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1.0 INTRODUCTION 

In situ bioremediation is rapidly becoming a dominant technology utilized by 

environmental practitioners concerned with remediating subsurface contamination as an 

alternative to traditional pump-and-treat systems.  Data compiled by the US

Environmental Protection Agency (USEPA, 1996) indicates that the percentage of 

Superfund sites for which bioremediation was the selected remedial action technology 

increased from 13% in fiscal year 1989 to over 37% in fiscal year 1994.  Further, since 

1991, the percentage of bioremediation projects performed ex situ has decreased while 

the percentage of projects performed in situ has increased (USEPA, 2001).  For example,

in fiscal year 1991, only 35% of the bioremediation remedial action projects at Superfund 

sites were in situ versus 53% in fiscal year 1999 (USEPA, 2001).

Although the practice of in situ bioremediation has grown considerably in the past 

decade through innovations in technologies such as biosparging, bioventing, and 

oxygen/nutrient releasing compounds, quantitative understanding of the limitations of 

this complex process is still limited.  The complexity of in situ bioremediation is due to 

simultaneous interactions between chemical, physical, and microbiological processes, 

and is compounded by the heterogeneous nature of many subsurface environments.

Further, such heterogeneities vary both in type and scale from micro-scale (e.g., 

microbially-mediated processes) to macro-scale (e.g., advective transport in layers of 

varying hydraulic conductivity).

Groundwater transport modeling techniques have been in use for many years to 

quantitatively examine the subsurface transport of nonreactive contaminants.  However, 

researchers have since recognized the important role of microorganisms in the 
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understanding of the ultimate subsurface fate of environmental pollutants.  In particular,

microbially-mediated reactions provide the only option for contaminant destruction in the 

subsurface.  Accordingly, modeling studies undertaken more recently have highlighted

this importance of incorporating microbial processes into conceptual and quantitative 

models of subsurface contaminant transport (Miralles-Wilhelm, et al., 1997).

Microorganisms are widely recognized as being present in all types of terrestrial, 

aquatic, and subterranean environments.  Microbial growth in the subsurface and other 

environments is dependent upon the presence and quantity of various substrates and 

nutrients.  Specifically, microorganisms require growth substrates, e.g., an electron donor 

and electron acceptor, as well as various nutrients including nitrogen, phosphorus, and

sulfur (e.g., Odencrantz, 1992).  Nevertheless, the presence of these constituents alone 

does not promote cellular growth, as the constituents must be available in aqueous phase,

and at sufficient concentrations.  The relative availability of the constituents to 

microorganisms is termed the bioavailability, and plays a key role in determining the 

success or failure of in situ technologies.

When the concentration of a nutrient (or nutrients) falls below a minimum value

required to sustain growth, that nutrient (or nutrients) is said to become the limiting

nutrient.  For example, often nutrients, especially electron acceptors such as oxygen, 

nitrate and iron, will be depleted in contaminated environments.  As a result, one goal of 

enhanced or engineered bioremediation is to add an abundance of the nutrients that have 

been determined to be a growth-limiting constituent.  However, the addition of nutrients 

to the subsurface will only be successful if they are transported to the biologically active

zone, or BAZ (Rittmann, et al., 1988).  Thus, achieving this goal is complicated due to
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the heterogeneities in the complex subsurface environment, which influences not only the 

contaminant location, but the delivery of nutrients as well.

Subsurface heterogeneity in naturally-occurring geologic media has been

recognized as a hindrance in the understanding and modeling of the fate and transport of 

contaminants and other dissolved constituents (Freeze and Cherry, 1979).  Indeed, the

issue of heterogeneity was noted as impacting the successful application of in situ

bioremediation early in the development of the field and there continues to be growing in 

interest with respect to this topic in the field of engineering.  In particular, the influence 

of chemical and physical heterogeneities on the fate of subsurface pollutants, especially 

with respect to solute transport and/or biodegradation has been examined both in 

laboratory-scale experiments (e.g., Starr, et al. 1985; Szecody, et al., 1993) and 

mathematical modeling studies (e.g., Sudicky, et al., 1990; Quinodoz and Valocchi, 1993; 

Miralles-Wilhelm, et al., 1997; Oya and Valocchi, 1998).  In addition, various researchers 

have examined the interrelationship between mass transfer processes, e.g., the 

bioavailability of the solute substrate to the microbial cells, and the resulting

biotransformation of pollutants (e.g., Ghoshal, et al., 1996; Bosma, et al., 1997; Harms 

and Bosma, 1997; Ramaswami and Luthy, 1997a; Ramaswami and Luthy, 1997b).  This 

project was focused on expanding upon the above research in an effort to better develop a 

quantitative understanding of the role of subsurface heterogeneities and interfacial 

processes with respect to in situ bioremediation.
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2.0 SCOPE AND OBJECTIVES OF STUDY 

The issue of physical and chemical heterogeneities encountered in subsurface 

environments and their impact on solute fate and transport has been an area of recent 

interest as was discussed in Chapter 1.  In particular, the impact of such heterogeneities, 

and the resulting hydraulic and geochemical interfaces created by those heterogeneities,

on the practice of in situ bioremediation is not well understood.  The overall goal of the 

current research was, thus, to develop a fundamental quantitative understanding of the 

impact of physical, chemical, and biological heterogeneities, and the interfacial

interactions resulting from these heterogeneities, on the biodegradation of subsurface 

contaminants.  This goal was accomplished by the following two specific objectives:

1. To develop a quantitative framework comprised of a set of dimensionless

parameters based on the relevant subsurface heterogeneities and interfaces, 

that will capture the effects of the competing physiochemical and biokinetic 

processes.

2. To conduct a  series of systematic modeling experiments to determine the 

impacts of a wide range of scales and magnitudes of heterogeneities on in situ

bioremediation, and to use the results to test the quantitative framework’s

utility for determining what, if any, engineered actions will augment the 

intrinsic in situ biodegradation.

Analysis of the quantitative framework entailed a sequential examination of the 

various mass-transfer rates and the biokinetics by way of comparison of several 

dimensionless parameters.  The use of the dimensionless parameters (presented in 

Chapter 4) provides an appealing method for reducing the complexity of the interfacial 
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and biological kinetics and can be used to imply which given process within 

environmental system is rate-limiting (Ramaswami and Luthy, 1997a).  Furthermore,

these dimensionless parameters are defined in a manner such that readily available data 

or simple pilot-scale measurements that could be made in the field are used to help 

identify the rate limiting process and, thus, assist practitioners in their remedial

alternative selection to enhance the limiting rate. 

In the following chapter, Chapter 3, a review of the relevant background literature 

and an evaluation of contemporary research is completed.  Chapter 4 provides the

background theory associated with the governing equations for reactive subsurface

transport.  In addition Chapter 4 presents the derivation and use of dimensionless

parameters, and describes the quantitative framework of dimensionless parameters that 

was used in this work to evaluate the complex interactions between the competing, scale-

dependant physical/chemical interfacial processes and in situ biodegradation.  In Chapter 

5, the mathematical model selected to complete the numerical evaluation of the utility of 

the quantitative framework as a predictive tool is presented.  The model is identified, 

verified through comparison to analytical and alternative numerical solutions, and the 

scenarios created for testing the quantitative framework are developed.  Chapter 6 

presents a summary and discussion of the numerical modeling results, and finally, in 

Chapter 7, the study’s conclusions and recommendations for further work are presented.
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3.0 BACKGROUND AND LITERATURE REVIEW 

3.1 Introduction 

This chapter presents the pertinent background information, including a review of 

the relevant contemporary literature, in support of this research.  An understanding of the 

role of various types and scales of heterogeneities is crucial to this research.  Thus, the

first topics presented in this chapter include a review of the relevant scales of 

heterogeneities (e.g., microscopic, mesoscopic, and macroscopic), as well as the types of 

heterogeneities encountered in the subsurface (e.g., chemical, physical, and

microbiological).  Second, key background information is presented on the model

contaminant, naphthalene, which was selected for this research, including it’s sources, 

biodegradation, sorption, and bioavailability.  Finally, this chapter also presents a 

summary of other modeling efforts that have focused, at least in part, on similar research 

topics.

3.2 Relevant Scales of Heterogeneities and Interfaces 

Spatial heterogeneity in the subsurface can be defined as occurring at scales that 

range over several orders of magnitude.  Specifically, the scales are generally described 

as microscopic (ranging in scale from 10
-6

 to 10
-5

 m), mesoscopic (ranging in scale from

10
-5

 to 10
-2

 m), and finally, macroscopic (ranging in scale from 10
-2

 to 10
2
 m).  In this 

research, scenarios are developed that examine the microscopic and macroscopic levels 

of heterogeneity and, thus, these scales are further described in the following sections of 

this chapter.
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Microscale variability occurs on an order of micrometers to millimeters.  For 

example chemical and microbiological species exist at the scale of micrometers, whereas 

variability in geologic composition occurs at a scale of millimeters, e.g., at the physical

scale of soil aggregates.  In complex geologic conditions, macroscale heterogeneities 

range from the individual laminae scale (centimeters) to a site scale of entire geologic 

strata (meters) to a regional scale (kilometers).  Importantly, the various physical and 

chemical heterogeneities that occur at each of these scales create, either directly or

indirectly, interfaces, or boundaries between two phases, where there are strong contrasts

in physical and chemical properties that exist over short distances (centimeters to meters)

(Brockman and Murray, 1997).  Specifically, the strong contrasts in physical and 

chemical properties at these interfaces control moisture flux, nutrient fluxes, and redox 

conditions, which, in turn, drive the distribution and activity of microbes in the 

subsurface (Brockman and Murray, 1997; McMahon and Chapelle, 1991).  Further, it is 

evident that the hydraulic, physical, and geochemical properties for each zone or layer 

can determine microbial density and activity in that zone or layer (Brockman and Murray, 

1997).

3.2.1 Microscale Heterogeneity

The research into the bioavailability of contaminants as microbial substrates has 

largely focused on pore-scale chemical heterogeneity resulting from interfacial 

phenomena produced by pore-scale physical heterogeneities of the porous media,

especially dissolution at the non-aqueous phase liquid (NAPL)-aqueous phase water 

interface (e.g., Ramaswami and Luthy, 1997a and 1997b) and at sorption-desorption sites 

from soil particles (e.g., Brusseau, 1995) or sorption-desorption sites from biomass itself, 
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called biosorption (Stringfellow and Alvarez-Cohen, 1999).  Thus, microscopic to pore-

scale heterogeneities are exemplified by molecular level physical and chemical variations 

such as at the interface between aqueous phase constituents and a NAPL source, or at the 

interface between the aqueous phase and a solid phase.  The interfacial transfer that 

occurs between such phases can be captured by a dissolution rate (e.g., for NAPL) or soil 

mass transfer rate (e.g., for solid phase) that can also result in local-scale heterogeneities 

when the rate is not uniform.  Both of these transfer rates can have significant effects on 

the bioavailability and, thus, the biodegradation of contaminants.

Mass transfer effects on bioavailability and biodegradation have been studied by 

various investigators (e.g., Ramaswami and Luthy, 1997a and 1997b; Bosma et al., 1997; 

Harms and Bosma, 1997) in an effort to examine both the bulk mass transfer of 

contaminant to the microorganisms, as well as the intrinsic or actual microbially-

mediated degradation of the contaminant. In certain cases, the actual biokinetics can 

limit the overall biotransformation rate.  In these cases, it may be possible to reduce this 

limitation by removing a limiting factor (e.g., electron acceptor, or nutrient), or by 

improving environmental conditions (e.g., temperature or pH), and/or by increasing the 

amount of active biomass, such as by bioaugmentation (e.g., Rittmann et al., 1990; Smets

et al., 1990).  However, in reviewing bioremediation data, Bosma et al. (1997) noted that 

the intrinsic microbial activity (i.e., biokinetics) actually only limited bioremediation in a 

few cases; while in most cases, the full extent of biodegradation potential was dampened

by mass-transfer limitations, e.g., delivery of the contaminant from sorbed-phase or non-

aqueous liquid product phase to the aqueous (more readily degradable) phase.  In this 

research the delivery of sorbed-phase contaminants is the focus.
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3.2.1.1 Sorption Effects 

Sorption (and desorption) processes at the solid phase-aqueous phase interface

may determine the local physical and/or chemical conditions by effecting biomass

distribution through sorption of microbial cells and/or by effecting aqueous 

concentrations through solute sorption (van Loosdrecht et al., 1990; Ghiorse and Wilson,

1988; Madsen and Ghiorse, 1993).  Under certain conditions, the sorption sink can 

become very significant, such that a reduction of the aqueous phase solute available for

biodegradation is witnessed as has been demonstrated in numerous studies (Miller and

Alexander, 1991; Scow and Alexander, 1992; Mihelcic and Luthy, 1991; van Loosdrecht 

et al., 1990).

The sorption component is modeled using either equilibrium or nonequilibrium

rate models (Weber et al., 1991; Toride, et. al, 1993).  While equilibrium conditions are 

more commonly applied, nonequilibrium sorption conditions have been observed under 

field conditions, such as the well-studied Borden aquifer (e.g., Ball and Roberts, 1991; 

Brusseau and Rao, 1989) and have been modeled using various approaches including a 

pore diffusion-based model (e.g., Pedit and Miller, 1995).

As described in Chap. 4, this research employs a relatively straightforward 

approach for considering mass transfer kinetics between the soil and aqueous phases, 

utilizing a linear driving force and a lumped first order mass-transfer coefficient (adapted

from van Genuchten and Wierenga, 1976).  More complex non-linear or non-first order 

kinetics are beyond the scope of this research, but have been evaluated by others (e.g., 

Brusseau and Srivastava, 1997).
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3.2.1.2 Microbiological Effects 

The physical and chemical heterogeneity at the pore-scale, as described above 

can, in turn, cause microbiological heterogeneity to occur at a pore to pore scale.

Specifically, microbial heterogeneity results from varied microbial physiology, or in 

some cases by the presence or absence of microbial populations all together.  Such 

conditions area result of physical and chemical heterogeneities, and geologic and 

geochemical conditions (Brockman and Murray, 1997). 

3.2.2 Macroscale Heterogeneity

Macroscopic heterogeneities are exhibited on a site or regional scale, and are 

exemplified by bulk transfer and hydraulic mixing of contaminants and other substrates 

in the subsurface, such as with the advection and dispersion of a dissolved contaminant

plume into a pristine aquifer.  In certain conditions, such as in a highly stratified 

lithology, macroscopic heterogeneity can be further defined at a laminal or stratum scale 

where the contact between subsurface media with different hydrogeologic properties 

creates an interface that can affect the mass transport of solutes and the availability of

substrates, nutrients and electron acceptor to microbes.  Such macroscopic laminal

heterogeneities occur in the geologically complex subsurface environment as a result of 

the stratified nature of the deposits and the actions of geochemical processes over 

geologic time periods (Brockman and Murray, 1997).

3.2.2.1 Advection and Dispersion 

Under this type of heterogeneity, biodegradation of the contaminant is dependant 

upon or limited by the rate of advection and dispersion of the contaminant from the 
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contaminated zone into the clean aquifer or from one layer into another of different 

hydraulic characteristics.  Advection specifically refers to the movement of dissolved 

constituents with the bulk flow of groundwater (Freeze and Cherry, 1979).  Obviously, 

this is an important process for the transport of dissolved substrates and the 

biodegradation of contaminants.  Importantly, as described by Darcy’s law, the bulk flow 

rate of groundwater is proportional to the hydraulic conductivity, K, of the formation.

Therefore, heterogeneity in the magnitude of K in the formation has major effects on the 

movement of dissolved constituents, as discussed further below.

Various scales of heterogeneity also induce mechanical dispersion, or hydraulic 

mixing, of solutes dissolved in groundwater.  Thus, hydrodynamic dispersion plays an 

important role in creating aqueous-phase chemical heterogeneities because diffusion and 

the heterogeneity- induced mechanical dispersion are the only mixing process for solutes 

in the deep subsurface.  The resulting effect of dispersion on the rates of solute and 

nutrient transport and mixing in turn impacts the microbial activity and ultimately in situ

bioremediation.

3.2.2.2 Hydraulic Conductivity and Stratified Layer Effects 

With respect to dispersive mixing, vertical transverse dispersion is a particularly 

important process for creating zones of mixing (Sudicky et al., 1985).  One situation in 

which vertical transverse dispersion is critical is when there are heterogeneities in 

hydraulic conductivity.  For example, laminal-scale hydraulic layer interfaces can be 

particularly important because interlayer mass transfer of solutes can affect the rate of 

supply of limiting substrates, such as oxygen and nutrients near the interface of various

layers, such as where a lense or bed of clay in a sand aquifer inhibits transverse 
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dispersion across its boundary, and thus affects the rate of biodegradation (e.g., 

Odencrantz, 1992).  This interfacial process of hydraulic mixing at the interface between 

layers, e.g., the interface of the dissolved contaminant plume and the “clean” aquifer of 

another layer, is induced by variations in porous media which result in a heterogeneous 

layered hydraulic conductivity distribution.  Indeed, laboratory (Szecsody et al., 1994)

and modeling studies (Odencrantz, 1992; Wood et al., 1990) with two-dimensional

(vertical), two-layer stratified systems, under dual substrate limitation, demonstrate

increased microbial activity and biomass production near the two-layer interface where 

hydraulic mixing between waters carrying different substrates occurs due to dispersion.

Further, field studies have also indicated that varying layers of hydraulic conductivity are 

an important factor controlling in situ biodegradation (Molz and Widdowson, 1988; 

Barker et al., 1987).  Heterogeneity of the hydraulic conductivity also occurs on a “small

scale” below the observational scale of most field investigations, such as in the Borden 

aquifer (e.g., Sudicky, 1986).  Experimental (Murphy et al., 1997) and modeling

(MacQuarrie and Sudicky, 1990a; Murphy et al., 1997) studies indicate that small-scale

hydraulic conductivity heterogeneity with dual substrate limitation can create regions of 

increased solute mixing, which in turn result in enhanced microbial growth.  Therefore, 

hydraulic conductivity heterogeneities have significant impacts on microbial activity and 

biomass production by creating hydraulic interfaces where mixing between waters 

carrying different substrates occurs.

A second case for which transverse dispersivity is critical is for oxygen transfer 

across the water table.  Theoretical and field studies (Borden and Bedient,1986; Borden 

et al., 1986) indicate that vertical transverse dispersion can have a significant impact on 
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oxygen exchange and the contaminant decay rate; however, the weak vertical 

dispersion/diffusion process limits this impact to relatively shallow plumes, e.g., less than 

two meters below the water table (MacQuarrie and Sudicky, 1990b).

3.3 Naphthalene:  Sources, Biodegradation, and Bioavailability

Naphthalene was selected as the specific model electron-donor contaminant

substrate for this study because of its importance as a pollutant, and its biodegradability.

In addition, although like other polycyclic aromatic hydrocarbons (PAHs) it has generally 

poor mobility in the environment (e.g., low solubility, high sorption, and low volatility),

it has a sufficiently high water solubility to facilitate the laboratory experiments

performed by other students as part of this project.  Naphthalene is a PAH manufactured

from petroleum refining and coal tar distillation processes (Vershueren, 2001).  Its 

chemical formula is C10H8, consisting of two cyclic, planar aromatic carbon-hydrogen 

rings, as shown in Figure 3.1.

Figure 3.1.  Chemical structure of Naphthalene. 

Numerous products include naphthalene as a component, such as moth balls, 

solvents, lubricants, cleaners/degreasers, and petroleum products, e.g., gasoline, diesel, 
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and No. 2 fuel oil.  The subsurface presence of naphthalene is, thus, often ubiquitous due

to its presence in so many common products, especially in petroleum fuels, and the 

resulting accidental releases of these products (e.g., from leaking underground storage 

tanks).  Naphthalene is also commonly found as a subsurface contaminant at former

manufactured gas plants (MGP), and thus researchers (e.g., Ghosal, et al., 1996; 

Ramaswami and Luthy, 1997) have investigated the biodegradation of naphthalene 

derived from or in the presence of residual coal tar associated with the MGP sites. 

Laboratory and field investigations have explored the biodegradation (both 

aerobic and anaerobic, e.g., denitrifying) as well as the sorption-desorption and 

bioavailability of naphthalene.  Early research in which the microbially-mediated 

degradation of naphthalene was observed dates to the 1970’s (e.g., Cerniglia and Gibson, 

1977).  Subsequent work expanded to include the investigation of the biodegradation of 

naphthalene in environmental microcosms (Heitkamp, et al., 1986) and later the 

evaluation of naphthalene degradation under varying aerobic and denitrifying conditions 

(Mihelcic and Luthy, 1988a, 1998b, 1991; Wilson, et al., 1997; Rockne and Strand, 2001: 

Durant, et al., 1997).

Using the method of McCarty (1975), Durant, et al. (1997) presented the 

stoichiometry of naphthalene biodegradation under aerobic and denitrifying conditions, 

respectively, as follows:

 (3.1) OHCONOHCHNOOHC 2227532810 34.16.588.088.088.083.5

 (3.2) OHCONOHCHNOHC 222753810 40.271.586.066.566.5
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In both cases, nitrate was assumed to be the nitrogen source.  These equations 

served as the basis for the conceptual model of biodegradation utilized in this research, 

and were used as the stoichiometric basis for developing reaction parameters (e.g., yield 

coefficients), as discussed further in Chap. 5. 

Several investigators have examined the impact of sorption on the bioavailability 

and biodegradation of naphthalene.  Mihelcic and Luthy (1991) developed a model of a 

sequential solute (naphthalene) desorption-degradation process.  It was experimentally

observed that the naphthalene sorption-desorption process was reversible and rapid with

respect to the subsequent rate of microbial degradation of the desorbed aqueous-phase 

naphthalene.  Other researchers have further examined the sorption-desorption kinetics of 

naphthalene (e.g., Connaughton, et al., 1993). In addition, evidence of the sequential 

sorption-desorption-biodegradation process has subsequently been presented by others 

(e.g., Guerin and Boyd, 1997; Guerin and Boyd, 1992; Park, et al., 2002).  Although 

much of the research has focused on biodegradation of the solute naphthalene, others 

have also examined the bioavailability and degradation of sorbed or non-desorbing 

naphthalene (Guerin and Boyd, 1997; Guerin and Boyd, 1992; Burgos, et al., 1999; Park 

et al., 2001).  In general, this research has found the sorbed-phase naphthalene to be 

biodegradable, but at lesser rates and extents than for aqueous naphthalene.  Guerin and 

Boyd (1992) found the bioavailability of sorbed-phase naphthalene to be highly variable 

with respect to different bacteria, and concluded that important organism-specific

properties were responsible for the extent of sorbed naphthalene bioavailability.

Accordingly, most modeling evaluations conservatively assume that only aqueous-phase 

naphthalene is bioavailable, in part to reduce the computational runtimes.
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Other research has focused on the bioavailability of naphthalene in the presence 

of, or after dissolution from, a non-aqueous phase liquid, e.g., pure phase coal tar (e.g., 

Ghosal, et al., 1996; Ghosal and Luthy, 1996; Ramaswami and Luthy, 1997a and 1997b).

In all cases, naphthalene was found to become bioavailable after its dissolution from the 

coal tar; however, the extent of the bioavailability and subsequent rate of 

biomineralization was dependant on the rate of mass transfer (dissolution) of the 

naphthalene from the coal tar non-aqueous phase liquid into the aqueous phase.

3.4 Reactive Transport Modeling 

Various types of numerical computer models have been developed to investigate 

the fate and transport of groundwater contaminants.  Typically, such models vary in 

several key aspects.  For example, models can vary from one to three dimensions, with 

the latter being more sophisticated.  In addition, models often differ in the ability to vary 

from steady-state to transient conditions.  Also, the number and complexity of the 

modeled components can vary significantly, ranging form basic two substrate models

(electron donor and electron acceptor) to complex models that can incorporate sequential

decay of multiple species, or that can incorporate complexation reactions of integrated

reduction-oxidation processes.  Furthermore, the reactions that the solute(s) undergo(es)

also can vary between models.  Degradation can range from basic first-order decay, to 

more sophisticated biokinetics such as single or double Monod kinetics or biofilm

kinetics.  Sorption effects can also be implemented via varying means of describing 

water-soil partitioning, including linear, Freundlich, and Langmuir partitioning, and can 

also differ in regards to the kinetic treatment of sorption (and desorption) including 

equilibrium and non-equilibrium kinetics. Lastly, the techniques for solving the 
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numerical structure can vary, including Crank-Nicholson Finite-Difference, Galerkin

Finite Element, Eulerian-Legrangian, Runge-Kutta, and Operator Splitting techniques.  A 

discussion of the benefits and drawbacks of each of these types of models is beyond the 

scope of this research; however, compilations and comparisons of some of these aspects 

have been completed by others (e.g., Srivastava and Brusseau, 1996).

Several numerical models of the fate and transport of groundwater contaminants

are readily available and/or have been used by numerous researchers.  The Principle 

Direction finite element method developed by Frind (1982) served as the basis for several 

numerical codes, including PDPRIME, PDREACT, and FEREACT as summarized by 

Odencrantz (1992).  This group of numerical codes, originating with PDPRIME, and 

modified through to FEREACT, have been well-documented in the literature (e.g., 

MacQuarrie and Sudicky, 1990a and 1990b; Oya and Valocchi, 1998; Odencrantz, 1992; 

and Tebes-Stevens, et al., 1998).  Rifai et al. (1988) and Rifai and Bedient (1990) 

developed a two-dimensional code, BIOPLUME I/II that is commonly in use due to it’s 

widespread availability from the US Environmental Protection Agency.  A multi-species

fate and transport model MT3D was developed by Zheng (1997) and later derived into a 

reactive multi-species model, RT3D (Clement, 1997).  Lesser known, or non-

commercially or publicly available models have also been developed by numerous

researchers (e.g., Srivastava and Brusseau, 1996). 

Importantly, there have been a number of numerical modeling efforts that have 

examined heterogeneous subsurface flow and complex biodegradation kinetics and which 

are, therefore, useful for comparison to the results of this work.  This research was 

discussed above in Section 3.2, as part of the review of subsurface heterogeneities and 
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interfaces.  However, these modeling efforts are reiterated here in terms of the relevant

concepts examined, in order to set up the discussion in Chap. 6.  Specifically, for the case 

of heterogeneous subsurface conditions, many modeling efforts have examined randomly

heterogeneous hydraulic conductivity or velocity (e.g., Sudicky, et al., 1990; Yabusaki, et 

al., 1998; MacQuarrie and Sudicky, 1990a and 1990b; Srivastava and Brusseau, 1996; 

Quinodoz and Valocchi, 1993), or stratified heterogeneous conditions (e.g., Oya and 

Valocchi, 1998; Wood et al., 1994; Starr et al., 1985; Szecsody et al., 1994; Odencrantz,

1992).  Further, the use of Monod-type kinetics in conjunction with heterogeneous 

transport has been examined by several investigators (e.g., MacQuarrie and Sudicky, 

1990a and 1990b; and Odencrantz, 1992).
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4.0 DEVELOPMENT OF QUANTITATIVE FRAMEWORK 

This chapter presents the mathematical background and derivation of the 

equations developed to investigate the research problem.  The governing equations for 

the problem are presented, and a system of dimensionless parameters and a quantitative 

framework for evaluating the equations are developed. 

4.1 Governing Equations

The governing equation of reactive solute transport utilized for the research 

problem is the two-dimensional form of the oft-applied advection-dispersion-reaction 

(ADR) equation, 
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where S is the aqueous-phase solute concentration [M L-3], t is time [T]; Dx is the 

longitudinal hydrodynamic dispersion coefficient [L2T-1]; x is distance in the direction of 

flow [L]; y is distance in the direction vertically transverse to the direction of flow [L]; 

Dy is the transverse hydrodynamic dispersion coefficient [L2T-1]; qx is the specific 

discharge [LT-1]; n is soil porosity; Sw is the water saturation; and Gi is the source/sink

term [ML-3 T
-1

] where i denotes any number of source or sink equations, e.g., sorption, 

GS, or biodegradation, GB.

The partial differential terms on the right side of Eq. 4.1 represent longitudinal 

dispersion, transverse dispersion, and longitudinal advection, respectively. This research 
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assumes isotropic, homogeneous hydraulic conductivity with one-dimensional flow 

within each layer of the model; thus, there is no transverse advection term.

In the following paragraphs the processes of advection and dispersion are 

reviewed in more detail.  In addition, two source/sink terms are developed to represent 

the reaction processes, Gi, that were utilized for the numerical experiments.  These 

processes are aqueous-phase solute biodegradation, denoted GB, and kinetic sorption 

between aqueous-phase solute and solid matrix, denoted GS.

4.1.1 Advection 

Advection is the bulk or macroscopic process by which solute is transported by 

the motion of flowing groundwater.  In eq. 4.1 above, advection is described by the 

qx/nSw  term.  As mentioned above, the model is assumed to be homogenous and 

isotropic with respect to hydraulic conductivity in each layer, with only one direction of

flow.  Commonly, this principle direction of the flow is the x-direction. Because flow

within each layer is characterized by steady-state conditions with saturated flow and 

constant porosity, the term qx/nSw can be replaced by vx, or simply v when it is assumed

that flow occurs only in the x-direction, which is the seepage or average pore velocity in 

the longitudinal direction.  Seepage or average pore velocity can be defined from Darcy’s 

Law as,

dl

dh

n

K
v (4.2)

where K is the hydraulic conductivity [LT
-1

], n is porosity as defined above, and dh/dl is 

the hydraulic gradient over the model region or domain [LL
-1

] (Freeze and Cherry, 1979). 
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4.1.2 Dispersion 

Dispersion is the process by which a solute spreads away from the path predicted 

or expected from advection or bulk movement alone.  For two-dimensional isotropic 

systems, dispersion is limited to longitudinal dispersion in the direction of flow (the x-

direction) and transverse dispersion perpendicular to the flow direction.  From Eq. 4.1, 

above, the components for dispersion are,
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where Dx and Dz are the longitudinal and transverse hydrodynamic dispersion 

coefficients [L2T-1], respectively.  The hydrodynamic dispersion coefficients represent 

the combined effects of mechanical and molecular diffusion, and can be defined as 

follows:

                 (4.4) 
*DvD iii

where Di represents the hydrodynamic dispersion coefficient in direction i, i is the 

dynamic dispersivity in direction i [L], and D* is the effective coefficient of molecular

diffusion in the porous medium [L
2
T

-1
].  The dynamic dispersivity is a characteristic

property of the porous medium, whereas the coefficient of molecular diffusion is a 

characteristic property of the solute (Freeze and Cherry, 1979).  The partial differential

terms on the right side of Eq. 4.3 are second order because dispersion is proportional to 

the concentration gradient.

4.1.3 Reactions 

The following sub sections present the equations for the two kinetic reaction 

terms focused on in this research: sorption and biodegradation.
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4.1.3.1 Kinetic Sorption 

The first of the two reaction terms to be discussed is sorption.  For this project it is 

assumed that only the electron donor solute is subject to sorption as has been done by 

others (e.g., Oya and Valocchi, 1997; McGuire, et al 2002).  Therefore, only one equation 

representing sorption (for the electron donor) is required. For this research, a simple

approach was applied for describing the mass-transfer kinetics between soil aggregates 

and the mobile water phase, with a linear driving force (Lapidus and Amundson, 1952; 

van Genutchen and Wierenga, 1976): 
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where  is the solid-phase or sorbed electron donor concentration [MM
-1

], km is the 

kinetic mass transfer coefficient [T
-1

], and Kd is the linear partitioning coefficient [L
3
M

-

1
].  The term / Kd represents the aqueous concentration of solute that would be in 

equilibrium with the sorbed electron donor concentration.  Thus, at equilibrium, the term

in the parentheses is zero, and there is no change in concentration over time.  At any 

other value, the term in the parentheses can be seen as an expression of the distance from

equilibrium (Tebes-Stevens, et al, 1998), the magnitude of which is the driving force for 

sorption or desorption.  A greater difference in the S and /Kd values results in a 

“steeper” gradient.  The magnitude of the kinetic mass transfer coefficient, km, term

represents rate limitations due to the sorption processes such as availability of sorption 

sites.  Note that the equation can be forced into equilibrium conditions if a relatively large 
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value of is km is used, e.g., on the order of 200 day
-1

 (Valocchi, et al. 1998) to 1000 day
-1

(Tebes-Stevens, et al. 1998).

4.1.3.2 Double-Monod Biodegradation 

As stated in Chapter 3, it is widely recognized that biologically-mediated

metabolic reactions can reduce contaminant concentrations in subsurface environments.

Three conceptual models have been used to describe biodegradation in the subsurface 

(Baveye and Valocchi, 1989): (1) the biofilm model, (2) the microcolony model, and (3) 

the strictly macroscopic model.  Odencrantz (1992), performed a comparison of two of 

the three types, namely the biofilm and macroscopic models, and found that the two 

model solutions converged for the organic substrate plume and biomass distribution for 

realistic groundwater conditions.  Thus, the use of either biofilm or Monod kinetics could

be selected based on the needs in defining and solving the research problem.  In the case 

where the goal is to model solute concentration, the added complexity of the biofilm (and 

microcolony) model(s) is probably not needed for the typical groundwater scenarios.

Therefore, the macroscopic model was selected for this research.

In addition to the conceptual model, it is also necessary to select a model for the 

substrate utilization kinetics.  The multiplicative Monod model has been applied by 

numerous authors (e.g., Borden and Bedient, 1986; MacQuarrie and Sudicky, 1990; 

MacQuarrie, et al., 1990; and Odencrantz, 1992) for modeling multiple substrate limited

biodegradation in subsurface environments.  Therefore, the multiplicative Monod model

was applied in this research to incorporate dual substrate limiting biokinetics for 

modeling biological growth in the saturated geologic media.  Use of a model that 

accounts for dual substrate limitation is critical for this research because it allows for the
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investigation of the use of engineered efforts undertaken in order to enhance the rates of 

biodegradation reactions, as is the case where limiting nutrients or electron acceptors are

supplied to the subsurface via various methods of injection.

Dual substrate limitation as applied to substrate utilization can be expressed by 

the multiplicative Monod model as follows:
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where qmax is the maximum specific substrate utilization rate [MdonorM
-1

cellsT
-1

]; X is total

biomass concentration (pore volume basis, i.e. the total concentration of cells per liter of

pore water) [Mcells L
-3

]; S is electron donor substrate concentration (as previously 

defined) [M L
-3

]; KS is the donor half-maximum rate constant [M L
-3

]; A is electron 

acceptor substrate concentration [M L
-3

]; and KA is the acceptor half-maximum rate 

constant [M L
-3

].  The practical application of the multiplicative equation in analyzing

rate-limited reactions is provided in a simple example.  In an evaluation of the effect of 

limited donor or acceptor availability on biodegradation, mathematical analyses reveals 

that as either [A] or [S] become limited (i.e., approach very small values or zero), that 

portion of the equation will approach zero as well.  Thus, through the multiplicative

process, so too will the entire equation approach zero, and the overall equation, GB.

4.1.4 Biomass 

Biomass growth is proportional to substrate utilization described by the 

multiplicative Monod model of Eq. 4.6, given above, where the proportionality factor is 

Y, the true yield coefficient.  In addition to biomass growth, loss or death of biomass
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must also be taken into account, which is represented by a kinetic decay term.  Therefore, 

the equation for biomass takes the form,
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where kd is a biomass decay coefficient [T
-1

].

4.1.5 Summary of Governing Equations 

A reactive transport model that effectively describes a subsurface scenario must

solve a system of linear or nonlinear equations.  The number of equations in the system is 

dependant upon the number of individual components with the system.  For a system

with two aqueous substrates (electron donor and electron acceptor), and two immobile

components (biomass and substrate), a system of four equations is required.

Rearranging the terms in Eq. 4.1 and substituting in the kinetic reaction terms of Eqs. 

4.5 and 4.6 yields the following governing equation for the electron donor substrate: 
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where  is the stoichiometric yield coefficient, and all other terms are as previously

defined.  The governing equation for electron acceptor is comparable to Eq. 4.8, with the 

exception that the electron acceptor is considered nonsorbing, and thus the sorption term

is deleted:

AK

A

SK

S
Xq

x

A
v

z

A
D

x

A
D

t

A

AS

zx max2

2

2

2

 (4.9) 

25



where all other terms are as previously defined.  The governing equations for biomass

growth and solid-phase donor, respectively, are summarized below, 
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where bulk density ( b ) and porosity ( ) have been added to present the sorbed 

phase ( ) on a mass per mass of aquifer solids basis.  Thus, the numerical model utilized

during this research had to solve a system of four equations based on Eqs. 4.8 through 

4.11, above. 

_

S

4.2 Dimensionless Parameters

One goal of this research is to develop a simple predictive tool that can be utilized 

to determine what enhancements or other engineering activities would be beneficial for 

accelerating bioremediation at a site.  This is achieved by developing a means of 

evaluating the system of equations developed above that characterize the in-situ

environment.

A group of dimensionless parameters was developed that can be used to quickly 

compare the rate of the various processes occurring, e.g., advection, dispersion, sorption, 

biodegradation or non-aqueous phase liquid dissolution.  Once developed, a comparison

of these dimensionless parameters can be used to predict which of the subject rates are 

the so-called rate-limiting process in the system.  Use of dimensionless parameters for 

comparing complex interactions or rate-limiting processes in contaminated environments
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has been previously documented in the literature (e.g., Seagren, et al. 1993, Brusseau, 

1995, Ramaswami and Luthy, 1997, Oya and Valocchi, 1998, Brusseau, et al. 1999).

Such parameters are developed by substituting non-dimensional units of time, mass, and 

length into the equations developed for the analysis.  For this research, non-dimensional

units were substituted into Eqs. 4.8 through 4.11.  The non-dimensional units of time (t*) 

direction (x*, z*), and concentration (S*, A*, and X*) used in this research are 

summarized in Fig. 4.1, where L is the characteristic length (i.e. the length of the domain) 

[L], S0 is the initial substrate concentration [ML
-3

],  is the initial sorbed-phase

concentration [MM
-1

], A0 is the initial acceptor concentration [ML
-3

], and X0 is the initial 

biomass concentration [MM
-1

].  All initial concentration values reference the background 

or injected concentration for the cases where no background concentration of the species 

is present.
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Figure 4.1. Dimensionless units (e.g., Oya and Valocchi, 1998) 

Following substitution of the above non-dimensional units, Eq. 4.8 can be re-

written as follows:
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Although not shown here, a similar dimensionless equation can be derived for the 

electron acceptor, biomass, or solid phase starting from Eqs. 4.9 through 4.11; however, 

for this research, the dimensionless parameter framework focuses on the removal of 

electron donor from the system, and thus only Eq. 4.12 is shown.  Each of the terms in 

Eq. 4.12 (advection, diffusion, reactions) has an associated dimensionless group of 

constants that represents the relative rate of change for that term as compared to 

advection.  For example, the rate of change for transverse dispersion relative to advection

can be observed by inspection of the term
x

z

Lv
D

.  Further, additional relative rate terms

can be constructed by comparing the various dimensionless relative rate terms from Eq. 

4.12 to each other.  For example, comparison of the term that represents the relative rate 

of biodegradation to advection (
xo

o

vS
LXqmax )  to the term

x

z

Lv
D

, can by rearranging of 

the terms, result in a parameter
zo

o

DS
LXq 2

max , which can be used to compare the 

relative rate of biodegradation to the transverse dispersion.  By convention, the 

dimensionless parameters used herein are written only in terms of the electron donor, as

derived from Eq. 4.12 as described above, although similar comparisons can be made for 

the system of dimensionless parameters for electron acceptor.  It is not as common to 

complete this as the electron acceptor is typically modeled as non-sorbing and non-

degrading, and thus the suite of dimensionless parameters becomes limited in nature.

For this research, dimensionless numbers were derived from the dimensionless

parameters evaluated from Eq. 4.12, and are presented in Fig. 4.2 (note that the z in the
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transverse hydrodynamic dispersion coefficient Dz has been replaced with a T to more

effectively depict the transverse nature of the term):

PeT  = Transverse Peclet Number = 
ratedispersiontransverse

rateadvection
=

T

x

D

Lv

St2 = Stanton Number 2 = 
rateadvection

ratetransfermasssoil
=

x

m

v

Lk

Da2 = Damköhler Number 2 = 
rateadvection

ratetionbiodegrada
 = 

ox

om

Sv

LXq

Da5 = Damköhler Number 5 = 
ratetransfermasssoil

ratetionbiodegrada
=

mo

om

kS

Xq

St

Da

2

2

Da6 = Damköhler Number 6 = 
ratedispersiontransverse

ratetionbiodegrada
=

To

om
T

DS

LXq
PeDa

2

2

Sh2’ = Modified Sherwood Number 2 = 
ratedispersiontransverse

ratetransfermasssoil
=

T

m
T

D

kL
PeSt

2

2

Figure 4.2.  Definition of dimensionless numbers and parameters.

4.3 Dimensionless Parameter Framework 

Using the dimensionless parameters presented in Section 4.2, a framework was 

developed to quantitatively identify the rate-limiting process (after Ramaswami and 

Luthy, 1997).  The framework, depicted in Fig. 4.3, presents a flowchart that can be used

to identify the rate-limiting process.  The first three steps of the flowchart are used to 

identify the limiting mass-transfer rate (e.g., advection or dispersion and soil mass

transfer or sorption).  The fourth step compares the limiting mass transfer process with
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the biodegradation rate to determine the overall rate limiting process for the system.  This 

type of approach is viable as long as the dimensionless parameters are significantly 

smaller or larger then unity, beyond which the results may not be conclusive 

(Ramaswami and Luthy, 1997).  In practice, the dimensionless parameters are 

recommended to be less than 0.2 for cases where the value is to be less than unity, and 5 

for cases where the value is to be greater than unity (Ramaswami and Luthy, 1997).
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4.4 Analysis of Framework Experimental Scenarios 

The following section introduces the baseline experiments (scenarios) that were 

used to analyze the utility of the dimensionless parameter framework developed in 

Section 4.3.  The baseline scenarios were designed to provide a useful evaluation of the 

framework.  In addition, as is discussed further in Chapter 5, simulated engineering 

enhancements were made to the baseline scenarios to further test the predictive

capabilities of the framework.  Specifically, the quantitative framework was used to 

predict the rate-limiting process and guide selection of an appropriate remedy to alleviate 

that limitation and enhance the biodegradation rate.

4.4.1 Baseline Simulations

The baseline simulation scenarios were developed such that numerical modeling

and laboratory-scale experimental conditions could be evaluated.  This research focuses 

on the use of numerical simulations to evaluate two baseline conditions.  These baseline 

simulations are termed experiments #1(a) and #3, following the terminology developed in 

conjunction with ongoing laboratory experiments being performed by Ms. Xin Song, a 

Ph.D. candidate in the Department of Civil and Environmental Engineering, University of

Maryland, College Park.  In each of these scenarios, the conditions were selected such

that the overall biotransformation rate is limited by a single interfacial mass-transfer

process (advection, sorption, or dispersion) or biokinetics.

First, in Experiment #1(a), a two-layered porous media was developed such that 

macro-scale transverse dispersion controls. This was established by selecting values of

the hydraulic conductivity and seepage velocity so that transverse dispersion from the 

32



fast-conductivity layer to the slow-conductivity layer was the rate-limiting process.  This

experiment was performed under conditions to promote relatively fast biokinetics and

rapid sorption/desorption to prevent either of these from becoming the limiting process.

In this scenario, a slug of electron donor is present in an otherwise pristine system (e.g., 

the leading edge of a migrating plume) and observations are made as to the effects of 

advection on the biodegradation.

Second, in Experiment #3, the porous media and sorption characteristics remain

the same as in #1(a), but the biological parameters were altered so that slower biokinetics 

prevailed as the overall rate limiting process.  Similar to #1(a), a “plume front” of an 

input slug was observed; however, this time under varying biokinetics.  Additionally, the 

plume was not in the form of an existing “slug” under initial conditions, but rather the 

plume was injected over the early timeframe of the model run and observations were 

made once the injection was stopped. 

33



5.0 NUMERICAL MODELING

In the previous chapter, a quantitative framework and a system of equations 

required to solve the problem task were developed.  This chapter describes the process

used in this study to develop a numerical model and code to solve the system of 

equations, and ultimately evaluate the quantitative framework.

5.1 Evaluation of Numerical Codes 

Numerous academic and commercial multidimensional reactive transport models

exist for the mathematical analysis of subsurface flow.  Such models generally vary with 

respect to several key features, namely the ease of use and alteration (e.g., FORTRAN or 

C++ based codes), the availability of user-friendly interface (e.g., Microsoft

WINDOWS
®

-based graphical user interfaces, or GUIs), and the output formats (ASCII

text and/or data files).  The objective of the numerical code selection process in this study

was to utilize an existing modeling program and to only modify the code as necessary to 

evaluate the quantitative framework and analyze the scenarios introduced in Chapter 4.

The numerical codes selected for evaluation had to meet the criteria needed to 

model the system of governing equations. Specifically, the codes needed to include 

multi-species reactive transport of the aqueous components, include key interactions with 

immobile system components (e.g., contaminant associated with the solid-phase and 

attached biomass), and be capable of capturing multiple kinetic reactions (e.g., 

biokinetics, and the kinetics of sorption) coupled together in one time step.  Numerous

codes are available allowing the user to model either the kinetics of sorption or 

biodegradation; however, a review of publicly-available products that could directly 
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model both kinetic components simultaneously limited the options significantly.  The 

resulting evaluation was completed for two models that appeared to meet the 

requirements of the study: FEREACT, a model with built-in capabilities of modeling

both types of kinetics, and RT3D (Reactive Transport in 3-Dimensions), a flexible 

modular-based program without the internal or pre-packaged ability to model both 

kinetics, but with a means that allows for the inclusion of relatively straightforward user-

defined kinetic modules.

5.1.1 PDREACT/FEREACT 

FEREACT, a finite element multi-species reactive transport model for one and 

two dimensional steady-state groundwater flow conditions was developed by Dr. Albert 

Valocchi and co-workers at the University of Illinois at Urbana-Champaign.  FEREACT 

was based upon two previous numerical codes PDREACT and PDPLUS also developed

by Valocchi and co-workers, and has, thus, undergone significant testing and verification 

(e.g., Tebes-Stevens et al., 1998).  The significant change between FEREACT and its 

predecessors is the manner and method used to solve the kinetic and transport equations 

(Valocchi et al., 1998).

FEREACT was initially chosen for use in this study primarily because it is a 

FORTRAN program that is easily executed utilizing a UNIX mainframe, its stated ease 

of use, and its modular reaction structure allowing for a wide variety of reactive

scenarios, as well as the inclusion of user-defined and generic kinetic reactions.  Thus,

the use of FEREACT required no underlying code alterations.  Valocchi et al. (1998) and 

Tebes-Stevens et al. (1998) provide a summary of the operation of FEREACT.
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FEREACT was developed primarily to examine the coupled effects of two-

dimensional steady-state flow, equilibrium aqueous speciation and kinetically-controlled

interphase reactions. Based upon a model assumption of steady-state flow under 

saturated conditions, the governing equation for the aqueous components in FEREACT 

is,

C

t
L C R j Nc

j

j j 1.. (5.1)

where C is the aqueous component concentration; L(Cj) is the advection-dispersion 

operator; Rj is the reaction source/sink terms; and Nc is the number of aqueous 

components, j. 

For one-dimensional saturated flow through hydraulically homogeneous and 

isotropic media, with homogeneous anisotropic dispersion within each aquifer layer, the 

advection-dispersion operator can be written as, 

L C
x

v C D
C

x y
D

C

yx x y( )  (5.2) 

where all parameters are as previously defined in Chapter 4.  For the case of two aqueous 

substrates, e.g., an electron donor and electron acceptor, Nc equals two, and Eq. 5.1 can 

be written for each component as follows: 

C

t
L C R

C

t
L C R

S

S S

A

A A

( )

( )
(5.3)

where S denotes the electron donor substrate and A denotes the electron acceptor 

substrate, as has been described in Chapter 4.
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Equation 5.3 is a system of non-linear partial differential equations that are 

coupled to one another by means of the kinetically-controlled reaction source/sink terms

R.  In addition to the aqueous components, the immobile components, i.e., biomass and 

sorbed substrates, can mathematically be described by a mass balance equation similar to 

Eqs. 5.1 and 5.2, with the exception that no advection-dispersion operator is incorporated: 

m

t
R

k

k k N
m

1.. (5.4)

where m is the immobile component concentration, Rk is the reaction source/sink terms,

and Nm is the number of immobile components.  Equation 5.4 may be rewritten to 

describe the specific immobile constituents of interest, e.g., the biomass and sorbed 

electron donor (not shown).  For the purposes of these simulations, the electron acceptor 

is considered to be nonsorbing.  This assumption has been used by others (e.g., Oya and 

Valocchi, 1997 and 1998) and was previously discussed in Chapter 4.

Equations 5.3 and 5.4 are nonlinear partial differential equations coupled together 

by the rate terms.  To efficiently solve this system, FEREACT utilizes an iterative 

approach for incorporating the geochemical and microbial reaction processes into the 

differential equation governing the solute transport.  This approach requires that the

reaction terms are first decoupled from the transport terms.  The sequential iterative 

approach (SIA) utilizes two-steps during each iteration to solve the decoupled equations

by first estimating the reaction source/sink term from a trial solution, and then applying

that solution as a constant reaction term in solving the mass balance terms of Eqs. 5.2 and 

5.4.  The iterations are continued until the convergence criteria are met.  The trial solution 

from each iteration then becomes the basis for the estimated reaction rate term for the 

next iteration.  Each nonlinear expression is linearized by being approximated by a 
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truncated first-order Taylor's series, which results in a set of Nc linear partial differential

equations and Nm ordinary differential equations that are decoupled and can be solved 

independently at each segment of the finite element grid.

5.1.2 RT3D 

The second modeling program evaluated for use in this research was the Reactive 

Transport in 3-Dimensions code (RT3D) which is a finite difference model code similar

in nature to FEREACT (finite element) that solves the coupled partial differential

equations for reactive transport of multiple mobile and immobile species.  However,

unlike FEREACT, RT3D was created to operate in a three-dimensional saturated 

groundwater system domain.  RT3D was developed by T. Prabhakar Clement and co-

workers at Battelle Pacific Northwest National Laboratory in Richland, Washington, as 

an enhancement to the basic multi-species version of the U.S. Environmental Protection

Agency transport code, MT3D (Zheng, 1990). At the outset of this project and code 

evaluation, the current version of RT3D was version 1.0, which uses the advection and

dispersion solvers from the DOD_1.5 (1997) version of MT3D (Clement, 1997).  The 

reaction program RT3D has been described in the literature and compared against both 

analytical and numerical solutions (e.g., Clement et al., 1997a and 1997b).  It has been 

successfully used in modeling a wide ranging variety of scenarios, such as solving for a 

system of reactive transport equations under sequential aerobic and anaerobic conditions 

(Lu, et al., 1999), and evaluating the natural attenuation of chlorinated solvents at a field 

site (Clement, et al., 2000). A detailed evaluation of the reaction kinetics used in RT3D, 

including Monod-type biodegradation, was completed by Sun et al (1998).  The appeal of 

the RT3D code is its unique implicit reaction solver that makes the code sufficiently 
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flexible for simulating various types of chemical and microbial reaction kinetics using 

both built-in reaction modules, and user-defined modules.

As with FEREACT, a basic model assumption of steady-state flow under 

saturated conditions leads to a series of governing equations for the aqueous and 

immobile components in RT3D, respectively, as is shown below: 

cs
s

ki

ij

k
ij

i

k rC
q

C
xx

C
D

xt

C
k

)(     (k = 1,2,…m) (5.5)

c
im

r
t

C ~
~

   (im = 1,2,…(n-m) (5.6)

where n is the total number of species; m is the total number of aqueous species; im is the 

total number of immobile species; xi and xj are the distance in the direction of xi and xj,

respectively [L]; t is time [T]; Ck is the aqueous phase concentration of the k
th

 species 

[ML
-3

]; Cim is the solid phase concentration of the im
th

 species [MM
-1

]; Dij is the 

hydrodynamic dispersion coefficient [L
2
T

-1
]; vi is the average pore water velocity [LT

-1
];

qs is the volumetric flux of water per unit volume of aquifer representing source and sinks 

of groundwater [T
-1

]; Csk is the concentration of species k in the source/sink [ML
-3

]; rc

represents the reaction rate of sources and sinks [ML
-3

T
-1

];  represents the reaction rate 

of the solid phase [MM-1T-1]; and 

cr
~

 is porosity (adapted from Clement, 1997).  These 

equations are consistent with the background presented for FEREACT, namely Eq. 5.1

when it has been rewritten to include the operator function of Eq. 5.2. 

Similar to MT3D, the reactive code RT3D only computes the chemical fate of the 

modeled species and requires the U.S. Geological Survey-developed groundwater flow 

code MODFLOW (McDonald and Harbaugh, 1988) for computing spatial and temporal
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variations in the groundwater head distribution (Clement, 1997).  Thus, saturated 

groundwater flow velocities are calculated from the hydraulic-head values that are 

computed by solving a three-dimensional groundwater flow model.  The flow equations 

used are taken from Zheng (1990): 

s

i

ii

i

S q
x

h
K

xt

h
S (5.7)

i

ii
i

x

hK
v (5.8)

where h is the hydraulic head [L], Ss is the specific storage coefficient [L
-1

], and Kii are 

the principal components of the hydraulic conductivity tensor [LT
-1

] in any of i directions 

(Clement, 1997).  Equations 5.7 and 5.8 can be rewritten as a single partial differential 

equation that can be solved numerically irrespective of the type of reactions included

within Eqs. 5.5 and 5.6.  This means that a numerical simulation in which only minor

variations are made between steps can be completed quite efficiently if the flow portion 

of the model is to stay the same – and therefore the flow component of the model actually 

need not be re-run each time.

The RT3D code was developed to solve the multi-species reactive transport

equations for aqueous species in the form of Eq. 5.5, and immobile species in the form of 

Eq. 5.6.  While the FEREACT code uses the SIA approach, RT3D utilizes the operator-

splitting (OS) numerical strategy.  This allows the program to solve any number of 

coupled transport equations as long as they conform to the format of Eqs. 5.5 and 5.6 

(Clement, 1997).  The solution algorithm initially solves the advection, dispersion and 
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source-sink mixing steps independently for all mobile components for the transport time

step dt.  Specifically, after solving the transport for a single time step, dt, the coupled 

reaction equations (aqueous and immobile source/sink) are solved implicitly by using a 

differential equation solver.  The solver automatically computes the time-step sizes 

required to precisely integrate the reaction equations (Clement, 1997).  The system of 

numerical equations: advection (Eq. 5.9), dispersion (5.10), source/sink mixing (Eq. 

5.11), and aqueous reaction, where r represents any number of reactions (Eq. 5.12) that 

comprise the solution at each time step are as follows: 

i

i

x

Cv

t

C
(5.9)

j

ij

i x

C
D

xt

C
(5.10)

s
s C

q

t

C
(5.11)

r
t

C
(5.12)

where the term r represents any number or type of reaction equations. 

Once the aqueous terms are solved, the aqueous and immobile terms are coupled 

and solved for the particular time step.  Figure 5.1 depicts a general flow-chart for the

solution technique of OS as applied in RT3D.
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Figure 5.1.  Flow chart depicting the solution strategy of Operator Splitting technique in 

RT3D (after Clement, 1997). 

The programs MODFLOW and RT3D are stand alone FORTRAN-based 

programs that can be operated using WINDOWS
®

-based executable files and input files 

generated using a basic text editor.  Due to the popularity of these types of models,

WINDOWS
®

-based GUI have been developed to assist users in the set-up, operation, and 

analysis of model scenarios.  For this research, the program obtained that bundled 

together MODLFOW and RT3D in the GUI format was Visual MODFLOW (VMOD)

created by Waterloo Hydrogeologic, Inc., of Waterloo, Ontario.  The VMOD program

allows the user to develop a model by using simple GUI-based menus and pull-down 

features to input the model data.  Execution of the model is completed within the VMOD 

environment, and output can be viewed within the package as well, or exported for other

purposes.

42



5.2 Selection of Numerical Code 

As stated above, FEREACT was originally selected as the numerical modeling

program for this research project.  During early implementation, several factors arose 

which eventually led to the selection of an alternative modeling program.  First, 

FEREACT and its predecessors, PDPLUS and PDREACT were written for use within a 

UNIX mainframe.  Our early observations indicated that the runtimes associated with

relying on the University mainframe system were prohibitive in nature; often the system

would “time-out” before the model had completed the scenario.  Thus, an alternate model

that was WINDOWS
®

-based and could be run on a personal computer was attractive for 

long runtimes.  Secondly, and more importantly, the FEREACT code is best suited for 

simple one-dimensional and two-dimensional systems of coupled equations where 

equilibrium conditions are present.  During our evaluation, it became obvious that 

operating under nonequilibrium, rate-limiting mass transfer conditions greatly increased

the runtime compared to modeling sorption under linear equilibrium conditions (thus, no 

additional kinetic reaction).  For these reasons, the VMOD program, incorporating 

MODFLOW and RT3D, was ultimately selected for performing the numerical

experiments required for this research.

5.3 Development of the UMD RT3D Module 

In the previous chapter, the system of governing equations (Eqs. 4.8, 4.9, 4.10, 

and 4.11) for the research problem was presented.  These equations are partial differential

equations (PDEs) that require time sequential integration over the model domain to arrive 

at a closed form solution.  As indicated above, while FEREACT required no alterations to 

the code to operate as intended, the use of RT3D required the development of a user-
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defined module to be used in the VMOD environment.  To accomplish this modification

of RT3D a series of ordinary differential equations was developed from the partial 

differential governing equations of Chapter 4, and from modifications to existing 

components of the RT3D pre-defined model packages, which were then combined into 

one user-defined reaction module.  Using the notation of RT3D, this series of equations 

can be written as follows:

s
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b

AD

sb
m DDKK
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s

n

dm
s DDKK

dt

dD
][ (5.16)

where [D] is electron donor aqueous concentration, replacing the term S, used in previous

sections (ML
-3

); m is the specific substrate utilization rate (T
-1

) (Note that normally in 

the environmental engineering literature, this term is symbolized by qmax or k as in earlier 

sections); Xs is the solid-phase biomass concentration (MM
-1

); KD is the donor substrate 

half-saturation coefficient (ML
-3

);  [A] is electron acceptor aqueous concentration (ML
-3

);

KA is the acceptor substrate half-saturation coefficient (ML
-3

); Km is the kinetic mass-
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transfer coefficient (T
-1

); Ds is the solid phase donor concentration (MM
-1

); Kd is the 

linear partitioning coefficient (L
3
M

-1
); YA/D is the stoichiometric ratio of acceptor

consumed to donor consumed; YX/D is the stoichiometric yield of biomass produced to

donor consumed; n is the Freundlich exponent; and kd is the biomass decay coefficient 

(T
-1

).  It should be noted that in these sets of equations, the Freundlich exponent was 

included for potential future application, but for the numerical scenarios completed as 

part of this research, the exponent was assigned a constant value of 1.0.  Eqs. 5.13 

through 5.16 are equations representing electron donor, electron acceptor, biomass, and 

sorbed-phase donor change with time that are analogous to Eqs. 4.8 through 4.11, 

respectively.  Because the RT3D code utilizes the OS technique, the advection and 

dispersion terms of Eqs. 4.8 and 4.9 for electron donor and acceptor, respectively, have 

been eliminated.  Another notable difference includes the use of biomass as the solid

phase concentration requiring use of conversion terms (bulk density and porosity) to 

convert to a mass per unit pore volume basis.

Equations 5.13 through 5.16 were written into a dynamically linked library (DLL) 

file in accordance with the procedures for developing a user-defined RT3D reaction 

module (Clement, 1997), the text of which is included as Appendix I.  Using the DLL 

format, a FORTRAN subroutine for the user-defined reaction package was compiled as a 

stand-alone DLL using Microsoft Fortran Powerstation.  Because of the complexity

associated with the use of RT3D within the VMOD environment, the process of 

compiling the new RT3D DLL module had to be completed by the technical developers 

of VMOD to ensure compatibility of the FORTRAN versions.  Therefore, the module

with the desired equations was prepared with the assistance of Dr. Sergui Chmakov, of 
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Waterloo Hydrogeologic, Inc.  Once compiled, the new module, rxns.dll was simply

copied into the same operating folder as the VMOD and RT3D executable files (*.exe)

such that the DLL module could be called once in the VMOD environment.  With the 

user-defined DLL in place, input of the model operating parameters and species details

was completed as would be for any of the pre-defined RT3D modules.  This new RT3D 

DLL module is referenced herein as the UMD module.  The operation of VMOD and the 

RT3D component within VMOD is described by Waterloo Hydrogeologic, Inc. (2000).

For this project, VMOD version 2.8.2.52, compiled December 2000 was used.

5.4 Numerical Modeling Settings

As presented above, the reactive transport model RT3D was selected for use in 

this research.  This section presents a brief summary of the numerical modeling input 

structure and techniques that were used during the completion of the model verification 

(Section 5.5) and experimental analyses (Section 5.6).

The individual model parameters were selected from several sources.  First, 

values were chosen from related research literature (e.g., Odencrantz, 1992).  This 

allowed in some cases for relatively straight forward comparison to previously published

results, e.g., the verification processes detailed below.  Second, values were selected from

literature sources determined to represent similar model, laboratory, or field conditions,

e.g., the selection of hydrogeologic parameters.  Efforts were made to ensure that the 

selected variables and parameters made “real-world” sense in terms of technical 

feasibility beyond the scope of the numerical modeling.

In order to minimize certain numerical or mathematical effects that can skew 

results, the well-known Peclet and Courant criteria were calculated and applied to the 
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selection of numerical parameters (Frind, 1982).  The Peclet and Courant Number

constraints provide the necessary conditions for the finite element mesh design and the

selection of time steps in transport modeling. The Peclet Number constraint requires that 

the spatial discretization of the flow regime is not larger than twice the dispersion

potential of the porous medium. The Peclet Number is defined as 
x

x

D
dxv

, dx is the 

longitudinal node spacing [L], and vx and Dx are as defined above.  It is generally stated 

that values of the Peclet Number should be less than 2 for a model run to ensure that 

numerical dispersion and oscillation are minimized (Odencrantz, 1992).

The Courant Number constraint requires that the distance traveled by advection 

during one time step is not larger than one spatial increment (i.e., one element).  The 

Courant Number is defined as 
dx

dtvx , dt is the length of each sequential time step [T], 

and vx and dx are as defined above.  Similar to the Peclet Number, a value of the Courant 

Number can be calculated for each model trial.  In practice, numerical effects are 

minimized when the Courant Number is less than 1.

As stated above, the reactive transport model RT3D was used for the numerical

simulations with the aid of the GUI VMOD. Scenario parameters were input into VMOD 

using the Input, Setup, and Run menus as described in the VMOD user’s manual

(Waterloo Hydrogeologic, Inc., 2000).  Once the data were input into the GUI interactive 

menus, the model trial was prepared to run.  All model runs as part of this research were 

completed in the same manner to ensure consistency.   For this research, the MODFLOW

96 version loaded into the VMOD program was used.  The Advection Method used was 

the Upstream Finite Difference Method with an Implicit GCG Solver with Jacobi 
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Preconditioners.  These criteria were selected to further minimize numerical effects while

providing accurate results (Waterloo Hydrogeologic, Inc., 2000).

5.5 Model Verification

Prior to conducting the modeling experiments detailed in Section 5.4, below, 

verification simulations were completed.  The verification process was conducted for 

several reasons.  First, simulations were completed to become familiar with the VMOD

program operation.  Second, while VMOD has been available commercially for several 

years, confirmation of its accurate operation was required, as represented by the 

analytical verification.  Third, verification of the operation of the new UMD revised code 

was necessary.  The latter was accomplished by comparing its output to numerical

simulations produced using the unaltered RT3D modules.

Verification was conducted using a two-dimensional solute transport scenario 

after Odencrantz (1991) and MacQuarrie et al. (1990).  One analytical verification and 

two numerical verification simulations were completed.  For each scenario, the model

domain was the same while the transport and reaction parameters were varied based on 

the type of scenario being modeled.  Figure 5.2 depicts the model grid used for the 

verification process.  The following sections present the procedures and results of the

verification process.
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Figure 5.2.  Model domain and input parameters for first order decay scenario.

5.5.1 Boundary and Initial Conditions

The first step in completing the verification process was to derive an analytical 

solution to the governing equations and to identify the initial and boundary conditions 

needed to reach a closed-form analytical solution.  In presenting the background

information on the initial and boundary conditions, it is convenient to present these 

conditions for a simple non-steady-state, one-dimensional problem.  In this case, one

initial condition and two boundary conditions are required.

The general initial condition for the solute concentration in the domain is: 

C x f x t( , ) ( ) ( )0 0 (5.17)

where the function f(x) may take on several forms, including the specific case where f(x) 

is a constant value.  For this model verification, a constant value is assumed and Eq. 5.17 

becomes:
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C x Ci( , )0 (5.18)

Thus, for a domain that is initially pristine, i.e., free of all contaminant solute i, Ci = 0.

At x = 0, there are two main types of inlet boundary conditions.  The so-called 

first-type inlet-boundary condition has the form:

C t g x x( , ) ( ) ( )0 0 (5.19)

where g(x) is a constant value  for all time t.  For this case, the value g(x) is assumed

equal to 0 or Co, written as: 

(5.20)C t
C t t

t t

o o

o

( , )0
0

0

The second common inlet-boundary condition is the so-called flux-type boundary 

condition where

D
x

c

x
C

vC t t

t t
x

o o

o0

0

0  (5.21) 

The flux-type inlet boundary condition, also called a third-type condition, is so-called due 

to its incorporation of a variable flux of solute across the boundary rather than a constant 

value Co for all time t.  Both inlet boundary condition types were evaluated as part of the 

verification.

The outlet or lower-boundary condition can also take different forms just as with 

the inlet-boundary condition.  In numerical modeling a commonly applied outlet 

boundary condition is a second-type boundary condition assuming an infinite domain.  In 

this case the domain outlet becomes a free-exit boundary where: 

C

x
t, 0 (5.22)
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Equation 5.22 essentially states that the solution to the ADR solute transport equation 

must converge to a solution (0) within the system domain.

5.5.2 Two-Dimensional Analytical Verification 

The governing equation for two-dimensional solute transport with first-order 

equilibrium sorption, isotropic advection, longitudinal and transverse dispersion, and 

first-order decay is, 

R
C

t
D

C

x
D

C

z

C

x
Cx z x

2

2

2

2  (5.23) 

where C is the aqueous-phase solute concentration [M L
-3

], t is time [T]; Dx is the 

longitudinal hydrodynamic dispersion coefficient [L
2
T

-1
]; x is distance in the direction of 

flow [L]; vx is the seepage velocity [LT
-1

]; Dz is the transverse hydrodynamic dispersion 

coefficient [L2T-1]; z is distance in the direction vertically transverse to the direction of

flow [L]; R is the retardation coefficient; and  is a first-order decay coefficient [T
-1

].

The initial and boundary conditions developed above for a one-dimensional domain can 

similarly be applied to this two-dimensional case.  Specifically, the initial domain

condition is expressed by Eq. 5.18, the inlet-boundary is the first-type boundary condition

of Eq. 5.20, and a free-exit boundary is applied as expressed by Eq. 5.22.  In addition, the 

two-dimensional case requires two more boundary conditions, for the top and bottom of 

the two dimensional domain (vertical or y-direction).  In both cases, the second-type

boundaries are applied where 0
dy

dC
, indicating a no-flow boundary.  Figure 5.2, above 

depicts the two-dimensional domain and boundary conditions adapted from Odencrantz 

(1992) and MacQuarrie, et al., (1990).
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A closed-form analytical solution to the governing ADR (5.23) with the selected 

initial and boundary conditions for the relative solute concentration at any point in space

or time takes the following form for a two-dimensional domain (Domenico and Schwartz, 

1990):

C x y t

C

x
erfc

x t

t

erf
y Y

x

erf
y Y

x

o x

x x

x

y y

, , ,
exp

/0 1

4 2
1 1

4 1 4

2

2

2

2

2

1
2

1
2

1
2

1
2

1
2

 (5.24) 

Although Eq. 5.24 is shown for the case of a two-dimensional domain, the solution can 

be readily adapted to three-dimensional conditions by incorporating a second bracketed 

error function term, similar to the y term above.  Naturally, for two-dimensional

conditions, z = 0 throughout the domain.

Along the centerline of the plume, where both y = 0 and z = 0, Eq. 5.24 can be 

rewritten as follows:

C x t

C

x
erfc

x t

t

erf
Y

x

o x

x x

x

y

, , ,
exp

/0 0 1

2 2
1 1

4 1 4

2

4

1
2

1
2

1
2

1
2

 (5.25) 

This analytical solution was written into a Microsoft Excel
®

(2000 version) spreadsheet 

for ease of computation and used to compile the data in a form that could be presented

graphically and easily compared to the numerical model solution.  For the analytical

verification of the VMOD suite, MT3D was selected to complete the numerical

simulation.  As discussed previously, MT3D is the basic multi-species transport model
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that serves as the basis of the RT3D program, and therefore warrants verification in 

addition to subsequent evaluations for RT3D as well. 

The input parameters for the analytical model verification are summarized in 

Table 5.1.  These data were applied in both the analytical spreadsheet calculations using

Eq. 5.25, and as the input data for the numerical simulation using MT3D.  The 

calculations of the analytical verification data, in spreadsheet format, are included in 

Appendix II. 

Table 5.1.  Input parameters for analytical verification - first order decay. 

Parameter Value Units

Seepage velocity 0.09 m/hr

Longitudinal dispersivity 0.6 m

Transverse dispersivity 0.005 m

Decay – first order 0.007 day
-1

Porosity 0.35 unitless

Soil bulk density 2,650 g/l

Soil partition coefficient 1.32x10
-4

l/g

Longitudinal profiles at 10, 40, 120, and 280 days were created from the analytical 

solution, using the parameters in Table 5.1 and Eq. 5.25, and were plotted against those 

from the numerical solution of VMOD and MT3D.  A comparison between the analytical

and numerical solutions is presented in Figure 5.3.  Clearly, the numerical solution 

compares very well to the analytical solution in all cases, confirming an accurate solution

using VMOD and MT3D. 
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5.5.3 Two-Dimensional Numerical Verification 

With the successful comparison of VMOD and MT3D to a closed-form analytical 

solution, the next procedure was to perform verification simulations of the new UMD 

module by comparing it to the unaltered built-in RT3D modules.  Two numerical

verification simulations were completed.  The first simulation was completed using a 

kinetic sorption reaction with no biodegradation, and the second simulation was 

completed using a double Monod biodegradation reaction with no sorption.  For each 

scenario, the UMD module was compared against the unaltered RT3D with the 

appropriate reaction module (e.g., kinetic sorption or double Monod biodegradation) 

selected from the VMOD transport reaction selection menu (Waterloo Hydrogeologic,

Inc., 2000).  Comparison plots were generated to present solute concentration along the

centerline of the plume in the longitudinal direction.

5.5.3.1 Kinetic Sorption Verification 

The domain used for the verification of the sorption component of the UMD 

module was the same as that of the analytical verification described above (e.g., Fig. 5.2).

The sorption verification was completed by first running VMOD using only the built-in 

rate-limited kinetic sorption module of RT3D.  The next step was to model the scenario 

using the UMD module with rate-limited kinetic sorption.  In order to compare the 

sorption modules with no external influences, the solute biodegradation and biomass

growth equations of the UMD module effectively had to be effectively “turned off”.  To 

accomplish this, the reaction parameter qmax (see Eqs. 5.13 through 5.15) was minimized.

This allowed the biodegradation and biomass growth to become negligible.  However, a 
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value of  qmax = 0 cannot be entered into VMOD.  Instead, to turn off the biodegradation 

and growth equations, a minimal value had to be entered, such as 10
-25

 or a value similar

in magnitude, to make those reaction terms much smaller than the scale of the other 

reaction sinks.  The relevant input parameters for the sorption verification are presented 

in Table 5.2. 

Table 5.2.  Input parameters for kinetic sorption verification. 

Parameter Value Units

Seepage velocity 1.65 m/day

Longitudinal dispersivity 0.6 m

Transverse dispersivity 0.005 m

Soil bulk density 2,650 mg/l

Porosity 0.35 unitless

Mass transfer coefficient, Km 100 day
-1

Soil partition coefficient, Kd 2.642x10
-4

l/mg

The results of the comparison of the RT3D sorption module and the UMD module

with biodegradation and biomass growth minimized are illustrated in Fig. 5.4.  Inspection 

of Fig. 5.4 reveals the comparison to be quite favorable, indicating that the rate-limited

sorption term as implemented in the UMD module functions appropriately.
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5.5.3.2 Double Monod Biodegradation Verification 

Comparison of the biodegradation component of the UMD module to the built-in 

RT3D equivalent was completed in a similar manner to that described above for sorption.

In this case, the sorption parameters (e.g., the kinetic partitioning coefficient, Kd) were

minimized to make the sorption reaction sink insignificant and to isolate the 

biodegradation components.  The relevant input parameters for the biodegradation 

verification are presented in Table 5.3.

Table 5.3.  Input parameters for biodegradation (dual Monod) verification. 

Parameter Value Units

Seepage velocity 1.65 m/day

Longitudinal Dispersivity 0.6 m

Transverse dispersivity 0.005 m

Soil bulk density 2,650 mg/l

Porosity 0.35 unitless

Mass transfer coefficient, Km ~0.0 day
-1

Soil partition coefficient, Kd ~0.0 l/mg

Half-saturation constant, Donor, KS 2.89x10
-6

mg/l

Half-saturation constant, Acceptor, KA 1.46x10
-1

mg/l

Specific utilization rate, qmax .238 day
-1

The results of the biodegradation comparison are illustrated in Fig.5.5.  As with

the sorption comparison of Fig. 5.4, the comparison is very favorable, indicating that the 

biodegradation and biomass growth reaction terms as implemented in the UMD module

provide accurate results. 
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5.6 Baseline Experiments

The following subsection provides the details of the simulations carried out to 

evaluate the quantitative framework developed in Chapter 4.  In Section 4.4.1, the 

baseline scenarios were briefly introduced.  For the numerical modeling portion of this

research, a conceptual model was developed that would be consistent with the sand tank 

reactor developed and utilized by Ms. Xin Song as part of her Ph.D. research.  The 

resulting conceptual model for the sand tank domain is depicted below in Fig. 5.6 

Figure 5.6.  Conceptual model domain for numerical scenarios.

Use of this basic two-dimensional domain allows for relatively complex modeling

experiments while still producing meaningful output to demonstrate that the quantitative 

framework can be used a priori to predict the overall rate-limiting phenomena.  For the

purposes of the RT3D modeling, a corresponding two-dimensional model was set-up and 
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a unit thickness was chosen (e.g., a thickness of 0.1 m with just one column/row) to 

eliminate any advection or dispersion into the third dimension.

Importantly, bench-scale experimentation can be performed in a bench scale 

system representing this conceptual model domain by constructing a bi-layered system of 

silica sands with varied properties (e.g., diameter, sorption capacity, etc.).  Further, this 

domain suits the needs for the quantitative evaluation by allowing for a straightforward 

numerical and experimental manipulation of several key conditions.  First, the processes 

of advection and dispersion are evaluated by implementation of macro-scale

heterogeneities represented by varied vertical stratification, with a different hydraulic 

conductivity in each layer.  Second, pore-scale (meso-scale) interfacial processes can be

evaluated by varying sorption/desorption conditions.  Note that while in the numerical

model changing the sorptive properties associated with each layers is straightforward, in 

the laboratory is more complicated.  Nevertheless, the sorptive properties can be altered

by appropriately selecting or modifying the porous media.  Finally, the micro-scale

(biodegradation) conditions can be evaluated by varying the numerical parameters

(Monod), or by changing the biomass culture or the type or concentration of the input 

electron acceptor in the bench-scale model. 

The numerical experiments presented here were broken down into two Phases of 

operation.  Phase One experimentation represented natural conditions (baseline) for each

of the test scenarios.  This phase represents intrinsic in situ biodegradation, where any 

number of factors can influence the environment and result in a rate-limiting process.

The specific background conditions that were modeled for each test scenario are 

described further below.  Phase Two experimentation represented enhancements to the 
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baseline conditions to develop an understanding of what engineered treatments can be 

employed to overcome the rate-limiting process.

In the remaining sections of this chapter, the Phase One baseline experiments and 

Phase Two enhancements are presented in detail.  Additionally, the input data for each

model run is presented, and the types of output data generated are discussed.  A summary

of the numerical scenarios, including the baseline limiting rate, dimensionless parameter

evaluation for the baseline scenario, and the predicted appropriate and alternative 

enhancements for each scenario is presented in Table 5.4.

For each of the numerical scenarios, a basic model domain was established.  The 

dimensions of the domain, grid sizing, and basic domain parameters (e.g., porosity and 

soil bulk density) did not vary throughout the scenarios.  To the extent possible, the basic 

domain parameters were selected to be consistent with the bench-scale laboratory sand

tank investigation being evaluated by Ms. Xin Song.  For each scenario described in the 

sections below, a table with the relevant parameters specific to that scenario is included.

Detailed spreadsheet tables with all scenario input parameters are also included in 

Appendix III.

62



T
ab

le
 5

.4
. 
 S

u
m

m
ar

y
 o

f 
th

e 
n
u
m

er
ic

al
 m

o
d
el

in
g
 s

ce
n
ar

io
s 

to
 d

em
o
n
st

ra
te

 t
h
e 

q
u
an

ti
ta

ti
v
e 

fr
am

ew
o
rk

.

E
x
p

er
im

en
t

E
x
p

er
im

en
ta

l 
S

et
u

p
 

L
im

it
in

g

R
a

te

D
im

en
si

o
n

le
ss

P
a

ra
m

et
er

s

P
o
ss

ib
le

S
ti

m
u

la
n

ts

P
re

d
ic

te
d

D
o

m
in

a
n

t

S
ti

m
u

la
n

t

D
es

ir
ed

 G
o

a
l

 f
ro

m

S
ti

m
u

la
n

t

2
-l

ay
er

 p
o
ro

u
s 

m
ed

ia
P

et
>

>
1

In
cr

ea
se

 f
lu

sh
in

g
to

in
cr

ea
se

 m
ix

in
g

M
ac

ro
-s

ca
le

 t
ra

n
sv

er
se

d
is

p
er

si
o
n

 =
 r

at
e-

li
m

it
in

g

p
ro

ce
ss

M
ac

ro
-s

ca
le

m
ix

in
g

co
n

tr
o

ls

S
h

2
' >

>
 1

 
A

d
d

 s
u
rf

ac
ta

n
t 

to
 i

n
cr

ea
se

d
es

o
rp

ti
o

n

A
er

o
b
ic

; 
F

as
t

K
in

et
ic

s
D

a6
 >

>
 1

In
cr

ea
se

b
io

k
in

et
ic

s

1
 (

a)
 

W
ea

k
 S

o
rp

ti
o
n

In
cr

ea
se

 f
lu

sh
in

g
to

in
cr

ea
se

 m
ix

in
g

In
cr

ea
se

d
 f

lu
sh

in
g

ca
u

se
s 

in
cr

ea
se

d

d
is

p
er

si
o
n

 a
n
d

m
ix

in
g

o
f 

su
b

st
ra

te
s 

b
et

w
ee

n
 

la
y
er

s

2
-l

ay
er

 p
o
ro

u
s 

m
ed

ia
P

et
>

>
1

In
cr

ea
se

 f
lu

sh
in

g
to

in
cr

ea
se

 m
ix

in
g

B
io

k
in

et
ic

s 
=

 r
at

e-
li

m
it

in
g

p
ro

ce
ss

B
io

k
in

et
ic

s

co
n

tr
o

ls
S

h
2

' >
>

 1
 

A
d

d
 s

u
rf

ac
ta

n
t 

to
 i

n
cr

ea
se

d
es

o
rp

ti
o

n

L
o
w

 A
cc

ep
to

r
D

a6
 <

<
 1

In
cr

ea
se

b
io

k
in

et
ic

s

In
cr

ea
se

 b
io

k
in

et
ic

s,
 

e.
g

. 
b

y

b
io

au
g

m
en

ta
ti

o
n
 o

r

st
im

u
la

ti
o

n
 o

f

b
io

m
as

s;

o
r 

b
y
 c

o
n

v
er

ti
n
g

fr
o

m
 a

n
ae

ro
b

ic
 t

o
 

ae
ro

b
ic

 c
o

n
d

it
io

n
s

3

W
ea

k
 S

o
rp

ti
o
n

In
cr

ea
se

d

b
io

d
eg

ra
d

at
io

n
 d

u
e 

to
 

im
p

ro
v

ed
 b

io
k

in
et

ic
s

63



5.6.1 Scenario 1(a)

This first test scenario was characterized as having relatively fast biokinetics and 

low sorption (Table 5.4).  Here, the macro-scale mixing between the two layers is of 

interest, and the macro-scale transverse dispersion between the fast and slow layers is 

predicted to be the rate-limiting process. As shown in Table 5.4, this condition was 

accomplished by setting the model input parameters such that the dimensionless

parameters have the following values: PeT >> 1, Sh’2 >>1, and Da6 >> 1.  The 

quantitative framework (Fig. 4.2) is presented again as Fig. 5.7, here highlighting the 

relevant dimensionless parameters and framework pathway for predicting the rate-

limiting process this scenario.  The resulting expectation for this scenario is that the 

biodegradation rate will be limited by the transverse dispersion into the slow layer, and,

thus, biodegradation will occur primarily at the interface between the two layers.

The relevant input parameters for Scenario 1(a), including the actual values of the 

dimensionless parameters for this scenario are summarized in Table 5.5 and the model

domain established for scenario #1(a) is presented in Fig 5.8.
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Table 5.5.  Scenario 1(a) baseline input parameters.

Parameter Value Units

Seepage velocity, fast layer 0.165 m/day

Seepage velocity, slow layer 0.010 m/day

Longitudinal Dispersivity, fast layer 0.003 m

Transverse dispersivity, fast layer 0.0015 m

Longitudinal Dispersivity, slow layer 0.001 m

Transverse dispersivity, slow layer 0.0005 m

Soil bulk density 1,700 mg/l

Porosity 0.35 unitless

Mass transfer coefficient 0.02 day
-1

Soil partition coefficient 8.23x10
-8

l/mg

Half-saturation constant, Donor 0.654 mg/l

Half-saturation constant, Acceptor .146 mg/l

Specific utilization rate 0.0238 day
-1

Transverse Peclet No. (PeT), fast layer 748 dimensionless

Modified Sherwood No.2 (Sh2’), fast layer 109 dimensionless

Damkohler No. 6 (Da6), fast layer 3 dimensionless

Transverse Peclet No. (PeT), slow layer 557 dimensionless

Modified Sherwood No.2 (Sh2’), slow layer 1301 dimensionless

Damkohler No. 6 (Da6), slow layer 31 dimensionless
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Figure 5.8.  Input conditions for Scenario 1(a). 

As illustrated, the baseline conditions for Scenario 1(a) were established such that 

the underlying lower conductivity layer was uncontaminated, except for a 0.1 m by 0.15 

m area of the layer adjacent to the upgradient inlet boundary where aqueous electron 

donor is present at a concentration of 10.0 mg/l.  For this layer it is assumed that the 

background electron-acceptor concentration is 0 mg/l.  In the upper higher conductivity 

layer, electron acceptor has migrated throughout at a background concentration of 2.0 

mg/l, due to the greater advection and dispersion in the higher conductivity material.  For 

example, maybe the electron acceptor has not migrated into this area if it is a co-

contaminant like nitrate.  Alternatively, the acceptor (e.g. oxygen) in the lower layer may 

have already been depleted due to the previous presence of other donor contaminant(s).

This scenario can be envisioned in practical terms as simulating an aquifer with a lens of

lower permeability material where contamination is present.  At the start of the model
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run, 2.0 mg/l of acceptor is continuously injected across the inlet boundary of the upper 

layer under a seepage velocity of 0.165 m/day.  These conditions for the baseline

condition were specifically selected to allow observation of the mixing of the electron 

donor or acceptor substrates at the interface between the two layers of varying hydraulic

conductivity.

5.6.2 Scenario 3

Under Scenario 3, the porous media and sorptive input conditions were similar to 

Scenario 1(a).  However, for this experiment, the biokinetics were selected to be the rate-

limiting process.  Thus, the expectation was that the slower biokinetics limit the overall 

biotransformation rate.  As summarized in Table 5.4, these conditions were accomplished

by setting the model input parameters such that the dimensionless parameters have the

following values: PeT >> 1, Sh’2 >>1, and Da6 << 1.  The quantitative framework (Fig. 

4.2) is presented again as Fig. 5.9, here highlighting the relevant dimensionless

parameters and framework pathway for predicting the rate-limiting process this scenario. 

The baseline input parameters for Scenario 3, including the actual values of the 

dimensionless parameters for this scenario are summarized in Table 5.6 and the model

domain established for scenario #3 is presented in Fig 5.10. 
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Table 5.6.  Scenario 3 baseline input parameters.

Parameter Value Units

Seepage velocity, fast layer 0.165 m/day

Seepage velocity, slow layer 0.010 m/day

Longitudinal Dispersivity, fast layer 0.003 m

Transverse dispersivity, fast layer 0.001 m

Longitudinal Dispersivity, slow layer 0.0003 m

Transverse dispersivity, slow layer 0.0001 m

Soil bulk density 1,700 mg/l

Porosity 0.35 unitless

Mass transfer coefficient 0.01 day
-1

Soil partition coefficient 8.23x10
-8

l/mg

Half-saturation constant, Donor 0.654 mg/l

Half-saturation constant, Acceptor .146 mg/l

Specific utilization rate 0.000238 day
-1

Transverse Peclet No. (PeT), fast layer 2975 dimensionless

Modified Sherwood No.2 (Sh2’), fast layer 217 dimensionless

Damkohler No. 6 (Da6), fast layer 0.12 dimensionless

Transverse Peclet No. (PeT), slow layer 685 dimensionless

Modified Sherwood No.2 (Sh2’), slow layer 799 dimensionless

Damkohler No. 6 (Da6), slow layer .44 dimensionless
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background

acceptor = 3.5 mg/l injection

of donor

source = 

10.0 mg/l;

and

acceptor =

5.0 mg/l
background

acceptor = 3.5 mg/l 

Figure 5.10.  Input conditions for Scenario 3. 

The input conditions for this scenario, as illustrated in Fig. 5.10, have important

deifferences from those of Scenario 1(a).  Under the Scenario 3 baseline conditions, the

domain is “pristine” or uncontaminated, with a background concentration of 3.5 mg/l

electron acceptor present.  At the start of the model run, an electron donor source is 

injected at a concentration of 10.0 mg/l for one day.  In addition, a continuous acceptor

concentration of 5.0 mg/l is injection from start to the end of the model run.  In this test

scenario, the biokinetics are limited for some reason, e.g., the indigenous biomass is at a 

low concentration, or the microbes present have slow biodegradation kinetics for the 

particular contaminant present.  This model scenario can be described as simulating a 

field site where an otherwise pristine aquifer (in this case both layers of the aquifer are 

“clean”) is impacted by a slug release from some contaminant source.  For example,

perhaps the source is identified and prevented from further release after the first day, and 

thus, the source is effectively “shut-off” after one day.  Observations for the baseline 
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Scenario 3 consisted of examining the migrating contaminant plume after the source was 

controlled after day one.

5.7 Enhancements to Baseline Experiments 

This section presents the details of the conditions for the Phase Two experiments

that were completed to represent select engineered enhancements to each of the baseline 

scenarios presented above.  Each subsection describes the engineered perturbations that

were implemented and their desired effect to stimulate the intrinsic conditions of the

baseline experiments.  The varied input parameters and resulting effect on the 

dimensionless parameters of the quantitative framework of Chapter 4 is also discussed.

5.7.1 Scenario 1(a) - Enhanced 

As presented above, Scenario 1(a) was set up to represent a condition where the

transverse dispersion between the lower (and slower) contaminated layer and upper (and 

faster) oxygenated layer is the factor limiting the biodegradation rate.  Therefore the 

engineered perturbation predicted to be appropriate for this scenario was aimed at 

increasing the rate of transverse mixing between the two layers to stimulate growth.

Numerically, this could be accomplished simply by increasing the value for the 

transverse dispersivity ( T) or the hydrodynamic dispersion coefficient (DT); however, in 

laboratory or field settings, changing either of these parameters alone is not feasible.

Therefore, a more plausible means of increasing the transverse dispersion and, thus, the

mixing between the two zones, is through an increase in the rate of advection, because 

the dispersion is in part a function of the seepage velocity (mechanical dispersion).
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To accomplish the predicted appropriate enhancement of increased flushing, the 

advection rate was increased from 0.165 m/day to 0.987 m/day in the fast layer, and from

0.010 m/day to 0.062 m/day in the slow layer, which represents an approximately six fold 

increase.  All other input hydrogeologic and reaction parameters remained the same.  As 

a result, the coefficient of dispersion (transverse) increases in the fast layer from a 

baseline value of 5.11x10
-4

 m
2
/day to 2.98x10

-3
 m

2
/day in the enhanced case.  Similarly,

in the slow layer, transverse dispersion increases from 2.73x10
-5

 m
2
/day to 7.87x10

-5

m
2
/day in the baseline and enhanced cases, respectively.  These changes should provide 

enhanced transverse mixing of the two substrates across the interface of the two 

conductivity zones.  The effect of this on the dimensionless parameters is a decrease in 

the value of Da6 from 3 and 31 in the fast and slow layers for the baseline condition, 

respectively, to 0.5 and 14.3 in the fast and slow layers for the enhanced condition, 

respectively.  A review of Fig. 5.7 indicates that this decrease in Da6 should reduce the 

degree to which the overall biotransformation rate is limited by dispersion.  Changes to 

all of the relevant dimensionless parameters are summarized in Table 5.7:

Table 5.7.  Scenario 1(a): comparison of baseline and enhanced dimensionless

parameters.

Parameter Baseline Value Enhanced Value Units

PeT - fast layer 748 791 dimensionless

Sh2’ - fast layer 109 19.2 dimensionless

Da6 - fast layer 3 0.5 dimensionless

PeT - slow layer 557 1547 dimensionless

Sh2’ - slow layer 1301 602 dimensionless

Da6 - slow layer 31 14.3 dimensionless
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As discussed above, alternative enhancements were also examined to more

conclusively demonstrate that the quantitative framework can indeed be used to select the 

appropriate enhancement.  Therefore, in addition to the use of flushing described above, 

enhancements to reduce mass transfer and biokinetics limitations were also completed.

Specifically, a model run was completed where the sorption/desorption mass transfer 

coefficient, Km, was increased to 1.0 day
-1

, from 0.02 day
-1

 in the baseline condition.

Additionally, a model run was completed where the specific utilization rate, qmax, was 

increased to 0.238 day
-1

, from 0.0238 day
-1

 under the baseline condition.  Caution was 

taken with regard to the increases in the relative rates detailed here such that the 

magnitude of the changes of the individual values as well as the dimensionless

parameters, in the alternative enhancements were of the same order of magnitude as the 

predicted appropriate enhancement, while also maintaining values that were scientifically

rationale (e.g., they could be demonstrated in the laboratory or a field site). 

5.7.2 Scenario 3 - Enhanced 

As discussed above, the Scenario 3 baseline condition represents a site where the

biokinetics are the rate-limiting process.  In a process similar to that for Scenario 1(a), the 

predicted appropriate enhancement is modeled under the same hydrogeologic and input 

conditions as the baseline case, and further, two additional alternative enhancements are 

analyzed.

Theoretically, the predicted enhancement to the baseline condition entails some

means of stimulating the natural biomass such that the biodegradation rate is increased.

In the field, this could be accomplished by several methods, including the addition of 
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biomass, or by increasing the specific utilization rate, e.g., via nutrient amendment, or by 

altering conditions from an anaerobic to aerobic setting.  For the predicted enhancement,

the latter was used.  Specifically, it was assumed that by altering conditions from nitrate-

reducing biotransformation to strictly aerobic conditions, an increase in the specific 

utilization rate could be achieved. Therefore, under the enhanced case, qmax was 

increased from 0.000238 day
-1

 to 0.238 day
-1

.  This increase in qmax, resulted in an 

increase in Da6, the dimensionless parameter of concern, from 0.12 under the baseline

condition to over 118 in the fast layer, and from 0.44 to over 392 in the slow layer.  These

changes indicate that biokinetics were no longer limiting (e.g., where the value of Da6

was <<1 in the baseline case prior to enhancement) as can be seen in Fig. 5.9.  Changes 

to the relevant dimensionless parameters are summarized in Table 5.8: 

Table 5.7.  Scenario 3: comparison of baseline and enhanced dimensionless parameters.

Parameter Baseline Value Enhanced Value Units

PeT - fast layer 2975 2975 dimensionless

Sh2’ - fast layer 217 217 dimensionless

Da6 - fast layer 0.12 119 dimensionless

PeT - slow layer 685 615 dimensionless

Sh2’ - slow layer 799 799 dimensionless

Da6 - slow layer 0.44 393 dimensionless

Similar to Scenario 1(a), alternative enhancements were also compared to the 

enhancement predicted to be appropriate.  Specifically, a model run was completed where

the mass transfer coefficient was increased to 1.0 day
-1

, from 0.01 day
-1

 in the baseline
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condition.  Additionally, another model run was completed where the advection rate was 

increased six-fold in an effort to increase the transverse mixing between substrates. 

5.8 Model Output

The following chapter presents the results of modeling experiments discussed

above.  The first section defines the two types (quantitative and qualitative) of output 

created to analyze and compare the data results, while the remaining sections provide the 

results of each of the baseline experiments.

5.8.1 Output Methods

Output results of numerical modeling for solute transport typically take the form

of a dataset consisting of x, y, and z coordinates, or the location of the node within the

domain, and the value (e.g., species concentration) at that location.  Such data files are 

often quite lengthy, especially when employing a fine grid mesh size, or when the area of 

the domain is large.  Therefore, it is convenient to develop a means of capturing the data 

in a format that is easily interpreted for comparison between different time steps and 

between different species at one point in time.

The two types of techniques used for visualizing output data in this work are 

quantitative (e.g., calculation of total mass in a system), and qualitative (e.g., contour 

plots).  The process of developing the output formats is described below. 

5.8.1.1 Qualitative Output Methods 

Qualitative output, in the form of contour plots provides for visual inspection and 

subjective comparison of model results between different time steps of the same species, 

or between different species during the same time step.  Within the VMOD environment,
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any number of time steps can be selected for which output data is generated.  For each 

selected output step, the x, y, and z location, as well as the species value (concentration)

is captured into a data file.  While VMOD provides an output menu where contour plots 

can be viewed, a more robust form of contour plot was desired.  To accomplish this, the 

output files were generated for the given time periods, and manipulated using Surfer
®
,

Version 6.0, developed by Golden Software, Inc.

The first step in creating a contour plot within Surfer
®

 is to “grid” the contour plot 

framework.  This consists of importing the model grid spacing and dimensions into 

Surfer
®

.  Shan and Stephens (1994) provide a recommended application of the gridding 

process to minimize the introduction of numerical errors as a result of an inaccurate grid 

development.  Their recommended application ensures that the actual grid spacing from

the numerical model is imported into Surfer
®

 and used for the subsequent contour 

development.

With the grid accurately defined, the contour plot is then generated by 

interpolating spatial distribution using the dataset of known points.  A common method

of contouring, and the method used here, is kriging.  Kriging is a geostatistical approach 

that relies on the actual spatial correlation and structure of data rather than by weighting 

the data to some constant value - e.g., weighted to the power of the inverted difference 

between two points under the inverse distance method of contouring (Anderson and 

Woessner, 1992).  Originally developed for the mining industry to map ore deposits, 

kriging has developed into a technique utilized throughout the statistical realm and 

environmental applications (Anderson and Woessner, 1992) as well as other fields where

data distribution is sought, such as the health industry and disease tracking (Krivoruchko 
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and Gotway, 2004).  A subset of kriging known as ordinary kriging (OK) is a rigorous 

method that unlike other methods, optimizes the spatial prediction of an unsampled

location by completing the spatial correlation of the unsampled location from local 

known points without needing to consider the actual fixed location of the known points.

Rather, the interpolation of the unsampled locations is completed by focusing on the 

spatial correlation or distance to the sampled or known points.  Once the contoured data 

file is generated, a two or three-dimensional plot can be developed.  Through the kriging 

variogram, a usefeul tool is generated, known as the kriging variance.  This variance of 

the distribution can be viewed at each estimation point to provide a measure of the 

uncertainty associated with the estimated value at the unsampled location.  Using Surfer
®

,

and the methods above for grid development and contouring through ordinary kriging, 

two-dimensional contour plots at the relevant time steps for each of the species, aqueous

and solid phase electron donor, electron acceptor, and biomass were produced.  Contour

intervals for each species were held constant to the extent possible to accurately compare

between contour plots for the time steps of interest.  For each contour plot, the illustration 

is presented with the longitudinal distance (0.0 to 1.2 m) along the x-axis and the 

transverse distance (0.0 to 0.3 m) in a perpendicular direction along the z-axis.  An 

example of a contour plot is depicted in Fig. 5.11 
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Figure 5.11.  Example contour plot of electron acceptor concentration in domain.

Contour interval is 0.2 mg/l. 

5.8.1.2 Quantitative Output Methods 

Quantitative output provides a measured or calculated result in the form of a 

specific value.  It is useful here to apply quantitative techniques to calculate a species 

mass balance on the system.  The mass balance is found by computing the total mass of 

each species as each given time step where output is generated.  This calculation was 

carried out for a couple of reasons.  First, a mass balance for all species at each time step 

can be compared to the same mass balance calculated at different sequential time steps.

This provides an indication of whether or not mass in conserved in the system during the 

numerical analysis, or whether “breakthrough” has occurred or a loss at the downgradient 

end of the domain is observed.  Second, a mass balance can be used to quickly compare

the relationship between species or phases of one species at various time steps as the 

model progresses (e.g., confirming that an increase in the solid-phase concentration due

to sorption is coupled with a decrease in aqueous-phase concentration).

Calculation of the species mass or mass balance can be completed in several 

ways.  First, the species mass can be computed at each time step within the operation of a 

numerical code by mathematical calculation of input, output, and residual mass.  When

this routine is not included or easily extrapolated from a numerical code, a second means
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of calculating mass balance is to compute mass using a contour plot and area calculation

(e.g., Mravik et al, 2003).  From basic integral calculus, the Riemann Sum is a calculation 

of the area under some function f(x).  If a contour plot was generated from output data, 

and the shape of the contour could be described as a differential function f(x), then 

integration of the area under the curve of the contour can be approximated by dividing 

the area under the contour curve into appropriately sized rectangles to cover the area and 

the summing the area of those rectangles.  This process can be achieved using a 

numerical code.

For the subject research, a more simplified means of calculating total mass was 

desired, namely due to the number of scenarios completed and the need to quickly view

output results without the need for further numerical computation.  To accomplish this, a 

method modified from the Riemann Sum was developed.  The output files generated by 

VMOD provide the x, y, and z positions and concentration at each node of the domain.

Rather than contour the data and attempt to describe the resulting contour intervals with 

some function f(x), a simplified approach was used where the area around each node with 

a concentration value was calculated.  Fig. 5.12 depicts a portion of the model domain

with a detail of a node.  As an example, with a grid spacing of 0.01 m by 0.01 m, the first 

node closest to the origin is located at 0.005 m (x direction) and 0.005 m (y direction) 

with the node centered in the 0.01 m by 0.01 m square.  The mass of the aqueous species 

at this location is given by Eq. 5.26 

porositymThicknessmAreaLmgionConcentrat
mgmass

speciesaqueous
)()()/(

)(

2  (5.26) 
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Similar calculations can be made at each node and summed over the entire domain.  This 

was accomplished by importing the output dataset into a Microsoft Excel
®

 worksheet.

The column of concentration data was multiplied by a column of areas (0.001 m
2
), unit 

thickness (1 m), porosity (0.35), and 1000 (unit conversion for liters to cubic meters) with 

the result tabulated in another column.  The resulting column was then summed for the

entire domain providing the total mass of the species at the given time step.  Similarly,

the total species mass for sorbed constituents can be calculated.  In this case, the porosity

term is replaced with the bulk density.  This calculation is given by Eq. 5.27 

densitybulkmThicknessmAreakgmgionConcentrat
mgmass

speciessolid
)()()/(

)(

2  (5.27) 

Figure 5.12.  Detail of domain grid with method of area calculation around nodes. 
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6.0 RESULTS AND DISCUSSION 

This chapter presents the results of the Phase One baseline scenario numerical

simulations as well as those of the Phase Two enhanced scenario numerical simulations.

In each of the following sections, one of the two evaluated scenarios is presented.  First, a 

qualitative evaluation of the results for the baseline conditions (depicted graphically 

using contour plots) is presented, followed by the results of the predicted appropriate 

enhancement to the baseline conditions (also with the results depicted using contour 

plots).  Next, a quantitative comparison between the baseline conditions and the 

conditions with the predicted appropriate enhancement is provided by using calculations 

of total mass in the system to quantify the effect of the enhancement.  Finally, a 

quantitative comparison is made between the effects of the predicted appropriate

enhancement and two alternative enhancements, also by using calculations of total mass

in the system.  The two scenarios evaluated here are presented sequentially, starting with

Scenario 1(a) (section 6.1) followed by Scenario 3 (section 6.2).

6.1 Scenario 1(a)

6.1.1 Baseline Simulation Results

As described in detail in Chapter 5, the baseline Scenario 1(a) is a representation 

of a field site where a contaminant source is present in a low conductivity layer (e.g., a 

layer of a lower permeability matrix or a clay stringer in a stratified sand aquifer) in 

which oxygen has been depleted, or is present at very small concentrations.  This layer is 

overlain by a higher conductivity layer where contamination is not present, but where 

there is a higher concentration of oxygen present, e.g., due to diffusion from the capillary 
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zone, and/or advection from an upgradient uncontaminated zone.  This is an important

scenario, as previous studies indicate that layers of varying hydraulic conductivity are an 

important factor affecting in situ biodegradation with contaminants predominantly

persisting in low hydraulic conductivity layers (e.g., Murphy, et al., 1992; Szecsody, et 

al., 1994; Wood, et al., 1994; Yang, et al., 1994). 

The baseline numerical simulation for Scenario 1(a) was run for 10 days using the 

VMOD/RT3D model.  As presented in Fig. 5.7, above, the inputs consist of a finite 

source of aqueous naphthalene in the slower layer (10 mg/l source in a 0.1 m long by 

0.15 m vertical area) with a background and constant influent injection concentration of 

2.0 mg/l oxygen for the upper layer alone.  The finite source of aqueous naphthalene can 

be seen as representing the leading edge of a plume migrating into an otherwise

uncontaminated zone of the lower conductivity layer.  Based on the quantitative

framework outlined in Chapter 4.0, the rate-limiting process in this scenario is the rate of 

transverse dispersion, which is predicted to manifest itself primarily in the form of a 

limited degree of transverse mixing between the electron donor naphthalene and the 

electron acceptor oxygen present in the lower and upper layers, respectively (Odencrantz, 

1992).

Contour plots for aqueous naphthalene, oxygen, biomass, and sorbed naphthalene

are presented in Fig. 6.1 through Fig. 6.4, respectively, at 1, 3, 6, and 10 days during the 

model run.  As can be seen in Fig. 6.1, the extent of longitudinal migration of the aqueous 

contaminant plume is marginal, with a longitudinal migration from the original source 

length of 0.1 m to approximately 0.25 m, where a concentration front of 1 mg/l is
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Figure 6.1.  Scenario #1(a): Contour plots of naphthalene (aq.) at 1, 3, 6, and 10 days.

Contour interval is 1.0 mg/l. 
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Figure 6.2.  Scenario #1(a):  Contour plots of oxygen at 1, 3, 6, and 10 days.  Contour 

interval is 0.2 mg/l.
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Figure 6.3.  Scenario #1(a):  Contour plots of biomass at 1, 3, 6, and 10 days.  Contour 

interval is 1x10
-4

 mg/kg.
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Figure 6.4.  Scenario #1(a):  Contour plots of naphthalene (sorbed) at 1, 3, 6, and 10 days.

Contour interval is 2x10
-6

 mg/kg for 1 day, 5x10
-6

 mg/kg for 3 days, and 1x10
-5

 mg/kg

for 6 and 10 days. 
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observed after 10 days.  Vertically, the contaminant source is initially highly concentrated

along the interface with the upper fast layer, with the concentration subsequently

decreasing to some extent after ten days; however, the center of the contaminant plume

still reveals a concentration of greater than 7 mg/l.

In Fig. 6.2, the oxygen (electron acceptor) profile is depicted.  As can be seen 

from these panels, a concentration gradient develops along the interface of the two layers,

where the initial oxygen concentration decreases from 2 mg/l in the upper layer, to 0 mg/l 

in the lower slow layer.  The concentration gradient occurs mostly in the upper layer 

where a traveling wave of reduced oxygen concentration develops as a result of 

degradation at the source end of the domain.  This traveling wave is identifiable by the

mounding appearance of the 1.8 mg/l contour moving across the domain.  A comparable,

but lagging, traveling wave of reduced oxygen concentration resulting from 

biodegradation at the source zone is also observed in the slow layer.  In addition to 

lagging individually, the vertical extent of this wave is smaller than in the fast layer, 

because the vertical extent of the oxygen diffusion and dispersion into the lower layer is 

minimal.  These differences between the fast and slow layers can be explained

quantitatively by reviewing Eq. 4.4, and the definition of dispersion: the longitudinal 

migration in the slow layer is limited by the reduced seepage velocity which is a direct a 

function of the media properties (i.e., the smaller hydraulic conductivity); and the 

reduced vertical dispersion into the slow layer is also a function of the slow layer media

properties (i.e., the small vertical transverse dispersivity) and the reduced seepage 

velocity.
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The biomass concentrations in the domain are presented in Fig. 6.3.  Because the 

contaminant source zone is limited to the initial 0.1 m of the slow layer, an overall 

reduction in domain-wide biomass concentration (initially 0.2 mg/kg) is evident due to 

the general lack of electron donor substrate (naphthalene) in much of the domain and the 

biological decay (decay coefficient = 0.00208 day
-1

); however, a biomass “finger” does 

develop along the interface between the two layers, coincident with the location of the

lower layer contaminant source zone.  The biomass concentration is still decreasing in 

this “finger” over each time step, although the degree of reduction is not as great as that 

for the surrounding areas.  This phenomenon occurred because there is at least a minimal

amount of electron donor contaminant available so as to reduce the rate of biomass decay 

as compared to that seen elsewhere in the domain.  In general, the longitudinal extent of 

the biomass “finger” correlates to the longitudinal extent of the naphthalene plume.  This 

phenomenon has been observed experimentally in similar systems.  For example,

Szecsody et al. (1994) performed a laboratory study of the transport and biodegradation

of quinoline in a two-dimensional horizontally-stratified porous media under dual 

substrate limitation.  They found that the interlayer mass transfer resulted in the arrival of 

substrate and oxygen 10’s to 100’s of hours sooner in the lower conductivity layer near 

the interface compared to other locations “deeper” within the lower conductivity layer 

where substrates arrived only via advection from the influent source.  Early arrival of 

substrates near the interface resulted in biodegradation of quinoline for a longer period

than within the layers, yielding increased growth in a 1-3 cm thick zone.

Finally, in Figure 6.4, the sorbed naphthalene data are depicted.  In this series of 

panels, the distribution of sorbed phase is seen to correlate with the presence of the 
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aqueous phase naphthalene, as expected. The mass transfer kinetics and partition

coefficients of this scenario were selected such that the system can be characterized as 

having an overall weak sorption sink.  Therefore, the extent of sorption is minimal.  As a 

result, after 10 days, in the center of the aqueous plume, where there is a maximum

concentration of 7.0 mg/l, the corresponding sorbed concentration was only 

approximately 1x10
-4

 mg/kg.

6.1.2 Enhanced Simulation Results - Flushing 

As presented in Chapter 5, the selected engineered perturbation for this scenario 

was aimed at increasing the rate of transverse mixing between the two layers to alleviate

the overall rate-limiting process of transverse dispersion and, thereby, stimulate growth

and increase contaminant degradation.  This perturbation was accomplished numerically

by increasing the rate of advection (i.e., the seepage velocity) and, therefore, the amount

of vertical transverse mechanical dispersion (defined as T times vx).  In the field, the

comparable engineered enhancement that is simulated here is the use of flushing (e.g., by 

installing vacuum or pumping wells) to increase the groundwater flow.  Note that the 

effect of increased advection would not occur if the dispersion coefficient was diffusion 

controlled, in which case the degree of mixing would be independent of the magnitude of 

the advection rate (MacQuarrie and Sudicky, 1990)

Like the baseline numerical simulation, the enhanced simulation for Scenario 1(a) 

was run for 10 days using the VMOD/RT3D model.  Thus, the input, as before, consisted 

of a finite source of aqueous naphthalene in the slower layer (10 mg/l source in a 0.1 m 

by 0.15 m area) with a background and influent injection concentration of 2 mg/l oxygen 

into the upper layer only.  Contour plots for aqueous naphthalene, oxygen, biomass, and 
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sorbed naphthalene are presented in Fig. 6.5 through Fig. 6.8, respectively, at 1, 3, 6, and 

10 days during the enhanced model run.

As can be seen in Fig. 6.5, the extent of longitudinal migration of the aqueous 

contaminant plume is substantial in each time step compared to the baseline case, with an 

ultimate longitudinal migration of the plume center from the original source location to 

approximately 0.7 m after 10 days, at which point the concentration in the center of the 

plume was approximately 3.5 mg/l.  The plume front is also more dispersed compared to 

the baseline case, as expected with the increase in mechanical dispersion.  For example,

the concentration front of 1 mg/l is now observed at greater than 0.8 m after 10 days, 

compared to 0.25 m for the baseline case.  Vertically, the contaminant source is initially 

highly concentrated along the interface with the upper fast layer, as was seen with the

baseline condition; however, after 10 days, compared to the baseline case, there is a 

greater degree of vertical dispersion and resulting loss due to biodegradation, as expected. 
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Figure 6.5.  Scenario #1(a) (enhanced):  Contour plots of naphthalene (aq.) at 1, 3, 6, and 

10 days.  Contour interval is 1.0 mg/l for 1 and 3 days, and 0.5 mg/l for 6 and 10 days. 
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Figure 6.6.  Scenario #1(a) (enhanced):  Contour plots of oxygen at 1, 3, 6, and 10 days.

Contour interval is 0.2 mg/l. 
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Figure 6.7.  Scenario #1(a) (enhanced):  Contour plots of biomass at 1, 3, 6, and 10 days.

Contour interval is 1x10
-4

 mg/kg.
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Figure 6.8.  Scenario #1(a) (enhanced):  Contour plots of naphthalene (sorbed) at 1, 3, 6, 

and 10 days.  Contour interval is 2x10
-6

 mg/kg.
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In Fig. 6.6, the oxygen (electron acceptor) profile is presented for the enhanced 

case.  As can be seen from these panels, a concentration gradient similar to that seen in 

the baseline case (Fig. 6.2) develops along the interface of the two layers; however, due 

to the increased advection, oxygen in the upper layer is replenished more quickly than for 

the baseline case.  As a result, the concentration gradient more rapidly becomes uniform

in the upper layer, because the traveling wave of reduced concentration, or mounding

appearance of the 1.8 mg/l contour, travels across the domain significantly faster than in 

the baseline condition.  This replenishment of oxygen across the upper layer results in an 

increased transverse dispersion of oxygen into the lower layer.  Stated in other terms, the 

result is a greater and more consistent depth of penetration of oxygen into the lower layer.

This result, as seen by others (e.g., Odencrantz, 1992) results in a greater zone of mixing

of the two substrates.

The biomass concentration profiles are presented in Fig. 6.7.  Similar to the

baseline condition, an overall reduction in domain-wide biomass concentration from the 

initial concentration of 0.20 mg/kg is evident, again, due to biomass decay (where the

decay coefficient = 0.00208 day
-1

) and the fact that the contaminant electron donor is 

only present in a small area of the domain.  However, the biomass “finger” that 

developed in the baseline condition, also develops here along the interface between the 

two layers in the location of the lower layer contaminant source zone.  Further, the 

longitudinal and vertical extent of the biomass “finger” is much greater for the enhanced 

case.  Although the magnitude of the biomass concentration is still overall decreasing in 

this “finger” over each time step, compared to the baseline condition, there is an overall

increase in the area within each contour interval, and a resulting greater extent of the 
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biomass “finger” along the interface.  These observations are a direct result of the greater 

zone of mixing between the electron donor and electron acceptor substrates discussed 

above.  Other modeling (Odencrantz, 1992; Wood, et al., 1994; Yang, et al., 1994) and 

laboratory (Szecsody et al., 1994) studies with two-dimensional (vertical) stratified 

systems, under dual substrate limitation, have also demonstrated increased microbial

activity and biomass production near the two-layer interface where hydraulic mixing

between waters carrying different substrates occurs due to dispersion.  Although the 

accumulation of biomass in these mixing regions can have a positive effect on 

contaminant degradation, it could also lead to localized plugging of a subsurface 

formation, creating additional permeability heterogeneity and significantly reduced 

groundwater flow and transport (Sturman et al., 1995). 

In Fig. 6.8, the sorbed naphthalene data are illustrated.  Similar to the baseline

conditions, the distribution of the sorbed phase is correlated with the location of the 

aqueous phase naphthalene plume, with a longitudinally extended solid phase distribution

along the domain length.  Because the scenario was set up with relatively weak sorption 

parameters, and the plots of aqueous phase naphthalene under the enhanced conditions

(Fig. 6.5) indicate greater decreases in the aqueous concentrations over time as compared

to the baseline conditions, it was expected that the concentration of sorbed phase 

naphthalene throughout the lower layer would also decrease as compared to the baseline 

conditions.  This effect is observed, albeit not dramatically, via inspection of the contour 

plots alone; however, the effect is illustrated more clearly by an examination of the total

sorbed mass in the system over time, which is discussed in the next section.
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6.1.3 Mass Calculations for Scenario 1(a) 

As discussed in Chapter 5, the contour plots illustrated in Figs. 6.1 through 6.8 

provide a means of qualitatively comparing the results of the baseline scenario to the 

enhanced conditions; however, it is also important to perform a quantitative analysis with

which to examine the contaminant mass removal for the baseline and enhanced cases in 

light of the quantitative framework.  Therefore, using the methods described in 

subsection 5.8.1.2, graphs of total mass in the system over the runtime (10 days) were 

generated for the constituents of concern (i.e., aqueous donor, aqueous acceptor, biomass,

and sorbed donor).  For the initial mass in the system, the calculation was made from the 

initial domain concentration and region as appropriate for each constituent (e.g., for

aqueous donor, the calculation was made using the 10 mg/l concentration in the 0.1 m by 

0.15 m source zone of the lower layer).  Such calculations were made for both scenario 

trials (baseline and enhanced) within Microsoft Excel
®

 so that the data could be 

compared on the same series of graphs.  For each series of graphs, the baseline condition 

data are plotted using black-filled symbols for each data point, while the enhanced 

condition symbols are plotted using symbols with an open center.

The total mass of aqueous naphthalene in the system is presented as a function of 

time in Fig. 6.9.  These data clearly show an overall greater decrease in the total mass for 

the enhanced condition, with greater advection, and therefore, increased dispersion.  For

example, the total mass at time 10 days in the baseline condition is approximately 4.1 mg, 

whereas the total mass at the same time with the enhanced condition is approximately 3.6 

mg.  However, it is important to note that although the naphthalene plume degrades at a 

more rapid rate with increased advection, it does travel further in a given time frame then
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the plume does with the baseline conditions (e.g., compare Figs. 6.1 and 6.5), as 

discussed above.  Thus, if the plume location is more important in a given situation than

the time needed for substantial mass loss (e.g., due to proximity to a receptor of concern), 

then a rapidly migrating contaminant plume may be of greater concern, despite the fact 

that the mass loss is occurring more rapidly (MacQuarrie and Sudicky, 1990).  In addition

to looking at the total mass removal, it is also instructive to examine the rate of mass

change, which was calculated from the slope of the total mass plot (change in mass

divided by change in time).  The resulting total rates of change for the two conditions are 

shown in Table 6.1. 

Table 6.1.  Scenario 1(a):  comparison of removal rates for aqueous naphthalene as a 

function of time.

Day Baseline Rate (mg/day) Enhanced Rate (mg/day)
0-1 0.269 0.510

1-3 0.146 0.161

3-6 0.089 0.125

6-10 0.069 0.102

As can be seen in Table 6.1, the initial removal rate of naphthalene is significantly 

greater in the enhanced condition early in the model run (day 0 to 1).  This can be 

explained by the initial proximity of the electron donor substrate to the electron acceptor

along the interface and the resulting increased transverse mixing between the two in the

enhanced case, and is consistent with the results seen by others (e.g., MacQuarrie and 

Sudicky, 1990; Odencrantz, 1992).  As the time series progresses, the zone of mixing is 

broadened across the interface; however, the concentration gradients are reduced with 

time, and therefore, the difference in the mass removal rates becomes less over time.
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The rate of change for the electron donor can also be explained by a review of the 

total mass data for the electron acceptor oxygen (Fig. 6.10).  These data indicate that the 

total mass of oxygen initially decreases for both conditions, as the electron acceptor is 

used up by the biomass in the source zone.  However, for the enhanced condition, the 

oxygen mass in the system quickly rebounds due to the constant injection of the “clean” 

groundwater in the fast layer at the higher advection rate, whereas for the baseline 

condition, the initial drop is more significant.  Although the time required for the oxygen 

mass to rebound is slower for the baseline condition due to the slower advection (input)

rate the rebound does occur, nevertheless.  As a result, the difference in the rates of 

removal of donor mass becomes less dramatic over time, as discussed above.

Interestingly, after day 1, the total mass of electron acceptor is less in the baseline

condition than for the enhanced, which is in contrast to the observations of Odencrantz 

(1992) who found for a similar domain that increased transverse dispersion resulted in a 

greater decrease of electron acceptor mass.  However, these contrasting observations can 

be explained by the differences between this study and that of Odencrantz (1992).  One, 

Odencrantz (1992) changed transverse dispersion by simply changing the magnitude of 

the dispersivity, whereas, in this study, dispersion was changed by increasing advection.

Although Odencrantz’s (1992) approach was easier to implement and evaluate, the 

approach used in this study is a more realistic simulation of how dispersion can be 

increased in the field.  Two, there is a difference between the input domain of this study

and that of Odencrantz (1992), where there was a background concentration of electron 

donor present throughout the entire domain.   Odencrantz’s (1992) conditions led to 

increased electron acceptor usage compared to that with the “slug” plume of donor in the
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current study.  However, Odencrantz’s (1992) use of a background concentration 

throughout the entire domain led to the mass loss of the donor out of the domain due to 

advection, a condition that was avoided in this study by only presenting the contaminant

source in the slower layer.  This method better captures the interfacial nature of the 

mixing between the electron donor and acceptor as the two input zones are kept separate

with a sharp interface between the two. 

Figures 6.11 and 6.12 present the comparison of total mass of biomass and sorbed 

naphthalene, respectively.  Based on Fig. 6.11, a comparison of the total mass of biomass

illustrates that there is no perceptible difference in the biomass for the two conditions.  As 

was discussed above, the total mass of biomass in the system was expected to decrease 

over time due to the use of the input biomass decay constant (0.00208 day
-1

) and the fact 

that the input donor was limited to just a small corner of the domain.  While trials could 

have been completed without the biomass decay factor, this is not reflective of nature 

and, thus, the comparison of these data to that of bench-scale or field experiments could 

be inappropriate.  Several researchers (e.g., Sudicky, et al., 1990; MacQuarrie and 

Sudicky, 1990) evaluated similar scenarios with varying advection rates and observed 

more dramatic effects in terms of increases in donor mass with increased advection, and

therefore dispersion.  Nevertheless, these researchers did not utilize the decay coefficient, 

and a quantitative evaluation through calculation of the total biomass over time was not 

completed.  However, it can be inferred from the results of those studies that use of a 

decay coefficient of zero in the current study would have also produced more dramatic

results in terms of enhanced electron donor contaminant mass removal with increased 

advection and dispersion than observed in Fig. 6.9.
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With regard to the degree of sorption, it is evident that the enhanced advection

condition resulted in a reduction in the concentration of sorbed naphthalene due to the 

increased biodegradation, albeit a small difference as is seen in Fig. 6.12.  This small

effect was expected because of the input conditions which correspond to relatively weak 

sorption kinetics.
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6.1.4 Evaluation of Alternative Perturbation Results 

As discussed in detail in the previous chapter, there are several engineered

perturbations that could possibly be used in an effort to alleviate the rate-limiting factor

of the baseline conditions and enhance the overall biotransformation rate.  In the previous 

sub-sections, the predicted appropriate enhancement to the baseline conditions of 

Scenario 1(a), namely increased transverse dispersion as a result of increased advection, 

was evaluated and compared to the results of the baseline numerical model solution.  As 

discussed in Chap. 5, this predicted appropriate enhancement was selected by using the

key dimensionless parameters and the quantitative framework (Fig. 4.2) to determine the 

rate-limiting processes that needed to be alleviated, thus, allowing for increased 

biodegradation.  Other enhancements (e.g., biokinetic enhancements, or the use of 

surfactant to increase desorption) while technically feasible, were not predicted to 

provide useful results because the use of these enhancements would not address the rate-

limiting conditions according to the quantitative framework.  For example, under 

Scenario 1(a), where macroscale mass transport controls, and transverse dispersion is 

limiting, increasing the biokinetics (e.g., an increase in qmax) was predicted to have little 

or no positive impact on the overall biotransformation rate compared to the baseline 

condition because unlike the predicted enhancement of increased advection and 

dispersion, the increase in biokinetics would not address the rate-limiting conditions 

quantified by the value of Da6.  In this subsection, the results of the numerical model runs 

with the predicted appropriate enhancement are compared to those of the alternate 

enhancements, which based on the quantitative framework are not predicted to stimulate

the overall biotransformation rate.  As discussed in Chap. 5.0, the input criteria for these
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additional enhancement trials were selected such that the order of the magnitude of 

parameter variation was at least comparable to or greater than that for the appropriate 

enhancement in order to provide as near consistent conditions as possible. 

Two alternative enhancements were further evaluated.  Biokinetic stimulation – 

here modeled by increasing the substrate utilization rate, qmax – could be accomplished in 

the field by numerous means, including introducing additional biomass or changing the

dominant terminal electron acceptor conditions (e.g., changing from anaerobic to aerobic

conditions).  Enhancement to alleviate rate-limited desorption – here modeled by 

increasing the mass transfer coefficient – could be accomplished by the addition of a 

surfactant to promote greater desorption mass transfer.  Each of these additional 

enhancements were run using the same input conditions and run time as the baseline and 

enhanced runs detailed above, except for the enhancement-specific input variable that 

was changed.   The results of the model runs for each of the three enhancements were 

compared using the quantitative analysis detailed above.  The graphs of aqueous donor, 

aqueous acceptor, biomass, and sorbed donor, are illustrated in Figs. 6.13 through 6.16, 

respectively.

The comparison of the three enhancements for aqueous donor is presented in Fig. 

6.13.  Based on these data, the enhancement predicted to be appropriate (flushing) is seen 

to have a greater impact on the total mass reduction than for the biokinetic approach, but 

less of a reduction than for the mass transfer approach.  While the former effect was 

expected, the latter effect was not.  The explanation for the effect of increased mass

transfer requires a review of the graphs for sorbed donor and for total donor mass

reduction over time and is discussed below. 
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Focusing now on a comparison of flushing to biokinetics, clearly the flushing

enhancement resulted in an overall increase in the total mass reduction that was nearly 

two-fold.  This was expected when the dimensionless parameters are evaluated and the 

quantitative framework is inspected.  Based on that analysis, only the increase in 

transverse dispersion, which in turn decreases the scale of Da6, can be seen to effectively 

alleviate the rate limiting factor for the scenario.  In fact, an examination of Da6 indicates

that improving biokinetics by increasing qmax should actually make the system even more

limited by transverse dispersion than the baseline case.  Thus, if such an enhancement

were made, an even larger increase in advection, and, in turn, dispersion would be 

required to improve the overall biodegradation rate.

Further evidence of the increased overall biokinetics as a result of the flushing is 

provided by inspection of the graph of total mass of acceptor over time presented in Fig. 

6.14.  The trends in these data are similar to those presented in Fig. 6.10, the comparison

of the baseline conditions to the flushing enhancement.  As before, the flushing 

enhancement produces greater mass loading of acceptor, which would result in greater

availability to the biomass than for the biokinetic and mass transfer enhancements.  The 

comparison of biomass for the three enhancements is presented in Fig. 6.15.  For the 

reasons discussed above with regard to Fig. 6.11, the effect of the three enhancements is 

not readily evident on the total mass of biomass in the system.

Finally, the comparison of total mass of sorbed donor is presented in Fig. 6.16.

As discussed above, the graph comparing the total mass of aqueous donor in the system 

for the three perturbations (Fig. 6.13) indicates that the mass transfer enhancement was 

effective at reducing the aqueous donor mass; however, this effect needs to be interpreted 

113



in the context of the total mass (aqueous plus sorbed) of naphthalene in the system.  A 

review of Fig. 6.16 clearly shows that the reduction in aqueous donor for the mass

transfer case is not a result of biotransformation, but rather can explained as being due to 

sorption of the naphthalene to the aquifer materials.  Indeed the sorption mass increase in 

the mass transfer case is approximately four orders of magnitude greater than for either

the flushing or biokinetic cases.  Further, whereas the flushing enhancement indicated a 

greater mass reduction of aqueous donor (see Fig. 6.13), this is not correlated with an 

increase in the sorbed mass. In fact, as evidenced by Fig. 6.16, the flushing enhancement

actually has a slightly lower degree of sorption than the biokinetic case.  This analysis is 

further supported by a review of the total donor mass (aqueous plus sorbed) in the system 

for each perturbation, which is presented in Fig. 6.17.  Here it is evident that the overall 

total mass reduction is greater for the case of enhancement by flushing than for either the 

mass transfer or biokinetic enhancements.
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6.2 Scenario 3

6.2.1 Baseline Simulation Results

As described in detail in Chapter 5, the baseline Scenario 3 represents a field site 

where a low conductivity layer (e.g., a layer of a lower permeability matrix or clay 

stringer in a stratified sand aquifer) is overlain by a higher conductivity layer.  This 

scenario is similar to Scenario 1(a) in several ways.  Specifically for Scenario 3, like 

Scenario 1(a), the domain consists predominantly of “clean” groundwater, into which a 

small contaminant plume or slug flows or is present.  Nevertheless, there are several key 

differences between the two scenarios.  First, Scenario 1(a) was established with a 

contaminated lower layer overlain by a “clean” higher conductivity layer.  In contrast, 

Scenario 3 was set-up to be initially free of contamination throughout both layers.

Second, whereas oxygen was supplied to the upper layer in Scenario 1(a), the conditions

are such in Scenario 3 that the entire two-layer aquifer system is initially deficient in 

oxygen, with nitrate-reducing anaerobic conditions present.  Third, the two-layer system

in Scenario 3 became “contaminated” as a finite slug of donor was injected over a 

discrete time (one day).  Based on the quantitative framework outlined in Chapter 4.0, the 

rate-limiting process in this scenario is the biokinetics for naphthalene degradation, which 

is predicted to manifest itself primarily in the form of a limited degree of degradation 

(e.g., anaerobic conditions and a low substrate utilization rate).

Contour plots for aqueous naphthalene, oxygen, biomass, and sorbed naphthalene

at 1.25, 2.5, 3.75, and 5 days during the model run are presented in Fig. 6.18 through Fig. 

6.21, respectively.  As can be seen in Fig. 6.18, the aqueous naphthalene plume moves

rapidly across the upper higher conductivity layer, exhibiting a moderate reduction from
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Figure 6.18.  Scenario #3:  Contour plots of naphthalene (aq.) at 1.25, 2.5, 3.75, and 5 

days.  Contour interval is 1 mg/l for 1.25 days, and 0.5 mg/l for 2.5, 3.75, and 5 days. 
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Figure 6.19.  Scenario #3:  Contour plots of acceptor (nitrate) at 1.25, 2.5, 3.75, and 5 

days.  Contour interval 0.3 mg/l.
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Figure 6.20.  Scenario #3:  Contour plots of biomass at 1.25, 2.5, 3.75, and 5 days.

Contour interval is 1x10
-5

 mg/kg.
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Figure 6.21.  Scenario #3:  Contour plots of naphthalene (sorbed) at 1.25, 2.5, 3.75, and 5 

days.  Contour interval is 5x10
-7

 mg/kg.
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the 10 mg/l injection concentration over the time period from 0 to 1 day.  After a time

interval of 5 days, the aqueous plume front has extended to 1.0 m from the source, where

the aqueous concentration is 1 mg/l.  At this point, the center of the plume in the upper 

layer is at around 0.75 m where a concentration of approximately 5 mg/l is observed.  In 

the lower layer, there is a much more limited distribution of aqueous naphthalene.  This is 

due in part to the slow advection rate for the layer, along the fact that the slug injection 

time was for only 1 day.  As a result, at 5 days, a small plume (less than 1 mg/l

distribution), which is dissociated from the central plume in the upper layer, is found in 

the lower layer between 0.0 and 1.0 m.

The acceptor (nitrate) concentration profile in the domain is presented in Fig. 

6.19.  In this series of panels, the nitrate concentration does not show evidence of being

significantly reduced from the background conditions (3.5 mg/l) for up to 3.75 days.

Even after 5 days, nitrate concentrations at background (3.5 mg/l) or the influent 

concentration (5 mg/l) are evident throughout the domain with the exception of a limited

area around the center of the upper layer aqueous donor plume, between 0.7 m and 1.0 m, 

where the acceptor concentrations range from 2.7 mg/l down to 1.8 mg/l.  A similar but 

less dramatic reduction in nitrate concentration also occurs in the lower layer in the area 

of the aqueous naphthalene plume centered around 0.5 m.  It is clear from this series of 

contour plots that the relatively low value of the substrate utilization rate (qmax) results in 

poor biotransformation of the donor, despite the fact that ample mixing of the substrates 

appears to be occurring, the necessity of which has been observed by several researchers 

(e.g., Wood, et al., 1994; Cirpka, et al., 1999). 
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The biomass concentration data are presented in Fig. 6.20.  Similar to Scenario 

1(a), an overall reduction in domain-wide biomass concentration is evident.  As was 

discussed above, this overall decrease is likely due to the lack of aqueous donor 

availability throughout the domain coupled with the inclusion of biomass decay.  Also 

similar to Scenario 1(a), the biomass “finger” develops along the interface between the 

two layers, where a sharp concentration gradient develops.  This profile is consistent with 

a similar numerical model experiment performed by Odencrantz (1992); however, a 

notable difference between the results of that study and the current study is the fact that 

despite the presence of well mixed donor and acceptor, the biomass concentrations in this

study do not increase, but rather decrease.  This could also be explained by the difference 

in the biokinetic parameters used by Odencrantz (1992) and those used in this study.

Again, this is evidence that despite the proper longitudinal and transverse mixing of the 

donor and acceptor substrates, the biodegradation is inhibited by the rate limiting process,

which here, as described above, is the biokinetic transformation rate. 

The sorbed concentrations in the domain are presented in Fig. 6.21.  Similar to 

Scenario 1(a), the sorbed phase distribution is seen to correlate with the aqueous phase 

donor concentrations, as expected.  Further, the mass transfer kinetics and partition 

coefficients of this scenario were also selected such that the system can be characterized 

as overall having a weak sorption sink and, therefore, the extent of sorption is minimal.

6.2.2 Enhanced Simulation Results – Biokinetic Perturbation 

As presented in Chapter 5, the selected engineered perturbation for this scenario 

was aimed at increasing the rate of biodegradation kinetics, as the biokinetics were

established as the process limiting the overall biotransformation rate.  In contrast to 
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Scenario 1(a), transverse dispersion is not the limiting rate in this scenario, as is obvious 

when reviewing the contour plots of the aqueous donor and acceptor (Figs. 6.18 and 6.19, 

above).  Thus, in this scenario, the engineered perturbation was selected to increase the in

situ biodegradation rate by improving the biokinetics.  This perturbation was

accomplished numerically by increasing Da6 via an increase in the specific substrate 

utilization rate, qmax.  In the field, the engineered enhancement that is simulated here may

be implemented in several ways.  First, the concentration, and/or distribution of the 

biomass itself could be enhanced via bioaugmentation.  Second, nutrients or other 

amendments, such as co-metabolites, that are found to be deficient in the system could be 

added to improve the biokinetics or increase the amount of biomass.  Third, anaerobic or 

anoxic conditions can be changed to aerobic conditions.  The latter is the practice that is 

employed here.   Specifically, for this enhancement, the electron acceptor is changed 

from nitrate in the baseline condition, to oxygen in the predicted appropriate simulation.

This change is assumed to result in an increased specific substrate utilization rate.

Like the baseline numerical simulation, the enhanced simulation for Scenario 3 

was run for 5 days using the VMOD/RT3D model.  The input, as before, consisted of an 

aqueous naphthalene injected across the full height of the upgradient boundary for one 

day, with a background concentration of 3.5 mg/l acceptor (oxygen) and an influent 

injection concentration of 5 mg/l oxygen into the upper layer only.  Contour plots for 

aqueous naphthalene, oxygen, biomass, and sorbed naphthalene at 1.25, 2.5, 3.75, and 5 

days during the enhanced model run are presented in Fig. 6.22 through Fig. 6.25, 

respectively.
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Figure 6.22.  Scenario #3 (enhanced):  Contour plots of naphthalene (aq.) at 1.25, 2.5, 

3.75, and 5 days.  Contour interval is 0.5 mg/l for 1.25 and 2.5 days, and 0.2 mg/l for 3.75 

and 5 days.
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Figure 6.23.  Scenario #3 (enhanced):  Contour plots of acceptor (oxygen) at 1.25, 2.5, 

3.75, and 5 days.  Contour interval is 0.3 mg/l.
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Figure 6.24.  Scenario #3 (enhanced):  Contour plots of biomass at 1.25, 2.5, 3.75, and 5 

days.  Contour interval is 5x10
-5

 mg/kg.
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Figure 6.25.  Scenario #3 (enhanced):  Contour plots of naphthalene (sorbed) at 1.25, 2.5, 

3.75, and 5 days.  Contour interval is 5x10
-7

 mg/kg.
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As can be seen in Fig. 6.22, the longitudinal and vertical extent of the aqueous 

donor plume has been substantially reduced in each time step compared to the baseline 

conditions, although the ultimate longitudinal migration of the plume center from the 

influent injection location is still to approximately 0.75 m after 5 days, as for the baseline 

condition.  However, in the enhanced case, the concentration in the center of the aqueous 

plume was approximately 2.6 mg/l at 5 days, as compared to 4.5 mg/l for the baseline 

case.  Further, the plume front is also much less dispersed.  These results suggest that

increased reduction in both the concentration and volume of the plume has occurred due 

to the increased biomass activity.  Vertically, the contaminant source no longer exhibits

the dissociated plume remnant in the lower layer.  This indicates that what little donor has 

migrated in the slower layer was rapidly degraded by the biomass.  To confirm the 

interpretations, it is useful to examine the distribution of electron acceptor.

The spatial distribution of the electron acceptor plume for the enhanced case, now 

oxygen, follows a similar general pattern as for Fig 6.23.  However, the acceptor

concentration profile in the vicinity of the donor plume in the enhanced cases yields 

much different results than for the baseline conditions.  Whereas in the baseline case the

acceptor exhibited only a limited reduction in the immediate vicinity of the donor plume,

there is a substantially greater utilization of acceptor in the enhanced case.  Specifically, 

while the background and influent concentrations for the enhanced case were the same as 

for the baseline conditions, the extent of donor mineralization in the upper layer is 

significantly greater and, thus, the oxygen is essentially depleted in the upper layer

between 0.6 m and 0.9 m, after 5 days.  This result of the perturbation was expected, 
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because there appeared to be sufficient substrate mixing in the baseline case, but the low

utilization rate was limiting the overall biotransformation rate.

The result of the enhanced utilization rate on the biomass distribution is illustrated

in Fig. 6.24.  As for the baseline case, it was expected that the biomass would decrease in 

the domain given the configuration of background acceptor, the lack of background 

donor, and the assumption of biomass decay.  However, for the enhanced case, after 5 

days, there appears to be less of a decrease in the biomass concentrations across the

domain.  In addition, a very steep concentration gradient (too fine to define individual 

contour lines) develops along the entire height of the influent injection zone at left of 

each panel due to significant biodegradation occurring as the acceptor enters the domain.

Furthermore, similar to both the baseline condition and Scenario 1(a), fingering of the 

biomass develops along the interface between the two layers; however, it is not as 

pronounced in this case, likely due to the fact that the donor is injected across the entire

thickness of the domain and, thus, the zone of mixing and dispersion is distributed 

throughout the domain.

Finally, the concentration profile of sorbed donor is illustrated in Fig. 6.25.  In 

general, the spatially distribution of the sorbed plume is consistent with the baseline 

condition, with the sorbed phase correlated with the aqueous donor distribution, as 

expected.  In this case however, the corresponding sorbed phase concentrations are lower 

than the corresponding values in the baseline condition.  This further demonstrates that

there is increased mass removal of the electron donor (aqueous and sorbed) in the

enhanced condition. 
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6.2.3 Mass Calculations for Scenario 3 

In section 6.1.3, above, mass calculations comparing the total mass in the system

over time for the baseline and enhanced Scenario 1(a) were presented.  Using the same

approach (i.e., the methods described in subsection 5.8.1.2), graphs of total mass in the

system over the runtime for Scenario 3 (5 days) were generated for the constituents of

concern (i.e., aqueous donor, aqueous acceptor, biomass, and sorbed donor).  The initial 

masses in the system were calculated as before (e.g., for aqueous donor, the calculation is 

0.0 mg because the domain is assumed “clean”).

The total mass of aqueous naphthalene in the system is presented as a function of 

time in Fig. 6.26 for both the baseline and enhanced conditions.  These data clearly show 

an overall greater decrease in the total mass for the enhanced condition, as expected, with

the greater specific substrate utilization rate.  Specifically, although for both conditions 

there is an initially “clean” domain that is “contaminated” by a contaminant slug, the

overall increase in aqueous donor after 1 day is smaller in the enhanced case than that of 

the baseline condition.  Specifically, while the mass loading or flux of aqueous donor is 

the same for both cases, the increased specific substrate utilization rate in the enhanced 

case results in greater biotransformation of the incoming mass during the injection time

(from 0 to 1 day) than for the baseline case.  However, after day one, biotransformation

continues and the total mass decreases in both cases.  To evaluate the total mass removal

during this phase of the run, it is also instructive here to examine the rate of mass change 

(see Table 6.2), as was done with Scenario 1(a).
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Table 6.2.  Scenario 3:  comparison of removal rates of aqueous naphthalene. 

Day Baseline Rate (mg/day) Enhanced Rate (mg/day)

1.25-2.5 0.492 0.980

2.5-3.75 0.575 0.564

3.75-5 0.613 0.429

Similar to the pattern seen in the comparison of baseline to enhanced conditions for 

Scenario 1(a), the values in Table 6.2 indicate the initial removal rate of naphthalene is 

significantly greater in the enhanced condition early in the model run (day 0 to 1).

Similar to Scenario 1(a) this can be explained by the initial proximity of the electron

donor substrate to the electron acceptor along the injection front and the increased

utilization rate in the enhanced case.  However, the time series progresses, the 

concentration gradients are reduced with time, and therefore, the difference in the mass

removal rates between the baseline and enhanced conditions becomes less over time.

The interpretation of the aqueous naphthalene data is reinforced by a review of 

the graph of electron acceptor mass data presented in Fig. 6.27.  In this graph, the 

acceptor changes little in the baseline condition where the nitrate is subject to mass loss 

out of the domain due to advection and biodegradation, as well as increases in mass due 

to loading from the injection front.  The overall result is a moderate increase of nitrate

mass over the first few time steps.  In sharp contrast, the acceptor oxygen in the enhanced

case significantly decreases during the injection period from time 0 to day 1 (see Fig. 

6.26).  In this case, the background concentrations in the vicinity of the injection front, as 

well as much of the influent acceptor are consumed during the biotransformation of the 

influent donor up to day 1.  Once the injection of donor is stopped at day 1, the mass of 
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acceptor slowly rebounds in the enhanced case as the injection of oxygen continues while 

there is decreasing donor available with which to mix and continue the biotransformation

process.

The total mass of biomass over time for the baseline and enhanced conditions is 

compared in Fig. 6.28.  As discussed before, there is an overall decrease in the total mass

of biomass under both conditions; however, there is less of a decrease, albeit small, in the 

enhanced condition.  This trend of increased biomass is consistent with the results of 

other researchers (e.g., Odencrantz, 1992), and is expected based on the selected 

perturbation’s effects on substrate utilization and correspondingly on the biomass growth.

If, as previously discussed, the decay term was not used, or perhaps an alternate 

contaminant profile was used, a greater increase in the mass of biomass would be 

expected for the enhanced condition.

In Fig. 6.29, the total mass data for the sorbed donor is presented for the baseline

and enhanced conditions.  Inspection of the data indicates that sorption continues to 

increase of sorbed mass in both conditions, but that the rate and magnitude of the increase 

in the baseline condition is much greater than for the enhanced case.  This is in contrast to 

the results of Scenario 1(a) where the sorbed mass increased at similar rates and 

magnitudes for the two conditions.  This could be due to the fact that increasing the

biokinetics directly impacted the substrate utilization rate in scenario 3, whereas 

increasing the advection in scenario 1(a) was not directly tied to the biodegradation rate, 

but rather increased the overall biotransformation rate by indirectly increasing the

transverse dispersion and thereby increasing substrate mixing which increased the 

utilization rate.
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6.2.3 Evaluation of Alternative Perturbation Results 

Following the same approach as used for scenario 1(a), alternative engineering

enhancements that might be considered as possible options for increasing the overall 

biotransformation rate were compared to the predicted appropriate enhancement.  In the 

case of Scenario 3, the alternative enhancements considered were flushing (increased 

transverse dispersion through increased advection) and mass transfer (increased 

desorption).  These alternative enhancements were evaluated by comparison to the 

biokinetics enhancement (direct biostimulation) for each constituent: aqueous donor, 

aqueous acceptor, biomass, and sorbed donor.  The results of the additional numerical

trials for the alternative enhancements were compiled in the manner as above for 

comparison of total mass of the constituents aqueous donor, acceptor, biomass, and 

sorbed donor, in the system, as illustrated in Figs. 6.30 through 6.34, respectively.

The comparison of the three enhancements for aqueous donor mass is presented in 

Fig. 6.30.  Inspection of the graph indicates that the biokinetics enhancement results in a 

greater mass reduction over time compared to enhanced mass transfer.  The result of the 

mass calculation for the flushing perturbation indicates a greater mass removal rate after 

an initial period of much greater mass increase.  This pattern may be due to the fact that

initially the advection rate is so large that Da2 <<1, in which case the rate of advection of 

substrate is so fast compared to the biodegradation rate that there is insufficient time for

biodegradation.  As a result, the naphthalene mass transiently increases in the system.

However, after approximately 1.5 days, breakthrough occurs for this higher advection 

rate and thus mass is lost via advection out of the domain.  The resulting mass loss is 

considerable, but it does not represent mass removal through biodegradation as other
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mass data presented below will confirm.  This mass loss due to breakthrough has been 

documented by others (e.g., Odencrantz, 1992) and was discussed in detail above.  The 

comparison of electron acceptor mass in the system is presented in Fig. 6.31.  Based on 

these data, it is clear that the greatest utilization of acceptor, which is indicative of the

greatest amount of donor biotransformation, occurs for the predicted appropriate 

enhancement, biokinetic enhancement.  In fact, the biokinetic enhancement case is the

only one of the three that results in acceptor mass loss confirming the interpretation of the 

electron donor data during the one day injection period, as expected.  After day one, the 

mass of acceptor for the biokinetic case begins to increase slightly because, as indicated

above, once the concentration gradient begins to decrease so to does the rate of 

degradation.

In Fig. 6.32, the total mass over time of biomass is presented.  As discussed 

before, all three enhancements (and the baseline condition) exhibit an overall decrease in 

mass over time.  The overall decrease in biomass for the biokinetics enhancement is less 

than that for the mass transfer and flushing enhancement albeit by only a relatively small

amount.

The data for the total mass of sorbed donor over time is presented in Fig. 6.33.  As 

with the case for the aqueous donor, the biokinetic enhancement case exhibits a smaller

mass increase in the sorbed phase mass than that of the mass transfer and flushing 

enhancements.  As discussed above, this result is due to the fact that the predicted

appropriate enhancement indeed has the greatest impact on mass removal of the aqueous

phase donor, which in turn will result in a small amount of sorption as there is less total

mass available for partitioning into the solid phase.  Here, as for Scenario 1(a), the mass
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transfer enhancement approach results in the greatest increase in sorbed phase due to the 

increased mass transfer coefficient.  While under alternative scenarios this increased mass 

transfer may result in increased desorption, under the current conditions it has the 

opposite effect of increasing sorption because the aquifer is initially free of both aqueous 

and solid phase contaminant.

Finally, in Fig. 6.34, the results of the total donor mass (both aqueous and sorbed) 

analyses are presented.  The results, as expected, indicate that the predicted appropriate 

enhancement has the greatest overall impact on reducing the mass of electron donor 

contaminant in the system.
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7.0 SUMMARY AND CONCLUSIONS

This research examined the complex interrelationships between physical, 

chemical, and biological processes under heterogeneous subsurface conditions and their 

effect on the intrinsic in situ biodegradation of contaminants as well as the efficacy of 

engineered approaches for enhancing in situ bioremediation.  Specifically, the goal of the 

current research was to develop a fundamental quantitative approach for understanding

the impact of these physical, chemical, and biological heterogeneities, and the interfacial

interactions resulting from these heterogeneities, on the biodegradation of subsurface 

contaminants.  To elucidate the effects of these heterogeneities, this research first 

developed a quantitative framework comprised of a set of dimensionless parameters

based on the relevant subsurface heterogeneities and interfaces. These parameters were 

defined so as to capture the effects of competing physiochemical and biokinetic processes 

(e.g., dispersion, sorption, and biodegradation).  Secondly, this framework was examined

using a series of systematic numerical modeling experiments to determine the impacts of 

these heterogeneities on in situ bioremediation, and to use the quantitative framework to 

determine what, if any, engineered actions will augment the intrinsic in situ

biodegradation rate.  Thus, the quantitative framework could be utilized in practice to

both determine what are the potential rate-limiting reaction(s) in an environment, and to 

also assist in determining what field actions (e.g., flushing or pumping, surfactant

addition, and/or biostimulation) could be used to alleviate the effects of the rate-limiting

condition.  This research subject is part of a larger integrated project, combining the 

theoretical evaluation presented here with experimental investigations that are being

completed by others in the Department of Civil and Environmental Engineering at the 
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University of Maryland, College Park.  Thus, the results of this research will have an

immediate impact on other researchers.

In the first component of this research, A FORTRAN-based numerical model that 

incorporated kinetic mass transfer and dual-substrate limiting biokinetics was developed

by modifying a commercially-available product, RT3D, developed by the Battelle Pacific 

Northwest National Laboratory with the assistance of programmers at Waterloo

Hydrogeologic, Inc.  This “used-defined” module was loaded into Visual MODFLOW, a 

WINDOWS
®

-based GUI for running the RT3D program.

Subsequently, several test scenarios for examining the quantitative framework

were developed in concert with the ongoing laboratory bench-scale sand tank reactor 

experiments.  Each of these scenarios was specifically designed to simulate a realistic 

subsurface condition, in which one particular process (physical, chemical, or biological)

was limiting the overall biotransformation rate.  Two of the scenarios were examined in 

this study.  These scenarios were examined in three steps.  First, a baseline condition was 

established where a contaminant was introduced to the two-layered model domain under 

background conditions.  The baseline conditions were used to examine the impact of the 

given rate-limiting condition on the intrinsic biotransformation of the contaminants.

Second, a specifically selected enhancement to the baseline condition was introduced.

Specifically, this engineered enhancement, e.g., flushing (increased advection and 

dispersion), mass transfer increase (enhanced desorption) or biostimulating amendment

(improved biokinetics), was selected because it was predicted to enhance the baseline 

condition by alleviating the rate limiting condition.  This selection was based on the use 

of the quantitative framework, and an examination of the particular dimensionless
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parameters that would be altered as a result of the enhancement.  Subsequently, the 

enhanced numerical runs were compared to the results of the baseline conditions.  If the 

physico-chemical rate-limiting process(es) can be alleviated by implementing the 

appropriate engineered perturbations, then the biokinetics become the overall rate-

controlling process.  This condition can be considered optimal in the sense that at that 

point, conventional amendments to enhance the biological activity (e.g., nutrients, 

electron donors or acceptors, cosubstrates, etc.) can be added to achieve the greatest 

overall biotransformation rate achievable by the native organisms.  Third, and finally, 

alternative enhancements were selected that while beneficial under certain circumstances,

were not predicted to be effective at alleviating the rate-limiting condition based on the 

dimensionless parameters of the quantitative framework.  These alternate enhancements

were compared then to the predicted appropriate enhancement as well as the baseline 

condition.

In Scenario 1(a), the relevant were established such that the dimensionless

parameters resulted in the following conditions: PeT >> 1, Da6 >> 1, and Sh’2 >>1.  This

caused a situation in which dispersion was the rate-limiting process.  The baseline 

condition was established such that a portion of the lower conductivity layer of the 

domain was contaminated with the electron donor substrate, and was deficient in electron 

acceptor.  Furthermore, electron acceptor (oxygen) was flushed into the system only via 

the higher conductivity layer overlying the contaminated zone at a rate of 0.165 m/day.

As a result, degradation of the electron donor was dependant upon the contact and mixing

of the electron donor and acceptor across the interface between the two regions of 

different hydraulic conductivity.  Specifically, successful degradation required dispersion
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of the oxygen acceptor from the higher conductivity layer into the lower conductivity

layer, and conversely, dispersion of the electron donor from the lower conductivity layer 

into the higher conductivity oxygen bearing zone.  The enhancement that was predicted 

to be appropriate for this scenario was an increase in the rate of advection, which in turn

would result in greater transverse dispersion of the two substrates across the interface,

leading to greater mixing and, thus, greater biotransformation.  Increasing the advection

had a direct effect on the dimensionless parameter Da6.  Whereas under the baseline 

condition Da6 >> 1 resulted in the rate of dispersion controlling, for the enhanced 

condition, the advection rate was increased six-fold to approximately 0.98 m/day which

caused Da6 to decrease from 3 to 0.5 in the faster layer, such that dispersion was no 

longer rate-controlling, based on the quantitative framework.  The effect on the transverse 

dispersion was an increase from 2.6x10
-4

 m/day to 1.5x10
-3

 m/day.  It was further found 

that alternative enhancements, i.e., increased mass transfer (desorption) and 

biostimulation, resulted in either less donor removal or removal at lower rates than for the 

predicted appropriate enhancement.  This was the predicted result since according to the

quantitative framework, only by alleviating the rate-limiting process of dispersion (Da6)

could the overall biotransformation rate be increased.

In Scenario 3, the baseline conditions were established such that the domain was 

operating under background anaerobic conditions with a only a low rate of 

biotransformation possible (e.g., due to a low specific substrate utilization rate).

Specifically, the dimensionless parameters were selected such that PeT >> 1, Da6 << 1, 

and Sh’2 >>1, indicating that biokinetics were the overall rate-limiting process.  In this 

case, a contaminant plume (electron donor) and acceptor were injected into the domain
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for a set time.  This would be comparable to a field site where a pristine aquifer becomes

contaminated by the leading front of the plume.  As with Scenario 1(a), several 

enhancements were feasible, but only one was predicted to alleviate the rate-limiting

process.  In this case, only the enhancement of the biokinetics would result in greater 

biotransformation, by enhancing the degree to which Da6 was >>1.  Therefore to

enhance the biotransformation rate, the substrate utilization rate (qmax) was increased 

from 0.000238 day
-1

 to 0.238 day
-1

.  In contrast, the alternative enhancements of flushing 

to increase transverse dispersion and mass transfer enhancement to enhance desorption

did not have an appreciable effect on the overall biotransformation rate as predicted. 

The results of these numerical modeling experiments indicate that the quantitative

framework was a useful tool for identifying which of the relevant system processes is 

rate-limiting.   As previously noted, in each test scenario, the baseline conditions were

established such that one process was rate-limiting.  In each case, in accordance with the 

framework, the specific enhancement predicted to alleviate the rate-limiting process 

resulted in an increase in the overall rate and extent of biotransformation.  The 

correctness of this selection was further demonstrated by comparison of the predicted 

appropriate enhancement to the alternative enhancements, with the result that the 

predicted appropriate perturbation had the greatest effect on increasing the rate and extent 

of total contaminant mass removal.

Another significant observation made while performing the numerical

experiments was the degree of difficulty associated with appropriately selecting the 

underlying variables (e.g., DT, qmax, and km) of the dimensionless parameters to conform

to the requirements of the framework.  For example it was found that the model was very 
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sensitive to discrete changes in the variables.  In other words, small changes in certain 

values resulted in unstable model performance (e.g., a failure to converge within the set 

time limits and spatial constraints of the domain).  Further, selection of the individual 

variables and criteria was also difficult in that often changes in one variable to shift the 

dimensionless parameters appropriately at the third tier of the quantitative framework

(e.g., where advection, sorption, dispersion, or biokinetics is determined to be 

controlling), often resulted in changes to the dimensionless criteria of the second or first 

tier as well.   This was an important observation as it highlights the fact that in practice,

engineered remedies can be selected and implemented in the field, but with little or no

success because the selected remedy also caused another unintended change in some

other condition, rendering the remedy less effective. 

In conclusion, the results of these modeling experiments have successfully

documented the utility of the quantitative framework as a predictive tool for guiding in 

the selection of a site remedy that will be successful at enhancing in situ bioremediation.

Although application to actual field conditions remains to be demonstrated, the selected 

model scenarios did incorporate a significant degree of complexity and heterogeneity,

representative of the field.  Finally, the results of this study indicate that care must be 

taken in selecting engineered enhancements, as system changes based on criteria that are 

geared toward alleviating one rate-limiting process can have unforeseen consequences on 

another.
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8.0 RECOMMENDATIONS FOR FURTHER WORK 

As discussed above, the modeling results of this study confirmed the hypothesis 

that the quantitative framework developed as part of this research could successfully be 

utilized to predict the rate-limiting process hindering intrinsic bioremediation, as well as 

to aid in selecting the appropriate engineering technique(s) to enhance natural conditions.

The examination of the quantitative framework under this research was theoretical 

in nature, relying on numerical modeling techniques.  Thus, one obvious recommendation 

for further work is to complete laboratory-scale experimentation to support the theoretical 

numerical experiments completed as part of this research.  As discussed above, this 

experimentation is currently in progress, being completed by Ms. Xin Song, a Ph.D. 

candidate in the Department of Civil and Environmental Engineering. 

In addition, numerical modeling presented here could be expanded to apply the 

evaluation of the quantitative framework and the selection of enhancement processes to a 

larger experimental domain.  Whereas the model domain used in this research conformed

to the dimensions of the sand tank used for the ongoing laboratory experimentation, a 

larger domain would be helpful to show changes over a greater spatial distribution and

longer timeframe, and perhaps over multiple layers of varying hydraulic conductivity

rather than the two layered model examined herein. 

Another useful exercise would be to evaluate an actual field site where numerous

data have been collected such as the well-studied Borden Aquifer, Ontario, Canada, or 

the Massachusetts Military Reservation Site, Cape Cod, Massachusetts.  For such sites, 

sufficient data have been compiled such that a numerical model domain could be 

established, and the input criteria could be selected from the existing data.  Information
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from sites where a remedy has been selected and implemented could also be used to 

further evaluate the quantitative framework; especially where data exist in support of

successful in situ bioremediation.

Finally, the incorporation into the numerical model of NAPL source zones (blobs 

or pools) or kinetic expressions for transfer of oxygen from the vadose zone to the 

saturated zone could support further studies  of application of the techniques presented

here to site scenarios involving these types of contamination.
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Apendix III: Numerical Modeling Input Parameters

References for Input Values

(1) Priddle and MacQuarrie, 1994

(2) Wilson, et al, 1985

(3) Odencrantz, 1992

(4) Mihelcic and Luthy, 1991

(5) Rittmann et al, 1988

(6) CRC Handbook, 1999

(7) Starr, et al, No. 2, 1985

(8) Gelhar, et al, 1992

(9) Durant et al, 1997; after McCarty, 1975

(10) McQuarrie and Sudicky, 1990
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