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This dissertation has two objectives; the first is to investigate speciation of 

three d10 metals (Ag(I), Hg(II) and Pb(II)) in sulfidic solutions containing As(III) to 

determine if thioarsenite could act as a ligand for the metals. Second, a hypothesis 

that As(III) forms strong complexes with bicarbonate is investigated. 

The solubility of As in sulfidic solutions (10-4-10-3 M) equilibrated with 

As2S3+S at near-neutral pH (6.95-7.95) was measured and compared to the solubility 

of As in binary and ternary assemblages. Three species, AsS(HS)(OH)-, As(OH)3 

and  H2As3S6
-, explain As speciation: 0.5As2S3 + 3H2O ⇔ As(OH)3 + 1.5H2S, 

pK=12.58, 1.5As2S3 + 1.5H2S  ⇔ H2As3S6
- + H+, pK=6.20±0.77 and 0.5As2S3 + 

H2O + 0.5H2S⇔ AsS(HS)(OH)- + H+ pK=8.74±0.09. 

The solubility of As and Ag in sulfidic solutions (10-4-10-3 M) equilibrated 

with two Ag-As-S assemblages at near-neutral pH (6.89-8.37) was measured. The As 



  

species that explained As2S3+S solubility also explained solubilities in the Ag-As-S 

system. 

The silver solubility was explained by six species: 0.5Ag2S(s) + 1.5 HS- + 0.5 

H+ ⇔ Ag(HS)2
-, pK=0.406±0.41; Ag2S (s) + 2 HS- ⇔ Ag2S(HS)2

2-, pK=4.78; 

0.5Ag2S (s) + 0.5 HS- + 0.5 H+ ⇔ Ag(HS) pK=2.11±0.21; 0.5Ag2S (s) + Cl- + 0.5 HS- 

+ 0.5 H+ ⇔ Ag(Cl)(HS)-, pK=-1.09±0.20; 0.5Ag2S (s) + (x-1)S° + 0.5 HS- ⇔ AgSx
- 

+ 0.5 H+, pK=8.51±0.19 and Ag+ + AsS(HS)(OH)- ⇔ AgAsS(HS)(OH)o, pK=-17.17 

±0.20. 

As shown by the last equilibrium expressions, dithioarsenite (AsS(HS)(OH)-) 

is a strong ligand for Ag(I). Two other ternary systems, HgS+As2S3+S and 

PbS+As2S3+S, were investigated but the solubility of Hg2+ and Pb2+ were not 

significantly enhanced when arsenic was present. The order of stability of the metal-

thioarsenite complexes agrees with predictions by Tossell (2000). The ∆GF
o of 

natural orpiment was calculated to be -80.8±1.6. 

The solubility of As2O3 in concentrated bicarbonate solutions at near-neutral 

pH is enhanced to a small, but statistically significant degree compared to the 

solubility in chloride solutions of the same ionic strength. This effect is attributed to 

one complex: As(OH)3 + HCO3
- ⇔ As(OH)2CO3

-, pK=0.57±0.15. The small 

constant suggests that As(III)-carbonate complexes will be negligible at carbonate 

concentrations found in nature. 
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Chapter I. Introduction 

In this dissertation I will first discuss the complexation of As(III) with Hg, Pb 

and Ag in sulfidic systems. I will provide experimental evidence that supports 

quantum mechanical predictions, by Tossell (2000), that Ag forms a stable metal-

thioarsenite complex, but Hg does not form a stable metal-thioarsenite complex.  A 

lead-thioarsenite experiment was also conducted but the results were inconclusive. 

Finally, I will discuss the role bicarbonate plays in complexing As(III). 

 

I.A. The Problem of Metal-Thioarsenite Interactions in Sulfidic Systems 

I.A.1. Cu-Thioarsenite Complexing 

The first example of metal-thioarsenite interactions was presented by Clarke 

and Helz (2000), in which the solubility of the three-phase assemblage containing 

digenite (Cu1.8S), a digenite-covellite mixture (Cu1.8S-CuS) and Cu3AsS4 was studied 

in sulfidic solutions.  They found higher Cu solubility than could be explained by 

Cu-HS complexing and concluded that the CuH2AsOS2 species accounted for the 

solubility of copper and arsenic. In other words, there was a synergistic 

solubilization between copper and arsenic that promoted the solubility of each 

element. In their experiment, the copper solubility was enhanced by several orders of 

magnitude when the CuH2AsOS2 complex was formed compared to solubility 

studies with just CuS and Cu1.8S. They concluded that dithioarsenite (AsS(HS)(OH)-) 

is a very strong ligand for the copper ion with a log K of +19.82.  

Two explanations have been offered for why AsS(HS)(OH)- is such a strong 

ligand. The first is that AsS(HS)(OH)- can function as a soft, multidentate chelating 
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agent (Clarke and Helz, 2000). Soft bases, like AsS(HS)(OH)- or  HS-, are highly 

polarizable and  interact with soft acids that are also highly polarizable and have d8 

or d10 electron configurations (Pearson, 1963). 

Tossell (2000a) offers a different explanation for the enhanced stability of the 

CuH2AsOS2 complex. From quantum mechanical calculations he found evidence 

that Cu forms a bond to As. The CuH2AsOS2 complex has two coordinating S atoms 

and an electron rich As center. The OH- group on the As stabilizes a direct bond to 

copper, producing a very stable complex.  It was found that if the OH- group were 

replaced by F-, the complex would become unstable due to the breakage of the Cu-

As bond. 

The ability of metals to form strong bonds with sulfur containing ligands can 

be explained by examining their electron configurations. Metals with d10 electron 

configurations, Cu(I), Hg(II) or Ag(I) owe their stability to an ability to back donate 

electrons from filled d orbitals to unoccupied d orbitals on sulfur, thus forming 

strong π bonds (Pearson ,1963; Nickless, 1968; Clarke, 1998; Renders and Seward, 

1989).   

Arsenic can also form strong bonds with sulfur. As(III) (s2) is very stable 

because of (s,p3) hybridization, which lowers the symmetry of the system. Two 

valence electrons occupy one of the hybrid orbitals, which can be considered 

nonbonding orbitals. The other three empty orbitals can combine with the filled 

orbitals of sulfide, so backbonding will stabilize the metal-thioarsenite complexes 

(Nickless, 1968).   
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I.A.2. Synergistic Solubilization Involving As, Pb, Hg, or Ag 

The stability of CuH2AsOS2 could enhance the solubility of copper and 

arsenic in sulfidic systems, which could have detrimental implications for 

groundwater contamination. Enhanced solubility could provide the means for Cu and 

As to become mobile and thus bioavailable.  The question then arises, will other d10 

metals have the same stability with thioarsenites and promote the synergistic 

solubilization of the metal in question with arsenic? 

Tossell (2000) used quantum mechanical calculations to provide enthalpies of 

formation for bisulfide and thioarsenite complexes with several metals: 

M(H2O)2
x + AsS(HS)(OH)-  MAsS(HS)(OH)(x-1) + 2H2O  (1) 

M(H2O)2
x + 2HS-  M(HS)2

(x-2) + 2H2O   (2) 

He proposed that his calculated enthalpies for these reactions are approximations of 

free energies of reaction. His estimated enthalpies in Table 1 predict which metals 

would form strong metal-thioarsenite complexes. The ligands, HS- or AsS(HS)(OH)-, 

can be thought to be competing for the metal, and the complex with the more 

negative free energy will predominate if the two ligands are present at equal 

concentrations. The net enthalpy can be calculated by subtracting Equation 2 from 

Equation 1. Cu(I), Ag(I) and Au(I) are predicted to form comparatively stable 

MAsS(HS)(OH)(x-1) complexes (Table 1). It is of interest to note that Tl+ is also 

favored to form a Tl-thioarsenite complex. 
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Table 1. Estimated Enthalpies (kJ/mol) for the Formation of MAsS(HS)(OH)(x-1) 

Cation MAsS(HS)(OH)(x-1)1 M(HS)2
(x-2)2 Net Enthalpy3 

Cu+ -115 -89 -26 
Ag+ -71 -52 -19 
Au+ -189 -173 -16 
Zn2+ -13 -1055 +1042 
Cd2+ -28 -1003 +975 
Hg2+ -89 -1129 +1040 
Tl+ +140 +459 -319 

Pb2+ -177 -483 +306 
1. M(H2O)2

x + AsS(HS)(OH)-  MAsS(HS)(OH)(x-1) + 2H2O 
2. M(H2O)2

x + 2HS-  M(HS)2
(x-2) + 2H2O 

3. M(HS)2
(x-2) + AsS(HS)(OH)-  MAsS(HS)(OH)(x-1) + 2HS- 

x are the charges of the metal ions 
Tossell (2000) 

 

I.B. Plan for This Dissertation 

Solubility experiments will be done to determine if the thioarsenite ligand has 

the ability to complex other metals forming stable metal-thioarsenite complexes. 

Chapter II reports on a number of topics. The first is the effect that elemental sulfur 

has on the solubility and speciation of As2S3 in sulfidic solutions. A full discussion 

on the speciation of arsenic is also presented for all the experiments that have arsenic 

as a component (As2S3, As2S3+S, HgS-S-As2S3, PbS-S-As2S3 and Ag-As-S 

assemblages). Chapter II then reports on the effect that elemental sulfur has on the 

solubility of Ag2S in sulfidic solutions. The solubility of silver in the Ag2S+S 

experiment will then be compared to the solubility of silver from two silver 

assemblages.  This will determine if the presence of arsenic increases the solubility 

of silver in the assemblages in sulfidic solutions, forming a silver-thioarsenite 

complex. Another goal of Chapter II is to determine the free energy of formation of 

As2S3. 
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 Finally, Chapter II compares the solubility of two other ternary assemblages 

(HgS-S-As2S3 and PbS-S-As2S3) to HgS and PbS, respectively, to determine if the 

presence of arsenic increases the solubility of Pb and Hg, forming lead or mercury 

thioarsenite complexes. 

 Chapter III deals with the effect bicarbonate has on As2O3 solubility.  This 

chapter tests a hypothesis first proposed by Kim et al. (2000) and refined by Tossell 

(2004) that HCO3
- can be responsible for elevated As(III) levels in groundwaters. 

The solubility of As2O3 in concentrated bicarbonate solutions is compared to the 

solubility of As2O3 in concentrated NaCl solutions at room temperature, where both 

solutions had near neutral pH’s. 

 In the remainder of this chapter, some background information is provided on 

the geochemistry and solution chemistry of As, Pb, Hg and Ag. Specifically, the 

sources, toxicity and aqueous speciation of the elements are reviewed. 

 

I.C. Metals in the Environment 

I.C.1. Some Sulfidic Environments where Metals Could Interact 

If thioarsenites are shown to enhance the solubility of d10 metals then sulfidic 

aqueous environments where both As and d10 metals are abundant could serve as 

sources of the elements for the surrounding environment. Examples would be 

landfills or contaminated sediments in industrial harbors.  In these sulfidic 

environments the hazardous metals may become mobile, enter groundwater systems 

and thus be bioavailable.  
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Landfills are constructed to contain waste rather than treat waste. However, 

there has been evidence that landfills are sources of contamination to their 

surrounding environments. Mantei and Coonrod (1989) present evidence that a 

sanitary landfill in Missouri releases silver, zinc and copper into two streams 

adjacent to the landfill.  The stream that drains the landfill directly (stream 1) had a 

mean sediment metal concentrations of 1.71±0.41 µg/g Ag and 32.88±1.91 µg/g Pb.  

Stream 2, which is located above stream 1 and does not drain the landfill directly, 

had a mean sediment metal concentrations of 0.75±0.18 µg/g Ag, 33.32±1.93 µg/g 

Pb.  The Ag is elevated in comparison with the control stream, which is 1.4 km east 

of the landfill, and had mean sediment metal concentrations of 0.37±0.09 µg/g Ag 

and 37.60±2.18 µg/g Pb. It was concluded that drainage from the landfill directly 

enhanced the silver concentration in the sediment of the two streams adjacent to the 

landfill.  Lead was not enhanced in the stream sediment, possibly because it was 

absorbed or precipitated within the landfill itself.   

Looser et al. (1999) sampled 41 leachates from landfills and when possible 

groundwaters next to landfills throughout Switzerland, Italy and France.  Table 2 

presents metal concentrations found in the landfill leachate, landfill-influenced 

groundwater and drinkable groundwater.  Silver was undetectable in natural 

groundwater but was present in landfill-influenced groundwater, indicating that the 

landfill was discharging Ag to surrounding groundwater. The arsenic concentration 

is higher in the natural groundwater compared to landfill influenced groundwater and 

may derive from a natural source.  Lead is also elevated in landfill-influenced 

groundwater, but may come from other anthropogenic origins such as fossil fuels.    
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Gade et al. (2001) conducted a study on an open landfill in Bavaria.  

Currently the landfill is under oxidizing conditions and modeling predicts that when 

the landfill is closed the oxidizing conditions will remain due to the low bacterial 

activity of the leachate and the presence of waste that has a high oxygen content.  

Average concentrations of metals in the leachate were 0.0157 ppm (1.5 x10-7M) Ag, 

2.19 ppm (2.9 x 10-5M) As, 0.005 ppm (2.5x10-8M) Hg and 0.00651 ppm (3.1x10-

8M) Pb.  It is important to note that in both cases the As concentration is 

comparatively larger than the metal concentrations, a necessary but not significant 

criterion if As is to act as a ligand fir Ag. 

 

 

Table 2. Metal Concentrations Found in the Landfill Leachate, Landfill Influenced 
Groundwater and Drinkable Groundwater Throughout Switzerland, Italy and France 

Concentration of Metals (nM)  
Ag Pb As Hg 

Natural groundwater - 15 130 - 
Landfill leachate 93 140 530 15 
Landfill influenced groundwater 74 39 40 0.75 
Looser et al. (1999) 
 

 

 

 Pit lakes are another aquatic environment in which metal and arsenic 

concentrations are high. Pit lakes form when open pit mines are closed. Pit lakes are 

usually more deep than wide and may contain rock with a high content of sulfide 

minerals, which could produce anoxic conditions at depth in the lake.  Pit lakes 

intersect and often contaminate groundwater. However, pit lakes have complicated 
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chemistries and would only be relevant if they are sulfidic at depth. Pit lakes that 

have high sulfide content have poor water quality and may or may not be acidic, 

depending upon the amount of limestone in the rocks.  Under oxidizing conditions at 

a basic pH, metal cations (e.g. Cu2+, Pb2+ Hg2+ ) will adsorb to negatively charged 

mineral surfaces, but elements that form negatively charged oxyanions (e.g. As and 

Se) will not be strongly adsorbed.  

The Getchell gold mine in Nevada is an example of a mine in which a pit 

lake has formed. The mineral deposit contains arsenopyrite (AsFeS2). When water in 

the North Pit was sampled, it was found to have the following conditions 0.38 ppm 

(5100 nM) As, <0.05 ppm (<24 nM) Pb, <0.2 ppm (<990 nM) Hg and <0.005 ppm 

(<46 nM) Ag, a pH of 7.67 and the bottom portion of the North Pit is believed to be 

anoxic (Miller et al., 1996).  Arsenic is above the EPA’s drinking water standard of 

0.010 ppm.   

 Industrial Harbors can also be contaminated with heavy metals as well as 

arsenic.  Silver is often found in harbors due to outputs from wastewater treatment 

plants. However, literature suggests that elevated silver could also be due to diagenic 

remobilization from contaminated sediments and could be a source of contamination 

in aquatic environments with limited hydraulic flushing (Flegal and Sanudo-

Wilhelmy, 1993; Smith and Flegal, 1993; Flegal et al., 1997; Sanudo-Wilhelmy and 

Gill, 1999).   

Table 3 summarizes some heavy metal concentrations found in sediments 

from contaminated harbors.  All metal concentrations are compared to biological 

effect-based guideline values for sediment quality. Below the ERL (effect-range low) 
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value, adverse biological effects rarely occur; above the ERM (effect range-median) 

value, adverse biological effects frequently occur; in between the ERM and ERL, 

biological effects are intermittently observed (Giusti and Zhang, 2002).   

Smith and Flegal (1993) demonstrate the importance of silver contamination 

from sediments in the San Francisco Bay and compare the contamination to the 

average crustal abundance of silver and to background levels in the Southern 

California Bight, an uncontaminated site.  Pascoe at al. (2002) present sediment 

metal concentrations in Ostrich Bay, which is an arm of Dyes Inlet on Puget Sound 

in Washington State.  This site was contaminated with nitroaromatic compounds 

from a naval ordinance facility that washed directly into the bay.   

Boston Harbor is one of the oldest harbors in the United States and serious 

pollution problems began in 1865 (Bothner et al., 1998).   The sediments in the 

harbor have been monitored between 1977 and 1993.  Metal concentrations have 

decreased in the harbor over time, but silver and mercury remain above ERM levels 

and indicate that Boston Harbor remains toxic to some bethnic organisms.  

Hyland et al. (1998) conducted a study in 1994 and 1995 to assess the 

sediment quality in the Carolinian Providence, which extends from Cape Henry, VA 

to Indian River Lagoon, FL.   They indicated that 49- 60% of the estuaries had good 

sediment quality. A summary of ranges for sediment metal concentrations was given 

over the whole study area, but the summary did not present evidence at each 

individual site.  Therefore, it is unclear if a particular estuary was highly 

contaminated and if elevated metal concentrations occurred at the same site. 
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Table 3. Summary of Some Heavy Metal Concentrations Found in Sediments and 
Overlying Water from Contaminated Harbors   

 
Sediment Metal Concentrations 

(mg/kg) 

Dissolved 
Concentration 
Surface Waters 

(pM) 
 Ag As Pb Hg Ag Pb 
ERL* 1a 8.2a 46.7e 0.15g   
ERM* 3.7a 70a 218e 0.71g   
Crustal Abundance 0.08 2.1f 100f 0.07f   
Puget Sound, Ostrich Bayb 0.49 9.4 40.6 0.35   
Puget Sound, Dyes Inletb 1.0 18.6 20.2 1.3   
San Francisco Bayc 0.4-0.9 nm nm nm 49.9±49.2 nm 
Baseline- Southern CA 
Bightc 

    3 18-
63d 

San Diego Bayd     66-307 120-
184 

Burlington Harbor, VTe 1.73-5.35 nm 79.1-
173.3 

nm   

Boston Harbor 1978i 5.5 nm 165 0.77   
Boston Harbor 1993i 4.1 nm 108 0.69   
Cape Henry, VA – St. 
Lucie Inlet, FL Estuariesh 

0.0-0.5 0.0-
22.3 

0.9-
45.6 

0.0-
0.2 

  

* ERL is adverse biological effects occasionally occur, ERM is adverse biological 
effects frequently occur. a Giusti and Zhang (2002); b Pascoe et al., (2002); c Smith 
and Flegal (1993), nm= not measured; d Flegal and Sanudo-Wilhelmy (1993); e 
Lacey et al. (2001);   f Winter (1993); g Kwon and Lee (1998); h Hyland et al. (1998) 
sediment data from 1995; i Bothner et al., 1998, depth of sample 0-2 cm 
 

 

 

 It is clear from the examples cited that arsenic, silver, mercury and lead could 

be simultaneously present at elevated levels in contaminated environments. It is 

therefore necessary to know where these metals originate and if they have any 

harmful effects to aquatic and human life. 
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I.C.2. Arsenic  

I.C.2.1. Sources and Toxicity 

Natural and anthropogenic processes play an important role in the 

distribution and bioavailability of trace metals in the environment. There are over 

160 known arsenic-containing minerals in nature (Wagemann, 1978). These minerals 

constitute natural sources of arsenic through weathering of the earth’s crust.  Arsenic 

is found in the earth’s crust with an average of 2 mg/kg (Winter, 1993). 

Anthropogenic sources of arsenic include coal combustion, smelting of copper, 

runoff from mine tailings, pigment production for paints and dyes and leaching from 

wood preservatives (Ferguson and Gavis, 1972; Nriaqy and Pacyna, 1988; Rose, 

1998; Oremland and Stolz, 2003). Arsenic was also used as a pesticide until 1980; 

this usage is estimated to have contributed about 10,000 metric tons per year to the 

environment (Oremland and Stolz, 2003).  Arsenic has been replaced by synthetic 

pigments and pesticides in most cases but is still used in agricultural applications.   

Organic arsenicals like roxarsone (3-nitro-4-hydroxyphenylarsonic acid) are 

added to poultry feed to control coccidiosis, a parasite that can develop in the 

digestive tract of vertebrates, to stimulate growth and egg production and to improve 

the pigmentation of the animal (Arai et al., 2003; Oremland and Stolz, 2003).  

Estimated roxarsone use on the east coast of the United States is between 20 and 50 

metric tons annually (Arai et al, 2003; Oremland and Stolz, 2003).  The ingested 

arsenic does not accumulate in the animals but is excreted in their waste, which is 

applied as manure to agricultural land.  
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  Certain fungi, yeasts and bacteria are known the methylate arsenic. There is 

also evidence that phytoplankton in the ocean use arsenic methylation as a 

detoxification mechanism (Cutter, 1992). The detoxification mechanism involves the 

reduction of As(V) to As(III) and then biomethylation, which produces 

monomethylarsonic acid (MMA) or dimethylarsonic acid (DMA) (Cullen and 

Reimer, 1989; Tamas and Wysocki, 2001; Oremland and Stolz, 2003). The 

methylated arsenic species are less toxic than the inorganic species, as determined by 

their differing LD50’s for mice (Kaise et al., 1989).   

Exposure to arsenic can be detrimental to humans.  Blackfoot Disease, found 

in Taiwan, is attributed to long-term exposure of arsenite in drinking water.  Over 

time, gangrene develops in a person’s limb and amputation of the limb is required 

(Chen et al., 1994).  Chronic exposure to moderate levels of arsenic results in arsenic 

poisoning, where the symptoms are the development of hard nodules on the skin.  

Long-term exposure will lead to skin cancer, cardiovascular disease and gangrene 

(Mabuchi et al., 1979; Winder, 1993; Das et al., 1995; Chaterjee et al., 1995; Anawar 

et al., 2002). 

The toxicity of arsenic is highly dependent on its oxidation state. Goldstein 

and Babich (1989) have shown that arsenite is more toxic to adult flies than arsenate. 

Arsenite is more toxic than arsenate because arsenite reacts with sulphydryl groups, 

impairing the functioning of many proteins by inhibiting the catalytic process of 

enzymes. Arsenite can enter the body through dermal absorption. Inorganic arsenate 

enters the body through the gut of humans where it can replace phosphorus in 

metabolic processes.  Arsenate is a molecular analog of phosphate and thus can 
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participate in oxidative phosphorylation (Ferguson and Gavis, 1972; Winder, 1993; 

Oremland and Stolz, 2003).   However, there is new evidence suggesting that the 

formation of thioarsenite species reduces the toxicity of As(III) when compared to 

arsenious acid (Rader et al., 2004).  To ensure that the public is protected from 

arsenic related diseases, the United States government has lowered the maximum 

contaminant level (MCL) for arsenic to 0.010 ppm (10-9 M) for drinking water 

(Environmental Protection Agency, 2001). The World Health Organization (WHO) 

has also lowered the MCL for arsenic in drinking water to 0.010 ppm (Zheng et al., 

2004). 

 

I.C.2.2. The Bangladesh/West Bengal Problem 

High arsenic levels in groundwater have been reported all over the world, 

ranging from Chile to the USA to Bangladesh, but Bangladesh seems to have the 

worst case of arsenic contamination in groundwater.  Bhattacharya et al. (2002) 

stated that 33 to 75 million people in Bangladesh are at risk due to the high 

concentration of arsenic found in the groundwater.  Bangladesh groundwaters 

typically exceed arsenic concentrations of 0.200 ppm (Nickson et al., 2000; 

Bhattacharya et al., 2002; Kinniburgh et al., 2003). The predominant forms of 

arsenic in drinking water in areas like Bangladesh are the more toxic inorganic 

arsenic species.   

Arsenate has a negative charge at pH’s associated with natural waters and is 

strongly absorbed to minerals, such as ferrihydrite, so its mobility in water is 

reduced.  Arsenite, on the other hand, is neutral at pH’s associated with natural water 
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and is less strongly absorbed to surfaces and is more mobile in groundwater 

(Oremland and Stolz, 2003).   It is estimated that 67 to 99% of the arsenic in 

Bangladesh groundwater is present as arsenite (Bhattacharya et al., 2002; Ahmed et 

al., 2004).   

There is much debate as to the source of arsenic present in Bangladesh 

groundwater.   The apparent cause of the elevated arsenic concentration is still 

unknown but is thought to be a natural process rather than an anthropogenic one. The 

sediments of the Bangladesh region contain <1 to 10 ppm arsenic, which is normal 

for alluvial sediments (Kinniburgh et al. 2003).  Sediments that contain high 

concentrations of arsenic do not always produce elevated arsenic concentrations in 

groundwater. This leads to the conclusion that the sediment composition is not 

directly related to the elevated arsenic levels in the groundwater. However, the 

younger Holocene alluvial aquifers show elevated levels of arsenic compared to 

older sediment that have medium grained sand and minimal organic matter. The 

Holocene sediments are mainly composed of fine to very fine grained sands, silts and 

clays (Ahmed at al. 2004).  The Holocene sediments are also rich in organic matter 

and reactive minerals leading to water that contains mostly Ca-HCO3 or Ca-Mg-

HCO3 (Bhattacharya et al., 2002; Ahmed et al., 2004). The pore waters of the 

sediment are near neutral to slightly alkaline and are often under reducing conditions 

(Bhattacharya et al., 2002; Ahmed at al., 2004).   

There are two main hypotheses to explain the elevated arsenic concentration 

found in regions like Bangladesh.  The first hypothesis is that As rich-pyrite has been 

oxidized as a result of lowering the water table through irrigation (Nickson et al., 
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2000; Kinniburgh et al., 2003; Ahmed et al., 2004; Zheng et al., 2004).  This 

hypothesis is no longer generally accepted. The dissolution of pyrite is not favorable 

or expected under the reducing conditions found in the groundwater.  Another reason 

the pyrite oxidation hypothesis seems implausible is that the highest arsenic 

concentrations would be found in shallow aquifers close to the water table. Results 

show that the highest concentration of arsenic appears in wells that are not shallow 

and vary between 15 meters and 150 meters (Kinniburgh et al., 2003, Ahmed et al., 

2004).   

The currently favored hypothesis for arsenic enrichment proposes that arsenic 

bound to Fe(III)-oxyhydroxide is released as the Fe(III)-oxyhydroxide is reduced 

(Nickson et al., 2000; Kinniburgh et al., 2003; Ahmed et al., 2004; McArthur et al., 

2004 Zheng et al., 2004).  This reaction can be represented by the following (where 

CH2O represent organic matter in the aquifer): 

4FeOOH + CH2O + 7H2CO3 ⇔ 4Fe2+ + 8CO3
- + 6H2O  (3) 

Microbial processes in these organic rich sediments may help facilitate the 

reduction of Fe(III) and As(V) to Fe(II) and As(III).  In fact, elevated levels of NH4
+ 

and PO4
3- usually characterize the groundwater.  There is a strong correlation 

between arsenic and HCO3
- and a weaker correlation between arsenic and iron 

(Nickson et al., 2000).  

 

I.C.2.3.   Speciation of Arsenic in Seawater and Freshwater Systems 

Arsenic is mainly found in aquatic systems in the +5 and +3 oxidation states 

(Ferguson and Gavis, 1972; Cullen and Reimer, 1989).  However, arsenic is stable in 



 16 
 

a total of four oxidation states in aquatic systems, +5, +3, 0 and –3 (but elemental 

arsenic is rare).  O’Day et al. (2004) recently presented EXAFS (extended x-ray 

absorption fine-structure) evidence that AsS (oxidation state of +2) can be found in 

contaminated shallow aquifer sediments under sulfate reducing conditions.  

Freshwater systems typically have a pH range of 5 to 9, while seawater has 

pH values ranging from 7.5 to 8.3 (Cullen and Reimer, 1989).  Under oxidizing 

conditions As(V) species, H3AsO4, H2AsO4
-, HAsO4

2- and AsO4
3-, are stable.  

HAsO4
2- and HAsO4

2- are the dominant species in seawater and freshwater, 

respectively.  Under slightly reducing conditions, H3AsO3 is the dominant species in 

natural waters.  Under anoxic conditions, in the presence of organic matter and 

bacteria, sulfate is reduced to hydrogen sulfide. An anoxic marine environment may 

have a pH of 7.5 and a pE ranging from –2.9 to –4.2 (Cullen and Reimer, 1989).  

Under these conditions thioarsenite species are dominant.  

 However arsenic is rarely in equilibrium due to biological redox reactions 

(Cullen and Reimer, 1989; Aurillo et al., 1994).Arsenite has been reported in the 

oxic portion of the water column and arsenate has been found in the anoxic portion 

of the water column in the Black Sea and Oslofjord (Cutter, 1992; Abdullah et al., 

1995).  In these cases arsenite may be present in oxic waters due to the transport of 

arsenite from anoxic waters.  However, the main reason arsenite is present in oxic 

waters is due to the uptake of As(V) by plankton, which methylate and release 

As(III) (Cutter, 1992; Cutter et al, 2001).  Arsenite persists in the oxic water column 

because the oxidation of arsenite by oxygen is slow and its half-life is on the order of 

days (Cutter, 1992; Kim and Nriagu, 2000).  Another oxidizing agent for arsenite is 
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hydrogen peroxide, present at 0.1 µM in natural waters, but its reaction also has a 

slow rate constant (~0.33 mol L-1 min-1 at pH=7) (Pettine et al., 1999).  Arsenate is 

present in the anoxic portion of a water column due to formation of thioarsenates and 

remobilization of particulate arsenate from sediment coupled with a slow rate of 

arsenate reduction (Cutter, 1992; Abdullah et al. 1995).  The average rate of As(V) 

reduction in the Black Sea is 1.6x10-5 day-1 (Cutter, 1992). 

 

I.C.2.4. Speciation of As in Sulfidic Solutions  

In sulfide-free solutions, H3AsO3 is accepted as the dominant As(III) species 

at near neutral pH (Ivakin et al., 1979; Mironova et al., 1984; Webster, 1990; Eary, 

1992).  However, when sulfide is present there is disagreement on the stoichiometry 

of the As(III) sulfide species. Weissberg et al. (1966) suggests that monomers (AsS2
-, 

AsS3
3-, AsS(OH)2

-) are the dominant complexes in sulfide solutions at temperatures 

from 25 to 200°C and pressures from 100 to 1500 bars.  The dimer (As2S4
2-) and 

protonated forms are favored at various sulfide concentrations and temperatures by 

others (Mironova and Zotov, 1980; Mironova et al., 1990). The trimer (H2As3S6
-) 

also has been reported in mildly acidic, sulfidic solutions (Vorob’eva et al., 1977; 

Webster, 1990; Eary, 1992).  Table 4 summarizes the previous experiments on the 

solubility of orpiment. 

 More recently, Helz et al. (1995) utilized ab initio quantum mechanical 

methods, EXAFS studies and Raman spectra of dissolved thioarsenite to help 

determine the number of arsenic atoms per thioarsenite molecule.  They ruled out the 

possibility of dimers based on the comparison of calculated stability and abundance 
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of the dimer to the trimer.  It was concluded that in undersaturated solutions the 

monomer is the predominant thioarsenite species, but that the trimer is the 

predominant thioarsenite species in saturated solutions. Their conclusions imply that 

the number of arsenic atoms per thioarsenite molecule is highly dependent on the 

amount of arsenic present in solution.   

 

 

Table 4. Summary of Arsenic Speciation for Experiments Involving the Solubility of 
As2S3 

Species Type of Study Solid Reference 
AsS(OH)2

- 
AsS3

3- 
AsS2

- 
Mineral dissolution Synthetic, crystalline 

orpiment Weissberg et al., 1966 

    
As3S6

3- 
As2S5

4- Spectophotometric Precipitate Vorob’eva et al., 1977 

    
As3S6

3- Mineral dissolution Precipitate Ivakin et al., 1979 
    
H2As2S4

o 
HAs2S4

- 
As2S4

2- 
Mineral dissolution Natural, crystalline 

orpiment 
Mironova and Zotov, 
1980 

    
H2As2S3Oo 
HAs2S4

- 
As2S4

2- 
Mineral dissolution Natural, crystalline 

orpiment Mironova et al., 1990 

    
As(OH)3 
H2As3S6

-
 

Mineral dissolution Synthetic, crystalline 
orpiment Webster, 1990 

    
As(OH)3 
H2As3S6

- Mineral dissolution Amorphous orpiment Eary, 1992 
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Wood et al. (2002) conducted Raman spectroscopic studies on solutions with 

various ratios of ΣS to ΣAs.  They concluded that there are many different 

thioarsenite species in the As-S-O-H system, but could not resolve the stoichiometry 

of the thioarsenite species in their experiments. Wilken et al. (2003) also conducted 

experiments in dilute solutions with various ΣH2S to ΣAs ratios at pH 7 and 10. They 

concluded that thioarsenic species with a S/As ratio of 3:1 are the dominant 

thioarsenite species in sulfidic solution, while species with a S/As ratio of  1:1, 2:1 

and 4:1 are still present in solution but to a lesser degree. 

 

I.C.3. Lead 

I.C.3.1. Sources and Toxicity 

 Lead is not abundant in the earth’s crust. However, there are high lead 

concentrations in ore deposits throughout the world.  The most important mineral, 

galena (PbS) is found in fissure veins associated with a host of other metal sulfides 

(Dudka and Adriano, 1997).  The primary uses of lead include the manufacturing of 

storage batteries, ammunition, cable coverings and pipes (Prosi, 1989; Winder, 

1993). Decline in the use of lead in gasoline, paints and plumbing seems to have 

decreased the amount entering the environment.  However, anthropogenic sources of 

lead still come from smelting, coal combustion and mining (Nriagu and Pacyna, 

1988; Dudka and Adriano, 1997). 

 Exposure to lead results in a number of diseases.  Inhalation and ingestion are 

the main pathways by which lead enters the body. Adults exposed to high levels of 

lead can experience brain damage, nerve damage, kidney disease, anemia and 
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damage to the reproductive system. Low levels of lead exposure can lead to the 

development of lead poisoning, which has flu-like symptoms. Koller et al. (2004) 

reviewed many epidemiological studies on lead exposure to children. He concluded 

that lead exposure is extremely damaging and often leaves a child with permanent 

brain damage, mental retardation and severe behavior problems (McMichael et al., 

1988; Factor-Litvak et al., 1999).   

Due to the extremely toxic effects of lead, the United States government 

regulates the amount of lead allowed in air and drinking water.  Lead is on the 

primary drinking water regulation list, where it has a maximum contaminant level 

goal of zero and action level of 15 ppb in drinking water (Environmental Protection 

Agency, 2001). The action level means that if more than 10% of the drinking water 

tested at a treatment plant exceeds the action level further treatment of the drinking 

water is necessary. 

 

I.C.3.2. Lead in Aquatic Systems 

 Lead is known to bioaccumulate in microorganisms and plants (Jaworski et 

al., 1987; Sundelin and Eriksson, 2001). Filter feeding animals, such a mussels, are 

particularly susceptible to accumulating large amounts of lead from contaminated 

sediment (Prosi, 1989; Sundelin and Eriksson, 2001).  Sediments act as a sink for 

lead through the precipitation of insoluble lead species.  Concentrations of lead in the 

pore water of sediment in Lake Geneva ranged from 0.030 to 0.200 ppm, whereas 

uncontaminated levels range from 0.001 to 0.003 ppm (Prosi, 1989).  However, there 

is no evidence that lead undergoes biomagnification throughout the food chain.  



 21 
 

Lead is also known to undergo methylation (Ridley et al., 1977; Pelletier, 

1995; Sundelin and Eriksson, 2001).  However, there is debate on whether the 

methylation is a biological process or an abiotic reaction, and there are insufficient 

data to draw conclusions about the fate of methlyated lead species in aquatic systems 

(Pelletier, 1995). 

 

I.C.3.3. Speciation of Pb in Sulfidic Solutions  

There are a few studies on the solubility of PbS (galena).  Giordano and 

Barnes (1979) measured the solubility of galena in sulfidic solutions ranging from 0 

to 2.85 m NaHS, at 30 to 300°C and pressures between 0.8 and 75 atm.  They 

favored a neutral lead complex, Pb(HS)2
o, as the dominant species at 30°C under 

neutral to acidic conditions.   They also concluded that Pb(HS)3
- will be the dominant 

lead species in basic solutions under highly reducing conditions.   

 The solubility product of PbS has also been studied. Anderson (1962) 

reviewed the literature on the solubility product of PbS.  Uhler and Helz (1984) 

measured the stoichiometric solubility product of galena at 298K.  Galena was 

shown to be more than two orders of magnitude more soluble when compared to 

previous thermodynamic data.  Using their solubility product of galena they 

recalculated the equilibrium constants for the formation of Pb(HS)2
o and Pb(HS)3

-. 
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I.C.4. Mercury 

I.C.4.1. Sources and Toxicity  

 Mercury is widely distributed in nature but occurs at low concentrations.  The 

average crustal abundance of mercury is 67 ppb by weight. The most common 

mercury mineral is cinnabar (HgS), which is found in mineral veins, hot springs or 

areas around volcanoes.  Natural sources of mercury are attributed to volatilization of 

gaseous mercury from oceans, soils and biota and volcano emissions (Pacyna, 1987; 

USGS, 1995).  Anthropogenic sources are a result of mining, burning fossil fuels, 

metal smelting, paint, agricultural uses and chloro alkali processes (Pacyna, 1987; 

Nriagu and Pacyna, 1988; USGS, 1995; EPA, 1997; Dreher and Follmer, 2004). 

 The toxicity of mercury to humans depends on its chemical form and length 

of exposure. Mercury is known to biomagnify and bioaccumulate in the body and 

constant exposure to mercury enhances the toxicity.  Humans can be exposed to 

mercury primarily in two ways; the first is breathing mercury vapor (Hgo), which can 

be absorbed through the human lung and oxidized to Hg2+. Short-term exposure to 

mercury vapor results in flu like symptoms.  Long-term exposure to mercury vapor 

results in severe neurological effects (Bakir et al., 1973; Grandjean et al., 1998).  

The second exposure route is by ingesting methlymercury (CH3Hg+) from 

fish (USGS, 1995; Akagi and Naganuma, 2000).   Methylmercury is thought to be 

more toxic than inorganic forms of mercury.  Minamata Bay, Japan and rural Iraq are 

two well-known examples, where hundreds of people developed central nervous 

system diseases and some even died as a result of methylmercury exposure (Bakir et 

al., 1973; Eto et al., 2002). 
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I.C.4.2. Mercury in Aquatic Systems  

Mercury can occur in three valence states, 0, +1 and +2.  Hgo, complexes of 

Hg(II) with inorganic or organic ligands and organic mercury are the main dissolved 

species (Ullrich et al., 2001).  Hg(I) is stable as a dimer, Hg2
2+, in aqueous solution 

and will produce Hgo and Hg(II) in water. According to a review article by Ullrich et 

al. (2001), mercury is found in oxic freshwaters as Hg(OH)2, HgOHCl and HgCl2.  

In sulfidic solution mercury forms bisulfide and polysulfide complexes (Paquette and 

Helz, 1997; Jay et al., 2000). 

Sulfate reducing bacteria are responsible for methylating mercury.  Mercury 

is not available to cells as a cation; instead the mercury must be in a neutral, small 

and hydrophobic form. Soluble mercury species like Hg2+, HgCl+ and HgCl2
o are 

charged or have too low a concentration in natural waters to explain the methylation 

of mercury by sulfate reducing bacteria. There is new evidence that HgSo could be 

responsible species for the methylation of mercury by sulfate reducing bacteria in 

anoxic waters (Compeau and Bartha, 1985; Benoit et al., 1999; Benoit et al., 2001).     

 

I.C.4.3. Speciation of Hg in Sulfidic Solutions 

Schwarzenbach and Widmer (1963) conducted the first studies on Hg-sulfide 

complexes. However, there is a debate on the type of solid HgS used in their 

solubility experiments.  HgS exists in two polymorphs, cinnabar or α-HgS (red) and 

mettacinnabar or β-HgS (black), with the red form being the most stable (Paquette, 

1994).  Paquette and Helz (1997) used red cinnabar in their solubility studies and 

found excellent agreement with Schwarzenbach and Widmer’s black cinnabar 
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solubility data.  Paquette and Helz conducted experiments on cinnabar (red) only and 

cinnabar plus elemental sulfur in 0.7 M KCl at 298 K in sulfidic solutions ranging 

from 10-3 M to 0.1 M and pH ranging from 1 to 12.  In the absence of elemental 

sulfur, mercury solubility could be explained by Hg(SH)2, HgS(HS)- and HgS2
2-.  

The addition of elemental sulfur promoted the solubility of mercury.  The additional 

mercury solubility was attributed to the Hg(Sx)HS- species.  Jay et al. (2000) also 

conducted solubility experiments on cinnabar in the presence of elemental sulfur in 

sulfidic solutions ranging from 2 µM to 5 mM and pH ranging from 6 to 10.  They 

propose that Hg(Sx)2
2- is the dominant species at high pH, whereas HgSxOH- is the 

dominant species at low sulfide concentrations and high pH. 

 Benoit et al. (1999) present a chemical equilibrium model for mercury 

speciation in sulfidic pore waters.  They observed that methylmercury (MeHg) 

decreases as the concentration of sulfide increases in two sediment pore water areas.  

They propose a model that includes, HgSo and Hg(HS)2 to explain the observed 

solubility of Hg and MeHg, where HgSo is dominant at low sulfide and Hg(HS)2 is 

dominant at higher sulfide concentrations. Their findings may explain the inverse 

relationship between sulfide and the formation of MeHg, implying that HgSo is the 

dominant neutral species used in the passive uptake across the cell membrane.  As 

the concentration of sulfide increases, the concentration of HgSo declines as does 

methylation of mercury.   

Tossell (2001a) has done further studies on various mercury (II) species in 

aqueous solutions.  He used quantum mechanical methods to investigate the stability 
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of HgSo and found that is was unstable in water with respect to Hg(HS)(OH)o.  He 

further concluded that at neutral pH Hg(HS)(OH)o would also be uncharged.  

 

I.C.5. Silver 

I.C.5.1. Sources and Toxicity 

Silver is a minor component in the earth’s crust, with an average 

concentration of 0.1 mg/kg (Purcell and Peters, 1998).  However, concentrations of 

silver can be much greater than 0.1 mg/kg as a result of human activities.  Mine 

tailings can produce elevated concentrations of silver up to 1000 mg/kg (Purcell and 

Peters, 1998). Today, operating silver mines are mainly located in South America, 

southern Mexico and the western United States.   

 Industrial uses of silver account for most of the silver released into the 

environment.  It has been shown that the photographic industry contributes 30-60% 

of the total silver released into wastewater treatment plants (WWTP) (Schildkrautet 

et al., 1998). The majority of silver (approximately 90%) released to the environment 

will be removed at the WWTP (Schildkrautet et al., 1998).  However, silver released 

into the environment will remain in wastewater sludge, soils or sediments as silver 

sulfide (Hirsch, 1998; Berry et al., 1999; Ratte, 1999; Rozan and Luther, 2002).  This 

is because silver sulfide is the decomposition product of silver thiosulfate, which is 

the primary species released after the silver waste has been through the wastewater 

treatment process (Hirsch, 1998; Ratte, 1999). Other industrial uses of silver come 

from the production of electronic components, brazing alloys and batteries (Purcell 

and Peters, 1998).  
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Silver is not particularly harmful to humans.  Thus, the Environmental 

Protection Agency (EPA) has placed silver on the National Secondary Maximum 

Drinking Water Contaminant Level (SMCL) list.  The contaminants on the list 

mainly cause cosmetic effects in humans. The secondary drinking water standard for 

silver is 0.1 ppm (Environmental Protection Agency, 2001).  Humans exposed to 

large doses of silver develop argyria, which is a condition that turns certain areas of 

the skin permanently blue or a blue/gray color.   

Today, people are exposed to low levels of silver metal daily in the form of 

eating utensils and teapots.  Silver is also being used for its germicidal properties in 

the medical field.   Dilute solutions of silver nitrate are put into newborn’s eyes to 

prevent infection. Silver based salves are also being used to treat burn victims, and 

the FDA recently approved a few new drugs for this purpose (Lister, 2001).  Silver 

colloid supplements are promoted by health companies to cure a number of diseases, 

but the Federal Drug Administration (FDA) issued a final ruling on silver colloids 

proclaiming them unsafe. 

 Silver is commonly found in the environment in the 0 and +1 oxidation 

states; the other two known oxidation states of silver, +2 and +3 are seldom 

encountered in nature (Purcell and Peters, 1998).  Ag(I) is more toxic than Ag(0). 

Silver’s high affinity for sulfur ligands leads to its ability to interfere with protein 

metabolism in aquatic organisms, resulting in its toxicity at nanomolar levels (Fisher 

and Wang, 1998; Bell and Kramer, 1999). However, silver is normally found in 

natural waters at picomolar levels (Bell and Kramer, 1999).  Bivalve species and 

freshwater and marine algae bioaccumulate silver. Silver will kill bacteria at levels as 
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low as 1 micromolar (Ratte, 1999).  Some fish are sensitive to silver; it binds to 

anions in the gills, preventing the uptake of Cl- and Na+.  However, in the 

environment silver is not expected to be highly toxic because it can be transformed 

to a non-reactive and less toxic species such as Ag2S (Ratte, 1999).  Bianchini et al. 

(2002) present evidence that the mortality of Daphnai magna neonates 

(crustacean/water flea) was reduced when silver was present with sulfide, in the form 

of zinc sulfide clusters, compared to conditions when no sulfide was present.  Silver 

can displace iron or zinc from metal sulfide clusters because of its high affinity for 

sulfur ligands. Rozan and Luther (2002) further demonstrated that silver replaced 

zinc in a 1:1 ratio when zinc sulfide solutions were titrated with silver. 

 

I.C.5.2. Silver in Aquatic Systems 

Adams and Kramer (1999) argue that silver is found as a sulfide in most 

natural water systems and that silver (I) forms very strong complexes with sulfides 

such as AgHS. Other organic sulfide species, like thiols (RS-), have formation 

constants that are similar to silver sulfide complexes.  Adams and Kramer (1999) 

performed a study on silver speciation in wastewater effluent, receiving waters and 

pore waters from an anoxic lake sediment. Sulfide and silver were present at an 

average of 100 nM and less than 1 nM, respectively.  It was concluded that as long as 

sulfide is in excess of silver in the pore water, silver sulfide complexes would be the 

dominant species because silver forms one of the strongest sulfide complexes 

(Adams and Kramer, 1999; Rozan and Luther, 2002).  Even though thiols were 

present at low nanomolar levels, they did not contribute to silver speciation.  
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However, the presence of thiols must also be considered as another potential 

species that would bind silver. Al-Farawati and Van den Berg (2001) found thiol 

concentrations ranging from 0.70 to 3.6 nM in the North Sea and English Channel 

and did not find evidence of sulfides.  However, the nature of thiols in water is not 

well understood and sulfide is the major reduced sulfur species in fresh waters 

compared to thiols, whereas thiols may be important in estuarine and marine waters 

(Adams and Kramer, 1999).  

 

I.C.5.3. Speciation of Ag in Sulfidic Solutions 

There have been numerous studies on the stability of silver complexes.  The 

aqueous silver complexes proposed to account for silver (I) solubility in equilibrium 

with AgCl and Ag2O with no added sulfide include: AgClx
1-x (Zotov et al., 1982), 

Ag(OH) (Kozlev et al., 1983) and AgClOH- complexes (Zotov et al., 1982). The 

mixed hydroxychloride species is interesting.  

There have also been many studies conducted on the solubility of silver 

sulfide in sulfidic solutions, which are summarized in Table 5. Gammons and Barnes 

(1989) conducted solubility studies on Ag2S (acanthite/argentite) in sulfidic solutions 

ranging from 0.2 to 1.4 molal, at 25-300°C with a pH between 5.8 and 7.3. They 

concluded that Ag(HS)2
- was the predominant species. Stefansson and Seward 

(2003) conducted a solubility study on silver sulfide in sulfidic solutions between 

0.007 and 0.176 mol kg-1, at 25-400°C, with a pH range of 3.7 to 12.7.  Stefansson 

and Seward (2003) concluded that AgHS was the dominant species in acidic solution 
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conditions, Ag(HS)2
- under neutral pH conditions and Ag2S(HS)2

-2 under basic 

conditions. 

 

Table 5. Silver Speciation from Previous Solubility Studies with Silver 

Silver Complex Solid pK Reference 
Chloride Complexesa 

AgCl 6.64±.04 
AgCl2

- 4.81±.04 
AgCl3

2- 
Silver chloride 

4.75±.1 
Zotov et al. (1986) 

    
Hydroxychlorido Complexesb 

AgClOH- - 5.3±.2 Zotov et al. (1982) 
    

Sulfide Complexesc 

Ag(HS)2
- acanthite/argentite 3.82±.1 Gammons and Barnes 

(1989) 
    

Ag2S(H2S) 6.4±.2 
Ag2S(H2S)(HS)- 3.9±.2 
Ag2S(H2S)(HS)2

- 
acanthite/argentite 

4.3±.4 
Ag2S(HS)2

2-  5.2±.2 

Sugaki et al. (1987) 

 
Ag(HS) 5.62±.04 

Ag(HS)2
- 3.97±.04 

Ag2S(HS)2
2- 

acanthite/argentite 
4.78±.04 

Stefansson and 
Seward (2003) 

    
Polysulfide Speciesc 

Ag(S4)2
3- 7.66 

AgS4S5
3- 8.76 

Ag(HS)S4
2- 

acanthite 
-4.47 

Cloke (1963) 

a Temperature 18°C, b Temperature is an extrapolation to 25°C,                       
c Temperature 25°C 

 

 

Sugaki et al. (1987) measured the solubility of silver sulfide in solutions 

containing 0.00 to 4.51molal H2S/HS-, at 25 to 250°C, with a pH range from 2.6 to 

10.6.  Sugaki et al. (1987) found that Ag2S(H2S), Ag2S(H2S)(HS)-, Ag2S(H2S)(HS)2
-2 
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and Ag2S(HS)2
-2 dominated with increasing significance as solution pH increased. 

However, Sugaki et al. (1987) only considered dinuclear species and did not consider 

mononuclear silver complexes to account for silver speciation in their experiments. 

Cloke (1963) measured the solubility of acanthite at 25°C from pH 7.72 to 

12.98 in differing concentrations of sodium polysulfide solutions. Cloke (1963) 

described the silver solubility with silver polysulfide species, which include   

Ag(S4)2
-3,  AgS5S4

-3, and Ag(HS)(S4)-2. 

 

I.C.5.4. The Ag-As-S System 

This dissertation reports on the Ag-As-S system by studying two assemblages 

that contained the following starting materials AgAsS2/Ag3AsS3 (trechmannite 

/proustite), Ag3AsS3+Ag2S.  Figure 1 presents a phase diagram for the Ag-As-S 

system and the temperatures of transition between phases.  The minerals presented in 

Figure 1 are all known to occur in nature in ore veins or hydrothermal deposits.  

There are three polymorphs of silver sulfide. Acanthite (monoclinic) is the low 

temperature phase of Ag2S and occurs in low temperature sulfide veins. Acanthite 

inverts to argentite at 176.3°C, which is body-centered cubic.  Between 586°C and 

622°C the body-centered form of Ag2S inverts to a face-centered cubic form of Ag2S 

(Stefansson and Seward, 2003).   

Roland (1970) has described two phases of AgAsS2, smithite and 

trechmannite.  The temperature inversion between smithite and trechmannite, the 

low temperature phase, is 320°C (Hall, 1966; Roland, 1970). AgAsS2 minerals are 

relatively rare in nature.   
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Figure 1. Top: Ternary phase diagram for the silver-arsenic-sulfur system Roland 
(1970).  Low temperature phase is presented first in key.  Bottom: Phase relations 
along Ag2S-As2S3 join, pru=proustie, xan=xanthoconite, smit=smithite and 
trech=trechmannite. 
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Ag3AsS3 exists in two forms, xanthoconite and proustite, where xanthoconite 

is always reported to occur with proustite.  Xanthoconite is the low temperature 

phase of Ag3AsS3 and will invert to proustite above 192o C. Proustite and its 

antimony analog Ag3SbS3 (pyrargyrite) and smithite and its antimony analog 

AgSbS2 (miargyrite) form a complete solid solution series (Ghosal and Sack, 1995; 

Schonau and Redfern, 2002).  Proustite is the most abundant form of the silver 

sulfosalts in nature and is commonly found with other sulfosalts (Bryndzia and 

Kleppa, 1989; Schonau and Redfern, 2002). 

Ag7AsS6 is believed to occur in silver ore deposits and is named 

billingsleyite. Hall (1966) and Roland (1970) have classified this phase. 

Nordstrom and Archer (2003) have reviewed the stability of As2S3. As2S3 is 

commonly found in epithermal ore deposits, as a precipitate in hot springs and is 

commonly formed from the weathering of realgar (AsS). Realgar is also found in the 

same environments as orpiment, but does not form a precipitate from a solution 

under 100oC.  Hall (1966) reported the synthesis of AsS2. He also states that the 

compound was reported as a yellow precipitate in an acid spring in Nasu, Japan. 
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Chapter II. As, Ag, Pb and Hg Solubility in Sulfidic Solutions 

II.A. Introduction 

II.A.1. Aim of Study 

In this chapter, I will first explore As speciation in equilibrium with orpiment 

in the absence and presence of elemental sulfur in sulfidic solutions. The data sets 

considered are from published sources (Webster, 1990; Eary, 1992) as well as from 

my own experiments involving As2S3 alone, and As2S3 in combination with either 

So, HgS, PbS or various phases in the Ag-As-S system.  In the case of the Hg-, Pb- 

and Ag-containing assemblages the solubilities of the metals were so small  (~10-7 

M) in relation to the arsenic concentration (~10-4) that no metal complex can 

contribute significantly to the arsenic speciation. (The only way a metal could affect 

the arsenic solubility in this situation would be by combining with solid As2S3 to 

form a new phase, a process for which there is no evidence.) After As speciation has 

been discussed, the effect of the arsenic species on the solubility on each of the 

metals will be considered in turn.  

It is important to note that the experimental conditions used throughout this 

work are similar to conditions that would be found in nature where thioarsenite 

would be stable. Natural anoxic sediments normally have a pH of 6 to 8 and a sulfide 

range of 1x10-6 to 1x10-3 M.  In my experiments, pH ranged from approximately 6.5 

to 8.2 and total sulfide ranged from 1x10-4 to 1x10-3 M.  It would be interesting to 

extend these ranges, but by covering a smaller range of conditions, I could 

investigate more solid phase assemblages in a given amount of time. 
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II.B. Methodology 

II.B.1. Characterization of Materials 

II.B.1.1. Characterization of Starting and Reacted Materials Containing As2S3, 

PbS and HgS 

Orpiment mineral was obtained from Excalibur Minerals (1000 North 

Division Street, Peekskill, NY 10566) and originally came from Elbrussky Mine, 

Caucasus, Russia. The orpiment was removed from a dolomite substrate 

(CaMg(CO3)2) and was broken into small pieces. There were small spots of 

sphalerite (ZnS) at the base of the material, which were also carefully removed.  

The solids were characterized by X-ray Diffraction using a Bruker D8 

Advance Powder Diffractometer with an area detector and CuKα radiation.  The 

goniometer was aligned with a quartz standard. The X-ray diffraction patterns for 

orpiment, dolomite and sphalerite are shown in Figures 2-4, respectively. Table 6-8 

identifies the peaks from the diffraction patterns.  

The diffraction pattern in Figure 2 has prominent peaks at 37.4o and 38.4o. 

Peaks at 37.4o and 38.4o in the reference pattern are substantially smaller.  Orpiment 

is a very soft material, and grinding can produce an oriented sample which would 

enhance certain x-ray reflections and could explain the intensity mismatch between 

my sample and the standard sample.  

The orpiment was further characterized by Energy Dispersive X-Ray 

Microanalysis (EDAX) with an AMRAY 1820D Scanning Electron Microscope. The 

material was primarily As2S3, although a small peak appeared at approximately 0.6 

Kev, which could correspond to chromium.  Tim Maugel (Biophysics, UMCP) 
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Figure 2. X-ray diffraction pattern for natural orpiment (As2S3).  Reference is shown 
below spectra as solid lines. CuKα radiation=1.54 Å. 
 

Table 6. Observed Peaks in the X-Ray Diffraction Pattern of Natural Orpiment 
Mineral 

Peak (2θ), Intensity x103 
(measured by hand) 

Known Orpiment Peak (2θ), Intensity x103 
(measured by hand) 

18.8, 141.1 18.8, 127.0 
28.0, 27.8 28.1, 30.5 
29.0, 35.0 29.2, 16.8 
32.1, 35.0 32.1, 23.0 
35.1, 25.9 35.2, 21.9 
36.6, 25.9 36.6, 15.4 
37.4, 69.1 37.4, 5.8 
38.4, 45.4 38.4, 7.7 
43.1, 35.0 43.3, 15.4 
52.4, 63.0 52.6, 21.9 

Diffraction pattern shown in Figure 2.  Peaks given as 2-theta.  The known peaks are 
from the JCPDS database 
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Figure 3. X-ray pattern of white substrate from natural orpiment. A reference 
spectrum is shown below as solid lines. CuKα radiation=1.54 Å. 

 

Table 7. Observed Peaks in the X-Ray Diffraction Pattern of the Dolomite Substrate 

Peak (2θ), Intensity x103 
(measured by hand) 

Known Dolomite Peak (2θ), Intensity x103 
(measured by hand) 

30.8, 186.0 30.8, 156.3 
41.0, 25.6 41.0, 37.5 
44.8, 36.5 44.8, 21.5 
50.2, 25.6 50.2, 28.8 
50.7, 62.5 50.8, 31.9 

Diffraction pattern shown in Figure 3.  Peaks given as 2-theta.  The known peaks are 
from the JCPDS database 
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Figure 4. Black particles on natural orpiment mineral.  Reference is shown below 
spectra as solid lines. CuKα radiation=1.54 Å. 

 

Table 8. Observed Peaks in the X-Ray Diffraction Pattern of the Sphalerite Particles 

Peak (2θ), Intensity x103  
(measured by hand) 

Known Sphalerite Peak (2θ), Intensity x103 
(measured by hand) 

28.4, 240.0 28.4, 232.2 
33.0, 24.0 33.0, 24.0 
47.4, 400.0 47.4, 124.2 
56.7, 237.5 56.7, 75.6 
59.0, 13.0 59.0, 5.4 
69.2, 242.0 69.2, 14.9 
76.4, 63.0 76.8, 24.3 
79.0, 24.1 79.0, 5.4 
88.2, 56.2 88.4, 27.0 

Diffraction pattern shown in Figure 4.  Peaks given as 2-theta.  The known peaks 
are from the JCPDS database 
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concluded that chromium was absent, because a second chromium peak at 

approximately 5 Kev was missing from the scan.  The sample was relatively large 

and the 0.6 Kev peak could have come from sample charging. Silicon also appeared 

in the scan, although it was present in a small quantity.  

An effort to synthesize crystalline orpiment by annealing amorphous glassy 

As2S3 (Cerac Inc.) yielded a few crystalline pieces and more of a glassy material; the 

annealing process is described in Cernosek et al. (1999).  Amorphous As2S3 was also 

synthesized by combining sodium arsenite with potassium hydrogen phthalate, as  

described in Eary (1992).  The bright yellow-orange solid that was produced was 

very soluble.  Its high solubility was problematic because the resulting thioarsenite 

species interfered with the determination of total sulfide. Therefore, natural, 

crystalline orpiment was used in these experiments. 

Galena (PbS) (Alfa Aesar, naturally occurring mineral, 0.06- 0.019 inches in 

particle size) and sulfur (Aldrich, 99.98% pure) were also characterized. The X-ray 

diffraction pattern for galena, as received, is shown in Figure 5.  The X-ray 

diffraction pattern for the assemblage, PbS+S+As2S3, after 30 days equilibrium with 

a sulfidic solution (1.65x10-3 M total sulfide, pH=7.5) is shown in Figure 6. Tables 9 

and 10 identify the peaks from these patterns. Major orpiment peaks appear in the 

reacted material at approximately 18.8o, 29.0o and 32.1o, which are the same 

positions of the peaks in orpiment prior to equilibration with galena. Prominent 

peaks for orpiment at 27.4o and 38.4o are absent from the reacted diffraction pattern, 

but present in the original orpiment diffraction pattern (Figure 2). Probably galena in 
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the sample is preventing the orientation which caused these peaks to appear at 

exaggerated intensities in Figure 2. 

The solids were further characterized by Energy Dispersive X-Ray Analysis 

(EDS) using a JOEL 8900 Superprobe. A PbS+As2S3+S sample that was reacted 

with a sulfidic solution was first imbedded in epoxy and was then ground with SiC 

impregnated papers (800 and 500 grit) and polished with 15, 6 and 3 micron 

diamond paste. The reacted PbS+As2S3+S assemblage was inspected by EDS. There 

was no evidence of any reaction rims on the surfaces of the orpiment or galena. This 

assemblage was also inspected with a Leitz Orthoplan reflected-light microscope 

with a Xe light source at 10x magnification in air. The orpiment had rounded edges, 

indicating leaching of arsenic into solution. The galena had square edges, which 

indicated minimal dissolution.  

An X-ray diffraction pattern for the HgS starting material (99% pure EM 

Science) is shown in Figure 7, and the peaks are identified in Table 11. A x-ray 

diffraction pattern was taken (Figure 8) of the HgS+As2S3+S assemblage after 

equilibration for at least 30 days in a sulfidic solution (7.77x10-4 M total sulfide, 

pH=7.22). Table 12 identifies the peaks from the pattern. No peaks were lost and no 

new peaks appeared in the equilibrated assemblage when compared to the unreacted 

starting materials. The reacted ternary assemblage was inspected by EDS, and there 

was no evidence of any reaction rims on the surfaces of the orpiment, which further 

confirms that the starting and reacted material are the same composition. 
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Figure 5. X-ray diffraction pattern for galena, PbS. Reference is shown below 
spectra as solid lines. CuKα radiation=1.54 Å. 

 

Table 9. Observed Peaks in the X-Ray Diffraction Pattern of Galena 

Peak (2θ), Intensity x103 
(measured by hand) 

Known Galena Peak (2θ), Intensity x103 
(measured by hand) 

26.0, 120.4 26.0, 35.5 
29.0, 374.0 30.1, 44.5 
43.0, 61.0 43.0, 25.8 
50.8, 71.5 51.0, 15.8 
53.6, 33.0 53.6, 7.5 
62.6, 39.6 62.6, 4.6 
68.5, 27.5 68.8, 4.5 
71.0, 41.3 71.0, 8.5 
78.8, 27.7 78.8, 4.2 
84.6, 27.5 84.8, 3.0 

Diffraction pattern shown in Figure 5.  Peaks given as 2-theta. The known peaks 
are from the JCPDS database 
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Figure 6. X-ray powder diffraction pattern of PbS+As2S3+S assemblage after 30 
days in equilibrium with a sulfidic solution (1.65x10-3 M total sulfide, pH=7.5).  
References are shown below spectra as solid lines. CuKα radiation=1.54 Å. 
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Table 10. Observed Peaks in the X-Ray Diffraction Pattern of the PbS+As2S3+S 
Assemblage After 30 days of Equilibration with a Sulfidic Solution 

Peak (2θ), Intensity x103 
(measured by hand) 

Known Peak (2θ), Intensity x103 
(measured by hand) 

18.6, 8.5 orp 18.5, 8.9 
21.9, 3.4 s 21.9, 1.9 
23.1, 14.9 s 23.4, 15.5 
26.0, 38.4 ga 26.0, 104.1 
26.7, 4.5 s 26.7, 3.4 
27.8, 5.7 s 27.7, 5.4 
29.0, 5.7 orp 29.0, 0.8. s 29.0, 2.3 

30.1, 110.0 ga 30.1, 110.0 
31.4, 3.7 orp 31.5, 0.4, s 31.4, 2.8 
32.1, 3.1 orp 32.0, 2.2 
43.0, 26.8 ga 43.0, 70.3 
47.8, 3.2 orp 47.8, 0.4. s 47.8, 0.3 
50.8, 18.3 ga 51.0, 38.1 
53.6, 14.1 ga 53.6, 21.8. orp 53.4, 0.6. s 53.4, 0.7 
62.6, 10.8 ga 62.6, 8.9 
68.9, 4.7 ga 68.5, 12.9 
71.0, 8.5 ga 71.0, 22.1 
78.9, 9.0 ga 78.8, 14.3 
84.8, 7.6 ga 84.6, 7.5 

Diffraction pattern shown in Figure 6.  Peaks given as 2-theta.  The known 
peaks are from the JCPDS database.  Abbreviations are: orp=orpiment, 
s=sulfur and ga=galena 
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Figure 7. X-ray diffraction pattern for cinnabar, HgS. Reference is shown below 
spectra as solid lines. CuKα radiation=1.54 Å. 
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Table 11. Observed Peaks in the X-Ray Diffraction Pattern of the HgS 

Peak (2θ), Intensity x103 
(measured by hand) 

Known HgS Peak (2θ), Intensity x103 
(measured by hand) 

24.8, 20.2 24.8, 8.9 
26.5, 452.4 26.5, 148.0 
28.2, 137.6 28.2, 44.4 
31.2, 460.2 31.2, 140.0 
37.9, 58.0 37.9, 14.8 
43.6, 182.7 43.6, 37.0 
44.68, 62.12 44.7, 17.8 
45.8, 247.6 45.8, 51.8 
47.9, 18.9 47.8, 5.9 
51.8, 120.6 51.8, 29.6 
52.7, 198.3 52.7, 37.0 
54.6, 174.4 54.6, 37.0 
58.3, 53.4 58.2, 8.9 
59.1, 40.0 59.1, 8.9 
65.1, 52.0 65.0, 8.9 
66.8, 21.2 66.7, 3.0 
69.1, 22.1 69.1, 8.9 
69.9, 69.9 69.9, 17.8 
72.3, 71.8 72.4, 14.8 
74.8, 30.8 74.8, 5.9 
75.5, 47.4 75.5, 11.8 
76.3, 19.3 76.3, 5.9 
80.1, 11.0 80.7, 3.0 
80.8, 10.1 80.2, 5.9 
81.6, 28.1 81.6, 5.9 
83.2, 12.9 83.1, 5.9 
85.4, 9.7 85.4, 3.0 
86.2, 27.2 86.2, 5.9 
86.9, 24.9 86.9, 5.9 
88.4, 33.1 88.4, 8.9 

Diffraction pattern shown in Figure 7.  Peaks given as 2-theta. The known 
peaks are from the JCPDS database 
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Figure 8. X-ray powder diffraction pattern of HgS+As2S3+S assemblage after 30 
days in equilibrium with a sulfidic solution (1.65x10-3 M total sulfide, pH=7.5).  
References are shown below spectra as solid lines. CuKα radiation=1.54 Å. 
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Table 12. Observed Peaks in the X-Ray Diffraction Pattern of the HgS+As2S3+S 
Assemblage After 30 days of Equilibration with a Sulfidic Solution 

Peak (2θ), Intensity x103 
(measured by hand) 

Known Peak (2θ), Intensity x103 
(measured by hand) 

18.6, 79.3 s 18.5, 2.0. orp 18.5, 95.0 
20.2, 7.1 orp 20.1, 5.7 
21.9, 19.6 s 21.9, 13.5 
22.7, 17.4 s 22.7, 16.2. orp 22.9, 0.7 
23.1, 108.2 s 23.1, 110.5 
24.9, 10.6 cin 24.8, 8.9. s 25.0, 7.3. orp 25.1, 3.4 
25.8, 44.8 s 25.9, 41.6 

26.5, 148.0 cin 26.5, 148.0. s 26.4, 3.43 
27.7, 39.5 s 27.8, 38.2. orp 25.6, 1.62 
28.1, 59.1 cin 28.2, 44.4 
28.9, 26.6 s 29.0, 16.4. orp 290, 8.27 
31.2, 188.8 cin 31.2, 140.1. orp 31.2, 36.1 
32.2, 28.1 s 32.4, 0.3. orp 32.3, 11.3 
33.0, 7.2 orp 33.0, 53.3 
36.8, 29.5 orp 36.6, 24.3 
37.6, 42.3 s 37.5, 2.8. orp 37.5, 2.4 
38.4, 32.3 orp 38.4, 4.8 
42.7, 18.9 s 42.9, 14.2. orp 42.7, 5.3 
43.6, 38.9 cin 43.6, 37.0 
44.7, 29.3 cin 44.7, 17.8. s 44.7, 0.9. orp 44.6, 9.0 
45.8, 50.0 cin 45.8, 51.8. s 45.8, 3.9. orp 45.7, 1.4 
47.8, 17.0 cin 47.8, 5.9. s 47.9, 8.8. orp 47.8, 4.8 
51.8, 28.7 cin 51.8, 29.6. s 51.8, 1.0. orp 51.6, 1.0 
52.4, 25.11 s 52.2, 8.2. orp 52.3, 14.2 
52.7, 28.7 cin 52.7, 37.0. orp 52.5, 8.8 
54.6, 42.3 cin 54.6, 37.0. s 54.6, 0.3. orp 54.5, 6.2 
58.3, 15.1 cin 58.2, 8.9. orp 58.3, 1.05 
59.1, 8.3 cin 59.1, 8.9. s 59.3, 2.1 
69.1, 6.6 cin 69.1, 8.9. s 89.1, 1.9 

72.5, 16.2 cin 72.4, 14.8. s 72.5, 2.5. orp 72.5, 1.0 
88.4, 19.6 cin 88.4, 8.9 

Diffraction pattern shown in Figure 8.  Peaks given as 2-theta.  The known peaks 
are from the JCPDS database.  Abbreviations are: orp=orpiment, s=sulfur and 
cin=cinnabar 
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II.B.1.2. Synthesis and Characterization of Ag2S, Ag3AsS3 and AgAsS2 

II.B.1.2.1. Characterization of Ag2S 

Silver sulfide, Ag2S (Alfa Aesar, 99.9% metals basis) was characterized as 

acanthite using Powder X-Ray Diffraction.  The solids were characterized using a 

Bruker D8 Advanced Powder Diffractometer with an area detector.  The goniometer 

was aligned against a quartz standard. The x-ray diffraction pattern for Ag2S is 

shown in Figure 9 and listed in Table 13. 

X-Ray photoelectron spectroscopy (XPS) was done (Bindu Varughese, 

UMCP Chemistry Department) on an unreacted sample of Ag2S, and an Ag2S+S 

assemblage that had been equilibrated with a sulfidic solution for at least 40 days. 

The XPS measurements were done using a Kratos Axis 165 spectrometer at a 

vacuum of 4 x10-10 torr with nonmonochromatic Mg Kα radiation. The powdered 

sample was introduced into the chamber by dusting the sample directly onto carbon 

tape. The carbon served as a calibration point for C 1s, which has a characteristic eV 

of 285.0. A wide scan survey was done and various regions were analyzed. Spectra 

were recorded in the FAT (fixed analyzer transmission) analyzer mode with a pass 

energy of 20 eV and with an average of 10 scans with a 60 second duration. 

In both cases, XPS revealed that small amounts of oxygen were present in the 

starting and reacted sample, but the reacted sample had half as much of the oxygen 

impurity as the starting material.  XPS is a surface technique and measures 

approximately 15 angstroms into the surface, so the bulk material is not necessarily 

the same as the surface. The binding energies for O 1s in these samples does not 

closely correspond to the silver oxide species, but could correspond to Ag2SO4. 
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Figure 9. X-ray power diffraction pattern of Ag2S.  Reference is acanthite and is 
shown as solid lines. CuKα radiation 1.54 Å. 
 

Table 13. Observed Peaks in the X-Ray Diffraction Pattern of Ag2S (acanthite).  The 
data are 2 theta followed by the estimated intensity. 

My Peak (2θ), Intensity (x103)       
(measured by hand) 

Acanthite Peak (2θ), Intensity (x103) 
 (measured by hand) 

25.81, 7.1 25.81, 4.8 
26.37, 4.4 26.30, 2.7 

29.00, 11.3 28.98, 7.7 
31.52, 13.5 31.52, 10.7 
33.75, 8.3 33.62, 5.2 
34.40, 13.5 34.38, 12.5 
34.68, 11.3 34.75, 10.6 
36.88, 12.2 36.75, 10.8 
37.75, 12.7 37.70, 10.6 
40.73, 8.1 40.73, 7.5 

Diffraction pattern shown in Figure 9. Peaks given as 2-theta. The known peaks are 
from the JCPDS database 
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Because the samples were not etched to remove the top layer, the surface probably 

had an oxygen layer from contact with air.  

 

II.B.1.2.2. Synthesis and Characterization of AgAsS2 and Ag3AsS3 

AgAsS2 and Ag3AsS3 were synthesized from Ag2S (Alfa Aesar, 99.9% 

metals basis) and As2S3 (Cerac, 1-6 mm pieces, 99.9% pure). The As2S3 was 

composed of slightly amorphous red glass pieces, and was washed with 0.01M 

NaOH and water to remove any oxide impurities. To synthesize AgAsS2, 5.5074 

grams of Ag2S and 5.4655 grams of As2S3 were combined. To synthesize Ag3AsS3, 

5.9950 grams of Ag2S and 1.9907 grams As2S3 were combined. The mixtures were 

placed in the glovebox, ground together and transferred to quartz tubes. The tubes 

were evacuated for 30 minutes and then heat-sealed while still under vacuum. The 

tubes were then placed in a furnace where the temperature was increased 15°C per 

hour over two days until a temperature of 150°C was reached; this temperature was 

held for 2 weeks. After the first 2 weeks of the reaction the materials were analyzed 

with x-ray diffraction. The peaks of the diffraction pattern were not very sharp, 

which led to the conclusion that the reaction did not reach equilibrium. The materials 

were then reground under acetone in the glovebox, resealed, heated to 195°C and 

held at this temperature for another 3 weeks. After 3 weeks the temperature was 

lowered slowly so any high temperature phase would invert to a low temperature 

phase.  

The x-ray diffraction patterns of the starting materials, AgAsS2 and Ag3AsS3 

are shown in Figures 10 and 11, respectively. Table 14 and 15 identify the peaks  
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Figure 10. X-ray diffraction pattern for the raw AgAsS2 starting material, 
trechmannite/proustite (AgAsS2/Ag3AsS3). References, trechmannite and proustite, 
are shown below spectra as solid lines. CuKα radiation 1.54 Å. 

 

Table 14. Observed Peaks in the X-Ray Diffraction Pattern of AgAsS2 Starting 
Material. The data are 2 theta followed by the estimated intensity. 

My Peaks (2θ), Intensity (x103)   
(measured by hand) 

Known Peaks (2θ), Intensity (x103) 
 (measured by hand) 

24.38, 4.2 tr 24.38, 4.2 
27.80, 11.3 tr 27.75, 2.5, pr 27.10, 11.1 
28.38, 12.5 tr 28.38, 13.8, pr 28.05, 11.0, pr 28.66, 11.0 
31.75, 11.0 tr 32.06, 2.5, pr 31.00, 11.3 
33.12, 21.3 tr 33.22, 17.8 
35.00, 5.3 tr 35.10, 5.1 
35.48, 7.0 pr 35.32, 11.0 
40.99, 4.2 pr 40.56, 3.8 
46.15, 7.5 pr 46.30, 11.0 
46.90, 7.5 tr 46.98, 8.8, pr 47.48, 5.5 
48.25, 7.0 tr 48.25, 9.8 

Diffraction pattern shown in Figure 10. Peaks given as 2-theta. The known peaks are 
from the JCPDS database. Abbreviations are: tr = trechmannite and pr=proustite 
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Figure 11. X-ray diffraction pattern for the raw Ag3AsS3 starting material 
(proustite). References, proustite, acanthite and xanthoconite (low temperature 
phase) are shown below spectra as solid lines. CuKα radiation 1.54 Å. 
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Table 15. Observed Peaks in the X-Ray Diffraction Pattern of Ag3AsS3 Starting 
Material. The data are 2 theta followed by the estimated intensity. 

My Peaks (2θ), Intensity (x103)  
(measured by hand) 

Known Peaks (2θ), Intensity (x103) 
 (measured by hand) 

14.50, 7.2 bi 14.75, 1.0 
16.42, 10.0 xan 16.00, 2.9 
25.40, 6.8 bi 25.40, 3.2 
25.90, 5.6 ac 25.99, 3.2 
26.28, 5.6 xan 26.26, 2.8, ac 26.30, 2.1 
27.20, 14.5 pr 27.22, 10.0, bi 26.91, 3.2 
28.00, 16.1 pr 28.07, 10.0 
28.28, 12.4 xan 28.30, 4.3, bi 28.29, 1.85 
28.56, 11.8 pr 28.59, 8.6 
29.50, 21.2 xan 29.58, 13.6, bi 29.53, 13.2 
31.00, 8.26 bi 30.75, 3.8 
31.56, 9.7 xan 31.56, 4.3 
31.92, 7.3 bi 31.94, 6.9 
32.57, 16.1 pr 32.59, 14.4 
33.11, 14.5 pr 33.14, 0.6 
33.59, 6.7 ac 33.61, 4.3. xan 33.77, 0.6 
34.46, 9.1 ac 34.46, 8.99 
35.03, 15.0 pr 35.15, 11.8, bi 35.31, 0.6 
36.03, 16.1 pr 36.15, 13.3 
36.35, 12.1 xan 36.37, 1.8 
36.42, 8.9 ac 36.42, 7.4 
37.68, 8.9 ac 37.71, 7.1 
40.38, 8.5 xan 40.29, 1.4, pr 40.44, 4.7 
42.28, 19.3 xan 42.28, 4.8 
43.35, 7.2 xan 43.17, 1.4 
44.00, 6.7 bi 44.00, 2.7 
45.00, 6.5 bi 44.90, 3.2 
49.15, 10.0 pr 49.25, 3.8 
62.84, 17.1 ac 62.63, 1.0 

Diffraction pattern shown in Figure 11. Peaks given as 2-theta. The known peaks are 
from the JCPDS database. Abbreviations are: ac=acanthite, bi= billingsleyite, 
xan=xanthoconite and pr=proustite 
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from the diffraction pattern. The x-ray diffraction pattern for AgAsS2 shows that 

proustite is also present in the material. The x-ray diffraction pattern of Ag3AsS3 

shows that the low and high temperature phases of Ag3AsS3 (xanthoconite and 

proustite, respectively) are present as well as Ag2S and Ag7AsS6.  

The x-ray diffraction pattern of AgAsS2 after 30 days of equilibration with a 

sulfidic solution (pH ~8, 0.001 M HS-) is shown in Figure 12. Table 16 identifies the 

peaks. In Figure 12 the formation of an orpiment like phase is seen at approximately 

18.8 and 23.1o (slight peak shift by ~0.6o). The peak at 30.5° is unidentified. These 

peaks could be the result of the exsolution of As2S3 from trechmannite, indicating 

that the trechmannite may not have been stable. Samples from this data set will be 

termed Ag assemblage A throughout the dissertation. 

A nominally AgAsS2 sample that was reacted with a sulfidic solution was 

inspected by a JOEL 8900 Superprobe using Energy Dispersive X-Ray Analysis 

(EDS).  The sample was first imbedded in epoxy and was then ground with SiC 

impregnated papers (800 grit) and polished with 6 micron diamond paste.  When the 

sample was viewed under a microscope there appeared to be two distinct phases, 

which appeared as either an orange or a honey brown color. Upon further inspection 

with EDS, sample particles were observed that had cores and reaction rims, as shown 

in Figure 13. Table 17 identifies the composition of a number of particles in two 

reacted samples (Ag assemblage A). The bright region, which is the reaction rim, 

contained Ag3AsS3. The darker core region was expected to contain AgAsS2 because 

it is less rich in Ag. However, the core region contained Ag3AsS3 in some instances. 

AgAsS2 was found in other portions of the sample but not in the core.  
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Figure 12. X-ray powder diffraction pattern of Ag assemblage A after 30 days in 
equilibration with a sulfide solution of 0.001 M starting total sulfide, pH 8.10± 0.07. 
References, trechmannite, proustite and orpiment, shown below spectra as solid 
lines. CuKα radiation 1.54 Å. 
 

Table 16. Observed Peaks in the X-Ray Diffraction Pattern of Ag assemblage A 
after 30 days in Equilibration with a Sulfide Solution of 0.001 M Starting Total 
Sulfide, pH 8.10± 0.07. The data are 2 theta followed by the estimated intensity. 

My Peak (2θ), Intensity (x103)   
(measured by hand) 

Known Peaks (2θ), Intensity (x103)       
 (measured by hand) 

18.8, 5.1  orp 18.2, 4.0 
23.10, 7.50  orp 22.2, 2.0   
24.38, 19.0  tr 24.38, 4.2 
27.70, 19.0  tr 27.75, 2.5, pr 27.10, 11.1 
28.38, 17.6 tr 28.38, 13.8, pr 28.66, 11. 0 
30.50, 7.5 orp 29.6, 1.8, pr 31.00, 11.3 
31.75, 11.0 tr 32.06, 2.5 
33.12, 21.3 tr 33.20, 17.8, orp 33.15, 2.0 
35.00, 6.0 tr 35.50, 5.1,  pr 35.10, 11.0 
35.48, 7.0 pr 35.32, 11.0 
46.98, 7.5 tr 46.98, 8.8, pr 47.48, 5.5 
48.25, 7.0 tr 48.25, 9.8 

Diffraction pattern shown in Figure 12. Peaks given as 2-theta. The known peaks are 
from the JCPDS database. Abbreviations are: orp = orpiment, tr = trechmannite, s= 
sulfur, pr=proustite 
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Figure 13. Electron backscattering image of an Ag assemblage A sample that was 
reacted with a sulfidic solution for at least 30 days. AgAsS2 and Ag3AsS3 (rim, 
bright region) identified as Ag phases. 
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Table 17. EDS Composition Data for Particles in Ag Assemblage A  

 Conditions  Weight %  
Grain 

# pH Log 
ΣS 

Sample Spot 
Description Ag As S Total Mole Ratio* 

Ag Assemblage A Sample 1- log ΣAs =--3.99, log ΣAg=-7.15, Equilibration=49 d. 
1 7.15 -4.20 bright area 60.7 19.1 20.1 100.0 Ag0.90As0.41S 
   dark area 46.7 27.9 25.4 100.0 Ag0.55As0.47S 

2   bright particle 
(orange) 0.2 62.9 36.8 100.0 As1.28S 

Ag Assemblage A Sample 2 - log ΣAs =-4.02, log ΣAg=-7.17, Equilibration 44 d. 
1 8.13 -3.42 bright area 67.6 13.9 18.5 100.0 Ag1.08As0.32S 
   bright rim 65.2 15.7 19.1 100.0 Ag1.02As0.35S 
   dark core 68.9 13.1 17.9 100.0 Ag1.14As0.31S 

2   bright particle 
(orange) - 61.3 0.61 100.0 As0.69S 

3   bright particle 48.7 30.7 20.6 100.0 Ag0.70As0.72S 
4   bright particle 63.4 17.7 18.8 100.0 Ag0.99As0.40S 
5   dark particle 67.2 14.4 18.3 100.0 Ag1.09As0.34S 
   Known phase  Ag2S Ag2S 
   Known phase  Ag3AsS3 AgAs0.3S 
   Known phase  AgAsS2 Ag0.5As0.5S 
   Known phase  Ag5AsS4 Ag1.25As0.25S 
   Known phase  Ag7AsS6 Ag 1.17As0.17S

* mole ratio have been normalized with respect to sulfur.  
 

 

The sample also contained an orange phase that was identified as As2S3.  

Glassy (amorphous) As2S3 was used to synthesize the starting material. The 

transformation to AgAsS2 may not have been quantitative and some glassy As2S3 

could have been annealed to crystalline As2S3. Since there are three phases in this 

experiment the system may not be at equilibrium. 

The x-ray diffraction pattern of Ag3AsS3+Ag2S after 40 days of equilibration 

with a sulfidic solution (pH=7.59, 8.83 x 10-4 M HS-) is shown in Figure 14. Table 

18 identifies the peaks from the diffraction pattern in Figure 14.  Figure 14 shows 

very strong Ag2S peaks and some weak Ag3AsS3 peaks at approximately 27.3 and 
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28o. It therefore must be concluded that the amount of proustite in the sample was 

small when compared to Ag2S. Samples from this data set will be termed Ag 

assemblage B throughout the dissertation. 

Samples containing Ag assemblage B that were reacted with a sulfidic 

solution were also inspected by EDS. A particle displaying three distinct areas is 

shown in Figure 15. Table 19 identifies the components in Ag assemblage B from an 

analysis of three representative samples. The darker region contained Ag2S, while 

the brighter region inside the particle contained Ag3AsS3 (see labels in Figure 15). 

The brightness on the rims of the material is misleading because it was also 

identified as Ag2S. The contrast in brightness is a result of the sample itself where 

the rims of the particles were flat, while the interior was slightly pitted. The pitting 

resulted in decreased weight percents in the interior of the samples, however they 

were still identified as Ag2S due to the absence of any As. Ag7AsS6 was identified in 

the tiny particles that circled the Ag2S particles. Ag7AsS6 likely precipitated when 

Ag3AsS3 and Ag2S were dissolving, which formed a silver rich phase.  More 

Ag7AsS6 was identified as small particles in the sample when compared to Ag3AsS3. 

This leads to the conclusion that most of the Ag3AsS3 dissolved during equilibration.  

The Ag-As-S minerals did not take a very good polish, because they are soft. 

This affected the quality of the EDS measurement in some cases, by lowering the 

total weight percent of elements determined. A total weight percent of ~70 was 

obtained in some cases. However, in most cases the sum of components totaled 

~95%, which provided quantitative ratios of the elements. The mole ratio of Ag to S 

was ~1.6 in areas defined as Ag2S.  The mole ratio of Ag to As to S was 3 to 1 to 3 in  
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Figure 14. X-ray powder diffraction pattern of Ag assemblage B after 40 days in 
equilibration with a sulfide solution of 0.001 M starting total sulfide, pH 7.59. 
References shown below spectra as solid lines. CuKα radiation 1.54 Å. 
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Table 18. Observed Peaks in the X-ray Powder Diffraction Pattern of Ag assemblage 
B After 40 Days in Equilibration with a Sulfide Solution of 0.001 M Starting Total 
Sulfide, pH 7.59. The data are 2 theta followed by the estimated intensity  

My Peaks (2θ), Intensity (x103)   
(measured by hand) 

Known Peaks (2θ), Intensity (x103) 
 (measured by hand) 

22.50, 4.7 ac 22.42, 2.0. pr 22.49, 0.4 
25.94, 15.9 ac 25.90, 7.0 
26.36, 9.5 ac 26.32, 4.0 
29.0, 30.3 ac 28.97, 12.0 
31.48, 35.7 ac 31.52, 14.0 
33.64, 20.2 ac 33.61, 9.0 
34.42, 51.2 ac 34.38, 20.0 
34.74, 36.8 ac 34.70, 14.0 
36.84, 43.4 ac 36.8, 16.0 
37.16, 27.1 ac 37.1, 12.0 
37.78, 46.6 ac 37.72, 15.0 
40.80, 27.7 ac 40.74, 9.0 
43.40, 26.6 ac 43.40, 9.0. pr 43.50, 2.5 
44.22, 7.6 ac 42.20, 3.2 
45.46, 8.9 ac 45.49, 3.2 
46.18, 12.8 ac 46.20, 4.0 
47.80, 9.2 ac 47.70, 2.8 
48.80, 8.7 ac 48.80, 3.2 
53.30, 15.7 ac 53.30, 4.0. pr 53.39, 1.0 
63.76, 8.9 ac 63.73, 2.8 

Diffraction pattern shown in Figure 14. Peaks given as 2-theta. The known peaks 
are from the JCPDS database. Abbreviations are: ac=acanthite, pr=proustite 
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Figure 15. Electron backscattering image of Starting Material B that was reacted 
with a sulfidic solution for at least 30 days. Ag2S, Ag7AsS6 and Ag3AsS3 (dark and 
bright region) identified as Ag phases. 
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Table 19. EDS Composition Data for Particles from Ag assemblage B  

 Conditions  Weight %  
Grain 

# pH Log 
ΣS 

Sample Spot 
Description Ag As S Total Mole Ratio* 

Ag Assemblage B Sample 1- log Σ As =-4.11, log Σ Ag=-6.45, Equilibration Time=54 d. 

1 7.66 -3.37 bright rim left side 
particle 76.3 0 14.3 90.7 Ag1.58S 

   dark core 58.6 0.32 11.5 70.4 Ag1.51S 
   dark core 65.0 0 12.0 77.0 Ag1.61S 

   bright rim right side 
particle 67.4 0.08 12.1 79.5 Ag1.66S 

   small bright grains 
off particle 79.9 4.3 17.0 101.1 Ag1.39As0.11S 

   small bright grains 
off particle 77.6 5.1 16.6 99.3 Ag 1.39As0.13S 

   small bright grains 
off particle 75.3 5.7 16.8 97.9 Ag1.33As0.14S 

   bright particle in core 57.2 15.4 17.1 89.7 Ag0.99As0.38S 

2   small bright grains 
off particle 81.6 3.8 16.8 102.2 Ag1.45As0.10S 

   small bright grains 
off particle 78.9 4.0 16.4 99.3 Ag1.43As0.11S 

Ag Assemblage B Sample 2 - log Σ As =-4.26, log Σ Ag=-6.58, Equilibration Time=52 d. 
1 7.87 -4.26 bright area of particle 

off rim 
71.1 8.9 18.2 98.4 Ag1.16As0.21S 

   dark area of particle 
off rim  

63.5 0.42 12.1 76.1 Ag1.56As0.01S 

2   bright area 66.0 9.8 18.6 94.5 Ag 1.05As0.22S 
   bright rim 78.9 0.0 14.1 93.1 Ag1.66S 

3   slightly darker core 76.8 5.9 18.5 101.2 Ag1.23As0.14S 
   bright rim 84.5 0.91 15.2 100.5 Ag1.66As0.02S 

Ag Assemblage B Sample 3 - log Σ As =-4.03, log Σ Ag=-6.70, Equilibration Time, 53 d. 
1 7.25 -3.08 bright rim 82.5 0.19 14.1 96.8 Ag1.74As0.01S 
2   bright rim 83.8 0.3 14 98.0 Ag1.78As0.01S 
   dark core 76.7 0.63 13.6 90.9 As1.68As0.02S 
   dark core 56.3 0.1 10.6 67.0 Ag1.58As0.004S 

3   bright rim 81.1 0.05 14.5 95.7 Ag1.66As0.001S 
   dark core 56.1 0.59 10.9 67.7 Ag1.52As0.02S 
   bright particle off rim 83.5 2.2 14.8 100.5 Ag1.67As0.06S 
   bright particle off rim 82.0 1.6 15.9 99.5 Ag1.53As0.04S 
   bright particle off rim 82.3 1.1 15.7 99.2 Ag1.55As0.03S 

 Known phase  Ag2S Ag2S 
   Known phase  Ag3AsS3 AgAs0.3S 
   Known phase  AgAsS2 Ag0.5As0.5S 
   Known phase  Ag5AsS4 Ag1.25As0.25S 
   Known phase  Ag7AsS6 Ag 1.17As0.17S 

* mole ratio have been normalized with respect to sulfur.  
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most areas defined as proustite. The mole ratio of Ag to As to S was ~7 to ~1 to ~6 

in most areas defined as billingsleyite.  

The reacted assemblages will therefore be described as follows: orpiment 

(crystalline) only experiments will be represented as As2S3 and orpiment plus 

elemental sulfur experiments will be represented as As2S3+S. Experiments dealing 

with galena, orpiment and elemental sulfur will be represented as PbS+As2S3+S. 

Experiments dealing with cinnabar, orpiment and elemental sulfur will be 

represented as HgS+As2S3+S. Experiments containing acanthite and elemental sulfur 

will be defined as Ag2S+S. Experiments involving the proustite starting material and 

acanthite will be defined as Ag assemblage B and experiments containing the 

trechmannite starting material (also contains proustite and unstable orpiment like 

phase) will be represented as Ag assemblage A. 

 

II.B.2. Mineral Dissolution 

II.B.2.1. As2S3, As2S3+S, HgS+As2S3+S, PbS+As2S3+S, Ag Assemblage A and B 

in Sulfidic Solutions 

 All solutions were prepared with deionized water from an ion 

exchange/organic adsorption filtration system (Barnstead/Thermolyne). All sample 

preparations and manipulations were performed in a N2 glove box unless otherwise 

specified. Bisulfide solutions were prepared by bubbling high purity H2S gas 

(Matheson) through deoxygenated 1.0 M sodium hydroxide solutions for 45 minutes.  

The bisulfide solution was then bubbled with nitrogen for five minutes to remove  
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any excess H2S gas.  The reaction vessel was immediately closed and transferred to 

an N2 filled glove box. MOPS buffer, 3-(N-morpholino)propane suphonic acid, was 

used for the pH range of 7.26 to 8.25. All solutions were purged with N2 for 30 

minutes before being placed in the glove box prior to use.   

 The masses of the solids for the solubility studies are shown in Table 20.  The 

solids were placed in glass ampoules. 20 milliliters of solution with varying pH, 

MOPS buffer concentrations (0.004M, 0.0071M and 0.014M) and bisulfide 

concentrations (0.001 M, 0.0005 M, and 0.0001 M) were added to the ampoules. To 

fix ionic strength sodium chloride (0.010 M) was added to ampoules containing 

As2S3 only, As2S3+S, PbS+As2S3+S, HgS+As2S3+S and Ag2S+S. Sodium sulfate 

(J.T. Baker), 3.33 x 10-3 M, was used to control the ionic strength in the Ag-As-S 

systems because chloride was interfering with elemental analysis.  

The ampoules were then removed from the glove box after being capped by a 

balloon attached to a piece of rubber.  The balloons prevented the sulfide solutions 

from coming into contact with air.  The ampoules were fusion sealed using an 

oxygen/propane flame within 10 minutes after removal from the glove box. 

Ampoules were equilibrated on a tumbler at room temperature for at least 4 weeks. 

Ampoules containing Ag were covered with aluminum foil during the equilibration 

period, to prevent the photoreduction of silver sulfide to elemental silver.  

After the desired reaction time, ampoules were opened and syringe filtered 

with a 0.02 µm Whatman Anatop 25 Filter. Approximately 10 milliliters of sample 

was extracted into a syringe and the first 2 milliliters were discarded. The remaining 

solution was filtered into a 15 mL polystyrene centrifuge tube.   
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Table 20. Starting Masses of Solids for Solubility Studies 

 Mass Solid (g, ± 0.001 g) 
Experiment As2S3 S PbS HgS Ag2S Ag3AsS3 AgAsS2

As2S3 only 0.130       
As2S3+S 0.130 0.130      

PbS+As2S3+S 0.130 0.130 0.130     
HgS+As2S3+S 0.130 0.130  0.300    

Ag2S     0.130   
Ag2S+S  0.130   0.130   

Ag Assemblage B     0.0500 0.0100  
Ag Assemblage A       0.0050 
Orpiment (natural material), S (99.98% pure), PbS (99.98% pure), HgS (99% 
pure), Ag2S (99.9% pure), AgAsS2 and Ag3AsS3 (synthesized material). 20 ml 
solutions of varying [MOPS] (0.004M, 0.0071M and 0.014M), [HS-] (0.001, 
0.0005, and 0.0001) added to ampoules (50 ml HgS exp.). pH adjusted with 
NaOH. 0.010 M NaCl and 3.33x10-3 M Na2SO4 used to control ionic strength. 

 

 

 

To determine silver using graphite furnace the sample needed to be preserved 

to prevent the loss of silver.  Loss of silver can be due to sorption onto the storage 

material, formation of colloids and precipitation. To prevent sorption Welz and 

Sperling (1999) recommend that solutions be acidified to 0.3 M with nitric acid and 

stored in glass.  Two ml of the filtered sample was placed in a glass centrifuge tube 

to which NaOH was added followed by 30% H2O2.  This ensured that any reduced 

sulfur species were converted to sulfate and prevented the precipitation of elemental 

sulfur.  The solution was then acidified with Ultrex nitric acid (J.T. Baker) and stored 

in a refrigerator until analysis. This procedure was modeled after Sugaki et al. 

(1987). The remaining solution was left in the polystyrene centrifuge tubes for 

arsenic analysis. 
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II.B.3. Sample Analysis 

Final pH measurements were obtained using an Orion 420A meter equipped 

with an Orion 8130 Ross Combination electrode calibrated at pH 7 and 10 with 

VWR commercial buffers.   

Total arsenic was obtained by flame (air-acetylene) atomic absorption 

spectrometry using a Perkin Elmer 5000 spectrophotometer at a wavelength of 193.7 

nm using a hollow cathode lamp. Calibration curves were produced from 6.7x10-5 M 

to 6.0x10-4 M using a commercial arsenic standard (Fisher Scientific) (detection limit 

of As was 2x10-5M). Samples and standards were treated with 0.9 M BrCl to oxidize 

any HS- to sulfate, which is needed to prevent the formation of metal sulfides.  

Erickson (1998) provides a procedure to synthesize BrCl, which includes adding 25 

grams of KBr to 100 mL of concentrated HCl with stirring. Gradually, 37.5 grams of 

KBrO3 are added to the mixture with stirring. The mixture is then transferred to a 

250 mL volumetric flask and brought to volume with concentrated HCl. 

Total lead was obtained with a Perkin Elmer 5100 ZL atomic absorption 

spectrophotometer equipped with a Perkin Elmer AS-71 auto sampler. Table 21 

gives the instrumental program used for graphite furnace analysis. Lead analysis was 

performed at 283.3 nm using a hollow cathode lamp. A matrix modifier consisting of 

3000 mg/L Pd (Alfa Aesar) and 2000 mg/L Mg(NO3)2 (Fisher Scientific) per 20 µL 

sample was injected into the furnace. Calibration curves were made over the 

concentration range of 9.6x10-9 to 1.4x10-7 M with a commercial lead standard 

(VWR Scientific) (detection limit of Pb was 9.6x10-9 M).  
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Total mercury was analyzed utilizing dual amalgam cold vapor atomic 

fluorescence spectroscopy (CVAFS) by Frontier Geosciences, Seattle, WA.  The 

mercury samples were oxidized with 0.1N BrCl prior to analysis by Frontier 

Geosciences. The detection limit of Hg was 3.0x10-12 M. 

Total silver was measured with a Perkin Elmer 5100 ZL atomic absorption 

spectrophotometer equipped with a Perkin Elmer AS-71 auto sampler. Table 22 

gives the instrumental program used for graphite furnace analysis. Silver analysis 

was performed at 283.3 nm using a hollow cathode lamp. A matrix modifier 

consisting of 3000 mg/L Pd (Alfa Aesar) and 2000 mg/L Mg(NO3)2 (Fisher 

Scientific) per 20 µL of sample was injected into the furnace. Calibration curves 

were made over the range of 1.8x10-8 M to 2.8x10-7 M with a commercial silver 

standard (VWR Scientific) (detection limit of Ag was 1.8x10-8 M). The Ag2S+S and 

Ag assemblage B samples were treated with 0.002 M sodium thiosulfate 5 hydrate 

(J.T Baker). This was to ensure that there would be no interference from the chloride 

ion and that all the silver was in solution. 

 

Table 21. Graphite Furnace Program for Lead 

Step Temp. 
(o) 

Ramp Time 
(s) 

Hold Time 
(s) 

Dry 120 1 40 

Ash 900 1 30 

Pre-Cooldown 20 1 10 

Atomize 2000 0 5 

Cleanout 2400 1 3 
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Table 22. Graphite Furnace Program for Silver 

Step Temp.(o) Ramp Time (s) Hold Time (s) 

Dry 110 1 30 

Pre-Cooldown 130 15 30 

Ash 800 10 20 

Atomize 1700 0 5 

Cleanout 2400 1 2 

 

In the Ag-As-S experiments there were three methods used to determine 

sulfide concentrations. These include potentiometric titrations, methylene blue and 

UV-Visible measurements. In the As2S3, As2S3+S, PbS+As2S3+S and HgS+As2S3+S 

experiments potentiometric titrations and UV-Visible measurements were utilized to 

obtain sulfide concentrations.  

For total sulfide determinations using the potentiometric titration method, an 

aliquot was pipetted into a titration jar filled with 60 mL of a deoxygenated NaOH 

solution, which had a pH of approximately 13. At high pH, H2S is converted to HS-, 

which retards any loss of H2S by degassing. Teflon lined caps were then screwed on 

the titration jars.  After being removed from the glove box, the solutions were 

potentiometrically titrated with HgCl2 for total sulfide using a Brinkman 760DMS 

Titrino automatic titrator with an Orion silver sulfide ion selective electrode and an 

Orion Ag/AgCl double junction reference electrode.  The indicating electrode 

responds to decreasing free sulfide as HgS precipitates.  The titration determines ΣS2- 

or the sum of H2S, HS-, polysulfides and thioarsenic species.  
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 UV-Visible spectra were obtained with a Hewlett-Packard 8452A diode 

array spectrophotometer. When HS- was present, dilution of the sample was usually 

needed to obtain spectra that were not offscale. The samples were measured in either 

1 cm or 0.1 cm quartz cells. A value of 7800 L mol-1 cm-1 was used for the molar 

absorptivity of HS- at 230 nm (Giggenbach, 1974).  However, UV-Visible 

spectrometry was not a useful technique for samples containing As2S3, for reasons 

discussed in Appendix I.  

The methylene blue method, described by Cline (1969), measures acid-labile 

sulfide throughout a range of sulfide concentrations. Stock solutions of a mixed 

diamine reagent were prepared according to Table 23.  N,N-dimethyl-p-

phenylenediamine sulfate (Eastman Kodak) and ferric chloride (J.T. Baker) were 

dissolved in 250 mL of cooled 50% (v/v) HCl (VWR).  Five mL of sample was 

placed in a centrifuge tube, and then 400 µL of the mixed diamine reagent was added 

to the sample. The blue color developed in twenty minutes and the absorbance was 

recorded at 668 nm.    

 

Table 23. Reagent Concentrations and Dilution Factors Used to Determine Acid 
Labile Sulfide 

Sulfide 
Concentration, (M) 

Diamine 
Concentration, 

g/250 mL 

Ferric 
Concentration, 

g/250mL 

Dilution 
Factor 

(mL:mL) 

Path Length 
(cm) 

3x10-6 – 4x10-5 1.0 1.5 1:1 1 
4x10-5- 2.5x10-4 4.0 6.0 2:25 1 
2x10-4 – 1x10-3 10.0 15.0 1:50 1 

Method modified from Cline (1969). Diamine concentration was prepared from  
N,N-dimethyl-p-phenylenediamine sulfate and the ferric concentration was 
prepared from ferric chloride. The solids were dissolved in 250 mL cooled 50% 
(v/v) HCl. 
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The potentiometric titrations yielded the most consistent results; therefore 

these measurements will be used to determine the speciation of each metal in the 

modeling program, except in As2S3+S and PbS+As2S3+S experiments. In 

experiments relating to the dissolution of As2S3 (As2S3, As2S3+S, PbS+As2S3+S and 

HgS+ As2S3+S) the total sulfide as observed by potentiometric titrations often 

increased by 30-75% during the course of the experiment. The increase in total 

sulfide by ~30% could be explained by the dissolution of As2S3, which results in the 

formation of one or more dissolved arsenic sulfide complexes as well as the possible 

release of some free HS-.  The sulfurs bound to the arsenic in the complexes can 

contribute to the formation of HgS during the titration of the sample with HgCl2. 

Helz et al. (2002) found that when thioantimonate species were titrated with HgCl2, 

the S2- bound to the thioantimonite contributed to the total sulfide value. This was the 

case in As2S3 only and HgS+As2S3+S experiments. In samples containing As2S3+S 

and PbS+As2S3+S the total sulfide concentration, obtained from HgCl2 

potentiometric titrations, was over an order of magnitude higher (~70%) when 

compared to the starting sulfide concentration. Orders of this magnitude can not be 

attributed to the dissolution of As2S3 and must have to do with an analytical artifact. 

A possible cause for the extremely elevated total sulfide results, obtained 

from potentiometric titrations for the As2S3+S and PbS+As2S3+S samples, could be 

due to a reaction taking place involving Hg2+. Saxena and Bhatnagar (1960) show 

that potentiometric titrations of HgCl2 with arsenite solutions form Hg(AsO2)2, 

Hg2As2O5 and Hg3(AsO3)2. Clever et al. (1985) reviewed various solubility products 

of mercury salts and found that Hg(AsO2)2 had a Ks=~10-35 whereas HgS had a Ks of 
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1x10-39. The potentiometric titration method detects free HS- in solution, but if Hg2+ 

is reacting with As(III) instead of HS- the endpoint will be drawn out. Illustrations of 

titration curves in the absence and presence of As2S3 are shown in Figure 16.  

An experiment was conducted where a sulfide stock solution (10-3 M) was 

titrated with standard additions of As(OH)3 up to 10-2 M to follow the electrode 

response.  The electrode response decreased as the arsenic concentration was 

increased, but the endpoint did not shift in a manner that would give erroneous total 

sulfide values. Specifically, after the endpoint the Hg2+ was being complexed by As 

and did not provide a point where free Hg2+ was detected. 

Total sulfide measured from these titration curves for two of my data sets, 

As2S3+S and PbS+As2S3+S, was greater than a theoretical upper limit, which is 

defined as the sulfide initially added to the sample plus 1.5 times the As dissolved 

from As2S3. Therefore, potentiometric titration data were not used in these two data 

sets. Instead, the theoretical total sulfide concentration was used. This calculation 

might overestimate the HS- in solution, but probably not by more than ~20-50%.  

This estimate is based on comparing the titration sulfide measurements to the 

theoretical upper limit in the remaining data sets. 

A 10-30% loss of sulfide was experienced during the course of the Ag2S+S, 

Ag assemblage A and Ag assemblage B experiments. There could be several reasons 

for the occurrence. There could have been some solid Ag2O that consumed sulfide. 

Some H2S may have degassed between the time required to fill and seal the 

ampoules.  Sulfide could have been lost as a sulfur rich solid. Or sulfide could have 

been lost could due to oxidation in the ampoule during the experiment, from the 
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Figure 16. Schematic of titration curves for potentiometric titrations in the absence 
and presence of As2S3. 

 

 

presence of colloids or the presence of an oxidized material.  Most likely sulfide was 

lost to the volatilization of H2S during sample handling. 

Potentiometric titration, methylene blue and UV-Visible methods tended to 

agree, but the methylene blue and UV-Visible methods did not provide sulfide values 

for Ag- and As-containing samples that had total starting HS- values of 10-4 M and in 

some cases 5 x 10-4 M. The blue color did not develop when the ratio of the 

concentration of HS- to AsS(HS)(OH)- was less than 1. Blanks, that did not contain 

arsenic and silver, were measured for total sulfide with all three methods and 

reproducible results were obtained.  It therefore seems that arsenic or silver is 

interfering with the development of the blue color at HS- concentrations around 10-4 

M.  Methylene blue measures reactive sulfide species, which include H2S, HS-, S2- 

and terminal polysulfides (SxS2-) (Mylon and Benoit, 2001). The methylene blue 

procedure begins by acidifying the sample to produce H2S. N,N-dimethyl-p-

phenylenediamine sulfate gets oxidized by ferric chloride, and the product reacts 
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with H2S producing a blue color.  The color development could have been inhibited 

by a reaction between H2S and silver or arsenic. Or there could be competition 

between AsS(HS)(OH)- and H2S for the reaction product, at the lowest sulfide 

concentration (~5 x 10-5M)  arsenic is in excess of the sulfide. The data that had 

reliable concentration of HS-, obtained from methylene blue, were used to confirm 

HS- concentrations obtained from potentiometric titration curves. 

Comparison between the three sulfide methods are made in Table 24 for the 

Ag assemblage A and B experiments; the samples with a starting total sulfide value 

of 10-4 are not in the table because their HS- concentrations were in disagreement. 

However, the blank sample that had a starting total sulfide concentration of 10-4 M 

are included in Table 24. 

The total sulfide values obtained from potentiometric titration will be used to 

determine the silver speciation. 

 

II.B.4. Fitting/Modeling Strategy 

II.B.4.1. Dissolution of As2S3, As2S3+S, HgS+As2S3+S and PbS+As2S3+S in 

Sulfidic Solutions 

The goal of the modeling is to find aqueous As, Ag or Hg species that can 

account for the observed solubilities and to obtain formation constants for these 

species assuming chemical equilibrium has been achieved. To accomplish this, the 

solubility data were modeled using SCIENTIST (Micromath, Inc.), which uses a 

nonlinear least squares fitting routine.  The solubility of As, Ag and Hg species are 
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calculated from posited sets of reactions and the set which best predicts observed 

solubilities is adopted.  

 

 

Table 24. Comparison between Methods to Measure HS- 

 Log Concentration HS- (M) 

Sample pH Log    
ΣAs TitrationTotal Sulfide 

Calc. from 
Titration 

Methylene 
Blue 

UV-Visible 
Spect. 

Ag Assemblage A Experiment 
1 7.78 -3.68 -3.06 -3.13 -3.28 -3.14 
2 7.30 -3.79 -3.50 -3.68 -4.00 -3.61 
3 8.18 -3.74 -3.26 -3.29 -3.38 -3.31 
4 7.73 -3.80 -3.21 -3.29 -3.44 -3.37 
5 7.21 -3.97 -3.18 -3.40 -3.54 -3.28 
6 8.09 -3.76 -3.32 -3.36 -3.42 -3.39 
7 7.98 -3.85 -3.08 -3.13 -3.25 -3.18 
8 7.33 -3.88 -3.15 -3.32 -3.30 -3.28 
9 8.04 -3.89 -3.11 -3.14 -3.21 -3.18 
10 7.89 -4.02 -3.80 -3.86 -3.97 -4.40 
11 7.19 -3.89 -3.63 -3.85 -3.82 -3.74 
12 8.07 -3.94 -3.46 -3.50 -3.66 -3.59 
13 7.33 -4.06 -3.76 -3.93 -3.86 -3.86 
14 8.13 -4.02 -3.42 -3.45 -3.51 -3.50 

     
Ag Assemblage B Experiment 

1 7.71 -3.98 -2.93 -2.99 -3.30 -3.18 
2 8.16 -4.18 -2.93 -3.01 -3.37 -3.21 
3 7.59 -4.18 -3.05 -3.16 -3.55 -3.21 
4 7.25 -4.03 -3.08 -3.28 -3.58 -3.38 
5 7.02 -4.25 -3.11 -3.40 -3.60 -3.35 
6 8.05 -3.88 -3.45 -3.48 -3.58 -3.46 
7 7.66 -4.11 -3.37 -3.46 -3.59 -3.41 
8 7.65 -4.20 -3.74 -3.83 -3.76 -3.75 
9 7.21 -4.29 -3.79 -4.00 -3.81 -3.66 
10 6.94 -4.32 -3.49 -3.82 -3.81 -3.61 

Blank 8.00 - -3.20 -3.24 -3.51 -3.24 
Blank 7.18 - -4.25 -4.48 -4.31 -4.19 
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In all the models, activity coefficients were calculated for each sample 

using the Davies equation, thus producing equilibrium constants that are corrected to 

conditions of infinite dilution. Arsenic and the metals (Ag, Hg and Pb) are fit 

separately in each data set.  Arsenic data are modeled first and the As speciation is 

determined at this stage is used in the analysis of metal speciation. In all cases, metal 

concentrations were negligible compared to As concentrations so metal-thioarsenite 

complexes had to be insignificant in the As speciation. 

The plots throughout this chapter are presented as the log 

(AsCalculated/AsObserved) or (HgCalculated /HgObserved) versus pH or total sulfide. 

Logarithms of the observed solubilities rather than the solubilities themselves were 

fit to avoid having deviations at the highest solubilities control the fit. If a model fits 

the experimental data the points will lie along the zero line. The standard deviation 

of each plot will also be provided (the equation used to determine the standard 

deviation is in Appendix II). This is one way to measure the goodness-of-fit of the 

model. A good model is one in which the observed and calculated solubilities are 

close to the same value, minimizing the standard deviation. A good model also 

should have no trend in deviations versus the independent variables, pH and HS-. 

 

II.B.4.2. Modeling of the Activity of Sulfur in Experiments Containing As2S3 in 

Various Solutions of Polysulfides 

 In samples that contained zero-valent sulfur, the activity of sulfur and the 

concentration of total zero valent sulfur were calculated by fitting the UV-Vis 

absorbances over the 300 to 500 nm range.  Polysulfide molar absorbances as a 
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function of wavelength can be calculated from Gaussian functions determined by 

Giggenbach (1974). The fitting program varies the activity of sulfur until the 

absorbances from the resulting polysulfide concentration match the absorbance of 

the sample between 300 and 500 nm.  This wavelength range was chosen because 

this is where polysulfides dominate the spectrum with minimal interference from HS- 

and As(III) species.  

 

II.B.5. Equilibration Rates and General Observations for Lead, Arsenic, Silver 

and Mercury   

 Jay et al. (2000) state that equilibration of cinnabar and elemental sulfur takes 

place within a few days.  However, Paquette (1994) presents evidence that the 

equilibration of cinnabar took six weeks.  Ampoules containing cinnabar, orpiment 

and elemental sulfur in this work were equilibrated for at least 30 days. 

 Giordano and Barnes (1979) determined that equilibration of lead sulfide 

(galena) in sulfidic solutions is reached within minutes at 25°C. Anderson (1962) 

established that equilibrium took place within 6 hours at 30°C in the PbS-H2S-H2O 

system.   However, the time needed to equilibrate orpiment is slower than the time 

needed to equilibrate lead sulfide.  

Webster (1990) observed that crystalline orpiment in sulfidic solutions at 

25°C reached equilibrium within 30 – 40 days. Eary (1992) states that equilibrium of 

amorphous orpiment will take place in 10 - 14 days in solutions at pH 4 and 25°C.   

Figure 17 shows the equilibration of the PbS+As2S3+S ternary assemblage in 3.5 ± 

1.5 mM total sulfide, 0.0071 M MOPS buffer, 0.0100 M NaCl at pH 7.73.  Arsenic 
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solubilities appear to level at 20 days, whereas lead solubilities level at 14 days. The 

last three arsenic points have a log arsenic mean value of –3.28 and a standard 

deviation of 0.03. These values could be closer, but analytical error is probably 

responsible for the slight deviation in arsenic concentration. Under these conditions  

the lead concentration is below the detection limit and does not provide equilibrium 

data. Subsequent to this experiment, all solutions containing As2S3, S, PbS or HgS 

were equilibrated for at least 4 weeks.  

Gammons and Barnes (1989) found that equilibrium of Ag2S (acanthite/ 

argentite) at 25 to 300°C, with total sulfide of 0.2 to 1.4 m and a pH ranging from 5.8 

to 7.3 occurred within 24 hours. Stefansson and Seward (2003) used a flow through 

system to determine the equilibrium of Ag2S in sulfidic solution between 25 and 

400°C, equilibrium seemed to be reached within hours.  The time required for 

arsenic sulfide minerals to reach equilibrium is longer than silver sulfide minerals.   

Figure 18 shows the equilibration of Ag2S-As2S3-S in a sulfidic solution with 

7.7±0.019 mM total sulfide at pH 7.42. Silver and arsenic reach equilibrium within 

15 days. The last five arsenic points have a log arsenic mean value of –3.31 and a 

standard deviation of 0.16. These values could be closer, but analytical error is 

probably responsible for the slight deviation in arsenic concentration. The last five 

silver points have a log silver mean value of –7.51 and a standard deviation of 0.47. 

The high error is attributed to the silver solubility on Day 36 in Figure 18. This value 

is erroneous; possible causes of the elevated silver concentration could be sample 

contamination or a filtering failure. Subsequent to these experiments, all solutions 

containing Ag2S, AgAsS2 or Ag3AsS3 were equilibrated for at least 4 weeks. 



 77 
 

 

 

0 10 20 30 40 50

0.00E+000
1.00E-008
2.00E-008
3.00E-008
4.00E-008
5.00E-008
6.00E-008

0.0002

0.0004

0.0006

As

Pb

C
on

ce
nt

ra
tio

n 
(M

)

Time (Days)

 

Figure 17. Equilibration of PbS+As2S3+S in replicate ampoules with 20 mL of 
solution containing 3.5 ± 1.5 mM total sulfide, 0.0071 M MOPS buffer, 0.01M NaCl 
at pH 7.73. Ampoules equilibrated at room temperate in an electronic rocker. Filled 
circles represent arsenic data and filled squares represent lead data.  Error bars 
represent standard deviation of three replicate readings on each sample. Pb detection 
limit was 9.6x10-9 M. 
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Figure 18. Equilibration of Ag2S, S, As2S3 in replicate ampoules with 20 mL of a 
solution containing 0.0071 M MOPS buffer, 1 x 10-3 M HS-, pH approximately 7.42. 
0.13 g of solid was used in each ampoule. Solid squares represent As data and open 
circles represent Ag data. Ampoules equilibrated at room temperature.  Error 
represents the standard deviation of three replicate measurements taken on each 
sample. 

 

 

 



 79 
 

II.C. Results 

II.C.1. Dissolution of Mineral Assemblages in Sulfidic Solutions 

II.C.1.1. Dissolution of As2S3, As2S3+S, HgS+As2S3+S, PbS+As2S3+S, Ag 

Assemblage A and Ag Assemblage B  

Data for the dissolution of As2S3 and As2S3+S in sulfidic solutions are shown 

in Table 25 and Table 26, respectively. The data for the dissolution of PbS+As2S3+S, 

HgS+As2S3+S, assemblages in sulfidic solutions are given in Table 27 and 28, 

respectively.  

 Lead concentrations are below the detection limit of 9.6x10-9 M. Figure 19 

shows that there is a measurable amount of arsenic solubility in Pb solubility 

experiments but there is undetectable lead solubility.  The calculated solubility of 

Pb(HS)2 is shown in Figure 19 and is well below the detection limit. There was no 

effect on the solubility of As, Pb, Hg or Ag due to MOPS buffer. This conclusion 

was reached by making solutions with varying concentrations of MOPS and 

measuring the elements solubility; the concentrations of those four elements did not 

depend on the MOPS concentration. This fact can be ascertained by comparing the 

MOPS concentration to the metals concentration in Tables 25-32.  

Data for the dissolution of Ag2S, Ag2S+S, Ag assemblage A and Ag 

assemblage B in sulfidic solutions are given in Tables 29, 30, 31 and 32, 

respectively. Silver concentrations increase with increasing pH and total sulfide 

during Ag2S+S experiments. During Ag assemblage A and B experiments, silver 

concentrations decreased with decreasing total sulfide, but show no trend with pH.  
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Solution conditions often changed during the equilibrium period. A gain of 

sulfide around 1.5 to 3 times usually occurred due to the dissolution of As2S3, which 

can produce some free HS-.  A buffer was needed throughout the experiments, 

otherwise the pH would shift in the acidic direction. The shift in pH is due to the 

arsenic equilibria in solution in which As2S3 reacts with sulfide producing H+.  The 

following reactions can be used to describe As2S3 dissolution: 

0.5As2S3 + 3H2O ⇔ As(OH)3 + 1.5H2S   (1) 

1.5As2S3 + 1.5H2S  ⇔ H2As3S6
- + H+   (2) 

Both products in equation 1 release protons in mildly alkaline solution, yielding HS-, 

AsO(OH)2
- and H+. 

 

Table 25. Dissolution of As2S3 in Sulfidic Solutions 

pHF [MOPS] (M) Ionic 
Strength -log (ΣS-2)F -log (As)F 

6.88 0.00400 1.10E-02 2.94 3.47 
6.90 0.00710 1.01E-02 3.56 3.64 
6.91 0.00400 1.01E-02 3.68 3.78 
6.98 0.0140 1.01E-02 2.99 3.70 
7.00 0.0140 1.05E-02 3.09 3.49 
7.07 0.00710 1.10E-02 3.08 3.71 
7.74 0.00400 1.01E-02 3.03 3.72 
7.75 0.00710 1.01E-02 2.67 3.42 
7.76 0.0140 1.10E-02 2.88 3.37 
7.78 0.00400 1.05E-02 2.79 3.60 
7.83 0.00710 1.05E-02 3.03 3.39 
7.84 0.00710 1.10E-02 2.71 3.38 
7.89 0.0140 1.05E-02 2.99 3.31 
7.91 0.0140 1.05E-02 3.24 3.35 
7.30 0.00400 1.01E-02 1.34 3.55 

0.010 M NaCl added to ampoules. Equilibration time was 43±3 days. All values 
were obtained at the end of the experiment. ΣS represents total sulfide 
determined by potentiometric titration and includes H2S, HS, Sx

2- and labile 
sulfide bound in complexes. Experiments contained 0.130 g As2S3 in 20 mL 
solution.  
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Table 26. Dissolution of As2S3+S in Sulfidic Solutions 

pHF [MOPS] (M) Ionic Strength -log (ΣS-2)Calc -log (As)F 
6.92 0.0140 1.10E-02 2.78 3.39 
6.99 0.00710 1.10E-02 2.76 3.32 
7.22 0.00710 1.05E-02 2.85 3.23 
7.23 0.00710 1.10E-02 2.65 3.10 
7.23 0.00400 1.05E-02 2.84 3.21 
7.27 0.00400 1.10E-02 2.64 3.12 
7.34 0.00710 1.01E-02 3.11 3.35 
7.34 0.00710 1.10E-02 2.63 3.07 
7.52 0.00710 1.01E-02 2.85 3.08 
7.52 0.0140 1.01E-02 2.84 3.05 
7.95 0.0140 1.05E-02 2.99 3.46 
6.67 0.00400 1.01E-02 3.19 3.45 
6.83 0.00710 1.01E-02 3.26 3.56 
6.83 0.00400 1.10E-02 2.77 3.35 
6.94 0.0140 1.01E-02 3.46 3.90 
6.99 0.0140 1.05E-02 2.62 3.49 
6.99 0.00710 1.05E-02 2.92 3.46 
7.00 0.00400 1.05E-02 2.95 3.55 
7.35 0.00400 1.01E-02 2.97 3.25 
7.37 0.00400 1.05E-02 2.83 3.29 
7.39 0.0140 1.01E-02 3.22 3.35 
7.41 0.00710 1.05E-02 1.72 3.05 
7.43 0.0140 1.05E-02 2.89 3.33 
7.48 0.0140 1.10E-02 2.67 3.28 
7.62 0.0140 1.10E-02 2.46 3.00 

0.010 M NaCl added to ampoules. Equilibration time was 43±3 days. All values 
were obtained at the end of the experiment. ΣS-2 represents total sulfide through 
calculation where ΣS=HS-

intiial+1.5As. Experiments contained 0.130 g As2S3 
and So. Experiments contained 0.130 g As2S3 and S in 20 mL solution. 
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Table 27. Data from the Dissolution of PbS+As2S3+S in Sulfidic Solutions 

pHF [MOPS] 
(M) 

Ionic 
Strength -log (ΣS-2)Calc -log (Pb)F -log (As)F 

7.12 0.00710 1.01E-02 3.07 <8.02 3.34 
7.26 0.00400 1.10E-02 2.78 <8.02 3.36 
7.32 0.00400 1.05E-02 2.98 <8.02 3.46 
7.36 0.00400 1.01E-02 3.04 <8.02 3.27 
7.40 0.00400 1.10E-02 2.69 <8.02 3.19 
7.44 0.00400 1.05E-02 2.73 <8.02 3.10 
7.53 0.0140 1.01E-02 2.98 <8.02 3.21 
7.55 0.0140 1.01E-02 2.91 <8.02 3.13 
7.57 0.00710 1.01E-02 2.87 <8.02 3.10 
7.59 0.0140 1.05E-02 2.77 <8.02 3.10 
7.60 0.00400 1.10E-02 2.70 <8.02 3.24 
7.63 0.00710 1.05E-02 2.69 <8.02 3.01 
7.65 0.00710 1.05E-02 3.04 <8.02 3.58 
7.67 0.0140 1.10E-02 2.67 <8.02 3.17 
7.74 0.00710 1.10E-02 2.66 <8.02 3.12 
7.74 0.0140 1.01E-02 2.86 <8.02 3.09 
7.77 0.0140 1.05E-02 2.69 <8.02 3.00 
7.12 0.00400 1.01E-02 3.07 <8.02 3.20 
7.19 0.0140 1.10E-02 2.72 <8.02 3.28 
7.33 0.00710 1.05E-02 3.09 <8.02 3.81 
7.42 0.00400 1.01E-02 2.73 <8.02 3.31 
7.42 0.00400 1.10E-02 2.81 <8.02 3.11 
7.61 0.00400 1.05E-02 2.93 <8.02 3.40 
7.68 0.00710 1.01E-02 3.36 <8.02 3.67 
7.85 0.0140 1.10E-02 2.59 <8.02 3.03 

0.010 M NaCl added to ampoules. Equilibration time was 32±4 days. ΣS-2 
represents total sulfide through calculation where ΣS=HSintiial+1.5As. 
Experiments contained 0.130 g PbS, As2S3 and So in 20 mL solution. Pb 
detection limit was 9.6x10-9 M. 
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Table 28. Data from the Dissolution of HgS+As2S3+S in Sulfidic Solutions 

pHF 
[MOPS] 

(M) 
Ionic 

Strength -log (ΣS-2)F -log (Hg)F -log (As)F 

7.12 0.00710 1.01E-02 4.25 9.366 3.81 
7.22 0.00710 1.01E-02 4.01 8.234 3.94 
7.22 0.00710 1.03E-02 3.11 7.907 3.64 
7.24 0.00710 1.05E-02 2.89 8.210 3.54 
7.53 0.00710 1.05E-02 2.61 7.662 3.31 
7.66 0.00710 1.03E-02 3.17 8.142 3.61 
7.78 0.00400 1.05E-02 2.61 7.439 3.50 
7.87 0.0140 1.05E-02 2.71 7.379 3.10 
8.20 0.00710 1.05E-02 2.87 7.257 3.47 
7.63 0.00710 1.01E-02 4.11 9.208 3.83 
7.97 0.00400 1.01E-02 3.55 8.207 3.73 
0.010 M NaCl added to ampoules. Equilibration time was 46±1 days. ΣS2- 
represents total sulfide determined by potentiometric titration and includes H2S, 
HS-, S5

2- and S4
2- and any labile sulfide bound in complexes. Experiments 

contained 0.130 g HgS and As2S3 and 0.300 g So in 50 mL solution. 
 

 

 

Table 29. Data from the Dissolution of Ag2S in Sulfidic Solutions 

pHF [MOPS
](M) 

Ionic 
Strength Cl- (M) -log(∑S2-)Final  -log(Ag)Final  

7.83 0.00710 1.10E-02 0.00999 -3.08 -6.69 
7.74 0.00710 1.01E-02 0.00999 -4.62 -6.52 
7.78 0.0140 1.10E-02 0.00999 -2.82 -6.63 
7.70 0.0140 1.05E-02 0.00999 -4.07 -6.34 
7.52 0.00400 1.01E-02 0.00999 -3.38 -6.78 

0.010 M NaCl added to ampoules. Equilibration time was 59±4 days. ΣS2- 
represents total sulfide determined by potentiometric titration and includes H2S, 
HS-, S5

2- and S4
2-. Experiments contained 0.130 g Ag2S in 20 mL solution. 
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Table 30. Data from the Dissolution of Ag2S and S in Sulfidic Solutions 

pHF Ionic 
Strength aS Buffer,  (M) Cl-

 Total 
(M) -log(∑S2-)F  -log(Ag)F 

6.00 3.31E-01 1 KH2PO4, 0.0999 0.0300 -3.42 -6.36 
6.03 3.11E-01 1 KH2PO4, 0.0999 0.0100 -3.34 -6.11 
6.10 3.04E-01 1 KH2PO4, 0.0999 0.00300 -3.40 -6.72 
7.28 1.01E-02 1 MOPS, 0.00710 0.00999 -3.66 -6.33 
7.29 1.01E-02 1 MOPS, 0.0140 0.00999 -4.63 -6.22 
7.30 1.10E-02 1 MOPS, 0.00710 0.00999 -3.29 -6.32 
7.30 1.05E-02 1 MOPS, 0.00710 0.00999 -3.65 -6.20 
7.30 1.05E-02 1 MOPS, 0.00400 0.00999 -3.51 -6.30 
7.32 1.01E-02 1 MOPS, 0.00400 0.00999 -4.21 -6.12 
7.36 1.01E-02 1 MOPS, 0.00710 0.00999 -3.61 -6.28 
7.59 1.01E-02 1 MOPS, 0.00400 0.00999 -3.34 -6.31 
7.60 1.10E-02 1 MOPS, 0.00710 0.00999 -3.51 -6.09 
7.65 1.05E-02 1 MOPS, 0.00400 0.00999 -3.82 -6.38 
7.66 1.01E-02 1 MOPS, 0.0140 0.00999 -4.15 -6.36 
7.70 1.05E-02 1 MOPS, 0.0140 0.00999 -3.54 -6.18 
7.74 1.01E-02 1 MOPS, 0.00710 0.00999 -3.52 -6.14 
7.74 1.10E-02 1 MOPS, 0.0140 0.00999 -3.16 -5.83 
7.75 1.05E-02 1 MOPS, 0.00400 0.00999 -3.45 -6.20 
7.82 1.10E-02 1 MOPS, 0.00400 0.00999 -3.04 -6.01 
7.92 1.01E-02 1 MOPS, 0.00400 0.00999 -4.50 -6.14 
8.04 1.10E-02 1 MOPS, 0.00710 0.00999 -3.20 -6.19 
8.04 1.05E-02 1 MOPS, 0.00710 0.00999 -3.59 -6.04 
8.18 1.01E-02 1 MOPS, 0.0140 0.00999 -3.12 -6.02 
8.25 1.10E-02 1 MOPS, 0.00400 0.00999 -3.08 -6.09 
9.73 1.07E-01 .46 Borate, 0.00801 0.0100 -2.60 -6.40 
9.77 1.07E-01 .45 Borate, 0.00801 0.0100 3.00 -6.60 
9.88 1.04E-01 .56 Borate, 0.00801 0.0100 -3.62 -6.53 

10.38 1.61E-01 .29 
Na2HPO4, 

0.0501 0.0100 -2.70 -6.77 

10.41 1.61E-01 .30 
Na2HPO4, 

0.0501 0.0100 -3.48 -6.92 

5.99 3.30E-01 1 KH2PO4, 0.0999 0.0300 -4.76 -6.48 
6.02 3.03E-01 1 KH2PO4, 0.0999 0.00300 -4.60 -6.24 
7.25 1.05E-02 1 MOPS, 0.0140 0.00999 -2.64 -6.30 
7.37 1.10E-02 1 MOPS, 0.00400 0.00999 -1.51 -6.50 
7.66 1.05E-02 1 MOPS, 0.00710 0.00999 -2.12 -5.75 
8.18 1.01E-02 1 MOPS, 0.00400 0.00999 -4.32 -5.34 

0.010 M NaCl added to control ionic strength. Equilibration time was 59±4 
days. ΣS2- represents total sulfide determined by potentiometric titration and 
includes H2S, HS-, S5

2- and S4
2-. Experiments contained 0.130 g Ag2S and So in 

20 mL solution. 



 85 
 

 

Table 31. Data from the Dissolution of Ag Assemblage A in Sulfidic Solutions 

pHF [MOPS] 
(M) 

Ionic 
Strength SO4

2- (M) -log(∑S2-)F -log(Ag)F  -log(As)F

7.08 0.0140 1.01E-02 0.00333 -4.63 -6.71 -3.98 
7.11 0.00710 1.01E-02 0.00333 -4.18 -6.86 -4.05 
7.15 0.00400 1.01E-02 0.00333 -4.20 -7.15 -3.99 
7.19 0.00710 1.05E-02 0.00333 -3.63 -6.50 -3.89 
7.21 0.0140 1.10E-02 0.00333 -3.18 -7.00 -3.97 
7.30 0.00710 1.10E-02 0.00333 -3.50 -6.73 -3.79 
7.33 0.00400 1.10E-02 0.00333 -3.15 -7.05 -3.88 
7.33 0.00400 1.05E-02 0.00333 -3.76 -6.58 -4.06 
7.63 0.0140 1.01E-02 0.00333 -4.19 -6.55 -4.00 
7.69 0.0140 1.05E-02 0.00333 -3.84 -6.54 -3.88 
7.70 0.00710 1.01E-02 0.00333 -4.12 -6.71 -3.97 
7.73 0.0140 1.10E-02 0.00333 -3.21 -6.60 -3.80 
7.75 0.00400 1.01E-02 0.00333 -4.02 -7.16 -4.10 
7.78 0.00710 1.10E-02 0.00333 -3.06 -7.18 -3.68 
7.81 0.00400 1.05E-02 0.00333 -3.99 -6.81 -3.88 
7.89 0.00710 1.05E-02 0.00333 -3.80 -6.93 -4.02 
7.90 0.00400 1.01E-02 0.00333 -4.27 -7.42 -3.97 
7.98 0.00400 1.10E-02 0.00333 -3.08 -7.02 -3.85 
8.04 0.00400 1.10E-02 0.00333 -3.11 -7.26 -3.89 
8.07 0.00710 1.05E-02 0.00333 -3.46 -6.63 -3.94 
8.09 0.0140 1.10E-02 0.00333 -3.32 -6.64 -3.76 
8.13 0.00400 1.05E-02 0.00333 -3.42 -7.17 -4.02 
8.18 0.00710 1.10E-02 0.00333 -3.26 -6.55 -3.74 
7.81 0.00400 1.05E-02 0.0100a -3.37 -6.24 -4.16 
8.23 0.00710 2.00E-02 0.0100a -1.96 -6.47 -3.91 
8.02 0.00710 1.01E-02 0.00333 -4.37 -6.81 -4.06 
8.07 0.0140 1.01E-02 0.00333 -4.16 -7.08 -4.02 
8.37 0.0140 1.05E-02 0.00333 -3.98 -6.58 -3.95 
a Samples had 0.0100 M Cl- instead of SO4

2-. Equilibration time was 44±4 days. 
ΣS2- represents total sulfide determined by potentiometric titration and includes 
H2S, HS-, S5

2- and S4
2-. Experiments contained 0.00500 g AgAsS2 in 20 mL 

solution. 
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Table 32. Data from the Dissolution of Ag Assemblage B in Sulfidic Solutions 

pHF 
 

[MOPS] 
(M) 

Ionic 
Strength SO4

2- (M) -log(∑S2-)F -log(Ag)F -log(As)F

6.86 0.00710 1.01E-02 0.00333 -4.23 -6.45 -3.79 
6.94 0.00710 1.05E-02 0.00333 -3.49 -6.72 -4.32 
7.02 0.00710 1.10E-02 0.00333 -3.11 -6.80 -4.25 
7.11 0.00710 1.01E-02 0.00333 -4.22 -6.61 -4.13 
7.21 0.00710 1.05E-02 0.00333 -3.79 -6.59 -4.29 
7.25 0.00710 1.10E-02 0.00333 -3.08 -6.70 -4.03 
7.43 0.00400 1.01E-02 0.00333 -4.26 -6.69 -3.87 
7.50 0.00710 1.01E-02 0.00333 -4.26 -6.62 -3.94 
7.59 0.00710 1.10E-02 0.00333 -3.05 -6.37 -4.18 
7.59 0.00710 1.01E-02 0.00333 -4.07 -6.68 -3.92 
7.65 0.00710 1.05E-02 0.00333 -3.74 -6.71 -4.20 
7.66 0.00400 1.05E-02 0.00333 -3.37 -6.45 -4.11 
7.71 0.00400 1.10E-02 0.00333 -2.93 -6.70 -3.98 
7.87 0.00710 1.01E-02 0.00333 -4.26 -6.58 -3.92 
8.05 0.00710 1.05E-02 0.00333 -3.45 -6.74 -3.88 
8.16 0.00710 1.10E-02 0.00333 -2.93 -6.58 -4.18 
Equilibration time was 53±4 days. ΣS2- represents total sulfide determined by 
potentiometric titration and includes H2S, HS-, S5

2- and S4
2-. Experiments 

contained 0.050 g Ag2S and 0.010 g Ag3AsS3 in 20 mL solution. 
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Figure 19. Comparison of the solubilities of lead and arsenic in the ternary solubility 
study. A. The predicted solubility of Pb(HS)2 is shown with filled diamonds. The 
detection limit of lead is shown with the solid line. B.  Solubility of arsenic is shown 
as a function of total starting sulfide concentrations.  Predicted solubility of Pb(HS)2 
calculated using equilibrium constants from Giordano and Barnes (1979) 

 

 

 

 

 

 

 

A 



 88 
 

II.C.1.2. Dissolution of As2S3 in Various Polysulfide Solutions  

This section will help determine if As-polysulfides are present in experiments 

involving As2S3+S. Approximately, 0.13 grams of As2S3 was placed in glass 

ampoules. Two stock solutions were prepared. The first solution contained 0.0100 M 

HS-, 0.0200 M Na2B4O7•10H2O, 0.0100 M NaCl and had a pH of 8.96.  

Approximately, 0.65 grams of elemental sulfur (Aldrich, 99.98% pure) was placed in 

a round bottom flask and the first solution was added to the flask.  The flask was 

stirred in the glovebox for 1 week to allow polysulfide formation (this solution is 

designated to be 100% Sx
2-). The second solution contained 0.0100 M HS-, 0.0200 M 

Na2B4O7•10H2O, 0.0100 M NaCl and had a pH of 9.00 (this solution is designated to 

be 100% HS-). A series of ampoules was made that had a mixture of the solutions 

and is displayed in Table 33.  After the two solutions were added to the ampoules in 

their respective ratios, the As2S3-bearing ampoules were removed from the glovebox, 

fusion sealed and equilibrated for 30 days.  Data for the dissolution of As2S3 in 

various polysulfide solutions are given in Table 34.  The arsenic concentration is 

nearly constant with solutions of varying polysulfide concentrations. These data will 

be discussed further in Section II.D.1.2.  

 

Table 33. Experimental Solution Scheme for the Dissolution of As2S3 in Solutions of 
Varying Degrees of Sulfur Saturation 

Sample ID 1 2 3 4 5 6 
Percent of Solution 1 (polysulfide) 100 75 50 25 10 0 
Percent of Solution 2 (HS-) 0 25 50 75 90 100 
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Table 34. Data for the Dissolution of As2S3 in Solutions with Varying Degrees of 
Sulfur Saturation 

Sample ID pHF -log (ΣS-2)F -log (As)F 
1  (100% Sx

2-) 8.65 1.52 1.94 
2 (75% Sx

2-/25% HS-) 8.66 1.63 1.99 
3  (50% Sx

2-/50% HS-) 8.68 1.72 2.02 
4 (25% Sx

2-/75% HS-) 8.60 1.66 2.04 
5  (10% Sx

2-/90% HS-) 8.54 1.88 2.13 
6 (100% HS-) 8.48 1.78 2.09 
  

 

II.D. Discussion 

II.D.1 Speciation of Arsenic in Experiments with As2S3, As2S3+S, PbS+As2S3+S, 

HgS+As2S3+S, Ag Assemblage A and Ag Assemblage B in Sulfidic Solutions 

II.D.1.1. Speciation of Arsenic in Experiments Containing As2S3 in Sulfidic 

Solution  

For arsenic modeling, complexes of the form HhAsxOySz
(h+3x-2y-2z), were tried 

to fit the data. The activity of orpiment was defined to be one in these experiments. 

The Scientist fitting program used to model the arsenic data and discussion of the 

standard deviation calculation is in Appendix II. The procedure for modeling the data 

was discussed in Section II.B.4.1. 

The last sample in Table 25 was not used in the fitting procedure because the 

total sulfide appeared to be erroneous (potentiometric titration yielded a 

concentration that was an order of magnitude over starting sulfide concentrations); 

the reasons for this determination was discussed in II.B.3. The ionic strength of the 

samples varied between 0.0101 - 0.0110 M.  

Solubility-based studies on As2S3 have defined two dominant species. The 

reactions can be represented by: 
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0.5As2S3 + 3H2O ⇔ As(OH)3 + 1.5H2S   (1) 

1.5As2S3 + 1.5H2S  ⇔ H2As3S6
- + H+   (2) 

The previous solubility-based determinations of pK1 were 11.9±0.3 (Eary, 1992), 

12.60±0.11 (Webster, 1990) and 13.07 (Spycher and Reed, 1898). The previous 

solubility-based determinations of pK2 were 5.0±0.3 (Eary, 1992), 6.91±0.09 

(Webster, 1990) and 8.19±0.3 (Spycher and Reed, 1898). The previous authors 

obtained very similar equilibrium constants for As(OH)3 when compared to a 

calculated pK1 of 12.58, using ∆G values from Nordstrom and Archer, 2003.   

 Clarke and Helz (2000) studied the solubility of CuS-Cu1.8S-Cu3AsS4. The 

arsenic solubility was dominated by AsS(HS)(OH)-, As(OH)3 and H2As3S6
-, where 

AsS(HS)(OH)- can be represented by: 

0.5As2S3 + H2O + 0.5H2S⇔ AsS(HS)(OH)- + H+  (3) 

The corresponding equilibrium constants are pK3=8.23±0.32, pK1=12.28±0.18 and 

pK3=5.38±0.21, respectively.  

The complexes proposed by Webster (1990) and Eary (1999), H2As3S6
- and 

As(OH)3, for the equilibration of As2S3 in sulfidic and non-sulfidic solutions were 

first tested as a base model for the As2S3 data.  Using equilibrium constants from 

Webster (1990) produced the Webster Base Model in Figure 20. The log 

(Ascalculated/Asobserved) as a function of pH and total sulfide is shown in Figure 20. 

There was an underprediction of arsenic solubility over the whole pH and total 

sulfide range, implying that there is more observed arsenic solubility than calculated.  

The standard deviation of the model, shown in Figure 20, was calculated for the 
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Figure 20.  Fit of the As2S3 data in sulfidic solutions. The pK’s refer to the reactions 
in the text. If any pK is not listed in the figure, the reaction corresponding to the pK 
was not included in the model. 
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As2S3 data set and implies that the fit is not satisfactory. 

To improve the fit of the data the equilibrium constant of reaction 1 was held 

constant at 2.66x10-13.  The equilibrium constant of reaction 1 was calculated using 

∆GR
o values taken from Nordstrom and Archer (2003), because my data set does not 

contain enough points to fit an equilibrium constant accurately. A new species, 

AsS(HS)(OH)-, was added to the model to account for the extra arsenic solubility. 

The H2As3S6
- species was excluded from the model because it was negligible. The 

New Model therefore contains two species, As(OH)3 and AsS(HS)(OH)-. The New 

Model is a better fit to the data, and has a better standard deviation when compared 

to the Webster Base Model.   

 

II.D.1.2. Speciation of Arsenic in Experiments Containing As2S3, As2S3+S, 

PbS+As2S3+S, HgS+As2S3+S, Ag Assemblage A and Ag Assemblage B in 

Sulfidic Solutions 

The first evidence that polysulfides do not play any role in the speciation of 

arsenic can be obtained from experiments where As2S3 was equilibrated with 

solutions of different ratios of polysulfides (experimental method and results located 

in Section II.C.1.2.). Some possible reactions that occur in this experiment include: 

0.5 As2S3 + H2O + 0.5HS- ⇔ AsS(HS)(OH)- + 0.5H+ (3) 

HS- + (x-1)So ⇔ Sx
2- + H+   (4) 

If the solubility were controlled by Sx
2- complexes then the samples with large 

concentration of Sx
2- should have a higher concentration of arsenic. The arsenic 

concentrations did not increase with increasing polysulfide but instead followed the 
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opposite trend. The activity of sulfur could not be determined from the UV-Visible 

spectra (refer to Appendix I for discussion of spectral problems associated with 

As(III) solutions) of samples that contained a polysulfide solution. 

The experiments that contain As2S3+S will now be added to the As2S3-only 

data to determine if the new model developed for the As2S3 only system is an 

adequate fit for all the data or if As-Sx
2- species are needed to account for As 

solubility.  The Scientist fitting program used to model the arsenic data is in 

Appendix II.  In experiments containing So, some dissolved sulfide is associated with 

Sx
2-

. The potentiometric titration determines ΣS, which includes H2S, HS-, Sx
2- and 

any labile sulfide bound in As(III) complexes (potentiometric titration data used for 

As2S3 only and HgS+As2S3+S experiments). Therefore, the Scientist model includes 

corrections for Sx
2- species, allowing H2S to be calculated (derivation shown after 

Scientist model in Appendix II).  

The arsenic solubility data from the PbS+As2S3+S and HgS+As2S3+S 

experiments are also used because the dissolved Pb and Hg concentrations were 

negligible compared to the total As concentration. As a consequence, no Hg- or Pb-

containing species could contribute significantly to the As solubility. 

The samples in Table 26 (As2S3+S experiments), Table 27 (PbS+As2S3+S) 

and Table 28 (HgS+As2S3+S) were used in the fitting. The last two samples in Table 

28 were not used in the modeling process because the arsenic concentrations were 

low, which could be due to some sample precipitation during elemental analysis. ΣS 

values in Table 26 and 27 have been calculated and discussed in Section II.B.3. The 

ionic strength of the samples varied between 0.0101-0.0110 M.  
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The New Model, developed from the As2S3 only experiments, contains two 

species, As(OH)3 and AsS(HS)(OH)-. The New Model was used as the base model 

for arsenic data from As2S3, As2S3+S, PbS+As2S3+S and HgS+As2S3+S experiments 

and is shown in Figure 21 as the New Model. The New Model shows a slight trend 

with sulfide, where there is an overprediction at high total sulfide.  

The New Model was first adjusted in the Scientist program by allowing pK3 

to vary, to account for the trend in total sulfide and is shown as the Adjusted Model 

in Figure 21. There is still a slight overprediction in solubility at high total sulfide. 

However, a slight adjustment in pK3 improved the standard deviation of the New 

Model. 

Other species were added to the model to account for the overprediction at 

high total sulfide. In solutions that are saturated with elemental sulfur, arsenic 

polysulfides would increase in concentration as sulfide increases, so they would not 

lower the arsenic solubility at high total sulfide. As(HS)(OH)2 is one species that 

might account for the overprediction of arsenic at high total sulfide. As(HS)(OH)2 

can be formed through the following reactions: 

As(OH)3 + H2S ⇔ As(HS)(OH)2 + H2O pK4=-9.5±1.3 (5) 
0.5 As2S3 + 3H2O ⇔ As(OH)3 + 1.5H2S pK1 =12.58 (1) 
0.5 As2S3 + 2H2O ⇔ As(HS)(OH)2 + 0.5H2S pK5 =3.08 (6) 
 

Values for pK5 and pK1 were taken from Clarke (1998) and Nordstrom and 

Archer (2003), respectively. Overall, this species was insignificant in the model and 

was not considered further.  No other arsenic species could account for the observed 

trend in the arsenic data. Thus, with only a small adjustment in pK3, the model used 
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Figure 21. Fit of the arsenic solubility for As2S3, As2S3-S, PbS+As2S3+S and 
HgS+As2S3+S data in sulfidic solutions. The pK’s refer to the reactions in the text. If 
any pK is not listed in the figure, the reaction corresponding to the pK was not 
included in the model.  
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to explain the solubility of As2S3 alone can be used to explain the solubilities of 

assemblages containing sulfur. 

The means of the log (Asobs/AsCalc) of the As2S3 only data and means of the 

log (Asobs/AsCalc) of the As2S3+S, PbS+As2S3+S, HgS+As2S3+S data were compared, 

using a t-test, to determine if there is any statistical difference between the data that 

contain So and data that did not contain So. Samples with no So had a mean=0.198± 

0.62 (uncertainty is σ2) and samples containing So had a mean=0.00184±.029 

(uncertainty is σ2).  The t-test indicates that these are not significantly different (95% 

confidence level). This result supports the conclusion from modeling that no new As 

species is required to describe solubilities when elemental sulfur is added to systems 

containing orpiment. Since the Adjusted Model in Figure 21 is different from 

previously proposed arsenic speciation models, it is important to test whether this 

model is consistent with previous data. 

Eary’s data (located in Appendix II) as fit with his proposed speciation model 

is shown as the Eary Model in Figure 22.  The New Model containing As(OH)3 and 

AsS(HS)(OH)- is shown as the New Adjusted Model in Figure 22.  Since Eary used 

amorphous As2S3 in his experiments and natural crystalline orpiment was used 

throughout my work, the activity of the As2S3 component will be different in our 

experiments. Therefore, the activity of As2S3 for Eary’s data was allowed to vary in 

the New Adjusted Model and my activity was set at 1. The equilibrium constants of 

the New Adjusted Model are the same as in Figure 21 and the activity of Eary’s 

orpiment was calculated to be 8.61±3.12. There is a noticeable trend with total 

sulfide in the New Adjusted Model with an overprediction at low sulfide and an  
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Figure 22. Fit of Eary (1992) data (As2S3 in sulfidic solutions). The pK’s refer to the 
reactions in the text. If any pK is not listed in the figure, the reaction corresponding 
to the pK was not included in the model.  The data are listed in Appendix II. 
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underprediction at high sulfide. The underprediction means there is not enough 

calculated arsenic solubility at high total sulfide and the overprediction means there 

is too much calculated arsenic solubility at low sulfide.  Also the standard deviation 

is greater than in the Eary Model. 

Eary’s proposed trimer, H2As3S6
-, was added to the New Adjusted Model to 

account for the trend with total sulfide and is shown in Figure 22 as the Final Model. 

The activity of As2S3 for Eary’s data and the equilibrium constant of H2As3S6
- were 

allowed to vary. The activity of orpiment was calculated to be 5.03±1.30, which is a 

more reasonable value than the previously calculated value. The physical meaning of 

this number is that in solutions of identical pH and HS- concentration, Eary’s 

amorphous As2S3 would be 5.03 times more soluble than my As2S3. The standard 

deviation of the Final Model was better than Eary’s original model and there are no 

significant trends in the data. The Final Model is consistent with the Eary data and 

now this model needs to be checked with the other literature data from Webster 

(1990). 

Figure 23 shows Webster’s (1990) As2S3 in sulfidic solutions data. These 

data are located in Appendix II, with her model (Webster Model). The equilibrium 

constants for the As(OH)3 and H2As3S6
- species were taken from Webster (1990).  

There is an underprediction in solubility over the entire pH and total sulfide range. 

The Final Model in Figure 23 is the same as the Final Model that was fit to Eary’s 

data in Figure 22, except that the activity of As2S3 has been adjusted. The activity of 

Webster’s synthetic orpiment was calculated to be 0.35±0.09, compared to an 

activity defined as 1 for my natural orpiment. 
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Figure 23. Fit of Webster (1990) data (As2S3 in sulfidic solutions). The pK’s refer to 
the reactions in the text. If any pK is not listed in the figure, the reaction 
corresponding to the pK was not included in the model.  The data are listed in 
Appendix II. 
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Now the Final Model that was fit to Eary’s and Webster’s data needs to be 

retested to ensure that it is still consistent to my data. In Figure 24, Final Model A 

fits the arsenic data from As2S3, As2S3-S, PbS+As2S3+S and Hg+As2S3+S 

experiments reasonably well without adjustments to the constants used to fit the Eary 

and Webster data (determination made by comparing Adjusted Model to Final Model 

A).  It should also be noted that the model containing As(OH)3, AsS(HS)(OH)- and 

H2As3S6
- is a better fit to the Eary and Webster data, than their proposed models 

which only contained the As(OH)3 and H2As3S6
-
 species. 

All of the data discussed so far in this section were obtained from samples 

that were saturated with orpiment. Now I consider extending Final Model A to 

samples that were undersaturated with orpiment. The arsenic solubility from Ag 

assemblage A and B experiments can be added to the previous data sets to determine 

if their solubility is consistent with Final Model A.   

The last 5 samples in Table 31 (Ag assemblage A experiments) were not used 

in the model. A reliable value for H2S could not be calculated for these five samples. 

Specifically, if the total sulfide concentration for a sample was calculated to equal 

TS, the highest limit allowed for the H2S calculation, (refer to Appendix II under 

lines with // Calculate HS- given current estimates of K values and activity of 

orpiment heading) an equilibrium constant could not be attained because the K value 

went above the set range in the Scientist Programming. For example, an approximate 

[As] is 10-4
, if the TS was calculated as 10-3 then K3 (refer to Appendix II, line in 

bold type) would equal ~0.1; which is above the set range (0<1.3e-9<1e-3) allowed  
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Figure 24. Fit of arsenic solubility for the As2S3, As2S3-S, PbS+As2S3+S, 
HgS+As2S3+S, Ag assemblage A and B data in sulfidic solutions. The pK’s refer to 
the reactions in the text. If any pK is not listed in the figure, the reaction 
corresponding to the pK was not included in the model. Activity of As2S3 is 1, except 
in Ag assemblage A (0.09±0.02) and Ag assemblage B (0.07±0.03) experiments. 
Final Model B includes the Ag-bearing phase assemblages, where the activity of 
orpiment was adjusted to produce a fit. 
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for a reasonable estimation of K3.  A K3 value above 0.1 would be unreasonable if it 

was needed for just five points and did not improve the fit of the data. It is unclear 

why these five samples went outside the acceptable range.  Therefore they are shown 

in Figure 24, but not used to calculate any equilibrium constants. All the data from 

the Ag assemblage B experiment were used in the model. 

The activity of As2S3 was treated as a fittable parameter for each assemblage, 

Ag assemblage A and B, where the activity must be less than one because the system 

is undersaturated with respect to a pure As2S3 phase. To illustrate this point the mass 

action law for reaction 3 can be written as: 

0.5As2S3 + H2O + 0.5H2S⇔ AsS(HS)(OH)- + H+   

  5.0
32

5.0
2

3 ][
][))(([

SAsaSH
HOHHSAsSK

+−−

= γ    (3) 

The activity of orpiment in the denominator was set to 1 in systems saturated with 

orpiment; this allowed K3 (and the other K’s) to be adjusted by the least-squares 

method to obtain a model that optimally predicted observed solubilities. In the Ag 

assemblage A and B experiments the K’s will be set equal to the values obtained in 

the orpiment-saturated system and aAs2S3(orp) will be fit to obtain the optimum 

prediction of solubilities in orpiment-undersaturated systems. The activity of 

orpiment must be a constant in solutions equilibrated with two phases in the Ag2S-

As2S3 binary system at a given temperature and pressure. This can be shown by the 

following reaction, in which aAs2S3(orp) is equal to the square of the equilibrium 

constant: 

Ag3AsS3(proust) ⇔ 1.5Ag2S(acant) + 0.5As2S3(orp)  5.0
32

33

5.0
32

5.1
2

SAs
AsSAg

SAsSAgRT
G

a
a

aa
eK

R

===
∆− o

 (7) 
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In this equation the activities of acanthite and proustite cancel each other, because 

they are present in the system. The activity of the As2S3 component must be less than 

one because the system is undersaturated in respect to this phase. 

When the activity of As2S3 in Ag assemblage A has an activity of 0.09±0.02 

and the activity of As2S3 in Ag assemblage B has an activity of 0.07±0.03, then the 

data can be compared to the pure As2S3+S system where the activity of As2S3 is 1.  

The Final Model B contains As(OH)3, AsS(HS)(OH)- and H2As3S6
- and Figure 24 

shows the log (AsCalc/AsObs) vs. pH or total sulfide for all the data (As2S3, As2S3+S, 

HgS+As2S3+S, PbS+As2S3+S, Ag assemblage A and Ag assemblage B in sulfidic 

solutions), that includes all the samples in Table 31. The Final Model A and the Final 

Model B can be compared in Figure 24. The addition of the Ag-As-S data points 

does not degrade the original model, when the erroneous Ag assemblage A data are 

not considered.  Final Model A and B, which contains As(OH)3, AsS(HS)(OH)- and 

H2As3S6
-, shows a slight trend in the data with pH with the erroneous Ag assemblage 

A points. However, this model has an overall good fit to all the data.  

Although the model is a satisfactory fit to the above data, it is necessary to 

examine the arsenic concentration range in the data. One consideration for elevated 

arsenic concentrations in these experiments can be filtration failure. Another possible 

cause of errant concentrations could be sample contamination. Although, great 

efforts were made to maintain trace metal free conditions during the analysis. Low 

concentrations of arsenic could have resulted in sample absorption to the walls of the 

storage container.  However, this does not seem possible because concentrations of 

arsenic did not vary with length of sample storage. Duplicate samples were opened 
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and stored in the refrigerator for various amounts of time and there was no 

significant change in their arsenic concentration at the time of measurement. 

 To conclude the arsenic speciation discussion Figure 25 shows the calculated 

concentration of arsenic as a function of pH and total sulfide. The major arsenic 

species in As2S3, As2S3-S, PbS+As2S3+S, HgS+As2S3+S, Ag assemblage A and B 

experiments in sulfidic solutions are As(OH)3, AsS(HS)(OH)- and H2As3S6
-.  

AsS(HS)(OH)- is dominant under conditions found in the environment, with 

ΣS=0.001 and a pH range of 7 to 8. 

 

II.D.1.3. Free Energy of Formation for As2S3 

Using the activities calculated in this study for Eary’s (5.03±1.30) and 

Webster’s (0.35±0.09) As2S3 and the ∆Gf
o of amorphous orpiment from Nordstrom 

and Archer (-76.8 kJ/mol), the ∆Gf
o of the As2S3 component of my natural orpiment 

can be calculated. The reaction used to calculate the activity of my natural orpiment 

was obtained from the following derivation using Eary’s data:  

As2S3 (This Work) ⇔ As2S3 (Eary)  
30.103.5

1

)(32

)(32

±
===

∆−

ThisWorkSAs

EarySAsRT
G

a
a

eK
r
o

 (8) 

From this, ∆GR
o is calculated to be +3.6 kJ/mol. Assigning ∆Gf

o =-76.8 kJ/mol for 

Eary’s As2S3 results in a ∆Gf
o (As2S3 This Work) of -80.8±1.6 kJ/mol (∆Gf

o (As2S3 This Work) 

= ∆Gf
o

 (Eary)  - ∆GR
o).  The activity of orpiment from Webster’s data led to a ∆Gf

o of     

-83.4±2.7 kJ/mol for her synthetic orpiment.  Nordstrom and Archer (2003) state that 

natural orpiment and amorphous orpiment should have a ∆G of  –84.9 kJ/mol and 

-76.8 kJ/mol, respectively. The difference in the ∆G values of the natural material 
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Figure 25.  Calculated concentration of arsenic species in equilibrium with in 
orpiment in sulfidic solutions as a function of (left) pH at 0.001 M total sulfide and 
(right) total sulfide at pH 7.2 
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from this experiment and Nordstrom and Archer’s value may come from using 

different starting materials.   

The ∆Gf
o of AgAsS2, Ag7AsS6 and Ag3AsS3 are not well defined. Hall (1966) 

calculated the ∆Gf
o values of AgAsS2 and Ag3AsS3 at high temperatures. At 25oC the 

∆Gf
o values of AgAsS2, Ag7AsS6 and Ag3AsS3 are estimated as –75 kJ/mol, -150 

kJ/mol and –110 kJ/mol, respectively.  Bryndzia and Kleppa (1989) calculated the 

∆Hf of AgAsS2 and Ag3AsS3 at 298K. The ∆Hf values of AgAsS2 and Ag3AsS3 are   

–74.77±2.9 kJ/mol and -111.3±3.4 kJ/mol, respectively. The ∆Gf
o of Ag7AsS6 could 

not be calculated in this work because this component is ternary. The calculation 

would require that the activity of So be known in addition to the ∆Gf
o of As2S3 and 

Ag2S. Experiments in this work did not contain elemental sulfur so the activity could 

not be reliably determined. The ∆Gf
o of AgAsS2 could have been calculated through 

the following reaction if a reversible equilibrium had been reached in these 

experiments: 

As2S3 + Ag3AsS3 ⇔ 3AgAsS2    (9) 

However, the experiments dealing with AgAsS2 appear to be unstable and therefore a 

∆Gf
o could not be calculated. The known and calculated ∆Gf

o’s are in Table 35. 

  

II.D.2. Speciation of d10 Metals in Sulfidic Solutions Equilibrated with Silver, 

Lead, Mercury, Sulfur and Arsenic 

 Now that the solubility of arsenic has been established, the solubility of 

silver, mercury and lead in the presence of dissolved As(III) will be investigated. The 

issue to be determined is whether the solubilities of the metals are greater when  
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Table 35. Free Energy Data for As(III) and Ag(I) Complexes 

Species or Compound ∆Gf
o (kJ/mol) Source 

As2S3 (crystalline) -84.9 1 
As2S3 (amorphous) -76.8 1 

As2S3 (natural crystalline) -80.8±1.6 3 
Ag2S -39.7 2 

AgAsS2 -75 5 
Ag7AsS6 -150 5 
Ag3AsS3 -110 5 

HS- 12.05±0.08 1 
H2S (aq) -27.87±0.08 1 

H2O -237.178±0.008 1 
As(OH)3 -640.03±0.08 1 

AsS(HS)(OH)- -244.60±0.6 4 
1. Nordstrom and Archer (2003), 2. Robie and Hemingway (1995), 3. 
This work, 4. Helz et al. (1995), 5. Hall (1966) 
 

 

thioarsenite ligands are present compared to when they are absent.  This section will 

first compare the solubility of Ag from Ag-As-S assemblages to the solubility of Ag 

from Ag2S and Ag2S+S experiments. Then the Hg-As-S and Pb-As-S systems will 

be discussed. 

 

II.D.2.1. Speciation of Silver in Sulfidic Solutions Equilibrated with Ag2S, 

Ag2S+S 

For silver modeling, complexes of AgxSyHz
x+z-2y, AgClx

1-x, AgClxHS1-x and 

AgSx
1- were tested in fits of the data.  The Scientist program used to model the 

Ag2S+S solubility is given in Appendix III. The procedure for modeling the data was 

discussed in Section II.B.4.1. The last sample in Table 29 (Ag2S only experiment) 

and the last six samples in Table 30 (Ag2S+S experiment) were not used in the fitting 

procedure. The samples were disqualified because the starting voltage of these 
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samples during the potentiometric titration for total sulfide was less than 180 mV, 

which implied that no sulfide was present. The loss of HS- could have resulted in the 

volitilazation of HS- in the time before the potentiometric titration. The ionic strength 

of the samples varied between 0.01 and 0.31 M. A few of the samples had an ionic 

strength above 0.1 M, and the Davies equation will not produce an accurate activity 

for these samples.  

The fitted data set includes Stefansson and Sewards’s (2003) solubility data, 

which are shown in Appendix III, for silver sulfide (acanthite/ argentite) in sulfide 

solutions at 25°C. A small set of experiments shown in Table 29, which include 

Ag2S reacted with sulfide solutions in the absence of zero-valent sulfur, were also 

included in the model. The main set of experiments included in the model is shown 

in Table 30, which include Ag2S and S reacted with various sulfide solutions. 

The complexes proposed by Stefansson and Seward (2003), AgHS, Ag(HS)2
- 

and Ag2S(HS)2
2-, for the equilibration of silver sulfide (acanthite/argentite) in 

solutions with a total reduced sulfur ranging from 7 mM to 0.176 M and a pH of 3.7 

to 12.7 were tested in the Stefansson and Seward Base Model (Figure 26). The 

formation of these silver species can be represented by the following reactions: 

0.5Ag2S (s) + 1.5 HS- + 0.5 H+ ⇔ Ag(HS)2
-   (10) 

Ag2S (s) + 2 HS- ⇔ Ag2S(HS)2
2-     (11) 

0.5Ag2S (s) + 0.5 HS- + 0.5 H+ ⇔ Ag(HS)   (12) 

Using the equilibrium constants from Stefansson and Seward (2003) produced the 

Stefansson and Seward Base Model in Figure 26. The Stefansson and Seward data 
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Figure 26. Fit of the silver sulfide data in sulfidic solutions. The pK’s refer to the 
reactions in the text. If any pK is not listed in the figure, the reaction corresponding 
to the pK was not included in the model. 
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are well-fit by their model. However, my solubilities are greatly under-predicted at a 

pH greater than 6 and at total sulfide below 0.001 by approximately fifty-fold. This 

implies that there is more observed silver solubility when elemental sulfur is present 

in the system. 

Next, the Stefansson and Seward Base Model was adjusted by allowing the 

equilibrium constants to vary, as shown in the second column from the left in Figure 

26. The model did not converge to give meaningful equilibrium constants, and the 

derived equilibrium constants deviated substantially from Stefansson and Seward’s 

original constants. Therefore, this adjustment was unsatisfactory. Clearly additional 

silver species are needed to account for the extra solubility observed in the Ag2S+S 

experiments. 

The first species added to the model to account for the extra silver solubility 

was AgSx
-.  When this species was added to the Stefansson and Seward Base Model 

(shown in Figure 26 as the Sx Model) there were still trends in the data and another 

species is needed to account for the extra solubility. 

The species that resulted in the best fit to the data are AgHS, Ag(HS)2
-, 

Ag2S(HS)2
2-, Ag(Cl)(HS)-, and AgSx

-. The additional species can be represented by 

the following reactions: 

0.5Ag2S (s) + (x-1)S° + 0.5 HS- ⇔ AgSx
- + 0.5 H+   (13) 

0.5Ag2S (s) + Cl- + 0.5 HS- + 0.5 H+ ⇔ Ag(Cl)(HS)-   (14) 

The fit that includes these species is shown in Figure 26 as the New Model. It should 

be noted that pK11 is the equilibrium constant from Stefansson and Seward (2003). 

pK11 was held constant because this work does not provide any data at pH’s above 
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~9, where Ag2S(HS)2
2- is dominant. Figure 26 shows the fit of the silver data using 

the New Model, which produced the best fit to the data and the fit is good over the 

whole pH range. It appears as though the Ag(Cl)(HS)- species is essential to the 

model; otherwise a satisfactory fit could not be obtained. The fit to total sulfide has a 

slight trend at low total sulfide data, but no other species could account for the under 

prediction at low sulfide concentrations.  

 Other species were added to the New Model, but were eliminated by the 

fitting procedure. The first species added to the model were AgClx
1-x (AgCl, AgCl2

- 

and AgCl3
2-) species. However, the calculated equilibrium constants deviated from 

known constants and provided an unsatisfactory fit. Ag(OH)(HS)- and Ag(Sx)(OH)-  

were added separately to the New Model to try to account for the under prediction of 

silver at low total sulfide values. The formation of these species can be represented 

by the following reactions: 

0.5Ag2S (s) + H2O + 0.5 HS- ⇔ Ag(OH)(HS)- + 0.5 H+  (15) 

0.5Ag2S (s) + (x-1)S° + 0.5 HS- + H2O ⇔ Ag(OH)Sx
2- + 1.5 H+ (16) 

The addition of these species to the New Model each produced a standard deviation 

of 0.24, the same value obtained without them. 

 The best-fit model to the Ag2S+S data includes the following silver species: 

AgHS, Ag(HS)2
-, Ag2S(HS)2

2-, Ag(Cl)(HS)-, and AgSx
-.  These species will be used 

as a comparison for the solubility of silver in the silver assembages. However, it 

would first be helpful to justify the two additional species that were needed to get a 

good fit to the data. 
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II.D.2.1.1 Evidence for the Ag(Cl)(HS)- Species 

When a metal is in the presence of more than one strong covalent ligand, 

such as Cl-, HS-, OH- or Br-, mixed ligand species are observed sometimes (Zotov et 

al., 1982; Cosden and Byrne, 2003). Ag(Cl)(OH)- is known to exist and was added to 

the model, but this species did not produce an improved fit. However, the addition of 

Ag(Cl)(HS)- improved the fit of the data in the New Model.   

The calculated equilibrium constant in Figure 27 for Ag(Cl)(HS)- was 

compared to a theoretical value calculated from mixed ligand theory, as represented 

by the following equation: 

(17) 

 

where, βMAmBn= MAmBn / [M][A]m * [B]n and S=(m+n)!/m!n!. The β values are 

shown in Table 36. The experimental equilibrium constant for Ag(Cl)(HS)- does not 

agree with the calculated constant using mixed equilibrium theory.   

Zotov et al. (1982) has shown that the species Ag(Cl)(OH)- exists in solutions that 

are alkaline and contain chloride. The calculated equilibrium constant for 

Ag(Cl)(OH)- using mixed ligand theory and the experimental work of Zotov et al. 

(1982) are in excellent agreement.  Even though the calculated equilibrium constant 

for Ag(Cl)(HS)- does not agree with mixed ligand theory, the presence of the 

Ag(Cl)(HS)- species in this work can be justified by the improvement in the fit of the 

data when this is species is included.  It may be concluded that the Ag(Cl)(HS)- 

species is essential to the model, but is probably not always the dominant species. 
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Figure 27. Comparison of the equilibrium constant of Ag(Cl)(HS)- to its theoretical 
value using the mixed ligand theory.  Open squares represent equilibrium constants 
of Ag(HS)2

- and Ag(Cl)2
-. The gray square with a x on the solid line is the theoretical 

equilibrium constant for Ag(Cl)(HS)- using mixed ligand theory (MLT). The filled 
square is the experimental equilibrium constant for Ag(Cl)(HS)-calculated from this 
work (EXP). The closed circles represent equilibrium constants for Ag(OH)2

- and 
Ag(Cl)2

-.  The gray and filled circle in the middle of the dotted line represent the 
theoretical equilibrium constant of Ag(Cl)(OH)-  from mixed ligand theory and an 
experimental value from Zotov et al. (1982), respectively. 

 

Table 36. Log β For Individual Species  

Species Log β Source 
Known Values   

AgCl2
- 5.18 1 

Ag(OH)2
- 4.22 1 

Ag(HS)2 17.54 1 
Experimental Values   

Ag(Cl)(OH)- 5.30 2 
Ag(Cl)(HS)- 19.12 3 

Calculated from Mixed Ligand Theory 
Ag(Cl)(OH)- 5.00 4 
Ag(Cl)(HS)- 11.70 4 

1. Martell and Smith (1974); 2. Zotov et al. (1982), 
experimental value; 3. This Work, experimental value; 4. 
Calculated form mixed ligand theory 



 114 
 

II.D.2.1.2. Evidence for Polysulfide Species 

Polysulfide complexes of silver have been proven to exist through 

experimental work done by Cloke (1963). According to the model developed by  

Cloke involving acanthite and elemental sulfur in sodium polysulfide solutions, 

polysulfide will become the dominant sulfur species in solutions that have a pH 

between ~9 and 11.  To test the proposed model samples were made with pH’s 

ranging from 9.7 to 10.4.  When these samples were analyzed there was a yellowish 

coloration visible in the sample, which is an indication that polysulfides (Sx
2-) had 

formed. In the kinds of solutions studied here polysulfides, S5
2- and S4

2-, are the 

dominant optical absorbers between 500 nm and approximately 300 nm. Below 300 

nm, absorption is dominated by a yet uncharacterized thioarsenite species and by HS- 

(at 230 nm)  (Chen and Morris, 1972; Giggenbach, 1974). Figure 28 clearly shows 

there is absorption in those two areas that is related to polysulfide formation.   

Spectra that displayed polysulfide absorption and had the characteristic 

yellow color were then fit using SCIENTIST (Micromath, Inc) to determine their aS 

value. The modeling process was discussed in Section II.B.4.2. The activity of sulfur 

was 1 if polysulfides formed in solution and there was excess solid sulfur present. 

There were some instances where the activity of sulfur was calculated to be ~0.5, 

because So was reacting with HS-, and was depleted in solution. There were only 

four samples that had an aS<1 and they are shown in Table 30. The other samples 

had an aS of approximately 1, because there was excess S present in the experiments.  

Once the activity of sulfur was determined it was placed into the final model to 

determine if polysulfide species were significant to the model.  



 115 
 

 

 

 

 

 

 

 
 

Figure 28. Absorbance spectrum for a sulfidic solution equilibrated with Ag2S and S 
at pH 10.41 and a total sulfide of 3.334 x 10-4 M.  (Ag) = 1.19 x 10-7 M. Spectrum 
was taken with a 1cm pathlength quartz cuvette. 
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When Cloke (1963) conducted experiments on acanthite in solutions with 

varying concentrations of sodium polysulfide, he concluded that Ag(S4)2
3-, AgS5S4

3- 

and Ag(HS)S4
2- were responsible for the silver solubility.  These species were tried 

in the modeling program, instead of AgSx,
- but did not converge meaning that one or 

more of the species was insignificant in the model and an equilibrium constant could 

not be calculated. It is known that silver likes to have a coordination of two, but 

Cloke’s Ag(S4)2
3- species was chosen in a last effort to fit the data (Gammons and 

Barnes, 1989). So Ag(S4)2
3- was tried with the Ag(Cl)(HS)- species in the modeling 

program, instead of AgSx
-, to do a final test on Ag(S4)2

3. Ag(S4)2
3- is represented by: 

Ag2S + 12S° + 3HS- ⇔ 2Ag(S4)2
3- + 3H+   (18) 

Figure 29 compares the Cloke Model to the New Model to show that the addition 

Cloke’s polysulfide species does not increase the goodness of fit. The fit of the data 

with pH is worse with the Ag(S4)2
3- species when compared to the model containing 

AgSx
-. Thus all of the silver polysulfide species from Cloke (1963) were eliminated 

from the fitting procedure.  

AgSx
- was added to the model as an alternative polysulfide species and 

produced a satisfactory fit. It can be assumed that the single polysulfide species in 

AgSx
- can form two bonds with silver and have a coordination of two.  Since the 

majority of my experiments were saturated with sulfur, the activity of sulfur is 

assumed to be one.  At a constant activity the number of sulfur atoms, x, in AgSx
- 

cannot be determined and modeling would produce a satisfactory fit for every AgSx
- 

species.   

 



 117 
 

 

 
 

 

Figure 29. Fit of the silver sulfide data in sulfidic solutions. The pK’s refer to the 
reactions in the text. If any pK is not listed in the figure, the reaction corresponding 
to the pK was not included in the model. 
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To test if the equilibrium constant calculated for the AgSx
- is reasonable it 

can be compared to HgSx.  Stability constants for d10 metals like Ag (I) and Hg (II) 

produce a linear relationship with one another (Hancock et al., 1973; Stefansson and 

Seward,2003).  It is not possible to determine the correct polysulfide species 

involved in AgSx
-, but to compare the two polysulfide species Sx

2- was used as the 

polysulfide ligand attached to either Ag(I) or Hg(II). Jay et al. (2000) does not define 

the x in HgSx. Figure 30 shows that there is a linear relationship between the Ag(I) 

and Hg(II) polysulfide species indicating that the calculated equilibrium constant for 

AgSx
- agrees with the experimental equilibrium constant for HgSx that was 

calculated by Jay et al. (2000). 

 

II.D.2.1.3. Speciation Diagram for Ag2S-S System 

Using the best-fit model a speciation diagram for the equilibration of Ag2S+S 

in a sulfide solution with 0.001M total sulfide can be made and is shown in Figure 

31. AgSx
- is the dominant silver complex above pH 5 in solutions with ΣCl=0.01M.   

Ag(Cl)(HS)- is dominant below pH 5 under these conditions. Ag(Cl)(HS)- may 

become important at neutral pH’s when there are higher sulfide and sodium chloride 

concentrations. When the ΣCl was raised by ten times the Ag(Cl)(HS)- species 

became dominant until a pH of 5.5. The speciation model includes AgSx
- as a 

dominant species, and implies that there is a dependence on as. In solutions where 

sulfur is not in excess, the AgSx
- species may become insignificant. 
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Figure 30. Comparison of Ag (I) and Hg(II) stability constants for common ligands 
at 25°C and an ionic strength of 0.05. Data from Martell and Smith (1973). HgSx 
value from Jay et al. (2000). AgSx

- value from this work. Polysulfide species is 
represented by filled circle. 

 

 

 

 

 

 

 

 

 

 



 120 
 

 

 

 

Figure 31. Concentration of silver species as a function of pH at 0.001 M total 
sulfide for the equilibration of AgS2-S in sulfidic solutions in Left: 0.1 M Cl- and 
Right: 0.01 M Cl-. Represents system saturated with sulfur. 
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II.D.2.1.4. Two versus Three Coordination for Ag 

 Sugaki et al. (1987) explained the solubility of Ag2S in solutions of 0.0 to 4.1 

m NaHS solutions with a temperature range of 25°C to 250°C with dinuclear silver 

sulfide complexes, i.e. Ag2S(H2S)(HS)2
-.  A review by Bell and Kramer (1999) 

presents evidence that polynuclear silver complexes would result in a zigzag chain, 

with the coordination of silver being two. This configuration is supported by Fijolek 

et al. (1997) who present evidence that the structure of Ag2[S(CH)2)5S] has a layered 

geometry. However, Habibi et al. (1999) and Fujisawa et al. (2000) have identified 

three coordinate silver (I) thiolate complexes. Silver is in a ring formation and 

contains S ligands that bridge two Ag atoms. If this structure is valid then the 

complex proposed in reaction 21 by Sugaki (1987) in concentrated sulfide solutions 

could be three coordinate where silver is in a ring formation and bridged by S atoms.  

The solubility of Ag2S in less concentrated sulfide solutions is usually 

explained with two coordinate silver sulfide complexes, i.e. Ag(HS)2
-.  The 

difference in coordination seems to be related to the sulfide concentration in the 

system. This phenomenon is also seen with copper. Mountain and Seward (1999) 

predict that a two coordinate copper sulfide complex dominates at low sulfide 

concentrations, while a three coordinate species becomes the dominant species at 

high sulfide concentrations. 

 The Ag2S and Ag2S+S data were used to determine if a three coordinate Ag 

species could explain the silver solubility in this study, which had starting total 

sulfide concentrations ranging from 0.1 mM to 1 mM.  Sugaki’s Ag2S solubility data 

at 25°C and the data from this study were modeled together using the Scientist 
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program. The model is shown in Appendix III.  The Sugaki Base Model consisted of 

Sugaki’s dinuclear silver species, which can be written as: 

Ag2S + HS- + H+ ⇔ Ag2S(H2S)   (19) 

Ag2S + 2HS- + H+ ⇔ Ag2S(H2S)(HS)-  (20) 

Ag2S +3HS- + H+ ⇔ Ag2S(H2S)(HS)2
2-   (21) 

Ag2S + 2HS- ⇔ Ag2S(HS)2
2-    (22) 

Figure 32 shows the Sugaki Base Model and the Sugaki Adjusted Model.  The 

Sugaki Adjusted Model only adjusted the equilibrium constants for the Ag2S(H2S) 

and Ag2S(HS)2
2- species, the other two species were insignificant and were held at a 

constant value.  The three coordinate species did not fit the silver solubility in these 

experiments. This evidence does not exclude the possibility that at higher 

concentrations of total sulfide three coordinate species may become important, but at 

lower concentrations of total sulfide two coordinate species are dominant. 

 

II.D.2.2. Speciation of Silver in Sulfidic Solutions Equilibrated with Arsenic 

II.D.2.2.1. Role of Sulfur in Ag Assemblage A and B Experiments 

 The role of elemental sulfur will be discussed first because this species 

greatly enhances silver solubility. There was no excess zero valent sulfur added to 

the solutions used in the study of the Ag-As-S phases. There was also no evidence 

that zero valent sulfur was formed throughout Ag assemblage A and B experiments. 

Evidence is provided by the UV-Visible spectra that were taken of each sample. An 

example of a common spectrum of an Ag assemblage A and an Ag assemblage B 

sample is displayed in Figure 33.  Polysulfides form if zero valent sulfur and HS- 
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Figure 32. Fit of the silver sulfide data in sulfidic solutions with three coordinate 
species. The pK’s refer to the reactions in the text. If any pK is not listed in the 
figure, the reaction corresponding to the pK was not included in the model. 
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Figure 33. UV-Visible Spectra of Top: Ag assemblage A (pH= 7.30, 0.316 mM 
Total Sulfide, 0.185 µM Ag, 0.161 mM As); Thin solid and dotted lines represent 
calculated polysulfide spectra Bottom: Ag assemblage B (pH=7.25, 0.834 mM Total 
Sulfide, 0.198 µM Ag, 0.0926 mM As).  
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are present in solution.  Polysulfides, S5
2- and S4

2-, are the dominant optical absorbers 

between 500 nm and approximately 300 nm. (Chen and Morris, 1972; Giggenbach, 

1974). Calculated spectra of polysulfide absorption is shown in Figure 33 at two 

pH’s (dotted (aS=0.1) and thin solid (aS=1) lines). Spectra were calculated assuming 

an aS=0.1. A spectra was also calculated assuming an aS=1, this value represents a 

system saturated with sulfur. There is no evidence of polysulfide formation in the Ag 

assemblage B spectrum, because there is no sample absorbance where the 

polysulfides were calculated to absorb. There is also no evidence of polysulfide 

formation in the Ag assemblage A spectrum because the calculated polysulfide 

absorbancies do not match the sample absorbance (thick black line) in Figure 33. 

The small amount of absorbance at 300 nm in the Ag assemblage A spectra could be 

from As species; See Appendix I).   

 

II.D.2.2.2. Silver Speciation in Sulfidic Solutions Equilibrated with Ag 

Assemblage A and Ag Assemblage B 

 The data from experiments containing Ag assemblage A and B equilibrated 

with sulfidic solutions were added to the model that explained the solubility of Ag2S 

and S.  A list of the Ag assemblage B and Ag assemblage A samples used in the 

modeling are given in Table 32 and Table 31. The ionic strength of the samples 

varied between 0.0101 and 0.011 M.  

 Because elemental sulfur was absent in Ag assemblage A and B experiments, 

any enhancement in Ag solubility can not be attributed to Ag-polysulfide species. 

Also sodium sulfate was used to control ionic strength in Ag assemblage B and Ag 
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assemblage A experiments, so there should be no Ag enhancement due to 

Ag(Cl)(HS)- species. However, these two species were included in the models to 

confirm the assumptions using the following models. 

The first model tried on this set of data was the best-fit model from the 

Ag2S+S data, which included AgHS, Ag(HS)2
-, Ag2S(HS)2

2-, Ag(Cl)(HS)-, and 

AgSx
-. This model is shown as the Base Model in Figure 34. The observed silver 

concentrations of Ag assemblage A and B samples were at least an order of 

magnitude more soluble than the Ag2S+S samples, which is shown in Figure 34. 

This implies that the silver solubility is enhanced in the presence of arsenic. The 

difference between the calculated and observed values is greatest at low total sulfide.  

Next, the base model was adjusted by letting the SCIENTIST program vary 

the equilibrium constants for Ag(HS), AgSx
- and Ag(Cl)(HS)-.  The equilibrium 

constants for Ag(HS)2
- and Ag2S(HS)2

2- were not varied because they became 

insignificant in the model. The fit of the Adjusted Base Model shown in Figure 34, 

shows a trend with pH and total sulfide, so additional species are needed to account 

for the extra solubility of silver when arsenic is present in the sample.  

Clearly the first species to try to fit this model is the silver thioarsenite 

species, AgAsS(HS)(OH)°.  The New Ag-As-S Model includes the addition of 

AgAsS(HS)(OH)o to Ag(HS)2
-, Ag2S(HS)2

-, Ag(HS), Ag(Cl)(HS)- and AgSx
- and is 

shown in Figure 34. The new species can be expressed by the following reaction: 

0.5Ag2S + AsS(HS)(OH)- + 0.5H+ ⇔ AgAsS(HS)(OH)o + 0.5HS-   (23) 
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Figure 34. Fit of the Ag assemblage (A and B) data in sulfidic solutions. The pK’s 
refer to the reactions in the text. If any pK is not listed in the figure, the reaction 
corresponding to the pK was not included in the model. Assume aS is negligible and 
[Cl-] is zero in Ag assemblage experiments (pK13 and pk14 to low to have any effect 
in New Ag-As-S Model). 
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In Ag assemblage B experiments acanthite is present in the reaction and its activity is 

equal to 1. In Ag assemblage A experiments the initial reaction can be expressed as: 

0.5Ag3AsS3 + AsS(HS)(OH)- +0.5H+ ⇔ 

  AgAsS(HS)(OH)o + 0.5HS- + 0.5AgAsS2  (24) 

Proustite decomposes to acanthite and trechmannite, so the final reaction would be 

the same reaction for Ag assemblage B experiments, which is Reaction 23. But, the 

activity of Ag2S in Ag assemblage A experiments would be less than one because the 

system is undersaturated with respect to acanthite. Figure 34 shows the New As-Ag-

S Model, where the calculated equilibrium constant is pK23=0.82±0.20 and the 

activity of Ag2S in Ag assemblage A experiments was calculated to be 0.12±0.04. 

The other equilibrium constants were held constant.  The model has a good fit to the 

data and no trends are observed.  A comparison can be made between the calculated 

activity of Ag2S from modeling and the activity of Ag2S using the free energies of 

formation of acanthite, trechmannite (Hall, 1966) and proustite (Hall, 1966, located 

in Table 35). The activity of acanthite calculated from the free energy of formation 

values is 0.01±0.04. There is a difference between the calculated activity of Ag2S 

from the New As-Ag-S Model and the derived activity from the free energies. This 

may be one instance were there is an inconsistency in Hall’s estimation of the free 

energy of formation of trechmannite and proustite that would produce a lower 

activity of acanthite than observed in experiments.  

There is strong evidence that the solubility of silver is increased in the 

presence of arsenic in Ag assemblage A and B experiments and the extra solubility 

can be attributed to one species, AgAsS(HS)(OH)o.   
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A reaction between Ag+ and AsS(HS)(OH)- can be obtained by combining 

Reaction 23 with the solubility product of silver sulfide which can be represented by: 

Ag+ + 0.5HS- ⇔ 0.5Ag2S + 0.5H+  pK25=-17.99  (25) 

0.5Ag2S + AsS(HS)(OH)- + 0.5H+⇔AgAsS(HS)(OH)o +0.5HS-   pK=0.82 (23) 

Ag+ + AsS(HS)(OH)- ⇔ AgAsS(HS)(OH)o     pK=-17.17±0.20 (26) 

Stefansson and Seward (2003) provide a value for pK25. Using the calculated pK for 

reaction 23 provides the equilibrium constant for Reaction 26, where pK26 is 

calculated to be –17.17±0.20. This indicates that the Ag-thioarsenite reaction is very 

strong and is comparable to the analogous reaction with Cu+, where the pK was 

calculated to be -19.82±0.17 (Clarke and Helz, 2000).  In fact, the calculated stability 

(Cu>Ag) is in agreement with the predictions from Tossell (2000). 

 

 
II.D.2.2.3. Proposed Structure for AgAsS(HS)(OH)o and Silver Speciation 

Diagram 

A potential structure of the AgAsS(HS)(OH)° complex is shown in Figure 35 

(Tossell, 2000). The structure is preliminary, but it appears as though the arsenic is 

bound to a hydroxide molecule, which seems unusual for a sulfidic solution.   The  

hydroxide molecule was taken out of the AgAsS(HS)(OH)° complex and the new 

species was modeled.  The standard deviation of the fit was unsatisfactory, so it 

appears as though the hydroxide molecule is needed in the complex. In this structure 
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Figure 35. Proposed structure of AgAsS(HS)(OH)° from Tossell (2000). 
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Ag is bound to two atoms and As is bound to three atoms, which are their preferred 

number of bonds.  

Using the best-fit model a speciation diagram of the Ag-As-S system is 

shown in Figure 36. Under seawater conditions for Cl-, ΣCl-=10-1, ΣHS-=10-3 

ΣAs3+=10-5 and ΣAg+=10-7, Figure 36 shows that AgAsS(HS)(OH)o is negligible and 

the dominant species is Ag(Cl)(HS)-. However, under natural groundwater 

conditions for Cl-, ΣCl-=10-3, ΣHS-=10-3 ΣAs3+=10-5 and ΣAg+=10-7, the 

AgAsS(HS)(OH)o complex becomes dominant between a pH of 5 to 7.5. These 

conditions could be found in landfills or contaminated sediment and the model 

predicts that the AgAsS(HS)(OH)o complex is dominant and thus become mobile. 

 

II.D.2.3. Speciation of Lead and Mercury in Sulfidic Solutions Equilibrated 

with PbS+As2S3+S or Hg+As2S3+S 

II.D.2.3.1. Speciation of Mercury in Sulfidic Solutions Equilibrated with 

HgS+As2S3+S 

The mercury data from the HgS+As2S3+S experiment were modeled using 

Scientist (Micromath, Inc.). The mercury fitting program are in Appendix IV.  The 

modeling procedure was discussed in Section II B.4.1. The data are in Table 28 and 

the ionic strength of the samples varied between 0.0101 - 0.0110 M.  

The first step in the modeling procedure is to chose a base model, which must 

contain species that have been proposed in the literature to explain HgS only and 
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Figure 36. Silver speciation diagram for the equilibration of Ag assemblage A and 
Ag assemblage B in solutions containing 10-3 M total sulfide, 10-5 M total arsenic, 
10-7 M total silver and Right:10-1 M Cl- and Left:10-3 M Cl-

. Assumes system is 
undersaturated in aS relation to AgAsS(HS)(OH)o. 
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HgS and elemental sulfur solubility.  The Paquette model was chosen as the 

base model and included the following Hg species:  

HgS (cinn) + H2S (aq) ⇔ Hg(SH)2    (27) 

HgS (cinn) + HS- ⇔ HgS(SH)-    (28) 

HgS (cinn) + 2HS- ⇔ HgS2
2- + H2S    (29) 

  HgS + (x-1)S0 + HS- ⇔ Hg(Sx)HS-    (30) 

Equilibrium constants were taken from Paquette and Helz (1997). Figure 37 shows 

the Paquette Base Model and the Adjusted Paquette Base Model for the mercury 

solubility in the HgS+As2S3+S experiments. The Paquette Base Model shows that 

there is less observed solubility in this experiment with pH and total sulfide, 

implying that Paquette’s model calculated more mercury solubility than observed in 

these experiments.  To account for the observed solubility the equilibrium constants 

were allowed to vary using the least squares fitting routine.  The Adjusted Paquette 

Base Model brought the residuals closer to zero without changing the equilibrium 

constants substantially. Since the two models equilibrium constants lie within 

uncertainty of each other, the Paquette Model also explains the mercury solubility of 

the HgS+As2S3+S system in this work.  This implies that the solubility of mercury is 

not enhanced when arsenic is present in solution and that the formation of a mercury-

thioarsenite complex is negligible. 

Jay et al. (2000) conducted experiments with HgS and So in sulfidic solutions 

(data in Appendix IV), but attributed the mercury solubility to the mercury species 

proposed by Paquette and Helz (1997), Hg(SH)2, HgS(SH)-, HgS2
2- in addition to: 

  HgS + HS- +2(x-1)So ⇔ Hg(Sx)2
2- + H+   (31) 
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Figure 37. Paquette Base Model and Adjusted Paquette Base Model for Hg 
Speciation for HgS+As2S3+S Experiments in a Sulfidic Solution. The pK’s refer to 
the reactions in the text. If any pK is not listed in the figure, the reaction 
corresponding to the pK was not included in the model. Paquette Data in Appendix 
IV. 
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HgS + H2O +(x-1)So ⇔ Hg(Sx)OH- + H+   (32) 

    HgS ⇔ HgSo     (33) 

Equilibrium constants were taken from Jay et al. (2000). It should be noted that Jay 

et al. (2000) used data from Paquette and Helz to model their mercury data.  Figure 

38 shows the Jay Base Model, which includes Reactions 27, 28, 29 31, 32 and 33. 

Using the Jay Base Model still produced mercury solubilities that were higher than 

the observed values, but this model has slightly better fit to the data when compared 

to the Paquette Model. However, the same conclusion is reached using the Jay Base 

Model, that the formation of a mercury-thioarsenite complex is negligible.   

The Paquette model was chosen to estimate an upper limit on K for a Hg-

thioarsenite complex. The Paquette model was chosen because there was more data 

used in the model, which could lead to a more accurate value of the equilibrium 

constant. The formation of a Hg-thioarsenite complex can be represented by: 

HgS + AsS(HS)(OH)- + H+ ⇔ HgAsS(HS)(OH)+ + HS- (34) 

It was assumed that a K for the Hg-thioarsenite complex must be smaller than the 

value that increases the standard deviation of the Adjusted Paquette Base Model by 

5%. The upper limit for the equilibrium constant of Hg-thioarsenite was calculated to 

be 1x10-4 (pK=4).  

Even though the formation of a Hg-thioarsenite complex is negligible there is 

one concern. If a ternary phase formed in the HgS+As2S3+S system, then the 

solubility of the Hg would be reduced because of the lower solubility of the HgS 

component in the ternary phase.   However, a literature search did not provide any 
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Figure 38. Jay Base Model for Hg Speciation in HgS+As2S3+S equilibrated in a 
sulfidic solution. The pK’s refer to the reactions in the text. If any pK is not listed in 
the figure, the reaction corresponding to the pK was not included in the model. Jay et 
al. (2000) data in Appendix IV. 
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references to a ternary phase involving the As-Hg-S system and the x-ray diffraction 

pattern did not have any peaks that were unaccounted. 

 

II.D.2.3.2. Speciation of Pb in Sulfidic Solutions Equilibrated with PbS+As2S3+S 

The speciation of lead could not be determined in these experiments because 

the lead concentrations were below the detection limit for graphite furnace analysis 

(shown in Figure 19).  There could be some enhancement in the lead solubility, but 

no measurement could be obtained.  Therefore, thioarsenite complexing of lead may 

occur but it is too weak to raise the lead solubility above the 9.6x10-9 M detection 

limit.  This implies that the formation of a lead-thioarsenite complex is negligible. 

 

II.D.3. Critical Evaluation of Work 

 At this point it is always necessary to offer a critical review of the work. The 

first concern is that the solid phases have been properly identified and that the 

solutions were equilibrating with these phases.  By inspecting the solids with EDS 

the proustite experiments contained three phases. Ag2S and Ag7AsS6 were present in 

the bulk of the material, while Ag3AsS3 was present to a lesser extent and was 

enclosed in Ag2S particles.  

The trechmannite experiments seemed to be equilibrating with a meatastable 

phase. This is indicated by EDS and X-Ray diffraction measurements that identify 

three components in the Ag2S-As2S3 binary system. However, the As2S3 component 

seems to be inert in the system, which is indicated by the low activity of As2S3 that 
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was calculated in the As speciation model. Because the system was equilibrated with 

a metastable phase the ∆Gf
o of trechmannite could not be calculated.  

Sulfur is also a critical component and was used to determine if polysulfide 

species were of any importance in metal speciation. Assemblages equilibrated with 

sulfur were given an aS=1, meaning sulfur was in excess. Visual inspection of the 

samples before filtration revealed that sulfur was indeed present after equilibrium 

had been reached. 

Chloride also turned out to be a critical component in Ag2S+S experiments. 

The Ag(Cl)(HS)- species has never been identified before, so this species must be 

questioned. However, this species is essential to Ag speciation and is shown to be 

necessary in Figure 26.  However, if this species turned out to be insignificant, the 

Ag-As-S model would not be affected because no chloride was used in these 

experiments. 

 

II.E. Conclusions 

Experiments provided arsenic speciation information for the As2S3-S system.  

The dominant arsenic species was AsS(HS)(OH)-, other important species included 

As(OH)3 and H2As3S6
-. Arsenic polysulfide species were not found to be important 

in this system. Natural waters can contain >1x10-4 M levels of polysulfides, 

concentrations in this work ranged from 2x10-4 M to 1x10-5 M.  Natural waters do 

not contain a much larger concentration of polysulfides and As-polysulfide species 

would not likely form in natural waters. Table 37 reviews the reactions and 

equilibrium constants utilized and calculated for the last two chapters. 
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The same arsenic speciation model used to explain the solubility of orpiment 

alone can be used without modification to explain solubilities of orpiment in 

experiments in equilibrium with sulfur, cinnabar and galena. With modification of a 

singe parameter, the activity of As2S3, this model can also explain As solubilities in 

equilibrium with amorphous As2S3, Ag assemblage A and Ag assemblage B.   

In contrast, the model from Stefansson and Seward (2003) that explains the 

solubility of acanthite had to be enhanced with additional species: Ag(Cl)(HS)- to 

explain the effect of Cl-, AgSx
- to explain the effect of polysulfide and 

AgAsS(HS)(OH)° to explain the effect of thioarsenites. 

A reaction between Ag+ and AsS(HS)(OH)- forming AgAsS(HS)(OH)o was 

obtained and the pK is –17.17±0.20. This indicates that the Ag-thioarsenite reaction 

is very strong and is comparable to the analogous reaction with Cu+, where the pK 

was calculated to be -19.82±0.17 (Clarke and Helz, 2000). The calculated stability 

(Cu>Ag) is in agreement with the predictions from Tossell (2000). 

There could have been some enhancement in lead solubility in these 

experiments, but the lead solubility was below the 9.6x10-9 M detection limit of the 

graphite furnace. The solubility of the HgS+As2S3+S system was compared to 

literature data of the HgS-S system. There was no significant difference between the 

solubility of mercury in the two systems. Therefore, Hg-thioarsenite and Pb-

thioarsenite complexes are negligible at thioarsenite concentrations up to 0.1 mM at 

near-neutral pH’s. 

The formation of a metal thioarsenite depends on the HS- and thioarsenite 

concentration found in the system. Natural freshwaters have a typical arsenic 
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concentration of 1.9x10-8M (Cullen and Reimer, 1989; Cutter, 1992).  Experiments 

conducted in this work would represent concentrations of thioarsenite that are above 

those found in freshwater systems and it is therefore unlikely that Pb and Hg 

thioarsenite complexes would form in nature.  The formation of the metal-

thioarsenite complexes is also dependent on [HS-], where the complex could be 

enhanced in highly sulfidic systems. 
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Table 37. Solubility Reactions Used in Chapters II. 

Reaction pKThis Work 
pKLiterature 
(Source) 

As   
0.5As2S3(crys) +H2O+0.5H2S⇔AsS(HS)(OH)- +H+ 8.7±0.1 9.12±0.32 (1) 
1.5As2S3(crys) + 1.5H2S  ⇔ H2As3S6

- + H+ 6.2±0.8 6.91±0.09 (3) 
1.5As2S3 (amorp) + 1.5H2S  ⇔ H2As3S6

- + H+ - 5.0±0.3 (2) 
0.5As2S3(crys) + 3H2O ⇔ As(OH)3 + 1.5H2S - 12.60±0.11 (3)
0.5As2S3(crys) + 3H2O ⇔ As(OH)3 + 1.5H2S  - 12.58 (4) 
0.5As2S3(amorp) + 3H2O ⇔ As(OH)3 + 1.5H2S - 11.90±0.3 (2) 
Hg   
HgS (cinn) + H2S (aq) ⇔ Hg(SH)2   5.4±0.3 5.35±0.10 (5) 
HgS (cinn) + HS- ⇔ HgS(SH)-    5±1 5.34±0.30 (5) 
HgS (cinn) + 2HS- ⇔ HgS2

2- + H2S   6.6±0.5 7.14±0.16 (5) 
HgS (cinn) + (x-1)S0 + HS- ⇔ Hg(Sx)HS- 4.5±0.4 3.97±0.17 (5) 
Ag   
0.5Ag2S (acan) + 1.5 HS- + 0.5 H+ ⇔ Ag(HS)2

- 0.41±0.41 0.466±0.07 (6)
0.5Ag2S (acan) + 0.5 HS- + 0.5 H+ ⇔ Ag(HS) 2.1±0.2 2.12±0.04 (6) 
0.5Ag2S (acan) + Cl- + 0.5 HS- + 0.5 H+ ⇔ 
Ag(Cl)(HS)- 

-1.1±0.2 - 

0.5Ag2S (acan) + (x-1)S° + 0.5 HS- ⇔AgSx
- +0.5 H+ 8.5±0.2 - 

0.5Ag2S (acan) + AsS(HS)(OH)- + 0.5H+ ⇔ 
AgAsS(HS)(OH)o + 0.5HS-  0.8±0.2 - 

Ag2S (acan) + 2 HS- ⇔ Ag2S(HS)2
2-  - 4.78±0.04 (6) 

Ag+ + 0.5HS- ⇔ 0.5Ag2S + 0.5H+  - -17.99 (6) 
Ag+ + AsS(HS)(OH)- ⇔ AgAsS(HS)(OH)o  -17.2±0.2 - 
Miscellaneous   
H2S ⇔ HS- + H+ - 7.01 (7) 
1. Clarke and Helz (2000); pK value corrected to crystalline orpiment value using 
activity of orpiment from Eary’s amorphous material calculated in this work. 
Original reaction had activity of orpiment with respect to Eary’s amorphous 
material. 2. Eary (1992), 3. Webster (1990), 4. Nordstrom and Archer (2003), 5. 
Paquette and Helz (1997), 6. Stefansson and Seward (2003), 7. Ellis and Milestone 
(1967) 
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Chapter III.  The Solubility of As2O3 in Carbonate Solutions 

III.A. Introduction 

 The elevated arsenic concentrations in groundwater throughout certain 

regions of the world, including Bangladesh, Vietnam and India threaten the health of 

millions of people. In these regions groundwater has low dissolved oxygen 

concentrations, low redox potentials and is thus under reducing conditions (Kim et 

al., 2000; Appelo et al., 2002; Battacharya et al., 2002). The groundwater also tends 

to have a high alkalinity and elevated concentrations of dissolved iron, manganese 

and As(III) (Kim et al., 2000).  The concentration of total arsenic can reach mg/L 

levels, whereas the maximum contamination level (MCL) for arsenic in drinking 

water for the United States is 10 µg/L (Environmental Protection Agency, 2001).   

The elevated arsenic concentrations pose a serious health concern to many 

individuals who drink the groundwater.  Identification of the chemical and 

geological processes that give rise to the elevated levels might lead to reduction in 

the risk of arsenic related diseases to many people. 

 Causes for the elevated arsenic levels have been a source of controversy. Two 

accepted theories, pyrite oxidation and iron oxide reduction, have been presented in 

previous chapters of this work.  However, some new interpretations of the elevated 

arsenic concentrations in groundwater have recently emerged.  Appelo et al. (2002) 

attribute the high arsenic concentrations to the displacement of arsenic by dissolved 

carbonate on ferrihydrite (Fe(OH)3).  Kim et al. (2000) attributed the elevated arsenic 

concentrations in groundwater to the formation of stable arseno-carbonate 

complexes.  
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 Kim et al. (2000) have shown that the bicarbonate concentration is highly 

correlated with the release of arsenic from Marshall Sandstone, which contains 

arsenic-rich pyrite and arsenic sulfides. They proposed that arsenic sulfides interact 

with bicarbonate and are responsible for elevated arsenic concentrations in 

groundwater through the production of arsenic carbonate complexes. They further 

propose large stability constants for the complexes and state that ”according to these 

estimates, which need to be confirmed experimentally, the carbonate complexes may 

be the most stable inorganic arsenic species in the aquatic environment.”  Their 

experiments using ion chromatography produced evidence of arseno-carbonate 

complexes and likely species include: As(CO3)2
-, As(CO3)(OH)2

- and As(CO3)+.  

The reactions can be written as: 

As(OH)3 + 2HCO3
- + H+  As(CO3)2

- + 3H2O  (1) 

As(OH)3 + HCO3
- +2H+  As(CO3)+ + 3H2O  (2) 

As(OH)3 + HCO3
-  As(OH)2(CO3)- + H2O   (3) 

Tossell (2004) has conducted quantum mechanical calculations to study the 

stability of arsenite carbonate complexes.  He used Hartree Fock (HF) and Moller-

Plessett many body perturbation theory 2nd order (MP2) to calculate the stability of 

various arsenite carbonate complexes, which included As(CO3)+, As(OH)2(CO3)- and  

As(OH)2(CO3)Na.  He found that the As(OH)2(CO3)Na complex was the most stable 

complex through a condensation reaction, but the As(OH)2(CO3)- complex was also 

found to be stable.  These results seem to support the evidence of one of the species 

predicted by Kim et al. (2000), but challenge the existence of the other two.  Tossell 

favors species in which the arsenic is bound to bicarbonate through one oxygen from 
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the bicarbonate, rather than being bound maximally with two oxygens from the 

bicarbonate. 

Tossell (2004) also calculated the IR and Raman spectra for the 

As(OH)2(CO3)Na(OH2)2 complex using the hydrated ion-pair model with HF and 

MP2.  Pokrovski et al. (1996) characterized arsenite bands using Raman 

Spectroscopy at 700 cm-1 and a depolarized shoulder at approximately 650 cm-1 

associated with the symmetric and asymmetric stretching of As(OH)3. As As(OH)3 is 

deprotonated there are three strong Raman bands, which are attributed to AsO(OH)2
- 

(Loehr and Plane, 1968; Goldberg and Johnston, 2001).  

In this chapter, the solubility of As2O3 in the presence of HCO3
- and Cl- will 

be determined.  Raman Spectroscopy will be also be used to examine the effect 

bicarbonate has on arsenic solubility.   

 

III.B. Methodology 

III.B.1. Materials 

III.B.1.1. Recrystallization and Characterization of As2O3 

Arsenic trioxide powder (As2O3)  (J. T. Baker, Primary standard) was 

recrystallized in deionized water through the following procedure: 210 grams of 

arsenic trioxide powder was placed in deionized water so approximately one third 

would dissolve at 100°C.  The As2O3 was cycled four times between room 

temperature and boiling, water was added to replace any water lost after the solution 

slowly cooled, which permitted the dissolution of small particles and the 

precipitation of larger As2O3 particles.  After the final cooling the solution was 
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stirred and left to settle overnight.  The particles still suspended in the solution were 

decanted and discarded.  The remaining As2O3 was filtered and allowed to air dry. 

The recrystallized As2O3 appeared to be a course powder when compared to the very 

fine starting material.  Experiments were conducted with two different compositions 

of As2O3 starting materials, even though the same procedure was followed to 

synthesize both.  The x-ray diffraction pattern of the recrystallized As2O3 from runs 

3 and 4 is shown in Figure 39, where the starting material is arsenolite. 

The recrystallized As2O3 used in Runs 1 and 2 was synthesized at a later time 

than Runs 3 and 4.  The same procedure stated above was utilized in the 

recrystallization of As2O3 for Runs 1 and 2. Claudetite was found in Runs 1 and 2, 

specifically in the reacted material from Run 2. Possible explanations could be that 

the material had an impurity that could stabilize claudetite over arsenolite.  However, 

an impurity does not seem likely because the As2O3 starting material had a purity of 

100%±0.05. A more likely cause could have been the formation of a metastable 

state.  Runs 1 and 2 were conducted twice. In the first trial there was rapid 

evaporation that could have produced sufficient supersaturation to precipitate a 

metastable solid phase.  The reacted material from the first trial was then washed 

with deionized water, dried and used in the second trial of Runs 1 and 2, where there 

was much less evaporation.  Figure 40 and Table 39 clearly shows arsenolite and 

claudetite, the monoclinic form of As2O3, in the reacted material from Run 2. 

The free energies of arsenolite (cubic As2O3) and claudetite (monoclinic 

As2O3) are very similar. It is therefore difficult to determine the most stable phase of 

As2O3. Stranski et al. (1958) determined that claudetite is more soluble than  
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Figure 39. X-Ray power diffraction of recrystallized As2O3. Reference is arsenolite 
and is shown as solid lines under spectra. CuKα radiation, 1.54 Å. 

 
 
 

Table 38. X-Ray Powder Diffraction of Recrystallized As2O3 

Peak (2θ), Intensity x103  
(measured by hand) 

Known Arsenolite Peak (2θ), Intensity x103 
(measured by hand) 

28.00, 11.8 28.00, 400.0 
32.67, 4.0 32.33, 100.0 
35.19, 4.3 35.29, 140.4 
42.67, 1.2 42.67, 54.6 
46.33, 2.9 46.33, 56.6 
54.99, 1.8 54.93, 62.4 
59.93, 2.7 59.67, 62.4 

Diffraction pattern shown in Figure 39.  Peaks given as 2-theta. The known peaks 
are from the JCPDS database 
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Figure 40. X-Ray diffraction pattern of reacted material from flask containing 0.355 
m NaCl/0.357 m NaHCO3 in a CO2 atmosphere.  References, arsenolite and 
claudetite, are shown below the spectra as solid lines. CuKα radiation, 1.54 Å. 

 

Table 39. X-Ray Diffraction Pattern of the Reacted Material from the Flask 
Containing 0.355 m NaCl/0.357 m NaHCO3 in a CO2 Atmosphere. 

Peak (2θ), Intensity x103  
(measured by hand) 

Known Peak (2θ), Intensity x103  
(measured by hand) 

13.83, 74.1 ar 13.83, 179.4; cl 13.67, 1.9 
25.83, 27.3 cl 25.83, 100.0 
26.57, 37.4 cl 26.55, 46.0 
27.47, 200.0  cl 27.47, 200.0 
28.00, 554.6 ar 28.00, 400.0 
32.67, 140.4 ar 32.33, 100.0; cl 32.34, 74.1 
35.19, 163.8 ar 35.29, 140.4 
40.00, 46.0 cl 39.83, 54.5; ar 39.83, 54.6 
42.67, 74.1 ar 42.67, 54.6 
46.33, 109.2 ar 46.33, 93.6 
53.40, 21.8 cl  53.40, 21.8 
54.99, 78.0 ar 54.93, 62.4 
59.93, 100.0 ar 59.67, 62.4; cl 59.67, 21.8 

Diffraction pattern shown in Figure 40.  ar=arsenolite and cl=claudetite. Peaks 
given as 2-theta. The known peaks are from the JCPDS database 
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arsenolite at temperatures below 50°C and is therefore less stable. Pokrovski et al. 

(1996) found the opposite and postulated that claudetite is the more stable phase at 

any temperature.  Archer and Nordstrom (2003) concluded that claudetite is the more 

stable phase by –0.19 kJ/mol. The formation of an arsenolite/claudetite phase seems 

to be dependent on some variable, possibly temperature, humidity or grain size of the 

material.   

 

III.B.1.2. Gasses and Solutions of Runs 

 The control solutions (Runs 1 and 3) contained 0.710 m NaCl (J.T. Baker, 

A.C.S. Reagent) and were bubbled with nitrogen. The undersaturated solution (Run 

4) contained 0.715 m NaHCO3 (J.T. Baker, A.C.S. Reagent) and was bubbled under 

CO2. Saturation with CO2 was used to lower the pH of the system making 

AsO(OH)2
- negligible while enhancing the total dissolved arsenic-carbonate species.  

The oversaturated solution started at high pH and contained 0.351 m Na2CO3 (Fisher 

Scientific, A.C.S. Reagent), this solution was bubbled with N2 for one day to 

dissolve arsenic into the solution. CO2 was then bubbled into the solution for the 

remainder of the experiment forcing the dissolved arsenic to precipitate as it was 

acidified with CO2 to a pH of approximately 7.7.  

Runs 1 and 2 compared the arsenic solubility between a 0.710 m NaCl 

solution under a N2 atmosphere and a 0.355 m NaCl/ 0.357 m NaHCO3 solution 

saturated with CO2, where both solutions had approximately the same pH.  The pH 

of Run 1 (0.710 m NaCl) was adjusted with NaOH (J. T. Baker) to match closely the 
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pH of Run 2. The starting experimental conditions for the experiments are shown in 

Table 40.   

Table 40. Experimental Conditions for the Equilibration of As2O3 for Control, 
Undersaturated and Oversaturated Solutions.  

Solution Solution 
Composition pHInitial Gas Used 

Control A (Run 1) 0.710 m NaCl 7.00 N2 

Undersaturated A (Run 2) 0.355 m NaCl/  
0.357 m NaHCO3 

7.15 CO2 

Control (Run 3) 0.710 m NaCl 5.75 N2 

Undersaturated (Run 4) 0.715 m NaHCO3 8.18 CO2 

Oversaturated 0.351 m Na2CO3 11.51 N2  CO2 
 

 

III.B.1.3. Analytical Reagents and Standardization 

III.B.1.3.1. PAO 

 0.00564 N (0.00282 M) PAO, phenyl arsine oxide was obtained from Fisher 

Scientific. 

 

III.B.1.3.2. PAO Standardization 

 0.7332 grams of KH(IO3)2, potassium bi-iodate, (Fisher Scientific) was 

dissolved in 1.00 L of deionized water.  The KH(IO3)2 was diluted by 10, then 5.00 

mL of the diluted standard was added to 195.00 mL of deionized water. 1.5 grams of 

KI was dissolved in the solution and 1.00 mL of pH 4 acetate buffer (0.082 M glacial 

acetic acid/ 0.018 M sodium acetate) was added to the solution. The solution was left 

in the dark for 6 minutes and then titrated with PAO. The PAO normality was 

determined to be 0.0056 ± 0.0002 N (0.0021 M).   
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III.B.1.3.3. Synthesis and Standardization of 0.05 M I2 

 Approximately 40 grams of KI (Fisher Scientific) and approximately 13 

grams of resublimed I2 (Fisher Scientific) was added to a beaker. Then 20 mL of 

deionized water was added to the beaker and stirred with a magnetic stirrer.  The 

liquid was decanted, using a sintered-glass crucible, into a bottle containing 1 L of 

deionized water.  

The I2 solution was standardized by adding aliquots to titration jars, which 

contained 100.00 mL deionized water and 4.00 mL pH 4 acetate buffer, and then 

titrating with PAO. The I2 standardization on day 8, in Runs 3 and 4, was determined 

by fitting the previously measured I2 concentrations to an exponential decay curve.  

 

III.B.2. Experimental Procedures 

III.B.2.1. Experimental Setup 

 At the outset of each run, 250.00 mL of the appropriate solution was added to 

an Erlenmeyer flask and bubbled with the appropriate gas for 30 minutes, to remove 

oxygen, prior to the addition of recrystallized As2O3.  Approximately 40 – 80 grams 

of the recrystallized As2O3 was then added to a flask, which was then stirred 

continuously. The mass of the As2O3 was determined from the expected solubility of 

As2O3 based on the pH of the run. After addition of the solid, the gas delivery tube 

was positioned to blow gas over the solution surface for the remainder of the 

experiment. In Runs 1 and 2 an additional Erlenmeyer flask with the same matrix but 

no solid was used to prevent evaporation. Figure 41 shows the schematic of the  

experimental setup for Runs 1 and 2.  In Runs 3 and 4 the gas was bubbled directly 
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Figure 41. Experimental Setup for Runs 1 and 2. The presaturation vessel contained 
just solution, while the reaction vessel contained the same solution plus 
recrystallized As2O3. 
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into the flask containing the solid. 

The oversaturated solution was bubbled with nitrogen for one day at pH 

11.51 and then bubbled with CO2 for the remainder of the experiment.  The gas was 

bubbled directly into the solution for the first three days. On day 3, the gas tube with 

the oversaturated solution became blocked by the precipitation of As2O3 and the 

solution was lost. 

 

III.B.3. Sampling 

Stirring was stopped right before sampling to allow the solid to settle.  Runs 1 

through 4 were sampled over 9 days.  In Runs 1 and 2, a 3-5 mL sample was taken 

from each flask and centrifuged with a bench top centrifuge until the supernatant was 

visibly clear. In Runs 3 and 4, two 3-5 mL samples from each flask were collected. 

The first sample was centrifuged. The second sample was syringe filtered with a 0.02 

um Whatman Anatop 25 Filter. The first milliliter was discarded to prevent sample 

contamination. All samples were then diluted 10 times with deionized water and 

added to a titration jar. 

 

III.B.4. Analysis 

 Final pH measurements were obtained using an Orion 420A meter equipped 

with an Orion 8130 Ross Combination electrode calibrated at pH 7 and 10 with 

VWR commercial buffers.  

Total arsenic was obtained using an amperometric method involving 

titrations with PAO.  Titration jars were filled with 100.00 mL of deionized water 
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and 4.00 mL of pH 4 acetic acid/ sodium acetate buffer. A 282.0 µL sample aliquot 

was added to each jar followed by aliquots (100.0 µL or 1.00 mL) of approximately 

0.05 or 0.005 M I2, until the color of the solution became yellow/brown. Arsenite 

was oxidized by the following reaction: 

As(OH)3 + I2 + H2O  2I- + AsO(OH)3 + 2H+   (4) 

The excess I2 was back titrated with a Brinkman 760DMS Titrino automatic titrator 

with a rotating platinum electrode and a stationary platinum cathode using phenyl 

arsine oxide (PAO) as the titrant. The reaction can be represented by: 

C6H5AsO (PAO) + I2 + 2H2O  C6H5AsO(OH)2 + 2H+ + 2I-  (5) 

The moles of As(III) in the sample is the difference between the I2 not used in 

Reaction 5, which is related to the moles of titrant needed to titrate the sample, and 

the moles of the original I2 added to the sample. 

Raman spectra were then taken of selected solutions with a Thermo Nicolet 

Nexus 870 FT-IR attached to a FT-Raman module. The spectrometer was controlled 

using OMNIC software. 

 

III.C. Results 

III.C.1. Measurement of Reversibility of Recrystallized As2O3 

 Equilibration time was determined by examining the change in arsenic 

solubility over time for initially undersaturated and oversaturated solutions.  Figure 

42 and Table 41 show the data for the determination of equilibrium in the arsenic- 

carbonate system.  Arsenic equilibrates within one to two days.  The oversaturation 

curve approaches the undersaturation curve within one day, which implies that  
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Table 41. Solubility of Undersaturated and Oversaturated Solution to Determine 
Equilibrium of the Arsenic-carbonate System. 

Total Arsenic (m) Average Total 
Arsenic (m) pH Reaction Time 

(Hours) 
Undersaturated Solution 

0.227, 0.229 0.228 7.78 24 
0.201, 0.201, 0.190 0.197 7.74 48 
0.199, 0.204, 0.211 0.205 8.03 73 
Oversaturated Solution 
0.228, 0.226, 0.225 0.226 7.61 23 
0.190, 0.182, 0.195 0.189 7.72 47 
0.208, 0.189, 0.206 0.201 7.98 75 
Undersaturated Solution – 0.715 m NaHCO3 (arsenolite), (Run 4) 
Oversaturated Solution- 0.351 m Na2CO3 (arsenolite) 
 

 
Figure 42. Equilibrium from under- and oversaturation at room temperature of 
arsenic-carbonate system. Triangles represent undersaturation (0.715 m NaHCO3) 
and hashed circles represent oversaturation (0.351 m Na2CO3).  
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equilibrium was reached in one day. However, on day one the undersaturation curve 

is slightly above the oversaturation curve, implying that a few particles had excess 

free energy and that the recrystallized arsenic trioxide was converting to a more 

stable form. By day two the solubility was no longer changing. 

 

III.C.2. Solubility of Recrystallized As2O3  

The solubility of As2O3 (arsenolite only or arsenolite/claudetite) was 

measured in NaCl and NaHCO3 solutions at room temperature under a N2 or CO2 

atmosphere. The results of these experiments are given in Table 42 and show that the 

arsenic solubility is greater in solutions that contain bicarbonate when compared to 

solutions that contain chloride.  As an example in Run 3 (0.710 m NaCl) the average 

As(III) concentration was 0.159±0.016 m, while in Run 4 (0.715 m NaHCO3) the 

average concentration was 0.207±0.018 m.  The average arsenic concentration 

difference between the NaCl solution (Run 1, 0.710 m NaCl) and the HCO3
- solution 

(Run 2, 0.355 m NaCl/ 0.357 m NaHCO3) was less substantial when the HCO3
- 

concentration was halved.  The average arsenic concentrations were 0.246±0.011 m 

for Run 1 and 0.257±0.012 m for Run 2.  

The other important feature of the data is the difference in the starting 

materials between Runs 1 and 2 and Runs 3 and 4.  The starting material in Run 1 

(0.710 m NaCl) was an arsenolite/claudetite mixture and had an average arsenic 

solubility of 0.243±0.11 m. Run 3 (0.710 m NaCl) contained arsenolite only and had  

an average arsenic of 0.159±0.16 m. The claudetite/arsenolite mixture was more 

soluble and thus considered to be less stable than arsenolite alone.  
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Table 42. Exp. Results for Solubility of As2O3 in NaCl and NaHCO3 Solutions. 
 

Total As (m) 
 

pH 
 

Reaction time (h) 
  

Total As (m) 
 

pH 
 

Reaction time (h) 
Run 1. 0.710 m NaCl, ar+cl, N2 atm.  Run 2 (cont), 
0.250 6.97 49 0.247 7.12 167 
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Run 3.  0.710 m NaCl, ar only, N2 atm. 
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Run 2. 0.355 m NaCl, 0.357 m NaHCO3,  

ar+cl, CO2 atm 

 
          0.151             5.67                    218          

Run 4. 0.715 m NaHCO3, ar only, CO2 atm. 
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0.253 
 

7.09 
 

49 
 

0.201 7.74 48 

0.239 
 

7.09 
 

49 
 

0.190 
 

7.74 
 

48 
0.254 

 
7.09 

 
49 

 
0.199 

 
8.03 

 
73 

0.251 
 

7.11 
 

74 
 

0.204 
 

8.03 
 

73 
0.260 

 
7.11 

 
74 

 
0.211 

 
8.03 

 
73 

0.253 
 

7.11 
 

74 
 

0.188 
 

7.97 
 

144 
0.264 

 
7.11 

 
97 

 
0.176 

 
7.97 

 
144 

0.267 
 

7.11 
 

97 
 

0.184 
 

7.97 
 

144 
0.269 

 
7.11 

 
97 

 
0.221 

 
7.71 

 
218 

0.269 
 

7.11 
 

97 
 

0.211 
 

7.71 
 

218 
0.272 

 
7.11 

 
97 

 
0.240 

 
7.71 

 
218 

0.276 
 

7.11 
 

97 
 

0.232 
 

7.71 
 

218 
0.249 

 
7.12 

 
167 

 
0.231 

 
7.71 

 
218 

0.254 
 

7.12 
 

167 
 

0.220 
 

7.71 
 

218 
0.249 

 
7.12 

 
167 

 
ar= arsenolite, cl = claudetite 
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The solubility of arsenic was tested on centrifuged and filtered samples to see 

if the method of removing particles had any effect on the amount of arsenic 

measured in the samples. The filtered data are compared to the centrifuged data in 

Table 43. In most cases the measured arsenic concentration from centrifugation was 

in close agreement with the filtered samples.  It is known that Anatop filters contain 

an alumina membrane and can adsorb cations (Baumgarten and Kirschausen-Dusing, 

1997).  However, the species present in this work should be neutral or anionic.  

 

III.C.3. Identification of As-carbonate species from Raman Spectra 

After equilibrium was reached in the flasks containing arsenic trioxide and 

either sodium chloride or bicarbonate, the samples were filtered and a Raman 

spectrum was taken of each sample. An example is shown in Figure 43.  The most 

intense peaks for the As(OH)2(CO3)Na(OH2)2  complex are predicted to occur at 

669, 696 and 729 cm-1 (Tossell, 2004). There are no distinguishable peaks related to 

an arsenic-carbonate complex in the Raman spectrum in Figure 43. Also, the 

intensities of the peaks do not agree with calculated values for the 

As(OH)2(CO3)Na(OH2)2 species from Tossell (2004).  This could be due to the fact 

that when the samples were placed in the spectrometer the signal declined, indicating 

that the complex is a weak Raman absorber. Thus, Raman spectroscopy does not 

appear to be a useful technique in characterizing arsenic-carbonate complexes. 
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Table 43. Comparison of Filtered and Centrifuged Samples 

 Total As (m) Average As (m) 
Reaction Time 

(Hrs) 
Filtered 
Sample 

Centrifuged 
Sample 

Filtered 
Sample 

Centrifuged 
Sample 

Run 3: 0.710 m NaCl, arsenolite only, N2 atm. 
48 0.172 0.181   
48 0.179 0.160 0.174 0.170 
48 0.172 0.169   
74 0.183 0.186   
74 0.199 0.188 0.188 0.182 
74 0.183 0.173   
144 0.143 0.139   
144 0.169 0.152 0.156 0.148 
144  0.152   
218 0.156 0.147   
218 0.146 0.147   
218 0.153 0.144 
218 0.153 0.155 0.151 0.150 

218 0.153 
 

0.153   
218 0.145 0.152   

Run 4: 0.715 m NaHCO3, arsenolite only, CO2 atm. 
48 0.207 0.201   
48 0.209 0.201 0.207 0.197 
48 0.206 0.190   
73 0.197 0.199   
73 0.192 0.204 0.194 0.204 
73 0.194 0.211   
144 0.206 0.188   
144 0.215 0.176 0.210 0.183 
144  0.184   
218 0.161 0.221   
218 0.182 0.211   
218 0.189 0.240 
218 0.174 0.232 0.180 0.226 

218 0.186 0.231   
218 0.186 0.220   
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Figure 43. Raman spectrum from a solution in which As2O3 reacted with a 1.05 m 
NaHCO3 solution. [As]=0.186 M, pH 8.15.  Scan number = 3600, resolution of 8 and 
gain of 64. 
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III.D. Discussion 

III.D.1. Solubility Measurements 

The data clearly show that the solubility of arsenic is enhanced in the 

presence of bicarbonate.  There are a few reasons why the arsenic concentration 

would be higher in the presence of bicarbonate.  The first possible reason is the pH 

difference between NaCl  (5.61±.06, Run 3) and NaHCO3 (7.85±.14, Run 4). This 

possibility was excluded by Run 1 and 2 when the control and undersaturated 

solution had approximately the same pH, and enhanced solubility was still observed.  

A second possible reason could be formation of arsenic hydroxo chloro species (i.e. 

As(OH)2Cl), which are known to increase the solubility of arsenic in acidic 

solutions. Using an equilibrium constant for the formation of As(OH)2Cl from 

Arcand (1957) provides evidence that even if there were 1M Cl present in the 

bicarbonate runs the concentration of an arsenic hydroxo chloro species would be 

negligible compared to the As(OH)3 concentration. Another possible reason for 

increased arsenic solubility could come from the formation of an arsenic dimer 

(HAs2O4
-). From Garrett et al. (1940): 

As2O3 (s) + H2O ⇔ HAs2O4
- + H+  K=3.1x 10-11  (6) 

The concentration of the dimer is approximately 0.001 M at a pH of 7 and is 

negligible relative to a total solubility of 0.2 M. The more plausible reason for the 

increased arsenic concentration in bicarbonate experiments comes from As(OH)3-

HCO3 condensation, which would produce an arsenic-carbonate species.  
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III.D.2. Determination of As-Carbonate Equilibrium Constant Expressions 

Each one of the three previously proposed species, As(CO3)+, As(CO3)2
- and 

As(OH)2(CO3)-,  were separately tested to see which could best account for the 

enhanced As solubility in the presence of HCO3
-. The Scientist programs used to 

calculate the equilibrium constants for the data set can be found in Appendix V.  The 

Scientist program for calculating the equilibrium constant of As(OH)2(CO3)- was 

made with two basic assumptions. The first assumption was that the concentration of 

the arsenic dimer was negligible. A calculation for the dimer concentration, using the 

K from Garrett et al. (1940) implies that the species is negligible under these 

experimental conditions. The second assumption was that: 

TotalAs = [As(OH)3] + [AsO(OH)2
-] + [As(OH)2(CO3)-]   (7) 

The following equations are needed to solve for TotalAs in the second assumption: 

0.5As2O3 (Arsenolite) + 1.5H2O ⇔ As(OH)3 5.0
3)(3 ])([

a

OHAs
SO a

OHAs
K

γ
=   (8) 

0.5As2O3 (Claudetite) ⇔ 0.5As2O3 (Arsenolite)      5.0

5.0

c

a
p a

a
K =   (9) 

and then through the addition of Reaction 8 and 9, 

0.5As2O3(Claudetite/Arsenolite)+1.5H2O ⇔As(OH)3  

         3)(3 ])([ OHAspSO OHAsKK γ=  (10) 

Two additional equations are needed to solve for TotalAs. Reaction 10 will 

substituted into the additional equations for As(OH)3.  The additional equations are: 

As(OH)3 ⇔ AsO(OH)2
- + H+   K=10-9.17 (Nordstrom and Archer, 2003) (11) 

  So, ][])([10 2)(2
17.9 +−− = HOHAsOKK OHAsOpSO γ    
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As(OH)3 + HCO3
-  As(OH)2(CO3)- + H2O       (3) 

So, 
][

])()([

3

32
−

−

=
HCO

COOHAs
KKK pSOACO   

Where γ are activity coefficients. The activity coefficient for AsO(OH)2
- was 

assumed to be equivalent to the activity coefficient of HCO3
-, 0.68 (from Stumm and 

Morgan, 1996).  The activity coefficients of HCO3
- and As(OH)2(CO3)- were also 

considered to be equal. The activity coefficient for As(OH)3 was calculated using the 

Garrett et al. (1940) arsenic solubility data in 0-1 m HCl experiments. This 

calculation assumed that: 

               log γAs(OH)3 = log (So/SHCl) =σI,   (12) 

where S0 is the solubility of As in water, SHCl is the arsenic solubility in HCl, I is the 

ionic strength and σ is the Setchenow coefficient (0.051). The Setchenow coefficient 

was determined from fitting Garrett’s data in the 0-1 m HCl range. The activity 

coefficient of As(OH)3 was calculated to be 1.09.  Ion pairs, NaAs(OH)2(CO3) and 

NaAsO(OH)2, were considered to be negligible in relation to the total amount of 

arsenic present.   

The final step in calculating the equilibrium constants involved substituting 

equations 10, 11 and 3 into equation 7, permitting TotalAs to be calculated: 

][
10

10
3

2)(

17.9

3)(

−
−

−

++= HCOKKK
KKKK

Total pSOACOpH
OHAsO

pSO

OHAs

pSO
As γγ

  (13) 

This equation computes TotalAs for the unstable claudetite/arsenolite mixture; 

Kp is omitted (set=1) to compute TotalAs for the arsenolite only experiments. 
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 The final derivation of the TotalAs expressions for As(CO3)+ and As(CO3)2
- 

are shown in Appendix V, where the same assumptions were made for these species 

in relation to As(OH)2(CO3)-. 

The final correction needed before fitting the data with the Scientist program 

was to calculate the free HCO3
- concentration, by correcting the total HCO3

- 

concentration for ion pairing with Na+.  To correct for ion pairing the stoichiometric 

association constant of NaHCO3 in seawater was used, which was 0.28 (taken from 

Johnson and Pytkowicz, 1978).  The ion pairing reaction can be represented by: 

Na+ + HCO3
- ⇔ NaHCO3  K*=0.28  (14) 

 Knowing the total HCO3
- concentration and assuming the total Na+ concentration is 

0.7 m, the concentration of the NaHCO3 can be calculated with a quadratic equation.  

Through subtracting the calculated NaHCO3 concentration from the known total 

HCO3
- concentration, the free HCO3

- was determined to be 0.310 m in Run 2 and 

0.640 m in Run 4.   

 

III.D.3. Comparison of Carbonate Species through Computer Modeling 

 The log (Ascalculated/Asobserved) as a function of pH and bicarbonate is shown in 

Figure 44 for each As-carbonate species proposed by Kim et al. (2000). The fitting 

was done by the least squares method.  The results for the three different species are 

presented in Table 44. 

Figure 44 shows that As(OH)2(CO3)- is the best-fit model to describe the 

solubility of arsenic in the presence of bicarbonate with data from this work. There 
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are no trends in the data and the corresponding equilibrium constant for the reaction 

containing As(OH)2(CO3)- has a pK3=0.57±0.15 and a standard deviation of 0.032. 

   

Table 44. Comparison of Calculated Equilibrium Constants for As(OH)2CO3
-, 

As(CO3)2
- and AsCO3

+ 

Species Log KACO Log KSO Log Kp Standard deviation 
of model 

As(OH)2(CO3)- -0.57±0.15 0.75±0.02 -0.17±0.03 0.032 
As(CO3)2

- 7.35±0.17 0.74±0.02 -0.15±0.03 0.034 
As(CO3)+ 13.70±0.43 0.72±0.02 -0.14±0.03 0.040 

 

As(CO3)2
- in Figure 44 shows a slight trend with both pH and bicarbonate 

and the model has a standard deviation of 0.034. As(CO3)+ has the worst fit to the 

data, which is demonstrated by a standard deviation of 0.040.  There is also an 

obvious trend with pH and bicarbonate.  These two species have a slightly worse fit 

to the data when compared to the As(OH)2(CO3)- species and given the uncertainties 

in the measurements, As(CO3)2
- and  As(CO3)+ could possibly explain the As 

solubility. 

Calculations done by Tossell suggest that As(OH)2(CO3)- is one of the most 

stable species and is formed from a condensation dimerization reaction.  This type of 

reaction occurs in the formation of HAs2O4
- and can be represented by (Garrett et al., 

1940): 

2As(OH)3 + OH- ⇔ HAs2O4
- + 3H2O K= 1.52 x104  (15) 
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Figure 44. Arsenic-Carbonate Models including the species As(OH)2(CO3)-, 
As(CO3)2

- and As(CO3)+. Log (AsCalc/AsObs) as a function of Top: pH and Bottom: 
HCO3

- Concentration.  

A:   As(OH)3 + HCO3
- ⇔ As(OH)2CO3

- + H2O  pK=0.57±0.15 
B:   As(OH)3 + 2HCO3

- + H+ ⇔ As(CO3)2
- + 3H2O pK=-7.35±0.17 

C:   As(OH)3 + HCO3
- + 2H+ ⇔ As(CO3)+ + 3H2O  pK=-13.70±0.43 

All Data are from this work.   
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and is analogous to the formation of As(OH)2(CO3)- : 

As(OH)3 + HCO3
-  As(OH)2(CO3)- + H2O        K=0.267±0.04     (3) 

The dimerization of As(OH)3 in reaction 15 can be put into comparable terms with 

reaction 3 by using the first dissociation constant of As(OH)3 and the water 

ionization constant, which results in the following: 

As(OH)3 + AsO(OH)3
- ⇔ HAs2O4

- + 2H2O  K=0.253 (16) 

The similar equilibrium constants for reaction 3 and 16 indicate that the stability of 

As(OH)2(CO3)- predicted by Tossell (2004) is confirmed through these experiments. 

Therefore, As(OH)2(CO3)- describes the solubility of arsenic in the presence of 

bicarbonate. 

Kim et al. (2000) proposed two alternate species that could be responsible for 

the slight arsenic enhancement in the presence of bicarbonate. However, if we 

approach the problem strictly from a coordination standpoint, arsenic prefers a 

coordination of three and tends to form pyramidal configurations due to three 

bonding p orbitals and a lone pair (Nickless, 1968). Therefore, As(OH)2(CO3)- would 

be favored over As(CO3)2
- and As(CO3)+.  In this light, quantum mechanical 

calculations may be useful in determining the stability of complexes in natural 

waters.  

 

III.D.4. Comparison of As(OH)3 Solubility with Previous Literature Values 

 There have been numerous studies on the solubility of As2O3.  Garrett et al. 

(1940) completed a study on the solubility of As2O3 in dilute solutions of 

hydrochloric acid and sodium hydroxide at 25°C.  They determined that the 
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solubility of As2O3 was 0.1035 m, which is equivalent to 0.207 m As(OH)3.  

Experiments in this work determined that the solubility of As(OH)3 was 0.159±0.016 

m (arsenolite) and 0.246±0.012 m (arsenolite and claudetite) in solutions with a pH 

of approximately 5.6 and 7.0, respectively.  Anderson and Story (1923) also 

conducted a study to determine the solubility of As(OH)3 in water. They determined 

the solubility of As(OH)3 to be 0.207 m at 25°C. A more recent study conducted by 

Pokrovski et al. (1996) also studied the solubility of As2O3 in water under acidic 

conditions.  They determined that the solubility of arsenolite at 22°C (low 

temperature form of As2O3) to be 0.148 m. They also determined the solubility of 

claudetite to be 0.135 m.  The differences in solubility in these experiments could be 

due to the variation in the starting material or temperature, experiment in this study 

were carried out at room temperature, which ranged from 23.8 to 26.8°C. 

 The equilibrium constant, Kp, for the conversion of arsenolite to the 

arsenolite-claudetite mixture was determined to be 1.47±0.26.  The calculated Gibb’s 

free energy value for arsenolite-claudetite mixture was 0.95 kJ/mol more than 

arsenolite only runs.  This is not consistent with other literature data, which favor 

claudetite as the more stable phase by -0.19 kJ/mol (Nordstrom and Archer, 2003; 

Pokrovski et al., 1996). 

 

III.D.5. Significance for As(III) in Natural Waters 

The concentration of bicarbonate found in river and ocean water is 9.2 x 10-4 

M and 2.3x10-3 M, respectively (Stumm and Morgan, 1996). In typical groundwaters 

the concentration of bicarbonate can range from 1.3 mM to 5.5 mM.  It should be 
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noted that the concentration of bicarbonate used throughout these experiments was 

much higher than concentrations found in nature.  In waters that have a bicarbonate 

concentration of 5 mM, I would predict that As(OH)2(CO3)- could be present as 0.1% 

of the total arsenic and would not contribute significantly to the total arsenic 

concentration in solution. The results indicate that there is not a significant increase 

in arsenic solubility when bicarbonate is present.  This leads to the conclusion that an 

arsenic carbonate complex may exist but is not environmentally important as to 

increase arsenic in water systems when bicarbonate is present.   
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Chapter IV. Conclusions 

 The primary goal of this work was to identify the heavy metals that form a 

stable complex with the thioarsenite ligand under sulfidic conditions. Another goal 

of this dissertation involved exploring the role zero valent sulfur had on the solubility 

of As(III) and Ag(I).  The study also explored if HCO3
- had the ability to promote the 

solubility of As(III). A brief synopsis of the results from this work and some ideas 

for future work are presented in this chapter. 

 

IV.A. Understanding As Chemistry in Sulfidic- and Carbonate-Containing 

Systems 

Solubility experiments were done to determine if the thioarsenite ligand had 

the ability to complex d10 metals forming stable metal-thioarsenite complexes in 

sulfidic solutions. This study was partially done in response to studies which 

indicated that copper had a high affinity for the thioarsenite ligand and formed a 

stable Cu-thioarsenite complex, enhancing the solubility of both metals (Clarke, 

1998; Clarke and Helz, 2000).  This study also tested the quantum mechanical 

calculations done by Tossell (2000) who predicted which metals form stable metal-

thioarsenite complexes.  

The first step in this research was to compare the solubility of arsenic and the 

metal of interest in the assemblages (HgS+As2S3+S, PbS+As2S3+S, Ag assemblage 

A and Ag assemblage B) to the solubility of As2S3+S and the other single phase 

(HgS, PbS or Ag2S) in sulfidic solutions. It is important to remember that if a metal-

thioarsenite species is significant, then the solubility of a metal will be greater in the 
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presence of As-bearing phases when compared to solubility of the metal-sulfide 

phases alone.  

The first important result was that hydroxide and sulfide species, not 

polysulfide species, explained the solubility of As in the As2S3+S experiments. 

Elemental sulfur did not promote the solubility of arsenic and it was concluded that 

elemental sulfur had no effect on the solubility of As2S3 in sulfidic solutions. This 

effect is contradictory to previous experiments involving Sb(III) (Helz et al., 2002). 

Helz et al. (2000) found that zerovalent sulfur increased the solubility of Sb(III) by 

three orders of magnitude in sulfidic solutions at near-neutral to alkaline pH’s.  

The solubility of arsenic in experiments involving As2S3+S (As2S3, As2S3+S, 

HgS+As2S3+S, PbS+As2S3+S, Ag assemblage A and Ag assemblage B) was 

attributed to three species As(OH)3, AsS(HS)(OH)- and H2As3S6
-.  These species also 

agree with previous literature data on the solubility of As2S3 in sulfidic solutions. 

Under conditions found in nature, pH=7-8, ΣS=10-6 to 10-3 M, the AsS(HS)(OH)- 

species is dominant. Under conditions were the total sulfide in solution is >~10-2 the 

H2As3S6
- species may become dominant.   

Elemental sulfur was found to increase the solubility of silver when Ag2S+S 

were equilibrated in sulfidic solutions. Research in this dissertation indicated that 

AgHS, Ag(HS)2
-, Ag2S(HS)2

2-, Ag(Cl)(HS)-, and AgSx
- are responsible for the 

increased silver solubility.  

The solubility of PbS could not be measured in the presence of elemental 

sulfur because the lead solubility was below the detection limit of 9.6x10-9 M. 
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Therefore, there could have been some solubility enhancement in these experiments 

due to Pb-polysulfide species but it could not be measured.  

Once the effect of elemental sulfur on As2S3, HgS, PbS and Ag2S had been 

individually defined, the primary aim of the work could be undertaken. To determine 

if the presence of arsenic increased the solubility of silver, mercury or lead in binary 

and ternary assemblages in sulfidic solutions.   

The solubility of silver was elevated in the presence of arsenic and the extra 

silver solubility was attributed to one species, AgAsS(HS)(OH)°. The dithioarsenite 

ligand strongly complexed Ag(I) with a pK of –17.17±0.20. This synergistic 

interaction between Ag(I) and As(III) could have environmental implications such as 

mobilization of Ag and As from landfills. The silver thioarsenite complex enhances 

the solubility of silver at thioarsenite concentrations up to 0.1 mM at near neutral 

pH’s, which are conditions found in the environment. 

There was no significant difference between the solubility of mercury in the 

cinnabar-orpiment-elemental sulfur assemblage when compared to literature data on 

the solubility of mercury in the cinnabar-elemental sulfur assemblage. There could 

have been some enhancement in lead solubility in these experiments, but the lead 

solubility was below the 9.6x10-9 M detection limit of the graphite furnace and could 

not be measured.  

These findings are in agreement with the quantum mechanical predictions 

done by Tossell (2000).  He correctly predicted that Cu and Ag form stable metal-

thioarsenite complexes and that Hg and Pb form stable metal-HS complexes.  It 

therefore seems that Group 11 metals, and possibly Tl+, are favored to form stable 
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metal-thioarsenite complexes. Cu+, another Group 11 element, and AsS(HS)(OH)- 

form a stable Cu-thioarsenite complex, where the pK was calculated to be -19.82 

±0.17 (Clarke and Helz, 2000). The calculated stability (Cu>Ag) is also in agreement 

with predictions by Tossell (2000). 

It is interesting to develop a preliminary theory on why Cu and Ag form 

stable metal-thioarsenite complexes, while Pb and Hg do not.  One possible reason 

could be due to soft acid-base interactions.  Pearson (1988) ranked the absolute 

hardness of the cations I have studied in order of decreasing hardness: 

Hg2+>Pb2+>Ag+>Cu+. This may explain why Hg2+ and Pb2+ do not bind to the 

dithioarsenite ligand, which is a soft base. Another explanation could be that 

Hg2+ and Pb2+ have an affinity for HS- over AsS(HS)(OH)- because the HS- ligand is 

smaller and able to better bind Hg2+ and Pb2+.  

The free energy of formation of natural As2S3 was calculated. as –80.8±1.6 

kJ/mol.  

 The second part of this work also dealt with a system involving As(III), but 

examined the effect bicarbonate had on As(III) solubility in the absence of sulfide.  

Groundwaters in Bangladesh contain organic matter, are under reducing conditions 

and have elevated As(III) concentrations. Kim et al. (2000) estimated large formation 

constants for As-carbonate complexes, implying that HCO3
- could promote As(III) 

solubility. To examine this hypothesis, the solubility of As2O3 in concentrated 

bicarbonate solutions was compared to the solubility of As2O3 in concentrated NaCl 

solutions at room temperature, where both solutions had near neutral pH’s.  The 

solubility of As(III) was slightly increased in the presence of bicarbonate and an 
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attempt was made to fit the data with individual carbonate complexes proposed by 

Kim et al. (2000) and Tossell (2004).  As(OH)2(CO3)- provided a slightly better fit to 

the data.  An equilibrium constant was determined which supports that an arsenic 

carbonate complex may exist but is not environmentally very important.   

 

IV.B. Future Work 

 There are still areas of this work that leave certain question unanswered. This 

section will provide some ideas for future work on this project. 

 The first experiment that needs confirmation is the amount of time needed to 

reach equilibrium in AgAsS2 and Ag3AsS3 systems.  Forty days should be enough 

time to reach equilibrium, but this fact should be confirmed experimentally.  

 Another area of future research is the effect arsenic has on the solubility of 

gold. Tossell (2000) predicts that a stable gold-thioarsenite complex is likely to form 

under sulfidic conditions. However, it should be noted that gold is not particularly 

important in the environment, but it would be interesting to know if all Group 11 

elements form stable metal-thioarsenite complexes. There are no known Au-As 

ternary minerals, so solubility studies would have to contain Au2S, As2S3, and S. 

 It would also be interesting to investigate higher sulfide concentrations with 

the PbS+As2S3+S ternary assemblages.  This would allow a higher concentration of 

lead in solution and may facilitate a result that could be quantified. 

 The currently favored hypothesis for the arsenic enrichment in groundwaters 

is that arsenic bound to Fe(III)-oxyhydroxide is released as the Fe(III)-oxyhydroxide 

is reduced (Nickson et al., 2000; Kinniburgh et al., 2003; Ahmed et al., 2004; 
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McArthur et al., 2004 Zheng et al., 2004).  It would be interesting to conduct 

solubility studies on As(III) in the presence of Fe(II). Another study would have to 

be done involving As solubility in the presence of Fe(III), under oxidizing conditions 

so a comparison of the two systems could be made. The experimental conditions 

would have to include both oxidizing and reducing conditions at near neutral pH’s.  

The reduction of organic matter would favor reducing condition and a N2 or CO2 

atmosphere may facilitate reducing conditions by eliminating O2 from the 

atmosphere and sample solution. This may prove that Fe is responsible for the 

elevated arsenic levels in groundwater under reducing conditions. 
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Appendix I 
 

HS- and As(III) – UV-Visible Absorption Interference 
 

The first reason UV-Visible spectroscopy was not useful was because [HS-] 

could not be determined in experiments containing As2S3. A typical UV-Visible 

spectrum of an orpiment sample equilibrated with So
 in a sulfidic solution is shown 

in Figure 45. A species (most likely an arsenite species) absorbs at 248 nm and 

overlaps the HS- absorption at 230 nm.  

To determine if As(III) species are absorbing in the UV-Visible range, four 

experiments with varying concentrations of As(III) and HS- were studied over time 

(approximately 1300 minutes).  The experimental conditions are shown in Table 45. 

Sodium chloride was also added to some solutions to minimize colloid formation by 

promoting flocculation. A Tyndal beam was used to detect colloid formation. Figure 

46 shows one experiment where the initial As(III) concentration was 3x10-4 M and 

the initial HS- concentration was 3x10-3 M (other experiments produced the same 

trend in absorption over time). Figure 46 shows that an As(III) species forms at 140 

minutes (~278 nm) and then transforms to another As (III) species at 1400 minutes 

(~250 nm).  It is possible that HS- is being replaced by OH- groups on the As(III), 

resulting in a peak shift. Therefore, the results of this experiment do not provide 

evidence of one particular As-S species that is responsible for the absorbance 

between 230 nm and 325 nm. In fact, it seems multiple As(III) species absorb over 

this range because the arsenic peak is shifting in wavelength as time progresses. 

However, it is important to rule out As(III) oxidation to As(V) as the reason for the 

peak shift. 
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Appendix I 
 
HS- and As(III) – UV-Visible Absorption Interference cont. 

 
 

 

 

Figure 45.  UV-Visible spectra of orpiment equilibrated with So in a sulfidic 
solution. pH=7.23, total sulfide = 2.94x10-3, [As]=7.88x10-4. No sample dilution, 0.1 
cm cell. 
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Appendix I 
 
HS- and As(III) – UV-Visible Absorption Interference cont. 

Table 45. Experimental Conditions for the Absorbance of a Thioarsenite Species 

Experiment 
No. 

Initial Concentration 
NaAsO2 (M) 

Initial Concentration 
NaHS (M) 

pH 
 

NaCl (M)

1 3.00 x10-4 3.00 x10-3 8.09 - 
2 5.00 x10-4 5.00 x10-3 8.36 - 
3 3.00 x10-4 3.00 x10-3 8.09 0.106 
4 3.00 x10-4 3.00 x10-3 13.29 - 

All solutions were buffered with 0.00710 M MOPS. 
 

 

Figure 46. Formation of As peak followed over time with UV-Visible spectroscopy. 
Initial As(III) concentration was 3x10-4 M and the initial HS- concentration was 
3x10-3 M, pH=8.09. Absorbance measured in 1 cm cell. 
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Appendix I 
 
HS- and As(III) – UV-Visible Absorption Interference cont. 

 

An As(V) and an As(III) solution were made to compare their absorbencies. 

A 0.0107 M Na2HAsO4•7H2O solution was bubbled with H2S gas forming an 

As(V)-S solution.  A 0.0102 M NaAsO2 solution was bubbled with H2S gas, forming 

an As(III)-S solution. Figure 47 shows that the As(V) solution does not absorb above 

250 nm, whereas the As(III) solution absorbs over the 230 to 325 nm range. This 

evidence is not conclusive because the pH’s of the solutions were not measured and 

there is no way to tell which species was formed after H2S was added to the solution.  

However, the arsenic absorption can be attributed to a combination of many 

different As(III) species ranging from As(OH)3 to AsS(HS)2
-.  Tossell (2001) used 

quantum mechanical methods to calculate the UV spectra for As(SH)(OH)2 and 

As(HS)2(OH) and found that substitution of OH- by HS- formed thioarsenite species 

that produced spectra that are between the spectra of As(OH)3 and As(HS)3. He 

calculated transition energies using the TD B3LYP level and found that As(OH)3 

should absorb around 187 nm and As(HS)3 around 302 nm, respectively.   It is 

therefore difficult to assign a single thioarsenite species to the observed absorbance 

in this experiment and monitoring the arsenic speciation optically is impossible. 

The second reason that UV-Visible spectroscopy was insufficient in 

measuring HS- had to do with samples that had a starting sulfide value of 10-4 M.  
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Appendix I 

 
HS- and As(III) – UV-Visible Absorption Interference cont. 

 

These samples did not produce any absorption at 230 nm, where HS- absorbs. This is 

quite surprising and a possible cause could be that HS- volatilized from the sample 

before a measurement could be taken. 

 
 
 

 

Figure 47. UV-Visible spectra of As(V)-S and As(III)-S species. Samples were  
1x10-3 M and were in 0.1 cm cells. 
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Appendix II 
Arsenic Speciation Models and Data 
 
Scientist Fitting Program Used to Model Arsenic Data 
// MicroMath MINSQ Model File 
// Independent variables are variables in a set of equations that are not constant and 
do not depend on any of the other variables. They include: total sulfide (TS), pH 
(PH), ionic strength (I), index* and activity of sulfur (as) 
IndVars: TS, PH, I, index, as 
// Dependent variables are the unknowns, which can be calculated from independent 
variables, parameters, constants, or other dependent variables. L10AS is the 
logarithm of the calculated total [As] and will be compared to the logarithm of the 
observed total [As]. 
DepVars:L10AS, H2S, AsOH3, As2As3S6, AsSHSOH, AsHSOH2, AsOOH2 
// Parameters are variables whose values are changed during least squares fitting. 
K’s are equilibrium constants and aas is the activity of As2S3 in orpiment. 
Params: K1, K2, K3, K4, aas 
// Calculate activity coefficients from Davies Eq. and H+ 
SQI=I^0.5 
H=10^(-PH) 
Y=(-0.5*SQI/(1.0+SQI)+0.1*I) 
G1=10^Y 
G2=10^(4*Y) 
// Calculate HS- given current estimates of K values and activity of orpiment 
H2S^0.5*(H2S^0.5+H2S^0.5*1.05E7/(H*G1)+6*K2*(aas^(1.5*index))*(H2S)/(H*
G1)+2*K3*(aas^(0.5*index))/(H*G1)+K4*aas^(0.5*index)/(H2S)+(K5*aas^(index)
*H2S^0.5/(H*G1))+(2.89e17*as^4/(H^2)*(A2*G1))+(3.78e17*as^3/(H^2)*(A2*G1
)))=TS 
1E-7<H2S<TS 
// Calculate HS- and polysulfide ion concentrations 
HS=1.05e-7*H2S/(H*G1) 
S5=(2.75e-10*as^4*HS/H/A2) 
S4=(3.63e-10*as^3*HS/H/A2) 
SOT=(3*S4)+(4*S5) // Calculate total zero-valent sulfur 
// Calculate concentration of As species given current estimate of K values  
AsOH3=K1*(aas^(0.5*index))/(H2S^1.5) 
As2As3S6=K2*(H2S^1.5)*aas^(1.5*index)/(H*G1) 
AsSHSOH=K3*H2S^0.5*aas^(0.5*index)/(H*G1) 
AsHSOH2=K4*aas^(0.5*index)/(H2S^(0.5)) 
AsOOH2=5.01e-10*K1*aas^(0.5*index)/(H2S^1.5*H*G1) 
TAS=AS1+(3*AS2)+AS3+AsHSOH2+AsOOH2 
L10AS=LOG10(TAS) 
* Index value set to 0 for samples containing orpiment. This was the effect of 
overriding the current value of aas and forcing aas to equal 1 for these samples. 
Index value is set to 1 for samples that contained no orpiment, so the computer 
program will apply the current value of aas to fit these samples. 
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Appendix II 

Arsenic Speciation Models and Data cont. 
 
Derivation used to Calculate H2S from ΣS 
 

ΣS=H2S+HS-+2AsS(HS)(OH)-+6H2As3S6
-+S5

2-+S4
2-   (1) 

 
H2S ⇔ HS- + H+  1.05x107=[HS-][H+]/[H2S]   (2) 

 
0.5As2S3 +H2O +0.5H2S ⇔ AsS(HS)(OH)- +H+  

K3=([AsS(HS)(OH)][H+])/aAs2s3
0.5[H2S]0.5 (3) 

1.5As2S3 + 1.5H2S  ⇔ H2As3S6
- + H+      K2=([H2As3S6

-][H+])/aAs2s3
1.5[H2S]1.5 (4) 

 
 

H2S +4So ⇔ S5
2- +2H+         2.89x1017=[S5

2-][H+]2/aS
4[H2S]  (5) 

 
 

H2S +3So ⇔ S4
2- +2H+         3.78x1017=[S4

2-][H+]2/aS
3[H2S]  (6) 

 
 
Polysulfide equilibrium constants taken from Giggenbach (1974) 
 
Equations 2 through 6 were then solved for H2S substituted into equation 1 
 
 
 
Equation used to Calculate the Standard Deviation of the Models (applies to all 
models used in this work) 
 

 
pn
YY obscalc

−
−Σ

=
2)(σ      (7) 

 
 
Where n=number of samples and p=number of parameters. Parameters that are held 
constant are not included in the calculation since they do not contribute to the 
improvement of the fit. 
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Appendix II 
 
Arsenic Speciation Models and Data cont. 
 
Eary (1992) Arsenic Data Used to Model Arsenic Speciation 

Experiments with No Added Sulfide Experiments with Added Sulfide 
pH As (mg/kg) mSTot_(mmol/kg) pH As (mg/kg) mSTot_(mmol/kg)

2.07 10.1±7.5 0.0030±0.0004 3.95 48.4±12.5 0.0008±0.0004 
2.54 17.2±5.3 0.0032±0.0003 3.96 39.3±3.8 0.0009±0.0001 
3.03 22.6±2.8 0.0026±0.0004 3.96 21.1±5.2 0.0013±0.0004 
4.01 24.8±9.2 0.0026±0.0006 4.04 11.6±5.2 0.0024±0.0002 
4.98 26.1±4.7 0.0030±0.0005 4.18 0.4±0.1 0.0427±0.0136 
5.09 44.2±11.6 0.0012±0.0005 4.02 0.3±0.1 0.0912±0.0043 
5.96 26.0±4.6 0.0045±0.0006 4.2 0.1±0.3 0.1585±0.0193 
6.07 27.8±5.7 0.0095±0.0034 4.13 0.7±0.2 0.6607±0.0979 
6.36 47.3±10.9 0.0407±0.0094 4.61 1.9±0.5 0.8913±0.1559 
6.47 50.7±4.9 0.0427±0.0063 4.53 4.2±0.2 4.0738±0.7125 
6.88 118.7±27.5 0.1318±0.0127 4.55 76.7±17.7 6.1660±0.2906 
6.94 136.3±27.8 0.1585±0.0320 4.78 113.4±10.9 15.4882±1.8898 
7.53 278.4±64.4 1.7783±0.5126 4.81 312.3±54.6 16.593±3.3567 
7.99 749.2±239.5 7.5858±1.3267    
 

Webster (1990) Arsenic Data Used to Model Arsenic Speciation 
Experiments with No Added Sulfide Experiments with Added Sulfide 

pH mStot 
(x105) Ipart As 

(mg/kg) pH mStot 
(x105) Ipart As 

(mg/kg) 
1.40 1.7 0.444 0.82 1.45* 0.0016 0.392 0.64 
1.42 1.8 0.444 0.89 2.21 0.0294 0.036 0.009 
1.55 0.9 0.400 0.46 2.23 0.0282 0.036 0.02 
2.14 1.3 0.040 0.64 3.05 0.0320 0.005 0.04 
2.23 1.5 0.040 0.76 3.36 0.0168 0.011 0.28 
2.58 1.0 0.011 0.50 4.25 0.0239 0.000 2.3 
2.58 1.3 0.011 0.64 4.35 0.0170 0.000 0.71 
3.02 0.9 0.004 0.44 4.50 0.0170 0.000 0.84 
3.07 1.1 0.004 0.54 4.51 0.0133 0.001 1.1 
3.84 2.4 0.001 1.2 4.82 0.0212 0.001 2.1 
4.28 2.4 0.000 1.2 5.56 0.0283 0.002 16 
5.16 6.1 0.000 3.0 5.59 0.0228 0.000 20 
5.98 2.9 0.000 1.4 6.46 0.0180 0.026 110 
6.06 5.7 0.000 2.9 6.64 0.0197 0.079 620 
6.28 6.0 0.000 3.0 6.75 0.0180 0.057 280 
6.45 6.1 0.050 3.0     
7.16 81 0.000 41     
* Point not used in modeling in this dissertation 
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Appendix III 
Silver Models and Data 
 
Silver Model to Calculate Ag2S+S Silver Speciation 
// MicroMath Scientist Model File AgAsS(SH)(OH) 
// Independent variables are variables in a set of equations that are not constant and 
do not depend on any of the other variables. They include: pH (PH), total sulfide (S), 
ionic strength (I), activity sulfur (as), activity chloride (acl) & [arsenic]OBS (ARS) 
IndVars: PH, S, I, as, acl, ARS 
// Dependent variables are the unknowns, which can be calculated from independent 
variables, parameters, constants, or other dependent variables. L10AG is the 
logarithm of the calculated [Ag] and will be compared to logarithm of the observed 
[Ag]. 
DepVars: AGT, AGHS2, AGSHS2, AGHS, AGS42, AGHSS4, AGS4S5, AGCLHS, 
AGS5OH, AGOHHS, AGS5 
// Parameters are variables whose values are changed during least squares fitting. 
K’s are equilibrium constants of Ag species 
Params: K1, K2, K3, K4, K5, K6, K9, K10, K11, K12 
// Calculate H+ and activity coefficients from Davies Equation 
H=10^(-PH) 
A1=10^(-0.5*(I^0.5/(1+I^0.5)-0.2*I)) 
A2=10^(-2*(I^0.5/(1+I^0.5)-0.2*I)) 
A3=10^(-4.6*(I^0.5/(1+I^0.5)-0.9*I)) 
// Calculate HS- 
aHS=S/(H/9.77e-8+1/A1+2.75e-10*aS^4/H/A2+3.63e-10*aS^3/H/A2+2.88e-
12*aS^2/H/A2+1.38e-15*aS/H/A2) 
HS=aHS/A1 
S5=(2.75e-10*aS^4*aHS/H/A2) 
S4=(3.63e-10*aS^3*aHS/H/A2) 
S3=(2.88e-12*aS^2*aHS/H/A2) 
S2=(1.38e-15*aS*aHS/H/A2) 
S0T=4*S5+3*S4+2*S3+S2  
// Calculate concentrations of Ag species given current estimate of K’s 
AGHS2=((K1*(HS^1.5)*(H^0.5)*(A1^0.5))) 
AGSHS2=(K2*(HS^2)*(A1^2))/(A2^1) 
AGHS=((K3*(HS^0.5)*(H^0.5)*(A1^0.5))) 
AGS42=(((K4*(HS^3)*(A1^3)*(as^12))/((H^3)*(A3^2)))^0.5) 
AGHSS4=(((K5*(HS^3)*(A1^3)*(as^6))/((H)))^0.5) 
AGS4S5=(((K6*(HS^3)*(A1^3)*(as^14))/((H^3)))^0.5) 
AGCLHS=K9*(acl)*(HS^0.5)*(H^0.5)*(a1^0.5) 
AGS5OH=(((K10*(HS^0.5)*(A1^0.5)*(as^4))/((H^1.5)*(A2)))) 
AGS5=(K11*(as^4)*(HS^0.5))/((H^0.5)*(A1^0.5)) 
AGOHHS=((K12)*(HS^0.5)*(A1^0.5))/(H^0.5) 
AG=AGHS2+AGSHS2+AGHS+AGS42+AGHSS4+AGS4S5+AGCLHS+AGS5OH
+AGOHHS+AGS5 
AGT=LOG10(AG) 
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Appendix III 
Silver Models and Data cont. 
Sugaki Silver Model 

// MicroMath Scientist Model File SUGAKI MODEL 
// Independent variables are variables in a set of equations that are not constant and 
do not depend on any of the other variables. They include: pH (PH), total sulfide (S), 
ionic strength (I), activity sulfur (as) and activity chloride (acl) 
IndVars: PH, S, I, as, acl 
// Dependent variables are the unknowns, which can be calculated from independent 
variables, parameters, constants, or other dependent variables. AGT is the logarithm 
of the calculated  [Ag] and will be compared to logarithm of the observed [Ag] 
DepVars: AGT, AG2SH2S, AG2SH2SHS, AG2SH2SHS2, AG2SHS2, AGCLHS, 
AGS5, AGOHHS 
// Parameters are variables whose values are changed during least squares fitting. 
K’s are equilibrium constants of Ag species 
Params: K1, K2, K3, K4, K5, K6 
// Calculate H+ and activity coefficients from Davies Equation 
H=10^(-PH) 
A1=10^(-0.5*(I^0.5/(1+I^0.5)-0.2*I)) 
A2=10^(-2*(I^0.5/(1+I^0.5)-0.2*I)) 
A3=10^(-4.6*(I^0.5/(1+I^0.5)-0.9*I)) 
// Calculate HS- and polysulfide concentrations 
aHS=S/(H/9.77e-8+1/A1+2.75e-10*aS^4/H/A2+3.63e-10*aS^3/H/A2+2.88e-
12*aS^2/H/A2+1.38e-15*aS/H/A2) 
HS=aHS/A1 
S5=(2.75e-10*aS^4*aHS/H/A2) 
S4=(3.63e-10*aS^3*aHS/H/A2) 
S3=(2.88e-12*aS^2*aHS/H/A2) 
S2=(1.38e-15*aS*aHS/H/A2) 
S0T=4*S5+3*S4+2*S3+S2 
// Calculate concentration of Ag species given current estimates of K’s 
AG2SH2S=(K1*(HS)*H*A1) 
AG2SH2SHS=K2*(HS^2)*H*A1 
AG2SH2SHS2=(K3*(HS^3)*H*(A1^3))/(A2) 
AG2SHS2=(K4*(HS^2)*(A1^2))/A2 
AGCLHS=K5*acl*(HS^0.5)*(H^0.5)*(A1^0.5) 
AGS5=(K6*(as^4)*(HS^0.5))/((H^0.5)*(A1^0.5)) 
AG=AG2SH2S+AG2SH2SHS+AG2SH2SHS2+AG2SHS2+AGCLHS+AGS5 
AGT=LOG10(AG) 
*** 
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Appendix III 
Silver Models and Data cont. 
 
Stefansson and Seward (2003) Silver Data 

P/bar m S (mol/kg) m NaOH 
(mol/kg) 

m Ag  
(mol/kg) 

1 0.061 0.000 6.27e-07 
1 0.048 0.000 4.90e-07 
1 0.086 0.000 8.30e-07 
1 0.101 0.008 1.12e-06 
1 0.059 0.004 7.20e-07 
1 0.110 0.006 1.16e-.06 
1 0.115 0.008 1.15e-06 
1 0.127 0.008 1.09e-06 
1 0.053 0.000 4.97e-07 
1 0.007 0.000 1.85e-07 
1 0.131 0.053 2.70e-06 
1 0.043 0.040 3.75e-07 
1 0.131 0.080 3.09e-06 
1 0.101 0.113 5.52e-07 
1 0.039 0.108 1.02e-07 
1 0.122 0.112 2.03e-06 
1 0.176 0.210 1.94e-06 

The pH of the samples were calculated based on the NaOH and total sulfide 
concentrations 
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Appendix III 
 
Silver Models and Data cont. 
 
Model to Calculate AgAsS(HS)(OH) 
 
// MicroMath Scientist Model File AgAsS(SH)(OH) 
// Independent variables are variables in a set of equations that are not constant and 
do not depend on any of the other variables. They include: pH (PH), total sulfide (S), 
ionic strength (I), activity sulfur (as) and activity chloride (acl) 
IndVars: PH, S, I, as, acl, ARS, index* 
// Dependent variables are the unknowns, which can be calculated from independent 
variables, parameters, constants, or other dependent variables. AGT is the logarithm 
of the  calculated [Ag] and will be compared to the logarithm of the observed [Ag] 
DepVars: AGT, AGHS2, AGSHS2, AGHS, AGCLHS, AGS5, AGASSHSOH 
// Parameters are variables whose values are changed during least squares fitting. 
K’s are equilibrium constants of Ag species 
Params: K1, K2, K3, K7, K9, K11, aag 
// Calculate H+ and activity coefficients from Davies Equation 
H=10^(-PH) 
A1=10^(-0.5*(I^0.5/(1+I^0.5)-0.2*I)) 
A2=10^(-2*(I^0.5/(1+I^0.5)-0.2*I)) 
A3=10^(-4.6*(I^0.5/(1+I^0.5)-0.9*I)) 
// Calculate HS- and polysulfide concentrations 
HS=S/(H/9.77e-8+1/A1+2.75E-10*as^4/H/A2+3.63e-10*as^3/H/A2+ 
2.88e-12*as^2/H/A2+1.38e-15*as/H/A2+2*ARS) 
// Calculate concentration of Ag species given current estimates of K’s 
AGHS2=((K1*(HS^1.5)*(H^0.5)*(aag^(0.5*index))*(A1^0.5))) 
AGSHS2=(K2*(HS^2)*(aag^(index))*(A1^2))/(A2^1) 
AGHS=((K3*(HS^0.5)*(H^0.5)*(aag^(0.5*index))*(A1^0.5))) 
AGCLHS=K9*(acl)*(HS^0.5)*(H^0.5)*(a1^0.5)*(aag^(0.5*index)) 
AGS5=(K11*(as^4)*(HS^0.5)*(aag^(0.5*index)))/((H^0.5)*(A1^0.5)) 
AGASSHSOH=(K7*ARS*A1*(aag^(0.5*index))*(H^0.5))/((HS^0.5)*(A1^0.5)) 
AG=AGHS2+AGSHS2+AGHS+AGCLHS+AGS5+AGASSHSOH 
AGT=LOG10(AG) 
 
*Index value set to 0 for samples containing acanthite. This was the effect of 
overriding the current value of aag and forcing aag to equal 1. Index value set to 1 
for trechmannite samples because it did not contain acanthite, so the computer 
program will apply the current value of aag to fit the samples. 
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Appendix IV 

Mercury Models and Data 
 
Paquette Model 
 
// MicroMath Scientist Model File 
// Independent variables are variables in a set of equations that are not constant and 
do not depend on any of the other variables. They include: pH (PH), total sulfide (S), 
ionic strength (I), activity sulfur (as) and activity HgS (aHGS) 
IndVars: pH, S, I, aS, aHGS 
// Dependent variables are the unknowns, which can be calculated from independent 
variables, parameters, constants, or other dependent variables. HGT is the 
logarithm of the calculated [Hg] and will be compared to the logarithm of the 
observed [Hg] 
DepVars: HGT, HS, HGSH2, HGSHS, HGS2, HGSnHS 
// Parameters are variables whose values are changed during least squares fitting. 
K’s are equilibrium constants of Hg species 
Params: K1, K2, K3, K4 
// Calculate H+ and activity coefficient form Davies Equation 
H=10^(-pH) 
A1=10^(-0.5*(I^0.5/(1+I^0.5)-0.2*I)) 
A2=10^(-2*(I^0.5/(1+I^0.5)-0.2*I)) 
A3=10^(-4.6*(I^0.5/(1+I^0.5)-0.9*I)) 
// Calculate HS- and polysulfide concentrations 
aHS=S/(H/9.77e-8+1/A1+2.75e-10*aS^4/H/A2+3.63e-10*aS^3/H/A2+2.88e-
12*aS^2/H/A2+1.38e-15*aS/H/A2) 
HS=aHS/A1 
S5=(2.75e-10*aS^4*aHS/H/A2) 
S4=(3.63e-10*aS^3*aHS/H/A2) 
S3=(2.88e-12*aS^2*aHS/H/A2) 
S2=(1.38e-15*aS*aHS/H/A2) 
S0T=4*S5+3*S4+2*S3+S2 // Calculate total  zero-valent sulfur 
// Calculate concentration of Hg species given current estimate of K’s 
HGSH2=K1*HS*H*A1*aHGS 
HGSHS=K2*HS*aHGS 
HGS2=(K3*HS*aHGS)/(H*A2) 
HGSnHS=K4*aS*HS 
HG=HGSH2+HGSHS+HGS2+HGSnHS 
HGT=LOG10(HG) 
*** 
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Appendix IV 
Mercury Models and Data cont. 
Mercury Data from Paquette and Helz (1997) 

No So Added So Added 
pH Sulfide  (mM) ΣHg  (nm) pH Sulfide (mM) ΣHg (nm) 

0.68 12.2 7.23 1.21 0.7 10.3 
0.74 28.7 6.13 1.4 4.26 45.5 
0.79 11.6 21.8 2.42 1.92 10.6 
0.79 5.6 202 2.91 5.57 8.77 
0.91 5.6 32.3 3.68 5 12.2 
1.1 142 68.4 4.14 1.2 12.5 

1.27 44.1 46.5 4.28 0.82 14.5 
1.53 66.6 31.4 4.33 5.05 17.9 
1.59 22 937 4.63 1.7 9.97 
1.75 10.5 292 6.33 13.5 65.6 
3.34 0.78 3.29 6.58 6.41 194 
3.91 0.8 8.13 6.64 7.29 660 
3.96 1.59 8.13 6.66 3.78 40.1 
3.98 9.01 58.9 6.75 4.89 663 
3.99 13.4 13.6 7.03 7.24 571 
4.86 1.46 12.1 7.2 23 1690 
4.96 2.67 2.94 7.43 3.12 53.4 
5.43 4.79 47.2 7.83 10.2 170 

10.48 13.4 3917.42 819 4.07 1290 
1.92 23.5 139 8.25 1.81 47.7 
1.96 18.6 74.5 8.53 1.92 824 
2.25 13.1 365 9.04 10.9 15800 
3.04 2.64 7.43 9.16 9.43 2480 
3.34 5.82 5.23 9.2 5.92 6230 
5.93 2.62 12.9 9.4 6.06 1320 
5.98 3.24 4.34    
6.47 2.12 9.52    
6.97 5.03 206.8    
7.07 8.89 56.2    
7.09 9.21 18.1    
7.13 4.43 29.4    
7.31 20.2 35.5    
7.54 6.54 22.6    
8.06 3.36 125.0    
8.06 3.65 968    
8.38 24.7 132    
8.39 16.4 34    
8.95 6.2 40.9    
9.07 28 377    

11.11 23.3 745000    
11.14 2.84 12500    
9.65 2.64 39.7    
9.76 3.27 88.8    

10.48 13.4 13.4    
10.52 29.9 29.9    
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Appendix IV 
Mercury Models and Data cont. 
 
Jay Model 
 
// MicroMath Scientist Model File 
// Independent variables are variables in a set of equations that are not constant and 
do not depend on any of the other variables. They include: pH (PH), total sulfide (S), 
ionic strength (I), activity sulfur (as) and activity HgS (aHGS) 
IndVars: pH, S, I, aS, aHGS 
// Dependent variables are the unknowns, which can be calculated from independent 
variables, parameters, constants, or other dependent variables. HGT is the 
logarithm of the calculated [Hg] and will be compared to the logarithm of the 
observed [Hg] 
DepVars: HGT, HS, HGSH2, HGSHS, HGS2, HGSH, HG2, HGS, HGSx2, 
HGSxOH 
// Parameters are variables whose values are changed during least squares fitting. 
K’s are equilibrium constants of Hg species 
Params: K1, K2, K3, K4, K5, K6, K7, K8 
// Calculate H+ and activity coefficient form Davies Equation 
H=10^(-pH) 
A1=10^(-0.5*(I^0.5/(1+I^0.5)-0.2*I)) 
A2=10^(-2*(I^0.5/(1+I^0.5)-0.2*I)) 
A3=10^(-4.6*(I^0.5/(1+I^0.5)-0.9*I)) 
// Calculate HS- and polysulfide concentrations 
aHS=S/(H/9.77e-8+1/A1+2.75e-10*aS^4/H/A2+3.63e-10*aS^3/H/A2+ 
2.88e-12*aS^2/H/A2+1.38e-15*aS/H/A2) 
HS=aHS/A1 
S5=(2.75e-10*aS^4*aHS/H/A2) 
S4=(3.63e-10*aS^3*aHS/H/A2) 
S3=(2.88e-12*aS^2*aHS/H/A2) 
S2=(1.38e-15*aS*aHS/H/A2) 
S0T=4*S5+3*S4+2*S3+S2 // Calculate total  zero-valent sulfur 
// Calculate concentration of Hg species given current estimate of K’s 
HGSH2=K1*HS*H*A1*aHGS 
HGSHS=K2*HS*aHGS 
HGS2=(K3*HS*aHGS)/(H*A2) 
HGSH=K4*aHGS*H 
HG2=(K5*H)/(HS) 
HGS=K6 
HGSx2=K7*HS*aS 
HGSxOH=(K8*aS)/H 
HG=HGSH2+HGSHS+HGS2+HGSH+HG2+HGS+HGSx2+HGSxOH 
HGT=LOG10(HG) 
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Appendix IV 

Mercury Models and Data cont. 
 

 

Mercury data from Jay et al., (2000) 
Data Set pH Sulfide (M) Soluble Hg (M) 

1 6.33 1.35E-02 6.56E-08 
1 6.58 6.41E-03 1.94E-07 
1 6.64 7.29E-03 6.60E-07 
1 6.66 3.78E-03 4.01E-08 
1 6.75 4.89E-03 6.63E-07 
1 7.03 7.24E-03 5.71E-07 
1 7.2 2.30E-02 1.69E-06 
1 7.43 3.12E-03 5.34E-08 
1 7.83 1.017E-02 1.7E-07 
1 8.19 4.07E-03 1.29E-06 
1 8.25 1.81E-03 4.77E-08 
1 8.53 1.92E-03 8.24E-07 
1 9.04 1.089E-02 1.58E-05 
1 9.2 5.92E-03 6.23E-06 
1 9.4 6.06E-03 1.32E-06 
2 8 4.89E-05 1.71E-08 
2 8 5.26E-05 1.09E-08 
2 8 6.70E-05 1.39E-08 
2 7 2.25E-06 5.40E-09 
2 8 3.59E-04 7.21E-08 
2 8 4.81E-03 1.56E-06 
2 9 3.22E-03 4.37E-06 
2 8 6.25E-05 1.52E-08 
2 8 4.81E-03 2.59E-06 
2 9 8.36E-05 1.80E-07 
2 9 8.36E-05 1.81E-07 
2 9 3.47E-04 4.19E-07 
2 9 3.22E-03 6.24E-06 
2 10 7.53E-05 4.65E-07 
2 10 1.30E-04 7.56E-07 
2 10 1.96E-04 1.66E-06 
2 10 1.63E-03 9.04E-06 
2 7 2.52E-03 4.34E-08 

1. Data from Paquette & Helz (1997), 2. Data from Jay et al. (2000) 
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Appendix V 
 
Derivation and Programs for As-HCO3 Complexes 
 
Derivation for As(CO3)2

- 
As(CO3)2

- = KAsc x KSO X a0.5 x TAs-NaCl x (HCO3
-)2 x H+ x  γHCO3 x γAS(OH)3 

 
 

 
 
 
Derivation for As(CO3)+ 
As(CO3)+ = KAsc x KSO X a0.5 x TAs-NaCl x HCO3

- x (H+)2  
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Programs Used to Calculate Equilibrium Constants for Individual Arsenic-
Carbonate Complexes 
As(OH)2(CO3)- 
// MicroMath Scientist Model File 
// Independent variables are variables in a set of equations that are not constant & 
do not depend on any other variables. Include: [bicarbonate] (HCO), pH, & index*  
IndVars: HCO, Index, pH 
// Dependent variables are the unknowns, which can be calculated from independent 
variables, parameters, constants, or other dependent variables. AST is the logarithm 
of the calculated [As] and will be compared to the logarithm of the observed [As] 
DepVars: AST, ASOOH, ASCARB 
// Parameters are variables whose values are changed during least squares fitting. 
K’s are equilibrium constants of As species 
Params: Ks, Kc, Kp 
// Activity coefficients for As(OH)3 (g0) and HCO3

- (g1) 
g0=1.09 
g1=0.68 
// Calculate concentration of As species 
ASOOH=10^(-9.17)*Ks* Kp^(index )/(g1*pH) 
ASCARB=Kc*Ks*Kp^(index)*HCO 
AS=Ks*Kp^(Index)/g0+ 10^(-9.17)*Ks* Kp^(index)/g1/10^(-pH) + Kc*Ks* 
Kp^(index)*HCO 
AST=LOG10(AS) 
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Appendix V 
Derivation and Programs for As-HCO3 Complexes cont. 
Programs Used to Calculate Equilibrium Constants for Arsenic-Carbonate 
Complexes 
As(CO3)2

- 

// MicroMath Scientist Model File 
// Independent variables are variables in a set of equations that are not constant & 
do not depend on any other variables.  Include: [bicarboante] (HCO), pH, & index*  
IndVars: HCO, Index, pH 
// Dependent variables are the unknowns, which can be calculated from independent 
variables, parameters, constants, or other dependent variables. AST is the logarithm 
of the calculated [As] and will be compared to the logarithm of the observed [As] 
DepVars: AST, ASOOH, ASCARB 
// Parameters are variables whose values are changed during least squares fitting. 
K’s are equilibrium constants of As species 
Params: Ks, Kc, Kp 
// Activity coefficients for As(OH)3 (g0) and HCO3

- (g1) 
g0=1.09 
g1=0.68 
// Calculate concentration of As species 
ASOOH=10^(-9.17)*Ks*Kp^index/(g1*10^-pH) 
ASCARB=Kc*Ks*a^(0.5)*(HCO^2)*10^(-pH)*g1 
AS=Ks*Kp^(Index)/g0+ 10^(-9.17)*Ks*Kp^(Index)/g1/10^(-pH) + 
Kc*Ks*Kp^(Index)*(HCO^2)*10^(-pH)*g1 
AST=LOG10(AS) 
*** 
 
As(CO3)+ 
// MicroMath Scientist Model File 
// Independent variables are variables in equations that are not constant & do not 
depend on any other variables.  Include: [bicarbonate] (HCO), pH, & index*  
IndVars: HCO, Index, pH 
// Dependent variables are the unknowns, which can be calculated from independent 
variables, parameters, constants, or other dependent variables. AST is the logarithm 
of the calculated [As] and will be compared to the logarithm of the observed [As] 
DepVars: AST, ASOOH, ASCARB 
// Parameters are variables whose values are changed during least squares fitting. 
K’s are equilibrium constants of As species 
Params: Ks, Kc, Kp 
// Activity coefficients for As (OH)3 (g0) and HCO3

- (g1) 
g0=1.09 
g1=0.68 
// Calculate concentration of As species 
ASOOH=10^(-9.17)*Ks*a^.05/(g1*pH) 
ASCARB=Kc*Ks*Kp^(index)*(HCO)*(10^(-pH)^2)*g1 
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Appendix V 
 
Derivation and Programs for As-HCO3 Complexes cont. 
 
Programs Used to Calculate Equilibrium Constants for Arsenic-Carbonate 
Complexes 
 
As(CO3)+ cont. 
 
AS=Ks*Kp^(Index)/g0+ 10^(-9.17)*Ks* Kp^(index)/g1/10^(-pH) + Kc*Ks* 
Kp^(index)*(HCO)*(10^(-pH)^2) 
AST=LOG10(AS) 
*** 
 
* The index value of Kp was set to 0 in Runs with Arsenolite only, so in any 
experiment with arsenolite Kp will be given a value of 1. The index value of Kp in the 
Runs with claudetite and arsenolite will be set to 1, so the computer program will 
vary the equilibrium constant to calculate the actual equilibrium constant (Kp). 
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