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 In order to develop biosensors that change color upon the detection of a 

pathogen, nearly monodisperse polymer nanoparticles that can arrange into an 

ordered lattice structure that emits structural color, which is color free of pigment, 

or dye are synthesized.  This work investigates methods for preparing 

electrostatically stabilized lattice structures by investigating the co-polymerization 

of polystyrene latex particles with the ionic co-monomer sodium-2-acrylamido-2-

methylpropane sulfonate (“AMPS”) through varying emulsion polymerization 

reaction parameters. 

Additionally, this work is the first to deposit polystyrene-co-poly(N, N-

dimethylacrylamide) core-shell nanoparticles onto a glass substrate, entrap in an 

elastomer matrix, and successfully show color change from green to red in less than 

30 seconds upon exposure to a non-polar solvent.  As such, the ability to induce a 

color change that is observable by the unaided human eye has been established.   

Therefore, this thesis promises to lead to the development of colorimetric 

biosensors in the near future. 
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1.0 Introduction 
 

1.1 Motivation 
 

This thesis introduces the phenomenon of structural color reflected by 

lattices of monodisperse spheres and explains the physical laws that control the 

emission of color without pigment or dyes.  Additionally, this thesis investigates the 

synthesis and assembly of the Soft Sphere model and Hard Sphere model of 

monodisperse spheres, including a new deposition method for core-shell 

polystyrene-co-poly(N, N-dimethylacrylamide) nanoparticles onto a glass substrate.  

This thesis also reports on the entrapment of Hard Sphere model monodisperse 

spheres in a gel matrix designed to quickly change the color reflected from the 

spheres in response to the expansion or contraction of the gel matrix.  Lastly, this 

thesis briefly previews future work on methods of functionalizing the biosensor to 

rapidly detect an analyte of interest.  By laying this foundation, this work creates a 

platform for developing future biosensors which could be equipped to provide first 

responders, even personnel with limited training in limited resource settings, with a 

rapid and reliable method for monitoring disease outbreaks.  The principles we 

establish from this work could ultimately lead to the development of responsive 

model biosensors that could form the basis for multiple or multiplexed “litmus test” 

diagnostic assays, configured as small “stickers,” large coating sheets, or even 

integrated into fabrics or coatings.   
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The envisioned biosensor platforms will have the potential to overcome 

many of the problems associated with the fabrication of diagnostic assays.  

Response time will be nearly instantaneous, overcoming the lag time inherent in 

traditional biosensors.  The stability of such abiotic sensor platform will be greatly 

increased over their competing biological counterparts.  These abiotic materials will 

not be subject to environmental (thermal, chemical, etc.) degradation that could 

alter the sensing capability of the final device.  Importantly, these sensors would 

work unpowered, at ambient temperatures and pressures and physiological 

conditions without the need for electronics interfacing.  As such, they would serve as 

stand alone sentinels.  By eliminating the need for additional energy, such a system 

could provide a low-cost, lightweight, integrated sensor technology requiring no 

manipulation by the first responder, and having no logistics tail. 

The first principle of Bragg diffraction-type structural color is found in 

nature.  Some species maintain a decorative structural color as a way of attracting 

others, camouflaging themselves, warning to other predators, or a way of 

entrapping its prey.  The iridescence found on peacock feathers and some beetles as 

well as the blue wing color of the Morpho butterfly are examples of natural 

nanostructures with periodicities on the order of the wavelength of light.  In 

addition to simply having decorative structural color, some species are able to tune 

the color of their shells or scales in response to certain environmental conditions.  

For example, the damselfish is able to change its color from a bright blue to green 

depending on its environment.(1) Figure 1 is a schematic of how the damselfish uses 

a specialized cell called an iridophore that contains stacks of guanine crystal 
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nanoplates.  Because the nanoplates’ index of refraction is different from the 

surrounding cytoplasm of the iridophore cell, when the spacing between nanoplates 

is changed, the color changes from blue to green.   

                              
Fig. 1, Fudouzi H.  Tunable structural color in organisms and photonic materials for 
design of Bioinspired materials.  Science and Technology of Advanced Materials. 
200; 12(6):064704 
 

To produce colorimetric nanoparticles in the laboratory, emulsion 

polymerization is used to synthesize nearly monodisperse polymer particles that 

can arrange in an ordered structure producing a viewing angle-dependent color 

effect due to Bragg diffraction.  The colorimetric nanoparticles are subsequently 

entrapped within a polymerized gel matrix such as an elastomer composite or a 

hydrogel.  Elastomer composites swell or shrink reversibly when exposed to a 

hydrophobic solvent.  Hydrogels are made from insoluble, cross-linked polymer network 

structures composed of hydrophilic homo- or hetero-co-polymers, which have the ability 

to absorb significant amounts of water.(2) 

When an unconstrained macroscopic network polymer is swollen in a solvent, it 

undergoes swelling.  On swelling, each network strand is stretched as the cross-linked 
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junctions move further apart.  A fundamental concept for the intended biosensor is 

the diffraction of light at visible wavelengths as determined by lattice spacing, giving 

rise to an intense color.  Upon subsequent recognition of an analyte and after 

changing or eliminating the crosslinks constraining the gel matrix, the gel will swell, 

increasing the mean distance of the lattice spacing, leading to a change of color.  

When the mean distance of the lattice spacing increases, the color is said to “red-

shift” towards a larger-sized wavelength of light, where red is the color reflected at 

approximately 700 nm.   When the mean distance decreases, the color is said to 

“blue-shift” towards a shorter wavelength of light, where blue is the color reflected 

at approximately 450 nm. 

As such, the path to the ultimate goal of the above-described abiotic sensors 

requires a foundational understanding of the chemistry of colorimetric 

nanoparticles capable of forming structural color, the physics of the reflection of 

color without pigment or dyes, the variety of one-dimensional, two-dimensional, 

and three-dimensional arrangements of the lattices, with particular emphasis on the 

synthesis and assembly of three-dimensional Soft Sphere and Hard Sphere models 

of monodisperse spheres, and the entrapment of a lattice of monodisperse spheres 

inside a gel matrix.   

1.2 Colorimetric Nanoparticles 
 

A clear understanding of the type of colorimetric nanoparticles capable of 

assembling into a lattice structure is essential.  The colorimetric nanoparticles 

investigated here consist of monodisperse spheres.  According to the National 

Institute of Standards and Technology (“NIST”), monodisperse: 
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describes a dispersed system in which all the particles are of the same 
or nearly the same size, forming a narrow (unimodal) distribution 
about a median value; a particle distribution may be considered 
monodisperse if at least 90 % of the distribution lies within 5 % of the 
median size(3) 
 

The nanoparticles are made of dielectric materials such as a polymer latex or silica 

particles.  This thesis focuses on polystyrene as the main polymer used in the 

synthesis methods.  Polystyrene has a higher refractive index (nri=1.59) than silica 

(nri=1.54).(4) As the polymerization method investigated is an emulsion in water, 

polystyrene is followed by hydrophilic co-monomers such as sodium-2-acrylamido-

2-methylpropane sulfonate (“AMPS”) and poly (N, N-dimethylacrylamide) 

(“acrylamide”).  Additionally, the polystyrene emulsion polymerization procedures 

investigated are often one-pot methods.  

A crystalline array of monodisperse spheres is a lattice structure composed 

of the nanoparticles in some media that has a refractive index that differs from the 

media.  Once the lattice structure is formed, the nanoparticles emit structural color 

which is color free of pigment or dye which is nearly described by Bragg’s Law of 

Diffraction (mλ= 2dsin θ) with the following equation:  mλ= 2dnriavgsin θ, where m is 

the diffraction order, λ is the wavelength of light in a vacuum (also called a “stop 

band”), d is the diffracting plane spacing, nriavg is the average refractive index of the 

system, and θ is the Bragg glancing angle.(5)   

 

1.3 Physical Laws 
 

The physics behind the structural color can be explained using an 

approximation called geometrical optics.  In geometrical optics, light, in the form of 
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a ray, travels out from its source along straight lines.(6) Constructive interference 

occurs when rays of light are partially reflected from and partially transmitted 

through a crystalline array of spheres.  Interference is the superposition of two or 

more individual wavelengths of light. Constructive interference is the additive 

superposition of individual wavelengths leading to an enhanced condition.  

Fig. 2, Bragg’s Law of Diffraction 

 

Figure 2 is a schematic of Bragg’s Law constructive interference of a lattice of 

monodisperse spheres.  The colorimetric nanoparticles arrange themselves into 

lattice planes separated by a distance (d).  Points A and C are on one plane and point 

B is on the plane below.  The path difference between the ray that gets reflected 

along AD, (R1) and the ray that gets transmitted and then reflected along AB and BC, 

(R2) is: 

𝑅2 −  𝑅1 = (𝐴𝐵) + (𝐵𝐶) − (𝐴𝐷)                                                                                               (1) 
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If this path difference is equal to an integer value, (m) of the wavelength, then R1 

and R2 will constructively interfere: 

𝑚𝜆 = (𝐴𝐵) + (𝐵𝐶) − (𝐴𝐷)      (2)  

Bragg’s Law of Diffraction is derived below: 

𝐴𝐵 = 𝐵𝐶 =
𝑑

(sin𝜃)
                                                                                                                       (3) 

𝐴𝐶 =
2𝑑

(tan𝜃)                                                                                                                                  (4) 

𝐴𝐷 = 𝐴𝐶 × (cos  𝜃) =
2𝑑

(tan𝜃) × (cos 𝜃) = (2𝑑) × (
(cos𝜃)
(sin𝜃) × (cos 𝜃)                                  

= (2𝑑) ×
(𝑐𝑜𝑠2𝜃)

sin𝜃
                                                                                                                          (5) 

Returning to Equation 2: 

𝑚𝜆 =
𝑑

(𝑠𝑖𝑛𝜃)
+

𝑑
(𝑠𝑖𝑛𝜃)

− (2𝑑) ×
(𝑐𝑜𝑠2𝜃)

sin𝜃
                                                                             (6) 

Equation 6 simplifies to: 

𝑚𝜆 =
2𝑑

(sin𝜃) −
(2𝑑) ×

(𝑐𝑜𝑠2𝜃)
(sin𝜃)                                                                                                 (7) 

 

𝑚𝜆 =
(2𝑑) × (1 − 𝑐𝑜𝑠2𝜃)

(sin𝜃) =
(2𝑑) × (𝑠𝑖𝑛2𝜃)

(sin𝜃) = 2𝑑 sin 𝜃                                                   (8) 

     

The Bragg Diffraction Equation simplifies to the following: 

𝑚𝜆 = 2𝑑 sin𝜃                                                                                                                                  (9)  

 The Bragg Diffraction Equation is modified, however, to take into account the 

reduced angle at which a ray is transmitted through a higher refractive index 
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material.  The medium’s average refractive index (nriavg) of the lattice structure 

made of polystyrene spheres in water is: 

𝑛𝑟𝑖𝑎𝑣𝑔 = 𝑛2𝑓2 + 𝑛1𝑓1                                                                                                                 (10)  

Where n1 represents the refractive index of water, n2 represents the refractive index 

of the higher index media polystyrene and f2 and f1 represent the volume fractions 

occupied by the spheres and the water respectively.  Generally, a more dense 

dielectric material has a larger refractive index, and as such, a first-order rule of 

mixtures is appropriate for determining the average refractive index (nriavg).(7) 

  To derive the modified Bragg equation, one must combine Bragg’s Law with 

Snell’s Law of Refraction.  Snell’s Law states that a ray of light is transmitted through 

the lattice structure at an angle of refraction (ϕ) that is directly proportional to the 

sine of the angle of incidence (θ): 

sin 𝜃
sin ϕ

=
𝑛2
𝑛1

                                                                                                                                     (11) 

Because n2 is larger than n1, the angle of refraction (ϕ) is reduced, which after some 

calculation, gives a slightly modified Bragg Diffraction equation:   

  

𝑚𝜆 = 2𝑑𝑛𝑟𝑖𝑎𝑣𝑔 cos𝜙                                                                                                                (12)  

sin𝜙 = 1
𝑛𝑟𝑖𝑎𝑣𝑔

sin𝜃                                                                                                                       (13)  

1 − 𝑠𝑖𝑛2𝜙 = 1 −
𝑠𝑖𝑛2𝜃

(𝑛𝑟𝑖𝑎𝑣𝑔)2
= 𝑐𝑜𝑠2𝜙                                                                                     (14) 

𝑚𝜆 = 2𝑑�(𝑛𝑟𝑖𝑎𝑣𝑔)2 − 𝑠𝑖𝑛2𝜃                                                                                                    (15)  

Which is also often expressed as: 
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𝑚𝜆 = 2𝑑𝑛𝑟𝑖𝑎𝑣𝑔 sin𝜃                                                                                                                   (16)  

Tunable Color 

The modified Diffraction equation illustrates that the wavelength of light 

diffracted from a crystalline array of colorimetric nanoparticles is directly 

proportional to the lattice constant, (d) which refers to the spacing between the 

monodisperse spheres.  The average refractive index contrast (nriavg) between the 

surrounding material and the lattice also affects the color emitted from the surface 

of the monodisperse spheres.  Additionally, the “filling factor” or the volume of the 

nanoparticle spheres (f2) compared to the volume of the surrounding material water 

(f1) will also impact color.(8) 

 

1.4 Dimensionality 
 

One-dimensional (“1D”), two-dimensional (“2D”), and three-dimensional 

(“3D”) monodisperse spheres can be found in nature as well as made in the 

laboratory.   In Figure 3, below, the diagram shows (A) the 1D periodicity in the 

green and purple neck feathers of domestic pigeons; (B) the 1D periodicity found in 

the wings of Morpho butterflies; (C) the 2D photonic crystal structure in the 

barbules of male peacocks’ feathers; (D) the 2D periodicity of the cylindrical voids 

found in the iridescent setae from polychaete worms; (E) the 3D inverse opal 

structures in Parides sesortris; and (F) the 3D diamond-like crystal structure found 

in the shell of the beetle L. augustus).(9) 
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Fig. 3, Wang H, Zhang KQ. Photonic crystal structures with tunable structure as 
colorimetric sensors. Sensors. 2013; 13(4); 4192-213 
 
 In the laboratory, making 1D systems involves deposition of layers of 

dielectric materials.  The optical contrast comes from the differing dielectric indices 

of the materials.  2D systems are similarly made, however, the second dimension 

arises from the selective removal of the top layer dielectric material to reveal the 

substrate below.  This thesis involves some of the methods for making 3D 

monodisperse spheres. 

Three-dimensional monodisperse spheres can form crystalline lattice 

structures based on two different principles of formation: the Soft sphere model and 

the Hard sphere model.(10)  
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1.5 Soft Sphere Model 
 

1.51 Crystalline Colloidal Arrays 
 

The Soft-sphere model applies to the formation of a crystalline colloidal array 

(“CCA”) composed of nanoparticles each having surface charges such that the 

individual particles repel each other.  Colloidal crystals are made of monodisperse, 

concentrated, highly charged spheres in a very low ionic strength liquid media are 

macroscopically ordered non-close-packed arrays, forming a colloidal fluid.(11) 

The surface charges in the Soft-sphere model cause long-range repulsions.  As such, 

the CCA is self-assembled by maximizing the distance between nanoparticles and by 

also minimizing the repulsion between them.  Consequently, the CCAs have a greater 

range of volume fractions. 

The lattice structure is formed of relatively largely spaced colloidal spheres 

suspended in water.  The distance between the spheres is much larger than the 

individual particle diameter.  The interparticle distance is set by the electrostatic 

repulsion caused by the charged particles. When the spacing (d1d2) between the 

charged particles is changed, the stop band or color reflected off the surface of the 

colloidal crystal changes. 

Creating a crystalline colloidal array based on repulsive electrostatic 

interactions is complex.  Experimental conditions such as temperature, particle size 

monodispersity, surface charge density, particle number density, and the presence 

of counter ions in the colloidal suspension all impact a CCA’s ability to self-assemble 

and subsequently Bragg diffract light.(12) 
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This work modifies the preparation of monodisperse highly charged 

polystyrene spheres suspended in water previously documented by S.A. Asher at the 

University of Pittsburgh.(13) According to Asher’s protocol, the emulsion 

polymerization calls for the use of styrene, divinyl benzene (“DVB”), sodium 1-

allyloxy-2-hydroxypropane sulfonate (“COPS-1”), sodium di-1, 3- dimethylbutyl 

sulfosuccinate in isopropanol and water, sodium bicarbonate, and ammonium per 

sulfate (“APS”).   

Styrene is the main monomer that makes up the polymer nanoparticles.  DVB 

is used in small amounts in order to cross-link the monomer units.  Because sodium 

1-allyloxy-2-hydroxypropanesulfonate (“COPS-1”) is a proprietary ionic co-

monomer, sodium-2-acrylamido-2-methylpropane sulfonate (“AMPS”), a more 

readily available ionic co-monomer, is investigated instead.  It is hypothesized that 

AMPS co-polymerizes with styrene to form an ionic polymer having a negative 

surface charge.  In fact, the extent, if any, of co-polymerization is investigated.  

Additionally, even though Asher called for sodium di-1, 3- dimethylbutyl 

sulfosuccinate in isopropanol and water, the available sodium dihexyl sulfosuccinate 

(“MA-80”) as the surfactant is utilized instead.  

Moreover, Asher’s protocol is altered in response to the availability of certain 

equipment.  Thus, as a jacketed cylindrical reaction vessel is unavailable, some 

changes to the recipe, including injecting, prior to commencing polymerization, the 

water-soluble initiator in only 1 ml of purified water as opposed to 10 ml are 

utilized in order to better control temperature fluctuations.  Additionally, dialysis of 
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the emulsion polymerization product for not more than seven days instead of the 

14-21 days called for in the protocol is conducted.  

 

 

1.6 Hard Sphere Model 
 

1.61 Synthetic Opals 
 

The Hard-sphere model describes solid cubic close-packed arrays such as 

opals.  A natural opal is a close-packed array of monodisperse colloidal silica 

spheres.  Opals Bragg diffract light, emitting an iridescent color called 

opalescence.(14)   

The synthesis of opals can involve the use of two or more polymers.  One 

recent method published by Ma et al. in 2013 utilizes the co-polymerization of 

styrene and acrylamide.(15) Because styrene is hydrophobic and because 

acrylamide is hydrophilic, the final product has the form of a hard styrene core with 

acrylamide brush structures.  These brush structures are often referred to as a 

“shell.”  The formation of the core-shell nanoparticles helps set the particle distance 

between the close-packed particles.  When the amide side groups located in the shell 

interact with water, the acrylamide shell expands, thereby changing the lattice 

spacing and “red-shifting” color.  This color change, however, was only observable 

after centrifuged-induced assembly of the colloidal spheres into a solid pellet. (15) 

This work is the first to deposit polystyrene-co-poly(N, N-dimethylacrylamide) core-
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shell nanoparticles onto a glass substrate, entrap in an elastomer matrix, and 

successfully show color change upon exposure to a non-polar solvent. 

1.62 Assembly of Synthetic Opals   
 

The assembly of synthetic opals is entropy-driven and relatively simple.  The 

lattice structure forms by minimizing dead space.  As such, the crystalline structure 

occurs over a very narrow range of volume fractions, (f) the maximum theoretical 

volume fraction occurs at f =0.74.  Assembly methods under the Hard-sphere model 

include centrifugation, filtration, electrophoresis deposition, horizontal deposition, 

vertical deposition, spin-casting, and surface pattern-assisted deposition, among 

others.(16)  

Although centrifugation is a simple way to force the assembly of synthetic 

opals, centrifugation is not useful for reaching the goal of developing portable, low-

cost and easy-to-use model biosensor.  Consequently, this thesis investigated the 

novel crystallization of core-shell polystyrene-co-poly(N, N-dimethylacrylamide) 

nanoparticles onto a solid substrate using convection wherein capillary action and 

evaporation drive self-assembly.    According to Fudouzi et al., a uniform and flat 

film of colloidal spheres will crystallize on a hydrophilic glass slide if the suspension 

of colloidal spheres is also completely covered with a hydrophobic silicone 

layer.(17) 

 This method involves placing a cleaned glass substrate onto a clock dish (also 

called a watch glass).  After carefully dropping the colloidal suspension onto the 

cleaned and hydrophilic glass substrate, the entire suspension is covered with a 

silicone liquid.  The theory behind the crystallization is that capillary action assisted 
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by water evaporation forces the assembly into closely packed colloidal particles.  A 

suspension of a close-packed array of nanoparticles is fluid at low particle volume 

fractions but crystallizes to a close-packed crystal structure for a volume fraction, f  

> 0.545.  Here, it is demonstrated that the deposition of core-shell nanoparticles is 

as feasible as the deposition of hydrophobic polystyrene spheres as originally called 

for in the Fudouzi method.   Additionally, this work changes the method by utilizing 

the similarly viscous curing agent (Part B) of a poly (dimethylsiloxane) PDMS 

elastomer kit from Dow Corning (Sylgard 184) instead of silicone (GE silicone SF96; 

viscosity, 50 cSt).   This change is significant because it shows that the curing agent 

(part B) has a similar specific gravity as the silicone (0.97 g/ml), which is lighter 

than that of water (1.00 g/ml) and lighter than that of polystyrene-co-poly (N, N-

dimethylacrylamide).   

Future considerations include investigating different deposition methods in 

order to have the ability to develop multiple or multiplexed “litmus test” diagnostic 

assays.  Because the synthetic crystals have a hydrophobic polystyrene core and a 

hydrophilic acrylamide shell, the colloidal spheres can be deposited onto a 

hydrophobic surface using surface pattern-assisted deposition.  Moreover, one such 

type of surface pattern-assisted deposition includes ink jet printing.  The acrylamide 

hydrophilic shell assists the lattice arrangement during ink-jet printing onto a 

hydrophobic substrate because the hydrophilic acrylamide soft-shells merge 

together and the lattice is deposited via a “surface-tension-confined channel.” (4) 

Subsequently when the ink is evaporated off, a bright green monochromatic color is 

displayed. 
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1.63 Entrapment of Synthetic Opals in Gel Matrix  
 
An important principle of the intended biosensor is that a distinct and 

reversible color change is visible by the unaided eye.  This thesis investigates 

entrapping the synthetic opal crystals into an elastomer composite in order to 

manipulate the lattice spacing (d).  The curing agent used in the previous 

crystallization process (Section 1.62) is first removed.  The same PDMS elastomer 

kit (Sylgard 184) is used again.  The base material (Part A) is diluted with DMS-T00, 

a much less viscous silicone fluid before mixing with the curing agent (Part B).  The 

mixed PDMS elastomer is poured over the green deposited synthetic opal and, over 

time, the voids of the synthetic opal lattice are filled with the PDMS through 

capillary action.  Because PDMS swells in a non-polar solvent such as isopropyl 

alcohol, hexane, and chloroform, the lattice spacing (d) increases and the color of 

the synthetic crystal red-shifts.  Upon evaporation of the solvent, the PDMS 

elastomer shrinks and the entrapped synthetic crystal blue-shifts.(18)  

Future considerations also include investigating a variety of cross-linking 

monomers mixed into the elastomer composite in order to have the cross-links 

strategically cleaved, expanding the gel, and increasing the lattice structure of the 

entrapped giving way to an observable, distinct red-shifting.  One such potential 

method involves the detection of oligonucleotides via a preferential affinity 

process.(19) By adding hybridized dioligonucleotiedes with a 10 base pair 

complementary regions flanked by additional base pairs into a gel matrix network, 

probe oligonucleotides can then displace the original complement.  Competitive 
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hybridization of the oligonucleotides can change the length of the crosslinks, and 

thereby causing the gel matrix to swell and to red-shift. 

2.0 Synthesis of Monodisperse Polymer Spheres 
 

The preparation of both Soft Sphere (CCA) and Hard Sphere (synthetic opal) 

models both involve emulsion polymerization.  While the synthetic opal method 

involves an additional assembling step, however, the synthesis of synthetic opals is 

less complex than forming crystalline colloidal arrays.  As a result, the synthetic opal 

colorimetric nanoparticles are entrapped in a gel matrix in order to progress 

towards building the desired colorimetric biosensor. 

 

 

2.1 Emulsion Polymerization 
 

Emulsion polymerization is a free radical polymerization that takes place in an 

emulsion consisting of water, monomer, surfactant and other additives.  A surfactant is 

comprised of a long, linear, non-polar (hydrophobic) “tail” with a polar (hydrophilic) 

“head” which lowers the surface tension of water and allows the hydrophobic 

components to form an emulsion in water.  According to the Smith-Ewart-Harkins 

theory for the mechanism of free-radical emulsion polymerization, a monomer is 

dispersed or emulsified in a solution of surfactant and water forming relatively large 

droplets of monomer in water.(20) Prior to the polymerization reaction, the 

surfactant is mixed with water using a mechanical stirrer.  The individual surfactant 
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molecules will surround the monomer units.  The hydrophobic tails of the surfactant 

molecules will adsorb onto the monomer units and the hydrophillic surfactant head 

will face the water medium.  Additionally and with the help of stirring, small 

amounts of monomer diffuse through the water to the micelle.  A micelle is an 

aggregate of surfactant molecules wherein the polar (hydrophilic) “head” of each 

surfactant molecule faces the surrounding water and the non-polar hydrophobic 

“tail” of each surfactant molecule is sequestered in the micelle center. 

A water-soluble initiator is then introduced into the water phase where it 

reacts with monomer in the micelles.  The initiator decomposes to form free 

radicals.  In order to optimize the available free radicals, oxygen must be prevented 

from entering the system by introducing nitrogen gas.  As the total surface area of 

the micelles grows to be much greater than the total surface area of the fewer, larger 

monomer droplets; the initiator radicals typically reacts in the micelle and not the 

monomer droplet. Monomer in the micelle quickly polymerizes and the growing 

chain terminates. At this point the monomer-swollen micelle has turned into a 

polymer particle.  Eventually, both monomer droplets and polymer particles are 

present in the system.  As polymerization proceeds, more monomer from the 

droplets diffuses to the growing particle, where more initiators will eventually react. 

Eventually the free monomer droplets disappear and all remaining monomer is 

located in the particles.  
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2.2 Crystalline Colloidal Arrays 
 

The materials used in this process are shown below in Table 1: 

Material  Function Structure 

Styrene 

(C6H5CH=CH2) 

Monomer 

 

Divinyl Benzene 

(C10H10 ) 

Cross-linker 

 

AMPS Ionic  

co-monomer 
 

MA-80 Surfactant 

 

APS Radical Initiator 

 

Table 1, Materials used in the synthesis of crystalline colloidal arrays 

 The experimental set up for this emulsion polymerization utilizes a four-neck 

250 ml round bottomed flask reaction vessel, reflux condenser, mechanical stirrer 

with a Teflon blade, temperature sensor, and a nitrogen gas/ reagent inlet.  The 
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reaction vessel is immersed in a silicon oil bath that sits upon a combination hot 

plate and magnetic stirrer. 

 Before beginning, the inhibitor in styrene and divinyl benzene (“DVB”) is 

removed by adding aluminum oxide under stirring and decanting off the monomer 

after one hour.  Additionally, 45 ml purified deionized water and 86 mg sodium 

bicarbonate mixture is purged with nitrogen gas for thirty (30) minutes.  The 37.5 

ml and 1.5 ml of de-inhibited monomers styrene and DVB respectively are mixed 

together and then purged with nitrogen gas for twenty (20) minutes. 

 The water and sodium bicarbonate mixture are added to the reaction vessel.  

Then, 15 ml of MA-80 is added.  The purged styrene and DVB mixture is housed in 

an addition funnel connected to four-neck round bottom flask.  At this time the 

reaction vessel is heated to 50°C and stirred at a rate of 125 RPM.  Once the 

temperature probe reads 50°C, the stir rate is increased to 350 RPM and styrene 

and DVB are introduced into the reaction vessel as a drizzle.  After approximately 

five (5) minutes to drizzle in the monomers, 1.38 g of the ionic co-monomer 

dissolved in 5 ml of water is injected into the reaction vessel.   

 The reaction vessel is then heated to 70°C, and at a stable 70°C, 375 mg of 

initiator APS dissolved in 1 ml water is injected into the emulsion.  The emulsion 

polymerization reaction is allowed to proceed for three hours.  After cooling the 

resultant milky white liquid product, the product was filtered, dialyzed against 

water for one week, and then further purified with an ion-exchange resin.  
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2.3 Synthetic Opals 
 

These synthetic opals are composed of polystyrene copolymerized with N, N-

dimethylacrylamide to create a “core-shell” structure.  Preparation of the synthetic 

opals utilizes N, N-dimethylacrylamide (“acrylamide”), sodium dodecyl sulfate 

(“SDS”), styrene, potassium per sulfate (“KPS”), and purified deionized water.    

Styrene’s inhibitor is removed by adding aluminum oxide under stirring and 

decanting off the monomer after one hour.  While removing the inhibitor, the 

emulsion polymerization apparatus is set up; the experimental set up for this 

emulsion polymerization utilizes a four-neck 250 ml round bottomed flask reaction 

vessel, a reflux condenser, a mechanical stirrer with a Teflon blade, a temperature 

sensor, and a nitrogen gas/ reagent inlet.  The reaction vessel is immersed in a 

silicon oil bath that sits upon a combination hot plate and magnetic stirrer.  

130 ml of purified deionized water is then added to the reaction vessel.  Next, 

a mixture of 30 ml purified deionized water, 5 ml of styrene, 2 ml of acrylamide, and 

0.005 g of SDS is added to the reaction vessel.  The water, styrene, acrylamide, and 

SDS are stirred at 300 RPM under nitrogen gas for thirty (30) minutes.  After 

purging, the reaction vessel is heated to 70°C.  At stable 70°C, a mixture of 0.15g KPS 

in 20 ml purified deionized water is injected into the reaction vessel.  The emulsion 

polymerization reaction is allowed to proceed for 8 hours. 

The milky white water-particle mixture is cleaned by repeating, four times, a 

water wash procedure which consists of: centrifuging the product, decanting the 

supernatant, replacing the supernatant with purified deionized water and re-
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dispersing with a vortex.  The centrifuged and decanted product forms a 

multicolored solid pellet. 

2.4 Assembly  
 

The re-suspended liquid product is dropped on cleaned aminated glass 

slides.  The Gold Seal #3039 Ultrastick/ultrafast adhesion slides have amine groups 

attached and were purchased from Electron Microscopy Sciences.  The glass slides 

are cut to approximately 25 mm by 25 mm and then are sequentially cleaned under 

sonication for ten minutes with soapy water, acetone, and 2-propanol.  Afterwards, 

the slides are rinsed well with purified deionized water and then dried with a 

stream of nitrogen gas.  The cleaned glass slides are each placed on a 65mm 

diameter Pyrex watch glass.  750 μl of the colloidal sphere product is dropped on a 

glass slide.  2 ml of the curing agent (part B) of the poly (dimethylsiloxane) PDMS 

elastomer kit from Dow Corning (Sylgard 184) is dropped on top of the colloidal 

sphere product.  Over the course of 24 hours, while sitting on the laboratory bench 

top at ambient room temperature, the water in the liquid product slowly evaporates 

and colorimetric nanoparticles assemble into a green close-packed solid crystal 

deposited on the glass substrate.  The excess curing agent covering the crystal is 

wiped off with Kim-Wipes. 
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2.5 Elastomer Entrapped Colorimetric Nanoparticles 
 
 

Using the PDMS elastomer kit from Dow Corning (Sylgard 184)), 2ml of the 

elastomer (part A) is placed in a small beaker to which 4 ml of DMS-T00 Silicone 

from Gelest is added.  Next, 400 μl of the curing agent (part B) is thoroughly mixed 

into the beaker.  After mixing, the mixture is carefully poured onto the crystallized 

opal that is allowed to sit on the laboratory bench top for twenty-four hours.  

Afterwards, the PDMS is placed in a 55 ° C oven for 6 hours. 

3.0 Experimental Results and Discussion 
 

Experimentation with emulsion polymerization reactions is directed at 

synthesizing crystalline colloidal arrays (charged, macroscopically-ordered 

colorimetric nanoparticles) and closed-packed colorimetric nanoparticles (synthetic 

opals).  Producing synthetic opalline crystals proved to be less complex than the 

development of CCAs. 

3.1 Crystalline Colloidal Arrays 
 

During emulsion polymerization, the temperature readings from the probe 

inserted in the reaction vessel would oscillate from 5 to 10 degrees Celsius above 

and below the targeted 70°C polymerization temperature.  This was exacerbated by 

the final injection of water-soluble initiator dissolved in 10 ml of water.  In Figure 4, 

below, a Transmission Electron Microscopy (“TEM”) image shows polystyrene 

particles averaging 92.28 nm in diameter.  It is notable that the particles do not have 

a spherical morphology and are not monodisperse.  Injecting APS dissolved in only 1 
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ml water, however, does diminish temperature fluctuations and allows 

polymerization to proceed at close to 70°C (+/- 5°C). 

 

 

Fig. 4, TEM of emulsion polymerization of polystyrene with APS in 1 ml water 

 Another concern in the synthesis of CCAs is to produce spherical shaped 100 

nm or greater-sized nanoparticles that are co-polymerized with an ionic co-

monomer.  Figure 5 shows a Scanning Transmission Electron Microscopy (“STEM”) 

image of an emulsion polymerization product after increasing the surfactant 

concentration from 8.25 ml (in Figure 4) to 15 ml surfactant.  The particles are 

noticeably more spherical.  However, no Bragg Diffraction is observable.    
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Fig. 5, STEM image of emulsion polymerization of polystyrene with 15 ml surfactant 

This same emulsion polymerization product was characterized with Energy 

Dispersive Spectroscopy (“EDS”) to detect the level of sulfur as an indirect way to 

quantify the co-polymerization of AMPS based its on sulfonate groups. EDS showed 

that almost no sulfur present: 0.39 weight percent sulfur and 0.15 atomic percent 

sulfur.   

It is likely, therefore, that AMPS may not be an adequate substitute for COPS-

1 as a negatively charged co-monomer.  Further supporting this conclusion are 

studies by Peiffer et al. on the reaction ratios in the copolymerization of polystyrene 

and AMPS.(21) According to Peiffer et al, utilizing a ratio of 95:5 styrene to AMPS in 
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DMF yields a product with 4.1 mole percent AMPS and 1.16 weight percent sulfur.  

Utilizing such a ratio means a four-fold increase of AMPS to the recipe.  This change 

proves to interfere with the emulsion stability and rapidly forms a gel early on in the 

polymerization reaction.   Figure 6 is a TEM image of the emulsion product made 

with 4.4g of AMPS.  Figure 6 shows the poor morphology and evidence of 

coagulation and/or aggregation of particles.  Interestingly, the EDS taken of that 

sample showed a significant increase in the amount of sulfur: 23.41 weight percent 

sulfur and 15.87 atomic percent sulfur.   

Given that the sample has no observable indication of high sulfur content (no 

pungent smell, no yellow color), this high EDS reading indicates an artifact in the 

acquisition of the data, including a likely improper focusing of the electron beam on 

a sample area of unusually high sulfur content. Thus, although it is possible that the 

AMPS substitution is enough to interfere with the delicate balance of experimental 

conditions necessary for forming a CCA capable of reflecting color, further 

experimentation with the recipe and the utilization of other sulfur characterization 

tools may yield sufficient co-polymerization of the ionic co-monomer.  Additionally, 

more experiments are needed in order to optimize morphology and size 

monodispersity as well.  As such, more investigations into optimizing the size, 

morphology, and co-polymerization of polystyrene with AMPS in order to form 

electronegatively stabilized crystalline colloidal arrays is needed. 

26 
 



 

Fig. 6, TEM image of emulsion polymerization with 95:5 polystyrene: AMPS 

3.2 Synthetic Opals 
 

After the centrifuge wash and dialysis, the synthetic opals display an 

assortment of brilliant colors upon centrifugation down to a solid pellet.  Figure 6 

shows the pellet inside a curved centrifuge Eppindorf tube.  Because the tube is 

curved and because there are multiple planes upon which the nanoparticles 

crystallize, multiple colors are observable.  
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Fig. 7, Centrifuge tube containing opalescent polystyrene-co-poly 
(dimethylacrylamide) crystals 
 

Using transmission electron microscopy to determine the shape and size of 

the nanoparticles.  It is observed in figures 8 and 9 that the particles are 

approximately 208 nm in diameter each and they are sufficiently monodisperse to 

assemble onto a substrate and form a monochromatic color.  
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Fig. 8, Polystyrene-co-poly (dimethylacrylamide) core-shell nanoparticles 
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Fig. 9, Polystyrene-co-poly (dimethylacrylamide) core-shell nanoparticles 

Below, in figure 10 is the bright green color displayed by the opalline crystals 

after crystallization and entrapment in PDMS.  Figure 10 shows the approximately 

25 mm by 25 mm glass slide placed on top of a watch glass and sitting on the black 

laboratory bench top.  The photograph was taken with a camera phone from directly 

above the glass slide.   

In approximately 30 seconds after dropping 100 μl of chloroform onto the 

PDMS entrapped synthetic opal, the PDMS network swells and the synthetic opal 

changes color from bright green to red.  After about three minutes, as seen in Figure 

11 below, the PDMS network begins to shrink as the chloroform evaporates and the 

edges of the circle left by the drop are turning back to green.  In the center of the 

circle, where it is likely chloroform was most dense, the PDMS film appears clear as 
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if it red-shifted so far as to move beyond visible light and/or destroy the lattice 

structure.    

 
 

 
 
Fig. 10, PDMS entrapped polystyrene-co-poly (dimethylacrylamide) core-shell 
nanoparticles 
 

 
 
Fig.  11, Three minutes after dropping 100 μl chloroform on PDMS entrapped 
polystyrene-co-poly (dimethylacrylamide) core-shell nanoparticles  
 

Experimental results show that core-shell nanoparticles are capable of being 

deposited onto a glass substrate.   Additionally, substituting the curing agent (Part 

B) of a poly (dimethylsiloxane) PDMS elastomer kit from Dow Corning (Sylgard 184) 

for silicone (GE silicone SF96; viscosity, 50 cSt) reduces the need for unnecessary 

reagents.   This change is significant because it shows that the curing agent (part B) 

has a similar viscosity and specific gravity as the silicone (50cSt viscosity; 0.97 g/ml 

specific gravity) used in the previous crystallization method. 
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4.0 Conclusions and Future Considerations 
 
This thesis provides the foundation for the ultimate development of 

colorimetric biosensors capable of detecting pathogens.  Because the goal of this 

work is to make abiotic sensors that undergo a structural change resulting in a color 

change that can be observed by the unaided human eye, the sensors will become 

useful in the detection of pathogens in low-resource settings.  The principles 

established in this work, including the ability to synthesize hydrophobic core-

hydrophilic shell monodisperse nanoparticles that crystallize and form a 

monochromatic (green) synthetic opal entrapped in PDMS which can change to a 

red color in less than 30 seconds upon the swelling of the PDMS elastomer matrix, 

promise that further investigations will likely lead to the development of successful 

colorimetric biosensors.   

By covering the background regarding the physics that control structural 

color, the Hard Sphere and Soft Sphere models and their assembly into lattice 

structure, and the integration of synthetic opals into an elastomer matrix, this thesis 

paves the way for future considerations including the continued investigation into 

deposition methods that can take advantage of the core-shell interactions such as 

ink jet printing in order to develop multiple or multiplexed “litmus test” assays.  

Additionally, future work can include strategically cross-linking a gel matrix with 

hybridized dioligonucleotiedes that are displaced by competitive probe 

oligonucleotides as a method of controlling the expansion and shrinkage of the gel 

matrix.  As such, colorimetric nanoparticles have a fascinating role to play in 
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bioengineering future biosensors for use as point-of-sample, low-cost, and easy-to-

use diagnostics for pathogen detection. 
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