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The rapid advancement in mobile devices has illustrated the widening 

technological gap in health and environmental sensing. Unfortunately, the time 

and financial burdens imposed by the current central lab model prohibit regular 

sensing of crucial biological and ecological elements, which can lead to delayed 

responses and exacerbated conditions. Current portable diagnostic solutions lack 

the necessary sensitivity or multiplexing potential to address the ever-expanding 

library of biomarkers. An emerging solution known as surface enhanced Raman 

spectroscopy (SERS) can provide the sensitivity of current techniques, but with 

drastically improved multiplexing density. Many existing SERS applications 

however, require multiple processing steps to introduce samples to the 

enhancement surface. Practical application of SERS to diagnostics and 

environmental samples requires more convenient materials and methods to 

support the broad array of conditions in on-site sensing. In this work, three new 



methods to apply SERS to portable sensing systems are developed. Specifically, 

a new SERS diagnostic is presented that details the first implementation of SERS 

for real-time PCR; we accomplished multiplexed detection of MRSA genes to 

specifically identify species and drug resistance.  Second, we developed a new 

flexible SERS sponge based on PDMS that provides unprecedented control over 

sample handling and can readily concentration organic analytes. Finally, we 

present a novel raster scanning protocol to address the persistent reproducibility 

issues that has slowed commercialization of new SERS devices. Together, these 

three techniques advance the development SERS as a practical and portable 

solution for on-site diagnostics and environmental sensing. 
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Chapter 1.  Introduction  

With the push towards precision medicine, the need for patient specific 

diagnostic information has grown. Unfortunately, the existing central lab model 

concentrates diagnostic assays into facilities detached from the point-of-care 

(POC) and imposes large time and financial costs on diagnostic testing. The 

inhibitory cost of central labs places an undue burden on physicians to accurately 

diagnose and treat patients with little information. A new model for distributed 

sensing is expanding with advances in POC sensor technologies.1,2 POC systems 

provide clinicians the ability to rapidly identify diseases and immediately begin 

targeted treatments to improve patient outcomes.2,3  

Portable biosensing solutions have been a common element in the current 

medical system for many years. Specifically, glucose meters and pregnancy tests 

represent the standard for rapid diagnostic technologies (RDTs). These types of 

low sensitivity RDT’s have recently been expanded to infectious diseases, but 

they are applicable only in advanced disease conditions and can be unreliable.4 

Further, diseases are targeted by independent devices and require independent 

techniques; these limited technologies cannot address the needs of a patient 

centric testing environment and the expanding library of treatable disease 

conditions.5–7 Enabling clinicians to diagnose these new conditions will require 
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advanced sensors and assay mechanisms that can simultaneously, rapidly, and 

cheaply detect and identify multiple disease biomarkers. 

As a perpetually relevant example, overuse of broad spectrum antibiotics is 

leading to an ever-shrinking library of effective antibiotic treatments. One 

obvious solution is the careful prescription of targeted antibiotics.8 

Unfortunately, rapid identification of infectious agents in clinics and remote 

settings is currently available for only a few conditions and each requires an 

independent test. Further, these tests are limited to a single bacterial resistance 

gene of the many that exist for each species.2 Resistance testing requires time-

consuming culture based assays to concentrate samples before species and 

resistances can be specifically determined. These methods are highly inefficient 

and infeasible for regular on-site use.  

Amplified molecular diagnostic assays, such as the polymerase chain reaction 

(PCR), provide rapid amplification of virtually any biomarker at nearly any 

concentration. Though amplified assays are highly sensitive, they are currently 

unable to easily and cheaply provide the multiplexing needed for on-site 

identification of multiple biomarkers. Multiplexing potential of any assay is 

generally limited by the sample processing or transduction mechanism. The 

fluorescent mechanisms commonly used for PCR are especially difficult to 

multiplex in portable devices as they rely on mechanical actuation of expensive 
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filter sets for each additional target. Though it is possible to accomplish parallel 

transduction of PCR with a single dye in a divided sample, sufficiently large 

samples may not exist in the necessarily small sample volume acquired through 

non-invasive methods on-site.  

Improving the multiplexing density in portable biosensing technologies may 

be simplest with a complete replacement of conventional methods (e.g. 

fluorescence). Instead, a method is required that can discriminate multiple 

molecules simultaneously with simple, portable hardware. Surface enhanced 

Raman spectroscopy (SERS) provides one of the most promising methods to 

address the limitations in portable assay transduction. Based on the molecule 

dependent effect called Raman scattering detailed in Chapter 2, SERS provides 

the potential for simultaneous quantification of many biomarkers with no 

additional hardware. SERS has been applied broadly to chemical and diagnostic 

sensing, and advancements continue to increase the portability of SERS 

substrates. Unfortunately, convenient solutions have yet to be developed that 

can easily integrate SERS with amplified assay mechanisms.  

Toward the goal of truly portable molecular diagnostic systems, this work 

develops technologies to simplify the use of SERS sensors for POC sensing. 

Specifically, chapter 3 details the development of the first integrated device for 

real-time monitoring of multiplexed PCR reactions with SERS. This device is 
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used to simultaneously identify Staphylococcus aureus and the presence of 

methicillin resistance. Chapter 4 expands the library of portable, flexible SERS 

sensors with SERS sponges that enable new sample acquisition and processing 

capabilities for harmful organic compounds. Finally, Chapter 5 addresses 

common concerns with reproducibility in flexible SERS substrates and 

recommends simple methods for acquiring data and improving inter and intra-

sensor variance.  
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Chapter 2. Molecular diagnostics and Raman 
spectroscopy 

As medical care transitions to a patient centered approach with universal 

access to quality care, the need for improved POC devices is growing rapidly. 

New technologies are needed to enable the transition of multifunctional 

diagnostic technologies out of the central laboratory and into the hands of 

medical providers. Two major factors inhibiting portabilizing existing 

technologies are sensitivity and multiplexing density. This chapter will detail the 

strategies and recent advancements in molecular amplification methods to 

improve diagnostic assay sensitivity and the mechanisms enabling SERS to allow 

unprecedented multiplexed assay transduction. 

2.1 Molecular diagnostics 

Molecular diagnostics have become an integral tool in the diagnostic process 

and represent the logical solution to address current limitations in POC devices. 

The technologies behind molecular diagnostics have a diverse set of underlying 

mechanisms governing the recognition of biomarkers, production of a signal, 

and transduction to a meaningful answer. Of particular interest to the field of 

POC diagnostics is improvement of the sensitivity and detection limit of portable 

technologies. While traditional systems utilize large and expensive equipment to 

improve the quality of signal detection systems, assay sensitivity can be more 
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practically improved through novel assay developments that increase signal 

production rates. Traditionally, the signal generation paradigm produces a signal 

intensity directly proportional to the number of analytes present. This section 

will detail the developments of assay mechanisms capable of exponentially 

amplifying a signal from analyte concentrations as low as a single molecule. 

2.2 Classical molecular amplification 

Molecular amplification has defined the most well-known and commonly 

used assays in diagnostics and research settings. By far the most common and 

recognizable molecular amplification technique is the immunoassay, or more 

specifically the enzyme linked immusorbent assay (ELISA). Illustrated in Figure 

2.1, a typical ELISA begins with antibodies immobilized onto a surface, to which 

the sample is added. The analyte of interest is then specifically bound by an 

antibody and prevented from release during subsequent rinsing steps that 

eliminate contaminants. After rinsing, a detection antibody is added to introduce 

a signal generating enzyme (i.e. HRP); this detection antibody specifically binds 

the analyte and is maintained through another series of washes to remove 

unbound enzymes. A chromogen is then added to produce a signal, which is 

produced at a constant rate dictated by the number of bound enzymes and 

effectively indicating the analyte concentration. This proportional amplification 

technique provides sufficient sensitivity for many laboratory techniques, but is 
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incapable of reaching detection limits necessary for many unconcentrated or 

impure POC samples.   

 

Figure 2.1: Illustration of an Enzyme Linked Immunoassay (ELISA). A: Antibodies present 
analyte binding sites immobilized on a surface. B: Specific analyte binding to antibodies and 
subsequent washing to remove other sample components. C: Binding of a detection antibody 
to a second epitope on the analyte, subsequent steps wash unbound detection antibodies and 
introduce a chromophore that is acted upon by the attached enzyme. 

PCR is the classical exponential amplification technique, commonly used in 

both diagnostics and research for genetic sequence identification. In PCR (Figure 

2.2), a polymerase amplifies short gene-specific sequences of DNA through 

repeated copying of the sequence. After the double-stranded template has been 

melted into single strands, DNA primers (typically 18-25 bases) specifically 

hybridize to the template to mark the locations for the polymerase to begin 

copying. Following each cycle, the number of targeted sequence doubles, and 

then the initial sequences and the copies (amplicons) are available for replication 

in the next cycle (i.e., exponential amplification with positive feedback).  
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Figure 2.2: Illustration of PCR amplification mechanism. A: Amplification steps beginning 
with hybridized template or amplicons melted at high temperatures, rapid transition to low 
temperatures allows small primers to bind and be extended by TAQ polymerase. B: Illustration 
of the exponential product formation rate (2n) in PCR.  

Though PCR is typically used only for nucleic acid biomarkers, it can also be 

used as a tool to drastically improve the detection limit of traditional 

immunoassays. In this method, termed immuno-PCR, the detection antibody of 

the immunoassay is linked to an amplifiable DNA sequence. Once the antibody 

is specifically bound to a surface or a particle, PCR reagents are added and signal 

develops exponentially.1–3 Implementations of this technique have led to 

detection limits down to a single molecule, which represents an improvement of 

up to 5 orders of magnitude over traditional immunoassays.1,4 This technique has 

been expanded with the use of DNA and RNA sequences that can specifically 

bind non-nucleic acid targets. These sequences, called aptamers, can act as both 

the recognition element –replacing the antibody– and the amplification template, 

further simplifying the assay.5,6  
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As a result, PCR is not only pervasive in the detection of nucleic acid 

sequences, but can also be viewed as a generic signal amplification methodology 

for a range of biomarkers. Unfortunately, even as the standard amplification 

mechanism, the increasing body of work seeking to deliver PCR assays to the 

field has yet to produce a practical solution.7–10 The temperature control and 

fluorescence quantification hardware have remained inherent limitations. The 

following sections highlight both existing alternatives and future directions in the 

replacement of PCR for POC molecular diagnostics.  

2.3 Isothermal nucleic acid amplification 

Since the invention of PCR, new polymerase-dependent DNA replication 

schemes have been continuously developed to address the hardware and energy 

requirements associated with thermal cycling. In particular, eliminating the 

requirement of heat denaturation used in PCR has been the primary unifying 

alteration desired in polymerase-driven nucleic acid amplification mechanisms. 

The goal of heat denaturation is to enable binding of the primer sequence and 

replication of the amplicon. This section will illustrate the many potential 

alterative mechanisms to promote primer annealing, but also highlight the 

compromissary limitations introduced in these methodologies.  
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2.3.1 Loop-mediated isothermal amplification (LAMP) 

The most commonly studied PCR alternative is Loop-mediated isothermal 

amplification.19–21 In this technique, initiating primers insert looping 

modifications to the gene of interest. Loops are produced through addition of a 

primer sequence that is bookended by self-complementary regions that form a 

loop. A primer is then able to bind and be extended from the loop region; at the 

same time, the loop itself can prime replication. Primer extension then generates 

a cyclic see-saw like process, where extension of a primer displaces the existing 

hybrid promoting formation of the opposing loop. Note that much like PCR, 

LAMP’s DNA replication capability can also serve as the label amplification 

method for immunoassays.22–24 

Despite the advantages of LAMP, this amplification scheme requires a 

constant temperature of 65°C, and therefore requires more power than 

amplification systems that operate at 37°C or below. Furthermore, four to six 

primers are required, making a multiplex assay highly complex to design and 

potentially susceptible to non-specific amplification. Thus, simpler assays 

without the heating requirements and complexity of LAMP may be more 

attractive for POC diagnostics. 
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2.3.2 Nuclease driven amplification 

Nucleases, or enzymes that cleave nucleic acids, have been utilized in multiple 

PCR alternatives to promote annealing and generate new primers. The original 

nuclease based method is strand displacement amplification (SDA).17,18 SDA 

utilizes a specialized restriction endonuclease to insert a single-stranded “nick” 

into DNA duplexes, thus allowing binding and replication by a polymerase at 

moderate temperatures (37°C). Similar to LAMP, a DNA-displacing polymerase 

is utilized to copy DNA (starting at the nick site) while displacing hybridized 

DNA, thereby eliminating the need for a high temperature melt step. The 

displaced strand is then capable of binding the anti-sense primer continuing the 

amplification as the amplicon. For genomic targets, SDA typically requires 

addition of a second set of primers (bump primers), that allow displacement of 

the initial amplicon without action of the nicking enzyme; this eliminates the 

need to locate a genomic region with a particular restriction sequence.26,27 SDA 

has also been applied to proteins28 and microRNA29. 

Another isothermal amplification technique built from the concepts of SDA 

is the exponential amplification reaction (EXPAR).30 EXPAR utilizes a nicking 

enzyme to lower the thermal stability of newly-polymerized amplicons. The 

EXPAR reaction differs from SDA in that the nicking enzyme acts at the center 

of the amplicon instead of towards the end of the sequence. Bisecting the 
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amplicon allows for simple thermal destabilization an elevated temperature 

around 60°C. Once denatured, the bisected sections are capable of priming 

extension on single stranded templates and continuing the reaction, leading to 

exponential cycling. Initially, EXPAR was designed as an alternative to current 

isothermal amplification technologies for genomic DNA targets. Unlike SDA 

however, EXPAR’s requirement for a centrally located restriction site requires 

the site to be present in the gene of interest and therefore cannot be avoided 

with a bump primer. EXPAR has been used as a secondary amplification 

mechanism for alternative sequence identification mechanisms such as SDA.28 

When applied outside genomic targets, the simple mechanism behind the 

EXPAR system allows for a convenient platform for expansion beyond nucleic 

acid diagnostics and has been shown to be effective for amplification after 

recognition with enzymes31, aptamers28, and whole cells32. 

As an alternative to sequence specific nucleases, RNA has been utilized in a 

number of methods to act as a specific target for nucleases to open primer 

binding sites. The original method, which was nearly simultaneously reported by 

two groups25,26, is based on the use of transcription enzymes to produce RNA 

transcripts from a DNA template. As a class, these methods are called 

transcription mediated amplification (TMA); nucleic acid sequence based 

amplification (NASBA) is the most common implementation, and is used for 



 

13 
  

RNA sequence detection. In NASBA, an RNA template acts as a primer binding 

and extension site for a primer containing the T7 RNA polymerase (T7-RP) 

promoter sequence. Extension of the primer by a reverse transcriptase produces 

a complementary DNA (cDNA) transcript containing the T7-RP promotor 

sequence. The RNA is then removed from the duplex by an RNA-specific 

nuclease (RNase-H), leaving the cDNA open to annealing of the secondary 

primer. Extension of the secondary primer produces the double stranded 

promotor sequence allowing for production of a single stranded RNA template 

by T7-RP to restart the cycle. Unlike many nucleic acid amplification schemes, 

NASBA was initially developed for amplification of genomic RNA sequences 

from viral sources. Outside of genomic RNA, NASBA is most easily applied to 

alternative RNA applications such as mRNA27–29, tmRNA30, miRNA31, 

immunoassays32.  

2.3.3 Protein guided duplex opening 

Biological mechanisms for DNA replication use neither thermal denaturation 

or nucleases to open DNA duplexes. Some isothermal methods have taken 

advantage of natural DNA binding proteins to open duplexes for primer 

annealing steps. Recombinase polymerase amplification (RPA) and helicase-

dependent amplification (HDA) both utilize specialized enzymes that open 
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double stranded oligomers to insert primers, in some cases stabilizing the 

opening with single strand binding proteins.  

In many organisms, the helicase enzyme opens double-stranded DNA to 

enable primer binding and DNA duplication. The helicase unwinds the duplex, 

which is then stabilized through single-stranded DNA binding proteins while a 

primer hybridizes and is extended by a polymerase. Since the initial report33, 

several HDA variations have been reported. HDA has not been widely applied 

to many targets, but has been successfully applied to a commercial lateral flow 

device for viral genomic RNA42. 

RPA utilizes a primer-recombinase complex to scan the DNA in the sample 

and perform strand exchange at a homologous sequence within the target.35 This 

inserts the primer and recruits proteins, specifically gp32, to stabilize the loop 

opening of the target DNA. A polymerase then extends the primer along the 

target, generating a new double-stranded DNA amplicon. This new double 

stranded copy is subsequently targeted by recombinase, which inserts a primer 

to initiate another round of duplication. RPA has been successfully applied to 

highly sensitive detection of both DNA35 and RNA36 genomes. Some work has 

applied RPA to protein detection through aptamer binding and amplification, 

but results show only ELISA-like detection limits37.  
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2.4 Raman spectroscopy 

2.4.1 Raman scattering 

When light contacts a molecular structure, the energy is temporarily absorbed 

exciting the bonds within the molecule. Frequently, the excited state of the 

molecule is an unstable and rapidly decays through radiative relaxation back to 

the ground state. The energy of the radiated photon is commonly of equal energy 

to the adsorbed photon; this elastic scattering process is known as Rayleigh 

scattering. Alternatively, certain highly polarizable molecular structures can lead 

to the existence of a virtual energy state composed of temporarily stable 

vibrational modes. Illustrated in Figure 2.3, an excited molecule can relax into a 

virtual state leading to energy loss corresponding to the energy lost through 

vibrational relaxation to the ground state. This inelastic scattering process is 

known as Raman scattering, named for C.V. Raman who discovered the 

phenomenon in 1928.  



 

16 
  

 

Figure 2.3: Jablonski energy diagram. A: Energy transfer for Rayleigh (elastic) scattering. B: 
Energy loss (hνv) in Raman (inelastic) scattering. C: Electronic transition and energy loss in 
resonance Raman scattering. 

The vibrational modes induced during Raman scattering are specific to the 

bonds and their arrangement within the excited molecule. Further, the tendency 

for particular molecular structures to enter virtual states leads to relative 

differences in the tendencies for molecules to emit photons of a particular 

energy. Together, the specific energy and intensity of photons emitted by an 

excited molecule produces a spectroscopic profile of the molecular structure. 

When utilizing a monochromatic light source, such as a laser, it is possible to 

excite and isolate Raman scattered photons from the Rayleigh scattered light 

from the source frequency. Figure 2.4 illustrates the spectrum of Raman 

scattered photons of a common dye, Rhodamine 6G, excited by a diode laser at 

785 nm. The spectrum illustrates the bond specific peaks, that together, uniquely 

represent the structure of R6G.  
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Figure 2.4: Raman (surface enhanced) spectrum of R6G and attributions of peak intensities to 
individual and cooperative molecular structures.38 

While Raman intensity has a similar wavelength dependence for scattering 

intensity as Rayleigh scattering (𝐼 ∝  
1

𝜆4
), certain molecules exhibit wavelength 

dependent intensities that correspond to their absorption spectrum. Near the 

absorption peak, molecules such as fluorophores undergo an electronic 

transition to a stable energetic state that can increase the Raman scattering 

intensity by a factor of 104; this effect is known as resonance Raman scattering 

(Figure 2.3C). 

The molecular specificity of Raman scattering has allowed its use as an 

analytical technique in fields as diverse as astronomy and forensics. In many of 

the current applications utilizing Raman spectroscopy, analytes are most easily 
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identified when they are pure or represent a dominant portion of the excited area 

and recorded spectrum. However, when approaching applications with samples 

that contain optically active components or low analyte concentrations, specific 

signals are easily obscured. In these cases, Raman spectroscopy requires 

increased sensitivity and robustness. 

2.4.2 Surface enhancement 

The low intensity of Raman scattering signals inherently limits its use to 

relatively pure or highly concentrated analytes. Over the last 50 years, significant 

work has led to drastic improvements in the sensitivity of Raman spectroscopy 

through the use of conductive surfaces that greatly increase the rate of Raman 

scattering; improvements in Raman scattering efficiency can be induced from 

106-1010.39–41 

Discovered in the 1970’s, a number of early groups identified unexpectedly 

intense Raman scattering from the surface of roughened silver electrodes.42–45 

Over the next couple decades, these early reports led to steady academic 

development of the technique with little translational growth. Then in the 1990’s, 

reports of single molecule detection generated compounding interest and 

exponential growth that has lasted through the present.54,55  

Enhancement of Raman scattering intensity is primarily attributed to two 

distinct but cooperative mechanisms: electromagnetic enhancement and 
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chemical enhancement. Briefly, electromagnetic enhancement is generated by an 

increase in the local electromagnetic field strength, while chemical enhancement 

is the molecule dependent effect of direct bond coordination with the 

enhancement surface.  

The largest portion of the Raman enhancement factors (104-108) generated 

through surface enhancement, is attributed to electromagnetic effects. This 

mechanism is based on coupling of the incident light into oscillations of the 

conducting band electrons generating the effect called localized surface plasmon 

resonances (LSPR).48 Within the produced high intensity local fields, shifted 

electromagnetic oscillations within the molecule can couple back into the local 

plasmon oscillations leading to amplified scattering intensities of both the 

incident and shifted frequencies. The extent of Raman signal enhancement is 

dependent on the geometry of the conductive surface and interaction distance 

of the molecule with the surface. Figure 2.5 illustrates the relative local field 

enhancements created by various metal shapes, each with features necessarily on 

the nanoscale. Figure 2.5 can also serve to illustrate the distance dependent 

effects of surface enhancement, which is subject to a sharp drop-off rate as the 

separation distance grows away from the nanoparticle surface. For spherical 

particles49 the distance (d) dependence is on the order of (
1

𝑑
)

12
. The severe 

distance dependence of SERS defines one of the most limiting factors of the 
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technique: efficient enhancement requires spontaneous or forced immobilization 

of the analyte within 1-2 nanometers of the surface.  

 

Figure 2.5: Nanoscale shape and size dependence of electromagnetic enhancement intensity. 
(Reproduced with permission, Haes et al.50) 

Chemical enhancement is possible when analytes adsorb directly onto the 

enhancement surface, where charge transfer complexes are formed between the 

surface and the molecule in a coordinate-covalent state.51 This coupling leads to 

enhancement factors on the order of 102, is somewhat geometry dependent, and 

has strong dependencies on molecular structure.52–54 

When combined, electromagnetic and chemical enhancement of Raman 

scattering allowed detection of a single molecule, a feat impossible for most 
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analytical chemistry methods. The impressive potential implied by detection of a 

single dye molecule has driven a surge in interest for SERS as a label-free 

biosensing technique with unprecedented sensitivity and multiplexing density. 

2.4.3 SERS sensors 

The high potential for SERS to enable new assays and replace existing 

mechanisms like fluorescence continues to inspire developments in methods to 

generate and utilize SERS sensor surfaces. Though the library of sensing 

substrates for SERS analyses is diverse, it can most simply be divided into three 

broad categories: colloidal, rigid, and flexible.  

2.4.3.1 Colloidal SERS 

While colloidal methods do not meet the visible classification of a “sensor” 

and cannot said to be contained within a “substrate”, the advances around their 

use in single molecule SERS54,55 as well as assays deserve appropriate attention. 

Use of colloidal particles for SERS hinges on the spontaneous interaction of the 

analyte with the nanoparticles, which are then commonly aggregated to produce 

the nanostructures required for Raman enhancement. Colloidal SERS has been 

broadly applied to various assays and commonly exhibits enhancement factors 

around 105.41 However, analyte-nanoparticle interactions and aggregation 

represent fundamental challenges for colloidal SERS versus substrate based 

methods.55–57 
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As nanoparticles inherently have an effectively high surface energy, stabilizing 

agents are required to stabilize their interactions with the solvent, usually water. 

These capping agents can prevent the adsorption of analytes to the surface of 

nanoparticles and, therefore, prevent the development of a signal. Poor analyte 

adsorption has been addressed through various nanoparticle modifications to 

promote ionic interactions, van der waals forces, and hydrophobic 

interactions.58–62  

The spherical particles commonly used for colloidal SERS require aggregation 

to produce the necessary nanostructures for sufficient enhancement. The 

process of aggregation can lead to non-uniform aggregates and produce 

inconsistent enhancement.55,56,63 Significant effort has been spent attempting to 

produce nanoparticles that are uniform and inherently SERS active. These 

particles often require complex fabrication procedures leading to complex shapes 

that can produce sufficient enhancement with minimal need for aggregating 

agents.72–78 
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Figure 2.6: Nanotriangles and nanostars are a representative subset of the possible complex 
shapes available in colloidal SERS. (Reproduced with permission, Abalde-Cela et al.71) 

2.4.3.2 Rigid SERS Sensors 

Rigid SERS substrates illustrate a continuous line of improvements from the 

initial reports of SERS on roughened silver electrodes.42,44 These technologies 

have been invaluable in studying the SERS mechanisms and achieving single 

molecule detection. Rigid, carefully fabricated devices have consistently high 

enhancement factors (106-108) and represent the standard for surface and signal 

reproducibility.80–84 Methods began with unpatterned roughened surfaces and 

rapidly evolved to controlled deposition of nanoparticles. As study of the Raman 

mechanism has advanced, control over the nanostructures has considerably 

improved. Modern methods include deposition or ablation of materials in highly 
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uniform array patterns such as nano- triangles73,85,86, cubes86–88, holes81–84, 

domes85–87, voids88–90, etc72–74,91. The high performance of these complex shapes 

is acquired at significant cost and manufacturing difficulty through non-scalable 

methods. The rigid, 2-dimensional nature of these devices provides little inherent 

assay processing functionality beyond transduction, and therefore requires 

peripheral devices and technical intervention. Ultimately, these devices represent 

an important research platform, but cannot accommodate the necessary 

functions required for practical sensing of real-world samples, especially for on-

site applications.  
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Figure 2.7: Shape complexity and regularity in rigid SERS sensors.(Reproduced with 
permission, Cinel et al.92) 

2.4.3.3 Flexible SERS Sensors 

In the drive to enable practical use of SERS as an analytical technique, flexible 

SERS substrates have been developed to provide inherent or modular sample 

processing features. While flexible substrates have seen constant development 

and attention over the last decade, deposition of silver nanoparticles into flexible 

cellulose filter paper was first reported in 1984.93  Continuous development of 

SERS in cellulose derivatives persisted through the following decades, but 

interest and expansion of the technique was minimal. Recently, advances in 
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simplified fabrication methods and lower cost spectrometers have invigorated 

interest in portablizing SERS.  

By far the most common material adapted for flexible SERS substrate 

remains cellulose filter paper. Methods of functionalizing cellulose –similarly 

used materials include nitrocellulose and polyvinylidene difluoride (PVDF)– 

include various mechanisms for both in-situ nanoparticle growth and for 

deposition of colloidal particles. Deposition of colloidal particles include simple, 

non-specific methods such as soaking94 as well as scalable and customizable ink 

deposition methods such as pens95, sprays96,97, screen printing106–108, and ink-jet 

printing101–104. Growth of nanoparticles within the paper includes methods that 

include deposition of nanoparticle seeds and growth on chemically modified 

surfaces105–107. Paper based devices are capable of augmenting the transduction 

benefits of SERS with fluidic handling properties and surface interactions that 

include sample transfer, purification, and concentration.94,103,108,109 
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Figure 2.8: Nanoparticle distribution and functional properties of paper based SERS sensors. 
(Reproduced with permission, Left: Yu and White 2010112; Right: Yu and White 2013109) 

Though fibrous paper is the most common substrate, other materials have 

been explored to broaden the functional capabilities of flexible sensors. 

Adhesives have been proposed as materials capable of utilizing adhesion to retain 

nanoparticles and extract trace analytes from complex surfaces.118 Recently, 

polydimethyl siloxane (PDMS), the material most commonly used for soft 

lithography of microfluidic devices, has been applied as a method to provide a 

highly customizable surface for enhanced plasmonic properties.111–115 These 

PDMS substrates also provide convenient flexibility and adhesive properties to 

aid in acquiring samples.  

Chapter 4 builds on the existing work with PDMS SERS sensors to produce 

a 3-dimensional fluid handling matrix replicating sponge-like materials. When 
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functionalized with nanoparticles, these hydrophobic sponges can specifically 

intake organic solvents and organic molecules to concentrate organic molecules 

from aqueous samples. 

2.4.3.4 Variance and ambiguity in SERS data 

The drive towards portable SERS technologies has led to rapid expansion in 

the number of substrate materials and types used to house the metal 

nanostructures necessary for Raman enhancement. These sensors have been 

shown to be highly sensitive and specific for analytes in a number of applications. 

However, the departure from highly ordered nanostructures introduces the 

potential for a distribution of non-uniform enhancement factors and therefore 

signal intensity.63,71,108,124,125 Indeed, it is commonly acknowledged that SERS 

signals from aggregated nanoparticles, a common feature of low-cost substrates, 

show large contributions from relatively few enhancement sites and therefore 

proportionally few analyte molecules.63 On top of heterogenous nanostructures, 

flexible substrates are subject to additional criticisms118 from factors such as 

nanoparticle distributions, environmental factors119, as well as sample 

concentration and addition methods56,119.  
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Figure 2.9: Variation in shape, size, and enhancement factor of deposited nanoparticle 
aggregates. (Reproduced with permission, Laurence et al.120) 

 Empirical evidence, however, suggests that flexible SERS substrates are 

indeed capable of highly sensitive and robust measurements across a practical 

dynamic range. When sampled across the sensor surface, these surfaces can 

provide both high enhancement factors and reproducible intensities.107,108,110,129,130 

However, the extent to which locality impacts signal intensity and intra- and 

inter-sensor signal variance are rarely addressed in demonstrations of novel 

SERS sensors. Incomplete and unclear methodologies are commonly reported 

in the literature and occasionally include questionable intensities, spectra, and 

conclusions. As a result, skepticism and misunderstanding will persist until 

standard methods are defined and followed to ensure sufficient surface sampling 

and explicit spot definition. 

Toward the goal of robustness in SERS methodologies, Chapter 5 details 

proposed techniques for algorithmically sampling and processing data across a 

sample surface. 
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2.5 SERS in molecular diagnostics 

As assay mechanisms are evolving to enable portable use, diagnoses are 

becoming increasingly complex and reliant on multiple biomarkers to improve 

diagnostic precision. The spectroscopic nature and sensitivity of SERS provides 

a promising platform for POC diagnostics. SERS is commonly studied method 

for a variety of both direct and reaction dependent detection of nearly every type 

of biomarker including small molecules122–124, nucleic acids133, proteins126, and 

even whole cells127,128.  

Alone, SERS does not have the capability to provide sufficient sensitivity to 

identify and quantify complex biomacromolecules in a portable setting. As 

discussed in Chapter 1, the move to portable diagnostics will require advanced 

techniques to improve assay sensitivities and eliminate lab based processing 

steps. Combined with the multiplexing capability of SERS, amplified assays have 

the potential to provide portable diagnostic devices that can simultaneously 

provide complex diagnostic information from relatively simple hardware. One 

early proposal by Cao et al. highlights (Figure 2.10) the potential for SERS to 

simplify multiplexed detection of DNA targets. This technique and many 

developed since that time utilize a dye labelled oligonucleotide probe. The dye is 

able to provide high intensity SERS signals through a large Raman cross-section 

not inherent to most biomacromolecules. The use of Raman labels on 
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oligonucleotide probes has allowed SERS to replace monoplex transduction 

mechanisms in amplified assays such as PCR and its derivatives.108,128–131  

 

Figure 2.10: Demonstration of the potential for SERS to enable highly multiplexed molecular 
assays. (Reproduced with permission, Cao et al.132) 

As Raman requires the adsorption of a dye on a surface, the product of the 

reaction must specifically adsorb to the surface, away from any unreacted probe. 

This is often accomplished either through the use of DNA digesting 

enzymes116,139,141 or physical separation.128,129,134 The most common of these assay 

mechanisms is the TAQ-MAN PCR assay. Originally developed as a 

fluorescence method based on FRET, a dye labeled TAQ-MAN probe is 

degraded by TAQ polymerase when specifically hybridized to the produced 

amplicon. For SERS, the digestion of the probe enables simple separation from 
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the intact probe through a variety of methods, such as simple chromatography 

or magnetic separation.108,131  

 

Figure 2.11: Example of PCR product separation and SERS analysis. (Reproduced with 
permission, Hoppmann et al.108) 

Despite the success of these methods in applying SERS to amplified assays, 

the added steps required to separate the intact probe from the digested product 

increase the technical requirements of completing the assay. Few methods 

include a fully integrated solution that is capable of being applied to the point of 

care. Microfluidics offer promising multistep assay integration with SERS143–145, 

but complex microfluidic devices remain practical largely as research tools. 

Together, all existing SERS solutions enable only endpoint analysis of PCR 

samples and are therefore subject to the specificity limits of exponential assays.  

Ultimately, new techniques are needed to apply SERS to POC 

implementations of amplified assays like PCR. A new approach using real-time 

filtration is detailed in Chapter 3 that can, for the first time, accomplish real time 
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PCR with SERS. Further, the simple to use device is easily constructed via laser 

cutting and thermal bonding of a low-cost thermoplastic. 
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Chapter 3. Real-time PCR using Surface 
Enhanced Raman Spectroscopy in a 
thermoplastic chip 

3.1 Introduction 

The trend towards precision medicine has introduced the benefits of on-site 

diagnostic systems that can rapidly detect and identify disease conditions and 

causative agents. Rapid diagnostic information can improve healthcare 

outcomes2,3 and provide necessary, widespread monitoring of diseases and drug 

resistances3,4. The primary development path for portable diagnostic sensor 

technologies has been miniaturization of existing laboratory systems to produce 

mobile versions for identical use away from the traditional central lab 

environment.2,5 However, the existing technologies are largely dependent on 

inherently expensive hardware and technically difficult procedures that do not 

easily translate to the size, power, and cost needs of point-of-care (POC) devices.   

For common bioassays such as the polymerase chain reaction (PCR), 

fluorescence is the gold standard to quantify the amplified gene copies and 

specifically identify them as the product of interest. Because fluorescence 

requires specific filter sets, it is expensive and mechanically difficult to allow 

simultaneous and specific detection of multiple targets, which is commonly 

needed in diagnostic assays. With difficulties in spectral multiplexing, spatial 
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multiplexing is commonly used as an alternative that allows multiple independent 

wells or droplets to use one fluorophore to identify different targets.6 Devices 

and procedures designed around multiple wells typically require increased sample 

volumes, complex and expensive fabrication, and difficult, multistep fluid 

transfers. All of these requirements place existing solutions beyond the 

limitations of the POC. 

Surface enhanced Raman spectroscopy (SERS) has emerged as a promising 

alternative to fluorescence and other established methods to improve the 

hardware cost and simplify assay schemes.108,117,118 As a spectroscopic method, 

SERS is able to provide molecule specific information and can be utilized for 

chemical analytics in many applications.113,117,118,149,150 In diagnostics, SERS has 

been applied as a method for direct detection and identification of a variety of 

targets from small molecules7,13,14, proteins15, and even phenotypic cell 

identification16,17. In biochemical assays, SERS has been broadly applied to 

replace monoplex transduction mechanisms like colorimetry and fluorimetry in 

assays like ELISA and PCR.18–21  

The most common format for implementation of PCR with SERS is based 

on derivatives of the TAQ-MAN assay in which a hybridization event between 

a DNA target and a labelled probe exposes the probe to digestion by a 

polymerase. In the TAQ-MAN assay, the fluorescent label is liberated from a 
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quencher to specifically distinguish the degraded probe from the intact probe. In 

SERS adaptations, a secondary step is necessary to accomplish the same signal 

specificity. Multiple elegant methods have been described to only expose the 

SERS surface to only the free fluorophore, including paper chromatography18 

and affinity separation on microparticles21,22. These methods successfully 

highlight the sensitivity and multiplexing capabilities of SERS with PCR. 

Unfortunately, these methods impose additional technical and time burdens not 

imposed by fluorescence and therefore encumber the portable implementation 

of PCR.   

 

Figure 3.1: Photograph and Illustration of Dialysis driven SERS-PCR device. A: Photograph 
of device taken shows AgNP colloid above a PCR solution. Chip is pictured after 
thermocycling. B: Schematic of device function during a probe based qPCR assay, in which a 
dye is liberated and passes through pores to the AgNP colloid for SERS detection. 

In this work, we demonstrate a technique that is capable of eliminating post-

processing steps and demonstrates, for the first time, real-time PCR with SERS. 

Using a dialysis membrane to isolate a silver colloid from the PCR reaction, target 
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specific digestion of the labelled probe leads to sufficient molecular weight 

change to allow passage across the membrane and into the colloid. At the high 

temperatures in PCR, diffusion across the membrane is fast enough to enable 

the high sensitivity of SERS to rapidly detect the buildup of free fluorophores.  

Further, the reaction is housed in a laser cut thermoplastic chip that allows low-

cost, scalable construction. With this technique, we show quantitative and 

specific detection of two genes for Methicillin resistant Staphylococcus aureus 

(MRSA) through probe based PCR and simultaneous quantification of two genes 

necessary for identifying MRSA and the presence of methicillin resistance.  

 

3.2 Materials and Methods 

3.2.1 Materials 

Devices were fabricated from 1 mm thick polymethyl methacrylate (PMMA) 

obtained from Inventables (Chicago, IL) through laser ablation. All drawings 

sent to the laser cutter were generated in Adobe Illustrator (San Jose, CA). 

Biotechnology grade dialysis membranes with a MWCO of 20 kDa (part no. 

133336) were obtained from Spectrum Laboratories (Rancho Dominguez, CA). 

Fabricated chips were sealed on the top and bottom with PCR grade sealing foils 

(part no. 04729757001) from Roche Molecular Systems (Indianapolis, IN). 

Nanoparticle colloids were synthesized from AgNO3 (SKU 209139), sodium 

citrate tribasic (SKU S4641), spermine tetrahydrochloride (SKU S1141), and 
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polyvinyl pyrrolidinone (SKU PVP40) all obtained from Sigma Aldrich (St. Louis 

MO). PCR reactions were performed with primers and labelled probes obtained 

from either IDT (Coralville, IA) or BioSearch (Petaluma, CA). Reaction mixes 

were purchased as a master mix from IDT (PrimeTime master mix) and 

augmented with BSA and dNTPs from NEB (Ipswich, MA). MRSA genomes 

(MCH70) were obtained through BEI Resources (Manassas, VA).  

3.2.2 Device Fabrication 

SERS-PCR chips were fabricated through laser ablation and thermal bonding 

(Figure 3.1). Laser cutting is a well-established technique for PCR grade 

thermoplastic devices.23,24 In this work, the design was drawn and sent to the 

laser cutter (Fusion M2, Epilog Laser Golden, CO) through Adobe Illustrator. 

Channels were etched partially into the PMMA at 50% power and 50% speed. 

Wells, inlets, and outlets were cut using 15% power and 10% speed. The 

manufacturer applied adhesive backing remained during cutting and was 

removed just prior to bonding to reveal a clean surface. Bonding was performed 

with each of the three layers aligned with the cut dialysis membrane (1 cm X 1 

cm) between the bottom and middle layers. The stacked layers were then 

clamped between two pieces of glass (2x2x0.2 cm) and placed in an oven at the 

glass transition temperature of PMMA (105 °C) for 1 hour.23,24 After bonding, 

the chips were unclamped and allowed to cool to room temperature. An adhesive 
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polypropylene film was cut to size and applied as the bottom layer of the device; 

these films simplify fabrication and provide minimal thermal resistance. 

 

Figure 3.2: Schematic of device construction and use. A: Fabrication pathway of SERS-PCR 
devices. Laser cutting (i) is used to prepare device layers that are thermally bonded(ii) with a 
dialysis membrane between the bottom and middle layers; the device is sealed (iii) with an 
adhesive polymer film. B: Device preparation for PCR involves a simple three step process of 
adding the sample and nanoparticles to the respective inlet (i), sealing the device with an 
optically clear adhesive film (ii) and finally thermocycling under a portable Raman probe. 

3.2.3 Nanoparticle synthesis 

Nanoparticle colloids used as the enhancement surface for SERS were 

synthesized using a concentrated solution of aggregated citrate capped silver 

nanoparticles fabricated through the Lee-Miesel method.25 First, 72 mg of 

AgNO3 was added to 400 mL deionized water and brought to a boil under 

vigorous stirring. Sodium citrate (80 mg) was then added and the reaction was 

allowed to progress for 10 minutes before being removed from heat to cool and 
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stored at 4 °C. Stocks of 100x concentrated colloid were produced through 

centrifugation of the original nanoparticle solution at 12000 g for 20 minutes. 

After centrifugation, the 99 % of the supernatant was removed leaving a 100x 

concentrated colloid; the concentrated stock was also stored at 4 °C. 

Prior to each reaction, solution stable aggregates were produced through an 

optimized mixture of a stabilizing agent (PVP40) and a positively charged 

aggregating agent (spermine). The spermine promotes both nanoparticle 

aggregation and ionic DNA binding.26,27 PVP prevents total aggregation and 

precipitation of the nanoparticles from the spermine and the salts required for 

PCR. In detail, 50 µL of 100x AgNP’s were added to 50 µL of 1 mM PVP40. 

Next, 10 µL of 10 mM Spermine and 10 µL 10x Standard TAQ Buffer (NEB) 

were added. The solution was then vortexed and briefly sonicated for 30 seconds.  

3.2.4 Experimental setup 

On-chip experiments were accomplished through a custom thermocycler and 

spectrometer control system illustrated in Figure 3.3. Briefly, a 10 W polyimide 

film heater (Omega, Norwalk CT) was attached to a glass microscope slide and 

positioned under a portable 532 nm Raman Spectrometer (StellarNet Tampa, 

FL). Temperatures within the device were controlled through feedback from a 

thermocouple on the heater surface, near the reaction well. An Arduino Uno 

microcontroller was used to independently control cycle temperatures through 
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activation of the heater and a cooling fan. Thermal cycles and spectrometer 

readings were synchronized through a custom LabVIEW interface.  

SERS data was collected at the end of every reaction cycle from 6 

independent readings with 1 second exposure times. All six spectra were 

averaged and the background was subtracted through a sextic fit. Signal intensity 

was measured as the peak height of one dye specific peak (R6G: 1515 cm-1; Cy3: 

1400 cm-1). Real-time PCR progression could then be monitored in LabVIEW 

with the increase in peak heights versus cycles. All post-processing was 

accomplished with custom MATLAB scripts. 
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Figure 3.3: Illustration of device setup and estimated thermal profile during PCR. A: 
PCR/Raman control system including a surface mounted thermocouple that feeds data to a 
microcontroller connected to a LabVIEW interface to synchronize temperature and 
spectrometer control. B: Thermal profile estimated through a COMSOL FEM model. Three 
points were chosen to highlight the produced temperature gradient. (A) (B) and (C) represent 
the bottom, middle and top of the PCR well respectively.  

3.2.5 Thermodynamic Modelling 

The difficulty of monitoring temperatures within the sample wells was 

alleviated through monitoring of surface temperatures near the well. However, it 

was important to ensure reliable temperature control in the presence of the 

membrane and nanoparticle well. Toward that end, a finite element model was 

constructed in COMSOL (Burlington, MA). A multiphysics simulation was run 
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with combined thermodynamic and pressure driven fluid dynamic models to 

allow thermal mixing. Temperature conditions similar to PCR reactions 

discussed below were applied to a thin heater below the simplified chip geometry 

Figure 3.3. 

3.2.6 PCR Reactions 

As PCR in thermoplastic chips is well established, the untested aspects of this 

assay that require validation with PCR are the presence of spermine and the 

dialysis membrane. These factors were tested off-chip independently using an 

established TAQ-Man assay for the FemB MRSA gene.18 These reactions were 

run as published on a Miniopticon thermocycler (Biorad Hercules, CA) with a 

ZEN double quenched probe and PrimeTime master mix from IDT. A typical 

20 µL reaction contained 10 µL PrimeTime master mix, 5 µL 1 µM probe and 

primers, 2 µL template, and 3 µL of DI H2O. To test the impact of the membrane 

on PCR efficiency, small pieces of dialysis membrane were cut and added to 

prepared PCR reactions; reactions were run alongside membrane free conditions. 

Next, the impact of spermine was evaluated through reactions prepared with an 

increasing concentration (1 – 4 mM) of spermine. 

On-chip reactions were performed with an augmented mastermix to prevent 

non-specific reagent loss. A typical 20 µL reaction contained 10 µL PrimeTime 

master mix, 0.2 µL 100 ug/mL BSA, 0.4 µL 10mM dNTP’s, 5 µL 1 µM probe 
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and primers, 2 µL template, and 2.4 µL of DI H2O. Two primer sets for the 

MecA and FemA MRSA genes were used to illustrate the potential for 

multiplexed SERS-PCR. The primer set for MecA was used as published 

previously18, while the FemA primers and probe were generated through primer 

blast. All sequences are listed in Table 3.1. 

Table 3.1: Sequences used for PCR targetting the Methicillin resistance gene MecA and the 
Staphylococcus Aureus gene FemA 

 
Sequence Dye 

Mec A     

Forward primer CAA ACT ACG GTA ACA TTG ATC GC   

Reverse primer GCT TTG GTC TTT CTG CAT TCC   

Probe AGA AGA TGG TAT GTG GAA GTT AGA TTG GGA cR6G 

Fem A     

Forward primer ACA CTT TCA TAA CAG GTA CAG CA   

Reverse primer CCA TAC AGT CAT TTC ACG CAA AC   

Probe GCT GCA AT GAC CTC GTT ATT ATT GTT TTT T Cy3 

   

All on-chip reactions were setup in a rapid three step process illustrated in 

Figure 3.2B. First, finished chips were loaded via pipette with 20 µL of sample 

per PCR well. Next, 20 µL of fresh aggregated colloid was added to each upper 

well. The top surface was then wiped with a cotton swab dipped in methanol to 

remove and sample or nanoparticle residue. Finally, the chips were sealed with 

another polypropylene foil and placed in the custom thermocycler. Cycle settings 

were set to 30 seconds each for the melt, anneal, and extension steps that were 

held at 95, 55, and 67°C respectively. PCR amplification is commonly quantified 
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by the cycle at which the signal surpasses a noise threshold. In this work, cycle 

threshold (Ct) was calculated as the first cycle at which the signal surpassed the 

mean of the first 15 cycles plus 10 times the standard deviation over those cycles. 

Diffusion rate experiments were performed with PCR “samples” that were 

pre-run off-chip then spiked into the reaction well as stated above. The 

thermocycler was then set to maintain 55, 67, or 95 °C for 1 hour with readings 

taken every 1 minute.  

3.3 Results 

To address common limitations in current SERS adaptations of PCR assays, 

a novel, low-cost thermoplastic chip was constructed to enable simultaneous 

reaction and product separation during PCR. Devices were fabricated with the 

rapid, scalable combination of laser ablation and thermal bonding. The dialysis 

membrane is readily embedded in the chip during boding through softening of 

the PMMA at its glass transition temperature (105 °C). Indention of the PMMA 

surface around the dialysis membrane forms a tight seal around the membrane 

preventing leakage around the edges. Even at temperatures at and above 95 °C, 

no evidence indicated leakage around the membrane edges, leaving the dialysis 

pores as the only mass transfer path between the reaction and SERS wells.  

The small dialysis pores prevented any significant reagent or DNA loss to the 

SERS well which can be qualitatively assessed by the amplicon intensities visible 
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in the PAGE gel (Figure 3.4) comparing on and off chip PCR reactions. The 

membrane also completely isolated the large nanoparticle clusters from passing 

through to the reaction well; nanoparticles were assumed to be absent from 

reaction well, as they showed no increase in opacity at the end of any reaction. 

 

Figure 3.4: Evaluation of potential PCR inhibitors. A: PCR run off-chip to evaluate inhibition 
by the dialysis membrane (n=3 for samples with and without the membrane). B: Spermine 
inhibition of PCR at concentrations only above the on-chip assay concentration of 1mM (n=1 
for each concentration). C: PAGE separation of PCR reactants (i) and products (ii & iii) in the 
presence of the dialysis membrane. Diminishing intensity of the probe band (d) indicates 
successful digestion during amplification. 

Temperature accuracy for PCR on chip was first validated through a finite 

element model in COMSOL. Figure 3.3 illustrates the estimated temperature 
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distribution throughout the reaction well at each PCR phase over two full cycles. 

The combined thermal mass of the PMMA and the additional liquid in the SERS 

well serve to insulate the reaction well. Heating and cooling rates decrease 

towards the middle of the chip, creating gradients of up to 5 °C initially, though 

these seem to decrease to less than 3 °C over the course of additional cycles. 

While precise temperature control is ideal, these gradients are within the optimal 

range for these primers (data not shown) and do not appear to significantly 

impact reaction efficiency. 

Prior to on-chip assays, the impact of two potentially inhibiting chip 

conditions were evaluated independently off chip to ensure uninhibited PCR 

reactions. First, the membrane presents an untested surface for PCR reagents 

that may irreversibly adsorb onto the membrane. Figure 3.4 shows no change in 

signal development throughout the assay. Spermine however, does lead to a 

concentration dependent impact on the PCR signal. The spermine appears to 

primarily effect the endpoint signal amplitude without much shift in cycle 

threshold until 3 mM spermine is present. Fortunately, the 1 mM concentration 

introduced to the nanoparticles for SERS appears to have only a minor effect on 

signal development. PAGE results highlight successful amplification of the 

desired products in the presence of the membrane both on- (ii) and off-chip (iii); 

though band intensity differences may imply a small drop in reaction efficiency 
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on-chip. Intensity results can also indicate the expected degradation of the dye 

labelled probe (band d), suggesting successful liberation of a dye required for 

SERS. 

To validate the potential for real-time analysis of diffusion across the dialysis 

membrane, qPCR probes were degraded in an off-chip PCR reaction, then 

spiked into sample wells of the chip. During thermal cycling the dyes rapidly 

accumulate in the SERS well and can be distinguished from the background 

within 1-2 cycles. Conversely, when a fresh PCR mixture is loaded into the chip 

without a template to amplify, little to no signal develops throughout the 41 

cycles displayed in Figure 3.5B. Notably, a background signal from the inherent 

Raman activity present in the PMMA structure is present in all spectra collected 

Figure 3.5. However, with the Raman probe focused within the colloid, even the 

most intense PMMA peak around 1450 cm-1 is consistently only 400 counts and 

therefore not enough to obscure either the R6G or the Cy3 spectra. 
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Figure 3.5: SERS spectra collected from pre-cycled PCR samples added to the SERS-PCR 
chip. A: Cy3 signal development over time from diffusion of the pre-amplified FemA gene. 
B: Blank signal from FemA PCR mixture without pre-cycling and with no added MRSA 
genome. C: R6G signal development over time from diffusion of the pre-amplified MecA 
gene. B and C:  I1400 and I1515 represent the intensity of the peak for quantification of signal 
intensity from Cy3 and R6G respectively. D: Overlapped spectra from degraded FemA (Cy3) 
and MecA (R6G) highlighting distinct peaks.  

To test the impact of each PCR phase on the diffusion of dyes across the 

membrane, pre-amplified samples were spiked into SERS-PCR chips and held at 

either the melt temperature (95°C), the extension temperature (67°C), or the 

anneal temperature (55°C). These data (Figure 3.6) show an expected increase in 

diffusion rate with an increase in temperature; however, the apparent diffusivity 

appears to plateau starting above 67°C. 
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Figure 3.6: Temperature dependent diffusion rate of degraded MecA probe (R6G) into the 
SERS well. A: Average (n=3) signal generation profile of dye transfer across the embedded 
dialysis membrane at 95°C (red), 67°C (green), and 55°C (cyan). B: Calculated diffusion rate 
(linear fit slope) plotted versus temperature. 

The real-time Raman signal growth as the dye accumulates in the SERS well 

can allow the differentiation of template concentrations. Figure 3.7 illustrates the 

concentration dependent signals from an increasing concentration of MRSA 

genome from 5x105 copies through 5x107 copies. Figure 3.7A shows real-time 

signals generated from the PCR reactions. These curves show signals increasing 

at a rate dependent on the starting concentration, though it is clear that there are 

non-linear effects that dampen signal generation as the starting template 

concentration decreases from 106
 to 105 copies/µL. As absolute signal intensities 

appear to decrease rapidly with concentration, cycle threshold calculations for 

each dye were calculated independently for each run. Cycle thresholds were 

calculated as the cycle at which the signal intensity surpassed the background 

signal detailed in the methods. Ct values were calculated to be 22.33 ± 2.5, 24.5 
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± 1.9, 37 ± 2.7, and 53 ± 7.6 cycles for 105, 106,107, and the NTC respectively. 

Though there is a distinctly non-linear trend, the calculated Ct’s exhibit a clear 

concentration dependence.  

 

Figure 3.7: Real-time and quantitative data for SERS-PCR. A: Averaged data for increasing 
concentration of MRSA genome amplified in a PCR reaction on chip and quantified with 
SERS. Concentrations tested were 5x107 (n=3), 5x106 (n=4), 5x105 (n=5), and an NTC (no-
template control, 0 copies) (n=3). B: Cycle threshold (Ct) calculated as the first intensity value 
to surpass the calculated noise level defined as the mean plus the ten times the standard 
deviation of the first 15 cycles. C: Peak height from A (I1515) normalized to a control point 
(I1400). D: Ct values calculated from normalized data in C; threshold was defined as a ratio of 
1.0. A-D: Line colors in A and C darken with decreasing concentration and correspond with 
colors and concentrations in B and D respectively. 
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In Raman spectra, relative intensities of various locations in a spectrum 

should be relatively consistent in a given set of conditions, it is possible to 

normalize peak heights to intensities at other wavenumber values. For instance, 

Figure 3.7 shows simpler signal discrimination and sharper reaction transitions 

when the I1515 is normalized to intensity at 1400 cm-1. With this method, a sample-

independent threshold of 1.0 can be used to calculate nearly identical Cts.  

 

Figure 3.8: Multiplexed detection of MecA and FemA MRSA genes with SERS. A: Peak ratio 
for identification of R6G (MecA). B: Peak ratio for identification of Cy3 (FemA). A & B: light, 
medium, and dark grey indicate MecA primers only, MecA & FemB primers only, and FemA 
primers only. 

Finally, achieving a multiplexed reaction requires simultaneous detection of 

both the FemA and MecA genes. To accomplish this, FemA and MecA primer 

sets were loaded into a single reaction on chip allows amplification and 

identification of both genes from a single well. Figure 3.8 shows a similar peak 

ratio method to isolate MecA (R6G) and FemA (Cy3) signals from an 

overlapping signal. The R6G ratio used (I1515/I1400) shows a slight decrease when 
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FemA is present as 1400 cm-1 is also a peak in FemA, but as the R6G signal 

dominates the signal ultimately follows a similar trend. Detection of Cy3 is 

possible with the ratio: I1590/I1450. The FemA signal alone shows a drifting 

background, but ultimately similar amplification profile as the signal with MecA 

and FemA primers combined. In both cases, only when the appropriate dyes are 

present, does the desired signal appear in from each ratio. 

3.4 Discussion 

Presented here is a novel approach to PCR assays that utilizes a low-cost 

fluidic device to enable real-time readout using SERS for the first time. Portable 

diagnostic devices require low-cost implementations of highly sensitive assays 

with high multiplexing density. SERS has long been presented as a potential 

solution for portabilizing PCR, but required new procedures on top of existing 

protocols. SERS-PCR devices are fabricated using simple and scalable techniques 

based on laser ablation and thermal bonding. The combination of these methods 

provides a platform to rapidly produce devices without the requirement of any 

liquid reagents. Further, the use of thermal bonding allows direct impregnation 

of a dialysis membrane between bonded device layers, producing a permanent, 

leak free seal at temperatures above 95°C. Dialysis membranes have been 

embedded in microfluidic systems before28,29; however our device is significantly 
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simpler to use and integrate with existing assays and quantification methods like 

SERS. 

Thermodynamic modelling was used to estimate the temperature profile 

within the PCR well through each phase of a PCR cycle. Results show the 

existence of a temperature gradient throughout the well. Fortunately, the extent 

of the gradient at each of the three phases is within traditional PCR parameters 

and should not significantly impact PCR efficiency. Though 1 mm thick PMMA 

presented a simple development platform, thinner layers may help to reduce 

thermal gradients in the future through reduced thermal mass around a smaller 

reaction volume.  

Publications have detailed inhibition of PCR through reagent contact with 

various materials.30,31 As a result, BSA was added to the PCR mixture to passivate 

the PMMA and the impact of the membrane on PCR efficiency was tested off-

chip. Shown in Figure 3.4, tests suggest that the dialysis membrane presents a 

relatively inert surface for the PCR reaction. Above the membrane, the 

nanoparticle solution contains three primary components: AgNP’s, PVP40, and 

spermine. The AgNP’s and the PVP are both relatively large and unlikely to pass 

through the pores of the membrane, that have a MWCO of 20 kDa. Spermine, 

however, is relatively small molecule (MW 202.34 Da) and can readily diffuse 

across the membrane. Further, as a cationic polymer spermine has the potential 
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to inhibit PCR at high concentrations through complexation with primers and 

genomes. The impact of spermine on PCR was tested at and above the 

concentration introduced to the nanoparticles, 1 mM. Figure 3.4 shows slight 

alteration in the amplification profile for 1 mM spermine, but no significant 

alteration in the Ct or endpoint signal intensity. Though higher concentrations 

may have an effect, practical diffusion limits reduce the equilibrium 

concentration to 0.5 mM at most, while the expected concentration is likely much 

lower due to adsorption of the spermine onto the nanoparticles.  

Quantification of the assay progression relies on the specific transfer of dyes 

liberated through the assay process and retention of intact probes. Figure 3.5 

shows signals developed over the course of assays containing only degraded or 

intact probes. Specifically, the Cy3 signal growth seen in Figure 3.5A contrasted 

with the lack of signal developed in Figure 3.5B demonstrates successful passage 

of digested probes and effectively full exclusion of unreacted probes. 

The thermal impact on diffusion was tested to explore the impact of high 

temperatures on diffusion rates across the dialysis membrane. Results show a 

large increase in diffusion rate between 55°C and 67°C with a plateau of the 

between 67°C and 95°C. These results suggest, at least, that diffusion and signal 

production are not drastically hindered by high temperature effects on the 
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membrane or nanoparticles. However, a complex temperature dependent 

mechanism is present and will be explored in future studies.  

PCR reactions performed on-chip show successful generation of a liberated 

dye and a quantifiable accumulation of the dye on the SERS side of the 

membrane. The signal development rate in on-chip reactions (Figure 3.7) is 

distinct from that of signals from pre-run samples (Figure 3.6). Specifically, on-

chip reactions exhibit an exponential growth pattern, unlike the linear growth 

pattern expected and found in predegraded probe. An exponential signal is 

indicative of an increasing concentration gradient generated through dye 

liberation throughout the course of the assay, while a linear signal is easily 

explained by a constant gradient. All concentrations tested are distinct from the 

negative control. Further, average Ct values calculated for each concentration 

indicate a concentration dependent signal development rate. Discrimination 

between concentrations is difficult at high concentrations, but non-linear effects 

increase separation as the concentration decreases towards the negative control. 

Future work will explore this delayed amplification rate and seek to improve 

amplification efficiency. 

Finally, with this work we successfully show multiplexed PCR through 

amplification of two MRSA genes MecA and FemA. Figure 3.8 shows that that 

signals from each primer set can be independently identified with a distinct peak 
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ratio chosen for each dye. When the primer sets were combined, both dyes can 

simultaneously be identified in signals calculated with both ratios. While this early 

demonstration detects a single pair of genes, the spectroscopic benefits of SERS 

are often used for many dyes simultaneously.11,22,32,33 In theory, this work requires 

little effort to expand across a much wider library of genes and dyes.  

3.5 Conclusion 

In this work, we demonstrate the first real-time, multiplexed PCR assay with 

SERS. Based on high temperature dialysis in a novel and low-cost thermoplastic 

device, we are able to separate digested PCR probe dyes from a TAQ-Man like 

reaction from an ongoing assay. Dialysis enables elimination of post-processing 

steps through isolation of the SERS colloid from the PCR reaction. With this 

system, we show a thermodynamic model to validate precise temperature control 

and controlled, temperature dependent diffusion of dyes into a SERS colloid. 

PCR reactions were successfully run on chip allowing simple, real-time 

identification of both the MecA and FemA MRSA genes. Finally, we show 

simultaneous, multiplexed detection of these genes in a single SERS-PCR 

reaction and from a single well.  
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Chapter 4. Integrated concentration, handling, 
and detection of organic analytes in a sponge-
like PDMS matrix with Surface Enhanced 
Raman Spectroscopy 

4.1 Introduction 

Raman spectroscopy and the more sensitive surface enhanced Raman 

spectroscopy (SERS) have long been hailed as promising techniques, whose 

sensitivity and specificity could rival entrenched methods such as IR 

spectroscopy and fluorescence. However, since the discovery of surface 

enhancement by noble metal nanostructures1–4, the field of SERS sensing has 

relied on complex, expensive, and non-scalable fabrication techniques to 

produce the metal nanostructures necessary for enhancement.  

Traditional nanostructured SERS devices on rigid silicon substrates provide 

no capabilities for acquiring and processing complex samples, and consequently 

require laboratory techniques to prepare samples for SERS analysis. The 

combined impacts of inefficient fabrication and the absence of integrated assay 

techniques has restricted SERS to academic laboratories and hindered expansion 

to industrial applications.  

Recent work, however, has considered the application of SERS from a 

systems approach intended to augment SERS sensors with integrated sample 
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processing techniques. This reimagining of the traditional, rigid SERS substrate 

has led to new flexible substrates and fabrication methods that are simple and 

scalable as well as sensors that have integrated functionality to facilitate sample 

handling away from a laboratory.  

Fabrication of the noble metal nanostructures within these sensors is 

commonly simple and low cost with varying degrees of scalability from in-situ 

generation of particles5–7 and soaking, to customizable spot deposition methods 

such as ink-jet8,9 and screen printing108,164. These methods have been applied to a 

diverse set of materials, including various flexible membranes108,111,113,114,164, rigid 

filters12, cotton swabs166,167, adhesives118, and elastomers16–18. Functionally, these 

materials provide application specific sample processing from sample acquisition 

with swabs102,111,166,167,  dipsticks9 and adhesive extraction118,168, to analyte isolation 

through filtration12,20,21, chromatography22,23, and analyte concentration20,22.  

The existing library of techniques and applications for SERS has highlighted 

the many advantages of flexible, porous substrates for sample processing. 

Despite the benefits of wicking in fibrous papers, sample control remains entirely 

passive, leading to limited sample transfer ability, low sample volumes, and 

complex multi-step concentration methods. Moving forward, newer and more 

customizable solutions are necessary to address the limitless conditions 

throughout the portable application space. In particular, development of a SERS 
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sensor based on a flexible, 3-dimensional, and porous matrix could allow for a 

higher sample processing volume and provide active fluid handling methods 

leading to a more dynamic sensor system for field use.  

A 2011 paper by Choi et al introduced the concept of mesoporous sponges 

from polydimethylsiloxane (PDMS), in order to provide selective processing of 

organic phases from aqueous samples.170 The authors demonstrated a simple 

fabrication method using a sugar cube as a sacrificial template to produce a highly 

porous, deformable PDMS sponges. The sponges were shown to selectively 

absorb oil from water, owing to their hydrophobic nature, opening the door for 

a new domain of simplified sample processing for SERS substrates.   

 Herein, we present SERS sponges based on flexible, mesoporous, and 

fully customizable PDMS constructs that improve upon the current limitations 

inherent in the 2-dimensional nature membrane based devices. This novel sensor 

substrate is capable of simple customizability through control of the shape of the 

sacrificial sugar template; nearly any shape can be developed and tailored to the 

requirements of a particular application. Further, the high flexibility and void 

volume of the PDMS sponge structure allow for even simple shapes to be 

reversibly molded to fit necessary application surfaces or voids.   

To illustrate use for organic molecules, PDMS sponges are characterized to 

show the selective uptake of organic solutions and hydrophobic molecules from 
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aqueous solutions. Two demonstrations are presented. First, an aqueous sample 

is loaded into a syringe holding a custom fit sponge. The solution then passes 

through the pores, while the dye is extracted onto the PDMS surface. Second, 

we demonstrate the potential for controlled organic phase extraction of an 

analyte in which a sponge saturated with an organic solvent extracts and 

concentrates organic molecules.  

 

Figure 4.1: Photograph of SERS sponge fabrication process and flexibility. A: fabrication of 
SERS sponge beginning with the sugar cube template, curing and removal of sugar to form 
the PMS sponge, and finally decoration with nanoparticles to produce the final SERS sponge 
sensor. B: Compression of SERS sponge with forceps to illustrate high flexibility and shape 
conformability of SERS sponges. 

Finally, we demonstrate the ability to generate SERS-active PDMS sponges 

through an adsorption-based nanoparticle decoration procedure. We 

characterize these sponges both on the macroscale and on the microscale, 
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demonstrating the detection of three molecules, two of which have direct 

applications in the field for environmental monitoring. We detect: (i) Rhodamine 

6G (R6G), a commonly used Raman dye, (ii) Malachite Green (MG), a common 

toxic fungicide used in aquaculture, and (iii) Pyrene carboxylic acid (cPyrene), a 

model polyaromatic hydrocarbon (PAH), which are a class of potentially 

carcinogenic byproducts of burning fossil fuels.25–29  

4.2 Materials and Methods 

4.2.1 Materials 

Sylgard 184 polydimethylsiloxane kit was purchased from Dow Corning 

(Midland, MI). Half teaspoon sized compressed sugar cubes were obtained from 

Domino Sugar (Baltimore, MD). Ethanol, methanol, and isopropyl alcohol were 

purchased from Pharmco-Aaper (Brookfield, CT). Malachite green oxylate salt 

(MG), sodium citrate tribasic dihydrate, silver nitrate, 1-pyrenecarboxylic acid, 

and Triton X-100 were from Sigma-Aldrich (St. Louis, MO). 1-decanol was 

purchased from Alfa Aesar (Haverhill, MA). Rhodamine 6G (R6G, Rhodamine 

590) was purchased as a chloride salt from Exciton (West Chester, OH). 

Dimethyl sulfoxide (DMSO) was obtained from Fisher Scientific (Waltham, 

MA). All reagents were used according to their safety data sheet. 
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4.2.2 Nanoparticle Synthesis 

Silver nanoparticles were synthesized with a modified Lee-Meisel method, as 

we have described before.8,30 Briefly, the 72 mg of silver nitrate was added to 400 

mL of boiling water in an Erlenmeyer flask. A stir bar was set such that the vortex 

touched the bottom of the flask, and 80 mg of sodium citrate tribasic dihydrate 

was added. After 10 minutes, the solution was removed from heat, cooled, and 

verified with UV-Vis spectroscopy. The nanoparticles can be stored after this 

step for months at 4°C. Alternatively, they can be concentrated right away. The 

nanoparticles are concentrated about 50 times using a centrifuge at 12000g and 

4°C for 20 minutes. They can be stored for a shorter amount of time at 4°C. 

4.2.3 PDMS Sponge Fabrication 

PDMS sponges were fabricated based on a method adapted from Choi et 

al.170 Briefly, PDMS was made by mixing 5 g of the base with 0.5 g of the curing 

agent by weight. Six sugar cubes were placed into the PDMS and the whole setup 

placed under vacuum for one hour. The sponges were then removed from the 

vacuum and baked in an oven at about 80°C for an hour. The cubes were cut 

away from any excess PDMS in the tray. To remove the sugar cube template, the 

sponges were placed in a hot water bath and sonicated until the sugar dissolved. 

Once the sugar is removed, the sponges rapidly become hydrophobic and 

maintain little to no water within the pores. In order to remove any residual sugar, 
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solvents that can penetrate the hydrophobic pores, such as ethanol or 

isopropanol, were used for subsequent washes. The sponges were cut in half at 

the plane parallel to the side that was initially placed in the PDMS. A 5 mm biopsy 

punch created sponges with consistent diameters. A schematic is shown in Figure 

4.2. 

 

Figure 4.2: Illustration of stepwise SERS sponge fabrication process. A: Process of PDMS 
sponge fabrication: PDMS preparation, vacuum aided PDMS perfusion of sugar cube pores, 
heat curing of PDMS, bisection and cylindrical coring for the final sensor shape. B: Process 
of nanoparticle decoration from a concentration AgNP colloid: surfactant treatment and two 
nanoparticle submersion steps each separated by a heated dry.  



 

65 
  

4.2.4 Selective Absorption Characterization 

To demonstrate the selective absorption characteristics of the PDMS 

sponges, a qualitative experiment was performed. Solutions of malachite green 

in water R6G in decanol were formed. 100 μL of the two solutions were placed 

next to one another on a glass slide. PDMS sponges both with and without 

Triton treatment were placed at the interface of the two to observe which solvent 

was selectively absorbed. Sponges were also placed directly into the solvents to 

observe which one absorbed into the sponges. Finally, an untreated sponge was 

placed in the aqueous solution. Forceps were used to squeeze and release the 

sponge repeatedly to demonstrate that force could be used to absorb aqueous 

solution into the hydrophobic untreated sponges. Pictures were taken for 

qualitative analysis. 

4.2.5 PDMS Sponge Decoration for SERS 

Sponges were treated with Triton prior to adsorption of nanoparticles onto 

their surface, by incubating them on a nutating mixer for 5 minutes in a 1% v/v 

solution in ethanol. Triton improves wettability of the sponge and thus allows 

penetration and direct interaction of the nanoparticle colloid with the surface. 

They were then centrifuged in a table top centrifuge to fill all pores of the sponge. 

The sponges were dried in the oven at 80°C for 20 minutes and then incubated 

in 50 times concentrated nanoparticles for 5 minutes on a nutating mixer. 
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Following a second centrifugation step, the sponges were removed from the 

nanoparticle suspension and dried in the oven at 80°C for 20 minutes. This 

procedure was repeated once more to increase the density of nanoparticles on 

the sponge surface. The sponges are dried for two hours at 80°C to ensure no 

residual water is left. Figure 4.2 shows a schematic of this procedure. Sponges 

were imaged using a S-3400 Variable Pressure SEM (Hitachi, Schaumburg, IL). 

The accelerating voltage was set between 5 and 10 kV and current to 67 to 74 

µA in order to get the best image. EDS mapping was performed on the surface 

of the sponges to confirm the presence of silver using the SEM system and its 

associated detector (Bruker, Billerica, MA). For EDS, the accelerating voltage 

was set to 10 kV and the current to about 65-70 µA. 

4.2.6 SERS Measurements 

For the creation of standard curves with R6G in water, R6G in decanol, 

malachite green in water, and cPyrene in water, spectra were taken for three 

sponges. Stock solutions of R6G and MG were at 2 mM and 1.36 mM, 

respectively, and then diluted to the appropriate concentration. A stock of 2 mM 

R6G in decanol was also made and diluted. cPyrene was dissolved as a 5 mM 

solution in DMSO. It was then diluted in water. To collect spectra, 10 µL 2% 

HCl was dropped on the surface for R6G and MG. For cPyrene, 10 µL water 
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was dropped on the surface to keep the total volume applied constant. 20 µL of 

the R6G, MG, or cPyrene was then pipetted onto the surface of the sponge. 

Spectra were obtained using a QE65000 portable Raman spectrometer 

(Ocean Optics, Dunedin, FL) with a 785 nm diode laser and fiber optic probe 

(Integrated Photonic Solutions, Monmouth Junction, NJ). The laser power was 

set at about 15 mW.  A custom raster pattern collects 200 predetermined points 

in the shape of a 3.5 mm diameter spiral on the surface of the sponge. Automated 

control of the raster pattern was programmed in LabView 2016 (National 

Instruments, Austin, TX). Spectral acquisition was set to 1 second exposures 

with 1 accumulation.  
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Figure 4.3: Illustration of data collection and analysis process. A: Raster pattern with 
highlighted movement path (Red) in a predefined spiral path (blue). B: Heat map 
demonstrating Raman intensity across a sensor surface based on a sample R6G concentration 
(10 µM); pixels are colored based on the intensity visible in plot C. C: Full spectra for data 
visible in plot B. D: Isolation of peak value at 1515cm-1, used for quantification of R6G 
concentration. 

4.2.7 SERS data analysis 

All spectra were analyzed using a custom code in R2017A (Mathworks, 

Natick, MA) for analysis. The average spectrum from at least 200 spots per 

sponge was background-subtracted with a sextic fit. To quantify the spectra, the 
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1514 cm-1 peak was used for R6G, the 1175 cm-1 peak was used for MG, and the 

1245cm-1 peak was used for cPyrene. The code quantified the intensity by finding 

the local maximum between the two immediate points above and below the 

indicated Raman shift. Throughout, we will refer to these as I1515, I1175, and I1245, 

respectively. This intensity was averaged across three sponges unless otherwise 

noted, and the standard deviation measured across the three sponges. Standard 

curves were fit with least square linear regression lines. Detection limits were 

calculated through the linear fit by finding the first concentration above 3 times 

the standard deviation of the mean. 

4.2.8 Concentrating of organic analytes with PDMS Sponges 

To assess the ability of the porous PDMS sponges to uptake and retain 

organic analytes, two demonstrations were designed. First, 5mm sponges were 

inserted into a 1mL syringe (Becton Dickenson; Franklin Lakes, NJ), that was 

then loaded with a solution of 1 µM R6G. The syringe plunger was then used to 

force the solution through the sponge. The impact of sample volume on the 

amount of R6G retention was tested by loading 0, 1, 2, or 3 consecutive 1mL 

samples. As fluorescence of the dry R6G was not reliable, a color image was used 

to colorimetrically estimate the amount of retained R6G. Calculations were 

performed through isolation of the red channel in the RGB image; the white 

background was estimated as the mean of the blue and green channels which was 
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then subtracted from the red channel. The intensity of the sponge area within 

the monochromatic image was averaged and plotted. 

Next, the potential for sponges to passively retain solvents that allow 

concentration of hydrophobic molecules was tested. We placed decanol-filled 

sponges in aqueous R6G or cPyrene and investigated the resulting concentration 

of each analyte. Sponges were soaked in decanol for 5 minutes and then 

centrifuged to allow the decanol to infiltrate the pores of the sponge. The 

decanol-filled sponges were then placed in the 1 mL aqueous analyte solutions 

and incubated on a nutating mixer for 90 minutes. After incubation, the sponges 

were placed on a glass slide, and the fluorescence was measured. For comparison, 

a standard curve was created by soaking the sponges in solutions of analyte in 

decanol. The samples were centrifuged to allow penetration of the analytes 

throughout the sponge. The fluorescence for all samples was read and quantified 

from a single image. Concentration factors were calculated based on a linear fit 

of the intensities obtained in the standard curve surrounding the tested 

concentration. 

All fluorescence measurements were made using a BioSpectrum Chemi HR 

410 W/LM-26 Transilluminator (UVP, Upland, CA) with 305 nm excitation and 

a SYBR Gold filter. The observed fluorescence was quantified using ImageJ 
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software (National Institutes of Health, Bethesda, MD). The mean pixel intensity 

value was obtained through a circular ROI on each sponge.  

4.3 Results 

In this work, we assess a novel flexible SERS substrate based on PDMS 

sponges. Data and visual demonstrations here illustrate that SERS sponges are 

able to integrate and improve upon many of the existing features of separate 

flexible SERS substrates. First, we demonstrate the controlled affinity of PDMS 

sponges to aqueous and organic solvents. Figure 4.4A and B show the selective 

uptake of an organic solvent (yellow, decanol) in the presence an aqueous 

solution (blue). Figure 4.4E provides a simple visual of the perfusion of the 

organic solvent into the sponge, while the aqueous solution remains on the 

sponge surface. The hydrophobicity of these sponges can be modified to enable 

uptake of any solvent through the use of a deposited surfactant (Triton X-100). 

Shown in Figure C and D, surfactant modified sponges readily uptake both the 

aqueous and organic phases.  A fully saturated sponge with any solvent can, like 

traditional sponges, be compressed to eject its solution. (Figure 4.4F) 
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Figure 4.4: Photographs of phase preference for modified and unmodified sponges. A,B,&E: 
Specific uptake of organic phase (decanol, yellow) over aqueous phases (blue) in an 
unmodified PDMS sponge. C&D: Mixed and individual uptake of both organic and aqueous 
phases in a surfactant modified PDMS sponge. F: Ejection of absorbed liquid via sponge 
compression.  

A B
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E F
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While these sponges can be utilized to directly acquire samples via sponge 

action, the shape customizability of the sponges allows simple integration with 

common assay hardware. To demonstrate this capability, we have taken four 

sponges and fit them to the inner diameter of a 1mL plastic syringe. The syringe 

was then loaded with a dye (R6G) which was forced through the sponge. Figure 

4.5 shows the deposition of R6G on the surface of the sponge through an 

increasing volume of applied sample. The quantified pixel values of the isolated 

red channel of a color image are shown in Figure 4.5D. The pixel values show a 

relatively linear increase in concentration of R6G being deposited on the sponge 

from 0 to 2mL; a plateau is visible between 2mL and 3mL.  
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Figure 4.5: Extraction of an organic analyte (R6G) with a PDMS sponge. A: Image of sponge 
within a 1mL syringe. B: Images of sponges through which an increasing volume of R6G was 
forced through with a syringe. C: Background subtracted red channel of the image in B. D: 
Quantified pixel intensity as the average of the sponge area in C.  

The porous nature of the PDMS sponge enables retention of solvents and 

potential concentration of organic molecules through affinity differences known 

as partition coefficients. PDMS sponges were loaded with an organic solvent 

(decanol) and placed in aqueous solutions of model analytes (R6G and cPyrene). 

After an incubation period the sponges were removed from the water and the 

fluorescence of dyes within the decanol was measured. Figure 4.6 illustrates the 

concentration process used as well as data obtained for concentration of both 

cPyrene and R6G. Figure 4.6B shows that for each model analyte, concentration 

factors are roughly 18 and 8-fold for R6G and cPyrene respectively.  
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Figure 4.6: Illustration and data of phase based separation of organic analytes with PDMS 
sponges. A: Illustration of concentration process: decanol is loaded into sponges, which are 
then added to a sample solution containing either R6G (100 nM) or cPyrene (1 µM), after 90 
minutes sponges are removed from the sample and fluorescence was recorded through UV 
transillumination. B: Quantified fluorescence intensity of dyes concentrated into sponges 
(Sample) and related concentrations of dyes. 

In order to utilize the PDMS sponges as a SERS sensor, they were first 

decorated with silver nanoparticles. Nanoparticles were produced in a colloid 

through existing methodologies, applied to surfactant treated sponges twice and 

dried with heat. The surfactant provided enhanced wetting of the nanoparticle 

solution and aided deposition of the nanoparticles. SEM was used to visualize 
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the presence and distribution of nanoparticles on a representative sponge.  Figure 

4.7 shows three magnifications of the sponge surface and the visible presence of 

nanoparticles. The nanoparticles, visible as bright, amorphous areas, are seen in 

various sized aggregates throughout the sponge surface.  Figure 4.7D shows 

superimposed EDS data on  Figure 4.7C that illustrates the distribution of silver 

across the surface.  Figure 4.7E shows a photograph of a representative SERS 

sponge used for further testing. The dark brown-black color is indicative of silver 

deposition.  

Validation of SERS performance was accomplished through testing of three 

model analytes: R6G, cPyrene, and Malachite green. Tests were performed 

through raster scanning of the surface on which analyte samples were added. 

Figure 4.8 shows the summary of data collected for each analyte as well as the 

molecular structure. Spectra for each of the tested samples are also shown Figure 

4.8 i and ii), and highlight the peaks used for quantification of each dye. The HCl 

treatment eliminates the citrate background from the R6G and MG signals, 

which dominates the visible field in the cPyrene spectra. The first subplot for 

each analyte (Ai, Bi, and Ci), shows the mean and standard deviations for the 

tested concentrations. The data follows a distinctly constant trend with each 

calculated Langmuir fit having an R2 greater than 0.99. Notably, standard 

deviations below the highest concentrations are commonly low, indicating high 
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reproducibility. The theoretical detection limits were calculated to be 3.25nM, 41 

nM, and 1.4 µM for R6G, MG, and cPyrene respectively.  

 
Figure 4.7: Scanning electron micrographs of nanoparticle decoration on SERS sponges. A: 
View (80x) of SERS sponges with lighter areas indicating silver nanoparticle deposits. B-C: 
Views (320x) of SERS sponges. D: EDS data superimposed on image C. Red color represents 
the presence of silver. These confirm the lighter areas as AgNPs. E: Photograph of 
nanoparticle decorated SERS sponge. 
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Figure 4.8: SERS sponge data summarizes detection and quantification of three model 
analytes: R6G, Malachite green, and Pyrene. A-C: SERS data collected via Raster scanning of 
sponge surfaces. Various concentrations were tested for each analyte. (i) Average spectra for 
3 sensors at all tested concentrations. Blue highlighted area represents the peak chosen for 
quantification of signal intensity. I1515 for R6G, I1125 for MG, and I1245 for cPyrene. (ii) Zoomed 
view of data from (i). (iii) Concentration vs. Intensity plot based showing mean and standard 
deviation of the calculated mean peak intensity for each dye.  A: Data collected from R6G 
samples, spectra labeled a-h represent averaged data from 10, 5, 1, 0.5, 0.1, 0.05, 0.01 and 0 
µM R6G respectively. B: Data collected from MG samples, spectra labeled as a-g represent 
averaged data from 10, 5, 1, 0.5, 0.1, 0.025, and 0 µM respectively. C: Data collected from 
cPyrene samples, spectra labeled as a-e represent averaged data from 100, 50, 25, 5, and 0 µM 
respectively.  

4.4 Discussion 

Demonstrations for SERS as a portable sensing technology have successfully 

improved up on the rigid, lab-centric sensors with lower-cost, flexible substrates 
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with integrated sample handling functions. Though the diverse materials 

available for flexible SERS sensors have improved capabilities over rigid SERS 

substrates, they cannot fully replicate the functions required of lab-free sensing. 

Specifically, the ability to actively collect and eject samples is difficult with only 

passive flow in paper based devices and impossible with current elastomeric 

technologies. Additionally, the microliter sized samples commonly used for the 

sensors are adequate for certain conditions, but no volume scalability is afforded 

by 2-dimensional surfaces, and therefore severely limits the number of 

environmental applications. Lastly, SERS sponges provide a fully customizable 

platform for sensing that can readily deform or be fabricated to fit the shape and 

size requirements of any application. In this work, we demonstrate the 

fabrication and use of SERS sponges for the detection of model organic analytes 

(R6G, malachite green, carboxy pyrene) from aqueous solutions.  

This work is divided into two independent demonstrations of the capabilities 

of SERS sponges: sample processing and SERS. Sample processing capabilities 

are illustrated by two examples of concentration of organic analytes. The 

hydrophobic surface of the PDMS combined with the high porosity provide the 

capability to extract organic analytes in either brief or prolonged exposures to 

samples. First, Figure 4.5 demonstrates how traditional assay hardware (i.e. a 

syringe) can be easily combined with PDMS sponges to allow simple extraction 
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and concentration of analytes. To a syringe, a single 5mm cylindrical sponge was 

added prior to loading a 1mL sample. The plunger of the syringe was then 

depressed fully, forcing the solution through the sponge, then out of the sponge 

as it was compressed by the plunger. This procedure was repeated on a single 

sponge up to 2 time for a final sample volume of 3 mL. Figure 4.5D shows an 

increasing red color coating the sponge surface, indicating R6G adsorption. A 

simple colorimetric analysis shows an increasing red color with increasing sample 

volume. This simple demonstration can easily be utilized outside the confines of 

a syringe through any technique that cyclically compresses and expands the 

sponge to intake and eject samples repeatedly.  Many organic molecules may be 

similarly extracted from aqueous samples through the increased affinity of the 

sponge surface for organic molecules.  

To highlight the combined benefits of the porous sponge structure and the 

hydrophobicity of the PDMS, an example of continuous environmental 

monitoring was devised. In many environmental samples, organic analytes exist 

at low concentrations or enter large water supplies in periodic bursts. As a result, 

continuous collection of a single sample may be more beneficial and cost-

effective than regular sampling. 31 SERS sponges provide that capability through 

their ability to retain scalable volumes of water-immiscible organic solvents that 

can provide phase based separation and concentration of analytes of interest. We 
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demonstrate this capability through loading of decanol into the sponge pores and 

inserting them into an aqueous sample containing either R6G or cPyrene. After 

90 minutes, the fluorescence of the decanol loaded sponge was compared with 

sponges directly loaded with dyes dissolved in decanol. The uptake of the dyes 

was quantified through fluorescence to enable simple quantification. 

Fluorescence results show not only extraction of the dyes, but concentration by 

8 and 18-fold for cPyrene and R6G respectively. (see Figure 4.6) As with the 

syringe demonstration, this work illustrates a simple but expandable technique 

for analysis of organic molecules. Pure dye samples present an unlikely 

convenience in real world samples, however common contaminants such as 

particulate matter and proteins should be unlikely to enter pores of the sponge 

or the organic solution. As a particulate and molecular filter, the sponge and 

organic phase can enable concentration of small molecules and eliminate 

potential sensor fouling substances.  

The highly functional PDMS sponges have been easily converted into high 

performing SERS sensors through a simple nanoparticle adsorption method. 

Alongside the obvious color change visible in  Figure 4.7E, SEM and EDS 

images provide evidence of broad distribution of silver throughout the complex 

sponge structure. This method is simple and scalable to sponges of any size or 
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shape, and can therefore provide unprecedented control over the design of new 

SERS sensors.  

Performance of SERS sponges to detect and quantify organic analytes was 

tested with varied concentrations of R6G, MG, and cPyrene. Each of these dyes 

was dissolved independently in water and applied to the SERS sponge surface. 

Raster scanning was used to densely evaluate the sensor surface and improve 

intra and inter-sensor variability. Figure 4.8 presents a summary of the SERS data 

collected from the three dyes as well as the spectra from which appropriate peak 

heights were extracted for quantification. Overall detection limits for each of the 

dyes indicates comparable performance of SERS sponges with existing 

techniques.9,26,32 The R6G and MG exhibited drastically improved signals in the 

presence of HCl to displace the citrate cap present during synthesis of the AgNP 

colloid. The citrate background is the dominant signal present in the cPyrene 

spectra, and may ultimately impact the detection limit. Further, the citrate cap 

created difficulties when approaching phase based concentration techniques with 

SERS sponges as binding to the nanoparticles was impeded.  

Ultimately, these sensors provide a range of potential functional benefits over 

existing SERS technologies as well as comparable SERS performance. Additional 

work is necessary to eliminate the adsorption method that requires a capped 
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colloid. In-situ methods are possible and would be an ideal alternative in future 

SERS sponge developments. 

4.5 Conclusion 

In this work, we present SERS sponges; these novel PDMS matrices 

introduce dynamic control over sensor shape and sample processing currently 

unavailable in existing SERS sensors. PDMS sponges are demonstrated here to 

provide sample processing in two potential applications and evaluated with SERS 

after decoration with AgNPs. First, the sponges rapidly and simply extracted an 

organic analyte (R6G) from aqueous samples through syringe filtration. The 

hydrophobic and porous nature of the sponges also enabled phase based 

separation for continuous sample extraction from aqueous samples; results 

showed up to 18-fold concentration of R6G in 90 minutes. Finally, successful 

adsorption of nanoparticles onto the sponge surface provided SERS 

performance comparable to existing sensors and was applied to detect R6G, 

Malachite Green, and cPyrene. 
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Chapter 5. Addressing variance and ambiguity 
in SERS through optimized sampling 
methods 

5.1 Introduction 

Ongoing developments in both academia and industry are positioning SERS 

as an affordable and simple alternative to existing laboratory techniques. As this 

approach continues, the nature and complexity of the samples tested with SERS 

will expand rapidly. Indeed, it is proposed in many publications that SERS is 

capable of immediate application as a sensitive analytical technique in a number 

of real-world scenarios.113,117,118 However, SERS is still often criticized for poor 

reproducibility.4–11 Empirical and computational recommendations have been 

proposed to improve the reproducibility of SERS, but consistent approaches 

have yet to be adopted.4,9 Without standard, robust techniques for collecting and 

processing SERS measurements, SERS will continue to be touted as a 

“promising” technique instead of a “practical” one. 

One of the most promising directions within the field of SERS is the use of 

low-cost, flexible substrates. Flexible sensors were introduced to replace rigid 

substrates designed around benchtop laboratory equipment. These new flexible 

systems augment SERS sensors with additional functions inherent in the 

substrate such as wicking in paper, which allows sample acquisition, purification, 
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and concentration.108,113,117,118,130,179 Further, these sensors are commonly simple 

to manufacture through scalable processes. However, lower cost fabrication 

methods introduce nanostructures non-uniformly and increase spot-to-spot 

variance within and across sensors. 

As a surface dependent mechanism, the production of signals is highly 

dependent on a number of potentially inconsistent factors. The most prominent 

source of signal variance in SERS stems from randomly oriented surface 

structures. Non-uniform nanostructures, such as those in colloids and most 

portable sensor designs, generate large signal disparities depending on the local 

field enhancements.6,15 The impact of this on collected signals is shown in Table 

5.1 and easily demonstrates the care that must be taken in applying SERS as a 

quantification technique. In particular, the incredibly small number of molecules 

necessary for large signal intensities one must strongly consider the impact of 

excitation locality on the meaning of signal intensity. Sensors that contain 

randomly aggregated, oriented, and distributed nanostructures must be properly 

sampled in order to ensure signals are collected from the full range of available 

enhancement sites. Without sufficient data, Raman intensities may not be 

representative of the number of analytes present. This effect has contributed, 

unsurprisingly, to the reputation of SERS as a poorly quantitative method.  
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Table 5.1: Distribution of SERS enhancement factors between tightly packed silver 
nanoparticles. (Reproduced with permission, Fang et al.6) 

Raman enhancement 
factor 

Percentage of molecules Percent contribution to 
SERS signal 

<2.8 x 104 0 0 

2.8 x 104 to 1 x 105 61% 4% 

105 to 106 33% 11% 

106 to 107 5.1% 16% 

107 to 108 0.7% 22% 

108 to 109 0.08% 23% 

109 to 1010 0.006% 17% 

>1010 0.0003% 7% 

 

Fortunately, work by our group and others has shown that the signal 

intensities produced across analyte dilutions of many orders of magnitude are 

concentration dependent and relatively reproducible.108,110,111,180 As the impact of 

analyte concentration on signal intensity may be uncertain in SERS, it is 

important to examine the adherence of the produced signal to accepted 

adsorption behavior. The Langmuir isotherm represents a physically relevant 

model, because of its derivation from the kinetic process of surface-ligand 

interactions. Indeed, some groups have shown that SERS intensities readily fit 

the Langmuir model, indicating that the kinetics of deposition, and therefore 

signal, are predictably dependent on the analyte concentration. 1,13,16–22  
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Despite the achievable adherence of SERS to the Langmuir isotherm, it is 

clear from the literature that methodological consistency between researchers is 

a significant concern. Common performance validation methodologies include 

collection of an arbitrary number of subjectively “random” points across a 

sensor. It is also common practice for researchers to state or display standard 

deviations of intra- and inter- sensor signals. However, analyses of the sources 

of variability are rare. Given the non-uniform distributions of enhancement 

factors between nanoparticle clusters, it is critical to objectively, consistently, and 

thoroughly scan sensor surfaces. Without multi-point averaging methods such as 

Raster scanning, recorded data has a high potential for biased or inconsistent 

results.  

However, in a portable setting time is an integral component in any practical 

assay. Raster systems can enable automated collection of spectra over a broad 

sensor area, but at a severe time cost for samples with large exposure times that 

can exceed 20 seconds per spot. As a result, it is crucial that points be chosen in 

a manner that is optimized to reduce error with a minimum number of spots. 

Notably, the Raman probe company Snowy Range Instruments has already 

begun embedding Raster scanners in their instruments. Unfortunately, no data is 

available on their orbital scanning technique and any improvements or 

disadvantages of their chosen algorithm. 
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In this work, we explore the impact of spot to spot variability and 

optimization of the number of spots necessary to minimize both intra- and inter- 

sensor variance. Specifically, we utilized Raster scanning to densely sample 

surfaces of SERS sponges; from data sets consisting of 200 spots per sensor, we 

optimized the number of points selected as well as the method for algorithmically 

and objectively selecting points. Ultimately, we detail a suggested approach to 

collecting and processing SERS data that can improve spot to spot variability on 

inherently non-uniform sensors. 

5.2 Materials and Methods 

5.2.1 Materials 

Polydimethyl siloxane (PDMS) was purchased as the Sylgard 184 two part kit 

(Dow Corning; Midland MI). Sugar cube templates were purchased as half 

teaspoon compressed cubes (Domino Sugar Baltimore, MD). Ethanol, 

methanol, and isopropyl alcohol were acquired through Pharmco-Aaper 

(Brookfield, CT). Sodium citrate tribasic dihydrate, silver nitrate, Triton X-100 

were obtained from Sigma-Aldrich (St. Louis, MO). Rhodamine 6G (R6G, 

Rhodamine 590) was purchased as a chloride salt from Exciton (West Chester, 

OH).  
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5.2.2 Sensor Fabrication 

Sensor evaluation was performed on SERS sponges as an example of a recent 

development within the expanding library of flexible substrates. Sponges were 

fabricated using sugar cubes as a sacrificial substrate following the protocol 

established in Chapter 4. First, PDMS was prepared in a standard 10:1 ratio of 

base to curing agent. PDMS was mixed thoroughly and placed in a vacuum 

desiccator for 20 minutes to eliminate air bubbles introduced through mixing. 

Sugar cubes were then added to the PDMS and placed under vacuum until the 

PDMS had fully penetrated the pores between the sugar crystals. Sponges were 

then place in an oven for 45 minutes at 80C to cure the PDMS. Once curing was 

complete, the sponges were placed in a water bath sonicator for 100 minutes. 

The water was then removed and replaced with IPA to improve pore penetration 

and enhance extraction of internal sugar crystals. Sponges were then squeezed to 

remove excess liquid and dried in an oven at 80C for two hours. Sponges were 

cut to useful cylindrical sizes via bisection of the cube and punching with a biopsy 

punch. Finally, the sponges were prepared for nanoparticle deposition through a 

surfactant coating. Triton X-100 was applied to the sponges through submersion 

for 5 minutes in a solution of 1% Triton in ethanol. The sponges were then dried 

in an oven for 2 hours and stored for future use. 



 

90 
  

Sensors were prepared through adsorption silver nanoparticles from a 

concentrated colloid. Silver nanoparticles (AgNP’s) were generated through a 

modified Lee-Miesel method.17 Briefly, 400mL of milli-Q water was brought to 

a vigorous boil followed by addition of 72 mg AgNO3 and 80mg sodium citrate. 

The solution was allowed to boil for 10 minutes before the solution was removed 

from the heat and allowed to cool. Nanoparticles were then stored until use. To 

deposit the nanoparticles, they were first concentrated from their initial (1x) 

solution via centrifugation at 12000g for 20 minutes. The supernatant was then 

carefully decanted, leaving a 50x concentrated colloid. The sponges described 

above, were submerged in the nanoparticle solution and centrifuged to ensure 

full pore infiltration by the colloid. The sponges were then removed and dried 

for 2 hours at 80C. This process was repeated once more to produce the final 

tested sensors. 

5.2.3 Raman spectrometry 

A custom rastering system was built around a portable Ocean Optics 

QE65000 Raman system (Ocean Optics, Largo FL) at 785nm. Actuation was 

performed through use of two stepper motors powered through a Gecko motor 

driver (GeckoDrive; Santa Ana, CA) with stepping control by an Arduino UNO 

(Adafruit; New York, NY). The spectrometer and the arduino were coordinated 

with a custom LabVIEW interface. Data was collected from 200 points on the 
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circular sensor face of 5 sensors in a spiral pattern with constant angular 

separation and radial expansion from an estimated center point. In addition to 

the number of points chosen, analyses included different methods for selecting 

spots included in each subsample. Methods include: 

1. Sequential sampling (SS): ordered sampling of points including each 

sequential point following the path of the laser from the center of the 

sensor towards the outer edge. 

2. Reverse sequential sampling (RSS): ordered sampling of points 

including each sequential point following the reverse path of the laser 

from the endpoint at the edge of the sensor towards the center. 

3. Linearly spaced sampling (LSS): ordered sampling of points separated 

by an equal number of unincluded points; for example, two points 

includes the first and last points, while the 100 points includes every 

other point from the first to last points. 

4.  Random sampling (RS): unordered sampling based on generation of 

random numbers from 1 to 200. Each point within a subsample is 

forced to be unique.  
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5. Maximum intensity sampling (HIS): unordered sampling based on 

peak intensity values. Within the 200 points on a single sensor, the 

highest signals are chosen based on the sample size. 

6. Minimum intensity sampling (LIS): unordered sampling based on peak 

intensity values. Within the 200 points on a single sensor, the lowest 

signals are chosen based on the sample size. 

 

Figure 5.1: Illustration of Raster data collection and spot selection. A: Raster process in which 
motors are actuated in a cartesian coordinate system to move the Raman probe and SERS 
sensor independently, forming a spiral pattern. B: Example of 3 out 6 spot selection methods. 
Top, middle, and bottom, represent RS, RSS, and LSS respectively. 

The common Raman dye R6G was use for characterization of all sensors. A 

pipette was used to evenly distribute 20 µL aqueous R6G samples, followed by 

2% HCl to aid in adsorption to the silver. A single spectrum was collected at 

each point with a 1 second exposure time under a laser power setting of 0.365. 
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Recorded spectra for each point were stored independently and processed with 

custom scripts in MATLAB. 

5.3 Results 

The first goal of this work was to explore methods to highlight and reduce 

the impact of point to point variability within single a flexible Raman sensor. 

This is primarily accomplished through dense collection of data across the sensor 

surface through a Raster scanning approach. With dense surface sampling, it is 

possible to isolate the impact of various sampling scenarios, such as the number 

of points and objective point selection criteria.  

 

Figure 5.2: Data summary for 200 spots obtained from each of 3 sensors over 8 R6G 
concentrations. A & B: colors represent each of 3 sensors. Horizontal colored lines of each 
color represent the intra-sensor mean intensity for each sensor. Horizontal black and grey lines 
represent inter-sensor mean and standard deviation respectively. A: Peak intensity (Raman 
Shift: 1515cm-1) values for background subtracted spectra plotted on a log scale. B: Peak 
intensity normalized to the inter-sensor mean for each concentration. 

Figure 5.2 is a summary of the data collected for analysis. Eight 

concentrations of R6G were applied to three sensors (including a negative 
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control). Each set of 200 points per sensor is displayed, in addition to the intra- 

and inter- sensor means. Figure 5.2A displays the concentration dependent 

intensities on a log scale, while Figure 5.2B shows all data points normalized to 

the inter-sensor mean. From the normalized data it is immediately apparent that 

the data represents a non-normal set, skewed upwards. The inter-sensor means 

for each concentration are visibly distinct down to the minimum 10nM 

concentration. However, the variation in intensity within a single concentration 

is high and overlaps signals from neighboring concentration samples through 

multiple orders of magnitude. Robust analyses from these data require a 

representative sample from each sensor that cannot be acquired through few 

randomly chosen points. 

5.3.1 Number of Spots 

To determine the impact of the number of spots on concentration dependent 

SERS signals, the average and standard deviation was calculated over an 

increasing number of randomly chosen spots. Each new set of spots was 

objectively selected by through a random number generator in Matlab. It can be 

seen from Figure 5.3A that both the mean and standard deviations can vary 

substantially until a large enough number of spots is accumulated (around 50). 

Figure 5.3B expands this visually through three additional randomly chosen sets 

at spot numbers from 0 to 50 spots. Each sample mean and standard deviation 
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can differ significantly from each other and from the population mean that is 

achieved at large spot numbers.  

The degree to which each concentration is varying from its mean was 

calculated as the standard error (SE) and is shown (Figure 5.4) for four runs 

representing 200 independent samples of 0 to 200 spots. The SE was averaged 

over all spots, sensors, and concentrations included in each run. SE values for 

each sample from the parent set range from as high as 45% to as low at 15% 

before settling at 18%. While concentration dependent signals become relatively 

stable and distinct near 50 points, the SE can be seen to vary by up to 2% or 

more with spot numbers less than 150 spots.  

 

Figure 5.3: Change in concentration dependent Raman intensities based on number of spots 
selected via RS (random) sampling. A: Signal change over 200 independent spot selection sets, 
with sample spot numbers increasing from 1-200 respectively.. B: Signal variability over 50 
indpendent spot selection sets with spot numbers increasing from 1 to 50 respectively. 
Subplots i-iv represent additional variability through additional test sets over the same spot 
numbers. 
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Figure 5.4: Standard error calculated as an average error over all 8 concentrations using RS 
(random) sampling of 1-200 spots. Subplots i-iv show four collections of independent sample 
sets, with each subset being an independent randomly sampled set from each sensor. 

5.3.2 Spot selection criteria 

Though it is common practice in SERS literature to choose “random” spots 

across a sensor, no work was found that evaluates the obvious potential for 

subjective effects. Our group and others eliminate subjectivity through the use 

of few, but consistent locations to minimize error; however, evidence has yet to 

be published that explores the impact of these sampling patterns and their fitness 

as a globally representative data set.  



 

97 
  

 

Figure 5.5: Concentration dependent signal intensities collected from an increasing sample size 
with 6 spot selection criteria. SS: Sequential sampling; RSS: Reverse sequential sampling; LSS: 
Linearly spaced sampling; RS: Random sampling; HIS: Maximum intensity sampling; LIS:  
Minimum intensity sampling 

Figure 5.5 illustrates the impact of six spot selection algorithms on the mean 

SERS signal intensity for each concentration tested. Each spot selection 

technique is described in the methods. Each algorithm produced distinct effects 

on the mean, though a slow drop in the mean as the number of points increases 

is a common feature; the LIS method obviously produces the opposite effect. 

Random spot selection (RS) produces nearly immediate convergence on the 

mean with significant variation depending on run and spot number. Regular 

spacing in chosen samples through the LSS method appears to produce some 

mean variation with increasing spot numbers, but variations appear generally less 

intense than random sampling and the sample data rapidly converges on the 
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population mean. Similar to the standard error of the RS method discussed 

above, the standard error of LSS samples drops to within 2% of the minimum 

18% SE by 50 points.  

As geographic selection criteria, SS and RSS produce means with complex 

behavior as the number of points increases. Unlike many of the other methods, 

the means for each concentration behave inconsistently, though they are 

generally able to converge on the population mean within 50 points. These 

effects are reflected in the standard error (Figure 5.6), that appears to show 

random and broad deviations from the 18% minimum during a slow 

convergence towards the minimum.  

 

Figure 5.6: Standard error calculated as an average error over all 8 concentrations using 6 
sampling criteria to generate sets of 1-200 spots. 
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The HIS and LIS methods produce data with somewhat expected results; 

interestingly, the standard deviations appear higher with the LIS method at low 

sample numbers. Between the tested R6G concentrations the SS and RSS 

methods produce the most inconsistent mean separations and occasionally 

produce overlapping data. Each of the other methods generally maintain 

consistent signal separation between concentrations. The standard error of the 

HIS method exhibits an almost immediate and permanent convergence on the 

minimum 18%. Conversely, the LIS method shows the slowest convergence rate 

as the number of spots increases. 

5.3.3 Langmuir Fit 

Adherence of Raman data to a physically relevant adsorption model helps 

defend the concentration dependent signals amidst varied signal intensities from 

inconsistent hot-spot distributions. Figure 5.7 shows the result of Langmuir fits 

to RS sample sets with increasing spot number. While it is possible to, again, 

visualize convergence of the means and reduction in the standard deviation, little 

disturbance in the quality of the Langmuir fit is visible. This is supported through 

Figure 5.8 which shows the sample size dependent change in the coefficient of 

determination (R2) value, which is consistently high for all spot selection criteria 

with trends predictably similar to the standard error. The norm of the residuals 

for each Langmuir fit also exhibits similar trends. 
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Figure 5.7: Langmuir fit to concentration dependent data from an increasing number of 
randomly selected points. Each of the four plots represents an independent, randomly (RS) 
sampled set of 1, 5, 50, or 200 spots. Both x- and y- axes are logarithmic. 

 

Figure 5.8: Quality of Langmuir fit calculated for an increasing number of points chosen 
through 6 sampling methods. Fit quality is defined as the coefficient of determination (R2). 
Subplots represent a shifted y-axis representation of the parent plot. 
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5.4 Discussion 

Development of novel SERS technologies and applications is rapidly 

progressing, but translation into practical sensors is rare. One of the primary 

hinderances in advancement of SERS as a robust technique is the reputation of 

poor reproducibility and quantitative potential. The push towards lower cost 

SERS substrates has simplified many problems, but only exacerbates the non-

uniformities in SERS hot-spots that lead to inconsistent signal intensities. It is 

feasible that high density sampling of sensor surfaces can smooth and collectively 

reduce the sensor to sensor variation, but thus far little work has been done to 

confirm this. Instead, an arbitrary number of “random” points are commonly 

chosen to represent the signals across the entire sensor surface. Here we seek to 

utilize a single large data set as a platform to illustrate the impact of small sample 

size on SERS signals across a portable substrate.  

The data, collectively presented in Figure 5.2, can be seen to densely pack 

around and below the mean with fewer, but drastically higher intensities above 

the mean. It is difficult to assign a single cause to the intensity distributions on a 

complex sensor surface, but the existence of few high intensity points supports 

the presence of non-uniform hot-spot generation.6,7,15 It is assumed that, if the 

surface features of the sponge played a significant role (e.g. surface height), the 

intensity distribution would exist uniformly around the mean.  
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The existence of a non-normal distribution does not invalidate calculated 

means and, indeed, Figure 5.3 illustrates that even with a single randomly chosen 

point concentrations can be visibly differentiated across the tested range. 

However, Figure 5.4 also illustrates the danger of randomly sampling only a few 

spots. Below 50 points, the collective standard error begins as high as 45% but 

varies wildly to values well above and below the population error. It is clear that 

random sampling must be utilized with a sufficiently large number of points to 

provide reliable data. Further, these points were chosen objectively, while many 

groups may compound error through subjective choice of “random” spots. 

Alternatives to random sampling were studied that can simplify the spot 

selection criteria. (see Figure 5.5) Interestingly, the most obvious sampling 

methods that follow the raster pattern in forward (SS) and reverse (RSS) 

directions provide the least predictable behavior in the means and standard 

deviation as spot number increases. The concentration dependent means can be 

seen to have inconsistent separation as the spot numbers increase, unlike the 

other techniques where this difference is largely consistent. This can be seen 

again in the standard errors (Figure 5.6), where sensor regions may create islands 

of high or low signals that actually disturb the coordination between intra-sensor 

means.   
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The most promising technique is the LSS method that samples the entire 

surface at regular intervals defined by the number of spots. While the initial 

standard error is high (Figure 5.6), the error rapidly converges to the minimum 

error. This method likely benefits from a more global approach that is not 

impacted by the existence of localities across the sensor surface as the increasing 

number of points simply increases the number of points in each locale. Though 

this method would still require up to 50 points to minimize error, the benefits of 

comprehensive surface sampling is clearly crucial to collect robust SERS data. 

Of the techniques tested, the most effective sampling method to reduce error 

was the choice of the highest intensity points (HIS). Though the locations of the 

presumed hot-spots are unpredictable, their existence and signal intensities 

appear to be comparable between sensors. Though it is obviously necessary to 

sample the surface completely to discover the spots, once located these spots can 

provide high concentration separation and low error between sensors. With 

proper controls and sufficient sampling, this may be a reliable technique to 

increase detection limits of analytes with well-defined spectra. 

With improved methods for sampling data, SERS will ideally provide a simple 

platform for a variety of biosensing techniques. In portable diagnostic 

applications, sensor readings cannot simply supply technicians with a peak 

intensity value, but must provide a reliable conversion to a meaningful analyte 
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concentration. The Langmuir isotherm provides a physically relevant model to 

predict the adsorption characteristics of analytes on surfaces and can be used as 

a fit for concentration dependent SERS data. The ability to predict adsorption, 

and signal intensity by extension, can provide automated conversion from a well 

calibrated spectrometer and sensor pair. Unfortunately, sufficiently robust 

procedures are necessary to obtain reproducible results.  

Here we have tested the impact of spot number and choice on the quality of 

the Langmuir fit. Trends in the quality of the fit as the spot number increases 

and with the spot choice method (Figure 5.7 and Figure 5.8) largely mirror the 

standard error plots (Figure 5.6). Similar conclusions can therefore be drawn. 

Specifically, LSS is an efficient method for broad surface sampling that rapidly 

improves the fit parameters and therefore predictive power. The most efficient 

method is, again, the HIS method that utilizes the surprisingly well correlated 

high intensity sites in each sensor.  

5.5 Conclusion 

Surface enhanced Raman spectroscopy will continue to be studied as an 

alternative to existing lab and portable diagnostic techniques. Unfortunately, the 

potential reproducibility concerns with SERS largely prevent it from achieving 

broad success as a practical sensing method. Here we have studied methods for 

improving the reproducibility in SERS by establishing improved sampling 
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methods for portable SERS sensors. Specifically, we identified a linearly spaced 

sampling (LSS) method that when combined with high density sampling (50 

points per sensor) provides consistent error reduction between sensors. 

Interestingly, comprehensive sampling allows the potential for quantification 

with relatively few high-intensity points that have higher means overall and 

drastically reduced error.  
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Chapter 6. Conclusion 

6.1 Summary of findings 

This work details the development of technologies and techniques to simplify 

portable biosensors and enable rapid and reliable on-site diagnostics. Specifically, 

this work centers around the use of surface enhanced Raman spectroscopy as a 

highly promising technique to simplify the hardware and technical expertise 

required to run complex assays and chemical analytics at the point-of-care. 

Current implementations of SERS in bioassays maintain inconvenient 

techniques that limit its readiness as a deployable alternative to existing 

transduction mechanisms, such as fluorescence. Specific limitations include 

increased numbers of steps, limited sensor functionality, and questionable 

reproducibility. Chapters 3-5 address each of these limitations independently and 

present novel solutions that advance SERS as a practical technology for portable 

biosensing. 

Chapter 3 details the development of a novel thermoplastic device that, for 

the first time, allows use of SERS to quantify the output of multiplexed PCR 

reactions in real-time. Existing technologies require additional post-processing 

steps to introduce the PCR product to the SERS enhancement surface. In this 

work, we have developed a device that utilizes a dialysis membrane to provide 

size based separation of the dye liberated from a common probe based PCR 
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assay. The dialysis membrane was embedded in a laser cut and thermally bonded 

PMMA device that successfully isolated the PCR reaction well from a SERS 

active silver colloid. The novel vertical separation scheme introduced a unique 

thermal profile that was evaluated through a finite element model to ensure 

adequate temperature control throughout the PCR cycles. Under controlled 

isothermal and thermocycling conditions the membrane was then shown to allow 

specific passage of PCR produced free dyes, while restricting passage of 

unreacted PCR probes. Finally, PCR reactions were successfully run on chip 

allowing for the independent and simultaneous detection of multiple dyes from 

a single well. This method was applied to the detection of Staphylococcus Aureus 

and the drug resistance gene MecA. As a diagnostic, this technique will allow 

rapid identification of both species and drug resistance for pathogenic bacteria 

in a low-cost platform capable of simple application to the sample site. 

Chapter 4 describes the development of a novel SERS substrate: PDMS 

sponges. These new highly customizable substrates are shown to provide flexible 

3-dimensional manipulation and simple liquid handling on a complex matrix with 

controlled hydrophilicity. The inherently hydrophobic silicone surface provides 

the potential for organic phase and single step affinity separation of organic 

molecules. First, syringe filtration was tested as a simple demonstration of the 

immediate compatibility with common laboratory techniques. Using the syringe 
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plunger to force samples through the PDMS sponge, resulted in visible 

extraction of the model analyte (R6G) onto the surface of the sponge. Next, the 

porous and scalable nature of the sponge enables monitoring of aqueous 

environments through passive filtration by liquid phase extraction of small 

molecules into a retained organic phase within the sponge. Results show 8 and 

18-fold concentration of carboxy-pyrene and R6G respectively over a 90-minute 

incubation. Finally, silver nanoparticles were simply dried onto the sponge 

surface to provide comparable SERS performance to existing flexible substrates. 

SERS performance was tested for the potential to detect and quantify model 

analytes: R6G, Malachite Green, and cPyrene. 

Chapter 5 introduces a new concept for flexible SERS sensors: variance 

reduction through optimized spot selection criteria. The majority of methods for 

collecting signals across a flexible SERS substrate rely on unproven and 

seemingly subjective methods to select representative spots for analyte 

quantification. This work seeks to eliminate the subjectivity in common 

“random” spot selection methods and critically evaluate the impact of spot 

selection criteria on concentration dependent SERS signals. Using a custom 

rastering system built around a portable Raman spectrometer, 200 points were 

acquired on three sensors for each of seven concentrations of the dye R6G. Six 

spot selection algorithms were compared and contrasted for their independent 
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impacts on the intra and inter-sensor means from a single data set. The number 

of points used with each spot selection method was increased from a single point 

to the full 200 points. From these analyses, we are able to recommend that the 

most efficient method for collecting data from an arbitrary number of points is 

through a linear separation of points across the entire sensor surface. 

Interestingly, with a sufficiently large data set, we found that it is possible to 

selectively choose the highest intensity points within each sensor and effectively 

increase signal intensity while reducing intra-sensor variance. 

6.2 Contributions to the field and potential impact 

The often promised potential for SERS as a revolutionary technique has 

largely failed to produce a widely accepted practical sensor technology. The long 

history of development of SERS in both chemical and biological assays has led 

to many advancements that remain underutilized due to the remaining limitations 

in simplicity, functionality, and reproducibility in SERS technologies. This work 

has produced advancements in SERS techniques to address these three 

limitations and presents applications for their use in commercial and clinical 

settings.  

Chapter 3 details the development of a SERS-PCR device that allows 

simultaneous separation and detection of the product of an ongoing reaction. 

This device is directly applied to improve the portability of molecular diagnostics. 
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However, the underlying technologies can be generalized to independently useful 

advancements that can be applied broadly in many academic, clinical, and 

commercial applications: 

1. A salt and temperature stable colloid of aggregated AgNP’s that are 

cationically modified to promote binding and enhancement of anionic 

polymers. 

2. Immobilization and thermal sealing of a separatory membrane in a 

low-cost thermoplastic chip. The chip allows vertical size separation of 

solutes from one well to another at temperatures up to 95°C.  

3. Two phase filter SERS method for quantification of analytes with 

colloidal SERS, while maintaining complete isolation of potentially 

fouling macromolecules from nanoparticles. 

Chapter 4 details the development of a novel SERS substrate that enables 

new sample handling functionality for portable SERS assays. Specifically, 

nanoparticle functionalized PDMS foams are demonstrated to allow sponge-like 

sample acquisition and ejection as well as hydrophobic phase based separation 

and concentration of organic molecules. This technique is described for use as a 

method for quantifying the polycyclic aromatic hydrocarbon pyrene as well as 

the fungicide malachite green. PDMS sponges, however, present a platform for 
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future development based on core functionality not present in existing SERS 

sensors: 

1. Flexible, hydrophobic material for single step isolation and 

concentration of arbitrary organic compounds from aqueous solutions 

on a sensor substrate. 

2. Large volume flexible SERS sensor that allows simple fluid 

manipulation via sponge-like activity. 

3. Soft-lithography of a SERS sensor allows formation of sensors with 

arbitrary, three-dimensional shapes to fit application dependent 

specifications. 

4. Two-dimensional, cartesian Raman rastering system for automated 

data collection on arbitrary Raman sensors. 

Chapter 5 details development and evaluation of methods to eliminate 

subjectivity and inconsistencies in signal acquisition from portable SERS 

substrates. These techniques are specifically applied to a single flexible SERS 

technology, but can be more broadly applied to any SERS technology. In 

addition to the medical and regulatory applications proposed in Chapter 5, 

improving the reproducibility in SERS data is an application agnostic necessity; 

current reproducibility concerns, prevent SERS from wide acceptance as a 
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practical alternative to more established techniques. The following novel 

observations and recommendations can improve the reproducibility, and 

therefore the dependability, of new SERS sensors and in academic and 

commercial evaluation of new SERS technologies. 

1. Illustration of the increased variance from of random selection of few 

points across a non-uniform surface. 

2. Introduction of the linearly spaced spot selection method to 

simultaneously minimize the number of points and inter-sensor 

variance. 

3. Introduction of the maximum intensity sampling technique that allows 

simultaneous improvements in signal intensities and inter-sensor 

variance.  

6.3 Future work 

The technologies presented here establish readily accessible solutions for 

limitations in portable diagnostic and SERS technologies. Each individual 

technology also presents a platform for improvement and expansion to new 

applications.  

Chapter 3 presents a novel method to apply SERS to PCR and allows a real-

time readout with SERS for the first time. This method also successfully allows 
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amplification and detection of multiple genomic targets simultaneously. 

Unfortunately, this work presents a limited capability for quantification of the 

starting genome concentration. The non-linear trend that shows a slowing signal 

development rate as the target concentration decreases, is a crucial aspect of the 

device that must be evaluated in future iterations. While two diagnostically 

relevant MRSA genes were simultaneously detected, the multiplexing promise of 

SERS was not fully explored and future works should evaluate the potential to 

quantify many targets simultaneously. Expansion of the scope of this work 

beyond PCR can also simplify its translation into a portable diagnostic. The 

temperature requirements for PCR have a limiting effect on practical 

implementations in sample locations where power accessibility is a concern. 

Isothermal amplification methods are an appropriate next step to expand the 

usability of this technique. A new nuclease dependent method will be required, 

as existing isothermal techniques are incapable of fully digesting a fluorophore 

labelled probe.  

Chapter 4 presents SERS Sponges, a novel flexible SERS substrate that allows 

improved sample handling functionality as well as simple phase based separation 

and concentration of organic molecules. This technology represents a promising 

new platform for development of new SERS applications. The work detailed in 

Chapter 4 focuses primarily on initial testing and performance evaluation of the 
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SERS sponges. Many directions are possible to continue development of SERS 

sponges including additional characterization, improved synthesis methods, 

improved functional demonstrations, and expanded applications.  

Additional characterization work should explore the effect of sponge pore 

size on sample handling and SERS activity as well as the interactions with organic 

analytes and the PDMS or nanoparticle surface. The nanoparticle soaking 

method leads to impermanent adsorption onto the PDMS and can lead to 

nanoparticle loss with vigorous sample handling. A new synthesis method, based 

on in-situ synthesis using dimethyl formamide as both the solvent and reducing 

agent, has been tested but should be fully explored for the next iteration of SERS 

sponges.  

This technology is perhaps the most promising solution for a SERS probe 

that integrates a SERS sensor into a Raman probe. The flexible and inorganic 

nature of PDMS sponges creates a dynamic substrate that can be easily refreshed 

for multiple uses. The relatively inert PDMS surface can be cleaned using harsh 

chemical that would destroy organic alternatives such as cellulose and its 

derivatives. The flexibility of the sponge allows simple liquid handling that can 

easily uptake and eject cleaning solutions.  

One of the primary promises of SERS as a technique is the potential to 

identify arbitrary analytes through their Raman spectra. Unfortunately, the 
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surface dependent nature requires spontaneous interactions of the analyte with 

the Raman surface. The most important advancements in SERS will be 

exploration of the forces that drive molecule-nanoparticle interactions and 

leveraging those forces to expand the library of detectable analytes. This work is 

crucial regardless of the substrate used, but would provide unprecedented 

usability for the SERS sponges. 

Chapter 5 describes new methods to improve the reproducibility of data 

collected from flexible SERS sensors. These methods were applied to a set of 

data for a single analyte on a single sensor type. To fully establish the impact of 

these techniques, work should be done to apply the recommended methods (LSS 

and HIS) to additional substrate types, such as the array of paper based devices. 

Further, the simplicity of the single component solutions used presents a starting 

point for evaluation of complex solutions that are closer to realistic samples. For 

instance, these techniques should also be evaluated for their potential to improve 

the reproducibility and detection limits of serum or whole blood samples that 

can easily obscure the signals from analytes of interest. With increasingly 

complex samples, future work should also evaluate the benefits of multivariate 

statistical approaches (e.g. partial least squares or principal component analysis) 

to improve discrimination of signals from complex samples. 
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