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This thesis is inspired by the need to study and understanthtérdependence be-
tween the transmission powers and rates in an interferegtweork, and how these two
relate to the outcome of scheduled transmissions. A comynadd criterion that relates
these two parameters is the Signal to Interference pluseNRéaio (SINR). Under this
criterion a transmission is successful if the SINR exceetliseshold. The fact that this
threshold is an increasing function of the transmissioa gates rise to a fundamental
trade-off regarding the amount of time-sharing that mugidrenitted for optimal perfor-
mance in accessing the wireless channel. In particular,nbot immediate whether more
concurrent activations at lower rates would yield a bettefggmance than less concurrent
activations at higher rates. Naturally, the balance dependhe performance objective
under consideration. Analyzing this fundamental trade+ofler a variety of performance
objectives has been the main steering impetus of this thesis

We start by considering single-hop, static networks cosnpgi of a set of always-
backlogged sources, each multicasting traffic to its cpording destinations. We study

the problem of joint scheduling and rate control under twdgrenance objectives, namely



sum throughput maximization and proportional fairnessd&frtotal throughput maxi-

mization, we observe that the optimal policy always acéisahe multicast source that
sustains the highest rate. Under proportional fairnessxpécitly characterize the op-

timal policy under the assumption that the rate control arfebduling decisions are re-
stricted to activating a single source at any given time laofahem simultaneously.

In the sequel, we extend our results in four ways, namely Wei(n our focus on
time-varying wireless networks, (ii) assume policies thate access to only a, perhaps
inaccurate, estimate of the current channel state, (iimswter a broader class of utility
functions, and finally (iv) permit all possible rate conteold scheduling actions. We
introduce an online, gradient-based algorithm under anfadnvironment that selects the
transmission rates at every decision instant by havingsacteonly an estimate of the
current channel state so that the total user utility is ma&ech In the event that more than
one rate allocation is optimal, the introduced algorithiects the one that minimizes the
transmission power sum. We show that this algorithm is ogltiamong all algorithms
that do not have access to a better estimate of the currenhehstate.

Next, we turn our attention to the minimum-length schedylgmoblem, i.e., in-
stead of a system with saturated sources, we assume thahe@abrk source has a fi-
nite amount of data traffic to deliver to its correspondingtaof@tion in minimum time.
We consider both networks with time-invariant as well asetivarying channels under
unicast traffic. In the time-invariant (or static) networase we map the problem of
finding a schedule of minimum length to finding a shortest matta Directed Acyclic
Graph (DAG). In the time-varying network case, we map theesponding problem to

a stochastic shortest path and we provide an optimal salthi@ugh stochastic control



methods.

Finally, instead of considering a system where sources lar@ya backlogged or
have a finite amount of data traffic, we focus on bursty trafiicir objective is to char-
acterize the stable throughput region of a multi-hop nekwuaith a set of commodities
of anycast traffic. We introduce a joint scheduling and mgifpolicy, having access to
only an estimate of the channel state and further charaettre stable throughput region
of the network. We also show that the introduced policy isrogt with respect to max-
imizing the stable throughput region of the network withibraad class of stationary,

non-stationary, and anticipative policies.
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Chapter 1
Introduction

1.1 A Relationship between Transmission Powers and Rates

In awireless environment where concurrent transmissiams multiple users inter-
fere among each other, the exact coupling between the trssism powers and achiev-
able rates of the various users remains unclear. The proate®s since the existing
models to capture the interference are inadequate.

A commonly used criterion, borrowed from point-to-pointmmunications, is the
Signal to Interference plus Noise RafBINR). Under the SINR model, a transmission is
successful if the ratio of the signal power at a receiver érthise and the total interfer-
ence power exceeds a certain threshold. This model is ajppaitexin general as it models
the interference as Gaussian noise. However, it is ingidivd accounts for the fact that,
depending on the channel conditions and the transmissiengin a wireless environ-
mentall the concurrently transmitting nodes may interfere and €augansmission to
fail. Thus, in this thesis we will employ the SINR interfecenmodel to incorporate the
physical layer in the scheduling decisions. The preciseevaf the SINR threshold de-
pends on various communication related parameters, sutiteasansmission rate, the
target probability of bit error, the modulation and codiregtiniques employed for the
transmission, etc. It follows from the fundamental priegof wireless communications

that the transmission rate is an increasing function of IhlRShreshold (see Appendix



A). This is the core idea around which this thesis develops.

1.2 A Fundamental Trade-Off

A fundamental question in multiple-access is which nodesikhaccess the chan-
nel at any given time and at which transmission powers ams r&iven the relationship
between the transmission rate and the SINR threshold, tloeving trade-off arises.

By lowering the transmission rate, the corresponding vafube SINR threshold
decreases, and thus more transmissions can jointly s#tisf$INR criterion. Alterna-
tively, by increasing the transmission rate, the SINR tho&s increases, and therefore,
the number of transmitters that can be successful in acagessncurrently the wireless
channel decreases. Thus, it is not immediate whether iefem@ble to allow more nodes
to concurrently transmit at lower rates or whether perngttiewer of them to transmit
simultaneously at higher rates will yield a better perfonce

In this thesis, we investigate under which cases “more shning” (fewer concur-
rent transmissions at higher rates) is preferable comparetbre concurrent transmis-
sions at lower rates. In one extreme, a single transmittetreensmit at any given time
at its highest achievable rate, as in a Time Division Mudtiplccess (TDMA) scheme.
In another extreme, all network nodes can simultaneoustgsacthe wireless channel
successfully, at perhaps arbitrarily low rates dependmtihe amount of interference that
one causes to the other. All possible rate assignments betilie two extremes are also
possible. It is natural to expect that more time-sharingégrable under high interfer-

ence while on the other hand if the nodes do not interfere nanobng each other more



concurrent transmissions should be preferred. Certaimdypptimal answer depends on

the selected performance objective.

1.3 Scheduling Complexity

It is easy to observe that deciding the transmission ratdgpawers at which the
network nodes can operate hasanbinatorialflavor when the set of available power
selections is discrete. This is natural since it involvesftilowing two-stage procedure.
First, all possible ways of assigning the transmission peweust be identified. Next,
for each such possible power assignment the maximum raaéemisure the success of
the scheduled transmissions according to the SINR critariast be selected. Clearly,
even for the most simplistic case of power control with byndecisions (either transmit
at the maximum transmission power or remain silent), thelremof potential transmitter
activations increases exponentially in the number of naaléise network. This renders
the scheduling problem non-scalable. This issue of inexk@emplexity together with
the fact that scheduling needs to be solved repeatedly ioveras the network conditions
change, necessitates the introduction of alternativei@fficolutions. Such alternatives
can be heuristics that achieve efficiency by compromisingragity in performance.

One such approach is to simplify the scheduling problem Bycing the set of pos-
sible rate control and scheduling decisions that a policyatenose from. In a part of this
thesis instead of considering all potential schedulingsiees (a set that grows exponen-
tially in the number of nodes) we provide a simplification e tscheduling problem by

allowing only decisions given by the aforementioned exegdgpes of communication,



namely (i)one at a timeand (ii) all together Although the above two schemes represent
a severe restriction of the action space, we expect to obsaful insights regarding this

trade-off which can facilitate the discovery of better hstis.

1.4 Performance Measures

1.4.1 Stable Throughput

An important criterion to measure network performance im&ximize the rates at
which data can be sent through the network while guarargeet the network queues
remain finite. This is the stable throughout of the networkder stability, these rates
coincide with the exogenous arrival rates. The set of alhgates for which the network
gueues remain stable is called the stable throughput regitve network. In this thesis,

we consider the problem of stable throughput maximizatiohen anycast traffic.

1.4.2 Utility Maximization

Since the network resources are limited, they must be apiptefy allocated to the
network users. “Resource” can be the time that a network had@ccess to the wireless
channel or the average rate that it receives. In this thesisomsider the latter case. We
are interested in the scheduling problem for maximizinger utility. In our framework,
we consider arbitrary utility functions that are concaventmuously differentiable, and
strictly increasing in the average rate.

The general problem of utility maximization inherently tajes several commonly

used performance criteria, such as the total throughputantess. As an example, an

4



interesting utility function is that af-fairness introduced by [1] where the corresponding
utility function U“(r) is given by

log(r) if =1
U%(r) = (1.1)

(1—a) 'r'=® otherwise
The parametery denotes the amount of “fairness” the utility function pi®s$ to the
users. For instance, = 0 yields the criterion of total throughput under which theeabj
tive is to find the maximum throughput rate that the netwonk sapport. Wherx = 1
this utility yields the objective oproportional fairnessand it further leads tonax-min
fairness as grows to infinity.

Clearly, maximizing the total throughput of the networkdsdo an efficient utiliza-
tion of the network resources since the network sends traiffilbe maximum rate that it
can support. Nevertheless, it can lead to serious unfam@®ng the users since the op-
timal action set may totally exclude users with poor chawcoeditions, prohibiting them
from accessing the channel. Thus, in this thesis we payaigtention to the criterion of
proportional fairness [2], which has been widely used agfpaance metric in wireless
networks. Our focus on the criterion of proportional fasaetems from the fact that it

provides a good compromise between efficiency and fairrgdss [

1.4.3 Minimum-Length Scheduling

The performance metrics of stable throughput and utilitiméation rely on the
basic assumption that the corresponding average ratensegre well defined. Such an
assumption requires that the wireless channel has a stagiand ergodic behavior. How-
ever, in practice the wireless channel evolution may nelbestationary nor ergodic such

5



as in the cases of arbitrary mobility or networks with finitietime. This renders the
above criteria inappropriate for such cases.

An alternative metric to stable throughput and utility nmakation that can charac-
terize the traffic-carrying capabilities of wireless netigwith non-stationary and non-
ergodic channel behavior is to construct schedules of mimraength ([4], [5], [6], [7],
[8]). This problem involves obtaining a sequence of acirat of wireless nodes so that
a finite, fixed amount of data traffic, residing at a set of seurodes, is routed to get
delivered in minimum time to its intended destinations. dotf a schedule of minimum-
length is closely related to maximizing the network thropigihsince by minimizing the
time to send a fixed amount of data, the effective rate at wilath traverses the network

is maximized.

1.5 Outline of the Thesis

In Chapter 2 we start our analysis by considering single-btgtic networks under
multicast traffic. All traffic sources are assumed to be baglied. We explicitly char-
acterize the optimal joint scheduling and rate controlgpolinder the objective of sum
throughput maximization. Under the objective of propartibfairness we formulate the
problem as a convex problem with a large number of varia@lexplicitly characterize
the optimal policy we consider a restricted set of schedudictions given by activating
a single transmitter at any given time or all of them simwtausly. Under this restricted
framework, we explicitly characterize how the optimal podpnally fair scheduling and

rate control decisions relate to the current channel cimmdit



Next, in Chapter 3 we consider single-hdime-varyingwireless networks com-
prising of a set of backlogged multicast sources. We congidkcies that take decisions
only based on a possibly inaccurate estimate of the curhamtree| state. We introduce an
online gradient-based algorithm under a fading envirortrtieat selects the transmission
rates at every decision time. We show optimality of this athon for a large class of
utility functions by making use of the theory of stochastpeoximation under a utility
maximization framework. In the event that more than one allteation is optimal, the
algorithm selects the one that minimizes the power sum.

In Chapter 4 we focus on the problem of obtaining schedulesimimum length for
single-hop wireless networks under unicast traffic. Weoihtice an optimal joint schedul-
ing and rate control policy that minimizes the required tifoeall network sources to
deliver their data traffic to their respective destinatioie consider both static and time-
varying networks. In the static network case, the optimatditthe introduced policy is
established using graph theory and methods from stochasticol theory are employed
for the time-varying case.

In Chapter 5 we turn our focus on the objective of stable thhput maximiza-
tion for a set of commodities of anycast traffic for multi-hefpreless networks. Each
commodity is assigned a weight of preference. We introdyoeascheduling and rout-
ing policy that has access to only an estimate of the chanats.sWe characterize the
stable throughput region of the network under uncertainthe channel state by using
guadratic Lyapunov methods. We show that the introduceidyisl optimal with respect
to maximizing the stable throughput of the network withinradad class of stationary,
non-stationary, and anticipative policies, irrespectiffthe weight assignment.

7



Finally, Chapter 6 summarizes our contributions and disesis few potential fu-

ture research directions.



Chapter 2
Sum Throughput Maximization and Proportional Fairness for
Multicast Traffic in Static Networks

2.1 Background

The problem of scheduling in wireless networks has beenefuatensively under
various assumptions and performance criteria ([4], [9], [[E0], [11]), and in particular
in the context of joint scheduling and rate control (e.g2][113]). In [12], scheduling
of unicast transmissions in static networks is considesre the wireless channel be-
tween any two nodes depends only on the path loss and ati@mdate to shadow fading.
The optimal solution for the problem of maximizing the sunotighput of the network
with and without a minimum rate requirement for every traitgmis obtained. It is fur-
ther shown that in the presence of minimum rate constramdsaghen the transmission
powers are large, a pure Time Division Multiple Access (TDM&heme, that allows a
single node to transmit at any given time, is optimal witlpexs to maximizing the sum
throughput of the network. In addition, the problem of obtag a max-min fair and a
proportionally fair rate allocation is formulated in terwisa linear and a non-linear pro-
gram respectively. However, these problems are not solvede optimal solution is not
characterized in either formulation.

In this chapter, we are interested in a cross-layer viewetstiheduling problem by



extending our earlier work [14] in which we obtained preliaiy results. Since multicast
traffic comprises a large volume of traffic in many network laggtions, we consider a
single-hop network of multiple transmitters, eachlticastingtraffic destined for a set
of receivers. The cases of unicast and broadcast trafficateaily special cases in our
formulation. Each transmitter is associated with a musticgession and the receivers
of various sessions are allowed to overlap. We are intat@stéhe problem of jointly
scheduling the transmitters and controlling their ratedentwo different criteria, namely
sum throughpuaind proportional fairness We first obtain the optimal rate control and
scheduling policy to maximize the sum throughput of the ekwSince maximizing the
sum throughput can be unfair to users with poor channel tiondi we also consider the
objective of proportional fairness. We formulate the pesblof obtaining the proportion-
ally fair schedule as a convex problem. Next, by focusing oastricted subset of the
possible rate control and scheduling actions, similarlji4}, we are able to analytically
solve the corresponding convex problem and obtain a prigpaity fair solution over the
reduced set of rate control and scheduling decisions. Qutteegeneralize [14] in two re-
spects: (i) we consider multicast, rather than unicadtidrand (ii) we employ a weaker
set of assumptions. Our framework includes unicast anddoas traffic as special cases.
Unlike in [12], our objective is texplicitly characterizehe optimal solution and how it
relates to the current channel conditions. Similarly, tiapter is different from a body
of work that studies the joint scheduling and rate contralbpgm under time-varying
channels for unicast ([13], [15], [16], and [17]) and mudist traffic [18]. The focus of
the above works is to provide algorithmic solutions to maxing the user utility. In con-

trast, our focus is, rather, to explicitly characterize ¢xact relation between the current

10



channel conditions and the optimal scheduling decisionis fur unicast, and multicast

traffic.

2.2 Model Formulation

We consider a set of single-hop, wireless multicast linkenfil” transmitters taD
receivers as shown in Fig. 2.1, that operate in slotted tibe¢.7 andD be thesetsof
transmitters and receivers in the network respectivelghEensmitte € 7 wishes to
multicast at acommorrate (single rate multicast) to a set of receivexs:) C D. The
pair (k,D(k)) is called amulticast sessianNote that this model is general enough to
account for the special cases of unica#t(¢)| = 1) and broadcastD (k)| = D) traffic,
where|D(k)| denotes the cardinality of sét(k). We assume that a receivérc D can
be a member of more than one multicast session, i.e., foicastttransmitterg, k € 7,
it is possible thaD (k) N D(j) # (. In this work we assume that each transmitter has a
saturated buffer with unlimited reservoir of data traffltatis we do not consider the case
of stable throughput, finite delays, and bursty traffic.

Let P,(k) represent the transmission power of transmiktext time slotn. The
variableP, (k) is assumed to take two possible values, nani&* (when transmittek
is activated) an@ (when it remains silent). We denote By, theT-dimensional vector of
transmission powers at time sloti.e.,P,, = (P,(k), k € 7). We also denote withV(d)
the noise power level at receivérc D. Although we restrict our attention to single-hop
networks, our model can be used to address the schedulingagndontrol problem in

full-fledged multi-hop networks under fixed routing. Howewse do not consider this
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Figure 2.1: A single-hop network @f multicast transmitters anB receivers.

extension in this thesis.

We assume that the channel conditions between every traasiand receiver in
the network do not vary with time and are due to pure path letnce, we denote by
G (i, 7) the path loss between every transmiiter 7 and receiveyj € D.

In our model we employ th8ignal to Interference plus Noise Ratio (SINR)erion
to determine the outcome of a transmission. In the case oficasting successfully
the same message to a set of receivers the SINR criterionohiae $atisfied at every
receiver. Lety, 4(r) be the threshold at time slotat receiver! € D that corresponds to
transmission rate. We will say that at time slot a transmittek successfullynulticasts
atacommorrater to all its intended receivers in the $@tk), if the SINR at each receiver

d € D(k) exceeds the corresponding threshold, i.e.,

12



P, (k)G(k, d)
N(d) + 2 jer jon En()G (G, d)

> Y.a(r), Vd € D(k). (2.1)

In our model we consider receivers with multi-packet reicepfMPR) capabilities.
Under MPR a receiver may successfully receive concurrdrdaty multiple transmitters
as long as the SINR from each one of them exceeds the requireshbld. Hence, two
multicast transmitters with overlapping receiving nodas concurrently transmit suc-
cessfully. Each receiver is equipped with a detector thatrhaltiple matched filters so
that it can receive successfully from multiple transmgtat any given time as long as
the corresponding SINR at each one of them exceeds the edghireshold. If the SINR
threshold is not exceeded at all intended receivers, waal@ssume the transmission
successful.

There exisk” — 1 possible subsets of transmitters that can be activated afiaen
time, each corresponding to different threshold selestidrhese amount to all the pos-
sible ways of activating at least one out of thetransmitters. For a given activation,
the transmission rates of active transmitters are set thititeest possible rates satisfy-
ing the condition that the SINR values at all respective ikete exceed the thresholds
associated with that rate. Consequently, there @Xist 1 possible scheduling and rate
control decisions that we will cadlictionsfor simplicity. Let us denote byl the set of all
possible actions, i.el.A| = 27 — 1. The optimal action selection depends on the adopted
performance objective and on the link channel conditions.

We denote by the instantaneousate at which transmittek € 7 transmits to

all of the receiverD(k) in its multicast session, under Actighe A. Since we con-
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sider single-rate multicast, the rate of transmittes equal to the rate of every receiver
d in its multicast group, i.e.d € D(k). Thus, we can characterize the rate of each
receiverd € D(k) through the transmission rate of its corresponding tratiemiLet
m = (m,...,ma4-1) denote a probability distribution over the set of all poksitate
control and scheduling actions j. That is, we randomize the policy decision so that in
every slot Actionj is taken with probabilityr;. This formulation by-passes one aspect
of combinatorial complexity that arises when we associatdection in a deterministic
way with each slot. We assume that such probability distigioexists, e.g., by requiring
ergodicity on the action selection. Since a transmitteoisattivated at the same rate in
every slot, we define theffective rate, () of transmitterk € 7 to be the average rate
over the action distributiotr, i.e.,
ri(m) = Zriwj.
jeA

Although in a unicast transmission there is no ambiguityardng how to define
throughput, this is not the case for multicasting whereughput can be measured both
in terms of the transmission rate as well as with respectéad¢ieived rate. Defining
throughput in terms of the transmission rate of a multicestamitter would give two
transmitters operating at the same rate equal weightsrdiega of the number of re-
ceivers to which each of them transmits. In this chapter wiemeélehroughput as the
overalltraffic that reaches all the receivers of a multicast sesgibaos, for any two mul-
ticast transmitters that operate at equal rates, the tigesitnat has a higher number of

receivers is assumed to contribute more in terms of througHp other words, our cri-
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terion is thereceived throughputvhich reflects the number of receivers in the multicast

group.

2.3 Total Throughput Maximization

In this section we obtain a scheduling and rate control gahat maximizes the to-

tal (sum) throughput of the network. The maximization pevbican be posed as follows:

maxz |D(k)|rg(m (2.2)
keT
s.t.
d m=1 (2.4)
JjeA

We call the above problem described by (2.2)-(2.4) Proble@ohsider also the closely

associated surrogate problem called Problem Il defined as

D(k 2.5
m;ZT\ ). (2.5)

The following theorem shows how these two problems relate.

Theorem 1 Let.A* C A denote the set of actions solving Problem 1l define@iB). The
optimal probability assignment solving Problem | defined&'ﬂ}(z.4)satisfiestGA* T =

1.

The proof of Theorem 1 is presented in Section 2.7. It is dleat optimizing the total
throughput of the network leads to an efficient utilizatidritee network resources since
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the network sends traffic at the maximum rate that it can sappdevertheless, it can
lead to serious unfairness among the transmitters sincagptit@al action set may totally
exclude transmitters with poor channel conditions, priing them from accessing the
channel. In the next section, we consider the utility of pmbipnal fairness [2] which

has been widely used as a performance metric in wirelesonieiyas it provides a good

compromise between efficiency and fairness [3].

2.4 Proportional Fairness

In this section we focus on the objective of proportionalrfass. As it was shown
in [2] and also in [1] the objective of proportional fairnesequivalent to maximizing the
sum of the logarithms of the user rates over the long-termegesfeasible rate region.

Recall that] is the instantaneous transmission rate of transniitterder Action;.
We are interested in obtaining an optimal probability disttion so that theffectiverates
of each received € D are assigned in a proportionally fair way. This can be exqaés

as a convex optimization problem as follows:

max Z |D(k)|log (Tk(ﬂ'))

keT

S.t.

7Tj20, VjEA,

Zﬂ'j = 1,

jeA
wherer; is the probability that in a given slot Actionis chosen. Although this is a
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Figure 2.2: Thel + 1 possible actions obtained by either schedulingransmitters
one-by-one or by allowing all the transmitters to transnmtwdtaneously. The rate of

transmitterk under Actionj is denoted by’i.

convex problem, the number of possible actions, and hermgstreints, increases expo-
nentially in the number of multicast transmitters. Therefalthough numerical solutions
can be obtained (for example, through interior-point mégjd 9],) when the number of
transmitters in the network is sufficiently small, compgtihe optimal solution analyti-
cally is infeasible.

Consequently, in what follows, we consider a suboptimalitsah by restricting
the set of feasible actions. These actions include (i) thrmibaneous activation dll
T multicast transmitters operating successfully and atimsiheous rates that ensure all
SINR threshold inequalities are satisfied (we call this apen “all-at-once” or “Action
0”) and (ii) the individual activation of each transmittepseately (we call this operation
“one-at-a-time” or “Actionk” when transmitterk is activated). Clearly, under Action
k the instantaneous rate is the maximum possible that peth@tSINR for the given

transmission power to exceed the corresponding threshi@dch receiverl € D(k).
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The above two modes of operation yield a totalof 1 actions, as shown in Fig. 2.2.

Restricting attention to these two modes of operation isesanat natural since it
permits comparison between two extreme cases, namely #es cd “all-at-once” and
“one-at-a-time” operation. Note that since we don’t coesjogbwer control, under Action
0 the individual rates are likely to be low due to the effectsntérference. On the other
hand, although under Actiolthe instantaneous rate of theh transmitter will likely be
much higher (than the corresponding rate under concurriation), the effective rate
may be lower due to the effect of time sharing. Although tkjsresents a severe restric-
tion of the action space, it is expected to provide an insigtat the trade-off between
concurrent and individual activation.

Next, we find the optimal proportionally fair probabilitysdiibution over the afore-

mentioned restricted set of actions by solving the follayyimoblem:

maxz |D(k)| log(mory + mery) (2.6)
=
S.t.
7, >0, Vje{o1,... T} 2.7)
T
d om=1 (2.8)
=0

Before we characterize the optimal policy solving (2.68j2we provide some useful
definitions. Let7 be a subset of the s&t, such that for every € 7 itis true thatr; > 0.
Also, let the complement© of the set7 be a set such that for eveiye 7° it follows

thatm; = 0,i.e., =7\ J.
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Theorem 2 Let n* = (7},..., ) denote the solution t(2.6)(2.8) above. Then we

have:

Z—’Eé
k

eT
each multicast transmittefr € 7 is scheduled to transmit individually with proba-
bility
[ D(k)]

-~ VkeT,
2jer IPO)I

T =

and the probability of concurrent operation satisfigis= 0

the optimal policy is of a threshold type with thresh@l(l7) given by

1— Z]GJ J/T
> omege [D(m)]

R(TJ) = (2.9)

Specifically:

(&) A multicast transmittej € 7 is scheduled to transmit individually with prob-

ability 75 > 0 (i.e., j is activated individually and belongs t9) given by

D) = Xiege D(Z”W ( )
= =~ 7 2.10
’ 2 ker |D(F)|
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if and only if
—1 < R(J). (2.11)

(b) All transmitters operate concurrently with probabylit} given by

. 5 e [D(m) |
(Srer PO (1= e /)

(2.12)

The proof of Theorem 2 is provided in Section 2.8. The quwﬁtkg:—% deter-
mines, in a sense, the relative degree of interference iméiwork. Clearly, for any
transmitter the instantaneous rate under concurrent tipeeria no greater than its cor-
responding rate under individual transmission. If it isoaisie thatzkg:—% < 1, then
the transmitters interfere among themselves sufficiestlyhat their corresponding rates
under concurrent operation are much lower than the correpg rates under individual
operation. Hence, whep,, % < 1, the optimal policy would never activate all trans-
mitters concurrently7, = 0); instead the optimal scheduling and rate control solution
is to activate a single transmitter at a time as in a TDMA fashiOn the other hand, if
Y ke % > 1, the interference among the transmitters when they coawctiyrtransmit is
not so severe, and hence, the individual rates under cartuwperation result in levels

that are “comparable” to those achieved under individu@raton. Thus, the optimal

policy assigns a positive probability to Action
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Theorem 2 characterizes the optimal solution based on testtbld function(.7)
which itself is a function of the sef. Hence, in order to completely characterize the
optimal policy we need to characterize the compositiofyofNote that since the optimal
policy is of threshold type, the cardinality’ | of the “individually activated” set suffices
to completely determine the sgtitself, provided we label the transmitters appropriately.
To simplify the notation in the sequel we will writ(;) to denote{ R(J) : |J| = j}.

Let us reorder the multicast sessions with respect to tloeresponding values of
the ratios9/ (|D(j)|r!), j € T inincreasing order, i.e.,

~0 ~0 ~0
"1 2o < T (2.13)

D) (D)) ID(T)I77

where the rates!, i, and the set of receivef3(j) denote the quantities), r/, andD(;)
respectively of thgth transmitter under the new ordering. From now on, unldssratise
stated, the transmitteris the jth transmitter under this new ordering. We will make use
of the following property of the threshold functid®(j) to obtain the cardinality of the

set].

Lemma 1 Under the ordering 0f2.13) the threshold functior(;) defined in Theorem

2 satisfies the following:
R(j —1) < R(j), ifandonlyif j € 7.

The proof of Lemma 1 is proved in Section 2.9. From Lemma 1lib¥es thatR(j) is
increasing for allj € 7 and decreasing for ali € J¢. Using this fact, the following

result follows directly using the definition d#(.7).
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Theorem 3 The cardinality of the sef under the optimal policy specified in Theorem 2

is given by

- 70
|J| = arg max R (2.14)

ZW1n2me> -----

From Theorems 2 and 3 it follows that the sétontains the.7| transmitters with
the lowest values of the ratio$/ (\D(j)\rj) for j € 7. Hence, in the optimal solution
the transmitters that are selected to be activated indaliglare the most “disadvantaged”
multicast transmitters, i.e., those that either (i) canyadhieve very low rates under
concurrent operation compared to individual operationiiprtffose that multicast to a
large number of receivers.

Consider a single-hop network dftransmitter and receiver pairs, where each trans-
mitter sends unicast traffic to its corresponding receiMete that under the restricted set
of actions the optimal proportionally fair probability thdution for the unicast case fol-
lows directly from our formulation by simply setting the darality of the setD(k) for
every transmittet: € 7 equal to one, i.e|D(k)| = 1. Thus, the solution of the unicast

case is given next.

Corollary 1 Let ™ = (my*,...,n}+*) be the optimal proportionally fair probability
distribution for unicast traffic. Then we have:

1. 1f

2

?rw|wo
I/\

each transmittek € 7 is scheduled to transmit individually with probability
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1
mt = VkeT,

and the probability of concurrent operation is zero , i, = 0.

2. If

the optimal policy is of a threshold type with thresh@l(l7) given by

1 - Zjej T?/T;

Ty (2.15)

R(J) =

Specifically,

(&) A transmitter; € 7 is scheduled to transmit individually with probability

m* > 0 (i.e., j is individually activated and belongs i#i) given by

1 TO/,,,] )
T =—=11- — -], (2.16)
’ r ( z'ezjcl_zjejrg/rj
if and only if
r9
—Jj < R(T). (2.17)
e
J

(b) All transmitters operate concurrently with probabylit}* given by

ux T_|\7‘
u* —

Cor (1 —2jes TJO'/T§> | (249
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Corollary 2 The cardinality of the sef under the optimal policy specified in Corollary

1 is given by the following:

1= 70/
J| = argmax =7
71 €{0,1,...,T} -t

(2.19)

Corollaries 1 and 2 extend our prior work [14] where we hadiassd that for every
unicast transmittej € 7 the rates under individual operatimgi were all equal to each

other.

2.5 Simulation Results

In this section, we analyze the performance of the proposédigs through a set
of numerical experiments. First, we consider the specisé ad purely unicast traffic.
Then, we proceed to a more general case that involves botlasirand multicast ses-
sions. Throughout this section, we focus only on the cotedf proportional fairness. To
illustrate our results we assume that the datar@bes given by the single user Shannon
formula under the assumption of unit bandwidth (See e.g2)(# Appendix.). We could
just as well use other expressions for different modulagdremes, e.g., (A.1) in the Ap-
pendix, corresponding td/-ary Phase Shift Keying (PSK) modulation with symbol rate

control. Finally, we assume that the duration of a time s@qual to one unit of time.

2.5.1 Unicast Case

The first wireless network we consider is shown in Fig. 2.3is la single-hop,

static network of three transmitter/receiver pairs of astcdata traffic. The maximum
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transmission powers at the transmitters &e>* = P/2, P*® = P, P"™ = (¢ * P,
whereP = 6.0 x 10~° Watts. Further, the power of the thermal noise is assumee to b

common at all receivers and equalXo= 3.34 x 10~% Watts.

Figure 2.3: A static network of three transmitter/receairs under unicast traffic.

We also parameterize the path loss ma€ixdefining the path losses between the

3 transmitters and th&receivers, as

0.9 093 0.9x3

G=109%x3 009 094 | >

09«6 095 0.9
wheref € [0,1] is a parameter, we dub as timerference coefficiensince it scales the
degree of interference in the cross-channelsg K= 0, the three sessions can operate
in parallel in an interference free manner. Adncreases, the cross-channel qualities
improve and the amount of interference between the sesisioregases. Whed = 1, the
path losses between the direct and the cross channels becpralkto each other ato.

Under this channel model, we compare the performance of teyogotionally fair
policies. By proportionally fair we mean that the corresgiog probabilities with which

the different actions are chosen solve the unicast prob2e@)-(2.8) obtained by replac-
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ing |D(k)| = 1 for eachk in (2.6). The first policy we consider is a proportionallyrfai
TDMA scheme that activates a single transmitter at any divea (at its highest possible

rate) with a probability optimized to ensure proportioratriess in the effective received
rates when only TDMA actions are considered. The secondyslia restricted rate con-

trol policy that can choose to activate the transmittersadrgetime or all together. Again,

the probability with which each action is selected is opti@ai so that the effective rate at
each receiver is proportionally fair under this restrictetlof actions.

Fig. 2.4 shows the variation of the effective proportiopddlir rates of the three
transmitter/receiver pairs under the considered polasabe interference level in the sys-
tem increases. First, we observe that the proportionalydee of the transmitter/receiver
pair 3 is higher than the corresponding rates of the other two aidsthat the transmit-
ter/receiver pait has the lowest rate under all values of the interferencdiciaft. This
is a natural outcome stemming from the specific selectioth®maximum transmission
powers of the respective transmitters. Our second obsenvadnfirms our intuitive ex-
planation that the rate control policy performs strictlytbethan the pure TDMA scheme
at low levels of interference, i.e., when the interferengefficient3 is small. However,
the performance gains of the proportionally fair rate colrfiolicy over the proportionally
fair TDMA policy diminish rather quickly ag increases. For any interference coefficient
G > 0.2, we observe that the rate control scheme converges to a TDiAnse and
thus both policies achieve the same performance. In othetsyafter a certain level of

interference, a proportionally fair TDMA scheme becomesdptimum choice.
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Figure 2.4: Effective rate of the three unicast sessionk v@spect to the interference
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2.5.2 Multicast Case

In this subsection, we consider a static single-hop netwaotlk three transmitters

and six receivers as shown in Fig. 2.5. The sets of the resefee each transmitter

Figure 2.5: A single-hop static network ®imulticast transmitters angreceivers.

areD(1) = {1,2,3}, D(2) = {4,5}, andD(3) = {6}, in other words transmitters
and?2 multicast to their respective receivers while transmistés a unicast source. We
set the maximum transmission powers to be equal, Rg* = P, k = 1,2, 3, where
P = 6.0 x 107° Watts. As in the previous section, the noise power is assumda
common at all receivers and equalXo= 3.34 x 10~ Watts.

The path losses between théransmitters and thé receivers are captured by the

path loss matrixG, given as

0.8 09 0.75 S g B

G=|p3 3 B 08 09 3

6 8 8 B B 0T
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Figure 2.6: Effective rate of transmitter 1 with increasihg
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As before,5 € [0, 1] represents thanterference coefficientin Fig. 2.6, Fig. 2.7
and Fig. 2.8, the proportionally fair rates of each multicession are plotted as a func-
tion of the interference coefficient for three policies. Specifically, we consider (i) a
proportionally fair scheme that allows aft — 1 possible rate control and scheduling ac-
tions of activating the3 transmitters, (ii) a proportionally fair TDMA scheme, wkea
single transmitter is activated at any given time, and g restricted scheme that con-
siders either “all-at-once” operation or one at a time. Ashi@ unicast experiment, the
corresponding action probabilities are optimized so thatdffective received rates are
proportionally fair.

Similarly to the unicast case, when the levels of interfeesare low (i.e.j is close
to 0), the two proportionally fair rate control schemes achieneeh higher rates than the
corresponding TDMA scheme. Furthermore, both rate costrbémes converge fast, as

expected, to the TDMA scheduling policy as the interferermefficient increases.

2.6 Summary

In this chapter, we obtained a joint scheduling and raterobpblicy that assigns
a probability distribution to the set of feasible rate cohttnd scheduling actions under
two performance objectives. We first considered sum thrpugimaximization and then
proportional fairness. The identity of the transmitteratthccess the channel and their
respective rates was selected according to this probabistribution.

In Section 2.2, we presented the network model under coraide. In Section

2.3 we focused on the criterion of total throughput maximaa We explicitly char-
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acterized an optimal scheduling and rate control policySéation 2.4 we focused our
attention on the criterion of proportional fairness. Sfeally, due to the complexity
of the general problem we restricted the set of feasibl@astto only actions given by
concurrent operation of the transmitters all together @& aina time. For this restricted
model we characterized the exact conditions under whichr@a pDMA scheme should
be employed instead of concurrent transmission for therameesrate” of each receiver to
be proportionally fair. We showed that under this restddrmmework the optimal pro-
portionally fair solution is of a threshold type. We verifiedr analytical results through a
set of numerical experiments in Section 2.5. Finally, theofs of our main results appear

in Sections 2.7, 2.8, and 2.9.

2.7 Proof of Theorem 1

We can write the Lagrangian of the problem defined in (2.2})(as:

L(m, p, A ZZ |D(K)|rim; — (Zﬂ'j —1) + Z/J/jﬂ'j, (2.20)

keT jeA jeA JjeA

wherep = (u, ..., 14) and X are the Lagrange multipliers for the inequality and the

equality constraints respectively. The Karush-Kuhn-rudKKT) conditions yield:

OL(m “” =S ID(k)lr, — A+ ;=0 forallj e A (2.21)
keT
L
u S mri=o (2.22)
jeA
Wi = 0, i = 0, T > 0, for a”j € A (223)
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Let 7 denote a subset of the sdt such that for every € 7 itis true thatr; > 0, and
J¢ = A\ J denotes the complement set such that for every7°, =; = 0. Then from

(4.18) it follows that

d om=1 (2.24)

JjeT

Also, from (4.19) we conclude that;, = 0 for every; € J and from (2.21) it follows

that

A= |D(k)r, for everyj € 7. (2.25)
keT

Moreover, from (4.19) we obtain that > 0 for every: € J°¢, and from (2.21) it follows

that

A= ID(k) | + i, for everyi € J°. (2.26)
keT

Then, from (2.25) and (2.26) and the fact that> 0 we obtain that

> ID(E)r, =Y D(k)|r,  foreveryj € 7, andi € J°. (2.27)

keT keT

Thus, from (2.25) and (2.27) it follows that any actipne 7 has to be a solution of
Problem I, i.e.,j € A*. Therefore, we can conclude that is a subset of4*, i.e.,

J C A*. As aresult, we can obtain the desired using (2.24):

34



2.8 Proof of Theorem 2

The Lagrangian function of the problem defined in (2.6)-(&&jiven by

T
Ll ) =3 DO o+ ) + (1 = Y +zum
keT Jj=

where . and \ represent the Lagrange multipliers. The Karush-Kuhn-€u¢KKT)

conditions yield:

OL(m u Y
’ E —— — A4 g =0. 2.28
k€T| WOrk + Wkrili Ho ( )

L A K

m — [D(k)|—t—— — A4 =0 forallkeT. (2.29)

oy, Ty + Ty

OL(m, 11, \) ZT

pimi =0, p;>0,7;>0 forallj € {0,1,...,T}. (2.31)

Consider the following cases:

Case 1: Consider the case where Actions never employed, i.exy = 0. Itis
easy to see that in this case, > 0 for everyk € 7. Hence, from (2.31) it follows

thatuo > 0 andy, = 0 for everyk € 7. Then, from (2.29) we obtain,

o 2 o

Using (2.30) and (2.32) and the fact thgt= 0, we can solve foi as

A=Y "|D(k)], (2.33)
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which implies that

[ D(k)|
=————-—, VkeT. (2.34)
C Y ,er DG
Finally, from (2.28) it follows that
0
Tk
E r_’,j <1. (2.35)

Case 2: Now let us consider the alternative case that Actios employed with
strictly positive probability, i.e., there will be a fraoti of the time that all trans-
mitters operate concurrently. Also, assume that a sulfset the transmitters is
further individually activated with positive probabiljtwhile the rest of the trans-
mitters, 7¢ = 7 \ J are not chosen for individual operation. This implies that
o > 0, m; > 0 for every; € J, andm; = 0 for every: € J°. Hence, (2.31) yields

po = 0, u; = 0 foreveryj € 7, andy,; > 0 for everyi € 7¢. From (2.28) we have

\ = Z Z'D . (2.36)

jeJ WOT +7TJ i iege
Also from (2.29) it follows that for alj € 7 we have

O 237

0 I
ToT; + T

or equivalently
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; 0
;= @ o2 (2.38)
Ty
Using the fact that + >, ; m; = 1, we obtain
A — D(y
o e |IPO)I (2.39)
A (1 Z]GJ J/T )
Combining (2.36), (2.37), and (2.39) yields
A= |D(k), (2.40)
keT
. |D
o — 2 om ege [P(m)] (2.41)
(Crer P (1= Ljegr9/r])
- 2]
D) = X iege ID( )\W (2.42)
T = 2 4
: >rer D)
In addition, for all; € 7¢, from (2.29) it is true that
79 1
> . .
D) |rt — Amg (2.43)

Furthermore, using (2.40) and (2.41) we rewrite the RHS @f3Pto obtain

fr’(.) 1—2 O TJ
3 > jeTJ J J i c 244
D~ Sy D) €Y (2.44)

After some straightforward manipulation (2.44) yields

37



Tk
> o > 1, (2.45)

providing the necessary and sufficient condition#gr> 0.

Note also that from (2.9) the right hand side in (2.44) is tivesholdR(.7). Hence,

1€ J¢ifand only if
—— > R(J). (2.46)

Also, (2.41) can be written in terms of (2.9) as

1
(Xker D)) R(T)

(2.47)

U

Then, (2.37), (2.40) and (2.47) together yield

r

R(T)

0
J

+ ) Z ID(K)].

keT

DU =

By dividing both sides of the equality by)(j)|rjf and by using the fact that

o ket IP(k)| > 0for j € 7, itis easy to obtain that € .7 if and only if

0
P

D()Ir]

< R(J). (2.48)

Therefore, from (2.46) and (2.48) it is clear that the optipdicy is of threshold

type.
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2.9 Proof of Lemma 1

For notational convenience, let us define the following qtias:

7
Vg ‘= f—g,
T ~
M=) |D(k).
k=1
my. = [D(k)|

Under the ordering given in (2.13), for everye 7 we have by definition that

k J
1 - Zj:l vj — lezlk+1 Uj
k J ’
M — Ej:l mj — Eljzlk+1 m;

Uk
o < R(|TJ)|) <

The above can be rewritten as

k k 17|
Vk Vk
—M—g m-<1—§ v — g vj — —m; |.
mk( < i) J (J i J)

j=1 j=k+1

Due to the fact that under the ordering of (2.13) we h%’geg :TJ forall j > k, we

obtain

11— v
L 22_1 ' foreveryk € J
me (M — Zj:l m;)

% < R(k), foreveryk € J. (2.49)
k

Furthermore, from (2.49) we obtain that for evéryg 7 the following is true

k—1
U, - 1_Zj:11)j_vk
k—1
my M_ijl my; — my

Y
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which can also be written as

or
— < R(k—1). (2.50)

On the other hand, using the definition®fk), we obtain

1— Ek;ll v — Vg
R(k)— R(k—1)= - — R(k—1)
M — 2 =1 M
R(k—1)(M —
_ RGO -Shm)mo
M — Zg lm]
_ R(k = )(M - Y37t my) - R(k - DM — 5, m))
M — Zj:l m;
Y%
M — Z?ﬂ mj
mkR(/{Z — 1) — Vg
= - , (2.51)
M — Zj:l m;
which implies that
R(k —1) < R(k) <= % < R(k—1). (2.52)
k
Hence, from (2.49) and (2.50) we obtain that
R(k—1) < R(k), forallkeJ. (2.53)

40



Now, let us considek € 7¢. By definition we have

Uk
e R(|T1),

By simply lettingk = | 7| + 1 we have

AL > R(|T).
m|7|+1

However, from (2.52) it follows that
R(|J]) > R(|T| + 1).

Combining the above two results, we have

AL > R(\7)) = R(T| + 1). (2.54)

m\zl+1

Furthermore, due to the aforementioned ordering, we alge ha

T2 5 A9 > R+ 1), (2.55)
m\gl+2  MJ+1

which, from (2.52), implies that

R(|J|+1) > R(|J|+2).

Repeating the same pattern it is easy to see that

R(k)> R(k+1), forallke J°. (2.56)
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Finally, combining (2.53) and (2.56) yields the desiredutes
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Chapter 3
Utility Maximization for Multicast Traffic in Time-Varying Networks

3.1 Background

The policy of Chapter 2 focused on characterizing the exaation between the
current channel conditions and the optimal rate controlsaiebduling decisions, where
optimality was assumed with respect to sum throughput mizeition and proportional
fairness. Nevertheless, it has four limitations, namelfi)ibssumes that the wireless
channel does not change with time, (ii) assumes the netwanmica policy has perfect
channel state information at every decision instant, i@i)imited to the objectives of
proportional fairness and total throughput maximizatiand (iv) considers a restricted
set of rate control actions in the analysis of proportionir schedules.

In this chapter, we consider time-varying networks, withrohel conditions that are
potentially not perfectly known by the network control pyliunder a general family of
utility functions. We focus on finding a rate and power cohatgorithm for the problem,
rather than an explicit characterization of the schedutiagisions with respect to the
channel conditions. Specifically, we consider a system dfipte transmitters withmul-
ticasttraffic destined for a set of receivers. Each transmittess®eiated with a multicast
session and the receivers of different sessions can beappeny. We are interested in
the problem of scheduling the transmitters through joite eand power control decisions

so that the overall system utility, measured in terms of tfegage rate of each receiver, is
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maximized. We obtain an optimal policy that jointly alloeatthe transmission rates and
powers of each transmitter by having access to only a pelihapsurate estimate of the

wireless channel state. We prove optimality of this pollayptgh the theory of stochastic

approximation for any utility function that is strictly coave, continuously differentiable,

and increasing in the average rate.

The problem of joint scheduling and rate control has beetiastiextensively in the
literature. A large body of work focuses on scheduling ofdbe/nlink channel of a base
station transmittinginicastdata traffic to a set of mobile terminals. The base station at
any given time has to select a single terminal to transmittmading to a Time Division
Multiple Access (TDMA) scheme. One particular example esphoportional fair sharing
scheduler (PFS) introduced by Qualcomm. The PFS selectgybe serminal for trans-
mission at any given time, the one that maximizes the rate wder’s instantaneous rate
to the average rate it has received so far in order to achimmogional fairness. There-
fore, those terminals that received comparably lower @yedata rates until the current
decision instant are more likely to be selected in the ogtsokution ([17], [20], [21]).

However, as itis shown in a variety of settings ([14], [22]3]), TDMA scheduling
of a set of nodes one at a time need not be optimal. In factsiidsvn in [14] that in a
static wireless network, depending on the channel conditiomay be beneficial to allow
all the nodes to operate concurrently for a certain periotine¢ under the objective of
proportional fairness for unicast traffic. Similar reswdte obtained in [23] for the case
of multicast traffic.

In a different work [16], the authors consider the problemadé control for unicast
traffic in time-varying wireless networks. Their formulati permits the scheduling of
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concurrent unicast transmissions. The authors introdonogpéimal rate control policy
under the objective of maximizing the sum of user utilities d@tility functions that are
strictly concave, increasing in the average rate of eaakivei and continuously differ-
entiable. A subsequent work, [13], considers the problemptimal rate allocation for
a switch serving a set of queues under the objective ofytiidximization. Although a
broader class of utility functions is considered in [13} gwitch is restricted to change
states according to a finite-state, stationary and ergodi&® Chain.

Although [13], [14], [16], [17], [20], [21], and [23] conseat the problem of rate
control for utility maximization under unicast traffic, adge amount of traffic in networks
is comprised of multicast data. In [18] the authors considease station that multicasts
traffic to various groups of receivers. It is assumed thag ardingle multicast group can
be chosen for transmission at any given time and that allé¢hmaibals in the multicast
group receive at the same rate (i.e., single-rate mullicike multicast scheduler needs
to decide whichuniquegroup to serve and at whiatate under two objectives; when
the objective is to be proportionally fair with respect te tfi) total rate of each multi-
cast group and (ii) overall rate of each terminal when it isearther of various multicast
groups. Further, in a recent work [15] we considered the lprotof utility maximiza-
tion for multicasttraffic in time-varying wireless networks, through jointeéand power
control decisions by permitting concurrent node activagio

However, a fundamental assumption in all prior work is thailability of perfect

channel state information to the scheduling policies ahe®cision instadt In practice,

1In [16], a limited discussion on the subject of channel eatiom is presented only for the restricted

case of TDMA scheduling.
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the channel conditions can only be estimated, and hence lexawledge of the current
channel state is unlikely to be available. Depending on tiaity of the channel estimates
the performance degradation can be high. For example, istdading environment the
channel state at the time it is observed can be significaiiffigrent from the channel
state at which the actual transmissions take place (sed24y.[25]). The effect of this
discrepancy in the channel state may be two-folded; firstarescheduled transmissions
may fail, and second, transmissions which would be sucglessfy never be activated.

In this chapter we study the problem of utility maximization time-varying wire-
less networks under channel estimation. We assume a setlbasttransmitters that
are always backlogged. The set of receivers of differentioagt sources may be over-
lapping. The objective is to schedule the transmitters bycsieg their transmission rates
and powers so that the sum of user utilities is maximized. Wfesicler policies that
take scheduling decisions baseudly on a possibly inaccurate estimate of the wireless
channel state. We introduce an on-line, gradient-basedypahd establish its optimality
among all policies that have access only to the current agtinWe employ the theory of
stochastic approximation to prove our results.

In this chapter, we further generalize prior works of [13]4], [15], [16], [17],
[18], [20], [21], and [23] by considering the problem of itflmaximization for multicast
traffic under channel estimation. We also extend the resd@lf$8] in two aspects: we
(i) consider a wireless network where multiple multicaahsmissions can be scheduled
concurrently, and (ii) assume a broad class of utility fiored, that includes the utility of

proportional fairness.
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3.2 Model Formulation

3.2.1 Network Model

We consider a time-varying, single-hop, wireless netwedgsisting of7" trans-
mitters andD receivers. We denote iy = {1, 2, ..., T} andD = {1, 2, ..., D} the
sets of transmitters and receivers in the network respagtiEach transmittek € 7 is
associated with enulticastsession and multicasts traffic to a set of recei@{g) C D.

We denote byD (k)| the cardinality of the séP (k). Our model captures the special cases
of unicast(|D(k)| = 1) andbroadcastraffic (D (k)| = D). We assume that different mul-
ticast sessions may have overlapping receiver sets,areany two transmitterg, k € 7

it is possible thaD(j) N D(k) # 0. As an example, in Fig. 3.1 both transmittérand

2 multicast to receivet. In this chapter, again, we assume that each multicast sourc
is always backlogged and has enough data to send wheneseadtivated. This traffic
model is to be distinguished from other alternatives thatiage burstiness in traffic.

We consider a slotted-time model. We denote®)yk) the transmission power
level of transmittert at time slotn. We also denote b¥,, the T-dimensional vector of
transmission powers of every transmitter at time slote., P, = (P,(k), k € 7). We
further assume that for every shotthe power vector®,, take values from a compact set
P of allowable power allocations, i.eP,, € P. Finally, we denote the thermal noise
power at receiveti € D by N(d).

We consider a channel proceds,, }>° , with channel statéx,, = {G,,(i,j), @ €

7T, j € D} atevery slot: representing the channel conditions between each traesiit
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and receiveyj. We assume thdiG,, } 2 , follows a block fading model, namely it changes
at the beginning of every slot and stays constant thereimd$3yming that slot durations
can be sufficiently small this assumption becomes lessatgtr. The channel process
reflects the variations of the channel quality that can betdugode mobility, channel
fading, path loss, shadowing, etc. We make the assumptai @, }2° , is stationary
andergodic

A fundamental aspect of our model that contrasts it fromrpwiork [15] is the fact
that at the beginning of each time stothe network controller is assumed to have access
to only an estimate of the true channel state. This is in fexteality in wireless systems;
the channel can only be estimated and this estimate can bly nigsleading. The effects
of the inaccuracy of the available channel state infornmagiothe network controller can
be two-fold: (i) it can lead to the failure of certain schestlitransmissions and (ii) it
can prohibit certain transmissions from being activateédoaigh they would have been
successful. These effects get mitigated as the qualitifeadstimates improve.

Let the estimate of the channel staig, at time slotn be denoted byﬁln =

~

{G.(i,7), Vi € T, j € D}. This estimate represents thetimated channel state
Gn(z’,j) between each transmitter= 7 and receiveyj € D at slotn. Naturally, at any
given time slotn the estimated channel state, and the true channel sta€®, are cor-
related. In fact, they can be identical under perfect esgtona The estimated channel
process{ G, }°°, also follows a block fading model. It is also assumed to beastary
and ergodic with stationary distribution given liy(-). In this chapter, we restrict our at-
tention to network control policies that at any given timat sl take scheduling decisions

based only on the estima€é,. To have a “fair” comparison, we only consider policies
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that have access to a common channel estiiatee denote the class of these policies
by I1. We further assume that both procdss, }>°, and{G,,}>°, take values from a

common state space, that is a continuoug/s@the above are illustrated in Fig. 3.1.

Gn(l ’,1>’/‘6
< 7

/
7

¢

P, (T) '
o--- o

G.(T,D)

Figure 3.1: A network of" multicast transmitters anf} receivers.

Again, we capture the effects of interference in the netwbri&ugh the SINR in-
terference model under two types of receivers; (i) recsitieat can only receive from a
single transmitter at any given time (i.e., single packeeption, SPR), and (ii) receivers
with multi-packet reception (MPR) capabilities. Under MBReceiver may successfully
receive concurrently from multiple transmitters as longlas SINR from each one of
them exceeds the required threshold. Hence, two multicassmitters with overlapping
receiving nodes can concurrently transmit successfullijke the SPR case where only a
single transmission can be received successfully at amndime.

Under unicast traffic, throughput is unambiguously defiretha rate at which data
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is delivered to a receiver successfully. However, this isthe case under multicast traf-
fic. It is possible that a multicast transmission reachesessfully only a subset of the
receivers. In such a case depending on the requirementes apjtlication under consid-
eration this transmission can be assumed to be successiligace count as throughput,
or not. For example, if the application expects that at lsasteof the receivers obtain
the message successfully then such a transmission is agtarbe successful. As an
alternative, the requirements of the application may beenstrict and require thall
the receivers of the multicast group receive the messagaidichapter, we consider the
latter case and will assume that a transmission from tratesmiis successful if it is re-
ceived by all the receivers in the multicast gradpk). If any receiver fails to receive the
message, then the transmission is assumed to fail and tlsageslsas to be retransmitted.
As in the previous chapter, we focus on the dependence ohtksltold only on
the transmission rate. Assume that the transmission ratgawer of each transmitter
k € T attime slotn arer, (k) and P, (k) respectively. Let, = (r,(k),k € 7) and
P, = (P.(k),k € T) be the respective transmission rate and power vectors. fhieen

SINR at each receivetr € D(k) at time slotn is given as

P.(k)G,(k,d)
N(@) + X yer. 10 Pal)Gals d)

SINRY™ (k. d) = (3.1)

As discussed previously, we will assume that transmitterulticastssuccessfully at rate
rn(k) if the SINR at each receivet € D(k) exceeds the required threshold. We denote

by v..4(r) the SINR threshold at time slatthat represents the minimum value of SINR
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that allows successful transmission at rate receiverl. Then, for a given pair of vectors

r,, andP,, a multicast transmission from th¢h transmitter is successful if

SINRE™ (k, d) > yn.a(ra(k)), Vd € D(k). (3.2)

In this chapter we assume policies that take decisions ay green time slotn
based on the channel estima&lie. Thus, the transmissions are scheduled based on the

estimated SINR, namely

SINR. " (k, d) := P”<k>é”<k’d? N (3.3)

N(d) + 2 jer, s Pn(3)Gn(4, d)

and a transmission is expected to be successful by the datgedalicy if

SINR," (k,d) > Yalra(k)), ¥d € D(K). (3.4)

Since the policies under consideration take decisionsthbas¢he estimated SINR
criterion (3.4), it is possible that certain scheduled sraissions fail. To capture this

(I‘n,Pn

effect we introduce th@& x T diagonal matrixQ\" ", whose(k, k)th entry satisfies

1, if SINRE"(k,d) > vpa(ra(k)), Vd € D(k)
QT (k k) = (3.5)

0, otherwise

In other words the matri@ ™" is an indicator diagonal matrix whosgeé, k)th diag-
onal entry takes the value one if a scheduled transmissisedban (3.4) is in fact also

successful with respect to the true SINR criterion (3.2).
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We also define bQ(gr’P) theT x T' dimensional matrix whosgk, k)th entry gives
the probability of success of a scheduled transmission framsmitterk to all receivers
d € D(k) at rater(k) and powerP (k) given that the estimated channel statg is G.

Specifically, the matrixQ{"" is defined as
QrY =E[QI7|G, =g, g€d. (3.6)

Note that theQ(gr’P) is stationary with respect to time since the true and eséthat
channel processes are both stationary.

We proceed to define the set of feasiiistantaneoutransmission rates that can be
achieved through all possible rate and power control astiorder the current estimated
channel state conditions. Note that the set of feasibles dépends on the capabilities
of the receivers as well, specifically on whether they havie S8PMPR capabilities. Let
RSPR(G,,) and RMPR(G,,) be the feasible rate regions corresponding to channel state
G, = g, g € Gunder SPR and MPR respectively. Since under SPR a transemisainot
be successful if more than one transmitter transmits toaheegeceiver, we first identify
subsets of the transmitters with non-overlapping receivéve define aalid activation
vectorc to be a binary’-element vector that takes values{in 1}*. All the non-zero en-
tries of a valid activation vector correspond to transmstteith non-overlapping receiver
sets that can be activated successfully under some rateaawer allocation. In other
words, for any two elementsj), ¢(k) of an activation vector with ¢(j) = ¢(k) = 1
it must be true thaD(j) N D(k) = (. We further define theonstraint seC to be the
set containingll such activation vectors. Based on the abdwe;®(G,,) is defined as

follows:
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RSPR(G,,) = co{ =(r(k), k€ T): 3P €P, Ic e, suchthatyd € D(k)

c(k) P (k)G (k, d)
N(d) + 3 jer o ) Pa(§)Gald, d)

> alr(K) } 3.7)

whereco(-) is the convex hull of the set. Hence, the RF(G,,) is the set obtained by
time-sharing of feasible rates, achieved by some poweovEct P such that concurrent
transmission from two or more transmitters to a common vecés prohibited. Similarly,

RMPR(@,,) is given by

RMPR(G,) = Co{r = (r(k), ke T): 3P € P, suchthatvd € D(k),

———P

SINR, (k,d) > vn.a(r(k)) } (3.8)

3.2.2 Problem Formulation

In this chapter, we are interested to maximize the sum atiaslof all receivers
where the utility is defined in terms of the long-term aver#geughput. We assume
utility functionsU(+) that are strictly concave, increasing, and continuoudfgdintiable
with respect to the received user rate. As an example, &tiliction that satisfies these
properties is the utility ofv-fairness presented in Chapter 1.

To distinguish from the regio®S"®(G,,) of instantaneousransmission rates, we
also define the average rate regig®;"® when the receivers have only single-packet

reception capabilities as

53



RSPR — {r = (7(k),k € T): Ir® e R (g), Vg € ¢

st 7(8) = [ (00300 o) | 39)

This region corresponds to the long term average rate regfitiwoughput rates that are
achievable when the scheduling decisions are based only estemate of the true chan-
nel state. Itis easy to see that no rate outside the réi5h is achievable unless a policy
7 ¢ I1, i.e., has access to a better estimate of the channel statk wbuld improve the
probabilities of the matri@g. The corresponding average rate region under MPR ca-
pabilities, RMFE, is defined similarly by replacin®>"%(g) with RMPR(g) wherever it
appears in (3.9).

From now on, to simplify our notation we will writ®(G,,) to refer to the in-
stantaneous feasible rate regi®"*(G,) or RMPR(G,,), depending on the receiver
capabilities. Further, we denote ®/the corresponding average rate region. Finally, we
denoteQ"" (k, k) and Q" F) (k, k) by Q7 (k, k) andQ7 (k, k) respectively where the
superscriptr is used to denote the pair of rate and power choices by a policy

Given the above definitions, the utility maximization preil under consideration

can be formulated as follows:

max Y [D()|U (k) (3.10)

keT

whereU (7(k)) is the rate utility that any receiver € D(k) receives from théth trans-
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mitter. By multiplying this utility with the number of recegrs in the multicast group, we
obtain the overall utility of all receivers.

Note that this is a convex optimization problem. One apgidasolve this problem
is to use interior point methods to obtain the optimal vectoaverage rates and in the
sequel map these average rates to a sequence of instargéra@@smission rate selections
(and corresponding powers) over the time. However, duegtatiye number of variables
involved in the optimization, finding these instantaneatses can be difficult. Further,
the complexity of this reverse process is exacerbated byatttethat at any given slot
there may be more than one such instantaneous rate seldctithiis chapter, we follow
a different approach by introducing an on-line, gradiesstdd solution that at every time
slot selects the instantaneous rates so that the long-i@rage rate is the maximizer of

(3.10).

3.3 Optimal Rate and Power Control Policy under Uncertainty

In this section we specify an optimal, centralized policy; which takes rate and
power control decisions at the beginning of each time sldtiarlaimed to solve (3.10).

Let r7 (k) denote the transmission rate of transmittemder policyr at time slot
n and letr”™ denote thél” dimensional vector of ratasT = (r7(k),k € 7). Also let us
define byd” (k) the time-average rate of transmitteunder a policyr until time slotn.
From now on we will refer to this time-average rate asdffective rateof transmitterk

at time slotn. Note that this coincides with the rate that each receiverD(k) receives
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up to time slotn. Specifically,

n

lzr K)QT (K, k). (3.11)
v=1

3

We also define the vector of effective rates of all transmsttg to time slot. by 67 =

(07 (k),k € T). The vecto®T can be written recursively according to

O, =07 e Y7, (3.12)
where
Yr =17, 'Qr, - 6], (3.13)
and
€n = ni . (3.14)

Assume that at time slot, the estimated channel state satisfies = g for some
g € G and the effective rates at the previous time slet 1 are given a®™ , = 0. Then,
therate and power contrgbolicy w* under channel state uncertainty is defined as
[P 08 R O8] :{ argmin » P(k):VkeT, Vde D(k)}, (3.15)
PEMG’g,PEP keT

where M?¢ is given by

B,g: I = are max M
M { r§R ax» _[D(k) (k. k) } (3.16)

keT

Note that the sef\%¢ may not be well defined when the gradient of the utility
function is not finite. An example to this is the utility of grortional fairness where for
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values off (k) close ta) the gradient is ill-defined. However his problem can be overe
by adding arbitrarily small initialization constants tetargument of the gradient of the
utility, as was done in [15] and [21].

The optimality of* defined in (3.15) and (3.16) with respect to the utility maxi-

mization problem of (3.10) is established next.

3.4 Asymptotic Analysis of the Optimal Policy

To show the optimality of the policyr* given by (3.15) and (3.16) we use the
theory of stochastic approximation ([26], [27]). Note tlia¢ recursion (3.12) is in the
standard stochastic approximation form with decreasiep sizee,,. Lett, = 0 and for

n—1

n=1,...lett, = > " ¢. We define the continuous time interpolation proc@ss’

on (—oo, +00) as follows:

067*, if t < to,
0°™ (t) =

0", ift, <t <t

We further define thehiftedproces®9™™ on (—oo, +0) as:
0" (t) = 0°™ (t, + 1), Vt € (—o0,+00).

The basic idea behind this method is to interpolate the elisgrocess of effective rates
0™ n € {0,1,2,...} to a continuous proces®¥™, with interpolating length equal to
the decreasing step sizg of the algorithm. The shifted versiad™ of the continuous
process is created by shiftir®)™" to start at the:th interpolation interval. It is easy to
see that the tail of the sequen@® follows that of the proces8™™ . Showing that the
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latter converges to a set of limit points of an ordinary dif&ial equation (ODE) proves
that the sequend®™ converges to the same set of limit points.

The convergence can be either with probability one or inrithgtion. Although
weaker, convergence in distribution often yields the samf@ination about the asymp-
totic behavior in practical applications as the probapiihe methods [26]. Hence, we
only focus on convergence in distribution.

Due to the fact that the bandwidth of the communication iddiaind the power
vectors are chosen from a compactBethe rate regiofR (g) is compact. Le£™ denote
the transmission rates assigned by poficyuntil timen, i.e.,£™ = {r™ v < n}. From
the above it follows tha¢™" also belongs in a compact set. We denote the laté&t.by

To show optimality of the policyr* described by (3.15) and (3.16) we make the

following assumptions.
Assumption 1 For every time slot: and sequencé™ the functiong®é:  defined as
7\'* 71.* T 7.‘.* 7.‘.*
g%% =E[rT,, QT (0,£7] -0, (3.17)

is measurable with respect to thealgebra generated by0,£7 i = 1,...,n}. Fur-
thermore, for every compact st C =, the functiongff’sg is continuous i@ uniformly

innanding™ € A.

Assumption 1 guarantees that small changes in the curreetverage rate will not affect

significantly the rate selection of the next decision instan

Assumption 2 The functior;® defined as

*

_ P R
90 = E[rn+1 Qn—‘,—l] -0, (3.18)
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is continuous i@ and satisfies

n+m—1
. P o s _ s —_
Jim 20N (ST TQEL6T €7~ 0 - g(6) )UET €3} =0, (3.9

l=n
where the limit is in the mean and takenras— oo andm — oo simultaneously in any

way at all.

The second part of Assumption 2 resembles a weaker versitredéw of large
numbers, since we only require that the time average of aeswguof expected values
must converge. When the channel process is ergodic, th&®)(Bolds even without the

expectation. The following two theorems establish theroality of the proposed policy.

Theorem 4 Consider the policyr* € II specified by3.15)and (3.16) Under Assump-
tions 1-2 and for any initial conditionr™™" converges in distribution to the set of limit

points of the ODE given by
6 =ErT,' Q] - 0. (3.20)

The proof is given in Section 3.7.

Theorem 5 The ODE given ir(3.20) has a unique limit poin®* € R whered* is the

solution to(3.10) i.e.,

6" = argmax  _ |D(k)|U(7(k)).
TER  keT

The proof of Theorem 5 is given in Section 3.8.
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3.5 Simulation Results

In this section, we analyze the performance of our proposédythrough a set of
simulations both for unicast and multicast traffic. For thkesof simplicity, we assume
perfect channel estimation, i.€5,, = Gn for every time slot:. Throughout this section,
we consider the utility of proportional fairness. We obsaiive performance of our policy
both in the presence and absence of channel fading. As weasedllater in this section
unicast traffic is significantly benefitted from the preseotéading. These benefits are
mitigated in the case of multicast.

Throughout our simulation analysis we consider a single;vareless network
with three transmitters and three receivers. The durati@antone slot is assumed to be
equal to one second. For simplicity in our simulations weyaalnsider rate control, and
assume that each transmitfeat every time slot. can either remain silent or transmit
at a maximum poweP(k), k = 1,2,3. Specifically, we assume that the transmission
powers satisfy”(1) = 6.0« 107> Watts,P(2) = 3.0« 107> Watts, and”(3) = 2.0 107°
Watts. Further, the power of the Additive White Gaussiandda$ assumed to b€ (d) =
3.34 % 10~% Watts at all receivers.

In our model we consider quasi-static, Rayleigh fading. thet received signal
power under path loss and shadowing between transniited receiver; at time slot
n be denoted by’ (i, j). Moreover, let the average received powerjgi, j). Then,
under Rayleigh fading the received signal powg(:, j) is exponentially distributed with
meanP’ (i, j) (see e.g., Chaptérin [28]).

Let us define the average path loss matix= (G(i,j),i,j = 1,2,3), which
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is obtained by averaging the path losses over all differetes of the channel (fading)
process{ G, }°°,. With the common assumption that the shadowing proceses/ag-
cording to a zero mean Gaussian random variable it followsttie channel coefficients
Gn(1,7) satisfyG,,(i, ) = Pl (i,7)/P(i) at timen, and furthermore the average path loss
is equal toG(i, j) = P(i,j)/P(i). We study the performance of our policy under two
scenaria, namely under (i) pure path loss and (ii) Raylegghiniy. For the comparison
to be meaningful, we assume that the matrix of path lossesrigagnario (i) is given by
the matrixG, which is the mean of the Rayleigh fading of scenario (ii)e ThatrixG is

parameterized as follows:

09 509 509

]
I

409 09 09 |-

609 £0.9 0.9
whereg € [0, 1] multiplies the cross channel path losses. For the case cdsirtraffic, we
dub the parametet as theinterference coefficierwhile we call itcross-link coefficient
for the case of multicast. In the case of unicast traffic, gasameter reflects the level
of interference in the network. For example, when= 0, the channels between the
three transmitter/receiver pairs can be seen as thredgdarhéinnels that can operate
simultaneously without causing any interference to eatierotOn the other extreme,
wheng = 1, the path losses at the direct channels between every titdgisamd receiver
are equal to the path losses over the cross channels, aefbtiecthe level of interference

at every receiver is very high. In the case of multicast tafie parametef gives the

guality of the cross links and has an effect not only on therfetence, but also on the
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transmission rate. Throughout the section, we obtain the @aer(-) at the receivers
through the single-user Shannon formula, i-€SINR) = log,(1 + SINR), by assuming

unit bandwidth.

3.5.1 Casel - Unicast Sessions

In this subsection, we consider the special case of unieasians, i.eD(1) = {1},
D(2) = {2}, andD(3) = {3}.

In Fig. 3.2, we present the convergence effective rates di eaceiver when we
employ the optimal policy presented in Section 3.3 undedanfpand a non-fading chan-
nel model. The interference coefficient is sette- 0.2. From Fig. 3.2 it follows that the
effective rate of each receiver quickly converges to itsegponding proportionally fair
rate. We also observe that naturally the effective rateprangortional to the transmission
powers, and thus receiver one has a higher rate than redeigerand the latter has a
higher rate than the third receiver.

From the figure we can also draw an important conclusion; ffecteve rate of
each receiver is higher under fading than in the absencalofgaThis demonstrates the
opportunistic nature of our policy. If a transmitter seesad bhannel at the current time
slot, the policy will not activate this transmitter in geakrsince withhigh probability
in the future its channel conditions will improve. Moreoyvat the current time slot with
high probability some other transmitter having a bettemcleh will be activated by the
policy.

We proceed to compare the proposed optimal policy whend@rittake all possible
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Figure 3.2: Convergence of the utility optimal poligy for unicast traffic.
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rate control actions in the s&(G,,), and (ii) it is restricted to take TDMA scheduling
and rate control actions, i.e., it can only activate a singlasmitter at any given time
at its maximum achievable rate. Note that since the trarssamspowers take binary
values from the sef0, P(k)} for every transmittet:, the setR(G,,) contains7 rate
vectors obtained by finding all possible subsets of trartensitand assigning them the
maximum transmission rates such that the SINR criterionirgtly satisfied at all their
receivers. We refer to the former as the “optimal rate cdqodicy” and to the latter as
the “TDMA scheduling policy”. The comparison of the two poés is performed under
various interference levels.

In Fig. 3.3 the proportionally fair effective rates at eaekeiver are plotted as a
function of different values of the interference coeffitighnfor the optimal rate control
policy and for the TDMA scheduling policy in the absence dfify. We observe that
when the interference levels are relatively low, the optirage control policy achieves
higher rates for every transmitter and receiver pair, aosp@ to the TDMA schedul-
ing policy. We also observe that the two policies have cowplarperformance under
higher interference levels. This result is natural sinae ghoposed policy exploits the
potential benefits of concurrent transmissions when thegfertence is relatively low and
it effectively operates as a proportionally fair TDMA schiéidg when the interference is

relatively high. A similar pattern is observed in Fig. 3.4eve fading is considered.
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3.5.2 Case Il - Multicast Sessions

In this subsection, we consider the case where there are skssions, one broad-
cast, one multicast, and one unicast. Specificalyt) = {1,2,3}, D(2) = {1,2}, and
D(3) = {3}. We assume multi-packet reception capabilities (MPR) atéceivers, e.g.,
both session$ and2 can be activated simultaneously as long as the SINRs formeach
ceived transmission at every receiver exceed the apptegheesholds. In Fig. 3.5, we
present the convergence of the effective rates of eachvex@ahieved under the proposed
policy by setting the cross-link coefficient equalide= 0.2.

Again in this figure we observe that the effective rate of eadlticast session con-
verge quickly to its respective proportionally fair rate.e\Wirther observe that unlike
unicast, in the case of multicast traffic it is no longer troattthe rates under fading are
always better than the corresponding rates in the abserfegliofy. The reason behind
this observation is the fact that now a transmission in@eiltiple links and the multi-
cast rate is constrained by the link with the worst channeltdithe single rate multicast
assumption. Hence, for transmittieto effectively observe a “good” channel, all the three
channels to which it broadcasts have to be good simultaheddiearly, the probability
of occurrence of this event decreases as the number of eesa¥ a multicast session
increases. Therefore, the average received multicasofdle broadcast session is nat-
urally worse under fading. On the other hand, the averagaved rate under multicast
sessior2 and under the unicast from transmitgeis still better under fading due to the
opportunistic nature of the optimal policy.

In Fig. 3.6 and 3.7 the proportionally fair rates of each moakt session are plot-
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Figure 3.5: Convergence of the utility optimal poligy for multicast traffic.
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ted as a function of the cross-link coefficighunder a non-fading and a fading channel
model. As in the unicast case, we plot both the proposed aptiate control policy, as
well as the TDMA scheduling policy. From Fig. 3.6 we obseivatthe only session that
enjoys a higher rate under the optimal rate control poliajésunicast session. For the
broadcast transmission from transmitteand the multicast transmission from transmitter
2, no benefits are observed under concurrent operation ofghsnitters, even for small
values of the parameteét. The reason behind this observation is the multi-packetpec
tion capabilities of the receivers in adjunction with thetfthat the quality of the direct
links is fixed and equal t6.9 in this numerical experiment. For example, in the case of
broadcasting from transmittér the high quality of the direct link will not only poten-
tially increase the rate of the broadcast session usindittkisbut will also cause high
interference to the multicast session using recelivdihe same observation is true for the
multicast session. Therefore, regardless of the value m@ite control does not provide
any additional gains in terms of rate compared to TDMA for ticakt and broadcast.
However, the above discussion is valid only under non-fgadimannels. As shown
in Fig. 3.7 the statistical gains observed by allowing moréticast sessions to operate

concurrently makes a TDMA based scheduling suboptimalemtiesence of fading.

3.6 Summary

In this chapter, we obtained a joint rate and power contrétpohat allocates the
transmission rates and powers to each multicast transmoptemally so that the total

utility of the average rate at each receiver is maximized céfesidered policies that have
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access to only an estimate of the channel state, that cansséfoinaccurate.

In Section 3.2, we presented the network model under coratide and we defined
the utility maximization problem. In Section 3.3 we intragd an online gradient-based
algorithm claimed to be optimal with respect to the utilitgxmmization problem of Sub-
section 3.2.2. The main results of optimality of the progbselution were presented in
Section 3.4. In Section 3.5 we presented numerical exantipggscomplement our an-
alytical results by providing engineering insights on tipgimal scheduling solution. In
particular, we confirmed that the average received raterundeast can be higher under
a fading environment than in a non-fading one with path lagsaéto the average path
loss under fading. This improvement is decreasing for roadti traffic as the number of
multicast receivers increases. Further, our numericailltiseshowed that under unicast
traffic the optimal solution achieves strictly higher ratlkean a pure TDMA scheduling
policy in the low interference regime, and as interferemoedases our approach remains
at least as good. The optimality of the algorithm was showerploying the theory of

stochastic approximation. The proofs of our results appe&ection 3.7, 3.8 and 3.9.

3.7 Proof of Theorem 4

We make use of Theorem 2.3, p.258 in [26] stated below:

Lemma 2 Consider the algorithm given 8.12) (3.13)and (3.14)and where the step

sizes,, satisfy:

Zen =00, €, >0, ande, — 0forn > 0;¢, =0, for n <O0. (3.21)
n=0

72



Further, assume that the following assumptions are true:
(A.1) The sequendgY ™ }> , is uniformly integrable.
(A.2) There are measurable functiogfs-*» and random variableg, such that
E.[Y]] = gov% + Bn. (3.22)

(A.3) For each compact sét C =, the functiong®4- is continuous irg uniformly

innanding, € A.

(A.4) For eachy > 0, there exists a compact séf C = such that

inf P¢, € As] > 1—0. (3.23)
(A.5) The following set§gf4-1, {g%%} for each@ are uniformly integrable.

(A.6) The following is true:

n+m—1
1

im — Zj E.[3] = 0, (3.24)

where the limit is in the mean.

(A.7) There is a continuous functigf such that for eacl and compact sef it is

true that
n,m—o0 MM, — g ’ '

wherel{-} is the indicator function and where the limit is in the mean.

(A.8) The decreasing sequenggechanges slowly in the sense that there is a se-

guence of integers,, — oo such that

lim sup
n—o00, 0<i< Ay,

Coti 1‘ — 0. (3.26)

€n
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Then for every subsequencedf ) there is a further subsequence, which will be indexed

by n, and a proces#(-) such that™ (-) = 6(-) (in distribution), where

0(t) = 0(0) + /t g% ds.

For anyd > 0, the fraction of time tha®™(-) spends in a-neighborhood of.; on |0, 7]
goes to one (in probability) as — oo andT — oo, whereL; is the set of limit points of

the ODE® = °.

The proof of Theorem 4 is readily obtained by verifying thia¢ tconditions of
Lemma 2 are satisfied under Assumptions 1 - 2. First, notethieatequired conditions
regarding the step sizg in (3.21) are satisfied by our choice of step size given in4B.1
As we mentioned previously since the bandwidth of the comoation is finite and the
power vectors are chosen from a compactethe achievable rate regioR(g) for
everyg € G is compact. Hence, for every slatit follows that both the transmission
rate aIIocatioan’ezi“é" of policy *, as well as the effective ra®™", are bounded
almost surely. Moreover, from (3.13), the seque{i®&" }>°, is almost surely bounded

and hence uniformly integrable, i.e.,
supE[YT 1{Y™ >¢}] — 0, asc— oo.
Thus condition(A.1) of the Lemma 2 is satisfied. In addition, from (3.13) it follothat

71_* 71_* 7.‘.* 7.‘.* T 7.‘.* 7.‘.* 7.‘.* 71_*
E[Yn |00 7£n ]:E[rn—i-l Q _en |00 7€n ]

n+1

* *

T~ T et T
=E[r7 ., Qa7 &7 - 67
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Hence, by choosing the function th® ¢ as¢® & = Efr™,, Q|05 ¢ ]—
0™ and the random variablek as/3, = 0, for everyn, (A.2) is satisfied. From Assump-
tion 1, (A.3) follows. Condition(A.7) follows from Assumption 2. ConditiofA.4)
follows trivially from the fact tha is a compact set and therefore every subséi of
compact as well. Sinc@Y;{*};O:O is uniformly integrable(A2.5) is satisfied from the
definition ofgg" " . Also, since3, = 0 for everyn, (A.6) trivially follows. Finally, for
€, given by (3.14), it is easy to verifiy4.8).

Hence, since the conditionsi.1)-(A.8) and (3.21) are all satisfied we conclude
thatd™™ converges in distribution to the set of limit points of the BBiven in (3.20).

3.8 Proof of Theorem 5

We need to show that the ODE of (3.20) has a unique limit p@initrespective
of the initial conditions, wher@* is the solution of (3.10) and hence the proc@s&)
converges t@* asn — oo.

From (3.16), it follows thaR ", ¢ € M®& C R(g), V0. Let us define the sett®
for somed according to

6 < U0k
M { r:r= r%ergax{z Z 82(1({)))}}’ (3.27)

keT deD(k

whereR is given by (3.9) in the case of SPR capable receivers andiisedesimilary in

the MPR case.
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Lemma 3 The following is true:

*

R™ = [n+1 Qn—‘,—l] 97 (3.28)

where M is given by(3.27)

The proof is presented in Section 3.9. Bdrto be an limit point we need to have that
6* € Randd = 0, i.e., Er™ 'Q™] = 6*. Sinced* € M? from (3.27) it follows that

for everyd ¢ R

> 1D o)~ (k) <
keT

which from Proposition 2.1.2 of [29] implies th@t maximizes the utility problem de-
fined in (3.10).

Further, to show tha#* is a stable equilibrium point to which the ODE converges
we use Lyapunov stability criteria. We will use the utilityrfctionU(-) as a Lyapunov

function. We then have
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iU(et) => Dk aU et(k))et(k)

dt P (k)
_ %ZTID 8%9?())) {R"(k:) - 94@}
= %ZT D (k 6%9?()))  arg max (; |D(k)|r(k)%>
LT OB
~ max (;‘D ag@f&))) (k)>

=Y ID(k) 8%9@( >>9t(k)20, Vo, € R.
keT (k)

Therefore the utility/(6,) is a Lyapunov function for the ODE since it is strictly
increasing with time unless the equilibrium poird* is reached. In such a case, i.e.,
when@, = 0*, the above inequality holds with equality proving that theEdefined in

(3.20) converges t8*. This completes the proof.

3.9 Proof of Lemma 3

We have the following:
R:Lr+1 = E[r] n+1 Qn—i—l]
7.(* T ﬂ.* A

= E[E[rn—i-l Qn+1‘Gn+1 = g“
Tr* T —~ Tr*

= IE[rn+1 Qg ]
7'(* T — 7'(*

- [T OF futea
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Therefore, by the definition a8, it follows thatR™, ; € R. As a result we have

_ 0
S D0 () 5 < max S D00 1)

keT
Further,R™ %8 ¢ M98, hence for every other policy we have

U(6(k)) oU (0(k
S IPWIRTA 0 g = S D [ 7,090 (b e e

) Ui
/ S (BID(IQE ) o ) s

9 keT

This concludes thaR™ = E[r™;, ' Q™ ,] € M.
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Chapter 4
Minimum-Length Scheduling

4.1 Background

The performance metric of utility optimization studied i@pters 2 - 3 relies on
the fundamental assumption that the average rate is welettfind the average rate
region can be characterized. This is also a common assumptien the objective is
to maximize the network stability region or the informatitireoretic capacity region.
However, for instance, the unpredictability of the wiralebannel or the finite energy of
the wireless nodes can lead to non-stationary and non-ergbdnnel behavior. For this
reason, alternative measures should be investigateddoiaicior the cases of non-ergodic
and non-stationary wireless channel processes.

In this chapter we consider an alternative approach, thatmmum-length schedul-
ing. The problem of minimum-length scheduling involvesadbing a sequence of activa-
tions of wireless nodes so that a finite amount of data, negidi a subset of the nodes in
the network reaches its intended destinations in minimoma tiThis topic has attracted a
lot of attention recently ([4], [5], [6], [7], [8]). It is cleely related to the problems of net-
work throughput or stable throughput maximization, sinéeimizing the time to deliver
a fixed amount of data, can be seen as maximizing the effeatieat which data traverses
the network. Furthermore, it is a useful alternative mettnat characterizes the traffic-

carrying capabilities of wireless networks with non-siatiry and non-ergodic channel
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variations, where the commonly used performance critdrsatle throughput and net-
work capacity are not well defined. Although in this chapterfacus on networks with
stationary and ergodic channel behavior, we expect ouysisab yield valuable insights
regarding the more general case of non-ergodic and noiossaay wireless channels.

In [4], the authors obtain a centralized, polynomial-tinhgoaithm for static net-
works that finds a schedule of minimume-length satisfyingt@knk traffic requirements.
However, in [4] modeling of the physical layer is overly silifipd as it is assumed that
any two links can be successfully activated simultanecaslgng as they do not share any
common vertices. This simplification relates the minimwngth scheduling problem to
the problem of obtaining a maximal matching in a non-bipagdraph [30]. However, due
to the broadcast nature of the wireless medalhtoncurrent transmissions can poten-
tially contribute to the total amount of interference atteseceiver and make its reception
to fail.

In [5], the authors consider the problem of obtaining a sakedf minimum-length
under the SINR interference model. They assume that thertrigsion rates are fixed and
each transmitting node selects its transmission powemafiiy. In [5], the minimum-
length scheduling problem is formulated as a linear prodf&iy that can possibly have
a prohibitively large number of variables and thus is harddtve. In [6] and [7] the
authors consider the minimum-length scheduling probleteurdifferent sets of opti-
mization parameters. Specifically, they consider the cabese (i) both the transmission
powers and rates are fixed, (ii) the transmission powers eampbmized but the trans-
mission rates are fixed, and (iii) the transmission powezdiged and each transmitter is

allowed to choose its rate from a predetermined, finite sedtef, that is common among
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transmitters. In [6] and [7] the minimum-length schedulprgblem is also formulated
as a complex linear program, with a relatively small numfetamstraints and a large
number of variables. To address the high complexity, the@stemploy the technique
of column generation [31], whose running time is faster andkierage than that of the
original linear program. However, the worst case perforceasf column generation can
be significantly worse than that of the original linear pargr

Most of the prior work on the minimum-length scheduling gesb focuses on se-
lecting the transmission powers while keeping the transiomsrates fixed. Due to the
coupling between the physical layer and the medium accegsotin wireless systems,
it is clear that a joint optimization of link activation andte control will yield a better
performance, which is the focus of this chapter. In the fiest pf this chapter, we con-
sider static networks where the channel effect is due to patie-loss. We first assume
a slotted-time model, and formulate the minimum-lengthesiciing problem as a short-
est path between a given source-destination pair on a Bae&tyclic Graph (DAG).
We obtain an optimal joint scheduling and rate control sotuthat provides a shortest
path on a DAG. Although finding a shortest path on a DAG has grmohial complex-
ity in the number of its vertices and edges, this number inAG construction grows
exponentially as the size of the network and initial dat#firancrease. For this rea-
son, we make the following simplifications. We first map thecdete-time problem to a
continuous-time equivalent, where slots are replaced pattiods of time. We then re-
duce the possible scheduling and rate control decisionsctade only “one at a time”
or “all together” communication and explicitly characierithe optimal solution of this

reduced problem. Understanding the behavior of the optuolaty, even for the reduced
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problem, is significant since it provides valuable intuitiabout which scheduling and
rate control actions are expected to be in the optimal swiytie., in the minimum-length
schedule. This intuition, for example, can improve the @arniance of the column gener-
ation technique in [6] and [7] by providing the algorithm wihose scheduling and rate
control actions that are expected to be employed by an optiatiay.

Further, all prior work (see e.g., [4], [5], [6], [7], [8]) wtlies the minimum-length
scheduling problenonly for wireless networks with time-invariant channel coratits,
which is not the case in reality. Thus, in the second partigf¢hapter, we extend prior
work by considering time-varying wireless networks. Oualgo the time-varying net-
work case is to find an optimal policy that minimizes #pected timeequired to de-
liver all the traffic to its respective destinations. We sollie minimum-length schedul-
ing problem by formulating it as stochastic shortest pathvhich is a special case of a
Markov Decision Process (MDP). We obtain an optimal schadwdnd rate control pol-
icy through stochastic control methods. For time-invar@rannel processes, this model
reduces to finding a shortest path on a DAG and methods dedarilthe first part of this
chapter are applicable to compute the optimal solution.

The results presented in this chapter differ from [4] sineemodel the interference
more accurately through the SINR interference model. Wevioh different approach
from [5], [6], and [7] since we formulate the minimum-lengtbheduling problem as
finding a shortest path on a single-source DAG, and we givepéimal graph-theoretic
algorithm. Furthermore, we provide an explicit charactsion of an optimal policy
for a simplified model that is obtained by reducing the setakfble scheduling and rate

control decisions to either communication “one at a timé'aditogether”. Our results are
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different from [5] since we consider joint scheduling antereontrol decisions. Finally,

we generalize existing work in this subject to time-varyamgnnels.

4.2 Model Formulation

We consider a slotted-time single-hop, wireless networkmasing of X transmit-
ter and receiver pairs. Without loss of generality, the dlottion is equal to one second.
Each transmitter has a finite amount of data units, e.g., &fifieliver to its correspond-
ing receiver. The objective is to activate the transmitsgrghat the time to deliver all
the traffic to its intended receivers is minimized. The strlgbp network assumption,
albeit simplifying, is interesting since it captures thadamental problems that arise due
to the interference when multiple nodes attempt to obtaamokl access. We denote by
K ={1,..., K} the set of all transmitter and receiver pairs in the netwatlevery time
slot, each transmittdr € K can either transmit at its maximum transmission pofet™
or remain silent. We denote the transmission power ofthéransmitter at time slatby
Pi(t), wherePy(t) € {0, P},

It is assumed that each transmitfehas afixed amount ofd,, bits to deliver to
its corresponding destination. We denotedy= (dy, ..., dx) the vector of initial data
traffic at each transmitter. We also denoteXyy(¢) the queue size at transmitteat time
slott and byX(t) = (Xi(t),..., Xk (t)) the corresponding vector of queue sizes at all
transmitters in the network. The queue size of each tratsnat time slo® is equal to
its initial data traffic, i.e.X(0) = d. The state space of the proc€3§(¢)}:°,, is denoted

by X.
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We also consider a channel procg€s(t) } 2, that takes values from a finite 3gt
For every time slot, the channel stat&(t) = (G, (t),Vk,j € K) gives the channel
guality between every transmittérand receiver;. This model captures the effects of
channel variations due to e.g., node mobility, fading, cedipath loss. It is assumed that
the channel follows a block fading model with block lengtliakto the duration of a time
slot. Hence, the channel conditions charmgdy at the beginning of each time slot and
remain constant throughout the slot duration. The aboviem®are summarized in Fig.

4.1.

X ([) Pl(t)

° 'WARS °
° A °
° //\'\ °
4,0 )
¢ v A

Figure 4.1: A network of<” transmitter/receiver pairs.

We model the physical layer by adopting the Signal to Interfee plus Noise Ratio
(SINR) criterion. We denote by, (74 (t)) the SINR threshold value at receiverthat
must be met or exceeded in order to receive successfully fransmitterk at rater(t)
at time slott. Consequently, we say that at stdransmitterk transmits successfully to
receiverk at ratery(t) if
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Pi(t)Gam (1)
Ni+ Y5 P0G i (t)

whereNN,, is the thermal noise power at receiver

SINR, (1) =

> Y(ri(t)), (4.1)

A joint scheduling and rate control policy at any given timeeds to decide (a)
which transmitters to activate and (b) their respectivednaission rates. This information
can be captured by the K-dimensional rate veetoy = (ri(¢),...,rx(t)), wherery(t)
is the rate of transmitter at slott. If a transmitter is assigned a zero rate then it is not
activated by the policy. In other words, a transmission vatgor implicitly specifies the
scheduling decisions. The set of all feasible rate vectonsains those that are obtained
by the following two-step procedure. We first identify allgsible subsets of activated
transmitters (by assigning to each transmittegither power0 or P***) and then we
assign them the maximum rates that allow all activated méttesrs to jointly satisfy the
SINR criterion. Thus, there exigf — 1 suchK -dimensional transmission power vectors,
each of which corresponds to an achievable rate vectorrigldze set of achievable rates
depends on the current channel sigte G. Hence, for every channel staiewe denote
by R(g) the finite, discrete set ok -dimensional rate vectors. Then, the cardinality of
R(g), i.e.,|R(g)|, is equal t&2" — 1 for every channel staig € G.

In this chapter we are interested to obtain optimal polithestake joint scheduling
and rate control decisions under the objective of miningzhre (expected) time to deliver
all data to its corresponding destinations. The policiescamsider are aware of the
network queue-sizes. Further, they are assumed to knowutinent channel conditions

in order to make accurate scheduling decisions. For evety she pair of the channel
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stateG(t) and queue sizeX(t) comprises the system sta#¢t). We denote byS the

state space of the system state proé&gs) }>°, which is given by

S ={(x,8): xeX, geg}. (4.2)

We restrict our attention tetationarypolicies that take decisions merely based on
thecurrent system state informatiobet the system state at time statatisfyS(t) =i =

(x,g) € S. Then, we consider policies that are given by the mapping

r(t) = w(i), w: X xG— A@i) C R(g). (4.3)

The setA(:) is a subset of the overall feasible decisions. If it is a s8itset,
scheduling will be suboptimal in general at the benefit ofrdased complexity. Further,
it is possible by “smartly” choosing the elements of the 4ét) to obtain performance
close to optimal while achieving considerable reductioodmputational complexity.

We assume that every admissible policy uses the channelistatmation ratio-
nally so that a scheduled transmission is always succe$s¢ftlirally, as reflected by the
cardinality of the seR(g), the policies we consider ar®n-idling, i.e., they always acti-
vate at least one transmitter that has a non-empty quedealltitie queues in the network
are empty. Otherwise, an idling policy would potentiallystea slot by not activating any
transmissions. We call the class of stationary, non-idfinficies given by the mapping
(4.3) asadmissibleand denote them bi.

Consider a scheduling and rate control polieyhat at every slot selects the trans-

mission rates of all the transmitters. Then, the queue sizeegs evolves according to
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the following equation

X(t+1) = {X(t) - W(t)} +, (4.4)

where[z]" = max{z, 0}.

Clearly, the queue size at each transmitteakes its maximum value at time slot
0, when it is equal to the initial demant], and due to the absence of external arrivals it
keeps decreasing over time until it reaches zero. Underlibeeamodel, we proceed to

formulate the minimum length scheduling problem for statid time-varying networks.

4.3 Static Networks

In this section, we restrict our attention to static netvepskhere the channel qual-
ities G ;(t) are equal for every time slat i.e., we ignore effects of fading or user
mobility. Thus, the cardinality of the sétis equal to one. To simplify notation, in this
section we denote the channel quality, ;(t) asG(k, j). We will drop this assump-
tion in Section 4.4 where we will consider time-varying chahprocesses. Further, to
simplify notation we denot® (g) for g € G by R and.A(:) for i = (g,x), g € G by
A. At every time slott the scheduling and rate control policy identifies a rate arect
r(t) = (r(t),...,rx(t)) € A C R that specifies which transmitters are activated at time
slott and their respective rates.

We can formulate the minimum-length scheduling problenoéiews:
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minimize : T (4.5)
subject to:  X(T) =0, X(0) =d, (4.6)

T eN. (4.7)

In the specific case of pure Time Division Multiple Access MB) scheduling,
combined with rate control, where only a single transmittam be active at any given
time, the solution of the above problem becomes trivial. c8mally, each transmitter
must be active for as many time slots as needed to empty itseqUée required number
of such time slots for each transmitteris equal to the ratio of its initial demand,
divided by its corresponding rate when it accesses the @handividually. Then, the
minimum total time that is needed until all the queues aretgngpequal to the sum of
the time slots required by each transmitter. The order ircvkie transmitters must be
activated is immaterial; they can be chosen in a round-robbirandom fashion or a
single transmitter may keep transmitting until its queug®es, after which time another
transmitter with a non-empty queue is chosen.

However, the solution of the optimization problem given #yb)-(4.7) is in general
a non-trivial discrete optimization problem. In the follmg subsections, we provide an
optimal graph-theoretic algorithm by mapping it to a sheirfgath problem on a DAG
and we also give an explicit characterization of the optipwicy for a reduced version

of this problem.
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4.3.1 The Equivalent DAG Representation

To solve the optimization problem defined in (4.5)-(4.7) faliow a graph-theoretic
approach, and formulate it as a single source shortest paltkepn on an equally-weighted
DAG.

We construct the weighted DAG = (V, E) as follows: We assume that every
vertexu € V of the DAG represents a queue-size vector that can be obt#meugh
some scheduling and rate control action chosen from thegl sarting from a vector of
queuesX(t). Further, every directed edde, v) € E represents one such action.ih
We say that the eddex, v) isincident fromu andincident tov. Hence, from every vertex
x; we can have.A| edges that are incident fror), each corresponding to a different rate
vectorr’,s = 1,...,|R|. Each such edge is incident to a noge= [x; — r|". We
disallow those edges that correspond to rate vectors, wdmtkiate transmitters with
empty queues. Therefore, the actual number of edges thatcdent from a vertex can
be less thanA|. The weight of each edge is equal to one. From now on, we \Wél fte
actionr’ through the edgéx;,y;). The unique source nodeof the DAG represents the
vector of initial demandsX(0).

In Fig. 4.2 we give an example of such a graph for a network oftransmitters and
two receivers. We assume that the initial demandsglare 4 bits andd, = 6 bits and that
we have three possible scheduling and rate control act{gramly transmitterl accesses
the channel at a rate @fbits/sec, (ii) only transmitte? accesses the channel at a rate of
3 bits/sec, and (iii) both transmitters concurrently traiisha rate of2 bits/sec. Fig. 4.2

depicts the DAG that is obtained by these three actions. thatdrom each vertex all the
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three rate control actions are allowed, as long as eachnastivzedules transmitters with
non-empty queues. For example, in Fig. 4.2 the only vialtle cantrol action for the

queue-size vectdd, 0] is to activate transmitter individually.

Figure 4.2: A DAG construction corresponding to initial demdsd,; = 4 bits andd,; = 6

bits and three rate control actions= [3, 0], r? = [0, 3], andr® = [2, 2].

As we observe from Fig. 4.2 for any path of verticess, x;, x5, ...,%,, > the
gueue-size vector of each vertex in the path has to be comparse larger or equal to
the queue size of any other vertex that succeeds it in thegpakthe queue-size vectors of
any two vertices on the graph cannot be the same. As a rdsutiyerall graph represent-
ing the queue size dynamics is a DAG. Further, it is clear ¢waty path starting at the
sources ends at th®-vector. Moreover, the weight of any sub-paths, x;, %o, ..., x,, >
is equal to its lengthn, which is effectively the number of time slots to go freno x,,
on the specified path, as each weight of the DAG representiutiagion of one time slot.
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Thus, the initial problem given by (4.5)-(4.7) is transfaaninto a single-source shortest

path problem on a weighted DAG.

4.3.2 Finding A Shortest Path on a DAG

Shortest path problems on single-source DAGs can be solpgchally in poly-
nomial time [30]. In [30] an optimal algorithm that finds a stest path on a DAG is
presented. Below, for the purpose of completeness, wegedkis algorithm.

In order to compute a shortest path, we first need to sort the DAopological
orderand then use a sequence of edglaxationsuntil we obtain a shortest path from the
sources to the vertex corresponding to tbevector. Topological order is a linear ordering
of all the vertices of the DAG so that for every edge, x,), the vertexx; appears before
x; in the ordering. The process of edge relaxation verifies drehe current best-known
path from the sourceto a vertexy can be improved by passing through a different vertex
X.

We proceed with a few definitions that will be useful in thet i@sthis subsection.
We define thalistanceof a vertexx to be the minimum distance from the source in terms
of edges that must be traversed to reachWe also denote by[x| an upper boundn
the distance of vertex. For every edgéx, y) we say thaik is the predecessor gfand
we writex = w[y]. We denote by Adj] a list that contains all the verticesthat are
adjacent tax, i.e., such that there exists an edgey) € E. The pseudo-code of the

algorithm is provided below.

DAG-SHORTEST-PATHSE, s)
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=

topologically sort the vertices of

N

INITIALIZE-SINGLE-SOURCE(, s)
3 for each vertex taken in topologically sorted order
4 do for each vertex € Adj[x]

5 do RELAX(x,y)

The topological sorting of the first line of the algorithm dancompleted i® (|V|+
|E|) time, by running a Depth-First Search (DFS) [30]. The sedoredof the algorithm

involves the initialization of various variables as shovexin

INITIALIZE-SINGLE-SOURCE(@G, s)

1 for eachvertex € V

2 do J[x] « oo
3 m[x] < NIL
4 4§[s] 0

This process requires time of the ordei@(fV'|). Finally, in lines 3-5 of the DAG-
SHORTEST-PATHSE, s) algorithm, at each time step the next vertex in the topalalgi
order is selected and a sequence of relaxations over alkatigeare incident from this
vertex is performed. The procedure RELAXf ), given next, verifies whether the cur-

rent shortest path fromto y can be improved by passing through

RELAX(x,y)
1 ifdfy] >dx]+1
2 then dfy| < d[x] + 1
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3 Tly] —x

For the example given in Fig. 4.2, the shortest path algorgklects the sequence
of actionsr?, r®, r2. Note that the sequences of actiafisr®, r® andr?, r? r3 are also
optimal as the order in which the actions are taken is imraterterms of minimizing
the time needed to empty the queues, under the assumptitatiocfchannels. Also, it is
worth to mention that the length of the optimal schedule ioleththrough rate control is
naturally shorter than that of TDMA which is, in this exampdé length4. Further, it is
reasonable to expect that the difference between the twidvib@ecome significant as the
number of transmitter/receiver pairs in the network insesaas well as for larger values
of initial demands.

The optimality of DAG-SHORTEST-PATH${, s) can easily be verified (see e.g.,
[30], Theorem 24.5). Also, it is easy to see that its overathing time isO(|V| + |E).
Hence, the number of operations needed to compute a shpatsbf a single-source
DAG is of polynomial complexity on the number of vertices autes. However, in our
DAG construction this number grows exponentially (i) in thenber of transmitters when
A = R since from every vertex there exist — 1 potential edges that are incident from
it and (ii) as the initial demands increase. The above retigeoverall complexity of the

algorithm exponential.
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4.3.3 Continuous Time Model

As it is clear from the above discussion, the DAG solutiondmees infeasible
quickly as the number of transmitters and initial demandsease. In this subsection,
to decrease the complexity that stems from the discretgeafithis problem, we map
the problem given by (4.5)-(4.7) to a continuous time oneer&fore, instead of seeking
for the minimum number of time slots required to deliver ataltraffic to its respective
destinations, we are interested to obtain the minimum ‘woméor “period of time” that
has to elapse until all network queues empty. In this wayprtiemum length scheduling
problem becomes a linear program with a relatively small Ineinof constraints and a
large number of variables as in the formulations of [5], }d [7]. In order to solve this
linear program, we follow a different approach than [5],,[&hd [7]. In particular, we
reduce the number of variables involved, i.e., the schedudind rate control decisions
that the policy employs, and then obtain an optimal solufiiwrthis reduced problem.

Specifically, we restrict the set to contain feasible rate vectors obtained by two
simple schemes, namely schedulingiagletransmitter at a time or concurrently acti-
vating all the transmitters, as considered in [14], [23]. By doing se, decrease the
cardinality of A to K + 1. Although such a reduction is expected to be suboptimal, we
anticipate to gain valuable insights regarding the natfir@ptimal scheduling and rate
control for the general problem.

We define Actionk for k € K to be the action of individually activating transmit-
ter k£ and Action0 to be the corresponding action when &lltransmitters are activated

simultaneously. Let the rate of transmitterunder individual operation bef and the
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corresponding rate under concurrent operation-be Further, let us denote by for
i € {0,..., K} the period of time that Action is utilized. Then, the continuous time

equivalent of (4.5)-(4.7) under the reduced space of agfigin

K

minimize : Z T; (4.8)
=0

subject to:  dp < Tt + o1y, Vk e K (4.9)
7, >0, ic{0,..., K} (4.10)

The following theorem characterizes an optimal schedwdimg) rate control policy

that solves (4.8)-(4.10).

Theorem 6 A minimum-length scheduling and rate control policy savig.8)(4.10)

takes actions according to the following:

1. Ifitis true that

dy,
T, — —
k 7’]]3’
and Action0 is never employed, i.e.,
T0 = 0.
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2. Ifitis true that

then a subset of transmittef® is chosen such that for evekty € 7 Actionk is

chosen for a duration of

and Action0 is selected for a period of

d;
To — ImMax R
iERN\T T;

The proof appears in Section 4.6. To completely charaeéhie policy we need to spec-

ify the set7. The following result is true:

Lemma 4 Consider an ordering of the transmitters in decreasing ormletheir values
dy./r! for everyk € K. Let the corresponding indexing of the transmitters{ibg} £,
such thatd,, /r) > ... > d,/r) . Then, the se¥/ contains those transmitters with the

highestd,,/r{ ratios and the cardinality.7 | of the set7 is given by

¢ 0 0
dy Eodiry o —dg, T
. k41 7"l k+1" )
|J| = argmin {—Jr E — :

T 0 .
L j=0 T Tékﬂ

The proof of the lemma appears in Section 4.7.
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From the above we conclude that the §atontains the transmitters with the highest
|7 | values ofdy, /r, where| 7| is given by Lemma 4. Hence, an optimal scheduling and
rate control policy individually activates the transnigtéhat either have a very high initial
demand or whose rates under concurrent operation are weryelg., due to excessive
amounts of interference caused by other concurrent trassoms. Those transmitters
must be further assisted towards emptying their queuesihg heanted individual access

to the channel.

4.4 Time-Varying Networks

In the previous section, we focused on time-invariant cle&rHowever, the wire-
less channel is actually time-varying, due to fading, nodeility etc. In this section, we
extend our model by considering time-varying channels. \akethe following assump-

tion on the wireless channel procggs(t) }:2,,.

Assumption 3 The channel procesgG(t) }i2, varies according to a stationary Markov
Chain with transition probability to go from some channealtsig € G to another channel

stateg’ € G given by

pc(g, g) =PG(t+1)=¢g'|G(t)=g], Vg g €g. (4.11)

Due to the time variability of the channel process the lemjtthe scheduld is a

random variable and thus “minimum-length” is meant “in tixpected sense”. This can

be formulated as follows:
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minimize :  E[T] (4.12)
subject to:  X(T) =0, X(0) =d, (4.13)

T eN. (4.14)

We proceed to present a solution to the problem of (4.124{&hrough stochastic

control methods by considering admissible policies in taesd1.

4.4.1 Stochastic Shortest Path Formulation

Since the wireless channel procg€s(¢) } 2, is Markov and the queue size process
evolves according to (4.4), for every admissible policys kasy to show that the system
process(S(t)}2, is also a Markov Chain, with state spaSegiven by (4.2). We further
define a subsei,.,,, of the state spacg to be the set dfierminating statethat correspond

to empty queues, i.e.,

Sterm 1= {(x,8) : x=0, g € G}. (4.15)

Evidently, from (4.4) it follows that once the system reachay state ir5;.,,, it remains

there forever. The objective is then to reach a terminattatesn minimum expected
time by choosing the next state. This will yield the scheddil@inimum expected-length.
Note that, by construction this Markov Chain is absorbing faom every non-terminating
state a terminating state is reached with probability orfaite time under all admissible

policies. This is astochastic shortest paffroblem, which is a special case of an MDP. In
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the case where we assume that there is no randomness in tireetktate, i.e., the entire
wireless channel state realization is known at priori atvdsgy first time slot, our results
in Section 4.3 follow from this model.

The set of feasible scheduling and rate control actiongsponding to each system
statei = (x,g) € S is the setA(:) C R(g). Further, the system is driven by the
time-varying channel proced$s(t)}:°,. Taking an action leads to different states with
different probabilities depending on the evolution of tharnel process unless the system
has already reached to a terminating state.

Let p,(7,j) be the transition probability of going from system state (x,g) to

statej = (x/, g’) by taking actionr = w(x, g) € A(:). Then we have
pe(ig) = PX(t+1)=x, Gt+1) =g | X(t)=x, G(t) =g, 7(x,g) =1].
From (4.4) and Assumption 3 it is easy to see fhét, j) can be written as

o pG(g7g,>7 if (X_r)+:X/7 Zaj ES
pe(iy ) = (4.16)

0, otherwise

Note that from the Markovianess of the channel process anadmissibility of the policy
7, the transition probability, (i, j) is time invariant and does not depend on the previous
system states.

We define the cost of taking actianand going from state to statej asé,(i, 7).
For every system state actionr € A(i), and system statgsuch thatp,.(i, j) > 0, we
assume that. (i, j) = 1. This represents the fact that in order to go from stdtestate
j by taking this action one needs to spend the duration of one slot. Let us further
define thecost per stage, (i) to be the expected cost when at state S \ Sic.., control
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r € A(i) is chosen. Itis clear that.(i) = > . s pr(i,j)é (i, j) = 1. Once a terminal
statei € S, IS reached no more cost is incurred and the system remairesftirever,

ie.,c(i) =0, VreAl), i € Sierm-

4.4.2 An Optimal Policy

Let 77(:) be the expected time to empty the queues in the networkrsjdrom

state; under a policyr € I1. Then the minimum expected schedule ler@tff:) is given

by

T+() = min 7™(i), Vi€ S\ Sierm.

7ell

A policy 7* is optimal if it achieves the minimuré@* (i) for every non-terminating state

i €8\ Siorm, €.,

T™ (i) =T*(i), Vi€ S\ Sierm.

To optimally solve the above shortest path problem two comiynased methods are
policy iteration and value iteration [32]. Due to the larg@ts space of the problem, value
iteration is easier to compute and hence will be used herasi@er the value iteration
algorithm and the corresponding “expected” tifi¢i) to empty the queues starting from
statei at thekth iteration. Assume thalk, (i) = oo for all states; € S. We borrow the

following properties from [32].

Lemma 5 The value iteration method converges to the optimal cosdtiom, i.e.,
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T*() = lim 7(i), Vi€ S\ Sterms

k—oo

where

776—}-1( - 1 _._rIEn.A{E Zpr { ,] 7; { € S\Storm-

Lemma 6 The optimal solution to a stochastic shortest path probleustrsatisfy Bell-

man’s equation, i.e., for every non-terminating stateS \ Siem it is true that

TH(i) =1+ min § > pe(i,5)T*(4)
reA(i) ies

Hence, the optimal scheduling and rate control poittyor every staté € S\Sierm

is given by

w() = agmin { S0 HTG) b Vi€ S\ S

reA(i) jes

Although the value iteration method optimally solves theramentioned stochastic
shortest path problem, in general it may require an infinitenlber of iterations until it
converges. However, if the Markov Chain of the system evatuts acyclic, then it was
shown in [32] that the value iteration method for each stateverges in a finite number
of iterations (at most as many as the non-terminating stdtége Markov Chain).

It is easy to see that the Markov Chain driving our systemyslac This is because

starting from one of the statésvhose queue size satisfi¥§0) = d, the queue sizes in
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the network constantly decrease with time as given in (4deu any admissible policy.

This ensures that, the Markov Chain is acyclic and termgatsome nodee Siq.r,.

4.4.3 Numerical Results

In this subsection, we illustrate our analytical result®tiyh a few numerical ex-
periments. We consider a network of two transmitter and ®eeiver pairs. The channel
process{G(t)}:°, is Markov, and switches between two states, namejgadstate,G,
and abadstate B. When the channel is in good state, both transmitters haaengis of
good quality to their receivers otherwise both channeldark The transition probabili-
ties of this Markov Chain are shown in Fig. 4.3.

0.3 0.7 0.3

S

0.7

Figure 4.3: A two-state Markovian channel process.

Since we have transmitter/receiver pairs, there exigpossible rate vectors corre-
sponding to each channel state. Thus, we denoté(ly, : = 1, 2 the rate vector when
only the:th transmitter is activated under channel state {B, G}. We also denote by
r3(g) the corresponding rate vector when both transmitters dieaged.

We first consider that the initial demands die= 4 bits andd, = 6 bits which is
the case discussed in Subsection 4.3.1. We con8ideenarios associated to different
achievable rates corresponding to different channelstate
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e Scenario 1:We consider the case that under both channel states, whéh thens-
mitter is activated alone its achievable rat8 Isits/slot and when both transmitters
are activated simultaneously, the corresponding rateg &its/slot for each. In
this case, the channel realization is immaterial and thermim expected time to
empty the queues i3 slots, i.e., equal to the result of the static network case of

Subsection 4.3.1.

e Scenario 2:We assume that under good channel state the achievablarategual
to the case of Scenario 1, i.e., when ittetransmitter is activated alone its achiev-
able rate is3 bits/slot and when both transmitters are activated simatiasly, the
corresponding rates a?evits/slot for each. However, under bad channel the achiev-
able rates are strictly worse bits/slot for individual transmission aridbit/slot for
each transmitter under concurrent transmission). Nayunae observe that the

expected time required to empty the queues is more dfshots.

e Scenario 3:We assume that under bad channel state the achievable raegual
to the ones in Scenario 1 but the good channel is better asditlows higher rates
(4 bits/slot when a transmitter is activated individually anlit/slot when they are
both activated simultaneously). Naturally, the expecbegttto empty the queues

will decrease to a value less than

The same pattern was observed for higher initial demaihds=(100 bits andd, = 100
bits). The above are shown in Table 4.1 by assuming that thengi starts from a good
channel state.

Further, in Fig. 4.4 we illustrate the performance commarisetween the optimal
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Good Channel Bad Channel
Demands E[T]
r'(G)  r}G) r’(G) r'(B) r*B) r’(B)
[ 3] [0 ] [ 2] [ 3] [0 ] [ 2]
3.00
L0 | | 3] 2 L0 | | 3] 2
4 [ 3] [0 ] [ 2] [ 2] [0 ]| 1]
3.86
6 L0 | | 3] 2 L0 | 2 ] 1]
[ 4 ] [0 ] [ 3] [ 3] [0 ] [ 2]
2.91
L0 | | 4 ] |3 L0 | | 3] 2
[ 3] [0 ] [ 2] [ 3] [0 ] [ 2]
50.00
L0 3 2 | L0 3 2
100 [ 3] [0 ] [ 2] [ 2] [0 ]| 1]
66.95
100 L0 |3 2 L0 | 2 ] 1]
[ 4 ] [0 ] [ 3] [ 3] [0 ] [ 2]
40.37
L0 |4 |3 ] L0 |3 2 |

Table 4.1: Expected time required to empty queues for diffevalues of initial demands,

under Scenarios 1-3, assuming that the channel starts fgoodstate.

104



policy and a pure TDMA scheme that activates only a singlestradtter at any given
time. Specifically, we consider the same single-hop netwbtivo transmitter/receiver
pairs discussed above under Scenario 2. Further, we vamathes of initial data traffic.
For simplicity the initial queue sizes at each node are assuimbe equal. As expected,
we observe from the figure that the difference between thectgd time to empty the
gueues under the optimal policy and under the TDMA scheme&ges the initial queue
sizes increase. This resultillustrates the fact that eympdoconcurrent transmissions can

provide considerable gains.

[ =} TDMA
80 I ...t (@ TXLLD Optimal Policy

o]
=]
I

Expected Length (slots)
8
1

0 20 40 60 80 100
Initial Queue Size (bits)

Figure 4.4: Performance comparison of the optimal policshwiespect to TDMA

scheduling.
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4.5 Summary

In this chapter we focused on the problem of joint scheduding rate control in
single-hop wireless networks under the objective of miging the required time to de-
liver all data traffic to its respective destinations.

In Section 4.2 we presented the network model. In the firdtqddhis chapter, i.e.,
in Section 4.3, we considered networks with time-invarlaris. Under this assumption,
in Subsection 4.3.1 we presented a graph-theoretic fotroaoléor the minimum-length
scheduling problem. An optimal algorithm was given in Sulise 4.3.2. Motivated
by the combinatorial nature of this problem, in Subsectidh3we first mapped the
problem to continuous time and then restricted the set dfiliésa scheduling and rate
control actions that can be chosen. By doing so, we were aldgglicitly characterize
an optimal policy that finds a minimum-length schedule.

In the second part of this chapter, i.e., in Section 4.4, wesidered time-varying
wireless networks. In Subsection 4.4.1 we formulated the@imum-length scheduling
problem as a stochastic shortest path and in Subsectidhwelintroduced an optimal
policy by employing the principles of stochastic controéainy. Specifically, we em-
ployed the value iteration method to optimally solve thek#stic shortest path problem,
which under our framework is guaranteed to converge in aefimitmber of iterations.
A set of numerical experiments complementing our analtiesults were presented in

Subsection 4.4.3. The proofs of our results appear in Cheapté and 4.7.
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4.6 Proof of Theorem 6

We can write the Lagrangian of the above problem as:

K K K
LT, A) = =D 74 Y (e + 1or) — di) + > A,
=0 k=1 =0

where . and X\ represent the Lagrange multipliers. The Karush-Kuhn-&u¢KKT)

conditions yield:
1. For every Actiort € K we have

OL(T,p, )

= 1+ ppry + M = 0. (4.17)
aTk
2. For Action0 we have
OL(T, p, A) -
8’77“’ =1+ + X =0. (4.18)
0 k=1

3. For every Actiorkt € K it must be true that

uk(TkT/]z—i—To’l“g —dk) =0 =

pr >0, Terg A+ Tory > dy (4.19)
4. For all actions € {0, ..., K’} we have
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Consider the following cases:

Case 1: Assume that Actiord is never employed, i.e, = 0. Since the traffic
demands of every transmitter must be met we havesthat 0 for everyk € K.
Hence, from (4.20) it follows that, > 0 and ), = 0 for everyk € K. From (4.17)

we obtain,

(4.21)

=
w»| =

223
Further, sincg., > 0 andr, = 0, (4.19) yields

k
dk = Tk,

i.e., for everyk € K we get

= (4.22)

K
d k<l (4.23)
Case 2:Assume that Actior is employed and also a subsgtof the transmitters

are further selected to transmit individually. This imglidatr, > 0, ; > 0 for

everyj € J andr; = 0 for everyi € K\ J. Hence, (4.20) yield$, = 0, \; =0
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for everyj € J and); > 0 for everyi € K\ J. Also, for every; € 7, (4.17)

yields
L
M] 7’; )
and for everyi € IC\ J it follows that
1

pi < -
rt

SIS

Moreover, from (4.19) and (4.24) for evejy J we get

0
dj —TQTj
7']' =,
)
J

and from (4.19) and (4.25) for eveiy K\ J we have
di S TOT?7

or equivalently

d;
Tp = max —.
iER\T T;

Finally from (4.18), (4.24), and (4.25) it follows that
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(4.28)

(4.29)



4.7 Proof of Lemma 4

From (4.26), (4.27), and the fact that > 0 for every; € 7, fori € £\ J it

follows that
djTZQ — T?dl
0< Tj S T,
7
which yields that
d;, d;
— < —=. 4,
0 < T? (4.30)

Hence, from (4.30) it follows that there exists a threshodd, a transmitter index, below
which all the transmitters must belong in the sétand above which all of them must
belong in the seX’\ 7. Since the objective is to minimizg + Ejej 7;, from (4.26) and

(4.28) it follows that

Ly,
|J| = argmin {TOJrZTj}

ke{0,...,K} =t

S — 710
= argmin {TOjLZ]ijO]}

ke{0,...K} s T

Y, 0 0
. d£k+1 djrgk+1 - dek+1r]
= argmin ¢ 5 — + E - .
Ty ; rird
K+l j=f I ey
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Chapter 5
Stable Throughput Maximization under Channel Uncertainty

5.1 Background

In this chapter, we turn our focus on obtaining joint schedpénd routing network
control policies that maximize the stable throughput regbtime-varying wireless net-
works.

There exists a rich literature on the subject of stable thinput maximization (see
e.g., [9], [10], [33], [34]). Specifically in [33], a schedind policy that maximizes the
stable throughput in single-hop time-varying networksdentified. Moreover, in [9],
the authors characterize the stable throughput regiorati€ smulti-hop radio networks
with multiple commodities, and propose a centralizedjatary, scheduling and routing
rule, commonly referred as the “back-pressure”, that maemthe stable throughput.
The “back-pressure” policy forwards the traffic through tretwork from queues with
high loads to queues with lower loads and achieves stabyitpad-balancing the queues
in the network. Furthermore, the authors in [9] show thatrtpeoposed policy is at
least as good as any stationary policy. Under the assumgtitadra scheduled transmis-
sion is always successful, they prove that their policy quens at least as well as any
non-stationary policy with respect to maximizing the s¢atbiroughput region of the net-
work. In fact, the “back-pressure” algorithm of [9] has betown to maximize the stable

throughput region under a variety of contexts. In [34], weved optimality of a policy
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inspired by the back-pressure algorithm of [9] within theafeall stationary policies in
the more general setting of wireless networks wiite-varying topologiesFurther, [34]
also differs from [9] in that our proposed policy gives piipto each commodity accord-
ing to a preassigned commaodity weight. In both [9] and [34is assumed that links are
imperfect and that a scheduled transmission may fail, basedl link failure probabil-
ity, which is independent of the identity, and the numberhef simultaneously activated
links. Finally, in another related study, [10], a joint sdhéng, routing and power con-
trol policy, also inspired by the back-pressure algoritisrpgroposed that maximizes the
stable throughput region of time-varying wireless netvgorkhe authors in [10] consider
a time-varying process of perfect channels, i.e., a trassion through a link is always
successful.

However, in practice the channel conditions can only beregtd, and hence exact
knowledge of the current channel state is likely to be ualbe. The effect of this
discrepancy in the channel state may be two fold; first, sesizheduled transmissions are
going to fail, and second, transmissions through certakslivhich would be successful
if scheduled, are not activated. Naturally, this situatiol affect the set of stabilizable
rates and will result in a smaller stable throughput reglmat is a subset of the stable
throughput region under perfect links or under perfect alehastimation.

In this chapter, we are interested in capturing the effechperfect channel estima-
tion and characterize the maximum achievable stable timowigegion. We also obtain
a policy that maximizes the stable throughput region ungisrdetting. Towards this end,
our results are different from [10], and generalize [9] a8l in that we consider policies
with knowledge of only arestimateof the true channel state. Specifically, we propose a
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stationary, joint scheduling, and routing policy foulti-hop, time-varyingnetworks that
maximizes the stable throughput region of the network byrttaaiccess to only a, perhaps
highly inaccurateestimateof the current channel state. Our proposed policy, insgised
the “back-pressure” idea of [9], is shown to be optimal withibroad class of stationary,
non-stationary, even anticipative policies. We improvettom results of [9] and [34] in
two aspects. First, we show that our proposed policy pedaatrieast as well in terms
of stable throughput as a large class of policies that do aeo¢ more information on the
current true channel state than our policy and where thigmmdtion is limited to be given
through an estimate of the channel state. In contrast wjthtj& result holds even when
scheduled transmissions are not guaranteed to succeaxhdsear model of uncertainty
in the channel state is more sophisticated than the sintpisidel used in [9] and [34]
in two respects: (i) the existence of a link is explicitly neted through the Signal to
Interference plus Noise Ratio criterion imposed by the piatdayer and (ii) our model
accounts for the fact that the probability of success of astrassion is affected by the

interference caused by other nearby concurrent transmssi

5.2 Model Formulation

We consider slotted time and a wireless network consistingy opossibly mo-
bile, nodes each of which is equipped with a single transceivWe denote by =
{1,2,..., N} the set of all nodes in the network. Each nede A transmits at a fixed
power levelP,.

We also consider a s¢f = {1,2,...,J} of distinct commodities of traffic with
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packet lengths equal to one time slot. The number of exogepacket arrivals of com-
modity j at noden during time slott is denoted byA,;(¢). We let A7(¢) denote the
N-vector(A,;(t) : n=1,2,..., N) of arrivals of thej™" commodity during time slotat
every node in the network aml(¢) denote theV x J matrix (A4,,,(t),n =1,2,...N,j =
1,2,...J) of arrivals in time slot at every node: and for every commaodity. Traffic of
commodityj € J is routed in a multi-hop fashion through the network untileaches
anynode in a set oéxit nodedor that commodity}; C N, where it exits the network.
For any commodity’ # j, the setd/;, andV; may overlap. We further assume that there
are no exogenous arrivals of a particular commodity at tlitenexies of that commaodity,
e, A,(t)=0 forallneV;, jeJ.

At each noder there exist/ infinite capacity buffers, each holding separately the
packets of a particular commodity € 7 that have reached node We denote the
queue size for commodity at noden at the endof time slott by X,,;(¢). At time slot
0 the queue sizes at all nodes are arbitrary but finite, Xg,(0) > 0 for every node
n € N and commodityj € J. Moreover, the queue size at each exit nade V; of
some commodity and for all time slots > 0 satisfiesX,,;(t) = 0. Finally, for every
commodity; € J we denote byX’(¢) the N-vector(X,,;(¢),n = 1,2,...N) of queue
sizes of thej*™® commodity at every node in the network at the end of time skotd by
X(t) the N x J matrix (X,;(t),n = 1,2,...N,j = 1,2,...J) of queue sizes of every
commodity at every node in the network at the end of time sloThe set of possible
values ofX(?), i.e., the state space of the procé3St) }:°,, is denoted byt'.

The channel processS(¢) };2, defines the channel conditions between any pair of
nodes in the network and is assumed to change only at therbegiof each time slat €
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{1,2,...}. Specifically, at time slaof, the channel stat&(t) = {(G(n,m)(t), Nogm), Yn,m €
N} is characterized by the path l06%,, ,,)(t) between each pair of nodes m, as
well as the noise powery,.,), at each receiving node:.. A fundamental aspect of
our model that contrasts it from prior work of [33], [34], aftD] is that at the begin-
ning of each time slot the network controller has access only toesiimateS(t) =
{(G(n,m)(t),No(m)(t), Vn,m € N} of the current channel staf(¢). The estimated
channel stat&(t) during slott is characterized by thestimatedpath Iossé(n,m) (t) be-
tween each pair of nodes m and theestimatechoise powerV,(, (¢) at each receiving
nodem. Note that although the noise pow®&y,,,,) is time invariant, its estimatéfo(m) (t)
depends on time, since as time progresses we may naturayngenotonically improv-
ing estimate.

We further assume that the state space ofrileandestimateahannel processes is
a finite set of cardinality<’, which is naturally assumed to be common for btt) } >,
and{S(t)}2,. For example, that would be the case if we consider node ihoHilat
is restricted to occur only among points of a finite grid. Weaate this common set by
S = {SM ;8@ . SN We will further denote by)C = {1,2,..., K} the set of
indices that label the elements &f

At every time slot, a (unidirectional) linkl = (n, m) from noden to nodem under
the true channel stat(t) € S is defined to exist, if the Signal to Noise Ratio (SNR) at

m exceeds a certain, non-negative, threshgldi.e.,

P, G(n,m) (t)

SNR(¢,t) := N
o(m)

> Ym- (5.1)
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We denote the source nodeof link ¢ by s(¢) and its destination node by d(¢). Given
the time variability of the channel conditions, and the theit nodes are mobile, the total
number of links,L, can be as large @ x (N —1). We denote byC = {1,2,..., L} the
set of indices of all links in the network.

The fact that the wireless medium is a shared resource posiégtions on the set
of nodes that may successfully transmit simultaneouslyddenot every subset of links
in £ can be concurrently activated. In order to take the phy$agar access constraints
into account, appropriate medium access control schenegbstoebe introduced. In this
chapter, we focus on conflict free scheduling. Towards thds e define amactivation
vectorto be anyL-element binary vector, each entry of which corresponds (tonali-
rectional) link. At any time slot, the entries of this vector are equal to one for those
links that are concurrently activated at time sland zero for all other links. We also
require that an activation vector complies with the singéms$ceiver assumption. This
assumption implies that simultaneous transmission areptemn from the same node as
well as receiving/transmitting simultaneously from/toltiple nodes are not allowed. We
further define an activation vectorto bevalid with respect to some channel st&tg) if
for every link¢ € £ such that theé'" entryc, of c satisfiesc, = 1, the SINR criterion as

shown in (5.2)

Pyoy Gs(ey,aqe (t)

Notaey +22 v DO Cewan(t

SINR®((,t) :=

) > Yd(e)s (52)
St.cyr =1
is satisfied withe,, being the?’™ entry ofc. The criterion of (5.2) implies that the cor-
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responding transmissions through all links £ with ¢, = 1 will be successful under

channel stat&(t). Similarly, the estimated SINR criterion undgft) can be written as

Pioy Gs),de (t)

ST\IEC(& t) = == = Z ’)/d(g). (53)
Noaey(t) + 3 Yo ﬁ\{Z}Ps(f’)G(s(Z’),d(Z))(t)
St.cyr =1

Note that due to the inaccuracy of the estimate, an activagctor selected at time slot
may be valid with respect to the estimated channel stétgat slott, but not valid with
respect to the true channel st&tg) and vice versa.

For every possible channel ste8€) ¢ S wherek € K, we denote byZ, the
constraint sebf S*), i.e., the set of alvalid activation vectors with respect 8*). Note
that for every activation vectar’ € {0, 1}" that is componentwise smaller than some
vectorc € 7, i.e.,c’ < c, it follows thatc’ € 7. This is natural because for any
collection of links that jointly satisfy the SINR criterid (b.2) - (5.3), these criteria will
still be satisfied by switching off certain transmissionsork the above observation it
follows trivially that for everyk € K the0-vector is also a valid activation vector for each
channel stat&*) ¢ S.

For each commodity, consider a proces§E’(¢)}:°, that for every time slot
gives the link activations for packets of commodijtyln other words for every time slot
t the vectorE/(t) is anL-element binary vector, the entries of which are equal tofone
those links that are simultaneously activated and packetsromodityj are transmitted
through them, and are equal to zero otherwise. FurtherVeryeime slott we define
E(t) = E}-]:1 E’(t). The proces§E(t)}:°, corresponds to the overall link activations
for every time slot and it is such that whenever the at time gléhe estimated channel
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process is in stat®*), the vectorE(t) is a valid link activation vector with respect 8.
This means thdk(t) is a vector from the constraint s&t, i.e,E(t) € 7,.. We call the pro-
cess{E’(t)}:°, anactivation processRecall that the constraint set has the property that
for any vector in the constraint set, any other vector thamsaller component-wise must
be in the constraint set as well. SinE¢t) € 7, the aforementioned property implies
that for every commodity the corresponding vect®’(¢) is also a valid activation vector
with respect t&8(¥), i.e., it satisfied’ () € 7. Further, we require that for each commod-
ity 7, a vector®’ () must be such that it8" component(E’(t)),, takes the value zero for
all those time slotsg that the queue size at source node of the litK), for commodity;
is equal to zero at the time of the link activation, i.&;(t — 1) = 0. We say that every
such proces$E(t)}2°, is anadmissible policyand the proces§E/ (¢), j € J}2, is an
admissible policy corresponding to thig commodity Unless otherwise specified all the
policies we consider are valid.

Further, for every time slot whereS(t) = S® for somek e K and for any
activation vector € 7, we construct thé, x L diagonal indicator matrifQ¢(¢), whose

¢*" diagonal entry(Q¢(t)),, satisfies

;

]_, |f (SlNRC(E,t) 2 ’}/d(g),ST-\lFC(E,t) 2 /Vd(f)) or
(Q°()e = (SlNRC(e, £) < Yae), SINRE(L, ) < ’yd(g)), (5.4)

0, otherwise

Intuitively, for any given activation vectar € 7, and estimated channel st&8&), the
(™ entry of the matrixQ°(t) takes the value one only when the estimator estimates the

channel correctly in the sense that the values of the carrebpg SINRs under both the
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true andestimatedchannel state lie on the same side of the inequality. Notenthather
(Q°(t)), is equal to one or zero depends on the overall link activatgiven by the vector
c. In the ideal case of perfect channel estimation, the m&jfif) is the identity matrix,
i.e., Q°(t) = I, for every time slot where the estimated channel state is in sgtefor
somek € K and for any activation vectar € 7.

Also, for every commodityj we define the matridR’ as anN x L matrix that
denotes the changes in the queue sizes after a succeskfattivation. Then, ¢) entry,

R’ ,, of this matrix equals

1, ifn=d) ¢V,

Rly=13 -1, ifn=s(), (5.5)

0, otherwise.
\

Note thatRﬁLZ = 0 whenn = d(¢) € V}, as packets of commodityarriving atn exit the

system. Overall, the above yields the following dynamicatun for the queue sizes

Xi(t4+1)=XI(t) + R QEV(t + 1) Bl (t + 1) + Ad(t 4+ 1), t > 0. (5.6)

Throughout this chapter we make use of the following assiompin the input

processes.

Assumption 4 (a) The triplet{S(t), S(t), A(t)};2, isi.i.d. over time and independent of

X(0). (b) The arrival process has finite second moments Rl (¢)?] < oo,

Assumption 4 (a) guarantees that each of the proceses}>,, {S(¢)}:,, and
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{A(t)}g2, are individually i.i.d, and hence have a stationary distiin. In particular,

the probabilityps (k) of the occurrence adstimatecchannel stat&8®) € S, given by

ps(k) = P[S(t) =8W], VkeK, (5.7)

does not depend an Without loss of generality, we assume that
ps(k) >0, VEkek. (5.8)

Indeed, all our results are probabilistic in nature, andhateaffected if we discard sample
paths corresponding to a nullset of outcomes. Moreovan #ssumption 4(a) it follows
that although the processes are i.i.d. in time, for any @algr time slott they can be
correlated among themselves. For example, the true andagsti channel state¥t)
andS(t) are naturally correlated but n8tt) andS(¢ — 1).

From Assumption 4(b), it follows that the first moments of teival process
{A(t)}2, are also finite, i.e.\,; := E[A,;(t)], where the quantity\,; corresponds
to the arrival rate of commodity at noden. We also denote by thearrival rate matrix
(Anj, n=1,2,...N, j =1,2,...J) of arrival rates at every node in the network and
for every commodity. Finally, for each commodityc 7 we write A’ for the N-vector
N = (\,j, n=1,2,...N) ofarrivals of thej*" commodity at every node in the network.
All arrival rates in our model are measured in terms of packet time slot.

The nomenclature defined so far is summarized through anmgamFig. 5.1,
where we consider a network 8fnodes, i.e.N' = {1,2,3}. Nodesl and2 transmit
at a fixed powers?, and P, respectively. We consider that the channel conditions are
such that we have two possible channel states, nagely{S™"), S®}. On the left side

120



of the figure, we give the possible links that can be estadtismder channel stag"
and on the right side of the figure we give the set of possiblkslunder channel state
S, Specifically, when the estimated channel sta&{is there exist two possible links,
namely linksl and2, where a “link” satisfies the SNR criterion of (5.1) and whersi
S no connectivity exists among the nodes. Hente; {1,2}. Further, although both
links 1 and2 are inL, we assume that they cannot be activated simultaneousliodbe
fact that they do not jointly satisfy the physical layer coamts of SINR. Specifically, we
assume that at most one of them can be activated at any giaen 8ince the constraint
set7,, for channel stat&®*) contains all the valid activation vectors with respec8tt,
we have tha; = {0, 0], [0, 1], [1, 0]} andZ; = {[0, 0] }. There exist two commaodities of
traffic in the network, i.e..7 = {1,2}. A;;(¢) and Ax»(t) denote the arrivals in packets
per slot, during time slot, of commodity1l at nodel and of commodity2 at node2
respectively. We assume that packets of each commodityrexitetwork at nods, i.e.,
V; = {3}, for j = 1,2. At every node in the network, there exist two infinite capaci
buffers, that hold separately the packets of each commodigyindicate the queue size
of commodity1 at node2 at the end of time slot by X5,(¢) and the queue size of
commodity2 at the same node b¥s,(¢). Note that, due to the estimation errors, the
policy may schedule e.g., link assuming that the current channel stat8({$ when in

fact the current state B and hence the scheduled transmission throughiliwkl fail.
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Connectivity under channel state S Connectivity under channel state S(2)
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Figure 5.1: The possible connectivities oBarode network unde? possible channel

statesS™ andS®,

5.3 Stable Throughput Maximization under Channel Statestamty

In this section, we consider a policy that maximizes thelst#troughput region
of the network by making use ahly an estimate of the true channel state. Our policy
is built upon the “back-pressure” idea in [9]. As its namegegjs, this policy attempts
to maximize the stable throughput by spreading the trafonfthe more congested to
the less congested areas in the network. Accordingly, theypeae introduce activates
the nodes of the network in a way that the weighted queue Bizesvery commodity;
will be kept as close to equal as possible, while at the same tfhe constraints imposed
by the physical layer are being satisfied. Since the phy&agal information available
to our policy is limited due to the uncertainty in the chansiaite, our policy will try to
maximize the stable throughput region of the network, withibroad class of policies,
by having access to only an estimate of the channel condition

The routing component of the introduced policy resemblesticalled “hot-potato”

122



routing approach in which nodes simply unload packets tghimiring nodes with smaller
gueue loads ([35]). In fact, in our model, the route any patdéows is determined by
the link activation schedule that aims at maximizing thélstéahroughput region of the
network. Hence, although an individual packet may followrawgtous route towards one
of its exit nodes, the overall characteristics of the roatesexpected to be reasonable,
albeit non-optimal. Since our objective is to achieve maximstable throughput, this
sort of routing is legitimate. No other routing will increathe stable throughput region,
although it may decrease the delay that packets of the differommodities experience
in the network.

The introduced policyry is parameterized by a weight assignment= (w;, j =
1,2...,J), wherew, is a positive weight assigned to each commodlityPackets corre-
sponding to a commodity of a larger weight are given prioowgr the others, by being
scheduled and routed through the network more frequertlye¥ery given weight vector
w, thestationary policyE(t) := w (¢) is a certain/-tuple of mappingsry’? : X x S —
{0,1}%, each corresponding to a commodjtand wherek’ (t) := w}'/(¢). So, we also
have thatry = E}-]:1 w’. For every time slot, the quantityx3' (¢) indicates the link
activations for packets of commodifyand=’ () gives the overall link activations in the
network.

We proceed by specifying the stable throughput maximiziokicyp =} in detail.
Given the current queue size matsixe X, weight assignmeny and activation vector

c € Ty, for every estimated channel st&#), let
DY (x):=-w; QG R'x/, kek,jeJ, ceT, (5.9)
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where

Q¢ =E [QC(t) 1S(t) = sW]. (5.10)

From this definition it follows that the matrng isanlL x L diagonal matrix. Its
¢*" diagonal entrXQg)g gives the conditional probability that both the estimated &ue
SINR values corresponding tolie at the same side of the inequality, provided that the
overall link activations in the network are determined tigb the activation vectar and
the estimated channel stateéSi¢). For any given link, our model allows this probability
to be dependent on the concurrent transmissions. For erathjd probability is expected
to be higher when link is the only link activated than when linkis activated along with
other concurrent nearby transmissions. Also, Assumpt{ahguarantees that the matrix
Qg for everyk € K andc € 7y, defined in (5.10), is time invariant.

Since the queue sizeg,; is equal to zero whenever € V;, it follows that the/t™"

componen(D} (x)), of D}/ (x) is the weighted queue size difference

(DY (%)), = w; (Qe(ws(0j — Tage);)- (5.11)
For every linkl € L, let
(Di(3)), = max (DI (%)), (5.12)
and
Di.(x) == ((Dye(x))e, £=1,...,L). (5.13)

Finally, define
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(i () := arg max { (D7 (x)),} (5.14)

to be the maximizer in (5.12) and also let
* L w T
ci(x) := arg max {D}.(x)'c}. (5.15)

Recall that the entries of every valid activation veatar 7, are eithef or 1, with
1 indicating activation of the corresponding link. Herlb& (x)'c is a partial sum of
weighted queue size differences over all the links, maxaahiaver all the elements of
the constraint sef;.. If there exist more than one maximizer in (5.15) ties arelkesl
arbitrarily provided that a link will be left inactive whenever the corresponding maxi-
mum weighted difference associated with that link.id=urthermore, if there exist more
than one maximizer in (5.14), ties are resolved arbitraniith the above in hand, and
in the spirit of the optimal policy of [9], our proposed pgliey is such that itg*® entry
(i (x,SW)), is given by

. L j = (r(x))e, (ci(x))e= 1, andzy(); > 0,
(7 (x,8%M)), = e " (5.16)

0, otherwise

where (ci(x)), is the /*" entry of the vectorc(x). When a link? is activated, i.e.,
(n—gv(x, S(’“)))é = 1, the policywy will select for transmission through that link a packet
of one of the classegthat achieves the “max” in (5.14). Note that from (5.14)18),

and (5.16) the policyr) also satisfies

(DY (x)" =D (x)") w37 (x,8™) = 0. (5.17)
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Note that the matri>Qg is all the information our policy has regarding the current
channel conditions as shown through (5.11), (5.14), arkb}§5.The policy employs this
information by giving a higher preference to those linksvdrich both the true and the
estimated SINRs lie at the same side of the inequality. Spalty, the policy will have
the tendency to activate links that have a higher chanceaaessful transmission.

Clearly, for every commodity we have thatr}"/ (x, S*)) € 7;. Note further that
for every link Z that is activated, a packet of a single commoditis transmitted, and
hence there will exist a single}’’/(x, S®) that satisfieg7}’ (x, S*))), = 1. From
this observation it follows thatry¥ (x,S*)) € 7,. The above, along with the fact that
the policy leaves a link inactive whenever the maximum weighted difference over tha
link is 0, guarantees that}’ satisfies the conditions for being an admissible policy. In
Section 5.5, we will show the maximizing property of thisipglunder the following

mild assumption.

Assumption 5 Letn’ € N be a node such that for somee N, j € J with \,; > 0
there exists a sequence of link§}7, € £, with s(¢;) = n, d(t;) = s(lix1), @ =

1,...,m—1,andd(¢,,) =n’suchthaty i = 1,...,m

[SNR(&, t) > ’)/d(g and SNR(&, t) > ’)/d(g )] 0 (518)

whereSNR(/, t) is obtained througtf5.1) and S/l\ﬁ{(ﬁ, t) is defined similarly as

Py G(s(z y,dee)) (1)

S/N\R(f, t):= o (1

(5.19)
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Then, there exists a nod& € V; and a sequence of linkg:}™, € £ with s(¢}) = n/,
dt;) = s(l;.,), i=1,...,m' —1,andd(¢,,) € V; such that(5.18)holds with{/;})",

replaced by{¢/}™.

Assumption 5 is an assumption on sufficient connectivityhef network. Specifi-
cally it requires that for any node that may receive traffia particular commodity, there
should also exist a downstream path of links to some exit hadinat commodity under

both the true and estimated channel states.

5.3.1 System Stability

The state of our system is driven by the process of the queas.din this section,
we show that under Assumption 4(a) and poley, the queue size process defined by
(5.6), i.e., the state of our system, evolves according toradgeneous Markov Chain.
Our aim is to show that this Markov Chain is stable and thussderetwork stability for

as large a set of arrival rates as possible.

Proposition 1 Under Assumption 4(a), the proce§X(t)}:°, generated by(5.6) with
Ei(t) = w37 (X (t — 1),S(t)) for everyj € J is a homogeneous Markov chain. Further-

more, X (¢) is independent ofS(¢'), S(¢'), A(t')) forall ' > ¢ > 0.

The result in the above proposition is a direct consequehdbkeofact that any
process defined by a recurrence equation driven by whiteriogit, with initial value
independent of the input, is Markov (See, e.g., [36, Theaelh).

A usual definition for stability of an irreducible Markov Ghas that the Markov
Chain is positive recurrent. When the Markov Chain is notrgaseed to be irreducible,
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a more general definition for stability needs to be employedlowing [9], we adopt the
following definition for stability of a (not necessarily @ducible) homogeneous Markov

Chain.

Definition 1 [9] Let {Y (¢)}2, be a Markov Chain with, possibly empty, transient class

Y and recurrent communicating class&s i = 1,2,.... Then{Y'(¢)}:°, is stableif

Pmin{r >0 : Y(7) ¢V} <0 |Y(0)=y|=1,Vy e,

and all states: € U3, Z; are positive recurrent.

We will say that the network is stable if the state procgXs¢)}:°, is stable, as defined

in Definition 1.

5.4 A Broad Class of Policies under Channel State Unceytaint

In this section, we introduce a general class of policiesQOur objective will be
to compare the performance of the memberg to 7 with respect to maximizing the
stable throughput region of the network. This comparisdhb@ performed in Section
5.5.

In order to specify the clasSwe definenSEQ(t; k,c, Q) to be the number of time
slots in the interval0, ¢] that the estimated channel state is in s&itg, the activation
vectorE(t) takes value € 7, and the matribxQE® (¢) is equal toQ € Q. HereQ is the
set of allL x L diagonal matrices whose diagonal is in the &&tl }L. Also, we define
ngg(t; k, c) to be the number of time slots in the interyal¢] that the estimated channel
state isS(*) and the activation vectdf(t) takes valuec € 7;. We define the sef as
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follows. We say that a policyE(t) };°, belongs tc€ if for every k, k&’ € K and time slot

t € {1,2,...} the following is true

P[S(t) = S®)|S(t) = SW E(t) = ¢] = P[S(t) = S*)|S(t) = ¥, (5.20)

and for evernyk € K, activation vector € 7, and matrixQ € Q the following is true

ngpq(t k. c, Q) _ PlQe®)
ngg(t; k, c) P[S(

S(t) = Sk) =
:)Q’S(t) STLEW C],almostsurelyas—mo,

— Sk E(t) = ¢

[N

(5.21)

whenngg(t; k,c) # 0 ast — oo. Note that ifngg(¢;k,c) = 0 ast — oo, then the
corresponding activation vectoris not used by the policy. In such a case, this activation
vector can be eliminated from its constraint set. Recatltiiia constraint set is the set of
all valid activation vectors with respect to the currentroma state estimate.

The condition (5.20) is natural. It requires that at any tstwt ¢, E(¢) and the true
channel stat&(t) are conditionally independent given the estinfsts). In other words,
all policies{ E(¢) }32, we may consider have no more information on the true chataiel s
S(t) than the stationary policyy’. Naturally, a policy that has additional information
regarding the true channel state at time sloan potentially exploit this knowledge and
for example avoid collisions by not scheduling the corresjdag nodes. Also, (5.21) is
natural and it is in spirit similar to regular ergodicity abtions. From (5.20) and (5.21)

we may easily deduce that

nSEQ(t7 ka c, Q)

b TR = QIS(t) = s™], (5.22)
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where from Assumption 4(a[Q°(t) = Q|S(t) = S®] is independent of time. Note
also that the sef includes all the stationary policies since for stationanjigles both
(5.20) and (5.21) are being satisfied. It may further inclsdi@enon-stationaryas well
asanticipativepolicies as long as they comply with the conditions for bemget€. Fi-
nally, we remind the reader that anticipative network calrolicies are all those policies
that have knowledge on the future values of the quantitiasdfiect the evolution of the

state process, driven by (5.6).

5.4.1 The Notion of Intermittent Boundedness

When the polic{ E(¢) };2, belongs to the class, the resulting queue size process
{X(t)}s2, generated by (5.6) is not necessarily a Markov Chain. Thesethe stability
definition according to Definition 1 is not applicable anymadnstead, we will make use

of a weaker notion of stability, that of intermittent bouddess.

Definition 2 The random proces§Y (t)}:°, is almost surely intermittently bounded, if
there exists a subsél” of the sample space, with[IV]| = 1, such that for every € W
there exists a sequende; }:°, and a finiteY,,.x for which |Y(w, ;)] < Yiax, ¥V i =
1,2,..., whereY (w, t) denotes the sample path of the procé€sst)}>°, corresponding
to outcomev. Further,{Y(¢)}:°, is said to be intermittently bounded with positive prob-
ability, if there exists a subsét’ of the sample space, witR[W] > 0, such that for
everyw € W there exists a sequende; }>°, and a finiteY,,., for which |Y(w,t;)| <

Yo, Vi =1,2,.. ..
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5.5 Optimality of the Proposed Policy

In this section we will prove optimality of the policy intraded in Section 5.3 with
respect to maximizing the stable throughput region of thevakk under uncertainty in
the channel state. We will first define some sets of rates thatgortant in our proofs.

In a stable network, traffic at any given nodec N cannot accumulate without
bound. Hence, stability can be viewed through the concefibwfconservationnamely
that for any commodity the sum of departing flows at any nogleggt for the exit nodes
for this commodity, must be equal to the sum of arriving floasthis commodity. There-

fore, we define the set dfasiblearrival ratesA as

K J
A= {)\ e RY/ . 3f] € RY, suchthat M = —RJ Zps(k;)f,g, and ng € co(Qk)},
k=1 j=1
(5.23)
where Q;, = {QS ¢, ¢ € T;}, f are flow vectors of thg®™™ commodity under esti-

mated channel sta&*) andco(-) denotes the convex hull of a set. Further, let the stable

throughput regiorCw undermy’ be defined as

[e.e]

Cnv = {The set of arrival ratea such that for all processe{sS(t), S(t), A(t)}

=1
satisfying Assumptions 4 and 5, whexe= E[A(¢)], the network is stable

undersmy’. }

We also denote b@%v the following set of rates
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CL. = {The set of rated\ such that for all process{sS(t),S(t),A(t)}oo , satisfying
t=1

0
Assumptions 4 and 5, whepe= E[A(t)], the process of the queue sizes is

almost surely intermittently bounded undq‘f.}

Finally, to compare withC rw andé},(v)v, we introduce the set of arrival rat@% as

o0

, satisfying
t=1

(NJZ = { The set of rated\ such that for some process%S(t), S(t), A(t)}
Assumption 4 where = E[A(¢)], the process of the queue sizes is intermittently

bounded with positive probability under some polidy(t)}:°, € 8.}

Note that although the requirement for an arrival rate b&n@ . is that the process
of the queue sizes is stable unde}, the set of arrival rateéf; only requires that the
gueue size process satisfies the weak notion of intermittembdedness with positive
probability.

Letri(-) denote the relative interior of a set. The following theogates our main

result. The proof can be found in Section 5.7.

Theorem 7 The setA is a convex polytope. Furthermore, fal weight assignments
w = (w;,j = 1,2,...,J), withw; > 0 for every commodity € 7, the following

relationships hold
1i(A) € Cry € Cro CCLC A (5.24)
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We proceed to give some more insight into the meaning of tieerem. From
(5.24) it follows that for all weight assignments, the rate region€ -y, Cl.., andC%
are all squeezed between the convex polytdpeand its relative interior. Hence, the
sets of rateCw, é},(v)v, and (~3§ can differ by at most points on the relative boundary
of A, and therefore they are almost identical sets. In fact,ithiies that for any rate,
except perhaps for a few rates in the relative boundan othat cannot be stabilized
by our introduced stationary policyy’, there exists no policy in the large claSghat
can even make the process of the queue sizes intermittemilyded with some positive
probability.

>\11

Stability Region under
perfect channel estimation

Relative boundary of A

Stability Region A under
imperfect channel estimation

| —————— I
1/4 1/2 A22

Figure 5.2: Stable throughput region of the network preseim Fig. 5.1 under perfect

and imperfect channel estimation.

As an example, by utilizing (5.23), in Fig. 5.2 we depict thabde throughput
region for the example network presented in Fig. 5.1. Hére assumed that the channel

133



estimation is such that the matric€8”” , Q*", QY are all equal to a diagonal

matrix with diagonal entries given by 0.5, while the valué€™®" are immaterial due
to the fact that there are no links available under chana&St?. Further, we assumed
that the stationary probabilities of the estimated chastaés are both equal to 0.5, i.e.,
pg(1) = pg(2) = 0.5. As discussed above, the set of stable achievable rates iffety d
from A by only the relative interior ofA, which is the union of three line segments
shown in Fig. 5.2. Further, in Fig. 5.2 we also provide thdlgtahroughput region of
the network under perfect channel estimation, obtainecepiacingQ®” ", Q" and
Q" with the identity matrix in (5.23). It is evident that the cirel estimation errors

have a significant impact on the stable throughput region.

5.6 Summary

In this chapter, we characterized the stable throughpubmegf a multi-hop net-
work with multiple commodities in which the true channeltsteannot be known by the
network control policy.

In Section 5.2 we presented the network model. In Sectiorwg.8liscussed the
problem of stable throughput maximization under chanregkestincertainty. We defined
the notion of stability considered in this work. Specifigalve assumed that the system
is stable if the underlying Markov Chain of the network qusiees is positive recurrent.
We introduced a joint scheduling and routing policy thaigrssweights of preference to
each commodity and attempts to maximize the stable thrauglegion of time-varying

wireless networks, independently of the weight assignmehiie having access only to
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a possibly inaccurate estimate of the true channel statSeétion 5.4 we introduced a
large class of stationary, non-stationary, perhaps aatiisie policies. A restriction we

posed on these policies was that they are not permitted tev kmare about the current
true channel state than what the estimate reveals. Sinag thelbroad class of policies
the queue size process need not be a Markov Chain any mone, se¢uel we gave an al-
ternative, very weak definition for stability called as iméttent boundedness. In Section
5.5 we characterized the common set of stable arrival rassour optimal policy sup-

ports and proved its optimality with respect to maximizihg stable throughput region
of the network within a broad class of stationary, non-etary, and possibly anticipative
policies, under some mild conditions. We finally showed tigtoan example that the net-
work stable throughput region can be considerably smdiban the corresponding stable
throughput region under perfect channel estimation. Thefgrof our results appear in

Section 5.7.

5.7 Proof of Theorem 7

In this section we prove each individual inclusion relasibip of Theorem 7. The
third inclusion, that iCL.. C C, follows trivially from the definitions of the et
and(~]§. Next, we prove the three remaining inclusions, namely tiftri(A) € Cw,

(i) Cry € Cly, and (iii) C% C A.
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5.7.1 Proofofri(A) C Crw

Consider a rate\ € ri(A). We show that\ € C,w, i.e., that this rate is stabilized
by our proposed policyry’. We make use of Extended Foster's Theorem ([9]), which

provides a sufficient condition for stability.

Theorem 8 (Extended Foster TheoremTonsider a Homogenous Markov Chdiri(¢) }2°,
with state spacé&’. Suppose there exists a real valued, function ) — R, that is

bounded from below, such that

EVY({t+1)|Y(t) =y <oo, Vye Y, (5.25)

and such that for some> 0, and some finite subsgt of )

EVY@t+1)-VY@)|Y(t) =y <—e, Yyé&d (5.26)

Then,{Y'(t)}2, is stable in the sense of Definition 1.

We will show that the process of the queue siZ&s1¢)}:°, satisfies the conditions
of this theorem. For compactness of notation, weitis® denotef + 1. Givenw > 0,
andx € X, letV(x) := Z;’:l wjijxj, be a candidate Lyapunov function. We show
that, withV'(-) thus defined under policy}’, and given any proceqsA(t)}¢°,, such that
E[A(t)] = A, the proces§X(t)}22, given by (5.6) wWithE/ (t) = w3 (X(t — 1), S(t))
for all j € J satisfies the conditions of Theorem 8.

First, it is immediate thatE[V (X (¢t1)) | X(t) = x] < o0, ¥x € X. To see this, let

x € X, and let
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G/(t) = x) + RIQ™SD) (1)mi (x, S(t)) + Al (2). (5.27)

Note that for every the matrixQ™*S®)(¢) is a function ofS(¢), andS(t). Since by
Proposition 1, the variableg(¢t), S(t7), A(t*) are independent &% (¢), (5.6) yields
E[V(X(t)) | X Zw, E[G/(tT)TGI(th)], (5.28)
which is finite for allx since from Assumption 4 (b) the procelsA(t)}:°, is assumed to
have finite second moments, and further the poti¢yx, S(t*)), as well as the process
{QTC5M) ()12 take values in finite sets. This in fact holds independerftth® choice
of stationary policyr, and of the arrival rate.. To complete the proof, we show that,

when policyny is used, there exists a finite s& such that (5.26) holds. For compact-

ness of notation, we define

AV(x) :=E [V(X(7)) = V(X (1)) | X(t) = x] .

We first prove two lemmas that will be useful in proving theidegsresult.

Lemma 7 Given any policyr, arrival rate A, and queue size matrix € X, the Markov

Chain{X(t)};2, given by(5.6) satisfies

) <2 (ZMW > _vslk ZDkﬂxsm ()7 7 (x, s““)) + B, (5.29)

kel

where B does not depend aa
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Proof: From (5.28), and the definition of our candidate Lyapunocfiom we have

AV(x) = ij [Xﬂ ) = XI()) T (X (tF) + X (1)) |X(t):x]

_ ij [Xﬂ () = XI(1)) | (2X7 () + XI(t7) — XI(#)) \X(t):x}

J
= 23w, <ijIE (X (#%) — XI(1) | X(t) = x])

j 1

+ ij (X9 (1) — XI (1)) T (XI(¢T) — X9 (1)) | X(t) = x] .

By using (5.6) we obtain

—2 i (wix "B [RIQEESEN (1)l (x, §(t4)) + AT(t1) | X(t) = x| )

T

N i w,E [(RjQw(x,S(t+))(t+)wj (x,S(t7) + A/ (t+))

(RIQ=SED () (x, (1)) + A(E4) ) IX(t) = x] .

Since{A(t)}{°, is stationary, and has finite first and second moments, angdhey
™ (x,5(t7)), as well as the procegQ™*S®) ()}, wherer (x, S(t)) = S27_, 7 (x,S(1)),
take values in finite sets, the second term is finite and balfwevery; € 7 by a quan-

tity independent of the queue size matkixand time slot. Hence for everk € X,
J N A
<2} (ijjTE [RjQ“(x’S(“))(t*)ﬂ-j (x, S(t1)) + AI(tH) | X(t) = XD +B
=1

for someB independent ok, andt. Further by making use of Proposition 1, namely that
A(t") is independent oK (), and using conditional expectations it follows that
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J
AV(x) <2 ijijAj +B
j=1

A

+ 2 Zw X TR pg(k [Q"(X’S(k))(ﬁﬂX(t) = x,S(tT) = SW| 77 (x, SW).

kek

Using (5.10), and the fact th&@™S")(¢+), and S(¢*) are independent oK (t) we

obtain

V(ix) < 2 Z w;x? A — 2 Z Zps (—ij;‘("’S(k”Rijj) ! 7 (x, S)(5.38)

i=1 kek

Finally, by using (5.9), the above equation becomes

) <2 (Zw <IN — ZPS Z k,,(x s<k))( )T 7Tj(x, S(k))> + B,

kel

which completes the proof.
|
When an arrival rate\ belongs tari(A), a useful upper bound can be obtained on

the first term in the parenthesis of (5.29), by means of tHeahg lemma.

Lemma 8 Let € ri(A). Then there exist nonnegative scalaf§ forall c € 7;, k € K,

with > . 1'; < 1, such that, for alkk € X,

Zw XTI < Zps k) Z piDY.(x) e (5.31)

ke ceTy,
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Proof: Let rateX € ri(A). ThenX € A, asri(A) C A. Hence, with reference to (5.23)

there exists a scaldr> 1, and non-negative flow vectof € R’ such that

N =—R7Y pg(h)f], (5.32)
ke

and where§ Y7 | £/ € co(Qy) i.e., for someug > 0 such thay" . s = 1 we have

J
0> £l =" Qs (5.33)
j=1

ceTy

Note that from (5.33) it follows that, for ajl € 7, andk € K, we have

(f)y=0, VegsS®. (5.34)

Using (5.32), and the fact each of the vectfirare non-negative component-wise we can

write

j=1 kel j=1
) . WS~ c
= 2_pslk)max (-upd TRY) 3 7EQfe,  (5.35)
ke ceTy,

where (5.35) follows by making use of (5.33). Léf = %k By definition, 'y > 0.
Also, since) .., pf = 1, ands > 1, it follows thaty ., py < 1. Further, (5.35) can

be written as

J
DY = Sonh) 2 it ((cw@im))

kel ceTy
= > pglk) > WiDR(x) e, (5.36)
kek ceTy
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where (5.36) follows by making use of (5.9), (5.12), and 8. T his completes the proof
of Lemma 8.
|
We proceed to finalize the proof of the claim thgtA) C Crw. From Lemmas 7
and 8 we conclude that, given € ri(A), there exist nonnegative scalar§, for all
c € T, andk € K, with 37 - ¢y < 1, such that, for alk € &, and all stationary

policies,

x) <23 pg(k) (Z HiDRe(x) e = D DR g (%) T (x, S“f’)) + B.

kek ceTy, j=1
(5.37)
So farm was an arbitrary stationary policy. We now focus on the gofi§f’. In view of
the fact thatr(x, S¥) = 37 79(x,8®)) € 7;, from (5.17), and of the definition of

', we obtain

J
ZDZ‘ZSV(X’S(M)(X)TWSVJ(X’S(k)) = D} st Zﬁwy X, S®)
j=1

- Dszg(x,s(w)(X)TWo (x,5™)

= max{DJ; '(x) el

By substituting into (5.37), we get
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AV(x) < B+2) ps(k) (Z i zz<x>Tc—ggg{Dzz<x>Tc}>

ke ceTy,

IN

B—2Y ps(k) Icg%f{DZ”c(X)Tc} (1 - u’Z)
ceTy,

kek

< B- DY (x)"
pmaxmax{Di(x) c},

where from (5.7), and the fact thaf W< 1

p = 22116112 (ps(k:) (1 - Z u'Z)) > 0.

ceTy,

Now, letx € X, with x # 0, and suppos&(¢) = x. Choose a node, and a commodity

j such thatz,,; > 0. The Markov property of X (¢) }72, implies that

AV(x) = E [V(X(t")) — V(X(1)) | X() = x,X(0) = 0] .

Hence, without loss of generality, assume that the queegsocess at time slotsatisfies
X(0) = 0. SinceX,;(t) = x,; > 0, and.X,,;(0) = 0, there must exist a sequence of
links in £ from some node?’, with \,,; > 0, to noden that satisfy Assumption 5.
Further, Assumption 5 then implies that there existlinks £,7 =1, ..., z, for somez,
satisfying0 < z < N, such that. = s(¢;), and nodes.y, ..., n,, such thati(¢;) = n,
$s(liy1) = ng, d(liy1) = nip1, @ = 1,...,2 — 1, andn, € V;. For notational simplicity,
also letn, := n. Sincez,,_; = 0, wheneven, € V;, we can write

Tnj = Z('xni—lj - an'j) = ZH%E;‘]X(xniflj - x"LJ) (5.38)

i=1
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It follows that there exists some lirtk- for which the above queue size difference through
it, is maximized for some commodity € J. Letn;_; = s(¢;+), andn; = d(¢;+). Then,

from (5.38) we have

Tnj Tni
xni*,lj* - xni*j* 2 % Z ﬁ (539)

Recall that!; € £ forall « = 1,...,z. Further, letc* be such that;. satisfies (5.1)
under the estimated channel stég) = S*"). Lete,, € R’ be a vector with itg,."
component equal tb, and with all other components equalxoThen, from the property

of the constraint set it follows that,, € 7;-. Also, it follows from (5.12) and (5.13) that

maxmax{Di(x) c} = max{Dy.(x) c}

sk

2 Dz‘ie@i* (X)Teei* - (Dz‘iegi* (X)>é.* = (DZV*]OQ* (X)>Z.* 7

where (DZ”W <X)>Z is the/;:" entry of the vectoD}?, (x). In view of (5.11), and

(5.39), it follows that

~ €. W g T
I/?Eaié( I(}’é%{({DZv<X>Te£L*} Z wj*( k*z* )Zi* ('Tni*flj* - .Z'ni*j*) Z W’

where(Q,* ),,. is the/t" diagonal entry of the matriQ, i, while

Win 1= Minw; > 0,
JjeT

and, in view of Assumption ,,;, > 0. Note that the entries,,,;, andq,.;, do not depend
onx. Overall, we have
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P Wmin Gmin Tnj

N

AV(x) < B —

so that, given any > 0,

AV (x) < —¢, VX¢X0::{X€X : xnj<m}.

P Wmin gmin

Since vectors it have integer components, the 8itis finite, and the proof is complete.

5.7.2 Proof ofCry C CL,

Consider an arrival ratd € Crw. In order to prove thal € (~],1,8v, we need to
show that stability according to Definition 1 implies intett@nt boundedness with prob-
ability 1. We proceed by giving a theorem that gives a sufficient camdfor intermittent

boundedness of a Markov Chain.

Theorem 9 Let {Y'(¢)}2, be a Markov Chain, withy the, possibly empty, set of its
transient states. I{Y (¢)}:°, almost surely exits the set of transient states in finite time

i.e. if
Pmin{r >0 : Y(71) ¢V} <0 |Y(0)=y]=1, Yye) (5.40)

(which holds vacuously whevis empty), thedY (¢) }°, is intermittently bounded

with probability1.
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Proof: Consider the Markov ChaiflY' (t) }°, that satisfies (5.40). Then with probability
1, the Markov Chaif Y (¢) }2,, will be eventually confined within a single recurrent class.
It follows (e.g. from Theorent.3 in Chapter2 of [36] ) that, with probabilityl, some
(recurrent) state will be visited infinitely many times. Henthere exists a s&t’, that is

a subset of the sample spaeei.e. W C Q, with P[W] = 1 such that for every event
w € W, there exist a statg, and a sequencg; }:°,, such that in the sample paththe

process satisfies

Y(wt) =y, Vi=1,2,....

Hence, by Definition 2 it follows thafY (¢) } 32, is intermittently bounded with probabil-

ity 1.

A direct consequence of Theorem 9 is Corollary 3, that westakt.

Corollary 3 Let{Y(¢)}:2, be a stable Markov Chain. Thefiy' (¢) } 2, is intermittently

bounded with probability.

From Corollary 3, the desired result follows.

5.7.3 Proof ofCL C A

We need to show that ik € 6§ then\ € A. We start by introducing the no-
tation required for our proof. We define the random varialé; k) to be the number
of time slotsr in the interval[0, {] during whichS(7) takes the valu&®). Moreover,

we denote by{ng(w,t; k)}2,, {ngg(w,t;k,€)}2), {ngpq(w,t;k,c,Q)}2, the sam-
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ple pathw of the corresponding processes (Recall that the procdssgst; &, c)}i2,,
{ngpq(t; k,c, Q)}2, are defined in Section 5.4.). Finally B (w, 1) }2,, {S(w, 1)},
{E(w,t)}2,, {Q%(w, t)}2, and{X(w, )}, we denote each of the sample pathsf
the respective processes.

SinceX € CZ, there exists a policfE(¢)}2, € £ and ani.i.d. procesgS(t), S(t), A(t)}52,

such thatf[A (¢)] = A. In particular

ol . 4
Pl Jim = ;A](wﬂ') - AJ] =1, VjeJ, (5.41)
P [w - lim M _ ps(k‘)] _ 1, Wkek (5.42)

nSEQ(w7t;kucu )

= P[Q°(t) = QIS(t) = S“f’]] = 1. (5.43)

Also, since the procesgX(t)}:2, is intermittently bounded with positive probability it

follows that

Plw: X(w, ) < Xmax, for some finiteX,,.., and for some sequenge;}:°,] > 0.

(5.44)

Since the events in (5.41), (5.42) and (5.43) have prolhiand the eventin (5.44) has
a positive probability, their intersection will have a pog probability. Hence, it follows

that the4 events have a non-empty common intersection. We first fix &roowew’ that
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belongs to this common intersection and on¢és selected, we identify aX .., and a

sequencdt; }2, as specified by (5.44). We have

t/.

ol .

EﬁEZ;N@“ﬂ:AJ (5.45)
(W' iy k

hn19§@%;——l::1@(k) (5.46)

ngpq (W't k, c Q)

li c S(t) = S® 5.47
N A PIQE(t) = QIS(?) ] (5.47)
X(Wht) < Xmax, forsomeX,.., Vi=1,2,.... (5.48)

We now proceed to first sum both sides of (5.6) from time 8ltd #; for some

1 = 1,2,...and cancel the identical terms. Then, by dividing both safd@ke resulting

equation byt; we obtain

1 i/ o 1 i1 E(w',7)
;Xj(w,ti)—;X](w 0) ZRJQ (W', T)E (W', 7) ZAJ (W', 7)

Z’rl

(5.49)
From (5.48), we have
1
lim XJ (W' t;) =0, (5.50)
and
. 1 y /
lim —X’(w',0) = 0. (5.51)

i

Taking the limit in (5.49) as — oo, and by using (5.45), (5.50) and (5.51) we

obtain
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. 1 b .
S - (W), 1 /
A= —lim {ti ;R]Q (W', 7)E (w ,7)}

. 1 , .
= —lim {R] Z : Z QP 7B (W 7')}
hek Te{l,..., ti}

st.8(w,7) = S

= — lim {RjZ% > QE@”T)(W’,T)EJ'(M’,T)}, (5.52)

kek
TE {1 7777 tL}

s.t.S(w,7) =S®
where

K ={keKstS,1)=8" forsomer € {1,...,00}}.

Thus, fork € K, and fori large enough it follows thatg(«’, t;; k) > 0. With-
out loss of generality (by redefining the sequerdeg:®, if necessary), assume that

ng(w', t;;k) > 0forall k € K andi = 1,2, .... Then, (5.52) can be written as

: ‘ , neg (W', ti; k 1 W) (o j
N =—lim {RJZ s( )ns(w%k) > Q™ ’)(w,T)EJ(w/,T)}. (5.53)

1—00 < ti
ke

Note thatE’ (w', 7) € 7; wheneveS(w', 7) = S(*). Also, for every time slot, the matrix
QEW'T) (W' 1) is a diagonal matrix, whose diagonal entries take valuelsdrset{0, 1}.

Therefore, it is also true that the prod@e«" (', 1) E/ (', 7) € T;. Also, since

1 1 1
= 1= ,7 tu k - 17
Z ng(W', tisk)  ng(w',t; k) Z ng(w', t;; k) ns(w )
Te{l,..., ti} Te{l,..., t;}
stS(W!,r) =8 stS(W,r)=8®



we have that for everye {1,...},j € J andk € K,

b B o
ns(w’,ti;k> Z Q (W,T)E (wﬂ-) c CO(']?C)_

TE {1 7777 tL}
stS(W, ) =S®

Sincek is a finite set and since for eveky the set:o(7;) is a compact set, there exists a

subsequencgt;, }2, and vectors; such that

. E(w',7)/, i(, _ ]
le»rgo {7713(00’, k) Z Q (W', T E (w ,7‘)} =f], (5.54)

st.S(W!,7) =8

forall j € 7,k € K. Hence from (5.46), (5.53) and (5.54) we obtain

N=-R) pgk)f], Vkek. (5.55)
kek

Finally, by letting the correspondingx 1 vectorf,g be the0-vector, whenevet € K\ K

we conclude that

N=-R) pg(k)fl, Vkek. (5.56)
ke

Clearly, fg € RL for everyk € K andj € 7. To complete the proof we need to show

that) "7 | f] € co(Qy,) for everyk € K. We consider two cases.

1. k € K\ K: For everyk € K \ K, we have that

J
> ] € co(Qy), (5.57)
j=1

since0 € 7, for everyk € K.
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2. k € K: From (5.54), and sincE(w', 7) = Z;’Zl E/(w,7), forall k € K we have

J

: 1 /

] ; = EW.n), /

Sr = { ¥ —pewnewn)
Te{l,...,ti}

stS(W,r)=S®

“mliomEy X9

ceTk QeQ
T E {1 Z}
st.S(w',7) =Sk,
E(Ww',7) =c,
Qe(W', 1) =Q
B Ngpq(W', ti k, ¢, Q)
— ZE%{ZZ N w/tk) QC
ceT, QeQ S v
ngpq (W', tisk, c, Q) ti
= i . 5.58
ceT, QeQ

Since each of the terms involved in the sum are non-negatha since the outer

limit exists, it follows that each of the product terms in tmeit are bounded. Fur-

1 uk .
ther, smceM converges to a non-zero value, we may extract a converging

nSEQ (w/ Wi ;kvch)

subsequence such that,; ., { -

} exists, and therefore

J N /AN
ng _ Z Z hm {nSEQ<w 7tllak7c7 Q)} Al Q c. (559)
=1 teo li ps(k‘)

ceT, QeQ

ngg (W ti;k,c)

> exists and can be written as a finite sum of exist-

Note also thatim;_. .,

ing limits as

lim = lim Z ti B Z }ig‘o tz’ ’

QeQ QeQ
(5.60)
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where we made use of the fact that the liniih;_, M

exists. As
discussed in Section 5.4, for alke 7;, the quantityngy (W', t;; k, c) # 0 ast — oc.

Hence, we can write

l Ispq(, tik ¢ Q) li ngeq (W' i ks € Q) ngg (W', s k, €) ng (W', ti; k)
i = 111m ‘
o t imoo | ngg(Wstisk,c)  ng(Wtis k) t;
(5.61)
It follows from (5.46) and (5.60) that
oy Mm@ Lk, €)Mz Rl tiikie)
exists. Let this limit be equal to
' tl? k?
PO P CAT X0, o

From (5.46), (5.47) and (5.62) it follows that the individilimits in (5.61) exist.

Hence, it can be written as

Nama (W, i k, c,
lim { SEQ( Q

. } = P[Q°(t) = QIS(t) = S®] 5 pg(k). (5.63)

1—00

By replacing (5.63) in (5.59) we get

J
Sl = DN Pt =QISt) =SV Qe
Jj=1 ceT, QeQ
= > %Qic (5.64)
ceTy,
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where (5.64) follows by employing (5.10). Consequentlipltows that
J . ~
Z f] € co(Qyx),
j=1

and the proof is complete.
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Chapter 6
Concluding Remarks

6.1 Thesis Contributions

The main contribution of this thesis is to shed light in theextuling problem by
understanding whether it is preferable to allow more commurtransmissions at lower
rates or fewer concurrent transmissions at higher ratesstWed this trade-off under
various performance objectives.

In Chapter 2 we considered static networks comprising oft @selways back-
logged, sources, eadhulticastingtraffic to its corresponding destinations. First, we
considered the problem @dint scheduling and rate contralnder the objective afum
throughputmaximization and theproportional fairness We introduced an optimal joint
scheduling and rate contrgdolicy that assigns @robability distributionto the set of
feasible rate control and scheduling decisions. In the caggoportional fairness, we
restrictedthe set of feasible rate control and scheduling decisiomstier activation of
one transmitter at a time, in a pure Time Division Multiplec&éss (TDMA) manner or all
together. Under this restricted framework we obtained gl probability distribution
for the restricted set of actions so that the average rateaxfeiver is proportionally fair.
The corresponding optimal policy for the special cases odagt and broadcast traffic
follows from our analysis. These results were also pubtishg¢14] and [23].

Next, in Chapter 3 we consideremne-varyingwireless networks and a broader
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class ofutility functionsthat are strictly increasing, continuously differentgldnd con-
cave functions of the average rate. These utility functimctude the utilities of total
throughput maximization and proportional fairness stddneChapter 2. We considered
the problem of scheduling a set of multicast sources withothjective to maximize the
total user utility. We assumed policies that do not acclydeow the current channel
conditions but rather base their decisions orstimateof the channel state. We obtained
anonlinealgorithm that yields theptimaltransmission rate among all policies with the
same estimate of the current channel state. In the case wiweeethan one rate alloca-
tions is optimal, the optimal algorithm selects the one thimtimizes the power sum. We
proved optimality of the proposed algorithm through theotlyeof stochastic approxima-
tion. A related work corresponding to the case of perfecholeaestimation appeared in
[15].

Unlike Chapters 2 - 3 where saturated networks were coresidar Chapter 4 we
assumed that the network sources have a finite amount of iddfia to send to their
corresponding destinations. We considered unicast tra¥ffe studied the problem of
joint scheduling and rate contrah wireless networks with the objective to minimize the
required time for all network sources to deliver the traffehnds to their respective
destinations. We considered bataticandtime-varyingnetworks. In the static network
case we mapped the minimum-length scheduling problem intlinf ashortest patton
a Directed Acyclic Graph (DAG). In the time-varying netwarkse the corresponding
problem was mapped tostochastic shortest patind an optimal solution was provided
through stochastic control methods. The case of time-iambchannels was published in
[8].
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Unlike the saturated queue assumption of previous chapiaféic in reality is
bursty and guaranteeing stability of the network is of payam importance. Thus, in
Chapter 5 we turned our focus on the objectivestaible throughpuimaximization for a
set of commodities o&nycasttraffic for multi-hopwireless networks. Each commodity
is assigned a weight of preference. We introducgaira scheduling and routingolicy,
having access to only aestimateof the channel state. We incorporated the physical
layer into the scheduling and routing decisions throughSheR interference model.
We assumed that the SINR thresholds that determine theroetod a transmission are
fixed, i.e., the transmission ratedsenstantand each packet is assumed to be comprised
of a fixed number of bits. We characterized the stable thrpugfregion of the network.
Moreover, we showed that the introduced policy is optimahwespect to maximizing the
stable throughput region of the network, irrespective efweight assignment, within a
broad class of stationary, non-stationary, and anticipatdolicies. These results appeared

in [34], [37], [38], and [39].

6.2 Future Work

In this thesis, we studied the scheduling problem undeouarcontexts and as-
sumptions. However, there are still a lot of questions os $hibject awaiting to be an-

swered and thus, we conclude this thesis with a few poteftiate directions.

1. Distributed Solutions

One of the basic assumptions in this thesis was the existéraceentralized sched-

uler. This assumption allowed us to obtain optimal residtswvever, in practice the
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existence of such a controller may be infeasible. By usirrgcentralized results as
benchmarks, it will be of great interest to investigateralive solutions that are

distributed.

. Modeling the Interference

In this thesis we employed the SINR model to account for therierence. This
model albeit tractable and widely used, it is approximat# assumes that the in-
terference behaves as Additive White Gaussian Noise. Ghestrong coupling
between the physical layer and the layers above it, it israhtbat the network
performance can be improved by modeling the physical layer inore accurate
fashion. It will be of great merit to obtain alternative migihat describe the phys-

ical layer properties more appropriately.

. Dealing with Non-Stationary and Non-Ergodic Behaviors

Commonly employed performance measures in communicaétwianks are those
of utility maximization, stability, and delay. However, @& mentioned previously,
these performance measures depend critically on the asisumtipat the wireless
channel process is stationary and ergodic. In realityniadiffects are rather un-
predictable, network nodes have finite energy reservaignaay move in arbitrary
patterns. Thus, it is likely to observe a non-ergodic andstationary behavior. It
will be of interest to study and explore new measures thabeameaningful in de-
scribing performance of wireless systems under condittdm®n-stationarityand

non-ergodicity
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Appendix A

Rate Formulas

Assume that a transmission is successful if the receivedRSdkceeds a thresh-
old v, i.e., SINR> ~. By successful transmission we mean that for a given madulat
scheme the probability that a bit is received erroneoudiglisw a target probability of bit
error P,. It follows from the principles of wireless communicatid28] that the thresh-
old value~ is a decreasing function of the probability of bit error fagigen modulation.
Moreover, the thresholg depends on thgansmission rateln this section, we will ex-
emplify this by relating the maximum transmission rate fecsessful communication to
the SINR threshold for the specific case af/-ary Phase Shift Keying (PSK) modula-
tion with symbol rate control where the target probabilityod error is fixed. However,
rate expressions under different modulation schemes cabtaeed in a similar fashion.

Let I/ be the available bandwidth of the communication. Let dlsbe the symbol
duration, R, = Ti be the symbol rate andl/ be the number of distinct symbols in the
alphabet. From [28], for general pulses the symbol rate satsfy R, = W/k for some
constant:. Here we assume that= 1, which results in a maximum symbol rate value
R equal toR™ = W. UnderM-ary PSK modulation [28] the relation between the
SINR thresholdy and the symbol rat&, so that the target probability of bit error i3 is

given by
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QB M =2

7 =1932R [Q NP, M =4

2
1 — Py, log(M)
(P (et ) (@7 (2542) ] b > 4,

whereQ(z) is defined to be the probability that a Gaussian random eriaith zero

mean and unit variance exceeds the valuélence, the maximum bit rate undéf-ary

PSK modulation for any fixed/ is given by

;

min{[ 1(P 2,Rmax} M=2

RM.PSK( .y _ . { v max} _
() 2 min 72@71(]3“]27133 , M =4

log(M) min { [QZSI(HPIEZQ%{)”Q ; Rmax} , M > 4.

Moreover, by further optimizing the distinct number of syoig)/ the maximum

bit rate is given by

PSK _ M, PSK
R (y) = ppnex R (7)- (A.1)

In Fig. A.1 we illustrate the maximum achievable rate untleary PSK modula-
tion (M = 2,4,8,16,32,64) as a function of the SINR threshotdwhen the bandwidth
equalsl Hz (spectral efficiency) and the target probability of bitoeris P, = 10-¢. The
corresponding rate when the symbol rate and the number thdisymbols,M, are
jointly controlled is also shown in the figure by the dashed.li

We observe that the rate function is a piecewise increasingtion of the SINR
threshold, where each increasing segment correspondsfterawt value of)M. Further,
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Total rate for PSK modulation
7 T T T T T T

—M=2 M = 64
—M=4 \
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N

Total rate (bits/sec)
w

N
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Signal to Interference plus Noise Ratio (SINR) threshold (dB)

Figure A.1: The maximum achievable rate (bits/sec) as atimmof the SINR threshold
~ (dB) for M-ary PSK modulation, i.e2-PSK, 4-PSK, 8-PSK, 16-PSK, 32-PSK and

64-PSK. (V = 1 Hz, P, = 1079)
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from Fig. A.1 we observe that the maximum transmission raéz all M/ depicted by the
dashed line is amcreasingfunction of the SINR threshold.

In the literature, the single-user Shannon formula is comgnased to tiey with
the corresponding maximum achievable rate. The Shannefat~) that corresponds

to a given threshold is given by the following expression

R¥(7) = Wlog, (1 +7). (A-2)

This formula is an upper bound on the achievable rate thabeathieved asymptotically
through coding. It further assumes that the probabilityibélror of the communication
approaches zero. Although both expressions are appraxifoatmulti-user systems,
they provide useful insights on how the physical layer clehmmonditions relate to the

maximum achievable rate.
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