [3] published a comprehensive survey of the application of the

gamma process in maintenance. The following briefly explains two examples of

those works that have used the gamma process to model the pipeline corrosion

defect growth.

Maes et al. [16] proposed a hierarchical Bayes framework (Figure 3.6) to model
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Figure 3.6: Hierarchical Bayes framework for heterogeneous degradation, modified
from [83]

pipeline defect growth subject to ILI uncertainty. This framework can incorporate

new inspection data and update the corrosion growth model accordingly.

Different levels of uncertainty are considered in this work as follows. Level

4 in Figure 3.2 is related to inspection uncertainties. These uncertainties can be

categorized to measurement error, detectability, and reportability error. In [16]

measurement errors are assumed to be normally distributed with means equal to

zero and known location dependent variances (that might be correlated to the other

locations (level 2 and 4 in Figure 3.2)). Equation 3.20 shows the relationship between

measured size, DM,j,i, and actual true degradation, Dj,i, for the jth defect at ith

inspection time.

DM,j,i = Dj,i + εj,i (3.20)
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Where εj,i is the measurement error for a specific inspection device and measurement

conditions at a given location that is usually correlated to inspection device bias and

interpretation algorithm. To model POD that depends on the size of the defect, a

detection indicator variable, (DIj,i), that follows Bernoulli distribution is defined

according to Equation 3.21. Then the observable degradation, (DO,j,i), would be

the product of this detection indicator (DIj,i; with DIj,i = 1 corresponding to

successful detection) and the uncertain measurement due to sizing error, (DXM,j,i)

(Equation 3.22).

DIj,i | PD(Dj,i) ∼ Bernoulli(PD(Dj,i)) (3.21)

Where PD indicates POD.

DO,j,i = DIj,i.DM,j,i (3.22)

The reportability factor (that represents lower detection threshold of the ILI

device) is defined as a binary indicator random variable, (Rj,i) (Equation 3.23).

Production of this factor to the observed degradation measurement, (DO,j,i), gives

the degradation value reported by the inspection device (Equation 3.24).

Rj,i(DO,j,i) =


0 if DO,j,i < ILI device threshold

1 if DO,j,i ≥ ILI device threshold

(3.23)

DR,j,i = Rj,iDO,j,i (3.24)
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Temporal uncertainties (level 3 in Figure 3.2) are modeled by considering the

actual degradation at each inspection time as the summation of actual degradation

at the previous inspection time and degradation increment between these two inspec-

tions. Because of two reasons, gamma process is an appropriate process to model

the degradation increment behavior (Equation 3.25); independent degradation in-

crements assumption [3] and restriction that such increments must be positive.

∆Dj,i | ∆αj,i, βj ∼ gamma(∆αj,i, βj) (3.25)

Where ∆αj,i is the shape parameter and βj is the scale parameter of the gamma

distribution given in Equation 3.19.

The shape parameter reflects the time dependency of the physics of the degra-

dation process (level three of the uncertainty in Figure 3.2). By selecting a proper

functional form for the shape parameter, different degradation processes can be

modeled. Power law function (Equation 3.19) is a versatile function that can rep-

resent constant, increasing or decreasing degradation rate based on the exponent of

the model.

∆αj,i = θ1[(tj,i−1 + ∆tj,i−1)θ2 − tθ2j,i−1] (3.26)

Where θ1 and θ2 are degradation model’s parameters that are related to epis-

temic uncertainty. θ2 > 1 stands for an increasing degradation process, θ2 < 1

expresses a decreasing degradation process, and θ2 = 1 represents a constant degra-

dation process.
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The scale parameter of the gamma process is a positive location specific pa-

rameter that reflects the heterogeneity of the defects between the locations (level 2

of uncertainty in Figure 3.2). The location heterogeneity is represented by zj, k and

ζj. zj are local covariates (e.g., pressure, temperature, pH), k is a vector of cause

and effect regression coefficients associated with zj and ζj are local aleatory effects

that cannot be explained by defined covariates (e.g., top of line corrosion).

βj = exp[zTj k + ζj] (3.27)

Figure 3.6 summarizes this hierarchical Bayesian framework. In this figure, δ1

and δ2 are prior distribution Parameters for local aleatory effect model. According

to this framework, by assuming prior probability density functions for system-wide

parameters (θ1, θ2, δ1, δ2, k), the actual true degradation, Dj,i, for jth defect at ith

inspection time can be predicted. Then, as soon as inspection data (DR,j,i) become

available (by knowing measurement error for each location and inspection time),

the model’s parameters can be updated by using a Bayesian updating simulation

techniques such as Markov chain Monte Carlo (MCMC).

As it was explained briefly, this hierarchical framework can model different

level of uncertainties in the degradation systems and also characteristic II of pit-

ting corrosion can be modeled by selecting proper values for θ1 and θ2. However,

characteristic I is not addressed in this model directly.

Zhang and Zhou [13] modified the above framework by considering corrosion

initiation time in their model and used homogeneous gamma process (θ2 = 1) to
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characterize the growth of the depth of corrosion defects. Zhang and Zhou [13] used

ILI data obtained in 2000, 2004 and 2007 for 62 defects to estimate their model

parameters and they validated their model by comparing the defects’ actual depths

(obtained after excavation and field measurement) in 2010 with the corresponding

depth predicted by their proposed growth model. This validation shows that 90%

of the predicted depths fall within the region bounded by the two lines representing

actual depth ±10% PWT.

Finally, two other works that used the similar Bayesian framework are dis-

cussed briefly. Zhang et al. [68] used this framework by considering inverse Gaussian

process (IGP) instead of homogeneous gamma process (HGP) to characterize the

growth of the depth of corrosion defects. By applying this model to the same set

of ILI corrosion data, they concluded that the predictions of the IGP-based model

are negligibly different from those of the HGP-based model, but significantly better

than random variable-based models. In another work, Zhang and Zhou [69] applied

a similar Bayesian framework by using a Bayesian dynamic linear model (BDLM)

and compared the results with their previous results based on HGP and IGP. They

showed that the absolute difference between predicted depths and corresponding

field-measured depth is less than or equal to 10% PWT for about 92% of the de-

fects for BDLM, while this value for IGP and HGP is about 90% of the defects.

This model is validated against a small number of corrosion data and it needs to be

validated with larger data set to be able to be used it in practical application [69].
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Model Lev.1 Lev.2 Lev.3 Lev.4 Char.I Char.II Practicality

Lin. Random variable
√

PI 1
Non-Lin. Random variable

√ √
PI 1

Lin. Stochastic Process
√ √ √

PI 2
Non-Lin. Stochastic Process-based

√ √ √
PI 2

Markov process-based
√ √ √ √

PI 3
Gamma process-based

√ √ √ √ √
PI 3

Table 3.1: Evaluation of different commonly used probabilistic data-driven pitting
corrosion growth models in oil and gas pipelines

3.4 Discussions

Now we address the question of "when should each model be used?" To answer

this question, two criteria are defined: appropriateness and practicality. As it is ex-

plained in Section 1, an appropriate pitting corrosion growth model should consider

four levels of uncertainty and also two well-known characteristics of pitting corrosion

growing behavior: depth and time dependency of pit growth rate. The practicality

criterion, indicates the level of knowledge that is required to perform each model.

Table 3.1 summarizes this evaluation for those models that are discussed in this

paper.

The first category in this table corresponds to linear random variable-based

model which is the simplest probabilistic approach and also is the most commonly

used approach in the industry that usually overestimates the pit growth rate.

The second category corresponds to non-linear random variable-based model

which is the one that considers the well-known non-linear behavior (power law func-

tion with a less than one positive exponent) of pitting corrosion process. None of

these random variable-based models consider spatial heterogeneity, temporal vari-
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ation, and measurement errors. They also do not take into account the depth

dependency of the pitting corrosion rate.

The third and fourth categories correspond to linear and non-linear stochastic

process-based models that consider the temporal variability of pitting corrosion pro-

cess. As it was discussed in Section 3.2, these models are combinations of PSWP and

linear and non-linear random variable-based models. The two stochastic process-

based models also do not consider spatial heterogeneity and measurement errors.

They also do not take into account the depth dependency of the pitting corrosion

rate.

The fifth category corresponds to Markov process-based models. In these

models, the main issue involves extracting proper transition rates between states.

Markov process based-models consider epistemic uncertainty, temporal variability,

non-linearity and also depth dependency of the pitting corrosion rates. However, the

spatial heterogeneity and measurement uncertainties are not addressed properly in

Markov process-based models and it is not straightforward to update these models

by Bayesian inference in case of new imperfect ILI data.

The last category of this table corresponds to the gamma process-based models

which are the most versatile models that can address different levels of uncertainties.

Besides, they can model the non-linearity in the pitting corrosion growth process.

These models can also be updated properly by Bayesian inference in case of new

imperfect ILI data. However, depth-dependency has not been considered directly

in these models. In the first six columns of Table 1 appropriateness of the above-

mentioned categories are evaluated.
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The last column of Table 1 is allocated to practicality criterion. In this column,

PI stands for Practicality Index. PI 1 is assigned to the first two categories and it

means that these models can be developed by the common field engineers that are

familiar with regression analysis using common application tools like Excel. PI 2

is assigned to the next two categories and it means that these models need more

advanced knowledge of statistics such as PSWP. PI 3 is assigned to the last two

categories and it needs a deep understanding of Markov process and gamma process.

3.5 Conclusion

This paper reviews various pitting corrosion degradation models for PHM

analysis. Degradation model is a key element of the PHM approach to predict the

RUL of a degrading system. Despite a large number of studies that have tried to

find a comprehensive pitting corrosion growth model (degradation model), there is

no universally accepted model that is able to predict the pitting corrosion growth

properly for all occasions. Among available POF and data-driven based pitting

corrosion growth models, this review paper focused on the latter as they are more

suitable to describe pitting corrosion behavior because of the complexity and inher-

ent randomness of pitting corrosion over time. The reason is that pitting corrosion

process is a stochastic process that depends on a large number of dependent and

independent factors (epistemic uncertainties); moreover, this process has temporal

and spatial heterogeneity; also, inspection uncertainties (measurement errors, POD

and reportability errors) add another level of uncertainty to the pitting corrosion
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growth estimation.

In addition to these different levels of uncertainties, an appropriate pitting

corrosion growth model must be able to take into account the two other well-known

characteristics of pitting corrosion; the corrosion rate of a deeper pit is greater than

the corrosion rate of a shallower one, and for a single pit, the corrosion rate declines

over time following a power-law function with a less than one positive exponent.

This paper discussed the appropriateness of some probabilistic data-driven based

models that are commonly used to predict pitting corrosion growth. In addition to

the appropriateness, the practicality of these models is also discussed in this paper.
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Chapter 4: Development of a hybrid defect-based degradation model

for a pipeline segment with low pit density

This chapter has been published in the Structural Health Monitoring journal

as Roohollah Heidary and Katrina M. Groth. “A hybrid model of internal pit-

ting corrosion degradation under changing operational conditions for pipeline in-

tegrity management”. In: Structural Health Monitoring (2019). doi: 10. 1177/

1475921719877656

4.1 Abstract

This paper proposes a new framework to estimate the degradation level in oil

and gas pipelines corroded by internal pitting when operational conditions change

over time. Despite the fact that the operational conditions of a pipeline change at

various times, this change has not been addressed in the current available pipeline

corrosion degradation models. In this framework, a hierarchical Bayesian method

and augmented particle filtering are used for data fusion to address this issue. This

framework is applied on a case study and the results are compared with the estima-

tions of a state of the art pitting corrosion degradation model.
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Symbol Description Symbol Description Unit

SI Similarity Index k Coefficient of power law
model

mm

ILI In-line inspection t Time year
OLI Online inspection τ Time year
PF Particle filtering t0 Pit initiation time year
APF Augmented particle fil-

tering
T Time at which operational

conditions change
year

HB-
NHGP

Hierarchical Bayesian
based on a non-
homogeneous gamma
process

d Maximum pit depth mm

PWT Pipe wall thickness θ Vector of model parameters
EMPD Estimated maximum pit

depth
ν Exponent of power law

model
RUL Remaining useful life V q qth operational parameter
PHM Prognostics and health

management
γq Regression coefficient for the

qth operational parameter
PM-SD Process model standard

deviation in APF
γ0 The intercept of the regres-

sion model
POF Physics of Failure Q No. of operational parame-

ters
Metric R RMSE between actual

and predicted maximum
depth of all pits

y Measured maximum pit
depth

mm

Metric N The percentage of all
pits that their predicted
depths fall within the
± 10% of their actual
maximum depth

ε Random scattering error mm

a Constant biased error m No. of in-line inspected pits
b Proportional biased er-

ror
n No. of ILI operations

i Pit index Pit M The online inspected pit
j Time index h Kernel smoothing factor
p Particle index Actual

depth
Synthetic actual depth of a
pit without measurement er-
ror

P Number of particles Measured
depth

Synthetic measured depth of
a pit

Estimated
depth

An estimation of the syn-
thetic actual depth of a pit
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4.2 Introduction

Although pipelines are the most reliable and economical mode of transporta-

tion of oil and gas in large quantities [1], their failures and maintenance activities

can impose a high cost to industry. In order to avoid unpredicted failures and also

unnecessary maintenance activities, having a high confidence estimation of pipeline

degradation due to different potential failure mechanisms is critical in pipeline in-

tegrity management.

Among different failure mechanisms, corrosion is especially significant for oil

and gas pipelines, and pitting corrosion is of the most concerning because of the high

pits growth rate [2]. According to the available literature, 15% of all transmission

pipeline incidents between 1994 and 2004 in the US [60] and 58% of oil and gas

pipeline failure in Alberta, Canada, were due to internal corrosion [4]. Furthermore,

90% of corrosion failures of transmission pipelines in the US between 1970 and 1984

were due to localized corrosion [4]. Therefore, investigation of internal localized

corrosion is an essential task in pipeline integrity management.

While there has been significant progress in understanding uniform corrosion,

localized corrosion is still not well understood [9]. Internal pitting corrosion, as a

localized corrosion mechanism, is a highly stochastic process which is affected by a

large number of dependent and independent parameters [61, 62]. Some of these pa-

rameters are pH value in the water phase, the water chemistry, the protective scale,

the CO2 partial pressure, the amount of H2S, the effect of oil wetting, the metal alloy

composition, the temperature, the multi-phase flow, and the flow rate. In addition,
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there is temporal and local heterogeneity in some of these parameters, and inter-

dependence between them [15]. There has been some progress on development of

different pitting corrosion degradation models in the literature. We reviewed some

of the leading probabilistic prediction models for oil and gas pipelines corroded by

pitting corrosion and ranked them based on their comprehensiveness, the required

data and the level of knowledge that are required to develop each of those models

[15]. To the best of authors’ knowledge, the available degradation models for in-

ternal pitting corrosion of oil and gas pipelines have been developed based on the

assumption that all pits are under the same operational conditions for the operat-

ing life of the pipelines [13, 16, 17]. However, operational conditions of a pipeline

can change due to changing nature of the field, flow reversal, product change, or

conversion to service [85]. For example a pipeline that was constructed in 1953 to

deliver crude oil, was converted to natural gas service in 2002 in Austin Texas, U.S.

[19]. Another example for conversion to service is the use of the current natural gas

pipelines to deliver hydrogen across U.S., which is in the feasibility study phase [86,

87]. This option is under investigation in U.K. as well [21]. An example for change

in the product is the continuous change in the product properties within an uncer-

tain range in the natural gas pipelines [88]. According to PHMSA (Pipeline and

Hazardous Materials Safety Administration) changes in operational conditions may

impact various aspects of a pipelines operation, maintenance, monitoring, integrity

management, material compatibility, and corrosion susceptibility [89]. Therefore,

the focus of this paper is on developing a hybrid PHM degradation model for in-

ternal pitting corrosion in pipelines when operational conditions change over time.
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This model provides the main input (i.e., estimated degradation level) for condition

based maintenance optimization of the pipeline.

The rest of this paper is organized as following. In the next section, related

works, approach, and contributions are discussed. Two Bayesian inference methods

that are used in this framework are explained afterwards. Then, the problem is

defined and the proposed framework is explained by applying that on a case study.

The Results section is dedicated to discuss the results and conclusion is the last

section of this paper.

4.3 Related work, approach, and contributions

The integrity management of piggable pipelines is commonly performed by us-

ing in-line inspection data that are obtained by utilizing a non-destructive tool (e.g.,

magnetic flux leakage (MFL) or ultrasonic test (UT)) [24]. Maes et al. proposed a

hierarchical Bayesian (HB) model based on a gamma process to project pit growth

in piggable pipelines [16]. They considered four types of uncertainty in modeling:

epistemic uncertainty, spatial heterogeneity, temporal variation, and measurement

errors [16]. Zhang and Zhou [13] used Maes model to estimate maximum pit depth 1

for a gas pipeline in Alberta, Canada. They showed that for 90% of the 62 pits, the

absolute difference between the predicted depths and the field measured depths are

less than or equal to 10% of the PWT. Zhang et al. [68] extended Maes model by

assuming pits’ depth growth follow an inverse Gaussian process instead of a gamma
1Estimation of maximum (vs. mean, etc.) pit depth is the main concern in pitting corrosion

literature because the deepest pits are the first that cause leaks [90].
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process. By applying this new approach, on the same ILI data-set in [13], they

showed that the new results are essentially equivalent to those based on a gamma

process. In another work, Zhang et al. [69] again extended the Maes model by using

a Bayesian dynamic linear model instead of a gamma process. In this case, they

showed that the absolute difference between predicted depth and the corresponding

field measurement is less than or equal to 10% of the PWT for about 92% of the pits.

To the best knowledge of the authors, the family of hierarchical Bayesian models

are the state of the art degradation models for piggable pipelines.

In contrast to the above-mentioned family of models, there is another approach

that is applicable for non-piggable pipelines. In this family of models, a generic

degradation model is developed for all pits by correlating the maximum pit depth

with the operational parameters. One of the most comprehensive internal pitting

corrosion degradation model that has been developed based on this approach, is

proposed by Ossai et al.[14]. This model correlated eleven operational parameters

with the maximum pit depth, by performing a non-linear regression analysis. Ossai

model was developed by using ten years recorded pit depth data from UT, and

operating parameters data that were obtained via routine quality control procedures.

The Ossai model is explained in more details in Synthetic data generation procedure.

These two families of models are hybrid PHM models that combine inspection

and measurement data with POF of the pitting corrosion process, by relying on this

well-accepted assumption that maximum depth of a pit follows a power function with

a positive exponent less than one [2, 63]. The hierarchical Bayesian models rely more

heavily on the inspection data, because in these approaches specific inspection data
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were available for each individual pit. In contrast, in the generic models, the POF

aspect is emphasized by taking into account the different covariates in degradation

modeling. However, the data are not pit-specific in this family of models. One

contribution of this paper is to propose a hybrid framework that has the advantages

of both approaches described above, by considering both specific ILI data of each

pit and also the effect of operational parameters on POF in degradation modeling.

Another contribution of this work, as mentioned above, is to consider changes

in operational conditions in pitting corrosion degradation modeling. Considering

change in degradation rate in condition-based maintenance optimization is addressed

in [91] by using online inspection data for one component/item. However, in the case

of long pipelines, it is not feasible to install online sensors on all pits to detect change

in their degradation rates in order to consider that in maintenance optimization.

This paper proposes a novel framework to monitor change in degradation rate (due

to change in operational conditions) in the reference pit, and then make a logical

and reliable inference about the change in the degradation rate and degradation

level of other active pits along the pipeline.

4.4 Bayesian inference methods

The proposed framework is founded on two Bayesian inference techniques:

augmented particle filtering and hierarchical Bayesian methods. APF is used to

fuse OLI data and estimate the degradation level of the reference pit. A hierarchical

Bayesian method is used to fuse ILI data and estimate degradation level of ILI pits
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at ILI times. These two methods are discussed in the following sections.

4.4.1 Augmented particle filtering (APF)

Particle filtering (PF) or sequential Monte Carlo method is a technique that

uses recursive Bayesian approaches to estimate the state of a dynamic system that

changes over time using a sequence of noisy measurements made on the system [92].

Because of its flexible and powerful diagnostic and prognostic features for nonlinear

and non-Gaussian systems, application of PF in reliability engineering has increased

rapidly in the recent years [37]. PF is able to process data online as it arrives, which

is crucial both from the point of view of storage costs and also for rapid adaptation

to changing data characteristics [92]. This makes it a proper choice for modeling

degradation processes with change in degradation rate.

In order to make inference about a dynamic system using particle filtering, at

least two models are required; the process model (Equation 4.1) that describes the

evolution of the state with time, and the measurement model (Equation 4.2) that

relates the noisy measurements to the state of the system [92].

dj = fj(dj−1, Vj−1) −→ Pr(dj|dj−1) (4.1)

Where d represents the state of the system (in this paper maximum pit depth),

f represents a possibly nonlinear process function, j represents the time index, and
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V is an i.i.d process noise.

yj = gj(dj, ωj) −→ Pr(yj|dj) (4.2)

where y represents the noisy measurement of the state of the system (in this

paper measured maximum pit depth), g is a possible nonlinear measurement func-

tion, and ω is an i.i.d measurement noise sequence.

In order to infer the posterior density function (pdf) of the state of the system

given previous noisy measurements, Bayes’ rule can be used according to Equation

4.3.

Pr(dj|y1:j) =
Pr(yj|dj)Pr(dj|y1:j−1)

Pr(yj|y1:j−1)

∝ Pr(yj|dj)Pr(dj|y1:j−1)

(4.3)

In this equation Pr(yj|dj) can be calculated by using Equation 4.2 and the

prior pdf of the state of the system, Pr(dj|y1:j−1), can be calculated by using

Chapman-Kolmogorov Equation:

Pr(dj|y1:j−1) =

∫
Pr(dj|dj−1, y1:j−1)

Pr(dj−1|y1:j−1)dxj−1

(4.4)

Assuming that the measurements are conditionally independent and also as-

suming first order Markovian property, Equation 4.4 can be simplified as Equation
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4.5.

Pr(dj|y1:j−1) =

∫
Pr(dj|dj−1)Pr(dj−1|y1:j−1)dxj−1 (4.5)

In this integral, the first term can be calculated by using Equation 4.1 and

the second term can be calculated recursively forward in time by assuming that

the pdf of the initial condition of the state of the system, Pr(d0), is known. The

denominator in Equation 4.3 is a normalizing factor which is independent of the

state of the system and usually does not have an analytical closed form solution,

and numerical solution is usually computationally expensive. In PF, there is no

need to calculate the denominator.

Except for special cases (i.e., linear Gaussian state space models), it is not

possible to evaluate the posterior distribution in Equation 4.3 analytically. The

key idea in PF is to approximate the posterior density function of the state of the

system with a discrete weighted distribution of some random samples (i.e., particles)

(Equation 4.6).

Pr(dj|y1:j) '
P∑
p=1

wpj δ(dj − d
p
j) (4.6)

In this equation, δ represents the Dirac’s delta function, wpj represents the

normalized weight of the pth particle at the jth time step, and P is the number of

particles. In order to perform PF, P number of samples or particles are generated

from initial pdf of the state of the system and then at each time step, those par-

ticles are evolved by using the process model (prediction step). Subsequently, the

measurements corresponding to that time step will be used to update the assigned
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weight to each particle (updating step) [92]. Those weights are chosen using the

principle of importance sampling [93, 94]. The concept of importance sampling is as

following. Suppose e(d) ∝ r(d) is a probability density function that is difficult to

draw samples from (e.g., posterior distribution of nonlinear non-Gaussian systems

in Bayes’ rule in Equation 4.3). But we can easily sample from another pdf, s(d),

(e.g., a normal distribution). In this case a weighted approximation of e(d) can be

obtained by using Equation 4.7

e(d) ≈
P∑
p=1

wpδ(d− dp) (4.7)

Where wp ∝ r(dp)
s(dp)

is the normalized weight of the pth sample (i.e., particle).

By using this concept, it can simply be proven [92] that the sequence of the

assigned weight of particles at each time can be obtained by Equation 4.8.

wpj ∝ wpj−1

Pr(yj|dpj)Pr(d
p
j |d

p
j−1)

G(dpj |d
p
j−1, yj)

(4.8)

By using this equation in Equation 4.6, the posterior distribution of the state of the

system can be approximated.

In the standard PF, it is assumed that the parameters of the process model

are known. However, for most of the practical cases, those parameters are unknown,

but the form of the process model is known based on the physics of the process. In

that case, augmented particle filtering (APF) can be used to estimate the state of

the system and the process model parameters simultaneously. The process model
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in APF is shown in Equation 4.9.

dk = fk(dk−1, θk, Vk−1) −→ Pr(dk|dk−1, θk) (4.9)

Where θ represents the vector of the state model parameters.

Kitagawa [95] and Liu andWest [96] used a Gaussian random walk to define the

evolution model for degradation model parameters to enable their adaptation to new

data. It has been identified in [96, 97] that using random walk results in posteriors

more diffused than the actual one. To solve this issue, Liu and West [96] proposed

a kernel smoothing approach to reduce the variability in the posterior distributions.

Following that approach, the posterior distribution of the model parameters can be

approximated by Equation 4.10 [96].

Pr(θj|y1:j) '
P∑
p=1

wpjN(θj|µpj , h2ζj) (4.10)

Where N(.|µ, S) is a multivariate normal density with mean µ (Equation 4.11)

and variance S. In this equation h is the kernel smoothing parameter, and ζ is Monte

Carlo posterior variance.

µpj = hθpj + (1− h)θ̄j (4.11)

Selection of kernel smoothing factor is also a challenge in using APF. Based on

the prior knowledge, if the parameters are slowly varying or if they are fixed, the

smoothing factor should be set to a small positive value (e.g., 0 < h < 0.2) to reflect
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the steady property of the parameters. On the other hand, when the parameters

are expected to change significantly over time, the h value should take a value close

to one (e.g., 0.8 < h < 1) to incorporate the dynamic behavior of the process [98].

The kernel smoothing factor can also be tuned on a validation data-set and then be

applied to the future data [98].

In this work, the latter approach is followed. We considered 70% of the OLI

data, up to time T, as the validation data-set and we find the optimum h value that

gives the minimum RMSE between the online measurements and the predictions of

APF.

For the case of pitting corrosion, it is well accepted that maximum depth of a

pit follows a power function with a positive exponent less than one (Equation 4.12)

[2, 63].

dj = k(tj − t0)ν (4.12)

Where k and ν represent the parameters of pitting corrosion degradation model

and t0 represents the pit initiation time. The recursive format of this model to be

used in APF analysis is shown in Equation 4.13. In this equation a white Gaussian

noise with mean zero and standard deviation PM-SD is assumed as the state model

noise.

dj = dj−1 + kν(tj − t0)ν−1∆t+N(0, PM − SD) (4.13)

By considering a general form of the measurement model for an inspection tool,
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which includes both the biased and random scattering errors, the actual and mea-

sured maximum depth of a pit are related according to Equation 4.14

yij = aj + bjdij +N(0, εij) (4.14)

Where yij represents the measured maximum depth of ith pit at the jth inspec-

tion (j = 1, 2, ..., n), aj and bj are the constant and the proportional biases of the

inspection tool employed in the jth inspection, and εij denotes the standard deviation

of normally distributed random scattering error associated with the measured depth

of ith pit at the jth inspection. By using Equation 4.14 the measurement model in

APF can be derived according to Equation 4.15.

Pr(yij|dij) =
1

2πε2ij
exp(−(yij − (aj + bjdi,j))

2

2ε2ij
) (4.15)

Using Equation 4.13 and 4.14, the pseudo code in Table 4.1 has been used in

this study for APF analysis.

4.4.2 Hierarchical Bayesian method

Another method that is used in this framework is a hierarchical Bayesian

method based on a non-homogeneous gamma process [16]. Hierarchical Bayesian

modeling is an appropriate method to make scientific inference about a population,

based on many individuals, and it is called "hierarchical" because it uses hierarchical

or multistage prior distributions [99]. This method is used in this framework to fuse

ILI data of various pits along the pipeline.
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For p = 1:P
Sample dp0 from maximum pit depth prior distribu-

tion.
Sample θp0 from model parameters prior distribu-

tions:
Normal (prior value, 0.1*prior value).
Calculate θ̄0, var(θ0).
Assign particles’ weight: wp0 = 1.

End
For j = 1: Number of OLI data
kj = (1− h2)0.5kj−1 + (1− (1− h2)0.5)k̄j−1

νj = (1− h2)0.5νj−1 + (1− (1− h2)0.5)ν̄j−1

Prediction step
dpj = dpj−1+kν(tj−t0)ν−1+rand.N(0, PM−SD)

kj = kj−1 + rand.N(0, h2var(kj−1))
νj = νj−1 + rand.N(0, h2var(νj−1))
Updating step
wij = wij−1 Pr(yj |dj , kj , νj)
Normalize the weights
Resample dj , kj , νj

End

Table 4.1: Pseudo code for APF

Since 1975 when the gamma process was introduced in the area of reliability

engineering [100], it has been used widely to model degradation processes such as

corrosion, wear, and fatigue, which involve monotonically accumulating damage over

time in a sequence of tiny increments [3, 82].

A gamma process is a continuous-time stochastic process {X(t), t > 0} with

the following properties.

• X(0) = 0 with the probability 1.

• ∆X = X(τ)−X(t) ∼ Ga(∆α = (α(τ)− α(t)), β) for all 0 ≤ t < τ

• X(t) has independent increment

Where Ga represents pdf of gamma distribution. A random quantity (in this
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study maximum pit depth) has a gamma distribution with shape parameter α > 0

and a rate parameter (inverse of scale parameter) β > 0 if its pdf is given by:

fX(t)(x) = Ga(x;α, β) =
βα(t)

Γ(α(t))
xα(t)−1exp(−βx) (4.16)

Where Γ(.) denotes the gamma function. The expectation and variance of the

gamma process are given in Equations 4.17 and 4.18 respectively.

E(X(t)) =
α(t)

β
(4.17)

V ar(X(t)) =
α(t)

β2
(4.18)

According to Equation 4.17 the shape parameter of a gamma process reflects

the average trend of the random quantity as a function of time. Therefore, by

selecting an appropriate form for the shape parameter of a gamma process, it can

model degradation processes with increasing, decreasing, or constant degradation

rates. For pitting corrosion process, as it was mentioned previously, a well-accepted

format of its degradation model is shown in Equation 4.12. Therefore, in that case,

the shape parameter of a gamma process is correlated with the degradation model

parameters according to Equation 4.19.

αj = k′(tj − t0)ν
′

(4.19)

Based on this assumption, the increments in degradation level follow a gamma
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distribution given in Equation 4.20.

∆dij =dij − dij−1 ∼ Ga(∆αij =

(k′((tj − t0)ν
′ − (tj−1 − t0)ν

′
), βi)

(4.20)

When new measurements are available at each inspection time, the posterior

distribution of the depth increment of each pit will be updated by using Equation

4.21.

Pr(∆dij|Yi) ∝ Pr(Yi|∆dij)Ga(∆dij|∆αij, βi) (4.21)

In this equation, the likelihood of the inspection data Yi given the increments

can be written as shown in Equation 4.22 by considering the measurement model

that is given in Equation 4.14.

Pr(Yi|∆Di) = (2π)−n/2exp(−1/2(Yi − (A+BS∆Di
))′×

−1∑
ε

×(Yi − (A+BS∆Di
)))

(4.22)

Where Yi = (yi1, yi2, ..., yin)′, A = (a1, a2, ..., an)′, B is an n-by-n diagonal

matrix with diagonal elements equal to bj,
∑−1

ε is the n-by-n diagonal covariance

matrix with diagonal elements equal to the variance of the random scattering errors

associated with the tool used in inspection time j, and S∆Di
is an n× 1 vector with

the jth element equal to
∑j

k=1 ∆dik.
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The hierarchical Bayesian model that is used to estimate these hyper-parameters

(t0, p1, q1, p2, q2, p3, q3) is shown in Figure 4.1.

Figure 4.1: Hierarchical Bayesian model based on a non-homogeneous gamma
process modified from the approach that is proposed in [16]

4.5 Proposed framework

Consider a long piggable oil or gas pipeline, for which n ILI data sets are

available for m number of active pits at times t1, t2, ..., tn. In addition, an active pit

(the reference pit, pit M ) is monitored continuously by using an online inspection

tool. This pipeline is in operation since time t0, which is assumed to be the initiation

time for all pits. The operational conditions are monitored and measured as part of

the routine operating condition monitoring procedure of the pipelines. The question,
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which is addressed in this paper, is how to estimate the maximum depth of the

existing pits at time tn+1 when the operational conditions change at time T, tn <

T < tn+1 and there is no new ILI data for those pits.

In order to answer the above-mentioned question, we propose a data fusion

framework that has three phases that are shown in Figure 4.2. The required input

data for this framework are shown in the left side of this figure. In phase I, prior

values for the degradation model parameters and the standard deviation of the state

model noise in APF are estimated for use in phase II and III. In phase II, a similarity

index (SI) between pit i (i = 1, 2, ...,m) (an ILI-pit) and pit M (the reference pit)

is defined. Finally in phase III by using that SI, some dummy observations are

generated and used to estimate the maximum depth of each ILI pit at time tn+1.

These phases are explained in more details in the next paragraphs by referring to

the steps in Figure 4.2.

4.5.1 Phase I: estimating the standard deviation of the white noise of

APF process model (PM-SD) and the prior values for degradation

model parameters

In phase I the standard deviation of the process model white noise in APF

analysis and also the prior values for degradation model parameters are estimated

by using the historical data of operational parameters and corrosion rate of the

considered pipeline or pipelines under similar operational condition. Practically,

operational parameters are measured by routine monitoring of the pipeline at a
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Figure 4.2: Flowchart of the proposed framework

limited number of locations, and it is not feasible to measure them in all locations.

However, valuable information about the physics of the corrosion failure mechanism

are embedded in those limited data. In this phase, we propose an approach to use

those data to estimate the noise of process model in PF. In this way, a generic

degradation model (Equation 4.23) is developed for all pits by using a multivariate

nonlinear regression analysis (Step I-1), to correlate the average of the maximum

pits depth (d̄) with the operational parameters (e.g., pressure, temperature, pH,
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etc.) and time.

d̄(t) = f(P, T, pH, ..., t) (4.23)

This model is then used to simulate realizations of actual (vs. measured)

maximum depth growing behavior for a number of pits (Step I-2). Figure 4.3 shows

an example of these realizations. In order to simulate those realizations, at each

time interval (∆t), new samples should be extracted from the pdf of each operational

parameter (from Step In-1) to be inserted in the developed generic model (Equation

4.23) to obtain the corresponding pit depth increment ∆d. This depth increment

will be used recursively to simulate those realizations (Equation 4.24).

d̄(t) = d̄(t− 1) + ∆d̄ = d̄(t− 1) +
∂f

∂t
(P, T, pH, ..., t)∆t (4.24)

In Step I-3, the standard deviation of depth increments is calculated for each

pit and then the PM-SD is estimated as the average of those standard deviations of

all pits (Equation 4.25).

PM − SD =
1

m

m∑
i=1

STD of ∆d̄i,j (4.25)

Where j is the time step index and i is the pit index.

In addition, by using regression analysis on the OLI data up to time T (Step

In-2), and fitting a power law function, prior values for the degradation model

parameters (k, ν) are obtained in Step I-4.
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Figure 4.3: A realization of simulated actual maximum pit depth

4.5.2 Phase II: Defining a similarity index between pit i and pit M

In phase II a similarity index (SI) is defined (Step II-3) between each ILI (pit

i) and pit M. This SI is defined as a ratio of the estimated maximum pit depth

(EMPD) of pit i over EMPD of pit M at ILI times (Equation 4.26).

SI(i) =
1

nP

n∑
j=1

P∑
p=1

djp of pit i by HB −NHGP
djp of pit M by APF

(4.26)

Where n is the number of ILI operations and P is the number of particles and

p is the particle index.

The denominator is an estimation of the maximum pit depth of the reference
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pit M and it is obtained by using APF to fuse the OLI data (Step In-3) of this pit

up to time T. In the denominator, djp is the state of particle p at the jth ILI. The

other inputs for APF analysis of pit M are the preliminary estimation of k and ν

(Step I-4) and the estimated PM-SD (Step I-3) and the characteristics of the OLI

tool (Step In-3).

The numerator of this ratio is estimated by fusing ILI data of all pits, by using

the hierarchical Bayesian model based on a non-homogeneous gamma process (HB-

NHGP) that is explained in the Hierarchical Bayesian method section (Step II-2).

Inputs of this step are ILI data of all pits (Step In-4), and the characteristics of ILI

tools (Step In-5), including biased and scattering errors of those tools (a, b and ε

in Equation 4.14). The output of Step II-2 is an estimate of mean and standard

deviation of the posterior distribution of EMPD of each ILI pit. We used Monte

Carlo simulation to extract random samples from that posterior distribution to have

an estimation corresponding to each particle (djp in the numerator).

4.5.3 Phase III: Inferring the degradation level of pit i

Finally in phase III, APF is used to estimate maximum depth of pit i at time

tn+1 (Step III-2) by fusing the generated dummy observations for that pit. Those

dummy observations are generated by multiplying the real OLI data of pit M by

the corresponding SI of pit i (Step III-1). In this phase, h and PM-SD that were

estimated for the OLI pit previously, are used for ILI pits as well, because these two

parameters show the stochasticity of a stochastic process at each time and OLI and
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ILI pits are exposing to the same corrosion environment at each time.

4.6 Demonstration of the proposed framework

In this section, the proposed framework is demonstrated in a case study. Con-

sider a long oil or gas pipeline (e.g., 50 miles length) in operation since 1972. This

pipeline is inspected by ILI, ultrasonic test, in years 2000, 2005, 2010, and 2015.

A number of active pits are detected and monitored at those times. After the first

ILI, an OLI sensor is installed to monitor the degradation behavior of an active pit

(the reference pit) continuously. The operational conditions change causing change

from moderate to severe corrosion condition in 2015. The goal is to estimate the

maximum depth of ILI pits in 2020 when there is no new ILI data available, by

inferring from OLI data of the reference pit.

4.6.1 Performing phase I of the proposed framework

In practice input data given in Steps In-2, In-4, and In-6 from Figure 4.2 should

be gathered from ILI and OLI of the pipeline. These input data can hardly be found

altogether in the existing literature for a pipeline. Therefore, we used the model

that was developed in [14] as the starting point (output of Step I-1) to generate

synthetic actual (vs.measured) depths in Step I-2. We added random measurement

noise to those synthetic actual depths to generate synthetic ILI and OLI data for

this case study. The characteristics of the inspection tools that are given in [13] are

used in Steps In-3 and In-5. This synthetic data generation procedure is explained
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Param. Units Description Best fit dist. Original dist.
parameters

Modified dist.
parameters

Scale, Shape Scale, Shape

T C Temperature Lognormal 3.72, 0.4052 3.35, 0.12
Pc MPa CO2 partial pres-

sure
Weibull 0.1598, 1.2797 0.065, 1.25

pH - pH Extreme value 7.9418, 0.4747 8.2, 16.5
S MgL−1 Sulphate ion Weibull 38.9576, 0.4052 40.5, 1.5
C MgL−1 Chloride ion Weibull 3613.8, 1.3 1413.8, 1.5
W - Water cut Lognormal -1.7178, 1.4696 3.15, 0.8
r Pa Wall shear stress Lognormal 3.447, 0.9151 3.447, 0.9151
Gs m3day−1 Gas production

rate
Extreme value 335310, 120120 335310, 120120

OL m3day−1 Oil production rate Weibull 136.33, 2.1145 136.33, 2.1145
Wt m3day−1 Water production

rate
Weibull 94.9241, 0.4847 94.9241, 0.4847

Pt MPa Operating pressure Extreme value 8.1274, 3.2704 8.1274, 3.2704

Table 4.2: Best fit distribution of the operational parameters [14] and modified
values for moderate corrosion rate category

in more details as following.

4.6.1.1 Synthetic data generation procedure

We reviewed different pitting corrosion degradation models [15] and among

them we used a model that was developed by Ossai, Boswell, and Davies [14], as

the output of Step I-1. This model is chosen because it has been developed based

on the field data (rather than experimental data) and to the best of our knowledge,

that model is the most comprehensive available generic internal pitting corrosion

degradation model in the literature, that correlates eleven covariates (Table 4.2)

with the average maximum pit depth over time. This model has been developed

by using ten years of measurement data from sixty X52 pipelines that were used

for oil and gas pipelines in Nigeria. Ossai et al. carried out multivariate regression
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Estimate Coefficients
(γq)

Standard error t Stat P-value

Log(T) 0.037 0.083 0.4465 0.6616
Log(Pc) -0.014 0.0373 -0.3745 0.7133
Log(pH) -0.8446 0.7418 -1.1386 0.2727
Log(S) -0.0033 0.0835 -0.0392 0.9692
Log(C) 0.0613 0.0494 1.2388 0.2345
Log(W) 0.042 0.0337 1.2463 0.2318
Log(r) 0.0037 0.0433 0.0857 0.9329
Log(Gs) -0.0467 0.0554 -0.8441 0.4119
Log(OL) -0.0002 0.0657 -0.0037 0.9971
Log(Wt) -0.0076 0.021 -0.3621 0.7223
Log(Pt) -0.0142 0.0488 -0.2915 0.7746
Intercept γ0 0.44 0.7572 0.5811 0.5698
Log(t) 0.8032 0.0458 17.5346 0

Table 4.3: Parametric estimate for power model development [14]

modeling to develop this model which is shown in Equation 4.27.

d̄(t) = k(t− t0)ν = exp(γ0 +

Q∑
q=1

γqVq)(t− t0)ν (4.27)

Where d̄ represents the average maximum pit depth, t represents time of eval-

uation, k and ν are the power law model parameters, t0 is the pit initiation time

(Ossai et al. assumed that pit initiation time is equal to the operation initiation

time for all pits), γ0 represents the intercept, γq represents the mean value of the

regression coefficient (Table 4.3) of the q th operational parameter, V q represents

q th operational parameter (Table 4.2), and Q represents the number of operational

parameters.

Considering natural log of the mean value of the operational parameters and

the mean value of the estimated regression coefficients in Equation 4.27, the average
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maximum pit depth is determined by using Equation 4.28 [14].

d̄(t) = 0.732 t 0.803 (4.28)

We used this model as the degradation model for time t > T , (T = 2015 in

this case study). For time t < T (from 1972 to 2015) we used the model that has

been developed for moderate corrosion rate category in [17] (Equation 4.29).

d̄(t) = 0.269 t 0.741 (4.29)

Since the best fit probability distribution of the operational parameters for

the moderate corrosion rate category are not given in [17], we modified the scale

and the shape parameters of the distributions that are given in Table 4.2, to have

approximately the same mean and standard deviation that are given for moderate

corrosion rate category in Table 1 of [17] (Both [14] and [17] are based on the same

data set). These modified values are given in the last column of Table 4.2. We

used Monte Carlo simulation to sample from the distributions of the operational

parameters that are given in Table 4.2.

In addition, the variation in the estimated coefficients of the degradation model

is also taken into account in the synthetic data generation by considering the given

standard errors. The details are given in the following pseudo code.

In this pseudo code (Table 4.4), std.N.rand is a positive random number gen-

erated from the standard normal distribution. DOF is the degree of freedom of the

student’s t-distribution which is equal to the number of samples minus one, minus
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For i = 1: m (m, number of pits = 100 in this study)
di,0 = 0
For j = 1: No. of time steps
Generate V q,i,j by Monte Carlo simulation (using

the
distribution parameters in Table 4.2).
Generate γq,i,j = γq (given in Table 4.3) +
t.inv(std.N.rand (i,j), DOF) × corresponding
standard error given in Table 4.3.
d̄i,j = ν × exp(γ0 +

∑Q
q=1 γq,i,jVq)× tν−1.

∆d̄i,j = d̄i,j − d̄i,j−1.
End

End

Table 4.4: Pseudo code for synthetic data generation

number of parameters (in this case eleven). According to [17], number of samples

is more than 70 and 300 for moderate and severe corrosion rate categories respec-

tively. Therefore DOF is more than 30, for both cases. Which means student’s

t-distribution can be approximated by a standard normal distribution [101] and

DOF does not play an important role in sampling process.

Additionally, in order to take into account the temporal variation of corrosion

process, we sampled from the parameters and the coefficients distribution every 0.1

year (∆t in Figure 4.3). We assumed that there are 100 pits on this pipeline. This

pit density is selected based on examples in the literature (e.g., 62 pits in 80 km

[13], 554 pits in 129 km [102], 1 pit per km [29]). These examples show that the

pit density is a small number and we can reasonably assume that the pits are not

interacting each other. However, in case of interaction between pits, the common

practical and conservative approach can be used which is to coalesce the adjacent

pits by following available codes (e.g., DNV RP-F101 [103]) and considering the
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First ILI Second ILI Third ILI Fourth ILI OLI

a 2.04% PWT 2.04% PWT -15.28% PWT -10.38% PWT 0
b 0.97 0.97 1.4 1.13 1
ε 5.97%PWT 5.97%PWT 9.05%PWT 7.62%PWT 2.0%PWT

Table 4.5: Constant (a) and proportional (b) biased error and scattering error of
inspection tools [13]

composite pit in this framework.

Having this synthetic data, an estimation for the standard deviation of the

white noise of the state model in APF is calculated by using Equation 4.25.

In order to generate ILI data (Step In-4 in Figure (4.2)), the measurement

error of ILI tools are added to the synthetic data according to Equation 4.14. We

used the same equation to consider measurement error in generating OLI data for

the reference pit (Steps In-2 and In-6) by using characteristics of the OLI tool. This

information for each ILI tool and also the OLI tool is given in Table 4.5. We assumed

that the scattering error is independent and identically distributed for each pit at

each time and it follows a white noise with mean value equal to zero and standard

deviations (εi,j) that are given in Table 4.5 for ILI and OLI tools.

Figure 4.4 shows an example of synthetic actual and measured maximum pit

depth for the OLI and an ILI pit. This figure shows that the frequency of the OLI

data is higher than the frequency of ILI data. In addition, the measurement error

of OLI tool is smaller than the measurement error of ILI tool.
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Figure 4.4: Generated synthetic data for an OLI and an ILI pit

4.6.2 Performing phase II of the proposed framework

The assumptions on phase II for this case study are as following. In Step II-1,

10,000 particles are randomly selected to approximate the posterior distributions of

the maximum depth and the degradation model parameters by APF. In order to

select a proper value for h (kernel smoothing factor), we used 70% of OLI data up

to time T (i.e., 2015 in this case) as the training data set for APF, and then we

found the optimal value of h which gives the minimum RMSE between the predicted

value by APF and the measured maximum pit depth by online inspection for the

test data set (e.g., remaining 30% of the OLI data). Based on this approach the

selected h value for this case study is 0.01. We also assumed that degradation model
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parameters follow normal distributions with mean values that obtained in Step I-4

(e.g., we used 0.23 and 0.73 for a seed number) and standard deviation equal to 0.1

of the corresponding mean value. In addition, the PM-SD of process model noise is

obtained in Step I-3 (e.g., we used 0.008 for a seed number).

In Step II-2 the posterior probability distribution of maximum depth of ILI

pits at ILI times are obtained. In this step, a gamma distribution with shape

and scale parameters equal to ten and one, is selected as the prior distribution for

k. The same assumption has been made for ν and βi with the shape and scale

parameters both equal to one [13]. The generated synthetic ILI data of 100 pits are

used as the evidence in the hierarchical Bayesian analysis to update the posterior

distributions of the maximum pit depth (d). We employed the Markov chain Monte

Carlo simulation technique by using the software OpenBUGS for this analysis. Since

this model is a multi-parameter model, we run two chains, starting at two different

points to decide when convergence to the posterior distribution has occurred [99].

For each chain 100,000 simulation sequences were generated and 10,000 sequences

were discarded as the burn in period. A thinning interval of 10 was selected to

reduce the auto-correlation between the samples.

In Step II-3, by having estimations of maximum depth of ILI and OLI pits

from Steps II-1 and II-2, a similarity index between each ILI and the reference pit

is defined by using Equation 4.26.
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4.6.3 Performing phase III of the proposed framework

Finally in Step III-2, the posterior distribution of maximum depth for each ILI

pit at 2020 is estimated by following the given APF pseudo code in Table 4.1 and

using dummy observations of each in-line inspected pit. Those dummy observations

were generated in Step III-1 following the procedure that is explained in Phase III.

The results of this case study are discussed in the next section.

4.7 Results

In this section, the results of APF analysis in estimation of maximum depth for

the OLI-pit is discussed first. Then, the performance of this framework is validated

by comparing its results with the results of Maes model, assuming there is no change

in operational conditions. Finally, assuming the operational conditions change at

time T (i.e., 2015 in this case), from moderate to severe corrosion rate category,

we illustrate the effects of considering this change (and using this framework) on

pipeline degradation level estimation.

Figure 4.5 shows the estimation of the model parameters for the reference pit

by using APF, when the operational conditions are the same during pipeline life-

cycle. This figure depicts that approximately seven years after the first inspection,

when there is enough data to update the posterior distribution of the model param-

eters, the variation of the model parameters reduces and they converge to constant

values that can be used for prognostic purposes.

Figure 4.6 shows the estimated maximum depth of pit M by using APF. Ac-
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Figure 4.5: Estimated model parameters for the reference pit by using APF for a
random seed number

cording to this figure, between years 2000 to 2020, that OLI data are available, there

is no significant error in maximum pit depth estimation. After 2020, as it was ex-

pected for particle filtering method, the estimation error increases over time because

of lack of new inspection data. However, even after 2020, the actual maximum pit

depth is within the lower and upper bounds of this estimation. Figures 4 and 5

indicate that APF is an appropriate method to estimate maximum pit depth, when

online inspection data are available.

In order to validate the performance of this framework we defined two metrics.

The first validation metric (Metric R) is the RMSE of maximum pit depth prediction

at 2020 (Equation 4.30). This RMSE should be less than or almost equal to the
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Figure 4.6: Estimated maximum depth of the reference pit by APF

RMSE of Maes model. The second validation metric (Metric N) is the percentage

of all pits that their predicted depths fall within the ±10% of their actual maximum

depth. The ±10% PWT is commonly used in the pipeline industry as a confidence

interval for the accuracy of the inspection tools [13] and we modified that in this

work as a metric for accuracy of the prediction. This metric should be greater than

or equal to the one for Maes model. The second metric is defined because a pipeline

is a series system and failure at each location (i.e., pit) is equal to the failure of

the whole pipeline [104, 105]. Therefore having smaller RMSE, does not necessarily

mean that the proposed framework has a better performance. It might be the case

that the estimation errors of a few pits are so small that it causes decrement in the
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Seed No. Metric R(mm),
Maes

Metric R(mm),
Framework

Ratio Metric
N(%), Maes

Metric
N(%),
Framework

1653 0.324 0.308 0.951 72 75
251 0.331 0.308 0.930 69 77
2652 0.337 0.293 0.870 61 73
5412875 0.352 0.352 1.000 68 67
93 0.291 0.365 1.259 78 69
... ... ... ... ... ...
3987 0.288 0.288 0.997 79 78

Average 0.316 0.318 1.010 74 75

Table 4.6: Comparing the results in case of no change in operational conditions

RMSE, but for the majority of the pits, the estimation error have increased. Hence,

both of these metrics should be satisfied to conclude that the performance of the

proposed framework is at least as good as the performance of Maes model when the

operational conditions do not change.

RMSE = (
m∑
i=1

(di − yi)2

m
)0.5 (4.30)

Figure 4.7 and 4.8 depict two examples of the estimated maximum depth at

2020 for two ILI pits by using this framework and Maes model. The SI are 0.98

and 1.17 for pit No.29 and pit No.53 respectively. According to Figure 4.7, for pit

No.29 the estimation error of this framework is less than the estimation error of

Maes model and according to Figure 4.8, for pit No.53 it is vice versa. In order

to quantify the estimation error for all pits to compare the performance of Maes

model and this framework, the RMSE for both models is calculated. The results

for some random seed numbers are given in Table 4.6. As shown in the table, the
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ratio of the RMSE of this framework over the RMSE of Maes model is around one

for all seed numbers (30 seed numbers) and the average of that ratio for all seed

numbers is 1.010. With respect to Metric N, on average for 73.6% and 74.9% of pits,

for Maes model and this framework respectively, the predicted depth is within the

±10% of the actual maximum pit depth. These metrics indicate that when there

is no change in operational conditions, the performance of this framework is similar

to the performance of Maes model as a validated state of the art pitting corrosion

degradation model for piggable pipelines.

Figure 4.7: Estimated maximum depth of pit No.29 by this framework and Maes
model, without change in operational conditions

Relying on the validation results, we used this framework to estimate maxi-

mum pit depth at year 2020 when operational conditions change at 2015. Figure
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Figure 4.8: Estimated maximum depth of pit No.53 by this framework and Maes
model, without change in operational conditions

Seed No. Metric R(mm),
Maes

Metric R(mm),
Framework

Ratio Metric
N(%), Maes

Metric
N(%),
Framework

1653 0.631 0.344 0.545 31 73
251 0.596 0.407 0.683 40 67
2652 0.599 0.328 0.549 29 73
5412875 0.543 0.391 0.718 44 69
93 0.612 0.367 0.601 27 77
... ... ... ... ... ...
3987 0.519 0.322 0.621 42 75

Average 0.556 0.334 0.634 39 75

Table 4.7: Comparing the results in case of considering change in operational
conditions

4.9 and 4.10 are two examples of the maximum pit depth estimation for pit No.50

and pit No.31 respectively. Pit No.50 is an example that shows when operational
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Figure 4.9: Estimated maximum depth of pit No.50 by this framework and Maes
model with change in operational conditions

conditions change, using this framework decreases the estimation error, however, the

opposite is true for Pit No.31. In order to compare the estimation error for all pits,

Metrics R and N are given in Table 4.7, for both methods and for some example

seed numbers. For example for seed number 3987, the RMSE of Maes model is 0.519

and for this framework it is 0.322. Which means the RMSE of this framework is

62% of the RMSE of Maes model, that is a significant improvement in accuracy of

maximum pit depth prediction. As it was mentioned before, this metric is necessary

but not sufficient to conclude that there is an improvement in degradation level

estimation for the whole pipeline. Metric N must also be considered. As it is shown

in Table 4.7, for seed number 3987, Metric N is 42 for Maes model and it is 75 for
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Figure 4.10: Estimated maximum depth of pit No. 31 by this framework and Maes
model with change in operational conditions

this framework. This means that for seed 3987, out of 100 pits, the Maes model

prediction for 42 of them is within ±10% of their actual maximum depth, whereas

our framework is accurate for 75. The average of these two metrics for all seed

numbers are also given in Table 4.7. According to this table, on average, by using

this framework the RMSE is 40% lower than the RMSE of using Maes model when

there is change in operational conditions. In addition, for 75.5% of the pits, the

predicted maximum depth is within ±10% of their actual maximum depth for this

framework in comparison to 39.4% of the pits for Maes model. These results show

a significant improvement in maximum pit depth prediction that leads to avoiding

either unnecessary maintenance or unpredicted failures.
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It is worth noting that when there is a change in operational conditions, going

forward in time, even for the proposed framework, prediction error increases sig-

nificantly because there is not enough observations to update and learn the model

parameters properly. However, this error will be reduced by implementing future

OLI and ILI inspections.

4.8 Conclusion

In this work, a novel data fusion framework is proposed to develop an inter-

nal pitting corrosion degradation model for oil and gas pipelines when operational

conditions change over time. The change in operational conditions is taken into

account by monitoring the change in degradation level of an active pit (the refer-

ence pit) and accordingly inferring about the change in degradation level of other

active pits. This framework consists of three phases. In phase I, historical data

of the considered pipeline or pipelines with similar operational conditions, are used

to develop a generic degradation model for all pits. This model is used to generate

synthetic actual maximum pit depth realizations for a number of pits. The standard

deviation of the white noise that is used in process model in APF is extracted from

these synthetic data. In addition, at this phase, prior values for degradation model

parameters are obtained by performing a nonlinear regression analysis on the OLI

data of the reference pit. In phase II, a similarity index between each ILI pit and

the reference pit is calculated as a ratio of the estimated maximum depth of the ILI

pit (by using a hierarchical Bayesian method based on a non-homogeneous gamma
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process) and the estimated maximum depth of the reference pit (by using APF) at

ILI times. In Phase III, dummy online observations are generated for each ILI pit

by multiplying its similarity index with the OLI data of the reference pit. Then

those dummy observations are used in APF to estimate the maximum depth of ILI

pits when there is no new ILI data.

The application of this framework is discussed by using this framework on a

number of pits and the results are compared with the results of a state of the art

degradation model (Maes model), that has been validated by real field data and

is available in the literature. Two metrics are used to compare the results of this

framework with the results of the Maes model. The first metric is Metric R which is

the average of RMSE between actual and predicted maximum pit depth for all seed

numbers. This metric is necessary but not sufficient to compare the performances

of this framework and the Maes model. The reason is that, it is possible that the

estimation errors of a few pits are so small that it causes decrement in the RMSE,

but for the majority of the pits, the estimation error have increased. We defined

the second metric, Metric N, as the percentage of all pits that the corresponding

predictions are within ±10% bounds of their actual maximum depth.

When there is no change in operational conditions, in terms of Metric R, the

results are approximately the same for the new framework and the Maes model

(i.e., on average of approximately 0.31). In addition, on average for 73% of all pits,

for both this framework and Maes model, the predicted depth is within the ±10%

bounds of their actual maximum pit depth (Metric N).

We also conduct this validation on case study with a change in operational
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conditions. Based on the presented results, by considering change in operational

conditions and using this framework, Metric R, the RMSE, would be approximately

60% of the RMSE of the Maes model which is a significant improvement in maximum

pit depth prediction. In addition, in the case of change in operational conditions,

the predicted depth of 75.5% of pits are within the ±10% of their actual maximum

pit depth by using this framework. This number is 39.45% for Maes model. In the

other words, this framework provides 91% improvement with respect to the number

of pits with a high confidence level estimation. These results show that when there

is a change in operational conditions, using the proposed framework resulted in

decrease in the prediction error for the majority of the pits. These improvements

enable avoiding either unnecessary maintenance or unpredicted failures.

In the next step of this research, we will use the results of this paper to estimate

the probability of occurrence of different failure modes (i.e., small leak, large leak

and rupture) in a pipeline segment and then define an optimal maintenance policy

which takes into account the cost of each failure mode and also the cost of different

maintenance actions (i.e., do nothing, sleeving, and replacement). That optimal

policy will include the optimal maintenance action and time for each segment and

also the optimal next ILI time for the whole pipeline.

Lack of the real field corrosion inspection data is a big challenge in PHM of the

oil and gas pipelines. Hence, it is highly recommended that oil and gas pipelines’

owners and pipeline operating companies collect the operational conditions and

inspection data and make them available in the public domain to make it possible for

the researchers to validate their new corrosion degradation models that finally leads
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to the decrease in the number of unexpected failures and unnecessary maintenance.
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Chapter 5: Development of a hybrid population-based degradation model

for a pipeline segment with high pit density

5.1 abstract

This paper presents a novel algorithm to develop a population-based pitting

corrosion degradation model for piggable oil and gas pipelines. The algorithm is

developed to estimate and predict the distribution of actual depth of the existing pits

on a pipeline segment, given two or more sets of ILI data that have uncertainty in size

and number of the detected pits. This algorithm eliminates the need for a defect-

matching procedure that is required in developing defect-based pitting corrosion

degradation models. A hierarchical Bayesian model based on a non-homogeneous

gamma process is developed in this paper to fuse the uncertain ILI data and POF

knowledge of pitting corrosion process. Measurement error, POD and POFC are

addressed in the developed algorithm. The application of the developed algorithm

is demonstrated by implementing it on a case study and the results are compared

with the simulated data from a generic degradation model that is available in the

literature.
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Symbol Description Unit
a Constant biased error
b Proportional biased error
c Pit initiation time index, 1 for those pits that are initiated before ILI1, 2 for

those that are initiated between ILI1 and ILI2, . . .
d Maximum pit depth mm
dijc Actual depth of a truly detected pit i at tj with the pit initiation time’s index c mm
dd Minimum detection threshold depth of the inspection tool mm
h Bin index
H Number of bins of a histogram
i Pit index
j ILI time index
k Parameter of the power law model mm
mj Number of detected pits at ILIj at tj
mjc Number of detected pits at ILIj that have been initiated at time tc−1

m′jc Expected number of detected pits at ILIj that have been generated at time
tc−1

Mj Actual number of existing pits at tc−1, M0 = 0
Mjc Actual number of existing pits at ILIj that have been initiated at time tc−1

nh Number of pits in bin h
t0 Pit initiation time year
t Time year
tj Time of ILIj
tc−1 Pit initiation time
xijc Actual depth of an existing pit i at tj with the pit initiation time’s index c mm
y Measured maximum pit depth mm
yijc Measured depth of a truly detected pit i at tj with the pit initiation time’s

index c
mm

yc Mean credible measured depth of the inspection tool mm
y′ Predicted value for the measured depth of a pit mm
nh Number of pits in bin h
ν Exponent of the power law model
θ Vector of degradation model’s hyper-parameters k, ν, β
α′jc Shape parameter of the gamma process at time tj for those pits that have

been initiated at time tc−1 by using k, ν that have been estimated based on
the inspection data at ILI1,ILI2,. . . ,ILIj−1

αjc Shape parameter of the gamma process at time tj for those pits that have
been initiated at time tc−1 by using k, ν that have been estimated based on
the inspection data at ILI1, ILI2, . . . , ILIj

Table 5.1: Nomenclature
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Symbol Description Unit
ε Random scattering error mm
β Scale parameter of the gamma process
Actual depth Synthetic actual depth of a pit without measurement error mm
Estimated depth An estimation of the synthetic actual depth of a pit mm
Measured depth Synthetic measured depth of a pit with measurement error mm

Table 5.2: Nomenclature (Cont.)

5.2 Introduction

Having a high confidence estimation of pipelines’ degradation level plays an

important role in pipeline integrity management. Estimated degradation level is the

main input for time to failure or remaining useful life estimation and subsequently

condition-based maintenance optimization of the pipelines. In this way, taking into

account all potential failure mechanisms is necessary. Among different potential

failure mechanism of pipelines, pitting corrosion is one of the main concerns because

of the high rate at which pits can grow [2] and cause unpredicted failures, that may

impose a huge cost to the industry and environment, or unnecessary maintenance.

Hence, in terms of the failure mechanism, the scope of this paper is on pitting

corrosion process.

In terms of the investigated system, the scope of this paper is on piggable

pipelines which approximately includes fifty percent of the pipelines under opera-

tion all over the world [1]. The so-called piggable pipelines are those that their

diameter, geometry, operating condition, product, etc., do not limit the use of avail-

able commercial smart pigs (in-line inspection (ILI)) for their inspection. The ILIs

of pipelines are commonly based on a MFL or UT techniques [85] and those re-
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ports contain the measured maximum depth of the detected pits after processing

the raw collected data (i.e., MFL or UT signals) which have uncertainty in the pit

depth measurement (i.e., ME) and number of pits (i.e., POD and POFC) [106].

Despite significant advancement in the smart pigs technologies and the continuous

improvement in their accuracy, their measurements still include of different types

of uncertainty including measurement error in sizing, probability of not detecting

some of the existing defects, and false call (false positive) for some defects that do

not exist [107]. In order to address those types of uncertainty in pitting corrosion

degradation modeling, two categories of algorithms are developed in the literature:

defect-based and population-based.

The defect-based algorithms, in which the results of sequential ILI of each

individual pits are used to evaluate the growing pattern of that pit, are more common

in literature. In those algorithms, it is essential to match the results of sequential

ILIs based on the location of the pits. Assuming that matched ILI data sets are

available, Maes and Dann [16] proposed a defect-based hierarchical Bayesian (HB)

model to estimate the degradation level of oil and gas pipelines due to localized

corrosion. To address the temporal stochasticity of the pitting corrosion process

they used a gamma process as the underlying stochastic process of their model.

Zhang and Zue [13] validated Maes model by applying that model on four real

pitting corrosion data sets of sixty two pits on an 80 km natural gas pipeline in

Alberta, Canada. They also extended Maes model by assuming inverse-Gaussian

[68] and Bayesian dynamic linear model [69] as the underlying stochastic process. In

all those models, the underlying assumption about the operational conditions is that
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the operational conditions of the pipelines remains the same for the operating life

of the pipelines. Heidary and Groth [84] developed a defect-based pitting corrosion

degradation model to cover the case when the operational conditions of a pipeline

change over time.

Despite the fact that defect-based algorithms are more common in the oil

and gas industry, they are less suitable when the pit density is high, because the

matching procedure is time consuming and prone to error [18, 24]. A population-

based algorithm can be applied as soon as new ILI data become available without

further matching procedure and the results of this algorithm can be used to evaluate

the criticality of the pipeline segment to decide about necessity of extra effort of

a local corrosion growth analysis using matched features [18]. To eliminate the

matching procedure step in the case of having high density pits (e.g., as experienced

in upstream and subsea pipelines [18]), a few population-based methodologies have

been proposed in the literature. The most recent one was proposed by Dann and

Maes [18]. They used KL divergence method to estimate the hyper-parameters of

the degradation model and used a homogeneous gamma process as the underlying

stochastic process. They applied their model in a case study with two sets of ILI data

and did not consider the initiation of new defects after the most recent inspection.

Lu [108] Developed a population based pitting corrosion model, for nuclear power

plants, based on gamma process based on a “repair-on-detection” strategy, which at

least for pipelines is not applicable.

In this paper, we propose a novel population-based algorithm to estimate the

degradation level of piggable pipelines due to pitting corrosion process. In this algo-
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rithm we use non-homogeneous gamma process (NHGP) as the underlying stochastic

process to take into account the temporal uncertainty in pitting corrosion process.

Another reason for using non-homogeneous (vs. homogeneous) gamma process is

that it makes it possible to consider POF knowledge about pitting corrosion process

that is embedded in this well-accepted assumption that growing behavior of maxi-

mum depth of pits follows a power function with a positive power less than one [63,

109] . Moreover, this algorithm is not limited to two sets of ILI data and it can be

used for two or more ILI data sets, which is the common practice in the industry.

We also address the initiation of new pits between the last inspection and the pre-

diction time. We utilize HB modeling to fuse the available two or more unmatched

ILI data sets and the POF knowledge about pitting corrosion process. In this way,

we propose a novel algorithm to cluster the ILI data at each inspection time based

on the initiation time of the different pits. Those clustered data are used in their

corresponding Bayesian model to estimate and update the hyper-parameters of the

pitting corrosion degradation model and the actual depth of the existing pits at

inspection times and also at each point in time in the future. In order to validate

our algorithm, we simulate the actual maximum depth for a number of pits as the

exiting pits based on a non-homogeneous gamma process and. We removed some of

them based on their probability of detecting to consider uncertainty in pit detection.

We add measurement error and probability of false call to the simulated data and

use them as the input data of our algorithm. we also assume that the number of

initiated pits at each interval follows a homogeneous Poisson process. Finally, we

compare the assumed and the estimated distributions of the actual maximum pit,
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the number of the existing pits, and the pit generation rate of the homogeneous

Poisson process.

More details about this algorithm, the case study, and the results are presented

in this paper as follows. Section 5.3 is dedicated to the requirements and assump-

tions. In this section theoretical background about gamma process and HB model

and the reasons that they are suitable for this degradation modeling are explained.

In addition the assumptions behind this algorithm are articulated. In Section 5.4

the developed algorithm is presented in detail and in Section 5.5 it is demonstrated

by a case study. The conclusion is presented in Section 5.6.

5.3 Assumptions and methods

In this section the assumptions that the algorithm is founded on and the

methods that have been used in the algorithm are explained.

5.3.1 Assumptions

This algorithm is developed based on the following assumptions:

• Operational conditions (i.e., probability density function of temperature, pres-

sure, flow rate, etc.) of the pipeline do not change over time and all pits are

under the same operational conditions at each time [13, 14, 16].

• Pits are not interacting each other[18].

• The number of new initiated pits between each two ILI follows a homogeneous

Poisson process (HPP) [64, 110]. Which means pits’ initiation times follow the
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corresponding uniform distribution and time between pits’ initiation follow the

corresponding exponential distribution.

• The detected pits are not mitigated by the maintenance activities.

• n (n≥2) sets of population-based ILI data sets are available. These data

sets are reported by the ILI service companies that had performed the n ILI

operations at t1, t2, ..., tn. And those reported ILI datasets include both true

calls and false calls of the uncertain measurement (yi) of the maximum depth

of each pit of the population.

• The measurement model of the inspection tools is available and follows Equa-

tion 5.1[111].

yi = a+ b ∗ di +N(0, ε) (5.1)

where a and b are biased error and ε is the random scattering error of the

inspection tool which are assumed to be given by the ILI service companies.

yi is the measured depth of pit i and N stands for a normal distribution. This

equation is used to estimate the actual depth of a pit given its measured depth.

• The detection threshold and the credible pit depth of the inspection tools are

given by the ILI service companies. Which are used to calculate the POD

(Equation 5.2) of each pit given its actual depth and the probability of false

call (Equation 5.3) corresponding to each measured depth.

POD(Piti | di, dd) = 1− exp(−di/dd) (5.2)

116



where di represents the actual depth of Piti and dd represents the minimum

detection depth threshold of the inspection tool [13, 24].

POFC(Measurementi | yi, yc) = exp(−yi/yc) (5.3)

where yi represents the ith measured depth and yc represents the mean credible

measured depth of the inspection tool [24].

5.3.2 Homogeneous Poisson Process (HPP)

It is well accepted that pitting corrosion comprises two main processes: pit

initiation and stable pit growth. The pit initiation process can be a consequence of

the breakdown of the passive layer caused by random fluctuations in local conditions

which takes some time, usually called induction (nucleation or initiation) period

[66]. The pit initiation time varies depending on the corrosive environment and

the material properties. In some experimental works, it has been confirmed that

the distribution of the pit initiation time follows an exponential distribution, and

therefore pit initiation can be modeled by using the homogeneous Poisson process

(HPP) [64, 110]. In some other experiments, it has been observed that the pit

initiation time is not distributed uniformly and pit generation rate is a decreasing

function of time for long duration corrosion test [73, 112]. To model this behavior

non-homogeneous Poisson process (NHPP) has been used to model the stochasticity

in pit initiation time [65]. Zhang and Zhou [113] used NHPP by assuming that pit

generation rate is an increasing function of time. Ossai et al. [114] assumed that all
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pits initiated at the starting time of the pipeline operation.

In this paper, we assumed that pit initiation time follows an exponential dis-

tribution and the number of initiated pits at each time interval follows the corre-

sponding HPP. A counting process is a HPP with parameter λ(> 0) if [70]:

• N(0) = 0.

• The process has independent increments

• The number of events (i.e., pits) in any interval of length ∆t is distributed

according to a Poisson distribution with parameter λ∆t:

Pr [n pits in any interval of length ∆t] = [λ(∆t)]n

n!
.e−λ∆t

5.3.3 Non-homogeneous gamma process

The probabilistic pitting corrosion models can be categorized as random-

variable based and stochastic-process based models [15]. The main difference be-

tween these categorise is that the latter one deals with the temporal variability of the

pitting corrosion process, while the former one does not capture it[13]. Among dif-

ferent stochastic-process based models, gamma process is more appropriate to model

pitting corrosion process [15]. Gamma process has been used widely to model degra-

dation processes such as wear, fatigue, and corrosion, which involve monotonically

accumulating damage over time in a sequence of tiny increments [3, 100].

A gamma process is a continuous-time stochastic process {X(t), t > 0} with

the following properties.

118



• X(0) = 0 with the probability 1.

• ∆X = X(τ)−X(t) ∼ Ga(∆α = α(τ)− α(t), β) for all 0 ≤ t < τ

• X(t) has independent increment.

Where Ga represents probability density function (PDF) of a gamma distri-

bution. A random quantity (x) (in this study maximum pit depth) has a gamma

distribution with shape parameter α > 0 and a rate parameter β > 0 if its PDF is

given by:

fX(t)(x) = Ga(x;α, β) =
βα(t)

Γ(α(t))
xα(t)−1exp(−βx) (5.4)

Where Γ(.) denotes the gamma function. Equations 5.5 and 5.6 shows the expecta-

tion and variance of the gamma process respectively.

E(X(t)) =
α(t)

β
(5.5)

V ar(X(t)) =
α(t)

β2
(5.6)

Since the rate parameter of a gamma process is constant and time independent,

according to Equation 4.17, the shape parameter of a gamma process can address

the temporal trend of the average a random variable that follows a gamma process.

Hence, different degradation rate (i.e., increasing, decreasing, or constant) can be

modeled by selecting an appropriate form for the shape parameter of the gamma

process [16].
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In the case of pitting corrosion, it is well-accepted that the mean value of

the maximum depth of an active pit follows a power law function with a positive

exponent less than one [2, 63, 109]. It has been found that pitting corrosion growth

in stainless, mild steels and aluminum alloys follows this form of function [115,

116]. Therefore, in the case of pitting corrosion in carbon steel pipelines, the shape

parameter of the underlying gamma process follows a power function according to

Equation 5.7 and the corresponding gamma process is a non-homogeneous (non-

stationary) gamma process, i.e., ν 6= 1 [3].

α(t) = k(t− t0)ν (5.7)

where k and ν represent the parameters of the pitting corrosion degradation model

and t0 represents the pit initiation time. Accordingly, the distribution of the actual

depth of a pit population at time t follows a gamma distribution given in Equation

5.8.

fX(t)(x) = Ga(α = (k(t− t0)ν , β) (5.8)

5.3.4 Hierarchical Bayesian

In this study, we use a HB model to estimate the hyper-parameters (k, ν,

β) of the pitting corrosion degradation model, and also the actual depth of the

existing pits, given uncertain measurement data and pitting corrosion PoF knowl-

edge. HB modeling is an appropriate method to make scientific inference about

hyper-parameters of the distribution of an unknown of a population, based on ob-
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servations of many individuals. It is called "hierarchical" because it uses hierarchical

or multistage prior distributions [99]. This method has been used in the literature to

develop a defect-based algorithm to model different types of uncertainty (temporal,

spacial, epistemic [117], measurement) related to corrosion growth in the pipelines

[13, 16, 68].

The general population-based HB model that is developed in this study is

depicted in Figure 5.1. In this figure, the temporal plate indicates the time of the

ILIj. Based on the assumption that operational conditions do not change over

time and all pits are under the same operational condition at each time, a same

gamma process is used for all pits for the entire life of the pipeline. Therefore,

the hyper-parameters (k, ν, β) of that gamma process are outside of the temporal

plate. However, the shape parameter of the gamma process, α, is time dependent

(because of the change in tj and tc−1 in Equation 5.7). Therefore, αjc is inside of the

temporal plate and it varies at each inspection time for each category of pits based

on their initiation time. Despite the assumption of HPP for pits’ initiation time,

with respect to degradation level estimation we made this conservative assumption

that for those pits that have been initiated before the first ILI, the initiation time

is tc−1 = t0 = 0 and for those that have been initiated between each two ILIs, the

initiation time of all of them is exactly after the most recent ILI. Hence, after each

ILI, it is necessary to figure out which detected pits are new and which pits have

been initiated previously that may or may not be detected in the previous ILIs.

This clustering step will be discussed in more details in Section 5.4.3.

In Figure 5.1, xijc indicates the actual depth of an existing pit i at tj with the
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Figure 5.1: General HB model for each category of pits at each ILI time based on
their initiation time

initiation time index c, dijc indicates the actual depth of a detected pit i at tj with

the pit initiation time index c, yijc indicates the measured depth of a detected pit

i at tj with the initiation time index c, and rij indicates the measured depth of a

reported pit i at tj. In addition, Rj indicates the number of reported pits at ILIj

including both false and true calls, mjc indicates the number of pits that have been

initiated at time tc−1 and are detected truly (i.e., true calls) at ILIj, Mjc indicates

the number of existing pits at ILIj that have been initiated at time tc−1. As it is

shown in this figure, some existed pit (e.g., x2jc) might be missed to be detected by

the ILI tool at time tj. In addition, some reported pits might be a false call (e.g.,

r3j).

Since at each ILI there are some false call detection and also some existing
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Figure 5.2: Modified general HB model for each category of pits at each ILI time
based on their initiation time

pits that are not detected, the original HB model is modified to the one that is

shown in Figure 5.2. The process of filtering true called pits from the reported pits

is explained in Section 5.4.

This HB model is used to estimate the hyper-parameters and actual depth of

the detected pits by using the Bayes rule according to Equation 5.9.

Pr(dijc, k, ν, β | yijc) = Pr(dijc, θ | yijc)

∝ Pr(yijc | θ, dijc)× Pr(θ, dijc)
(5.9)

5.4 Developed algorithm

In this section, firstly, the general structure of the algorithm, which comprises

three phases, is illustrated and then each phase is articulated step by step.
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5.4.1 General structure of the developed algorithm

Figure 5.3 depicts the general structure of the algorithm which includes three

phases. According to this figure, in phase I, the first ILI dataset is used to estimate

the hyper-parameters of the degradation model, the number of existing pits at at

time t1 and the PMF of the actual depth of those pits at that time. In phase II,

the other ILI data sets are used to update the hyper-parameters, and to estimate

the number of existing pits and the PMF of their actual depth at time t2, ..., tn.

The main difference between phase I and phase II is in a clustering step. Since

it is assumed that all existing pits at time t1, has been initiated at t = 0, hence

all of them follow a same degradation model. However, at other inspections times

and also in prediction time, there are clusters of pits with different initiation times.

Therefore, we developed a clustering algorithm to categorise the detected pits at each

inspection time based on their initiation times to be used on their corresponding

Bayesian models. In phase III the rate parameter of the assumed HPP and the

number of pits that are expected to be initiated between the time of the last ILI

and the prediction time are estimated. Finally, the PMF of the actual depth of the

existing pits at time tn+1 is estimated. The details of these three phases are given

in the following subsections.

5.4.2 Phase I: Using the first ILI dataset

In phase I the first set of reported ILI data is used to find the first estimation

of hyper-parameters (k, ν, β) of the NHGP representing the maximum pit depth

124



Figure 5.3: General structure of the developed algorithm

growing behavior, the number of the existing pits, and the probability mass function

(PMF) of their actual depth at time t1, by performing the following steps:

• Step I-1: Filter the truly detected pits from the reported pits:

For each reported measured depth, generate a random uniform number be-

tween zero and one. If the probability of false call of that measured pit depth

(use Equation 5.3) is higher than that random number, remove that measure-

ment from the dataset and if not keep it.

• Step I-2: Estimate the hyper-parameters and the actual depth of the detected

pits:

Use the measured depth of the m11 truly detected pits at ILI1 and the prior

values (p1,2,3 , q1,2,3) in the corresponding HB (Figure 5.4) to obtain the first
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Figure 5.4: Modified HB model for ILI1

estimate of the hyper-parameters and the actual depth of the truly detected

pits at t1 by using the Bayes rule (Equation 5.9). Non informative prior

distributions (i.e., uniform distributions) can be selected for prior distributions

of the hyper-parameters in this Bayesian model (Figure 5.4). In other words

p1,2,3 > 0 are the lower bounds of the prior uniform distributions and q1,2,3 > 0

are the upper bounds. The only prior information is that the upper bound

of ν (q1) is equal to one based on PoF knowledge of internal pitting corrosion

process.

• Step I-3: Estimate the number of existing pits at t1 (M1) given the number of

truly detected pits (m11):

Discretize the PMF of di11 to H number of bins and estimate the number of

126



existing pits at each bin by using Equation 5.10 [29, 106].

nh(PMF (X1)) = nh(PMF (D1))/PODh

h = 1, 2, · · ·, H
(5.10)

where nh is the number of pits in bin h and PODh is the corresponding POD

which can be calculated by using the mean value of bin h in Equation 5.2

[add ref]. The total number of existing pits at time t1 can be estimated by

summing the frequency of all bins of the PMF of xi11 by using Equation 5.11.

M1 =
H∑
h=1

nh(PMF (xi11)) (5.11)

• Step I-4: Estimate the PMF of the actual depth of the existing pits:

For those bins that the frequency in PMF of xi11 is higher than the frequency

of PMF of di11, generate nh(PMF (xi11))−nh(PMF (di11)) number of random

uniform values between the start and end depth of that bin.

The output of this phase are an for the hyper-parameters (k, ν, β), the number

of the existing pits, and the probability mass function (PMF) of their actual

depth at time t1.

5.4.3 Phase II: Incorporating additional data sets

In phase II, the additional ILI data sets are incorporated to update the degra-

dation model’s hyper-parameters, and to estimate the number and the actual depth

of the existing pits at tj, j = 2, ..., n. As mentioned previously, in this phase, a
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clustering step is required to categorise detected pits based on their initiation times.

Phase is explained in detail for ILI2 as following and the same approach is

applicable for the next ILIs.

• Step II-1: Filter the truly detected pits from the reported pits at ILI2:

For each reported measured depth, generate a random uniform number be-

tween zero and one. If the probability of false call of that measurement (use

Equation 5.3) is higher than that random number, remove that measurement

from the dataset and if not keep it.

• Step II-2: Estimate the number of pits of each cluster that are expected to

have been detected at t2:

The general idea of the clustering algorithm is to estimate how many of those

pits that have been initiated before ILI1 (M1) are expected to have been

detected at ILI2 ( m′21). Then subtract that number from the number of truly

detected pits at ILI2 (m2) to find the expected number of those pits that have

been initiated between ILI1 and ILI2 and are expected to have been detected

at ILI2. The general idea of the this step is shown in Figure 5.5. According

to this figure, at each inspection time, there are a number of truly detected

and undetected pits. The goal is to estimate how many of those pits that were

initiated before ILI1 (M1), are expected to have been detected at ILI2 ( m′21),

given the first estimation of the hyper-parameters that are obtained in Phase

I, and the number of truly detected pits at t2 (m2).

Since in a gamma process the rate parameter is time independent, the esti-

mated rate parameter at time t1, can be used in time t2. However, for the
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shape parameter, which is time dependent, the estimated k and ν, in phase

I, in conjunction with t2 are used in Equation 5.7 to find α′21 = k(t2 − 0)ν .

By using those rate and shape parameters, the expected PDF of the actual

maximum pit depth of the pit population can be estimated by using Equation

5.8 (g′21(x) = Ga(α′21, β)). Then m′21 can be obtained by integrating the ex-

pected PDF times the corresponding POD on all possible values of maximum

pit depth (x), multiplied by the number of pits that have been initiated before

time t1 (M1) (Equation 5.12).

Based on the assumption of NHGP as the underlying stochastic process of

pitting corrosion process, the expected PDF of the actual depth of the pits

that have been initiated before ILI1, follows a gamma distribution (g′21(x)) at

time t2 with a shape parameter equal to α′21 = k(t2−0)ν and a scale parameter

equal to β (Equation 5.8).

m′21 = M1

∫
g′21(x)POD(x)d(x) (5.12)

129



Figure 5.5: Estimating number of the pits that were initiated before ILI1 that are
expected to have been detected at ILI2

And m′22 can be calculated by subtracting m′21 from the total number of truly

detected pits (m2) at t2 by using Equation 5.13.

m′22 = m2 −m′21 (5.13)

• Step II-3: Assign each truly detected pit to a cluster:

At this step m′21 number of truly detected pits at t2 are assigned to one cluster

and m′22 of them are assigned to another cluster. To do so:

– Generate m′21 random number from g′21(x) and use Equation 5.1 to find

the PMF of Y ′21.

– Generate m′22 random number from g′22(x) = Ga(α′21 = k(t2 − t1)ν , β)

and use Equation 5.1 to find the PMF of Y ′22.

– Discretize PMF of Y2 and PMF of Y ′21 with the same bins intervals.

– Use the following pseudo code to assign each truly detected pits to a
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cluster:

Set PMF(Y21[all bins]).freq = 0

Set PMF(Y22[all bins]).freq = 0

For i = 1 to m2

BIi = corresponding bin to pit i (find out each pit

belongs to which bin).

If PMF(Y21[BIi]).freq < PMF(Y ′21[BIi]).freq:

ClusterIndexi = 1.

PMF(Y21[BIi]).freq = PMF(Y21[BIi]).freq + 1.

else:

ClusterIndexi = 2.

PMF(Y22[BIi]).freq = PMF(Y22[BIi]).freq + 1.

End

In this pseudo code, BIi stands for the bin index of pit i and .freq stands

for the frequency of bin BIi.

• Step II-4: Update the hyper-parameters and estimate the actual depth of the

detected pits at ILI2:

Use the clustered measurement data in ILI2 in the HB model that is shown

in Figure 5.6 to update the estimation of the hyper-parameters and also to

estimate the actual depth of the truly detected pits. It is worth noting that in

this HB model, the prior values for the hyper-parameters are their estimated

values in Phase I.

• Step II-5: Estimate the number of actual pits (M2) given the number of truly
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Figure 5.6: Modified HB model for ILI2

detected pits (m2) at ILI2:

Follow the same approach that has been used in Phase I to estimate M2

according to Equation 5.14.

M2 =
H∑
h=1

nh(PMF (X2)) =
H∑
h=1

nh(PMF (D2))/PODh (5.14)

• Step II-6: Estimate the PMF of the actual depth of the existing pits at ILI2:

For those bins that the frequency of PMF(X2) is higher than the frequency

of PMF of D2, generate nh(PMF (X2)) − nh(PMF (D2)) number of random

uniform values between the start and end depth of that bin.

For ILIj, j > 2, the same steps should be followed. To shorten the paper, the

algorithm is not demonstrated for those ILIs in details and the related equations

are generalized as follows:

α′jc = k(tj − tc−1)ν (5.15)
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m′jc = (Mc −Mc−1)

∫
g′jc(x)POD(x)d(x), c = 1, ..., j − 1 (5.16)

m′jj = mj −
j−1∑
c=1

m′jc (5.17)

Mj =
H∑
h=1

nh(PMF (Xj)) =
H∑
h=1

nh(PMF (Dj))/PODh (5.18)

The output of phase II are the updated hyper-parameters, the number of the

existing pits, and the probability mass function (PMF) of their actual depth at times

tj, j=2,...,n.

5.4.4 Phase III: Prognostics

In phase III the rate parameter of the HPP is estimated and the PMF of the

actual depth of the existing pits at any time after the last ILI can be predicted.

This phase includes the following steps:

• Step III-1: Estimate the rate of HPP:

As it was mentioned before, we assumed that the actual number of pits at each

time interval follows a homogeneous Poisson process. By having the estimated

number of existing pits at each ILI (M1,M2−M1,M3−M2, ...) a point estimate

of the rate parameter of that Poisson process can be estimated by using the
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maximum likelihood estimation:

λ̂ =

∑n
j=1(Mj −Mj−1)∑n
j=1(tj − tj−1)

=
Mj

tj
(5.19)

• Step III-2: Estimate the number of new pits between the last ILI and the

prediction time (tn+1):

The mean value of the number of initiated pits between the last ILI and tn+1

is calculated by using Equation 5.20 which is the mean value of a Poisson

distribution.

Mn+1 −Mn = λ̂× (tn+1 − tn) (5.20)

• Step III-3: Estimate the PMF of the actual depth of the existing pits at tn+1:

The final step is to predict the PMF of the existing pits at time tn+1. To do so,

for each cluster of pits, pit initiation times are randomly generated from the

corresponding uniform distribution (since the number of pits follows a HPP,

the pit initiation times follows a uniform distribution and the times between

initiations follow an exponential distribution). The lower and upper bound of

each uniform distribution is equal to the start and end point of each inspection

interval and the number of random number at each time interval is equal to

the numbers that are estimated previously (i.e., M1,M2, ...,Mn+1). Those

generated initiation times in conjunction with the updated hyper-parameters

are used in the corresponding NHGP for each cluster according to Equation
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5.21 to estimate the PMF of the existing pits at tn+1.

xi(n+1)c = random.gamma(k[tn+1−

random.uniform(tc, tc−1)]ν , β),

i = 1, ...,Mn+1

(5.21)

The output of phase III are an estimation for the HPP rate parameter, the

number of pits that will initiate between the last ILI and the prediction time and

the PMF of actual depth of existing pits at the prediction time.

The application of the developed population-based algorithm is demonstrated

in the next section by applying that on three sets of simulated ILI data and the

estimated results are compared with the actual assumed values.

5.5 Demonstration of the developed algorithm

In this section the developed algorithm is demonstrated in a case study. Con-

sider a pipeline that has been inspected three times (n = 3) by ILI, after t1 =

30, t2 = 37, t3 = 42 years of operation. ILI data sets (i.e., reported number of pits

and their measured depth (a combination of false calls and true calls)) for a segment

of the pipeline are available. The ILI data sets are not matched because of the high

density of the existing pits. The goal is to estimate the number of the new pits

that are expected to be initiated between the time of the last ILI and 50 years (t4,

prediction time) of operation and then using this result, estimating the distribution

of the actual depth of the existing pits at prediction time to be used in pipeline
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Parameters Units Description

T C Temperature
Pc MPa CO2 partial pressure
pH - pH
S MgL−1 Sulphate ion
C MgL−1 Chloride ion
W - Water cut
r Pa Wall shear stress
Gs m3day−1 Gas production rate
OL m3day−1 Oil production rate
Wt m3day−1 Water production rate
Pt MPa Operating pressure

Table 5.3: Operational parameters considered in the underlying generic model for
data simulation [14]

reliability estimation and consequently condition-based maintenance optimization.

5.5.1 Case study data

Since the real field ILI data for a population of pits, are not available in the

literature, we simulate three sets of ILI data by using a generic internal pitting

corrosion degradation model that has been developed by Ossai et al. [14] to demon-

strate the application of the developed algorithm and validate the results. Ossai’s

model was developed by using ten years (from 1999 to 2008) measurement of pit

depth (using UT) and operating parameters for sixty X52 non-piggable oil and gas

pipelines in Nigeria. To the best of authors’ knowledge, this model is the most

comprehensive generic population based model that has been developed based on

field data (rather than experimental data). This model correlates eleven operational

parameters (Table 5.3) with the average of the maximum depth of a population of

pits.

The simulated data are generated by using the parameters that are given in
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Table 5.4. In this table the hyper-parameters are based on Ossai’s model [14]. The

characteristics of the sizing error of inspection tools (a, b, ε in Equation 5.1) are the

characteristics of an UT tool that has been used at 2004 in Alberta, Canada [13]).

The HPP rate is selected in a way to have the same order of magnitude of number

of pits as is given in [18] and dd and yc are selected according to [24].

Given the assumed value in Table 5.4, following approach is used to generate

simulated ILI data. The numbers of initiated pits at each time interval is calculated

by generating a random number from the corresponding Poisson distribution with

the rate parameter equal to λ∆t (Table 5.5). The actual depth of each initiated

pit, at each evaluation time (inspection times and prediction time), is calculated

by generating a random number from the corresponding gamma distribution . The

shape parameter of the gamma distribution corresponding to each pit is equal to

k(tj − t0)ν . Where tj is the evaluation time, and t0 is the initiation time of that

pit which is a uniformly distributed (i.e., HPP) random number between the start

and end point of the time interval in which that specific pit is initiated in. The

scale parameter of the gamma process is β. In order to consider POD in simulated

data, a uniform random number is generated for each initiated pit and if that random

number is less than the POD of that pit (Equation 5.2), it is considered as a detected

pit, otherwise it is considered as an undetected one (hit-miss POD model[111]). For

each detected pit, the measurement error is added by using Equation 5.1. At this

stage the PMF of the detected pits at each evaluation time is available. In order

to add the false call error to the simulated dataset, the PMF of the detected pits is

discretized to a number of bins. Then the frequency of each bin is divided by (1-
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Param. value Param. value

k (mm) 0.12 a (% PWT) 2.04
ν 0.771 b 0.97
β 3.5 ε (% PWT) 5.97
λ 80 dd (% PWT) 10
PWT (mm) 8.41 yc (% PWT) 20

Table 5.4: Assumed values for input data simulation

Time (yr) Exist. pits No. Repor. pits No.

t1: 30 2374 2516
t2: 37 2955 3484
t3: 42 3336 3781
t4: 50 3967 —–

Table 5.5: Number of existing and reported pits at each time interval

POFC) of the mean value of that bin (using Equation 5.3) to find the frequency of

the corresponding bin in the PMF of reported pits (rij in Figure 5.1). For those bins

that the frequency of the PMF of the reported pits is higher than the frequency of

the PMF of the detected pits, uniformly distributed random measurements, between

the lower and upper bound of each bin, are added to the reported dataset as false

calls reported measurements. The number of those false called measurement for each

bin is equal to the difference between the frequency of the PMF of the reported pits

and the frequency of the PMF of the detected pits. The PMF of the reported pits

are assumed as the reported data from the ILI service companies. Implementation

of the algorithm on these data sets is explained as following.

5.5.2 Phases of the algorithm for the case study

5.5.2.1 Phase I for the case study

• Filter the truly detected pits from the reported pits of ILI1:
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Figure 5.7: PMF of the reported and true calls measurements at ILI1

Mean std. 2.5%Qt. 97.5%Qt.

k 0.51 0.29 0.11 1.04
ν 0.37 0.20 0.11 0.75
β 3.07 0.13 2.83 3.33

Table 5.6: Estimated hyper-parameters at t1

Following the procedure that is explained in Step I-1 the PMF of the truly

detected pits is extracted from the PMF of the reported measurements as

shown in Figure 5.7. According to this figure, the number of false measurement

for pits with smaller depths is higher than the one for the deeper ones. Hence,

the number of the filtered measurements is higher for smaller pits.

• Estimate di11 and first estimate of the hyper-parameters:

The marginal distribution of the actual depth of the truly detected pits (di11)

and the hyper-parameters are obtained by using HB model in Figure 5.4. The

estimated hyper-parameters with 95% confidence level are given in Table 5.6.

• Estimate M1 and PMF of existing pits at t1:

By disceretizing the PMF of di11 to H = 100 bins and using Equation 5.10 and
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Figure 5.8: Simulated and estimated PMF of pits’ actual depth at t1(X1)

5.11, the estimated number of existing pits at t1 is obtained as M1 = 1816.

Then the PMF of the exiting pits at t1 is estimated by following the procedure

that is explained in Section 5.4.2. Figure 5.8 shows a visual comparison be-

tween the assumed and estimated PMF of the existing pits at t1. This figure

shows that for the first set of ILI dataset, the performance of the developed

algorithm is visually acceptable. A quantified comparison between these two

PMFs is given in the Discussion section.

5.5.2.2 Phase II for the case study

• Estimate m′21 and m′22:

The first step in phase II is to filter the truly detected pits from reported pits

by following the procedure that explained in Step II-1. Then it is desirable to

estimate the number of pits that have been initiated before t1 and are expected

to have been detected at t2 (m′21). In this way α′21 is equal to 1.97 by using
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Mean std. 2.5%Qt. 97.5%Qt.

k 0.13 0.01 0.11 0.16
ν 0.72 0.03 0.66 0.76
β 3.02 0.08 2.88 3.19

Table 5.7: Updated hyper-parameters at t2

the estimated k and ν in Phase I, tj = t2, and tc−1 = t0 = 0 in Equation

5.15. Consequently, m′21 is calculated as 1708 by using this shape parameter

and the scale parameter that is estimated at t1 in Equation 5.12. Accordingly,

based on Equation 5.13, m′22 = m2 − m′21 = 528. By having α′21, β, m′21,

m′22, and following the procedure that is given in Step II-3, the PMF of Y ′21

and Y ′22 are obtained. Then, by using the given pseudo code, the detected

pits at t2 are clustered.

• Update the hyper-parameters and estimate the actual depth of the detected

pits at ILI2:

The next step in Phase II is to use the clustered measurements in the HB

model that is shown in Figure 5.6. It is worth noting that the posterior

distributions at Phase I are the prior distributions of this HB model. The

updated hyper-parameters are shown in Table 5.7.

• Estimate the number of existing pits (M2) and the PMF of their actual depth

at t2:

By following Step II-5 and II-6, the number of existing pits at t2 is obtained as

2541. The PMF of the simulated and estimated actual depth of the existing

pits at t2 are depicted in Figure 5.9.

To shorten the paper, the steps are not discussed in detail for ILI3. The
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Figure 5.9: Simulated and estimated PMF of pits’ actual depth at t2(X2)

updated hyper-parameters are given in Table 5.8 and the other results are presented

briefly as following.

α′31 = k(t3 − t0)ν = 1.93 (5.22)

α′32 = k(t3 − t1)ν = 0.78 (5.23)

α′33 = k(t3 − t2)ν = 0.41 (5.24)

m′31 = (M1)

∫
g′31(x)POD(x)d(x) = 1704 (5.25)

m′32 = (M2 −M1)

∫
g′32(x)POD(x)d(x) = 425 (5.26)
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Mean std. 2.5%Qt. 97.5%Qt.

k 0.16 0.001 0.158 0.162
ν 0.67 0.004 0.66 0.68
β 3.17 0.013 3.14 3.19

Table 5.8: Updated hyper-parameters at t3

Figure 5.10: Simulated and estimated PMF of pits’ actual depth at t3(X3)

m′33 = m3 −
2∑
c=1

m′3c = 502 (5.27)

M3 =
H∑
h=1

nh(PMF (X3)) =

H∑
h=1

nh(PMF (D3))/PODh = 2870

(5.28)
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Figure 5.11: Simulated and estimated PMF of pits’ actual depth at t4(X4)

5.5.2.3 Prognostics phase for the case study

Having those three sets of ILI data at 30, 37, and 42 years after pipeline

operation, the goal is to estimate the actual depth of the existing pits at t4 = 50.

To do so, by using maximum likelihood estimation (5.19), the rate parameter of the

assumed underlying HPP (λ) is obtained as 68. Consequently the expected number

of new pits is equal toM4 = λ(t4− t3) = 68×(50−42) = 544. By using the updated

hyper-parameters at t3 (Table 5.8) and the number of initiated pits at each time

interval, Equation 5.21 is used to find the actual depth of the existing pits at t4.

The PMF of simulated and estimated actual depth of existing pits at t4 are shown

in Figure 5.11
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Assumed ILI1 ILI2 ILI3

k 0.12 0.51 0.13 0.16
ν 0.771 0.37 0.72 0.67
β 3.5 3.07 3.03 3.17
α11 1.65 1.50 — —
α21 1.94 — 1.75 —
α22 0.54 — 0.53 —
α31 2.14 — — 1.97
α32 0.81 — — 0.85
α33 0.41 — — 0.47

Table 5.9: Comparing hyper-parameters

5.5.2.4 Discussion

For the sake of comparison, the mean value of the hyper-parameters and the

shape parameters of the gamma process at evaluation times are given in Table

5.9. According to this table, although the estimated hyper-parameters k and ν are

not so close to the assumed ones, the absolute error of the estimated β and shape

parameters (αjc ) are less than 10%.

The assumed and estimated number of exiting pits at each time interval is

given in Table 5.10.

The next comparison is on the rate parameter of the HPP. As mentioned in

phase III of the case study, the estimated rate for the underlying HPP is 72 which

is in the ±10% boundary of the assumed value (80). This ±10% criteria is selected

Assumed Pit.No. Estimated Pit.No.

0-ILI1 2374 1816
ILI1-ILI2 577 725
ILI2-ILI3 381 329
ILI3-Prediction 631 544

Table 5.10: Comparing No. of pits
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based on the ±10% boundary that is accepted for depth estimation in the oil and

gas industry [13].

In order to quantify the difference between simulated and estimated distri-

bution of the actual depth of the existing pits at each evaluation time, Kullback

Leibler divergence (KLD) [118] measure is used. KLD is a measure to find the rel-

ative entropy between two probability distribution on a random variable. Equation

5.29 shows this measure between two probability distribution functions (P(x) and

Q(x)).

KLD(P ||Q) =
∑
x∈X

P (x)log
P (x)

Q(x)
(5.29)

In this equation, usually P considered as the true distribution of data (in this

case simulated actual depth of the existing pits) and Q comes from the proposed

model that used to approximate the true distribution (in this paper estimated actual

depth of the existing pits(Xj)) [119]. Larger KLD indicates less similarity between

two distributions. Since KLD is not a symmetric distance, we used symmetric KLD

(SKLD) to compare similarity between two distributions [120, 121] according to

Equation 5.30.

SKLD(P ||Q) = 1/2[KLD(P ||Q) +KLD(Q||P )] (5.30)

In case of having two distributions that are the exactly the same, the KLD and

SKLD are equal to zero. In other words, the smaller value for KLD or SKLD the

two distributions are more similar. SKLDs for the normalized PMF of the simulated
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and estimated actual depth of existing pits at evaluations times are shown in Table

5.11. According to this results, the developed population-based algorithm has an

acceptable performance (relatively small values for SKLD) and its performance is

improved by arriving new ILI data (i.e., values for X3 and X4 in comparison to the

values for X1 and X2).

In addition to SKLD measure, we compared the results with χ2 distance mea-

sure (Equation 5.31).

χ2 =
∑
h

(Ph −Qh)
2

(Ph +Qh)
(5.31)

where P and Q are the normalized histograms to be compared and index h refers to

hth bin.

This distance measure for different evaluation times are given in Table 5.11.

Analogous to KLD measure, the smaller χ2 shows that two compared distributions

are more similar. In order to have a criteria to compare the calculated χ2 distance,

this measure is also calculated for the case when there is no overlap between the

distributions of simulated and estimated actual depth (by shifting the simulated

distributions from the estimated distribution in a way to have no overlap). According

to Table 5.11, the χ2 measures results also show that the developed algorithm have a

good performance in terms of predicting the PMF of the actual depth of the existing

pits at inspections times and also at prediction time after the last ILI.

147



X1 X2 X3 X4

SKLD 0.187 0.226 0.112 0.030
χ2 0.233 0.075 0.397 0.033
χ2 (Shifted distributions) 1.994 1.999 1.990 1.984

Table 5.11: SKLD and χ2 measures

5.6 Conclusion

The paper presents a novel algorithm to evaluate pipeline degradation due to

pitting corrosion when the pit density is high. The algorithm employs the NHGP to

address the temporal uncertainty and the POF knowledge about pitting corrosion

process and homogeneous Poisson process to model the variation in pits’ initiation

time. This algorithms incorporates the sequential ILI data in degradation analysis

by using the HB method and Markov Chain Monte Carlo simulation. A clustering

algorithm is developed to cluster the detected pits based on their initiation times to

be used in the corresponding HB model. Different types of measurement uncertainty

(measurement error, POD, and POFC) are taken into account in this algorithm.

An example involving simulated ILI data used to illustrate the developed al-

gorithm. We assumed that three ILI data sets are available for a pipeline segment.

In addition to the degradation model’s hyper-parameters, we estimated the num-

ber of existing pits and the distribution of their actual depth at each ILI time. In

prognostic phase, the rate parameter of the underlying HPP is estimated by using

maximum likelihood estimation and subsequently the number of new initiated pits in

the future. Finally we estimated the PMF of the actual depth of the existing pits in

the future which is the main input in pipeline reliability analysis and condition-base

148



maintenance optimization.

We verified the result of this algorithm by comparing the assumed and esti-

mated hyper-parameters, number of initiated pits, and rate parameter of the HPP.

In addition we compared the PMF of the simulated and estimated actual depth of

exiting pits at each evaluation time by using the SKLD and Chi-Square methods.

In the next step of this research we will use the estimated degradation level to

evaluate the reliability of the pipeline (i.e., the probability of different failure modes

(small leak, large leak, and rupture)) to be used in maintenance optimization. The

recommendation for future work of this study is to use non-homogeneous Poisson

process to model the variation in pits’ initiation times. Considering different inspec-

tion tools with different characteristic will be investigated as well. Another potential

area to extend this study is to find an optimal number of bins in discretizing the

PMFs, since this algorithm is sensitive to this number.

Finally it is worth noting that lack of the real ILI data is a big challenge

in PHM of the oil and gas pipelines. Hence, it is highly recommended that oil

and gas pipelines’ owners and pipeline operating companies collect the operational

conditions and inspection data and make them available in the public domain to

make it possible for the researchers to validate their new corrosion degradation

models that finally leads to the decrease in the number of unexpected failures and

unnecessary maintenance.
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Chapter 6: Development of a methodology to estimate the reliability

and RUL of a pipeline with multiple segments of varying

pit density

6.1 Introduction

In risk analysis and maintenance optimization of a pipeline, it is necessary to

convert the estimation of maximum pit depth from the models in Chapters 4 and 5

into a reliability metric (e.g., probability of failure, mean time to failure, remaining

useful life). In other words, it is necessary to evaluate if the estimated degradation

level causes a failure mode or not. This section is dedicated to reliability analysis of

a pipeline degraded due to internal pitting corrosion when in some segments of the

pipeline have low pit density and other segments have pit density.

Since failure at any location of the pipeline will result in the failure of the whole

pipeline, the pipeline is modeled as a series system. Eq. 6.1 shows the relationship

between reliability of the whole pipeline and the reliability of each segment.

Rsys(t) =
S∏
1

Rs(t) (6.1)

where Rsys(t) is the reliability of the whole pipeline, at time t, S represents
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the number of the segments, and RS(t) stands for the reliability of segment s at

time t. It is worth noting that in this evaluation, a segment is a portion of the

pipeline with an individual pit or a population of pits that are evaluated as a single

unit. For the case of low density pits the developed defect-based degradation model

(Ch. 4) is used, and for the case of high density pits the developed population-based

degradation model (Ch. 5) is used to evaluate the degradation level of the pipeline.

The reminder of this chapter is organized as follows. Section 6.2 presents

three potential failure modes and reliability analysis of oil and gas pipelines due to

internal pitting corrosion. In Section 6.4 a case study is presented to demonstrate

the application of the proposed methodology. And Section 6.5 is dedicated to the

summary of this chapter.

6.2 Pipeline failure modes and reliability analysis

A pressurized pipeline can fail in one of these three failure modes: small leak,

large leak, or rupture [13, 25]. A small leak occurs when a pit depth reaches the

PWT. In practice, 80% of the PWT is considered as the threshold for assuming

a small leak will occur. Using 80% PWT instead of PWT is consistent with the

literature [13, 122]. In addition, industrial practice suggests that once the defect

reaches 80% PWT, it is prone to develop cracks that can lead to a leak [13]. The

other two failure modes occur because of the plastic breakdown of the pipe wall

due to internal pressure, which can occur when the pit depth is less than the small

leak threshold. These two failure modes together are referred to as pipe burst. The
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difference between a large leak and a rupture is in the occurrence (or not) of an

unstable axial propagation of the defect resulting from the burst. In the case of

having an unstable axial propagation, the failure mode is considered as a rupture,

otherwise, it is categorized as a large leak [25].

In order to calculate the probability of occurrence of each of those failure

modes, proper limit state functions (LSF) must be defined and analyzed for each

failure mode. Generally, a limit state function (f(x)) for estimating the failure

probability can be defined as

f(x) = R− L(x) (6.2)

Where R is the resistance and L indicated the load. The LSF f(x) defines a

failure criterion as a function of x. Based on this LSF, failure occurs when f(x) < 0

or L(x)>R [123]. The three LSF for pitting corrosion in oil and gas pipelines are as

follows.

The limit state function for the small leak is given in Equation 6.3.

f1 = 0.8PWT − d (6.3)

where d is the maximum pit depth at each point in time. Based on this LSF, small

leak happens when f1 < 0, i.e., if maximum pit depth is higher than 80%PWT.

The limit state function to calculate the probability of occurrence of burst

(due to due to internal pressure) in a pipeline segment, containing a pit with the
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maximum depth of d, is given in Equation 6.4.

f2 = Pb − Pop (6.4)

where Pb stands for the burst pressure and Pop stands for the operational pressure

of the pipeline. Based on this equation when Pop > Pb burst (i.e., large leak or

rupture) happens in the pipeline. Several models are available in the literature to

calculate a pipeline’s burst pressure given pit depth and length, pipeline material

properties, and the geometry of the pipeline. In this study the PCORRC (Pipeline

CORRosion Criterion) model [27] is used which is given in Equation 6.5.

Pb = ζ
2σuPWT

D
[1− d

PWT
(1− exp( −0.157l√

D(PWT−d)
2

))] (6.5)

where σu is the ultimate tensile strength of the pipe material, D is the pipe diam-

eter, l is the defect length, and ζ is the model error. This model is applicable for

d/PWT ≤ 0.8 and l ≤ 2D [13, 26].

The limit state function for rupture is given in Equation 6.6.

f3 = Prp − Pop (6.6)

where Prp stands for the rupture pressure and Pop stands for the operational pressure

of the pipeline.

Calculation of rupture pressure can be implemented by using the model that

153



has been developed by Kiefner and Vieth [26] as follows.

Prp =
2σfPWT

MD
(6.7)

M =


√

1 + 0.6275 l2

D.PWT
− 0.003375 l4

D2PWT 2 ,
l2

D.PWT
≤ 50

0.032 l2

D.PWT
+ 3.293 , l2

D.PWT
> 50

(6.8)

where σf is the flow stress which is defined as 0.9σu. Equation 6.4 in conjunction

with Equation 6.6 are used to calculate the probability of occurrence of large leak

or rupture. If Pb < Prp < Pop rupture happens and if Pb < Pop < Prp then large

leak happens. A summary of different conditions that lead to these failure modes is

given in Table 6.1.

Pipeline health state

f1 ≤ 0, f2 > 0 Small leak
f1 > 0, f2 ≤ 0, f3 > 0 Large leak
f1 > 0, f2 ≤ 0, f3 ≤ 0 Rupture
Otherwise Safe (No failure)

Table 6.1: Criteria for occurrence of different health states (failure modes or safe
operation). f1, f2, f3 refer to limit state functions defined in Equations 6.3-6.6.

Given the distributions of the pipeline material properties, pipeline geometry,

and also the operational pressure, Monte Carlo simulation can be used to sample

from their distributions, to be used in the above mentioned LSFs. The pseudo

code given in Table 6.2 can be used to find the point estimate for the reliability

of a pipeline at each point in time. In addition Equation (6.9) is used to find the

confidence interval of the estimated reliability at each time given the confidence level
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[124].

Lower, Upperboundsof ˆR(t) = ˆR(t)± z(α/2)
√
V ar(R(t))/samplesize (6.9)

where z stands for the standard normal distribution, α is the 1- confidence

level, ˆR(t) represents the point estimate of the pipeline reliability at time t, nf

is the number of failure in the Monte Carlo simulation and nit is the number of

iterations.
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Rsys = 1
For t = 1:T (number of time steps):
For s = 1:S (number of segments):
For n = 1:N (number of iteration at each time step):
nsm = number of small leaks = 0
nl = number of large leaks = 0
nr = number of ruptures = 0
ns = number of safe operations = 0
For i = 1: nit ( number of degradation iterations at each time step iteration):
Sample a random number from the distributions of D,PWT, σu, Pop, l, ζ (Table 6.3).
Sample a random number from the estimated maximum pit depth distribution (use the
defect-based (Ch.4), and population-based (Ch.5) model).
Calculate f1, f2, and f3 according to Eqs. 6.3, 6.4, 6.6.
If f1 ≤ 0, f2 > 0 then nsm = nsm + 1
Else If f1 > 0, f2 ≤ 0, f3 > 0 then nl = nl + 1
Else If f1 > 0, f2 ≤ 0, f3 ≤ 0 then nr = nr + 1
Else ns = ns + 1

End
Pr(n, Smallleak) = nsm/nit
Pr(n,Largeleak) = nl/nit
Pr(n,Rupture) = nr/nit
Pr(n, Safe) = ns/nit
End
R̂s,t =

∑N
n=1 Pr(n, Safe)/N

Lower R̂s,t = R̂s,t − z(α/2)
√
V ar(Rs,t)/N

Upper R̂s,t = R̂s,t + z(α/2)
√
V ar(Rs,t)/N

End
ˆRt,sys = ˆRt,sys × R̂s,t (Eq. 6.1).

End

Table 6.2: Pseudo code to calculate the reliability of a pipeline

6.3 RUL estimation

Another useful reliability metric that can be extracted from calculated max-

imum pit depth distribution is the RUL of a pipeline segment. The RUL of each

segment is estimated based on the allocated reliability of each segment, expressed

as a tolerable probability of failure, Tpf . The reliability allocation is based on the

risk analysis of the pipeline. (e.g., when the pipeline segment is in a high risk area
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and the consequence of a failure is severe, the allocated reliability would be higher

than the case when the pipeline is located in a low risk area where a lower level

of reliability is acceptable). For example if (Tpf of small leak is 50% (i.e., the al-

located reliability is 50%), the RUL will be t50 − tc. Where tc is the current time

and t50 is the model-projected time when the probability of occurrence of small leak

is 50%. And if the allocated reliability is 90% then the RUL is equal to t10 − tc,

where t10 is the model-projected time when the probability of small leak is 10%.

This example is illustrated schematically in Figure 6.1. In this figure, the green

line indicates the mean value of the estimated maximum depth of an individual pit

in the defect-based model and the mean value of the maximum depth of the pits’

population in the population-based model. The brown lines are the realizations of

the estimated maximum pit depth for an individual pit or the pit population for the

defect or population-based model respectively.

Figure 6.1: RUL estimation for small leak failure mode
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6.4 Case study

In order to demonstrate the above-mentioned reliability analysis, it is applied

on a case study in this section. Consider a piggable pipeline that is in service since

1970. This pipeline has been inspected at 2000, 2005, 2010 by ILI companies and

the ILI data are available. These datasets include the number of reported pits (both

true and false calls) and the noisy measurement of maximum depth of those pits.

For simplicity we assume that this pipeline just has two segments, S1 and S2. The

pit density of Segment S1 is low1, hence the developed defect-based approach (Ch.

4) can be used to estimate the degradation level of this segment. The pit density of

Segment S2 is high and therefore the developed population-based approach can be

used to estimate the distribution of the maximum depth of the pit population (Ch.

5). The goal is to calculate the reliability of this pipeline at 2020, given the variation

in its material properties and geometry and also the operating pressure (Table 6.3).

In this case study, it is assumed that the distribution of the pit length does not

change between each two ILIs, and it is equal to the probability distribution that

is reported by the most recent ILI [68]. The reason behind this assumption is that

changes in pit length have little or no influence on the estimation of the probability of

failure associated with the individual pits [66, 122]. Since the developed population-

based model does not cover the case of change in operational condition, in this case

study, it is assumed that the operational condition does not change over time.

1We assumed there is just one pit; the same procedure can be used for more than one pit
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Variable Mean Standard de-
viation

Unit

Diameter (D) 508 0.3 mm
PWT 8.41 0.13 mm
Ultimate strength (σu) 455 14 MPa
Operating pressure (Pop) 6.66 0.13 MPa
Pit length (l) 18 4.52 mm
ζ 1 0.26 mm

Table 6.3: Probabilistic characteristics of the random variables

By following the pseudo code (using 10000 iterations by Monte Carlo simula-

tion) given in Table 6.2, and using the developed defect-based model, the probability

of occurrence of small leak, large leak, and rupture are calculated for Segment S1 at

each point in time. To do so, at each point in time, the distribution of the maximum

depth of the pit on Segment S1 is obtained by using APF (Ch. 4). Since, the state

of each particle in APF resembles a realization of the distribution of the maximum

depth of that pit, that state is used as a sample to be used in the Monte Carlo

simulation given in the pseudo code. In addition by sampling from the distributions

given in Table 6.3, they are used to estimate the distributions of Pb and Prp at each

time. Accordingly f1, f2, and f3 are estimated for each iteration and the health state

for that iteration is obtained based on Table 6.1. Figure 6.2 shows the temporal

change in probability of occurrence of each health state (6.1) for Segment S1.

According to this figure, Segment S1 will not face rupture based on the given

pipeline properties and operating pressure. However, operating pressure can cause

large leak in this segment because of the pipeline degradation, even when the maxi-

mum pit depth is much less than the small leak threshold (e.g., at t=2020 when the

probability of small leak is zero). Figure 6.3 shows the application of stress-strength
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Figure 6.2: Probability of occurrence of each health state for Segment S1

interference theory in calculation of probability of failure at 2020. Since the distri-

bution of operating pressure has overlap with the burst pressure distribution, while

it does not have overlap with the rupture pressure distribution, this segment faces

large leak at 2020 and it does not face rupture.

Figure 6.3: PMF of operating, burst, and rupture pressure for Segment S1, 50
years after operation
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Safe Operation Small Leak Large Leak Rupture

S1 0.935 0.000 0.065 0.000
S2 0.803 0.190 0.007 0.000

Table 6.4: Probability of occurrence of different health states for Segment S1 and
S2, 50 years after operation

For segment S2, we used Monte Carlo simulation to sample from the estimated

PMF of maximum depth of the pit population to be used in the pseudo code that is

given in Table 6.2. By following the same procedure that was explained for Segment

S1, the obtained probability density functions for operating, burst, and rupture

pressure, for segment S2 at 2020 is given in Figure 6.4. By using the criteria defined

in Table 6.1, probability of small leak is 0.19, large leak is 0.007, and the reliability

is equal to 0.803 fifty years after operation assuming no maintenance activity has

been done on this period of time 6.4.

It is worth noting that for Segment S1, for which online inspection is available,

the time dependent function of probability of occurrence of each health state is

available and plotted in Figure 6.2. However, for Segment S2, since just ILI datasets

are available, those probabilities can be calculated just at the ILI times and the

prediction time as given in Table 6.4

The final step is to calculate the reliability of the whole pipeline (in this case

two segments). By using Eq. 6.1 the reliability of this pipeline with two segment at

2020 is equal to 0.935× 0.803 = 0.751.
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Figure 6.4: PMF of operating, burst, and rupture pressure for Segment S2, 50
years after operation

6.5 Summary

In this section the reliability of a piggable pipeline is modeled as a series

system, since failure at any location of the pipeline results in the failure of the

whole pipeline. We considered this practical case, and it enables modeling the

system as a series of segments, some with low pit density and some with high pit

density. For those segments with low pit density, the developed hybrid defect-based

PHM model has been used to estimate the degradation level of that segment. For

those segments with high pit density, the developed population-based PHM model

has been used for this purpose. We defined four pipeline health states (small leak,

large leak, rupture, safe). In order to find the probability of occurrence of the health
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states, three limit state functions are defined. Based on those limit state functions,

small leak happens when the maximum pit depth exceed 80% of PWT. Large leak

and rupture happen because of the plastic collapse of the pipeline material,which

occurs when the burst pressure of that segment decreases because of degradation

due to internal pitting corrosion and become less than the operating pressure. If

that plastic collapse causes stable crack propagation, then the burst is considered as

a large leak and the consequences is less severe than the consequences of an unstable

crack propagation which is considered as a rupture.

In order to demonstrate the application of this methodology, a simple case

study was presented in this chapter. In this case study, given the distributions of

pipeline material properties, pipeline geometry, and operating pressure, the burst

and rupture pressure of a segment with a low pit density and a segment with a high

pit density are calculated. The degradation level of the first pipeline segment was

calculated by using the developed defect-based model and for the second segment,

the developed population-based model was used. Finally the reliability of each

of those segments was calculated and were used to calculate the reliability of the

whole pipeline as a series system. According to the results of this case study, for

both segments with a low and high pit density, even before having small leak, large

leak can happen because of the plastic collapse in the pipeline due to operating

pressure and degradation of the pipeline.

The predicted probability of occurrence of different failure modes can be used

in pipelines optimal maintenance optimization to find the optimal maintenance ac-

tivity and time for each segment and the optimal next ILI time for the whole pipeline.
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Chapter 7: Summary, contributions, and suggested future work

7.1 Summary

This dissertation presents a new framework and algorithms for PHM of pig-

gable oil and gas pipelines degraded due to internal pitting corrosion. The algorithms

estimate pit depth and pit density in a pipeline segment based on multiple types of

data, and predict RUL of that segment (i.e., the useful life left on a pipeline segment

at a particular time of operation given the probability distribution of maximum pit

depth on that segment). This framework covers both potential cases of low and

high density of pit population in different segments of the pipeline. A defect-based

algorithm has been developed for those segments with sparse pits and a population-

based algorithm for those with a high density of pits population. Both algorithms

are hybrid PHM models that consider both POF knowledge of internal pitting cor-

rosion process (IPC) together with inspection data. In addition, in the algorithms,

four types of uncertainty have been addressed including epistemic, spatial, temporal

and measurement uncertainty.

In the case of sparse pits, temporal change in the operational conditions has

been addressed in IPC degradation modeling for the first time. In this dissertation,

a novel similarity-based IPC degradation model has been developed. It can be used
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to infer the maximum pit depth of those pits that have not been inspected after the

change in operational condition, given the uncertain online measurement data of an

active reference pit that has been monitored continuously.

In the case of a high density population of pits, a novel population-based

algorithm has been developed to estimate the distribution of maximum depth of

the population. This algorithm eliminates the need of matching procedure that is

computationally expensive and prone to error in the case of having a high pit density.

This algorithm has covered several aspects of measurement uncertainty including

uncertainty in maximum pit depth measurement and uncertainty in the number of

detected pits (i.e., POD and POFC). In addition, it has taken into account the

non-linearity of the pitting corrosion process, and the initiation of new pits between

the last ILI and the prediction time.

The application of both defect-based and population-based algorithms have

been demonstrated by applying them on two case studies and their performance

has been compared with simulated data. Those case studies and simulated data

are based on a comprehensive generic pitting corrosion degradation model that is

available in the literature, which has been developed by using field data. It has

been shown that in both cases the developed algorithms decrease the uncertainty in

estimated pipeline’s degradation level due to IPC.

The resulting models can be used to support condition-based maintenance

activities for oil and gas pipelines. And since in the condition-based maintenance

optimization of oil and gas pipelines, estimated degradation level is a main input

for condition-based maintenance, and also the most challenging one to obtain, the
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results of this study will decrease the probability of having unpredicted failures,

enhance reliability, and eliminate unnecessary costly maintenance activities.

7.2 Technical contributions

In Chapter 3, an extensive review on the different stochastic processes applica-

ble to corrosion modeling was carried out. Six characteristics were defined to drive

selection of the most appropriate stochastic process to fuse IPC POF knowledge and

inspection data. Those characteristics include addressing four types of uncertainty

(i.e., epistemic, temporal, spatial, and measurement) and addressing the time and

depth dependency of IPC. Results from Chapter 3 suggest the family of gamma

process models as the most appropriate one to model IPC process in oil and gas

pipelines.

In Chapter 4, a novel hybrid (POF and inspection data) defect-based PHM

model has been developed. The model can be used to estimate maximum depth of

a number of pits when the pit density is low. The model matches the sequential ILI

data with respect to the location of the pits, which is feasible for low pit density

segments. This research expanded beyond the assumption of constant operational

conditions, creating the first model to include conditions which change over time.

The change in operational conditions is reflected in the online inspection data of a

reference active pit.

The defect-based corrosion PHM model also has linked this change to the

growing behavior of the other pits (for which there are no new ILI data available
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after change in operational conditions) by developing a similarity-based degradation

model. In the available similarity-based RUL estimation models in the PHM litera-

ture, the inspection frequency of the test components and the reference component

are the same. In contrast, in this research, the similarity-based pitting corrosion

degradation model has been developed for the data where the inspection frequency

of the test components (i.e., in-line inspected pits) and the reference components

(i.e., an online inspected pits) are different. This was implemented in Chapter 4 in

a hierarchical dynamic Bayesian model which fuses ILI data of the sparse pits and

POF knowledge of IPC. An augmented particle filtering has been used to fuse the

online inspection data of the active reference pit and POF knowledge of IPC.

The POF aspect of the hybrid defect-based model is enhanced by incorporating

the variation of the operational parameters in IPC degradation modeling. In the

available defect-based models in the literature, the POF of IPC process has been

considered by assuming a power law model, with a positive exponent less than one,

as the general form of the degradation model. In the new model, in addition to

using the known power law form, it incorporates the operational parameters (e.g.,

pressure, temperature, pH, Sulphate ion, Chloride ion) in the development of the

hybrid model. Monte Carlo simulation and non-linear regression analysis are used to

estimate the standard deviation of the white noise of the process model in augmented

particle filtering, based on the variation in operational parameters.

In Chapter 5, a novel hybrid population-based degradation model has been

developed. This model estimates the distribution of the maximum depth of a pop-

ulation of pits when mass ILI data are available for that population. In this case,
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using a pit matching procedure is expensive and prone to error. In the new model,

the need for matching the sequential ILI data to specific pit locations has been

eliminated. In comparison to the state of the art population-based model that is

available in the literature, this model is able to take into account the non-linearity of

the growing behavior of the maximum pit depth by using non-homogeneous gamma

process as the underlying stochastic process. Variation in pits’ initiation times has

been also considered by using a homogeneous Poisson process. Based on this HPP

assumption, this model is able to consider initiation of the new pits between the

last ILI and the prediction time. Moreover, this model is applicable for two or more

sets of ILI data which is the common practice in the industry and has not been ad-

dressed in the literature. In this way, a new clustering algorithm has been developed

to cluster the detected pits at each ILI based on their initiation time. Moreover,

this population-based model, has taken into account the probability of not detecting

some of the existing pits and also the POFC of some measurements.

In Chapter 6, these two (defect-based and population-based) hybrid models,

are combined in a series system to create an approach to calculate the reliability of

a pipeline with multiple segments with both low and high density pit regions. The

probability of occurrence of different failure modes (small leak, large leak, rupture)

can be calculated with a high confidence level by using the developed hybrid defect-

based and population-based pitting corrosion degradation models together.

The application of the developed degradation model is not limited to pipeline

pitting corrosion process and it can be used to model degradation due to a wide

range of failures mechanism where the general form of the degradation behavior is
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known and the inspection data are available to update the hyper-parameters of that

degradation model.

7.3 Work Products

Journal papers

• Roohollah Heidary, Steven A. Gabriel, Mohammad Modarres, et al. “A Re-

view of Data-Driven Oil and Gas Pipeline Pitting Corrosion Growth Models

Applicable for Prognostic and Health Management”. In: International Journal

of Prognostics and Health Management 9.1 (2018)

• Roohollah Heidary and Katrina M. Groth. “A hybrid model of internal pit-

ting corrosion degradation under changing operational conditions for pipeline

integrity management”. In: Structural Health Monitoring (2019). doi: 10.

1177/1475921719877656

Conference papers

• Roohollah Heidary, Katrina M. Groth, and Mohammad Modarres. “Fusing

More Frequent and Accurate Structural Damage Information from One Lo-

cation to Assess Damage at another Location with Less Information”. In:

Proceedings of the 14th Probabilistic Safety Assessment and Management Con-

ference (PSAM 14) (Sept. 16, 2018–Sept. 21, 2019). Los Angeles, CA, 2018

• Roohollah Heidary, Katrina M. Groth, Mohammad Modarres, et al. “Find-

ing optimal maintenance policy for pipeline corrosion using data fusion”. In:

RDPETRO 2018: Research and Development Petroleum Conference and Ex-

169

https://doi.org/10.1177/1475921719877656
https://doi.org/10.1177/1475921719877656


hibition (May 9–10, 2018). Abu Dhabi, UAE, 2018, pp. 232–233. doi: 10.

1190/RDP2018-50000066.1

Source code

• https://github.com/SyRRA/Hybrid-PHM-Algorithms-Corrosion

7.4 Limitations

As mentioned in Section 1.3, this research is founded on some assumptions.

Since pitting corrosion is a highly stochastic process, making some assumptions

is inevitable to enable degradation modeling due to process complexity. However,

those assumptions limit the use of the developed models beyond the scope of the

data types for which the models were developed.

For the defect-based PHM model, the application is limited to this assumption

that the reference pit is in the stable phase (i.e., it is always growing). In reality,

a pit can stop growing at various times. To address this limitation, using multiple

OLI pits is recommended in the future work.

For both the defect-based and population-based model, it has been assumed

that the pits are not interacting with each other. In reality, when two pits are close

to each other, they can coalesce and make a bigger pit which grows faster. Studying

the coalesce of pits is another area that is under investigation in the literature.

Another assumption was that the maximum pit depth growing behavior follows

a power law function with a less than one positive exponent. Although this is a well-

accepted assumption in the literature, more physics and material science studies are
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required to have a better understanding of the physics behind the pitting corrosion

process.

7.5 Future work

This study can be extended in the following directions:

• The developed defect-based model could be extended by several research di-

rections. One option is considering data from more than one online inspected

pits and developing an algorithm to, e.g., investigate the most similar one for

each ILI pit or creating an average of similarity index between each ILI pit

and multiple online inspected pits. Another aspect that can be improved in

this model is to consider the variation in pits’ initiation times in degradation

modeling.

• The developed population-based model can be extended through future re-

search. Exploring the use of the non-homogeneous Poisson process for the

number of initiated pits at each time interval would enable the model to

address cases where the initiation times of different pits are not uniformly

distributed. In addition, considering change in operational condition in this

model would extend the range of application of this model as well. Optimizing

the number of bins in discretizing the probability mass functions is another po-

tential research area since the developed algorithm is sensitive to this number.

Moreover, considering different ILI tools with different characteristics makes

this model more practical.
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• There are several research paths which could enhance both the defect-based

and population-based models. Using raw MFL or UT signals (instead of mea-

sured depth that are reported by ILI companies) as the input of these models

and using machine learning techniques to estimate the maximum pit depth

could decrease the uncertainty in IPC degradation modeling.

• Although the performance of these models has been checked by using some

simulated data, it is also necessary to validate them by using field ILI and

online inspection data.

• During this research, one of the main challenges was to find real field inspection

data and operation parameters measurements. The lack of field data is a

big challenge in PHM of the oil and gas pipelines. Therefore, it is highly

recommended to make an international repository and collaborate with oil and

gas pipelines’ owners, pipeline operating companies, and research institutes to

collect the operational conditions and inspection data and make them available

in the public domain to make it possible for the researchers to validate their

new pitting corrosion degradation models.
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