
ABSTRACT

Title of dissertation: FUNCTIONAL PRINCIPAL COMPONENT
ANALYSIS WITH APPLICATION TO
VIEWERSHIP OF MOTION PICTURES

Yue Tian, Doctor of Philosophy, 2014

Dissertation directed by: Professor Paul J. Smith
Department of Mathematics
University of Maryland, College Park

Anderson Professor Wolfgang S. Jank
Information Systems Decision Sciences Department
College Of Business, University of South Florida

Principal Component Analysis (PCA) is one widely used data processing tech-

nique in application, especially for dimensionality reduction. Functional Principal

Component Analysis (fPCA) is a generalization of ordinary PCA, which focuses on

a sample of functional observations and projects the original functional curves to

a new space of orthogonal dimensions to capture the primary features of original

functional curves. While, fPCA suffers from two potential error sources. One error

source is originated from truncation when we approximate the functional subject’s

expansion; The other stems from estimation when we estimate the principal compo-

nents from the sample. We first introduce a generalized functional linear regression

model and propose it in the Quasi-likelihood setting. Asymptotic inference of the

proposed functional regression model is developed.

We also utilize the proposed model to help marketing operational decision



process by analyzing viewership of motion pictures. We start with discussing cus-

tomer reviews effect on movie box office sales. We use the functional regression

model with function interactions to measure the effect of Word-of-Mouth on movie

box office sales. One main challenge of modeling with functional interactions is the

interpretation of model estimate results. We demonstrate one method to help us

get important insights from model results by plotting and controlling a re-labbeld

3-D plot.

Apart from movie performance in theater, we also employ functional regression

model to predict movie pre-release demand in Video-on-Demand (VOD) channel. As

its growing popularity, VOD market attracts much attention in marketing research.

We analyze the prediction accuracy of our proposed functional regression model with

spatial components and find that our proposed model gives us the best predictive

accuracy.

In summary, the dissertation develops asymptotic properties of a generalized

functional linear regression model, and applies the proposed model in analyzing

viewership of motion picture both in theater and Video-on-Demand channels. The

proposed model not only advances our understanding of motion picture demand,

but also helps optimize business decision making process.
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Chapter 1: Introduction

1.1 General Problem

The movie industry is immense business with high profile and highly variable rev-

enue trend. The vast and growing access of Internet and social networking sites

have motivated the growth in the importance of online word of mouth to movie

performance. Meanwhile, Video-on-Demand (VOD) has been the subject of intense

interest both in research and commercial sectors due to its convenience.

Our focus in this thesis is on measuring the impact of WOM on movie box

office viewership and predicting movie demand in Video-on-Demand channel.

For the online WOM, we follow previous research and investigate three main

measurements of user reviews: valence, volume and dispersion. We analyze the

impact of these three WOM measurements on future box office sale of movies. In

this case, we would like to study the relationship between historical information of

WOM over time and movie box office sales in the near future. We use weekly movie

reviews (valence, volume and dispersion) collected from Yahoo! Movies website. We

also control for some other possible box office drivers and want to build a model to

help us analyze whether and how customer reviews affect future box office sales.

For the VOD forecast, we concentrate on studying geographic difference of
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movie demand in this channel, with movie features. For this problem, we want

to have an accurate forecast of movie pre-release demand trend across different

geographic locations. That is to say that we need to use static movie features to

predict future movie performance over time for each geographic location.

To address these two problems, we utilize functional Principal Component

Analysis and functional quasi-likelihood model to help us manipulate the data and

build statistical models.

1.2 Challenges of the Model

Both customer reviews (valence, volume and dispersion) and movie demand in VOD

can be considered as functional observation, which change over time. Functional

Data Analysis (FDA) focuses on a sample of functional observations, e.g. curves,

and treats the observed curves as the units of observation. Functional Principal

Component Analysis (fPCA) is used to find the dominant modes of variation in the

data, usually after subtracting the mean from each functional observation.

We let Y denote the response and write

Y = g
[∫
T
β(t)X(t)dw(t)

]
+ e.

Here β(t) is an unknown parameter function and the observed covariate process

is X(t), where t is time and t ∈ T . We can have the functional principal component

expansion and its corresponding parameter function as:

X(t) =
∞∑
j=1

εjψj(t)
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β(t) =
∞∑
j=1

βjψj(t)

where ψj(t)’s and εj are the principal components of X(t) and the corresponding

principal component scores respectively.

Two potential error sources are embedded in functional principal component

analysis. One error source is originated from truncation when we approximate the

random processes expansion; The other error source stems from estimation when

we approximate the principal components from the sample data. A generalized

functional linear regression model is proposed in the quasi-likelihood setting. We

develop asymptotic inference for the proposed functional regression models.
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Chapter 2: Functional Quasi-likelihood Model

2.1 Functional Data Analysis

Functional Data Analysis (FDA) focuses on a sample of functional observations,

such as online virtual stock market’s history (Foutz and Jank [2010]), online auction

price (Wang, Jank and Shmueli [2008]), market penetration (Sood, James and Tellis

[2009]). This is in contrast to classical statistics where the focus is a set of discrete

data vectors. The method of FDA was introduced by Rao [1958] for growth curves.

Many theoretical properties have been developed by Ramsay and Silverman [1997]

and Silverman [1996].

Recently, many classical statistical models have been generalized to the func-

tional structure. James, Hastie and Sugar [2000] proposed functional principal com-

ponents analysis for sparsely sampled curves. In practice, curves may be measured

at an irregular and sparse set of time points which is even widely different across

individuals. James, Hastie and Sugar [2000] used functional principal component

analysis, which will be discussed in the following section, to address this issue. The

case of irregular grids was also studied by Staniswalis and Lee [1998].

More recent research includes curve clustering and classification (James and

Sugar [2003], Tarpey and Kinateder [2003], and James and Hastie [2001]), func-
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tional regression (Cuevas Febrero and Fraiman [2002]), functional generalized linear

models (James [2002]), functional ANOVA (Guo [2002]) and time series analysis

of functional data (Aguilera, Ocana and Valderrama [1999]). While this list is far

from complete, it exemplifies some of the current methodological improvement in

this emerging field.

Statistical models for functional data may resemble those for conventional

multivariate data, for instance, principal component analysis and generalized linear

models. In this paper, we use the generalized functional method, functional princi-

pal component analysis (fPCA), to model functional data. Before we move to the

functional framework of PCA, we first discuss about conventional PCA first.

2.2 Principal Component Analysis

Principal Component Analysis (PCA) is an exceedingly popular technique for di-

mensionality reduction with minimal loss of information. The idea of PCA appeared

over 100 years ago (Pearson [1901]). After its invention by Karl Pearson, this method

has been used repeatedly across many different areas.

A Principal Component Analysis provides a way of characterizing covariance

structure that can be more informative and efficient via linear combinations of the

original variables with restrictions.

Let Xi, i = 1, · · · ,m, be i.i.d. p-dimensional vectors with E(Xi) = µ and

Variance Covariance matrix Σ. The eigenvectors of Σ, ψj, j = 1, · · · ,m, are the

principal components of X.
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In fact, the full set of PCs, ψj, j = 1, · · · ,m are linear transformation of

the original data, and thus contain the same amount of information (variation)

as the original Xi, i = 1, · · · ,m, but the structure of newly defined data (PCs) is

important for dimension reduction. Meanwhile, the resulting uncorrelated principal

components solve the potential collinearity among the original data.

2.3 Functional Principal Component Analysis

In the functional context, the counterparts of the original m-diminutional vectors

xi = (xi1, . . . , xip)
T are functional data xi(t), t ∈ T . The discrete index has been

replaced by continuous index t. Let µ(t) = E[X(t)].

The principal component expansion of X(t)− µ(t) can be constructed by the

covariance function

K(s, t) = E[X(s)− µ(s)][X(t)− µ(t)]

where K is assumed to be square integrable on the space L2(T ).

Let θ1 ≥ θ2 ≥ . . . ≥ 0 be the eigenvalues of K, and the corresponding or-

thonormal eigenfunctions ψ1(t), ψ2(t), . . .,then

K(s, t) =
∞∑
j=1

θjψj(s)ψj(t)

The functional principal component expansion of Xi(t) (Karhunen-Loève ex-

pansion) is given by

6



X(t)− µ(t) =
∞∑
j=1

εjψj(t)

where the random variables ε1, ε2, . . ., given by εj =
∫
T X(t)ψj(t)dt, are the

principal component scores of X(t) corresponding to the jth principal component

ψj(t). The orthogonal ψj(t) and ψk(t), j 6= k, implies ε′js are uncorrelated. Mean-

while, E(εj) = 0, and θj = E(ε2j),
∑
j θj =

∫
T E[X(t)− µ(t)]2dt <∞.

Functional principal component analysis allows finite dimensional analysis of a

problem that is intrinsically infinite dimensional, as functional objects are assumed

to be smooth functions (Ramsay and Silverman [1997]). This method has been

widely used in modeling continuous functional objects, for instance, price curve and

derivative curves of eBay auctions (Hyde, Moore and Hodge [2004]), box office rev-

enue in virtual stock markets (Jank and Shmueli [2007], Foutz and Jank [2010]), and

functional magnetic resonance imaging (fMRI) (Viviani, Gron and Spitzer [2005]).

Numerous models have been proposed by researchers for methodologically model-

ing functional objects. Hall and Horowitz [2007] discussed asymptotic properties

of functional linear regression with functional covariates. The case where both re-

sponse and predictor are functional is studied by Moyeed and Diggle [1994] and

Zeger and Diggle [1994].

In traditional setting, we usually assume the sample of random functions is

observed precisely, which also differentiates it from longitudinal data analysis. Hall

et cl. [2006] proposed a semi-parametric method for the case when random functions

are contaminated by noise, and even only a few observations are available for each
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function. Statistical smoothing techniques successively exploit the high-dimensional

data and root-n consistent estimates are derived even in the presence of noise. fPCA

is broadly utilized to model functional subjects, by approximating functional model

with a series of models where the number of predictors is truncated. Muller and

Stadtmuller [2005] proposed a generalized functional linear regression model con-

sidering this truncation error when applying fPCA in practical data. Asymptotic

inference on the proposed model is analyzed in the thesis.

In practice, fPCA is a data-driven method. The principal components are

estimated from the sample data, instead of observed, and consequently will change as

sample size changes. An estimation error for the principal component is introduced

in application of fPCA. In this work, we focus on incorporating functional objects

in the framework of quasi-likelihood model, considering both truncation error and

estimation error.

2.4 Generalized Functional Linear Regression Model and Functional

Quasi-Likelihood Model

The data we observe for the ith subject are {Xi(t), t ∈ T, Yi, i = 1, . . . , n}. We

assume that these data from an i.i.d. sample. Here the response variable Yi is a

real-valued random variable and Xi(t), t ∈ T is a square integrable stochastic process

on a real compact set T . The mean function is µ(t) = E[X(t)].

The linear predictor η given by

η =
∫
T
β(t)X(t)dt

8



If we write

ηi = α +
∫
T
β(t)Xi(t)dw(t)

E[Yi|X(t), t ∈ T ] = µi = g(ηi)

then g(·) will be called the link function, which is monotone, twice continuously

differentiable with bounded derivatives and is thus invertible. This function links

the expectation of Yi with our random covariate function Xi(t). We should note that

the link function g here is the inverse link in McCullagh [1983]. We also assume

V ar(Yi|Xi(t), t ∈ T ) = σ2(µi) = σ̃2(ηi).

We consider generalized functional linear regression model

Yi = g(α +
∫
T
β(t)Xi(t)dt) + ei, i = 1, . . . , n,

where E(ei|X(t), t ∈ T ) = 0 and V ar(ei|X(t), t ∈ T ) = σ2(µi) = σ̃2(ηi).

This generalized functional linear regression model is specified by a parameter

function β(·), which is assumed to be square integrable on T , in addition to the link

function g(·) and σ2(·) (σ̃2(·)) are assumed known and satisfy previous conditions.

Muller and Stadtmuller [2005] discussed the situation where the link and variance

functions are unknown and are estimated nonparametrically from the data.

Because of inclusion of intercept, we have E[X(t)] = 0, for all t in T . Let

E(σ̃2(η)) = σ2. Error terms ei are i.i.d. with

E(e) = E[E(e|X(t), t ∈ T )] = 0

V ar(e) = V ar(E(e|X(t), t ∈ T )) + E[V ar(e|X(t), t ∈ T )]
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= 0 + E[σ̃2(η)] = σ2.

Let ψi(t), j = 1, 2, . . . be the principal components of X(t), t ∈ T . Then ψj

forms an orthonormal basis of the function space L2(dw). That is
∫
T ψj(t)ψk(t)dw(t) =

δjk. Then the principal component expansions of the functional predictor X(t) and

the parameter function β(t) are

X(t) =
∞∑
j=1

εjψj(t)

β(t) =
∞∑
j=1

βjψj(t)

with

εj =
∫
T
X(t)ψj(t)dw(t)

βj =
∫
T
β(t)ψj(t)dw(t)

We note that εj’s are random variables, while βj’s are coefficients. Some statistical

properties of principal component εj’s and coefficients βj’s are summarized in:

Fact 1. (1) E(εj) = 0

(2)
∑∞
j=1 β

2
j <∞

(3) Let σ2
j = E(ε2j),

∑
j σ

2
j =

∑
j E(ε2j) <∞

Proof. (1).

E(εj) = E(
∫
T
X(t)ρj(t)dw(t))

=
∫
ω

∫
T
X(t)(ω)ρj(t)dw(t)fX(ω)dω

10



=
∫
T
ρj(t)

∫
ω
X(t)(ω)fX(ω)dωdt

= 0

(2).

β(t) =
∑
j

βjρj(t)

∫
β2(t)dw(t) =

∫
[
∑
j

βjρj(t)]
2dw(t)

=
∫ ∑

j

β2
j ρj(t) +

∑
i 6=j

2βiρi(t)βjρj(t)dw(t)

=
∑
j

∫
β2
j ρj(t)dw(t) +

∑
i 6=j

2βiβj

∫
ρi(t)ρj(t)dw(t)

=
∑
j

β2
j <∞

(3).

∫
E[X2(t)]dw(t) =

∫
E[
∑
j

εjρj(t)]
2dw(t)

=
∫
E[
∑
j

ε2jρ
2
j(t) +

∑
i 6=j

εiεjρi(t)ρj(t)]dw(t)

=
∫ ∑

j

σ2
jρ

2
j(t)dw(t)

=
∑
j

σ2
j <∞

For the model error e, we have E(e) = 0, V ar(e) = σ2. Define the standardized

error e′ as e = e′σ(µ). Then,

E(e′|X) = E(
e

σ(µ)
|X) =

E(e|X)

σ(µ)
= 0,

V ar(e′|X) =
1

σ2(µ)
V ar(e|X)

11



=
1

σ2(µ)
σ2(µ) = 1,

V ar(e′) = V ar[E(e′|X)] + E[V ar(e′|X)] = 1.

As maximum likelihood estimation is the principal method used for GLM, it

is necessary to specify a probabilistic mechanism that controls the data generation

process. Such a specification is unclear in many practical situation. Wedderburn

[1974] proposed an important extension of likelihood function, the quasi-likelihood

method. The term “quasi-likelihood” indicates, even without sufficient informa-

tion about the distribution, the constructed likelihood behaves like a log-likelihood

function, under mild assumptions, and thus is of statistical importance.

Suppose that the components of the response vector Y are independent with

mean vector µ and covariance matrix σ2V (µ), where σ2 is unknown but V (µ) is a

matrix of known functions about µ. The mean vector µ relates to the parameter of

interest β on covariates x.

The quasi-likelihood function K(yi, µi) is defined as

∂K(yi, µi)

∂µi
=

yi − µi
σ2V (µi)

or equivalently,

K(yi, µi) =
∫ µi yi − s

σ2V (s)
ds+ function of yi.

As we assume the components of Y are independent, the quasi-likelihood for

the complete data is

K(y, µ) =
n∑
i=1

K(yi, µi).

By Wedderburn [1974], K is the log-likelihood function if y comes from a one-

parameter exponential family. Meanwhile, K also possesses similar statistical prop-
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erties of log-likelihood function, such as

E(
∂K

∂µi
) = 0

E(
∂K

∂βj
) = 0

E(
∂K

∂µi
)2 = −E(

∂2K

∂µ2
i

) =
1

σ2V (µi)
(2.1)

The maximum quasi-likelihood estimates are obtained by setting U(β) equal to zero,

where U(β) is the derivative of K with respect to β,

U(β) =
∂K

∂β
=

n∑
i=1

(Yi − µi)g′(ηi)ε(i)/σ2(µi) = 0

It is called the quasi-score function (score function). U(β) has zero expectation

and covariance matrix σ2DTV −1D, where the components of D are Dij = ∂µi/∂βj,

the derivatives of µ(β) with respect to the parameters. McCullagh [1983] showed

that quasi-likelihood estimates β̂ is
√
n-consistent and n1/2(β̂−β) ∼ Np(0, σ

2(D
TV −1D
n

)−1),

asymptotically.

2.5 Errors of Functional Quasi-likelihood Model

2.5.1 Truncation Error

Based on the principal component expansions of functional predictor X(t) and pa-

rameter function β(t), functional Quasi-likelihood model is

Yi = g(α +
∞∑
j=1

βjε
(i)
j ) + e′σ̃(α +

∞∑
j=1

βjε
(i)
j ), i = 1, . . . , n, (2.2)

where E(e′|X(t), t ∈ T ) = 0, V ar(e′|X(t), t ∈ T ) = 1, and both g(·) and σ2(·)(σ̃2(·))

are assumed known.
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In practice, we usually truncate at p = pn to approximate model (2.2) and

assume the dimension pn →∞ as n→∞.

The choice of this auxiliary parameter p is important in the procedure of mod-

eling. Several selection methods have been analyzed, including minimization the

prediction error via cross validation (Rice and Silverman [1991]) and minimization

of the Akaike Information criterion (AIC) (Muller and Stadtmuller [2005]). Minka

[2000] showed how to use Bayesian model selection to detect the number of com-

ponents. A good overview of standard rules of thumb was given by Cangelosi and

Goriely [2007].

We truncate the infinite dimensional full model at p = pn to get the p-truncated

model:

Yi = g(α +
p∑
j=1

βjε
(i)
j )+e

′
iσ̃(α +

p∑
j=1

βjε
(i)
j ), i = 1, . . . , n, (2.3)

Statistical properties about estimate of the β̂′js and parameter function β(·) have

been developed in Muller and Stadtmuller [2005].

2.5.2 Approximation Error

The principal component expansion of X(t) − µ(t), t ∈ T is constructed based on

the covariance function:

K(s, t) = E{[X(s)− µ(s)][X(t)− µ(t)]}

While, in reality, only a sample of {X1, X2, . . . , Xn} of independent stochastic pro-

cesses is observed, which are distributed as X. We would estimate the covariance
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function by the empirical approximation:

K̃(s, t) =
1

n

n∑
i=1

[Xi(s)− X̄(s)][Xi(t)− X̄(t)]

where X̄ = 1
n

∑n
i=1Xi.

Let θ̃1 ≥ θ̃2 ≥ . . . ≥ 0 be the eigenvalues of K̃ and let the corresponding

orthonormal eigenfunctions be ψ̃1, ψ̃2, . . .. Then

K̃(s, t) =
∞∑
j=1

θ̃jψ̃j(s)ψ̃j(t).

Consequently, the functional principal component expansion of Xi(t) is

Xi(t) =
∞∑
j=1

ε̃j
(i)ψ̃j(t)

where ε̃j
(i) is the principal component score of Xi(t) corresponding to the jth prin-

cipal component ψ̃j(t). We consider ψ̃j(t) as an approximation to ψj(t), and both

ε̃j
(i) and ψ̃j(t) change with sample size n.

2.5.3 Full Model and Work Model

With the observed data (Xi(t), t ∈ T , Yi), i = 1, . . . , n, we assume Xi(t), t ∈ T is a

square integrable stochastic process on a real compact set T and these data form an

i.i.d. sample. The mean function of X is µ(t) = E[X(t)]. We assume there exists a

known link function g(·), which is monotone, twice continuously differentiable with

bounded derivatives, which relates the expectation of Yi to the random function

Xi(t), through

ηi = α +
∫
t
β(t)Xi(t)dw(t), (2.4)

E(Yi|X(t), t ∈ T ) = µi = g(ηi). (2.5)
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The full functional quasi-likelihood model is

Yi = g(α +
∫
β(t)Xi(t)dw(t)) + ei, i = 1, . . . , n, (2.6)

where E(ei|X(t), t ∈ T ) = 0 and V ar(ei|X(t), t ∈ T ) = σ2(µi) = σ̃2(ηi). We set

σ2 = E[σ̃2(η)]. Both the link function g(·) and variance function σ2(·) (σ̃2(·)) are

assumed known.

Setting ε
(i)
j =

∫
Xi(t)ψj(t)dw(t), the full model can be rewritten as

Yi = g(α +
∞∑
j=1

βjε
(i)
j ) + e′iσ̃(α +

∞∑
j=1

βjε
(i)
j ), i = 1, . . . , n, (2.7)

where e′i is the standardized error, ei = e′iσ(µi), and E(e′|X) = 0, V ar(e′|X) = 1.

We approximate model (2.7) with a series of models where we truncate the number

of predictors at p = pn and approximate ε
(i)
j by ε̃

(i)
j corresponding to the jth principal

component ψ̃j(t).

The working model becomes

Yi = g(α +
p∑
j=1

βj ε̃
(i)
j ) + e′iσ̃(α +

p∑
j=1

βj ε̃
(i)
j ), i = 1, . . . , n, (2.8)

where both p = pn and ε̃
(i)
j = ε̃

(i)
j,n change with sample size n. For simplicity, we

suppress the indices n.

To develop statistical inference, we also assume the dimension p = pn grows

asymptotically as n→∞ and the growth rate will be specified in the next chapter.
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Chapter 3: Asymptotic Properties of the Functional Quasi-likelihood

Model

In Chapter 2, a functional quasi-likehood model with both truncation and approxi-

mation error is proposed. With a sample of stochastic processes and responses, we

firstly evaluate the accuracy of principal component approximations ψ̃ and the cor-

responding principal component scores ε̃ with pn →∞ as n→∞. Asymptotic limit

results for the approximated ε̃ (ψ̃) and the true ε (ψ) are derived with increasing

sample size n.

Once the full model (2.7) is truncated to a finite dimensional working model (3.7),

we can apply the methodology of quasi-likelihood model, by solving a p-dimensional

score equation.

With approximated ε̃, we establish that the asymptotic properties of the result-

ing estimate ˆ̃β obtained from the score function in this functional quasi-likelihood

function.

3.1 Principal Component Expansion Approximation

In Section (2.5.2) we discussed the approximation error derived from empirical

approximation of covariance function K̃(s, t). Here we summarize the statistical
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properties of the principal component expansion approximation.

Let X(t) denote a random function on a real compact set T , which is square

integrable, and let µ(t) = E[X(t)]. The covariance function of X(t)− µ(t) is

K(s, t) = E{[X(s)− µ(s)][X(t)− µ(t)]}

where K(·, ·) is also square integrable.

The Karhunen-Loève expansion of X(t)− µ(t) is

X(t)− µ(t) =
∞∑
j=1

εjψj(t)

where the εj are random principal component scores ofX(t), and εj =
∫
T X(t)ψj(t)dt.

The empirical approximation of K(s, t) is

K̃(s, t) =
1

n

n∑
i=1

[Xi(s)− X̄(s)][Xi(t)− X̄(t)]

where X̄ = 1
n

∑n
i=1Xi. It leads to the principal component expansion of X(t) as

X(t) =
∞∑
j=1

ε̃jψ̃j(t).

The set of ψ̃1, ψ̃2, . . . forms a complete orthonormal basis of L2(T ). For any observed

sample function Xi(t), we have

Xi(t) =
∞∑
j=1

ε̃j
(i)ψ̃j(t),

where ε̃j
(i) is the principal component score of Xi(t) corresponding to the jth prin-

cipal component ψ̃j(t). Because ψ̃j is considered as an approximation to ψj given

a sample {X1, . . . , Xn}, we use ψ̃j and ε̃j to distinguish from the true ψj and εj

constructed from the true stochastic process X(t). Both ψ̃j = ψ̃j,n and ε̃j = ε̃j,n

change with sample size n, but here we suppress the indices n for simplicity.
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As {ψ1, ψ2, . . .} forms a complete orthornaormal basis of L2(T ), we may write:

ψ̃j =
∞∑
k=1

ajkψk. (3.1)

According to Hall and Hosseini-Nasab [2009] the generalized Fourier coefficients ajk

are functions of the data, and, for each j 6= k, we have

ajj = 1− 1

2
n−1

∑
l:l 6=j

(θj − θl)−2
(∫

Zψjψl

)2

+Op(n
−3/2), (3.2)

ajk = n−1/2(θj − θk)−1
∫
Zψjψk + n−1

{
(θj − θk)−1

∑
l:l 6=k

(θj − θk)−1
(∫

Zψjψl

)(∫
Zψkψl

)

−(θj − θk)−2
(∫

Zψjψj

)(∫
Zψjψk

)}
+Op(n

−3/2) (3.3)

where Z = n1/2(K̃ − K), and
∫
Zψjψk =

∫ ∫
T 2 Z(s, t)ψj(s)ψk(t)dw(s)dt. The con-

ditions under which the infinite series in (3.2) and (3.3) converge are listed in

Assumption 1. dt With functional observations, we use the L2 norm to analyze the

accuracy of ψ̃j(t) as an estimate of ψj(t) by the following lemma.

Lemma 3.1.1. n‖ψ̃j − ψj‖2 =
∑
k:k 6=j(θj − θk)−2(

∫
Zψjψk)

2 +Op(n
−1/2)

Define ∆̃ = (
∫
|K̃ −K|2)1/2,

δj = min
1≤k≤j

(θk − θk+1)

J = inf
[
j ≥ 1 : θj − θj+1 ≤ 2∆̃

]
(3.4)

Assumption 1. The conditions under which the infinite series in (3.2) and (3.3)

converge:

(a) for all C > 0 and some ε > 0,

sup
x∈T

{
E
∣∣∣X(t)C

∣∣∣} <∞ (3.5)

sup
s,t∈T

(
E
[{
|s− t|−ε |X(s)−X(t)|

}C])
<∞ (3.6)
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(b) for each integer r ≥ 1,θ−rj E
(∫
T [X(t)−µ(t)]ψj(t)dt

)2r
is bounded uniformly in

j.

(c) The eigenvalues θ′js are distinct.

Based on results of Hall and Hosseini-Nasab [2009], under Assumptions 1(a)

and 4, with probability 1, ‖ε̃(i)l − ε
(i)
l ‖ = Op(n

−1/2), for all l such that 1 ≤ l ≤ J −1,

where J defined as (3.4).

3.2 Principal Component Expansion Truncation

We introduced the truncation error in Section (2.5.1) while we truncated the in-

finite dimensional full expansion. In this section, we will talk about some useful

asymptotic properties of estimates from the truncated model (2.3).

Let β̂j denote an estimate obtained from the truncated model (2.3) and let

χ = {X1, · · · , Xn}.

Theorem 3.2.1. For fixed j and each realization of χ we have

E[(β̂j − βj)2|χ] = Op(p
2/n).

3.3 Asymptotic Properties of Functional Quasi-likelihood Estimators

The functional quasi-likelihood model is

Yi = g(α +
p∑
j=1

βj ε̃
(i)
j ) + e′iσ̃(α +

p∑
j=1

βj ε̃
(i)
j ), i = 1, . . . , n, (3.7)

The true value β may be estimated by solving
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U(β) =
n∑
i=1

(Yi − µ̃i)g′(η̃i)ε̃(i)/σ2(µ̃i) (3.8)

The solutions of the score equation (3.8) will be denoted by

ˆ̃β
T

= (ˆ̃β1, · · · ,
ˆ̃βp) (3.9)

The mean squared error of ˆ̃β(t) =
∑p
i=1

ˆ̃βiψ̃j(t), conditional on χ = {X1, · · · , Xn}

can be written as:

∫
I
E

[(
ˆ̃β(t)− β0(t)

)2

|χ
]
dt

=
∫
I
E

[( p∑
i=1

ˆ̃βiψ̃j(t)−
∞∑
i=1

βiψj(t)
)2

|χ
]
dt

=
∫
I
E

[( p∑
i=1

ˆ̃βiψ̃j(t)−
∞∑
i=1

βiψ̃j(t) +
∞∑
i=1

βiψ̃j(t)−
∞∑
i=1

βiψj(t)
)2

|χ
]
dt

=
∫
I
E

[( p∑
i=1

ˆ̃βiψ̃j(t)−
∞∑
i=1

βiψ̃j(t)
)2

|χ
]
dt+

∫
I

[( ∞∑
i=1

βi[ψ̃j(t)− ψj(t)]
)2
]
dt

+2
∫
I

[ ∞∑
j=1

βj(ψ̃(t)− ψj(t))
]
E

[ p∑
j=1

ˆ̃βjψ̃j(t)−
∞∑
j=1

βjψ̃j(t)|χ
]
dt.

Theorem 3.3.1. With probability 1, if X1(t), · · · , Xn(t) are square integrable ran-

dom functions and
∑∞
j=1 δ

−1
j → 0, for all 1 ≤ j ≤ J − 1,

∫
I

[( ∞∑
i=1

βi[ψ̃j(t)− ψj(t)]
)2
]
dt→ 0.

Theorem 3.3.2.

∫
I
E

{[ p∑
j=1

ˆ̃βjψ̃j(t)−
∞∑
j=1

βjψ̃j(t)
]2
|χ
}
dt = Op(p

1/2n−3/2) + op(1).

From Theorem 3.3.1 and 3.3.2, we can easily get, for all 1 ≤ j ≤ J − 1

Theorem 3.3.3. Under Assumptions 2 - 6, with probability 1, we have

∫
I
E

{[
ˆ̃β(t)− β0(t)

]2
|χ
}
dt→ 0.
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Chapter 4: Functional Shape Analysis of Movie Success in Subse-

quent Sales Channel

In Chapter 2, we talk about the Functional Quasi-likelihood model with both trunca-

tion and approximation errors; Chapter 3 shows us the consistency of the estimates.

Now we want to utilize this method and consider functional interactions.

Suppose we have two functional subjects, X1(t) and X2(t) on T . We can write

their principal component expansions as:

X1(t) =
∞∑
j=1

εjψj(t)

X2(t) =
∞∑
j=1

δjφj(t)

and their corresponding parameter functions:

β1(t) =
∞∑
j=1

β1
jψj(t)

β2(t) =
∞∑
j=1

β2
jφj(t)

where the ψ and φ are the principal components of X1(t) and X2(t).

We model the two dimensional interaction parameter function as

U(s, t) =
[
ψ1(s), ψ2(s), · · ·

]


β12
1 0 0

0 β12
2 0

. . .


[
φ1(t), φ2(t), · · ·

]
=
∞∑
l=1

β12
l ψl(s)φl(t)
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The linear predictor (2.4) becomes

η = α +
∫
β1(t)X1(t)dt+

∫
β2(t)X2(t)dt

+
∫
s

∫
t
U(s, t)X1(s)X2(t)dw(s)dt.

As

∫
s

∫
t
U(s, t)X1(s)X2(t)dw(s)dt

=
∫
s

∫
t

∞∑
l=1

ψl(s)φl(t)β
12
l ·

∞∑
j=1

εjψj(s) ·
∞∑
k=1

δkφk(t)

=
∞∑
l=1

∞∑
j=1

∞∑
k=1

β12
l εjδk

∫
ψl(s)ψj(s)dw(s)

∫
φl(t)φk(t)dt

=
∞∑
l=1

β12
l εlδl (4.1)

We use the functional model with function interaction modeled as (4.1) to

analyze the effect of Word-of-Mouth on movie box office sales. In this study, the

goal is to understand (and predict) the value of the sales for entertainment products,

by analyzing the shapes of on-line reviews. By “shape” we mean whether the curve

is trending up over time, or whether it is trending down and the rate at which

the shape is changing. We model the on-line review curve using functional shape

analysis. Functional shape analysis first decomposes the (infinite-dimensional) shape

into a finite dimensional sum of terms and subsequently models the individual shape

dimensions. In this project, we study the impact of several input shapes on box

office sales. The input shapes include three different measurements of the evolution

of word-of-mouth about the popularity of a movie. One challenge of our model is

the incorporation of an interaction term between the word-of-mouth shapes. We

demonstrate how to incorporate interaction terms into functional shape models and
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compare the resulting model to simpler approaches.

4.1 Introduction

Functional Data Analysis (FDA, Ramsay and Silverman [2005]) deals with curves,

or functions in general. If longitudinal measurements on the same individuals are

made on a suitably spaced grid, such data are typically termed a sample of curves

or functional data. FDA approach regards the entire curve as an observational unit

and consider it as being observed in continuum, even if in practice humankind can

only observe discrete data. Some of the methodological study in this field involves

functional ANOVA (Fan and Lin [1998]), functional principal component analysis

(Hastie and Sugar [2000]), regression with functional responses (Faraway [1997]), or

functional predictors (James [2002], James and Silverman [2005]), or both (Zeger

and Diggle [1994], Moyeed and Diggle [1994]).

Studying functional data allows us to better understand the dynamic features

of predictors over time, but it also raises another type of problems when we are

dealing with infinite-dimensional functional predictors, compared with the classical

situation with finite-dimensional predictors. The main idea is to employ Karhunen-

Loeve or other expansion of the functional predictor, in order to reduce the dimen-

sions by truncating at a few number of terms. Muller and Stadtmuller [2005] develop

asymptotic inference for this kind of problem.

Based on its advantage of capturing the dynamics, the FDA approach has been

applied for the exploration and analysis of data originating from various fields, for
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example, eBay online auctions (Jank and Shmueli [2008], Jank and Zhang [2011]),

market penetration (Sood, James and Tellis [2009]), open source software evolution

(Stewart, Darcy and Daniel [2006]) and monthly index of production (James O.

Ramsay and James B. Ramsey [2002]).

When dealing with several predictors, care must be taken in interpreting how

the effect of one predictor on the response variable depends on the magnitude of

another predictor. Interaction terms are used extensively both in linear and non-

linear models. Computing the magnitude of interaction effect in non-linear model

requires special care and delicate treatment. Norton [2004] takes logit and probit

models as examples, showing that computing the marginal effect of a change in two

predictors is more complicated in non-linear models than in linear models. They

present a correct estimator for the two-way interaction effect in non-linear model.

However, Greene [2010] argues that the statistical testing about interaction terms

might be uninformative and misleading in the context of the model and provides a

useful two-step method to proceed in the analysis of interaction terms. For multi-

ple regression models, interpretation of significant interaction terms still might be

difficult in certain cases. Cortina [1993] argue that a seemly statistically significant

interaction term may stem from an undetected nonlinear effect, rather than a linear

multiplicative effect. After introducing interaction effects in the model, the statis-

tical significance of the lower-order coefficients could be misleading for the typical

purposes of hypotheses testing (Braumoeller [2004]). In the field of nonparametric

models, many studies have been made on the detection of interactions. For in-

stance, a new algorithm GUIDE (Generalized, Unbiased Interaction Detection and
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Estimation) for regression tree construction has been developed to eliminate vari-

able selection bias and test the presence of local two-way interactions (Loh [2002]);

Sperlich [2002] proposes two statistics for detecting interactions and proves that the

test procedure could detect an interaction term with probability 1.

Consumer reviews are product reviews created by consumers, which are quite

different from professional reviews. Much work has been done on investigating pro-

fessional reviews (King [2007], Reinstein and Synder [2005]). Dellarocas, Zhang

and Awad [2007] have shown the low correlation between consumer and professional

ratings. Meanwhile, consumer reviews are growing increasingly important in the

consumer’s decision making process. Before people go to the theatre, they may

firstly sit in front of their computers to check what others say about that movie. Is

the movie brilliant or just so-so? Is it worth the money they pay for the tickets?

In this case, consumer reviews play a crucial role in decision process of potential

consumers. Previous works (Dellarocas, Zhang and Awad [2007]; Duan, Gu and

Whinston [2008]; Chintagunta, Gopinath and Venkataraman [2010]) have investi-

gated the impact of on-line user reviews on box office performance of movies.

To summarize consumer reviews, three commonly used measurements are va-

lence, volume and dispersion. The valence of consumer reviews is the mean user

rating, an assessment of quality of a product. Dellarocas, Zhang and Awad [2007]

find that valence is the most informative indicators of forecasting box office sales.

Moreover, their analysis shows that consumer ratings are more influential in predict-

ing future box office revenues than average professional reviews. Volume measures

the total number of unique reviews. Intuitively, we can argue that more volume,
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which means more people have watched that movie, probably leads to more future

movie viewers in theatre. It has been claimed by Duan, Gu and Whinston [2008]

that volume, rather than valence, has a significant impact on movies’ box office rev-

enues. Interestingly, the effect of valence and volume on box office performance of

movies may vary geographically. Chintagunta, Gopinath and Venkataraman [2010]

investigate the impact of consumer reviews on local geographic box office sales of

movies and find that valence seems to matter, not the volume. Then they do the

same analysis with national data, and obtain a different result - the volume matters,

but not the valence. Consumer reviews could vary a lot due to different reviewers’

preference, especially on movies. Another metric of consumer reviews, dispersion,

capture this difference. Big dispersion means big difference of opinions. Sun [2008]

studies the informational role of consumer disagreement and suggests that dispersion

is an effective marketing tool in influencing consumers purchase decision.

Sun [2008] tests the hypothesis about the significance of interaction terms

between valence and dispersion. Sun finds the impact of dispersion changes with

different level of average rating. Specifically, a higher dispersion has a positive

influence on box office performance if and only if the average valence is relatively low.

One can also argue impact of interaction between valence and volume. Intuitively,

more consumers that think the movie being good may lead to larger impact on

future box office sales. Nam et al. [2010] studies this interaction between valence and

volume in the context of video-on-demand service. These works show the importance

of including the interaction effects of on-line word-of-mouth(eWOM) in the model.

While interaction terms have received increasing attention recently, few work
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has been done on the functional interaction terms. When incorporating functional

interaction terms in the model, we could have more flexibility of presenting how the

effect of one shape on the response depends on the magnitude of another shape. In

the review context, we represent the review processes (valence, volume, dispersion) of

as functional objects. In that sense, every movie is associated with three functional

objects describing the review evolution. We analyse how these functional objects

interact with each other when affecting future sales performance by a functional

regression model. Because of the difficulty of interpreting the functional interactions

from a model with several functional predictors, we develop a re-scaled 3D plots

which graphically illustrate how several functional predictors combined together

affect the scalar response.

This chapter is organized as follow. In the next section, we provide some details

about the data we use in the study. Section 4.3 gives some insights we gain from

applying shape analysis to the eWOM, which are used in building the functional

regression model. Section 4.4 analyse the estimate results we obtain in Section 4.3

and focus on interpreting the interaction terms in a traditional way. In Section 4.5 we

develop an adjusted 3D plot which could help us better understand the interaction

effect of eWOM. Finally, we conclude with further remarks in Section 4.6 .

4.2 Data

Our data are collected from 876 movies during Feb.1999 to Dec.2010 from Yahoo

and IMDB. The sample data we use in this study include 405 movies with a complete
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history of user reviews from their release dates and have the complete corresponding

box office revenue data as well. For each movie, we have the following information

from Yahoo and IMDB: valence, volume, dispersion, box office revenue, launch date,

distribution, rating, genre, award nominations and total advertising. Letter grade

of each individual user review is converted into a numerical value by assigning F

and D- to 0 and A and A+ to 10 with the rest letters corresponding to its numeric

counterpart. Table 4.1 provides some key summary statistics.

Table 4.1: Descriptive Statistics

Min. Max. Mean Sd Median

valence 0 10 5.25 3.33 6.14

volume 1 1618 73.09 149.96 16

dispersion 0 50 6.79 6.79 6

B.O. sale 5.61 19.29 14.32 1.99 14.6

adspent 1.44 10.88 9.34 1.61 9.78

awards nomi 0 75 9.14 12.52 4

Total number of movies 405

Total number of reviews 395,297
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4.3 Estimating Review Shapes

Limitations in human perception and measurement capability allow us to record

only discrete data. Firstly, we start by estimating the underlying smooth review

curves for each movie. There are a variety of data smooothers. One flexible and

computationally efficient choice is penalized smooth spline. Specifically, let τ1, . . . , τL

be a set of knots. Then, a polynomial spline of order p is given by

f(t) = β0 + β1t+ β2t
2 + . . .+ βpt

p +
L∑
l=1

βpl(t− τl)p+,

where u+ = uIu≥0.

Define the roughness penalty

PENm(t) =
∫
{Dmf(t)}2dt

where Dmf,m = 1, 2, 3, . . ., denotes the mth derivative of the function f . The

penalized smoothing spline f minimizes the penalized squared error

PENSSλ,m =
∫

[y(t)− f(t)]2dt+ λPENm(t)

where y(t) denotes the observed data at time t and the smoothing parameter λ

controls the tradeoff between data fit and smoothness of the function f .

In this study, we use smoothing splines of order p = 4 and a smoothing param-

eter of λ = 0.2. The specified selection is guided by the goal of obtaining smooth

functional objects that visually represent the original data well.

The advantages to focus on the functional aspect of consumer reviews is to

capture the trend and evolution over time and investigate how different dynamics
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of consumer reviews affect future demanding performance. The pattern of the three

metrics of consumer reviews - valence, volume and dispersion - is highly heteroge-

neous across different movies, which is shown in Figure 4.1.

Take a sample of consumer movie reviews as an example. Those movies share

similar average valence, volume and dispersion over time, but with different evolution

patterns. In the first panel, “Get Smart” has high valence at the beginning and end

but considerably low in the middle; while “Yours, Mind And Ours” has low valence

initially but it increases to higher level in the later weeks; the valence of “The

Forbidden Kingdom” is moderate in the middle but low at two tails. Please note

that these three movies share similar average valence - 4, 4.19, 3.91 respectively. In

the second panel, there are three movies with similar average values, but obtaining

peak values at different time. These three movies obtain their peak volume in the

last two weeks, at the first two weeks and in the middle respectively. The last

panel shows different evolution of dispersion for three movies with similar average

values. The dispersion of “The Forbidden Kingdom” increases gradually, but faster

for “Munich”; while, for “The Perfect Holiday”, dispersion rises and gets the first

peak in week three, then decreases gradually, but jumps back to a higher level at

the end.

In order to capture the dynamic patterns of valence, volume and dispersion, we

propose a functional model to analyse the “shapes” of consumer reviews and how

they interact with each other when they influence consumers’ decision. Let V a(t),
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Figure 4.1: Heterogeneity of Review Curves
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V o(t) and Dis(t) denote the function of valence, volume and dispersion over time

respectively. We believe that different dynamic patterns of these three functions

affect box office sale variously. Meanwhile, we analyse the two-way interaction terms:

V a(t) ∗ V o(t), V a(t) ∗Dis(t) and V o(t) ∗Dis(t) in the functional regression model.

These terms represent how two “shapes” interacted with each other. Functional

regression model enables us to investigate the dynamic patterns of eWOM and how

different dynamic patterns combined together affecting box office sales.

4.4 Shape Analysis of eWOM

In this section, we lay the foundation of our functional regression model. The

functional regression model uses the shapes of previous eWOM to predict future

box office sale. We separate our data into two part, the first seven weeks and week

eight. We analyze the shapes of valence, volume and dispersion from week one to

week seven. Then, we use the insights obtained from these shapes to predict the

box office sale in week eight by building a functional regression model.

Functional Shape Analysis (FSA) focuses on a sample of functional observa-

tions, e.g.curves., and treat the observed curves as the units of observation. Thus

our first step is to smooth the observed reviews’ histories using penalized smooth-

ing spline, a flexible and computationally efficient smoothing technique. Figure 4.1

shows the smoothed eWOM from the observed values. We can see that smoothing

eliminates noise and captures the main pattern. The smoothed shapes of eWOM are

considerably heterogeneous across movies. These different shapes plausibly contain
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Figure 4.2: Screeplot

vital information about the potential demand, e.g. the most recent future box office

sale. Thus we employ Functional Principal Component Analysis (fPCA) to extract

the most indicative shapes that are common across all movies and use them to build

the model.

Figure 4.2 shows the percentage of variation captured by the first few PCs of valence,

volume and dispersion. It shows that the first three fPC’s explain more than 95%

of the total data variation. We retain the first three fPCs of valence, volume and

dispersion, which are displayed in Figure 4.3.
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As the final step, we develop a functional regression model of these nine shapes

and their two-way interactions. Since while the PCs are common across all movies,

the PC-scores are movie-specific, we could characterize each movie by its PC-scores

of each PC. We link the box office revenue in week eight to these nine shapes,

more precisely, their corresponding movie-specific PC-scores and all of their two-

way interaction terms by linear regression. Some controlled variable that don’t

change over time are also being considered in the model, including number of awards

nomination, total advertising expenditure and average box office sale. Then we

utilize step-wise regression to retain four key shapes-V aPC1(t) V aPC3(t) DisPC1(t)

DisPC3(t)-two interaction terms-V aPC1(t)∗DisPC3(t),V aPC3(t)∗DisPC3(t)-and two

control variables - average Box Office sales and number of awards nomination. For

illustrative purposes, we will restrict to the shapes, and not report the estimates of

these two control variables.

4.5 Interpreting Interaction Terms in a Traditional Way

The parameter results are reported in Table ??. The adjusted R2 is 0.71, which

is not bad in practice. Meanwhile, all these four shapes and their interactions are

statistically significant, based on the small p-values. The PC1 amd PC3 of Valence

and dispersion are the single shapes that is statistically significant.
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Table 4.2: Parameter Estimation

Estimate Std Error t.value P-value

valence.Comp.1 -0.0018 0.0025 0.7127 0.4764

valence.Comp.3 -0.0111 0.0081 -1.3743 0.1701

dispersion.Comp.1 0.0068 0.0013 5.2655 0.0000

dispersion.Comp.3 -0.0078 0.0040 -1.9319 0.0541

valence.Comp.1:dispersion.Comp.3 -0.0009 0.0003 3.2095 0.0014

valence.Comp.3:dispersion.Comp.3 -0.0030 0.0008 -4.0123 0.0001

adj. R sq. 0.7072

Firstly let us analyse the effect of single shapes of valence and dispersion in influ-

encing the following demand. V alPC1 is negative together with negative coefficient,

which means that high average valence would stimulate box office sale, since the

movie with high rating would have negative PC-score. Meanwhile, the negative co-

efficient of V alPC3 results in “bad” box office performance for movies with positive

scores of V alPC3 While, that kind of movies tends to have a concave-down shape

of valence. Thus,even if generally high valence is good for the box office sale, the

movies with high valence in week three and four and low valence at tails tend to

have bad box office performance. The DisPC1 and DisPC3 have similar patterns

with V aPC1(t) and V aPC3(t), and suggests that dispersion is especially hurtful 2-

4 weeks prior to the movies demanding(week 8), while in week 1-2 or week 6-7,

dispersion is not obviously deleterious.
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There are two functional interaction terms in our functional regression model:

V alPC1 ∗ DisPC3 and V alPC3 ∗ DisPC3. It shows that the interaction between va-

lence and dispersion is important in forecasting the future demand, while volume

does not interact with other measurements. While interpreting “traditional” in-

teraction terms is relatively easy, it need to be more careful when dealing with

functional interaction terms. Now let us discuss the effects of interaction of valence

and dispersion in the same analytical procedure as previously. The coefficient of

V alPC1 ∗ DisPC3 is positive, then if a movie has positive DisPC3-score (concave-

down shape of dispersion), that type of dispersion is more harmful to box office

sale, when combined with high average valence which leads to negative V alPC1-

score. Meanwhile, the coefficient of V alPC3 ∗ DisPC3 is negative. Then if a movie

with concave-down shape of dispersion (positive DisPC3-score ) would have worse

box office performance when its valence is also at its peak in the middle (posi-

tive V alPC3-score), because( +V alPC3-score) * ( +DisPC3-score) * ( −coefficient )

= negative effect to box office sale. Similarly, we would expect a box office suc-

cess when the movie has a concave-up shape of valence (negative V alPC3-score and

concave-down shape of dispersion(positive DisPC3-score).

As you may have noticed, the shortcoming of interpreting functional interac-

tion terms using the same method as doing this with traditional interaction terms

is that we can’t see the pictures of the changes. When we do the same thing to

traditional interaction terms, we could just show that change of the slope. In that

case, from the deeper or flatter lines, we capture the idea of which typical kind of

one predictor combined with which typical kind of the other predictors could give
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us the best (largest, or smallest) result. However, when encountering the functional

interaction terms, we can only speculate a certain pattern of the shape with a certain

value of principal component’s score, since only one principal component score can’t

tell us the whole story of what the original shape would look like. In our case, the

predictors are smoothed shapes and we separate one shape into several components.

These components combined together build the original shape. Thus analysing one

single principal component can only give us a pattern of what the original shape

would look like, rather than really see the shapes. Based on this inconvenience,

we develop a 3D plots to illustrate how these shapes interacted with each other in

influencing future box office sale.

4.6 Interpreting Interaction Terms with Modified 3D Plot

Firstly, let us focus on the first interaction term - V alPC1 ∗DisPC3. After plotting a

3D graph with three axis’s representing V alPC1-score,DisPC3-score and log(BORev)

respectively. This plot only contains the information of scores, and how different

scores of PC affect the box office revenue. We are still uncertain about the original

shapes. Then we relabel the valence and dispersion axes by the corresponding

shapes. For the valence axis, each point now represents one typical shapes interested

in. In this case, the scores of V alPC1,V alPC2 and V alPC3 may all be different. For

dispersion axis, each point represents a different score of DisPC3, but scores of

DisPC1 and DisPC2 remain the same. While re-labelling the dispersion axis, we at

first choose a specified shape of dispersion we’re most interested in, extract its scores

39



of all PCs. The next step is to retain the scores of PC1 and 2, change the score

of PC3, and rebuild the shapes of dispersion with different DisPC3-score and the

same DisPC1-score and DisPC2-score. Figure 4.4 shows how the shape of dispersion

changes withDisPC3-scores, with the other components’ scores unchanged. The blue

curves are the original shapes of dispersion, corresponding with the DisPC3-score

on the left axis. When DisPC3-score is positive (the top four shapes ), dispersion

hits peak in the middle and are relatively low at the tails, which is corresponding to

concave-down curves. While, when DisPC3-score is negative (the bottom four shapes

), the shape of dispersion does not change to a concave-up pattern immediately, but

waits until the score being even more less (the changing point here is -60). We select

three most representative shapes, with DisPC3-score 80,0 and -80, and attach them

to the dispersion axis. Finally, we get Figure 4.5, the modified 3D plot.

In Figure 4.5, we attached three typical shapes on the axis of dispersion, who share

the same DisPC1-score and DisPC2-score, but have different DisPC3-score. On the

axis of valence, we select five shapes of valence, all of that have the same average

rating, but different pattern. These five valence shapes may have different scores of

all the components. Now this graph really could give us a straightforward insight

of how valence and dispersion affect the future box office sale.

These three shapes of dispersion have decreasing values in week 7. In the first

case with mostly concave-down shape of dispersion and high value at the end, box
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Figure 4.5: re-labelled 3D plot
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office sale obtains its maximum when together with decreasing valence, where the

valence is smallest at the end. One explanation is that decreasing valence means

the decreasing expectation. Consumers’ disagreement with the rating rises, and

meanwhile, the total expectation for that movie drops. Then people may become

more curious about that movie: is the movie really good or just so-so? This curiosity

may stimulate recent box office sale. When we do the same analysis to the concave-

down shape of dispersion (the most right panel of dispersion ), we observe that

low-end dispersion with high-end valence leads to most recent future box office

success. This result is plausible: even if previously the opinions of the movie vary,

finally most people think that movie is great, and this final revolution drives future

box office performance jump. Meanwhile, if we focus on the line in the middle, the

regression line when the valence is flat all the time. The slope of that regression line

is small and we could say that for stable valence, the impact of dispersion on BO

revenue is not obvious.

All in all, the main driver of box office performance is valence and dispersion

and these two metrics of reviews interacted together influence future BO revenue.

High-end dispersion is good when it’s combined with low-end valence; high-end

valence is good when it’s combined with low-end dispersion; but for stable valence,

the impact of dispersion diminishes. These results are shown in Figure 6. By

choosing different shapes of valence and DisPC3-score, we could visually identify

how different patterns of valence and dispersion affecting box office sale. In Figure 6,

the average of valence is all the same, which emphasis the importance of dynamics of

valence on affecting box office sale, which might be easily ignored by non-functional
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model.

4.7 Concluding Remarks

The objective of this paper is to investigate the role of on-line word of mouth of

movies in affecting the future box office sales. We propose a functional regression

model to measure the impact and interactions of shapes of valence, volume and

dispersion of on-line consumer ratings on box office performance. We identify that

the main drivers are valence and dispersion. By adjusting a traditional plot used

to analysing interaction terms, we are capable of telling how valence and dispersion

dynamically interact with each other influencing future off-line sales.

We acknowledge that this study is only the first step in introducing and in-

terpreting functional interaction terms. The shortcoming of this method is that we

don’t have the total control of dispersion, since the scores of the first two components

remain the same. Thus we can’t carry out our analysis to any dispersion shapes

directly. When we are interested in comparing the affect of two specified dispersion

shapes, since their scores of PC1 and 2 are probably different, these two shapes can’t

be attached to the axis of dispersion simultaneously. To fix this disadvantage, we

have to loose some accuracy: we first extract all the scores of one particular shape;

by changing the DisPC3-score, we could mimic the other shape but retaining the

scores of PC1 and 2.

Please note that even if we could fully control the valence shapes,the evolution

of valence is not continuous. We have no idea about the valence shapes between point
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4 and 5 on axis of valence. It means that we only have the control on discrete points

of valence axis. However, we are able to rebuild of the original shapes of dispersion

for any points on the axis. Thus there’s some compromise between control and

accuracy.
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Chapter 5: Forecasting VOD Demand Curves: a Dynamic Func-

tional Spatial-Temporal Approach

5.1 introduction

Streaming Video-on-Demand (VOD) systems offer consumers the ability to browse,

select, watch and scan media content from a large various library, including pay-per-

view and free contents, all from the comfort of their homes. There is extreme interest

in streaming VOD because it simplifies the process of getting video to consumers,

by allowing them to just point, click and watch instantly.

To be able to provide high quality services to consumers, it is crucial for the

service providers to be able to understand the effect of on-demand content requests

on several aspects - shape of the demand function for VOD, along with its spatial

characteristics.

Introductions of new release movies in VOD channel are confronted with com-

paratively short lifecycle and extremely uncertain demand. Forecasting the demand

shape of new release movies is not only challenging, but also important, for pro-

viding accurate and early guidance to cable operators and pay-tv service providers

with regard to strategic decisions such as distribution and promotion.
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Due to the large geographical coverage of VOD service providers, contents

are stored at several large servers located in metropolitan areas. These servers are

linked by a backbone network, thus contents can be transmitted among servers.

Each customer is assigned to one particular server but s/he still can call videos from

any other servers, with extra transmission cost. With the rapid increase of video

quality and size, e.g. 3-D movies, it is becoming infeasible and wasteful to replicate

the entire library at each server. Thus the ability to forecast the on-demand movies

and their shapes at various locations is critical for providers to improve their decision

making process.

Many researchers have studied optimal content allocation problems in Video-

on-Demand systems. Yu et al. [2006] study the aggregate video access pattern of

Video-on-Demand on the Internet. Moreover, they have shown that the popularity

of individual movie changes much over time. It follows that an accurate estimate

of individual video’s demand is becoming imperative for optimal context placement

problem. Usually optimal context placement problem assumes the popularity of

individual content is known or estimated in advance of the algorithm. Applegate et

al. [2010] propose a mixed integer program to optimize content distribution using

the recent history (the past 7 days) as an estimate of demand for existing contents,

and previous demand pattern of similar content for new-released contents. Instead,

Zhou and Xu [2002] assume popularity of videos following a Zipf-like distribution

and all videos share same peak period. Zipf-like distribution gives the probability

of the i-th video is chosen, where video indices are ordered by popularity. This

assumption works with simulation but in real-world data, it’s impossible to know
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the order of video index in advance. Instead, Bisdikian and Patel [1995] assume a

totally symmetric system: a movie is equally likely to be requested by all locations.

However, this is not true for our data. We find that the demand patterns of a movie

are heterogeneous among different locations, and thus spatial component should be

considered in content allocation problem.

In our study, we propose a dynamic spatial-temporal model to estimate de-

mand curve of each individual movie, rather than the aggregate demand, at different

locations. An accurate pre-release demand estimate of each movie at each location

helps providers optimize allocation of contents, reduce transmission cost and im-

prove operation efficiency. After its release, the initial stage of a new movie is

crucial for promotion. Typically, the providers promote a new movie for the first

two weeks after its release and then move on to new titles. With an accurate demand

curve model evolving over time, providers would know how long and how much to

promote the movie until there is a negative opportunity cost. We utilize functional

Principle Component Analysis (fPCA) to extract the main features of each movie’s

demand curves, which are incorporated with spatial information of each location,

and construct a spatial-temporal model. It provides a powerful methodological tool

to not only forecast pre-release demand shape of each individual movie at different

locations, but also analyze how it evolves as time passes and valuable information

is gathered.

The rest of this chapter is organized as follows. In the next section, we de-

scribe the data used in this study. In Section 5.3, we identify the geographical effect

on demand shape of our data. We then describe functional shape analysis (FSA) in
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Section ??. In Section ??, we discuss the results of our estimation and present the

model comparison results in Sectionr̃efModelCompVod. Then the spatial implica-

tion of movie demand is addressed in Section ??. Finally, we conclude with open

questions and future research avenues in Section ??.

5.2 Data

We obtained data from a global provider of multi-platform video services, working

with both content and service providers. The data used in our study are historical

records of Video-on-Demand system in United States. As video contents are stored

at several servers located at different cities and customers are divided into regional

networks, each served by one server, the request pattern of each movie from each

server represents demand trend of customers in proximity. We use the historical data

ranging from October 2010 to June 2011. The data includes a complete record of the

user’s VCR operation (e.g. stop, pause, rewind, fast-forward, etc.). It also contains

the information of the user (e.g.top-box IP), request (e.g. time and location) and

content (e.g. complete titles, ID number in library, starting time, end time, etc.). We

focus our analysis on each individual movie, and aggregate weekly requests of each

movie at different locations throughout the whole available time window. During

the record period of 273 days, 3,473,841video requests are posted over 22,017 unique

video files. Even if the majority of contents in the library are television shows, which

are usually free to view, we focus on movies that customers need to pay to view,

which are more profitable.
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Our sample consists of all movies that (a) were requested between October

2010 to June 2011; (b) were not free to watch; (c) survived at least 8 weeks. This

leads to a total of 115 movies. Our dataset includes weekly requests for all 115

movies for all 11locations. In addition, we use data on a wide range of other char-

acteristics, including production budget, star power, director power, rating, awards,

cumulative Box Office sale and the gap between theatrical and Video-on-Demand

release. They are obtained from such sources as Internet Movie Database, Box

Office Mojo and The Official Academy Awards Database. Details about these vari-

ables, their operationalizations, and sources are in Table 5.1. Table 5.2 gives the

key summary statistics of movie features we consider in this study.

50



T
ab

le
5.

1:
M

ov
ie

C
h
ar

ac
te

ri
st

ic
s

V
ar

ia
b

le
s

D
es

cr
ip

ti
on

M
ea

su
re

S
o
u

rc
e

B
O

C
u

m
u

la
ti

ve
B

ox
O

ffi
ce

S
al

e
C

u
m

u
la

ti
v
e

B
ox

O
ffi

ce
S

a
le

in
m

il
li

o
n

s
h
tt

p
:/

/
w

w
w

.b
ox

o
ffi

ce
m

o
jo

.c
o
m

/

G
ap

T
im

e
G

ap
in

W
ee

k
s

b
et

w
ee

n
T

h
ea

tr
ic

a
l

a
n

d

V
id

eo
-o

n
-D

em
an

d
R

el
ea

se
s

T
im

e
G

a
p

in
W

ee
k
s

h
tt

p
:/

/
w

w
w

.b
ox

o
ffi

ce
m

o
jo

.c
o
m

/

R
ev

ie
w

s
C

on
su

m
er

R
ev

ie
w

s
M

ov
ie

s
a
re

ra
te

d
o
n

a
1
-1

0
sc

a
le

h
tt

p
:/

/
w

w
w

.i
m

d
b

.c
o
m

/

N
u

m
R

ev
ie

w
s

T
ot

al
N

u
m

b
er

of
U

se
rs

W
h

o
H

av
e

G
iv

en
a

re
v
ie

w
T

o
ta

l
N

u
m

b
er

o
f

U
se

rs
W

h
o

H
av

e
G

iv
en

a
re

v
ie

w
h
tt

p
:/

/
w

w
w

.i
m

d
b

.c
o
m

/

B
u

d
ge

t
P

ro
d

u
ct

io
n

B
u

d
ge

t
P

ro
d
u

ct
io

n
B

u
d

g
et

in
M

il
li

o
n

s
h
tt

p
:/

/
w

w
w

.b
ox

o
ffi

ce
m

o
jo

.c
o
m

/

D
ir

ec
to

rG
ro

ss
D

ir
ec

to
r

L
if

et
im

e
G

ro
ss

T
ot

a
l

D
ir

ec
to

r
L

if
et

im
e

G
ro

ss
T

o
ta

l
in

M
il

li
o
n

s
h
tt

p
:/

/
w

w
w

.b
ox

o
ffi

ce
m

o
jo

.c
o
m

/

D
ic

et
or

N
u

m
M

v
s

T
ot

al
N

u
m

b
er

of
M

ov
ie

s
D

ir
ec

to
r

h
a
s

D
ir

ec
te

d
T

o
ta

l
N

u
m

b
er

o
f

M
ov

ie
s

D
ir

ec
to

r
h

a
s

D
ir

ec
te

d
h
tt

p
:/

/
w

w
w

.b
ox

o
ffi

ce
m

o
jo

.c
o
m

/

S
ta

rG
ro

ss
L

if
et

im
e

G
ro

ss
T

ot
al

of
th

e
H

ig
h

es
t

R
a
te

d
S

ta
r

in

th
e

M
ov

ie

L
if

et
im

e
G

ro
ss

T
o
ta

l
o
f

th
e

H
ig

h
es

t
R

a
te

d
S

ta
r

in

th
e

M
ov

ie
in

M
il

li
o
n

s

h
tt

p
:/

/
w

w
w

.b
ox

o
ffi

ce
m

o
jo

.c
o
m

/

S
ta

rN
u

m
M

v
s

T
ot

al
N

u
m

b
er

of
M

ov
ie

s
of

th
e

S
ta

r
T

o
ta

l
N

u
m

b
er

o
f

M
ov

ie
s

o
f

th
e

S
ta

r
h
tt

p
:/

/
w

w
w

.b
ox

o
ffi

ce
m

o
jo

.c
o
m

/

A
w

ar
d

sN
om

i
N

u
m

b
er

of
A

w
ar

d
s

N
om

in
a
ti

o
n

N
u
m

b
er

o
f

A
w

a
rd

s
N

o
m

in
a
ti

o
n

A
ca

d
em

y
A

w
a
rd

s
D

a
ta

b
a
se

A
w

ar
d

sW
in

N
u

m
b

er
of

A
w

ar
d

s
W

in
n

in
g

N
u

m
b

er
o
f

A
w

a
rd

s
W

in
n

in
g

A
ca

d
em

y
A

w
a
rd

s
D

a
ta

b
a
se

51



Our choice of independent variables is based on previous studies conducted

in analysis and prediction of movie’s box office sales. As little research has been

done in the field of VOD movie demand forecast and VOD is a sequential marketing

channel after theaters, we believe studying these movie features will help us find

whether the determinants of box office performance will play a role in the sequential

release channel.

5.3 Identification of Geographical Effect on Demand Curves

The critical role of spatial factor in influencing customer demand has been docu-

mented in many marketing and economic studies. Areas close to one another share

climate, history, sociodemographic and economic conditions. Therefore, customer

culture, values and taste in proximity tend to be spatially associated (Parker and

Tavassoli [2000]). Many articles have illustrated the heterogeneity of customer de-

mand across geographical markets by including spatial factor into statistical models

of customer choice (Jank and P.K. [2005]), customer satisfaction(Mittal [Kamakura

and Govind]), online auction (Jank and Shmueli [2007]), and cumulative demand

(Bronnenberg and Sismeiro [2002]).

The motion picture industry is an emerging field of increased interest to mar-

keting scholars and researchers. A stream of research, addressing spatial movie

demand difference, has begun to emerge in the marketing literature, which focus on

forecasting at an aggregate level (Krider et al [2005],Eliashberg and Shugan [1997]).

Given the short life span of movies, the heterogeneity of demand over time, and the
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Table 5.2: Descriptive Statistics

Variables Min Max Mean Std. Dev.

logBO 0.00 19.59 12.29 7.59

Gap -21.83 1111.45 61.28 157.26

Reviews 1.30 8.90 5.79 1.41

NumReviews 23 660700 52240 84159

Budget 0.00 160.00 43.73 44.75

DirectorGross 11.44 21.34 18.39 2.15

DirectorNumMvs 1.00 20.00 5.14 4.36

StarGross 11.44 21.99 19.99 1.92

StarNumMvs 1.00 82.00 19.99 1.06

AwardsNomi 0.00 1.00 0.14 0.35

AwardsWin 0.00 1.00 0.06 0.24

Number of Movies 115

Number of Systems 11

Note: logBO denotes the natural logarithmic transformation of

Box Office Sale
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high risk of uncertain performance, the managers constantly face the challenge of

adopting appropriate strategies for new released movies individually. In this study,

we analyze the importance of spatial structure in affecting movie demand in VOD

channel by incorporating spatial difference of movie demand in the model.

In our data of study, VOD movies are stored at 11 different systems, located

at 11 cities. Each system serves nearby customers. A new movie is available to

access simultaneously at all 11 systems once it is released. Thus by separating out

demand by locations, we get demand curves of each movie in each system. Figure 5.1

shows the first 8 weeks demand of the movie Takers at 11 systems, which are

denoted by capital letters. Natural logarithmic transformation is taken to demand

for convenience sake and sensitive detailed location information is hidden. As shown

in the figure, the demand is location specific and does not share one common pattern

across all systems. Systems in top rows obtain relatively high requests of this movie

once it is released, which vanish over time. Whereas, for the systems of from “F” to

“M”, demand does not wake up until after over 6 weeks. A potential manifestation

of the above heterogeneous demand over systems could be spatial correlation in

demand pattern: customers living close to one system are spatially correlated of the

presence of some unobserved common geographic characteristics that affect their

movie taste, besides observable factors of movies such as genre, rating, etc. If that

would be the case, then we would see significant spatial covariates in later models.

Meanwhile, the various patterns of demand over systems remind us its poten-

tial application in content allocation problem. For example, in previous example, it

is wise to store movie Takers in system A and C all the time, but in System B, D
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Figure 5.1: Demand Plot of Movie “Takers” of 11 locations
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and E only at the beginning and “ending” period (here “ending” refers to the end

of time window we look at, not the drop-off date). While for system F to M, it is

better to save storage space at the first 6 weeks for other more popular movies and

upload Takers after week 6 to get better profit with lower storage cost.

To check if demand pattern can be explained by geographic effect and movie’s

essential features, we estimate a functional spatial-temporal model with geographic

variables to predict the demand curves. As shown in Figure 5.1, the demand curves

of even one movie vary dramatically from systems. In some systems, demand decay

gradually, while in others, demand picks up at the end our time window. Our goal

is to characterize these patterns across movies and systems.

In the next section, we will introduce functional shape analysis as a method to

extract main pattern shapes underlying demand curves across movies and systems.

5.4 Functional Data Analysis with Spatial Component

Functional Data Analysis (FDA) focuses on a sample of functional observations,

e.g. curves, and treats the observed curves as the units of observation, such as

online virtual stock market’s history (Foutz and Jank [2010]), online auction price

(Jank and Shmueli [2008]), market penetration (James and Tellis [2009]). This is in

contrast to classical statistics where the focus is a set of discrete data vectors. The

method of FDA was introduced by Rao [1958] for growth curves. Many theoretical

properties have been developed by Ramsay and Silverman [1997] and Silverman

[1996]. Recently, substantial classical statistical models have been generalized to
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the functional structure. Hastie and Sugar [2000] proposed functional principal

components analysis for sparsely sampled curves. The case of irregular grids was

also studied by Staniswalis and Lee [1998]. More recent research includes curve

clustering and classification (James and Sugar [2003], Tarpey and Kinateder [2003],

and James and Hastie [2001]), functional regression (Cuevas Febrero and Fraiman

[2002]), functional generalized linear model (James [2002]), functional ANOVA (Guo

[2002]) and time series analysis of functional data (Ocana and Valderrama [1999]).

While this list is far from complete, it exemplifies some of the current methodological

improvement in this merging field.

One rather under-explored area of functional models is functional data analysis

with spatial components. As discussed before, many studies have shown the critical

role of geographic effect on demand heterogeneity. However, none of these studies

use functional method by considering subject demand as one single continuous curve

and then to check if and how these set of curves differ with spatial components. In

this study, we focus on exploring how these shapes are related to geographical effect,

e.g. system.

Due to limitations in human perceptions and measurement capabilities, we can

record only discrete observations of these curves. Thus the first step is to recover

the underlying continuous functional objects by smoothing techniques. Smoothing

can eliminate noise from observed raw data and allow important patterns to stand

out. In this study, we smooth demand curves using penalized smoothing splines.

The red curves in Figure 5.1 are the smoothed demand from the observed de-

mand denoted by dots. We can see that smoothed demand curves capture the main
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evolving patterns while smoothing out unusual and noisy demand spikes. Figure 5.2

shows the smoothed demand curves of four movies in all the 11 systems. The de-

mand curves are considerably heterogeneous across movies and systems. Even for

one movie, the demand curves are various across systems. These different shapes

may contain important information about demand of movie at each system and our

goal is to extract the most common demand shapes across all movies and systems

and then use them for analyzing spatial relationship of movie demand and forecast-

ing. We accomplish this via functional principal component analysis (fPCA). fPCA

is a generalization of ordinary PCA, which projects the original curves to a new

space of orthogonal dimensions to capture the primary features of original curves.

We apply fPCA to the smoothed demand curves displayed in Figure 5.2. The

scree plot of Figure 5.3 shows the percentage of variance explained by each functional

principal component (fPC). It shows that the first three fPC’s explain more than

95.6% of the total variation in the data. We thus retain the first three fPC’s for

further analysis.

Figure 5.4 displays the first three fPC’s of demand. We can see that each fPC

captures different aspect of a movie’s demand curve. To illustrate these fPC’s, we

introduce the principal component scores (fPCS) computed simultaneously with the

corresponding fPC’s. Principal component score is the inner product of its demand

pattern and the corresponding fPC. For example, movie i ’s first fPCS, fPCS1i of

demand curve is the inner product of its demand curve, yi = [yi1, · · · , yip], and the

first fPC of demand curve, fPC1 = [p11, · · · , p1p]; i.e., fPCS1i = yi1p11+· · ·+yipp1p.

The first fPC (solid black line in Figure ??) is slightly declining and positive
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over the entire time period. In that sense, the first fPC measures a movie’s weighted

demand-average over the first 8 release weeks, putting more weights on movies that

perform well once released. That is, a movie with a relatively high (low) 8-week

average has a positive (negative) fPCS1. Take Figure 5.5 for illustration. The top

panel in Figure 5.5 are demand curves of three movies at one system. The bottom

panel shows the corresponding functional principal component score (fPCS). fPCS1

for Little Fockers is much larger compared with to the other two movies. By looking

at the top panel, we can find an explanation: the average (log-) demand for Little

Fockers is apparently much larger compared to the others. In fact, the 8-week

average (log-) demand is 5.75 for Little Fockers, 2.39 for The Social Network, 2.27

for 3 Backyards in System-Des Moines, and 1.32 across all movies and systems. The

8-week average (log-) demand of these three movies are both greater than the overall

average, thus all fPCS1s in the bottom panel are positive.

Analogously, we can interpret fPC2 as characterizing movies that develop de-

mand only late. An example of such a “sleeper” is The Social Network, its second

fPCS (bottom middle panel in Figure 5.5) is highest among all three movies. fPC3

captures movies that have relatively high demand at early stage which drops down

at the end. An example of such an “early bird” is 3 Backyards in the bottom right

panel of Figure 5.5.

It should reinforce the point that, fPC’s are common across all demand curves,

while fPCS is specific for each demand curve with its corresponding fPC, which will

be used later in our forecasting model. We also want to emphasize that fPC’s are

not the “real” demand curves; in fact, they reflect three basic demand shapes: fPC1
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denotes movies with high average demand over the entire 8-week period, with special

emphasis on movies that develop demand once released (“hits’); fPC2 denotes movies

that develop demand only late (“sleepers”); fPC3 denotes movies with high demand

at early stage but low demand at the very beginning and end (“early bird”). In

summary, we can consider fPC1-3 as three orthogonal “basis” for a wide variety of

demand curves, while fPCS are the coefficients of each demand curve corresponding

to basis.

5.5 Parameter Estimates

In Table 5.3 and 5.4, we present the estimates of the Spat-Tem Model which is also

the first step of the proposed Dynamic Spat-Tem Model. We see that the effect of

movie features is heterogeneous. For instance, “Documentary” has a large positive

influence on fPCS2, but negative on fPCS1 & 3.

To have a better understanding how these factors variously affect movie’s per-

formance, we propose plausible explanations. Recall that, fPC1 represents overall

average demand of a movie, compared with other movies. It slightly emphasizes

on early information. The significant negative effect of “Documentary” indicates a

poor early performance of movie in such category of genre. fPC2 denote movies of

“sleepers”. A positive fPCS2 estimate of “Documentary” is a strong indicator of

potential success. fPC3 points to ’early bird’ movies. The negative effect of “Doc-

umentary” on demand shows a late spurt trend of such movies, which is consistent

with the trend discovered by previous two fPCs.
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Table 5.3: Summary of Estimation Results of Spat-Temporal Model

Coefficient (Standard Error)

Parameters PC1 PC2 PC3

Action -5.03 (0.68 )*** -1.79 (5.39)*** ————

Adventure -0.16 (0.80) -0.72 (0.55) -0.42 (0.35)

Animation -0.94 (1.07) 2.16 (0.74) *** -0.85 (0.50)

Comedy 0.92 (0.63) -0.55 (0.56) -0.77 (0.30)***

Documentary -17.24 (3.94)*** 6.40 (2.38)*** -9.20 (1.49)***

Drama ———— ———— -1.42 (0.26)***

Family ———— 4.56 (0.73)*** 0.72 (0.46)

Fiction -5.90 (1.32)*** -2.75 (0.92)*** -0.57 (0.60)

Foreign 2.70 (2.20) 2.32 (1.52) ————

Horror -2.97 (0.97)*** 4.49 (0.74)*** -1.39 (0.41)***

Suspense ———— 3.88 (1.06)*** -3.30 (0.66)***

Thriller ———— 1.46 (0.51)*** ————

Romance -4.70 (0.96)*** ———— 1.53 (0.41)***

Western ———— -4.65 (1.10)*** ————

Rating(PG) -9.83 (2.38)*** -0.49 (1.48) -1.95 (1.07)

Rating(PG-13) -6.66 (2.50)*** 2.12 (1.62) -1.63 (1.21)

Rating(R) -7.51 (2.48)*** 3.84 (1.65)** ————

Reviews -1.93 (0.37)*** 0.73 (0.18)*** ————

NumReviews 1.11 (0.33)*** ———— ————

Budget 1.20 (0.36)*** 0.024 (0.006)*** ————

BO ———— ———— -0.46 (0.06)***

DirectorGross 0.54 (0.16)*** 2.460e-09 (5.058e-10)*** 2.156e-09 (4.898e-10)***

DirectorNumMvs ———— ———— -0.10 (0.04)***

StarNumMvs 0.51 (0.27) -0.029 (0.02) 0.03 (0.01)**

StarGross ———— -6.268e-10 (3.474e-10) ————

AwardsNomi 5.39 (0.86)*** ———— 0.83 (0.03)***

AwardsWin 2.79 (1.20)*** ———— ————

Gap -0.03 (0.00)*** ———— ————

Note: System Dummies used in the model are reported sepa-

rately. *** p ¡ .01, ** p ¡ .05
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Table 5.4: Spatial Estimates by PCs of Spat-

Temporal Model

Coefficient

Parameters PC1 PC2 PC3

System A -5.83*** -2.13*** 0.55

System B —— -2.13*** ——

System C 7.00*** —— -1.10***

System D -2.12*** -0.47 ——

System E -1.48 —— ——

System F 8.84*** 2.80*** -1.94***

System G -1.84** —— ——

System H 3.09*** 1.31** -0.73**

System I 4.02*** 1.33** -0.90**

System J 3.95*** 1.59*** -0.67

System K -3.85*** —— 0.50

Note: *** p¡.01, ** p¡.05
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The MPAA rating G (General Audience) is the base category of MPAA rating

in the model. All other three ratings (PG,PG-13, and R) are assessed against rating

G. The small p-value of all three ratings in the PC1 column means that the MPAA

rating influences the overall performance of movies mostly (fPCS1) and movies with

MPAA rating of “G”, those with no restrictions on admittance,tend to get more

demand relative to other ratings. That may stem from the fact that general audience

movies are more likely to appeal to a broader audience and thereby get higher

demand. This finding is in line with previous research, which has consistently shown

the positive effect of MPAA rating “G” on Box Office Sales of movies (Prag and

Casavant [1994],Simonoff and Sparrow [2000] and Medved [1992]). Therefore, this

effect of MPAA rating on movie’s performance is inherited from the first distribution

channel (theaters) to the sequential channel (Video-on-Demand).

Consumer review encompasses valuable interpersonal communications between

consumers about movie. Volume of Reviews represents the awareness of the movie

and has a significant influence on its performance in theater (Liu [2006]). Extant

research have shown that the volume of consumer reviews positively affect Box Office

Sale of movies (Gu and Whinston [2008],Zhang and Awad [2007] and Liu [2006]).

Our result suggests the importance of awareness effect to movie’s performance in the

sequential VOD channel. Volume of Reviews helps in the early stage (positive effect

of “Number of Reviews” on fPC1), but the the stimulating effect of review incubates

until late half period (estimate of “Reviews” is positive for fPC2 and negative for

fPC1). This agrees with the analysis of Liu [2006].

The impact of budget, star power and director power on Box Office Sales of
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movies is inherited to the movie’s demand in VOD channel. It shows that higher

production budget movies have relative higher average demand (fPC1). In addition,

our study also finds strong evidence that both star and director power has a signif-

icant effect on early releasing demand. It supports the findings of previous studies

on box office sales ( Foutz and Jank [2010], Elberse [2007], Chang and Ki [2005] and

Desai and Basuroy [2005]).

Presence of an award nominee or award winner would reflect the quality and

generate larger revenues for the movies. However, previous studies find that this

factor has no relevance to a movie’s performance in theater (Simonoff and Spar-

row [2000]; Basuroy et al. [2003]). Besides, by the time awards are announced,

most movies have finished playing in theaters. Because of the release delay in VOD

channel, awards have usually been announced before a movie is available in VOD

channel, and would be an efficient covariate in explaining movie demand. The pos-

itive estimates of “Awards” covariates for fPC1 ( the general average performance)

prove that quality reflected by winning (being nominated for) awards is significantly

related to the movie’s demand as long as the movie has already been in release in

the channel when awards results are announced.

Based on an important characteristic of sequentially distributed products-

demand in one channel of distribution system may provide a good indication of

demand in the next channel of the sequential distribution channel, Box Office Sales

of movies would be appropriate indicator of movie demand in VOD market. The

negative estimate of “Box Office Sale” for fPC3, together with the high start value

(first week when it’s released in VOD market) of negative of fPC3 shape, shows us
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that movies with good performance in theater tend to continue to be a blockbuster

in the VOD channel.

We also see that movies released in VOD channel shortly after in theaters dis-

play larger demand (negative “gap” estimate of fPC1). Such effect may be explained

by a recency effect(Ross and Simonson [1991]). Movies shown in public(theaters,

advertisement, newspaper, etc.) most recently are most salient and attract most

attention. However, when sequential movie release is delayed substantially from the

release in theater, advertising and publicity effects created in the first channel will

have largely dissipated.

5.6 Model Comparison

As we’ve shown in the previous section, these three PCs capture the most signif-

icant variations in all the demand patterns. We then link movies characteristics,

along with spatial information, to these three key shapes, or more precisely, their

corresponding movie-specific fPCSs.

We compare model fit across proposed model and a set of alternate models,

based on the Bayesian Information Criteria (BIC) (Table 5.5(a)). Movie Model is a

basic regression model with “raw” demand, considering demand curves as discrete

points and disregarding the spatial effect. Current weeks’ demands are regressed

on previous weeks’ demands together with movie features: genre, MPAA ratings,

and other features described in Table 5.1. We also include the total box office sale

and the gap between the movie’s close date in theater and released date in VOD
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channel. Spatial Model includes both movie features and spatial information about

which system the purchase is made in. Similarly, spatial model focuses on the

discrete demand data, and get future demand forecast based on previous demand

history. Both of these two Non-Functional models yield the lowest model fits among

all models.

Movie-Temporal Model links the key shapes of eight-week demand curves and

movie features, and predicts eight weeks’ demand shape at the very beginning of

the released data, when no demand information is available. Augmenting the movie

features with location information (Spat-Temporal Model) improves the model fit.

In light of optimal resource allocation and efficient pricing strategy, such improve-

ment is substantial and managerially practical for cable companies in prerelease

marketing planning ( e.g., media purchase, package contracts, and promotion).

As movie is released in VOD channel,sales data is readily available to us. Dy-

namic Spatial Temporal Model (Dynamic Spat-Tem Model) takes full advantage of

all available demand information by updating the model with key shapes of previous

demand curves. For instance, a movie is newly released on VOD channel four weeks

ago and the key shapes of these four weeks demand are ready to be extracted from

prevous sales record. Dynamic Spatial Temporal Model considers these shapes as

covariates and, along with movie features and location inforamtion, forecasts future

weeks’ demand curve. Fully usage of resource leads to the best model fit. Actu-

ally, Spat-Temporal Model is included within Dyanamic Spat-Tem Model. Before

release, we use Spat-Temporal Model to get the forecast of all eight weeks’ demand

simutaneously; once sales data is available, we update the model with the key shapes
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of those sales and get more accurate prediction of future demand. Updating model

with all previous available demand data allows managers to identify indicators of a

potentially successful movie early and dynamically.

Table 5.5: Comparison of Models

(a) Bayesian Information Criteria

Specification Description BIC

Movie Model Only Movie Features,Non-Functional 9887.42

Spatial Model Both Movie and Location Info., Non-Functional 9876.77

Movie-Temporal Model Only Movie Features, Functional 6876.41

Spat-Temporal Model Both Movie and Location Info., Functional 6752.69

Dynamic Spat-Tem Model Dynamic Spat-Tem Model 5111.64

(b) Predictive Performance

Specification Description MAD MSE

Movie Model Only Movie Features,Non-Functional 110.93 5746.35

Spatial Model Both Movie and Location Info., Non-Functiona 23.59 70.18

Movie-Temporal Model Only Movie Features, Functional 24.12 197.80

Spat-Temporal Model Both Movie and Location Info., Functional 1.55 2.03

Dynamic Spat-Tem Model Dynamic Spat-Tem Model 0.96 1.25

We also compare the predictive performance of both proposed and alternate

models and compute the mean absolute deviation (MAD) and mean square error

(MSE) between predictions of demand from the model and the actual demand (Ta-

ble 5.5(b)). The MAD and MSE values in both sections are the lowest for the
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(c) Model Forecast Performance

Specification Description MAPE

Movie Model Only Movie Features,Non-Functional 7.42

Spatial Model Both Movie and Location Info., Non-Functiona 6.84

Movie-Temporal Model Only Movie Features, Functional 2.08

Spat-Temporal Model Both Movie and Location Info., Functional 1.83

Dynamic Spat-Tem Model Dynamic Spat-Tem Model 1.11

Dynamic Spat-Tem Model. Not surprisingly, managers can derive increasingly ac-

curate forecasts as more information becomes available over time.

We also provide out-of-sample forecast performance based on mean absolute

percentage error (MAPE) for all model forecasts, using movie-by-movie, full cross-

validation (Table 5.5 (c)). That is, we hold out one movie-location demand curve

at a time, estimate the model on the remaining demand curves, and then use the

estimated parameters to forecast the held-out movie’s demand curve. The evidence

clearly supports the predictive accuracy of our proposed Dynamic Spat-Tem Model.

Table 5.6 compares the performance of dynamic spat-tem models in different

stages. We calculate the PC-Scores from historical demand shapes and include them

into the model as functional predictors. For instance, “Dynamic Spat-Tem Model for

Wk5-8” includes all movie features described in table 5.2, spatial variables and PC-

Scores of demand shape from week 1 to week 4 to predict PC-Scores of demand shape

from week 5 to week 8. Overall, we find that there is a substantial improvement in

both model fit and predictive accuracy when history movie demand is considered,

consistent with the view that the movie demand shape is dynamic. Meanwhile, it
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Models BIC MSE MAD MAPE

Dynamic Spat-Tem Model for Wk1-8 6773.43 3.44 1.56 0.64

Dynamic Spat-Tem Model for Wk3-8 6412.65 2.40 1.30 0.51

Dynamic Spat-Tem Model for Wk5-8 4888.11 2.04 1.21 0.36

Dynamic Spat-Tem Model for Wk7-8 2428.13 1.68 1.01 0.27

Table 5.6: Comparison of Dynamic Model Performance

Note: Dynamic Spat-Tem Model for Wk1-8 is identical with Spat-Temporal

Model; Dynamic Spat-Tem Model for Wk3-8 uses movie demand history (from

week 1 to week 2) to predict movie demand shape of week 3 to week 8 and so on.

shows that the more abundance in history demand information incorporated, the

better model performs. Therefore, history demand evolution is an important factor

in effecting future demand performance.

To illustrate spatial impact on model performance, we compare forecast per-

formance of proposed dynamic model in table 5.7, which provides information in the

forecast differences across systems and stages. The heterogeneity of dynamic model

performance emphasizes the significance of including spatial components when an-

alyzing movie demand in VOD channel.

5.7 Spatial Implication of Movie Demand

To further add to the understanding of the geographic effect on movie demand

in terms of demand shapes’ Principle Component Scores (PC-Scores) (Section 5.3
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Table 5.7: Comparison of Dynamic Model

Across Locations

MAPE of Dynamic Model

System Wk1-8 Wk3-8 Wk5-8 Wk7-8

A 0.56 0.43 0.40 0.32

B 0.77 0.63 0.53 0.48

C 1.06 0.94 0.70 0.59

D 0.77 0.64 0.50 0.49

E 0.78 0.63 0.49 0.49

F 0.79 0.67 0.52 0.50

G 1.05 0.91 0.70 0.59

H 1.06 0.90 0.71 0.63

I 0.69 0.58 0.45 0.46

J 0.84 0.71 0.51 0.53

K 0.92 0.76 0.58 0.54

Note: Values in bold highlight system with the

best forecast accuracy.

74



and 5.4), we present the locations of the thirteen systems in Figure 5.6, Figure 5.7

and Figure 5.8. The bars with different heights indicate average PC-Score with

respect to each system. Higher bar indicates a larger absolute average PC-Scores

for each location; furthermore, dark (light) gray color indicates positive (negative)

value. For instance, a dark high bar represents large positive average PC-Score for

that location; while a light high bar represents the opposite (very small negative

average).

As can be seen from the figure, PC-Scores are highly correlated with geo-

graphical locations. Such a geographic demand map can be helpful to managers in

identifying demand pattern for each system. For northern area, we find the highest

movie demand, indicated by the high dark bars; while, on the western and eastern

coasts, the movie demand is uniformly low. In general, movie performance is better

in the northern part of United States. Furthermore, northern area also have the

highest PC2-Score (Figure 5.7) and lowest PC3-Score(Figure 5.8), which indicates

a potential increasing trend in the evolving movie demand.

Given our estimates in Table 5.3, we can reconsider the resource allocation

decision across the 11systems. For example, we estimate that over the 8-week pe-

riod of our sample, Genre “Horror” has negative fPC3 (“early bird”) estimate, but

positive fPC2(“sleeper”) estimate; In other words, “Horror” movies tend to be po-

tential successful movies. On the other hand, “Northern” Systems have the same

sign of estimates for fPC2 & 3 as “Horror” , which amplifies the late spurt trend.

Therefore, a “Horror” movie in northern area is a strong indication of potential

successful movies. These indicators may be used as rules of thumb for managerial

75



	
  

Positive	
   Negative	
  

Figure 5.6: Average PC1-Scores for Each System
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Figure 5.7: Average PC2-Scores for Each System
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Figure 5.8: Average PC3-Scores for Each System
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decision, especially pre-release marketing planning.

After the first weeks of release in VOD channel, movie sales curve reveals

initial demand and can be used as significant explanatory variable. Table 1 shows

us that incorporating with key shapes of previous demand remarkably improves

predictive accuracy of spatial temporal model, which makes sense as we include more

information in the model. An accurate and dynamic forecast of future weeks demand

at each system may help managers determine the optimal drop-off/promotion date

of movies at certain system and save valuable resources for other more profitable

movies.

5.8 Conclusion

We have developed a dynamic spatial temporal model that considers the spatial

effects of movie demand in VOD channel. The model considers the evolution of

movie demand over time and for different locations, as well as movie features (genre,

MPAA rating, reviews, star and director power, box office sale, etc.). We believe

that this is a first attempt to help managers of cable companies allocate their re-

sources across different systems, save transmission cost and determine drop-off and

promotion timing even before the contents are released.

The results show that modeling different demand curves at different locations

yields better insights and greatly improves forecast accuracy, relative to models that

aggregates the demand at all locations. More importantly, our method produces

early pre-release forecasts that are most valuable to managerial decision making
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(e.g, optimal context allocation problem and marketing).

Meanwhile, our model can be dynamically updated with early demand infor-

mation after content release and further improved forecast accuracy helps managers

get a clearer idea about the evolution of demand and refresh the decision making

process. The main value of our model comes from the fact that we have associated

demand with spatial effect and so have provided a way for managers to use these

estimates and insights in making allocation and marketing decisions.

There are a few limitations of our study. Our research is highly exploratory and

the principle aim is developing a more accurate forecast models for better managerial

decision making. It primarily concentrates on finding the spatial effect on movie

demand in VOD channel, and its application in marketing decision making process.

Explanation of this relationship among location, movie preference and demand is

not within the scope of this study. Further research will help establish theoretical

support of spatial relevance to movie demand.

In this study, we apply functional data analysis to demand of the first 8 weeks.

Truncating of the demand histories makes our results conservative in demonstrating

the actual predictive accuracy of our model as potentially valuable information has

been neglected by the right censoring process. Our model can be extended to account

for unbalanced sample. This is a challenging problem since the exact available time

period of each movie is various and one needs to find a way to incorporate variousness

of movie’s available time period. Other potential direction for future researches are

to consider the interaction between movie features and different locations and to

extend our model to develop an optimal content allocation model. These are some
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important issues and our study presents a possible starting point to address them.
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Chapter 6: Proof of Lemma, Proposition, Theorem and auxiliary re-

sults

6.1 Proof of Lemma 3.1.1

Lemma 3.3.1 n‖ψ̃j − ψj‖2 =
∑
k:k 6=j(θj − θk)−2(

∫
Zψjψk)

2 +Op(n
−1/2)

Proof. As in (3.1), we can write: ψ̂j − ψj =
∑∞
k−1(ajk − δjk)ψk,where δ is the

Kronecker δ. Then,

‖ψ̂j − ψj‖2 =
∫

(ψ̂j − ψj)2dw(t)

=
∫ [ ∞∑

k=1

(ajk − δjk)ψk
]2
dw(t)

=
∫ [ ∞∑

k=1

(ajk − δjk)2ψ2
k

+
∑
k1 6=k2

2(ajk1 − δjk1)(ajk2 − δjk2)ψk1ψk2

]
dw(t)

=
∞∑
k=1

(ajk − δjk)2
∫
ψ2
k(t)dw(t)

+2
∑
k1 6=k2

(ajk1 − δjk1)(ajk2 − δjk2)
∫
ψk1ψk2dw(t)

Because
∫
ψ2
kdw(t) = 1 and

∫
ψk1ψk2dw(t) = 0 when k1 6= k2,

n‖ψ̂j − ψj‖2 = n
∞∑
k=1

(ajk − δjk)2

= n
∑
k:k 6=j

a2jk + n(ajj − 1)2.

82



We have from (3.2)

n(ajj − 1)2 = n

[
−1

2
n−1

∑
k:k 6=j

(θj − θk)−2
(∫

Zψjψk
)2

+Op(n
−3/2)

]2

= n

{
1

4
n−2

[ ∑
k:k 6=j

(θj − θk)−2
(∫

Zψjψk
)2]2

+
[
Op(n

−3/2)
]2

−n−1
∑
k:k 6=j

(θj − θk)−2
(∫

Zψjψk
)2
Op(n

−3/2)

}

=
1

4
n−1

[ ∑
k:k 6=j

(θj − θk)−2
(∫

Zψjψk
)2]2

+Op(n
−2)

−
∑
k:k 6=j

(θj − θk)−2(
∫
Zψjψk

)2
Op(n

−3/2)

= Op(n
−1).

Furthermore, from (3.3)

n
∑
k:k 6=j

(ajk)
2 = n

∑
k:k 6=j

{
n−1/2(θj − θk)−1

∫
Zψjψk

+n−1
[
(θj − θk)−1

∑
l:l 6=j

(θj − θl)−1
(∫

Zψjψl
)(∫

Zψkψl
)

−(θj − θk)−2
(∫

Zψjψj
)(∫

Zψjψk
)]

+Op(n
−3/2)

}2

= n
∑
k:k 6=j

{
n−1(θj − θk)−2(

∫
Zψjψk)

2

+n−2
[
(θj − θk)−1

∑
l:l 6=j

(θj − θl)−1
(∫

Zψjψl
)(∫

Zψkψl
)

−(θj − θk)−2
(∫

Zψjψj
)(∫

Zψjψk
)]2

+Op(n
−3)

+2n−3/2(θj − θk)−1
∫
Zψjψk

[
(θj − θk)−1

∑
l:l 6=j

(θj − θl)−1

(∫
Zψjψl

)(∫
Zψkψl

)
− (θj − θk)−2

(∫
Zψjψj

)(∫
Zψjψk

)]

+2n−1/2(θj − θk)−1
∫
ZψjψkOp(n

−3/2) +

+2n−1
[
(θj − θk)−1

∑
l:l 6=j

(θj − θl)−1
(∫

Zψjψl
)(∫

Zψkψl
)
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−(θj − θk)−2
(∫

Zψjψj
)(∫

Zψjψk
)]
Op(n

−3/2)

}

=
∑
k:k 6=j

(θj − θk)−2(
∫
Zψjψk)

2 +Op(n
−1) +Op(n

−1/2)+Op(n
−3/2)

Therefore we have

n‖ψ̂j − ψj‖2 =
∑
k:k 6=j

(θj − θk)−2(
∫
Zψjψk)

2 +Op(n
−1/2)

6.2 Proof of Theorem 3.2.1

Theorem 3.2.1 For fixed j and each realization of χ we have

E[(β̂j − βj)2|χ] = Op(p
2/n).

Proof. From Muller and Stadtmuller [2005] , we have

‖
√
n(β̂ − β)− (

DTD

n
)−1

U(β)√
n
‖22 → 0

where “Sn ∼ Tn” means that the ratio of the random variables Sn and Tn converges

to 1 as n → ∞. Here U(β) is the score function of the truncated model and D is

the n× p matrix:

D = Dn×p =
(
g′(ηi)ε

(i)
k /σ(µi)

)
1≤i≤n,1≤k≤p

.

Let ξjk be the jk entry of matrix [(1/n)E(DTD)]−1. Then,

(β̂j − βj) ∼
1

n

n∑
i=1

p∑
k=1

(yi − g(ηi))g
′2(ηi)

σ2(µi)
ε
(i)
k ξjk.
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We have

E[(β̂j − βj)2|χ] ∼ 1

n2

n∑
i1=1

n∑
i2=1

p∑
k1=1

p∑
k1=1

E

[
(yi1 − g(ηi1))g

′2(ηi1)

σ2(µi1)

(yi2 − g(ηi2))g
′2(ηi2)

σ2(µi2)
εi1k1ε

i1
k1
ξjk1ξjk2 |χ

]

=
1

n2

n∑
i1=1

n∑
i2=1

p∑
k1=1

p∑
k1=1

g′2(ηi1)

σ2(µi1)

g′2(ηi2)

σ2(µi2)
εi1k1ε

i1
k1
ξjk1ξjk2

×E
[
(yi1 − g(ηi1))(yi2 − g(ηi2))|χ

]

=
1

n2

n∑
i=1

p∑
k1=1

p∑
k1=1

g′4(ηi)

σ4(µi)
σ2ξjk1ξjk2ε

(i)
k1
ε
(i)
k1

= Op(
p2

n
).

6.3 Proof of Theorem 3.3.1

Theorem 3.3.1 With probability 1, if X1(t), · · · , Xn(t) are square integrable ran-

dom functions and
∑∞
j=1 δ

−1
j → 0, for all 1 ≤ j ≤ J − 1,

∫
I

[( ∞∑
i=1

βi[ψ̃j(t)− ψj(t)]
)2
]
dt→ 0.

Proof. If both series converge,

[ ∞∑
j=1

βj[ψ̃j(t)− ψj(t)]
]2
≤
∑
j=1

β2
j

∞∑
j=1

[ψ̃j(t)− ψj(t)]2

It follows from results of Hall et cl. [2006] that

∫
I

[ ∞∑
j=1

βj[ψ̃j(t)− ψj(t)]
]2
dt ≤

∑
j=1

β2
j

∫
I

∞∑
j=1

[ψ̃j(t)− ψj(t)]2dt

=
∑
j=1

β2
j

∞∑
j=1

‖ψ̃j(t)− ψj(t)‖2

≤ 8
∑
j=1

β2
j ∆̃

∞∑
j=1

δ−1j (6.1)
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6.4 Proof of Theorem 3.3.2

Theorem 3.3.2

∫
I
E

{[ p∑
j=1

ˆ̃βjψ̃j(t)−
∞∑
j=1

βjψ̃j(t)
]2
|χ
}
dt = Op(p

1/2n−3/2) + op(1).

Proof.

∫
I
E

{[ p∑
j=1

ˆ̃βjψ̃j(t)−
∞∑
j=1

βjψ̃j(t)
]2
|χ
}
dt

=
∫
I
E

{[ p∑
j=1

( ˆ̃βj − βj)ψ̃j(t)−
∞∑

j=p+1

βjψ̃j(t)
]2
|χ
}
dt

=
∫
I
E

{[ p∑
j=1

( ˆ̃βj − βj)ψ̃j(t)
]2
|χ
}
dt+

∫
I
E

{[ ∞∑
j=p+1

βjψ̃j(t)
]2
|χ
}
dt

−2
∫
I

p∑
i=1

∞∑
j=p+1

E

{
(ˆ̃βj − βj)ψ̃j(t)βiψ̃i(t)|χ

}
dt (6.2)

Assumption 2. The number of principal components p = pn in the sequence of

estimating pn−truncated score function (3.8) satisfies p = pn →∞ and pnn
−1/4 → 0

as n→∞.

Lemma 6.4.1. Under Assumption 2, with probability 1,

∫
I
E

{[ ∞∑
j=p+1

βjψ̃j(t)
]2
|χ
}
dt = op(1) (6.3)

Assumption 3. Under these conditions, Lemma (6.4.2) holds.

(a) F (β, ε) is differentiable around (β, ε)

Lemma 6.4.2. Under Assumption 3, with probability 1,

∫
I
E


 p∑
j=1

( ˆ̃βj − βj)ψ̃j(t)

2 |χ
 dt = Op(p

1/2n−3/2) +Op(pn
−3) (6.4)
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From Lemma (6.4.1) and (6.4.2),

∫
I
E

{[ p∑
j=1

ˆ̃βjψ̃j(t)−
∞∑
j=1

βjψ̃j(t)
]2
|χ
}
dt = Op(p

1/2n−3/2) + op(1)

6.5 Proof of Lemma 6.4.1

Lemma 6.4.1 Under Assumption 2, with probability 1,

∫
I
E

{[ ∞∑
j=p+1

βjψ̃j(t)
]2
|χ
}
dt = op(1)

Proof.

∫
I
E

{[ ∞∑
j=p+1

βjψ̃j(t)
]2
|χ
}
dt =

∫
I
E

{ ∞∑
j=p+1

β2
j ψ̃

2
j (t) +

p∑
i=1

∑
j 6=i

βjψ̃j(t)βiψ̃i(t)|χ
}
dt

=
∫
I

∞∑
j=p+1

β2
j ψ̃

2
j (t)dt

=
∞∑

j=p+1

β2
j

∫
I
ψ̃2
j (t)dt

=
∞∑

j=p+1

β2
j → 0 (6.5)

6.6 Proof of Lemma 6.4.2

Lemma 6.4.2 Under Assumption 3, with probability 1,

∫
I
E


 p∑
j=1

( ˆ̃βj − βj)ψ̃j(t)

2 |χ
 dt = Op(p

1/2n−3/2) +Op(pn
−3)
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Proof.

∫
I
E

{
(

˜̂
βj − βj)2|χ

}
dt

=
∫
I
E

{
(

˜̂
βj − β̂j + β̂j − βj)2|χ

}
dt

=
∫
I
E

{
(

˜̂
βj − β̂j)2|χ

}
dt+

∫
I
E

{
(β̂j − βj)2|χ

}
dt+ 2

∫
I
E

{
(

˜̂
βj − β̂j)(β̂j − βj)|χ

}
dt

As ˆ̃β, a p by 1 vector, is the solution of score function U(β̃, ε̃) =
∑n
i=1(Yi −

µ̃i)
g′(η̃i)
σ2(η̃i)

ε̃(i) = 0 and β̂ is the soluiton of U(β, ε) =
∑n
i=1(Yi − µi)

g′(ηi)
σ2(ηi)

ε(i) = 0, we

have

n∑
i=1

(Yi − ˆ̃µi)
g′(ˆ̃ηi)

σ2(ˆ̃ηi)
ε̃(i) = 0

n∑
i=1

(Yi − µ̂i)
g′(η̂i)

σ2(η̂i)
ε(i) = 0 (6.6)

where ˆ̃ηi =
∑p
j=1

ˆ̃βj ε̃j and η̂i =
∑p
j=1 β̂jεj.

Now we consider
∑n
i=1(Yi − ˆ̃µi)

g′(ˆ̃ηi)

σ2(ˆ̃ηi)
ε̃(i) as function of (ˆ̃β, ε̃) and

∑n
i=1(Yi −

µ̂i)
g′(η̂i)
σ2(η̂i)

ε(i) as function of (β̂, ε). We do taylor expansion to F (ˆ̃β, ε̃) around (β̂, ε),

F (ˆ̃β, ε̃) = F (β̂, ε) +

[
∂F
∂β̂

∂F
∂ε

] 
ˆ̃β − β̂

ε̃− ε

+Rε̃ (6.7)

where ‖R‖ ≤ C

∥∥∥∥∥∥∥∥∥


ˆ̃β − β̂

ε̃− ε


∥∥∥∥∥∥∥∥∥

2

and C is a constant. ∂F
∂β̂

is the Jacobian of F with

respect to β̂ and the same as ∂F
∂ε

Then we have

0 =
∂F

∂β̂
(β̂, ε)(ˆ̃β − β̂) +

∂F

∂ε
(β̂, ε)(ε̃− ε) +R
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∥∥∥∥∥∂F∂ε (β̂, ε)(ε̃− ε)
∥∥∥∥∥
2

=
p∑

k=1

[ p∑
l=1

n∑
i=1

g′2(ηi)

σ2(ηi)
β̂lε

(i)
k (ε̃

(i)
l ) +

p∑
t=1

n∑
i=1

(yi − g(ηi))ε
(i)
k β̂l

[
g′′(ηi)

σ2(ηi)
− g′(ηi)σ̃

2′

σ4(ηi)

]
(ε̃

(l)
t − ε

(i)
l )

]2

=
p∑

k=1

[ p∑
l=1

n∑
i=1

(
g′2(ηi)

σ2(ηi)
+ (yi − g(ηi))

[
g′′(ηi)

σ2(ηi)
− g′(ηi)σ̃

2′

σ4(ηi)

])
β̂lε

(i)
k

(
ε̃
(i)
l − ε

(i)
i

)]2

=
p∑

k=1

p∑
l1=1

p∑
l2=1

n∑
i1=1

n∑
i2=1

[
g′2(ηi1)

σ2(ηi1)
+ (yi1 − g(ηi1)

[
g′′(ηi1)

σ2(ηi1)
− g′(ηi1)σ̃

2′

σ4(ηi1)

]]
[
g′2(ηi2)

σ2(ηi2)
+ (yi2 − g(ηi2)

[
g′′(ηi2)

σ2(ηi2)
− g′(ηi2)σ̃

2′

σ4(ηi2)

]]
β̂l1 β̂l2ε

(i1)
k ε

(i2)
k

(
ε̃
(i1)
l1
− ε(i1)l1

) (
ε̃
(i2)
l2
− ε(i2)l2

)

Assumption 4. Assume that with probability 1, X is left-continuous at each point

(or right-continuous at each point).

Based on results of Hall and Hosseini-Nasab [2009], under Assumption 4, with

probability 1, ‖ε̃(i)l − ε
(i)
l ‖ = Op(n

−1/2), for all l such that 1 ≤ l ≤ J − 1, where J

defined as (3.4).

Assumption 5. The link function g is monotone, invertible and has two continuous

bounded derivatives with ‖g′(·)‖ ≤ c, ‖g′′(·)‖ ≤ c for a constant c ≤ 0. The variance

function σ2(·) has a continuous bounded derivative and there exists a δ > 0 such

that σ(·) ≤ δ.

Assumption 6. For each component of estimate of truncated model (2.3), β̂k,

E(β̂2
k|χ) ≤ C

and

max{θ1, · · · , θp, · · ·} ≤M ′

where C and M ′ are constants and k = 1, · · · , p.
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Then, with Assumption 5 and 6,

E


∥∥∥∥∥∂F∂ε (β̂, ε)(ε̃− ε)

∥∥∥∥∥
2

|χ

 ≤ M
p∑

k=1

p∑
l1=1

p∑
l2=1

n∑
i1=1

n∑
i2=1

E
{
β̂l1 β̂l2ε

(i1)
k ε

(i2)
k

(
ε̃
(i1)
l1
− ε(i1)l1

) (
ε̃
(i2)
l2
− ε(i2)l2

)
|χ
}

= M
p∑

k=1

n∑
i=1

E
{
β̂2
kε

(i)2

k (ε̃
(i)
k − ε

(i)
k )2|χ

}

= M
p∑

k=1

n∑
i=1

[
ε
(i)2

k (ε̃
(i)
k − ε

(i)
k )2

]
E(β̂2

k|χ) = Op(p/n)

where M is a constant.

For the remainder term R, we have

‖R‖ ≤ C

∥∥∥∥∥∥∥∥∥


ˆ̃β − β̂

ε̃− ε


∥∥∥∥∥∥∥∥∥

2

= C

 p∑
i=1

( ˆ̃βj − β̂j)2 +
p∑
j=1

(ε̃j − ε)2


= C
p∑
i=1

( ˆ̃βj − β̂j)2 +Op(p/n
2)

0 =
∂F

∂β̂
(β̂, ε)(ˆ̃β − β̂) +

∂F

∂ε
(ε̃− ε) +R

0 ≤ −‖∂F
∂β̂

(β̂, ε)(ˆ̃β − β̂)‖+ ‖∂F
∂ε

(ε̃− ε) +R‖

‖∂F
∂β̂

(β̂, ε)(ˆ̃β − β̂)‖ ≤ ‖∂F
∂ε

(ε̂− ε)‖+ ‖R‖

≤ Op(
√
p/n) +Op(p/n

2) + C
p∑
j=1

( ˆ̃βj − β̂j)2 (6.8)

‖∂F
∂β̂

(β̂, ε)(ˆ̃β − β̂)‖2
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=
p∑

k=1

{ p∑
l=1

n∑
i=1

[
g′2(ηi)

σ2(ηi)
+ (yi − g(ηi))

[
g′′(ηi)

σ2(ηi)
− g′(ηi)σ̃

2′

σ4(ηi)

]]
ε
(i)
k ε

(i)
l (ˆ̃βl − β̂l)

}2

=
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k=1
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l1,l2=1
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g′2(ηi1)

σ2(ηi1)
+ (yi1 − g(ηi1))

[
g′′(ηi1)
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]}
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k ε
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E

{
‖∂F
∂β̂

(β̂, ε)(ˆ̃β − β̂)‖2|χ
}

= Op(1)
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k=1
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l=1

n∑
i=1

ε
(i)2

k ε
(i)2

l E
{

(ˆ̃β − β̂)2|χ
}

=
p∑

k=1

n∑
i=1

ε
(i)4

k E
{

(ˆ̃β − β̂)2|χ
}

= Op(np)E
{

( ˆ̃βl − β̂l)2|χ
}

From Inequation (6.8),

Op(np)E
{

( ˆ̃βl − β̂l)2|χ
}
−Op(p)E

{
ˆ̃βl − β̂l)2|χ

}
≤ Op(

√
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E
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}
≤ Op(p
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−3)

∫
I
E


 p∑
j=1

( ˆ̃βj − βj)ψ̃j(t)

2 |χ
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=
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I
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j=1

( ˆ̃βj − βj)2ψ̃2
j (t) +

p∑
i=1

∑
j 6=i

(ˆ̃βi − βi)ψ̃i(t)(
ˆ̃βj − βj)ψ̃j(t)|χ

 dt
=
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j=1

E
{
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= Op(p
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−3) (6.9)
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