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This thesis is inspired by the need to study and understand the interdependence be-

tween the transmission powers and rates in an interference network, and how these two

relate to the outcome of scheduled transmissions. A commonly used criterion that relates

these two parameters is the Signal to Interference plus Noise Ratio (SINR). Under this

criterion a transmission is successful if the SINR exceeds athreshold. The fact that this

threshold is an increasing function of the transmission rate gives rise to a fundamental

trade-off regarding the amount of time-sharing that must bepermitted for optimal perfor-

mance in accessing the wireless channel. In particular, it is not immediate whether more

concurrent activations at lower rates would yield a better performance than less concurrent

activations at higher rates. Naturally, the balance depends on the performance objective

under consideration. Analyzing this fundamental trade-off under a variety of performance

objectives has been the main steering impetus of this thesis.

We start by considering single-hop, static networks comprising of a set of always-

backlogged sources, each multicasting traffic to its corresponding destinations. We study

the problem of joint scheduling and rate control under two performance objectives, namely



sum throughput maximization and proportional fairness. Under total throughput maxi-

mization, we observe that the optimal policy always activates the multicast source that

sustains the highest rate. Under proportional fairness, weexplicitly characterize the op-

timal policy under the assumption that the rate control and scheduling decisions are re-

stricted to activating a single source at any given time or all of them simultaneously.

In the sequel, we extend our results in four ways, namely we (i) turn our focus on

time-varying wireless networks, (ii) assume policies thathave access to only a, perhaps

inaccurate, estimate of the current channel state, (iii) consider a broader class of utility

functions, and finally (iv) permit all possible rate controland scheduling actions. We

introduce an online, gradient-based algorithm under a fading environment that selects the

transmission rates at every decision instant by having access to only an estimate of the

current channel state so that the total user utility is maximized. In the event that more than

one rate allocation is optimal, the introduced algorithm selects the one that minimizes the

transmission power sum. We show that this algorithm is optimal among all algorithms

that do not have access to a better estimate of the current channel state.

Next, we turn our attention to the minimum-length scheduling problem, i.e., in-

stead of a system with saturated sources, we assume that eachnetwork source has a fi-

nite amount of data traffic to deliver to its corresponding destination in minimum time.

We consider both networks with time-invariant as well as time-varying channels under

unicast traffic. In the time-invariant (or static) network case we map the problem of

finding a schedule of minimum length to finding a shortest pathon a Directed Acyclic

Graph (DAG). In the time-varying network case, we map the corresponding problem to

a stochastic shortest path and we provide an optimal solution through stochastic control



methods.

Finally, instead of considering a system where sources are always backlogged or

have a finite amount of data traffic, we focus on bursty traffic.Our objective is to char-

acterize the stable throughput region of a multi-hop network with a set of commodities

of anycast traffic. We introduce a joint scheduling and routing policy, having access to

only an estimate of the channel state and further characterize the stable throughput region

of the network. We also show that the introduced policy is optimal with respect to max-

imizing the stable throughput region of the network within abroad class of stationary,

non-stationary, and anticipative policies.
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Chapter 1

Introduction

1.1 A Relationship between Transmission Powers and Rates

In a wireless environment where concurrent transmissions from multiple users inter-

fere among each other, the exact coupling between the transmission powers and achiev-

able rates of the various users remains unclear. The problemarises since the existing

models to capture the interference are inadequate.

A commonly used criterion, borrowed from point-to-point communications, is the

Signal to Interference plus Noise Ratio(SINR). Under the SINR model, a transmission is

successful if the ratio of the signal power at a receiver to the noise and the total interfer-

ence power exceeds a certain threshold. This model is approximate in general as it models

the interference as Gaussian noise. However, it is intuitive and accounts for the fact that,

depending on the channel conditions and the transmission powers, in a wireless environ-

mentall the concurrently transmitting nodes may interfere and cause a transmission to

fail. Thus, in this thesis we will employ the SINR interference model to incorporate the

physical layer in the scheduling decisions. The precise value of the SINR threshold de-

pends on various communication related parameters, such asthe transmission rate, the

target probability of bit error, the modulation and coding techniques employed for the

transmission, etc. It follows from the fundamental principles of wireless communications

that the transmission rate is an increasing function of the SINR threshold (see Appendix
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A). This is the core idea around which this thesis develops.

1.2 A Fundamental Trade-Off

A fundamental question in multiple-access is which nodes should access the chan-

nel at any given time and at which transmission powers and rates. Given the relationship

between the transmission rate and the SINR threshold, the following trade-off arises.

By lowering the transmission rate, the corresponding valueof the SINR threshold

decreases, and thus more transmissions can jointly satisfythe SINR criterion. Alterna-

tively, by increasing the transmission rate, the SINR threshold increases, and therefore,

the number of transmitters that can be successful in accessing concurrently the wireless

channel decreases. Thus, it is not immediate whether it is preferable to allow more nodes

to concurrently transmit at lower rates or whether permitting fewer of them to transmit

simultaneously at higher rates will yield a better performance.

In this thesis, we investigate under which cases “more time-sharing” (fewer concur-

rent transmissions at higher rates) is preferable comparedto more concurrent transmis-

sions at lower rates. In one extreme, a single transmitter can transmit at any given time

at its highest achievable rate, as in a Time Division Multiple Access (TDMA) scheme.

In another extreme, all network nodes can simultaneously access the wireless channel

successfully, at perhaps arbitrarily low rates depending on the amount of interference that

one causes to the other. All possible rate assignments between the two extremes are also

possible. It is natural to expect that more time-sharing is preferable under high interfer-

ence while on the other hand if the nodes do not interfere muchamong each other more

2



concurrent transmissions should be preferred. Certainly,the optimal answer depends on

the selected performance objective.

1.3 Scheduling Complexity

It is easy to observe that deciding the transmission rates and powers at which the

network nodes can operate has acombinatorialflavor when the set of available power

selections is discrete. This is natural since it involves the following two-stage procedure.

First, all possible ways of assigning the transmission powers must be identified. Next,

for each such possible power assignment the maximum rates that ensure the success of

the scheduled transmissions according to the SINR criterion must be selected. Clearly,

even for the most simplistic case of power control with binary decisions (either transmit

at the maximum transmission power or remain silent), the number of potential transmitter

activations increases exponentially in the number of nodesin the network. This renders

the scheduling problem non-scalable. This issue of increased complexity together with

the fact that scheduling needs to be solved repeatedly over time as the network conditions

change, necessitates the introduction of alternative efficient solutions. Such alternatives

can be heuristics that achieve efficiency by compromising optimality in performance.

One such approach is to simplify the scheduling problem by reducing the set of pos-

sible rate control and scheduling decisions that a policy can choose from. In a part of this

thesis instead of considering all potential scheduling decisions (a set that grows exponen-

tially in the number of nodes) we provide a simplification to the scheduling problem by

allowing only decisions given by the aforementioned extreme types of communication,

3



namely (i)one at a timeand (ii) all together. Although the above two schemes represent

a severe restriction of the action space, we expect to obtainuseful insights regarding this

trade-off which can facilitate the discovery of better heuristics.

1.4 Performance Measures

1.4.1 Stable Throughput

An important criterion to measure network performance is tomaximize the rates at

which data can be sent through the network while guaranteeing that the network queues

remain finite. This is the stable throughout of the network. Under stability, these rates

coincide with the exogenous arrival rates. The set of all such rates for which the network

queues remain stable is called the stable throughput regionof the network. In this thesis,

we consider the problem of stable throughput maximization under anycast traffic.

1.4.2 Utility Maximization

Since the network resources are limited, they must be appropriately allocated to the

network users. “Resource” can be the time that a network nodehas access to the wireless

channel or the average rate that it receives. In this thesis we consider the latter case. We

are interested in the scheduling problem for maximizing theuser utility. In our framework,

we consider arbitrary utility functions that are concave, continuously differentiable, and

strictly increasing in the average rate.

The general problem of utility maximization inherently captures several commonly

used performance criteria, such as the total throughput andfairness. As an example, an

4



interesting utility function is that ofα-fairness introduced by [1] where the corresponding

utility function Uα(r) is given by

Uα(r) =





log(r) if α = 1

(1− α)−1r1−α otherwise.

(1.1)

The parameterα denotes the amount of “fairness” the utility function provides to the

users. For instance,α = 0 yields the criterion of total throughput under which the objec-

tive is to find the maximum throughput rate that the network can support. Whenα = 1

this utility yields the objective ofproportional fairnessand it further leads tomax-min

fairness asα grows to infinity.

Clearly, maximizing the total throughput of the network leads to an efficient utiliza-

tion of the network resources since the network sends trafficat the maximum rate that it

can support. Nevertheless, it can lead to serious unfairness among the users since the op-

timal action set may totally exclude users with poor channelconditions, prohibiting them

from accessing the channel. Thus, in this thesis we pay special attention to the criterion of

proportional fairness [2], which has been widely used as a performance metric in wireless

networks. Our focus on the criterion of proportional fairness stems from the fact that it

provides a good compromise between efficiency and fairness [3].

1.4.3 Minimum-Length Scheduling

The performance metrics of stable throughput and utility maximization rely on the

basic assumption that the corresponding average rate regions are well defined. Such an

assumption requires that the wireless channel has a stationary and ergodic behavior. How-

ever, in practice the wireless channel evolution may neither be stationary nor ergodic such

5



as in the cases of arbitrary mobility or networks with finite lifetime. This renders the

above criteria inappropriate for such cases.

An alternative metric to stable throughput and utility maximization that can charac-

terize the traffic-carrying capabilities of wireless networks with non-stationary and non-

ergodic channel behavior is to construct schedules of minimum-length ([4], [5], [6], [7],

[8]). This problem involves obtaining a sequence of activations of wireless nodes so that

a finite, fixed amount of data traffic, residing at a set of source nodes, is routed to get

delivered in minimum time to its intended destinations. In fact, a schedule of minimum-

length is closely related to maximizing the network throughput since by minimizing the

time to send a fixed amount of data, the effective rate at whichdata traverses the network

is maximized.

1.5 Outline of the Thesis

In Chapter 2 we start our analysis by considering single-hop, static networks under

multicast traffic. All traffic sources are assumed to be backlogged. We explicitly char-

acterize the optimal joint scheduling and rate control policy under the objective of sum

throughput maximization. Under the objective of proportional fairness we formulate the

problem as a convex problem with a large number of variables.To explicitly characterize

the optimal policy we consider a restricted set of scheduling actions given by activating

a single transmitter at any given time or all of them simultaneously. Under this restricted

framework, we explicitly characterize how the optimal proportionally fair scheduling and

rate control decisions relate to the current channel conditions.
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Next, in Chapter 3 we consider single-hop,time-varyingwireless networks com-

prising of a set of backlogged multicast sources. We consider policies that take decisions

only based on a possibly inaccurate estimate of the current channel state. We introduce an

online gradient-based algorithm under a fading environment that selects the transmission

rates at every decision time. We show optimality of this algorithm for a large class of

utility functions by making use of the theory of stochastic approximation under a utility

maximization framework. In the event that more than one rateallocation is optimal, the

algorithm selects the one that minimizes the power sum.

In Chapter 4 we focus on the problem of obtaining schedules ofminimum length for

single-hop wireless networks under unicast traffic. We introduce an optimal joint schedul-

ing and rate control policy that minimizes the required timefor all network sources to

deliver their data traffic to their respective destinations. We consider both static and time-

varying networks. In the static network case, the optimality of the introduced policy is

established using graph theory and methods from stochasticcontrol theory are employed

for the time-varying case.

In Chapter 5 we turn our focus on the objective of stable throughput maximiza-

tion for a set of commodities of anycast traffic for multi-hopwireless networks. Each

commodity is assigned a weight of preference. We introduce ajoint scheduling and rout-

ing policy that has access to only an estimate of the channel state. We characterize the

stable throughput region of the network under uncertainty in the channel state by using

quadratic Lyapunov methods. We show that the introduced policy is optimal with respect

to maximizing the stable throughput of the network within a broad class of stationary,

non-stationary, and anticipative policies, irrespectiveof the weight assignment.

7



Finally, Chapter 6 summarizes our contributions and discusses a few potential fu-

ture research directions.
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Chapter 2

Sum Throughput Maximization and Proportional Fairness for

Multicast Traffic in Static Networks

2.1 Background

The problem of scheduling in wireless networks has been studied extensively under

various assumptions and performance criteria ([4], [5], [9], [10], [11]), and in particular

in the context of joint scheduling and rate control (e.g., [12], [13]). In [12], scheduling

of unicast transmissions in static networks is considered,where the wireless channel be-

tween any two nodes depends only on the path loss and attenuation due to shadow fading.

The optimal solution for the problem of maximizing the sum throughput of the network

with and without a minimum rate requirement for every transmitter is obtained. It is fur-

ther shown that in the presence of minimum rate constraints and when the transmission

powers are large, a pure Time Division Multiple Access (TDMA) scheme, that allows a

single node to transmit at any given time, is optimal with respect to maximizing the sum

throughput of the network. In addition, the problem of obtaining a max-min fair and a

proportionally fair rate allocation is formulated in termsof a linear and a non-linear pro-

gram respectively. However, these problems are not solved and the optimal solution is not

characterized in either formulation.

In this chapter, we are interested in a cross-layer view of the scheduling problem by
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extending our earlier work [14] in which we obtained preliminary results. Since multicast

traffic comprises a large volume of traffic in many network applications, we consider a

single-hop network of multiple transmitters, eachmulticastingtraffic destined for a set

of receivers. The cases of unicast and broadcast traffic are naturally special cases in our

formulation. Each transmitter is associated with a multicast session and the receivers

of various sessions are allowed to overlap. We are interested in the problem of jointly

scheduling the transmitters and controlling their rates under two different criteria, namely

sum throughputandproportional fairness. We first obtain the optimal rate control and

scheduling policy to maximize the sum throughput of the network. Since maximizing the

sum throughput can be unfair to users with poor channel conditions, we also consider the

objective of proportional fairness. We formulate the problem of obtaining the proportion-

ally fair schedule as a convex problem. Next, by focusing on arestricted subset of the

possible rate control and scheduling actions, similarly to[14], we are able to analytically

solve the corresponding convex problem and obtain a proportionally fair solution over the

reduced set of rate control and scheduling decisions. Our results generalize [14] in two re-

spects: (i) we consider multicast, rather than unicast, traffic, and (ii) we employ a weaker

set of assumptions. Our framework includes unicast and broadcast traffic as special cases.

Unlike in [12], our objective is toexplicitly characterizethe optimal solution and how it

relates to the current channel conditions. Similarly, thischapter is different from a body

of work that studies the joint scheduling and rate control problem under time-varying

channels for unicast ([13], [15], [16], and [17]) and multicast traffic [18]. The focus of

the above works is to provide algorithmic solutions to maximizing the user utility. In con-

trast, our focus is, rather, to explicitly characterize theexact relation between the current

10



channel conditions and the optimal scheduling decisions both for unicast, and multicast

traffic.

2.2 Model Formulation

We consider a set of single-hop, wireless multicast links from T transmitters toD

receivers as shown in Fig. 2.1, that operate in slotted time.Let T andD be thesetsof

transmitters and receivers in the network respectively. Each transmitterk ∈ T wishes to

multicast at acommonrate (single rate multicast) to a set of receiversD(k) ⊆ D. The

pair (k,D(k)) is called amulticast session. Note that this model is general enough to

account for the special cases of unicast (|D(k)| = 1) and broadcast (|D(k)| = D) traffic,

where|D(k)| denotes the cardinality of setD(k). We assume that a receiverd ∈ D can

be a member of more than one multicast session, i.e., for multicast transmittersj, k ∈ T ,

it is possible thatD(k) ∩ D(j) 6= ∅. In this work we assume that each transmitter has a

saturated buffer with unlimited reservoir of data traffic; that is we do not consider the case

of stable throughput, finite delays, and bursty traffic.

Let Pn(k) represent the transmission power of transmitterk at time slotn. The

variablePn(k) is assumed to take two possible values, namelyPmax
k (when transmitterk

is activated) and0 (when it remains silent). We denote byPn theT -dimensional vector of

transmission powers at time slotn, i.e.,Pn = (Pn(k), k ∈ T ). We also denote withN(d)

the noise power level at receiverd ∈ D. Although we restrict our attention to single-hop

networks, our model can be used to address the scheduling andrate control problem in

full-fledged multi-hop networks under fixed routing. However, we do not consider this

11
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Figure 2.1: A single-hop network ofT multicast transmitters andD receivers.

extension in this thesis.

We assume that the channel conditions between every transmitter and receiver in

the network do not vary with time and are due to pure path loss.Hence, we denote by

G(i, j) the path loss between every transmitteri ∈ T and receiverj ∈ D.

In our model we employ theSignal to Interference plus Noise Ratio (SINR)criterion

to determine the outcome of a transmission. In the case of multicasting successfully

the same message to a set of receivers the SINR criterion has to be satisfied at every

receiver. Letγn,d(r) be the threshold at time slotn at receiverd ∈ D that corresponds to

transmission rater. We will say that at time slotn a transmitterk successfullymulticasts

at acommonrater to all its intended receivers in the setD(k), if the SINR at each receiver

d ∈ D(k) exceeds the corresponding threshold, i.e.,

12



Pn(k)G(k, d)

N(d) +
∑

j∈T ,j 6=k Pn(j)G(j, d)
≥ γn,d(r), ∀d ∈ D(k). (2.1)

In our model we consider receivers with multi-packet reception (MPR) capabilities.

Under MPR a receiver may successfully receive concurrentlyfrom multiple transmitters

as long as the SINR from each one of them exceeds the required threshold. Hence, two

multicast transmitters with overlapping receiving nodes can concurrently transmit suc-

cessfully. Each receiver is equipped with a detector that has multiple matched filters so

that it can receive successfully from multiple transmitters at any given time as long as

the corresponding SINR at each one of them exceeds the required threshold. If the SINR

threshold is not exceeded at all intended receivers, we donot assume the transmission

successful.

There exist2T −1 possible subsets of transmitters that can be activated at any given

time, each corresponding to different threshold selections. These amount to all the pos-

sible ways of activating at least one out of theT transmitters. For a given activation,

the transmission rates of active transmitters are set to thehighest possible rates satisfy-

ing the condition that the SINR values at all respective receivers exceed the thresholds

associated with that rate. Consequently, there exist2T − 1 possible scheduling and rate

control decisions that we will callactionsfor simplicity. Let us denote byA the set of all

possible actions, i.e.,|A| = 2T − 1. The optimal action selection depends on the adopted

performance objective and on the link channel conditions.

We denote byrj
k the instantaneousrate at which transmitterk ∈ T transmits to

all of the receiversD(k) in its multicast session, under Actionj ∈ A. Since we con-

13



sider single-rate multicast, the rate of transmitterk is equal to the rate of every receiver

d in its multicast group, i.e.,d ∈ D(k). Thus, we can characterize the rate of each

receiverd ∈ D(k) through the transmission rate of its corresponding transmitter. Let

π = (π0, . . . , π|A|−1) denote a probability distribution over the set of all possible rate

control and scheduling actions inA. That is, we randomize the policy decision so that in

every slot Actionj is taken with probabilityπj . This formulation by-passes one aspect

of combinatorial complexity that arises when we associate each action in a deterministic

way with each slot. We assume that such probability distribution exists, e.g., by requiring

ergodicity on the action selection. Since a transmitter is not activated at the same rate in

every slot, we define theeffective raterk(π) of transmitterk ∈ T to be the average rate

over the action distributionπ, i.e.,

rk(π) =
∑

j∈A

rj
kπj .

Although in a unicast transmission there is no ambiguity regarding how to define

throughput, this is not the case for multicasting where throughput can be measured both

in terms of the transmission rate as well as with respect to the received rate. Defining

throughput in terms of the transmission rate of a multicast transmitter would give two

transmitters operating at the same rate equal weights, regardless of the number of re-

ceivers to which each of them transmits. In this chapter we define throughput as the

overall traffic that reaches all the receivers of a multicast session. Thus, for any two mul-

ticast transmitters that operate at equal rates, the transmitter that has a higher number of

receivers is assumed to contribute more in terms of throughput. In other words, our cri-

14



terion is thereceived throughputwhich reflects the number of receivers in the multicast

group.

2.3 Total Throughput Maximization

In this section we obtain a scheduling and rate control policy that maximizes the to-

tal (sum) throughput of the network. The maximization problem can be posed as follows:

max
π

∑

k∈T

|D(k)|rk(π) (2.2)

s.t.

πj ≥ 0, j ∈ A, (2.3)

∑

j∈A

πj = 1. (2.4)

We call the above problem described by (2.2)-(2.4) Problem I. Consider also the closely

associated surrogate problem called Problem II defined as

max
j∈A

∑

k∈T

|D(k)|rj
k. (2.5)

The following theorem shows how these two problems relate.

Theorem 1 LetA⋆ ⊆ A denote the set of actions solving Problem II defined in(2.5). The

optimal probability assignment solving Problem I defined in(2.2)-(2.4)satisfies
∑

j∈A⋆ πj =

1.

The proof of Theorem 1 is presented in Section 2.7. It is clearthat optimizing the total

throughput of the network leads to an efficient utilization of the network resources since

15



the network sends traffic at the maximum rate that it can support. Nevertheless, it can

lead to serious unfairness among the transmitters since theoptimal action set may totally

exclude transmitters with poor channel conditions, prohibiting them from accessing the

channel. In the next section, we consider the utility of proportional fairness [2] which

has been widely used as a performance metric in wireless networks, as it provides a good

compromise between efficiency and fairness [3].

2.4 Proportional Fairness

In this section we focus on the objective of proportional fairness. As it was shown

in [2] and also in [1] the objective of proportional fairnessis equivalent to maximizing the

sum of the logarithms of the user rates over the long-term average feasible rate region.

Recall thatrj
k is the instantaneous transmission rate of transmitterk under Actionj.

We are interested in obtaining an optimal probability distribution so that theeffectiverates

of each receiverd ∈ D are assigned in a proportionally fair way. This can be expressed

as a convex optimization problem as follows:

max
π

∑

k∈T

|D(k)| log
(
rk(π)

)

s.t.

πj ≥ 0, ∀ j ∈ A,

∑

j∈A

πj = 1,

whereπj is the probability that in a given slot Actionj is chosen. Although this is a

16
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Figure 2.2: TheT + 1 possible actions obtained by either schedulingT transmitters

one-by-one or by allowing all the transmitters to transmit simultaneously. The rate of

transmitterk under Actionj is denoted byrj
k.

convex problem, the number of possible actions, and hence constraints, increases expo-

nentially in the number of multicast transmitters. Therefore, although numerical solutions

can be obtained (for example, through interior-point methods [19],) when the number of

transmitters in the network is sufficiently small, computing the optimal solution analyti-

cally is infeasible.

Consequently, in what follows, we consider a suboptimal solution by restricting

the set of feasible actions. These actions include (i) the simultaneous activation ofall

T multicast transmitters operating successfully and at instantaneous rates that ensure all

SINR threshold inequalities are satisfied (we call this operation “all-at-once” or “Action

0”) and (ii) the individual activation of each transmitter separately (we call this operation

“one-at-a-time” or “Actionk” when transmitterk is activated). Clearly, under Action

k the instantaneous rate is the maximum possible that permitsthe SINR for the given

transmission power to exceed the corresponding threshold at each receiverd ∈ D(k).

17



The above two modes of operation yield a total ofT + 1 actions, as shown in Fig. 2.2.

Restricting attention to these two modes of operation is somewhat natural since it

permits comparison between two extreme cases, namely the cases of “all-at-once” and

“one-at-a-time” operation. Note that since we don’t consider power control, under Action

0 the individual rates are likely to be low due to the effects ofinterference. On the other

hand, although under Actionk the instantaneous rate of thekth transmitter will likely be

much higher (than the corresponding rate under concurrent operation), the effective rate

may be lower due to the effect of time sharing. Although this represents a severe restric-

tion of the action space, it is expected to provide an insightinto the trade-off between

concurrent and individual activation.

Next, we find the optimal proportionally fair probability distribution over the afore-

mentioned restricted set of actions by solving the following problem:

max
π

∑

k∈T

|D(k)| log(π0r
0
k + πkr

k
k) (2.6)

s.t.

πj ≥ 0, ∀ j ∈ {0, 1, . . . , T}, (2.7)

T∑

j=0

πj = 1. (2.8)

Before we characterize the optimal policy solving (2.6)-(2.8), we provide some useful

definitions. LetJ be a subset of the setT , such that for everyj ∈ J it is true thatπj > 0.

Also, let the complementJ c of the setJ be a set such that for everyi ∈ J c it follows

thatπi = 0, i.e.,J c = T \ J .

18



Theorem 2 Let π⋆ = (π⋆
0, . . . , π

⋆
T ) denote the solution to(2.6)-(2.8) above. Then we

have:

1. If

∑

k∈T

r0
k

rk
k

≤ 1,

each multicast transmitterk ∈ T is scheduled to transmit individually with proba-

bility

π⋆
k =

|D(k)|∑
j∈T |D(j)|

, ∀k ∈ T ,

and the probability of concurrent operation satisfiesπ⋆
0 = 0.

2. If

∑

k∈T

r0
k

rk
k

> 1,

the optimal policy is of a threshold type with thresholdR(J ) given by

R(J ) =
1−

∑
j∈J r0

j /r
j
j∑

m∈J c |D(m)|
. (2.9)

Specifically:

(a) A multicast transmitterj ∈ T is scheduled to transmit individually with prob-

ability π⋆
j > 0 (i.e.,j is activated individually and belongs toJ ) given by

π⋆
j =
|D(j)| −

∑
i∈J c |D(i)|

r0
j /rj

j

1−
P

j∈J
r0
j /rj

j∑
k∈T |D(k)|

, (2.10)
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if and only if

r0
j

|D(j)|rj
j

< R(J ). (2.11)

(b) All transmitters operate concurrently with probability π⋆
0 given by

π⋆
0 =

∑
m ∈J c |D(m)|

(∑
k∈T |D(k)|

)(
1−

∑
j∈J r0

j/r
j
j

) . (2.12)

The proof of Theorem 2 is provided in Section 2.8. The quantity
∑

k∈T
r0
k

rk
k

deter-

mines, in a sense, the relative degree of interference in thenetwork. Clearly, for any

transmitter the instantaneous rate under concurrent operation is no greater than its cor-

responding rate under individual transmission. If it is also true that
∑

k∈T
r0
k

rk
k

≤ 1, then

the transmitters interfere among themselves sufficiently,so that their corresponding rates

under concurrent operation are much lower than the corresponding rates under individual

operation. Hence, when
∑

k∈T

r0
k

rk
k

≤ 1, the optimal policy would never activate all trans-

mitters concurrently (π0 = 0); instead the optimal scheduling and rate control solution

is to activate a single transmitter at a time as in a TDMA fashion. On the other hand, if

∑
k∈T

r0
k

rk
k

> 1, the interference among the transmitters when they concurrently transmit is

not so severe, and hence, the individual rates under concurrent operation result in levels

that are “comparable” to those achieved under individual operation. Thus, the optimal

policy assigns a positive probability to Action0.
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Theorem 2 characterizes the optimal solution based on the threshold functionR(J )

which itself is a function of the setJ . Hence, in order to completely characterize the

optimal policy we need to characterize the composition ofJ . Note that since the optimal

policy is of threshold type, the cardinality|J | of the “individually activated” set suffices

to completely determine the setJ itself, provided we label the transmitters appropriately.

To simplify the notation in the sequel we will writeR(j) to denote{R(J ) : |J | = j}.

Let us reorder the multicast sessions with respect to their corresponding values of

the ratiosr0
j/
(
|D(j)|rj

j

)
, j ∈ T in increasing order, i.e.,

r̃0
1

|D̃(1)|r̃1
1

≤
r̃0
2

|D̃(2)|r̃2
2

≤ . . . ≤
r̃0
T

|D̃(T )|r̃T
T

, (2.13)

where the rates̃r0
j , r̃j

j , and the set of receivers̃D(j) denote the quantitiesr0
j , rj

j , andD(j)

respectively of thejth transmitter under the new ordering. From now on, unless otherwise

stated, the transmitterj is thejth transmitter under this new ordering. We will make use

of the following property of the threshold functionR(j) to obtain the cardinality of the

setJ .

Lemma 1 Under the ordering of(2.13), the threshold functionR(j) defined in Theorem

2 satisfies the following:

R(j − 1) ≤ R(j), if and only if j ∈ J .

The proof of Lemma 1 is proved in Section 2.9. From Lemma 1 it follows thatR(j) is

increasing for allj ∈ J and decreasing for allj ∈ J c. Using this fact, the following

result follows directly using the definition ofR(J ).
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Theorem 3 The cardinality of the setJ under the optimal policy specified in Theorem 2

is given by

|J | = arg max
ℓ∈{0,1,...,T}

1−
∑ℓ

j=1 r̃0
j/r̃

j
j∑T

m=ℓ+1 |D̃(m)|
. (2.14)

From Theorems 2 and 3 it follows that the setJ contains the|J | transmitters with

the lowest values of the ratiosr0
j /
(
|D(j)|rj

j

)
for j ∈ T . Hence, in the optimal solution

the transmitters that are selected to be activated individually are the most “disadvantaged”

multicast transmitters, i.e., those that either (i) can only achieve very low rates under

concurrent operation compared to individual operation or (ii) those that multicast to a

large number of receivers.

Consider a single-hop network ofT transmitter and receiver pairs, where each trans-

mitter sends unicast traffic to its corresponding receiver.Note that under the restricted set

of actions the optimal proportionally fair probability distribution for the unicast case fol-

lows directly from our formulation by simply setting the cardinality of the setD(k) for

every transmitterk ∈ T equal to one, i.e.,|D(k)| = 1. Thus, the solution of the unicast

case is given next.

Corollary 1 Let πu⋆ = (πu
0

⋆, . . . , πu
T

⋆) be the optimal proportionally fair probability

distribution for unicast traffic. Then we have:

1. If

∑

k∈T

r0
k

rk
k

≤ 1,

each transmitterk ∈ T is scheduled to transmit individually with probability
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πu
k

⋆ =
1

T
, ∀k ∈ T ,

and the probability of concurrent operation is zero , i.e.,πu
0

⋆ = 0.

2. If

∑

k∈T

r0
k

rk
k

> 1,

the optimal policy is of a threshold type with thresholdR(J ) given by

R(J ) =
1−

∑
j∈J r0

j /r
j
j

T − |J |
. (2.15)

Specifically,

(a) A transmitterj ∈ T is scheduled to transmit individually with probability

πu
j

⋆ > 0 (i.e.,j is individually activated and belongs inJ ) given by

πu
j

⋆ =
1

T

(
1−

∑

i∈J c

r0
j/r

j
j

1−
∑

j∈J r0
j/r

j
j

)
, (2.16)

if and only if

r0
j

rj
j

< R(J ). (2.17)

(b) All transmitters operate concurrently with probability πu
0

⋆ given by

πu
0

⋆ =
T − |J |

T
(
1−

∑
j∈J r0

j/r
j
j

) . (2.18)
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Corollary 2 The cardinality of the setJ under the optimal policy specified in Corollary

1 is given by the following:

|J | = arg max
ℓ∈{0,1,...,T}

1−
∑ℓ

j=1 r̃0
j/r̃

j
j

T − ℓ
. (2.19)

Corollaries 1 and 2 extend our prior work [14] where we had assumed that for every

unicast transmitterj ∈ T the rates under individual operationrj
j were all equal to each

other.

2.5 Simulation Results

In this section, we analyze the performance of the proposed policies through a set

of numerical experiments. First, we consider the special case of purely unicast traffic.

Then, we proceed to a more general case that involves both unicast and multicast ses-

sions. Throughout this section, we focus only on the criterion of proportional fairness. To

illustrate our results we assume that the data rater(·) is given by the single user Shannon

formula under the assumption of unit bandwidth (See e.g., (A.2) in Appendix.). We could

just as well use other expressions for different modulationschemes, e.g., (A.1) in the Ap-

pendix, corresponding toM-ary Phase Shift Keying (PSK) modulation with symbol rate

control. Finally, we assume that the duration of a time slot is equal to one unit of time.

2.5.1 Unicast Case

The first wireless network we consider is shown in Fig. 2.3. Itis a single-hop,

static network of three transmitter/receiver pairs of unicast data traffic. The maximum

24



transmission powers at the transmitters arePmax
1 = P/2, Pmax

2 = P, Pmax
3 = 6 ∗ P ,

whereP = 6.0 ∗ 10−5 Watts. Further, the power of the thermal noise is assumed to be

common at all receivers and equal toN = 3.34 ∗ 10−6 Watts.

!"

#"

!"

#"

$"$"

Figure 2.3: A static network of three transmitter/receiverpairs under unicast traffic.

We also parameterize the path loss matrixG, defining the path losses between the

3 transmitters and the3 receivers, as

G =




0.9 0.9 ∗ β 0.9 ∗ β

0.9 ∗ β 0.9 0.9 ∗ β

0.9 ∗ β 0.9 ∗ β 0.9




,

whereβ ∈ [0, 1] is a parameter, we dub as theinterference coefficient, since it scales the

degree of interference in the cross-channels. Ifβ = 0, the three sessions can operate

in parallel in an interference free manner. Asβ increases, the cross-channel qualities

improve and the amount of interference between the sessionsincreases. Whenβ = 1, the

path losses between the direct and the cross channels becomeequal to each other at0.9.

Under this channel model, we compare the performance of two proportionally fair

policies. By proportionally fair we mean that the corresponding probabilities with which

the different actions are chosen solve the unicast problem (2.6)-(2.8) obtained by replac-
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ing |D(k)| = 1 for eachk in (2.6). The first policy we consider is a proportionally fair

TDMA scheme that activates a single transmitter at any giventime (at its highest possible

rate) with a probability optimized to ensure proportional fairness in the effective received

rates when only TDMA actions are considered. The second policy is a restricted rate con-

trol policy that can choose to activate the transmitters oneat a time or all together. Again,

the probability with which each action is selected is optimized so that the effective rate at

each receiver is proportionally fair under this restrictedset of actions.

Fig. 2.4 shows the variation of the effective proportionally fair rates of the three

transmitter/receiver pairs under the considered policiesas the interference level in the sys-

tem increases. First, we observe that the proportionally fair rate of the transmitter/receiver

pair 3 is higher than the corresponding rates of the other two pairsand that the transmit-

ter/receiver pair1 has the lowest rate under all values of the interference coefficient. This

is a natural outcome stemming from the specific selections onthe maximum transmission

powers of the respective transmitters. Our second observation confirms our intuitive ex-

planation that the rate control policy performs strictly better than the pure TDMA scheme

at low levels of interference, i.e., when the interference coefficientβ is small. However,

the performance gains of the proportionally fair rate control policy over the proportionally

fair TDMA policy diminish rather quickly asβ increases. For any interference coefficient

β > 0.2, we observe that the rate control scheme converges to a TDMA scheme and

thus both policies achieve the same performance. In other words, after a certain level of

interference, a proportionally fair TDMA scheme becomes the optimum choice.
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2.5.2 Multicast Case

In this subsection, we consider a static single-hop networkwith three transmitters

and six receivers as shown in Fig. 2.5. The sets of the receivers for each transmitter

!"
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$"

%"

&"

'"

Figure 2.5: A single-hop static network of3 multicast transmitters and6 receivers.

areD(1) = {1, 2, 3}, D(2) = {4, 5}, andD(3) = {6}, in other words transmitters1

and2 multicast to their respective receivers while transmitter3 is a unicast source. We

set the maximum transmission powers to be equal, i.e.,Pmax
k = P, k = 1, 2, 3, where

P = 6.0 ∗ 10−5 Watts. As in the previous section, the noise power is assumedto be

common at all receivers and equal toN = 3.34 ∗ 10−6 Watts.

The path losses between the3 transmitters and the6 receivers are captured by the

path loss matrixG, given as

G =




0.8 0.9 0.75 β β β

β β β 0.85 0.9 β

β β β β β 0.7




.
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Figure 2.6: Effective rate of transmitter 1 with increasingβ.
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Figure 2.7: Effective rate of transmitter 2 with increasingβ.
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Figure 2.8: Effective rate of transmitter 3 with increasingβ.
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As before,β ∈ [0, 1] represents theinterference coefficient. In Fig. 2.6, Fig. 2.7

and Fig. 2.8, the proportionally fair rates of each multicast session are plotted as a func-

tion of the interference coefficientβ for three policies. Specifically, we consider (i) a

proportionally fair scheme that allows all23 − 1 possible rate control and scheduling ac-

tions of activating the3 transmitters, (ii) a proportionally fair TDMA scheme, where a

single transmitter is activated at any given time, and (iii)the restricted scheme that con-

siders either “all-at-once” operation or one at a time. As inthe unicast experiment, the

corresponding action probabilities are optimized so that the effective received rates are

proportionally fair.

Similarly to the unicast case, when the levels of interference are low (i.e.,β is close

to 0), the two proportionally fair rate control schemes achievemuch higher rates than the

corresponding TDMA scheme. Furthermore, both rate controlschemes converge fast, as

expected, to the TDMA scheduling policy as the interferencecoefficientβ increases.

2.6 Summary

In this chapter, we obtained a joint scheduling and rate control policy that assigns

a probability distribution to the set of feasible rate control and scheduling actions under

two performance objectives. We first considered sum throughput maximization and then

proportional fairness. The identity of the transmitters that access the channel and their

respective rates was selected according to this probability distribution.

In Section 2.2, we presented the network model under consideration. In Section

2.3 we focused on the criterion of total throughput maximization. We explicitly char-
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acterized an optimal scheduling and rate control policy. InSection 2.4 we focused our

attention on the criterion of proportional fairness. Specifically, due to the complexity

of the general problem we restricted the set of feasible actions to only actions given by

concurrent operation of the transmitters all together or one at a time. For this restricted

model we characterized the exact conditions under which a pure TDMA scheme should

be employed instead of concurrent transmission for the “average rate” of each receiver to

be proportionally fair. We showed that under this restricted framework the optimal pro-

portionally fair solution is of a threshold type. We verifiedour analytical results through a

set of numerical experiments in Section 2.5. Finally, the proofs of our main results appear

in Sections 2.7, 2.8, and 2.9.

2.7 Proof of Theorem 1

We can write the Lagrangian of the problem defined in (2.2)-(2.4) as:

L(π, µ, λ) =
∑

k∈T

∑

j∈A

|D(k)|rj
kπj − λ

(∑

j∈A

πj − 1
)

+
∑

j∈A

µjπj , (2.20)

whereµ = (µ1, . . . , µ|A|) andλ are the Lagrange multipliers for the inequality and the

equality constraints respectively. The Karush-Kuhn-Tucker (KKT) conditions yield:

∂L(π, µ, λ)

∂πj

=
∑

k∈T

|D(k)|rj
k − λ + µj = 0 for all j ∈ A. (2.21)

∂L(π, µ, λ)

∂λ
= −

∑

j∈A

πj + 1 = 0. (2.22)

µjπj = 0, µj ≥ 0, πj ≥ 0, for all j ∈ A. (2.23)
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Let J denote a subset of the setA, such that for everyj ∈ J it is true thatπj > 0, and

J c = A \ J denotes the complement set such that for everyi ∈ J c, πi = 0. Then from

(4.18) it follows that

∑

j∈J

πj = 1. (2.24)

Also, from (4.19) we conclude thatµj = 0 for everyj ∈ J and from (2.21) it follows

that

λ =
∑

k∈T

|D(k)|rj
k, for everyj ∈ J . (2.25)

Moreover, from (4.19) we obtain thatµi ≥ 0 for everyi ∈ J c, and from (2.21) it follows

that

λ =
∑

k∈T

|D(k)|ri
k + µi, for everyi ∈ J c. (2.26)

Then, from (2.25) and (2.26) and the fact thatµi ≥ 0 we obtain that

∑

k∈T

|D(k)|rj
k ≥

∑

k∈T

|D(k)|ri
k, for everyj ∈ J , andi ∈ J c. (2.27)

Thus, from (2.25) and (2.27) it follows that any actionj ∈ J has to be a solution of

Problem II, i.e.,j ∈ A⋆. Therefore, we can conclude thatJ is a subset ofA⋆, i.e.,

J ⊆ A⋆. As a result, we can obtain the desired using (2.24):

∑

j∈A⋆

πj = 1.

�
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2.8 Proof of Theorem 2

The Lagrangian function of the problem defined in (2.6)-(2.8) is given by

L(π, µ, λ) =
∑

k∈T

|D(k)| log(π0r
0
k + πkr

k
k) + λ(1−

T∑

j=0

πj) +

T∑

j=0

µjπj

whereµ and λ represent the Lagrange multipliers. The Karush-Kuhn-Tucker (KKT)

conditions yield:

∂L(π, µ, λ)

∂π0
=
∑

k∈T

|D(k)|
r0
k

π0r0
k + πkrk

k

− λ + µ0 = 0. (2.28)

∂L(π, µ, λ)

∂πk

= |D(k)|
rk
k

π0r0
k + πkrk

k

− λ + µk = 0 for all k ∈ T . (2.29)

∂L(π, µ, λ)

∂λ
= 1−

T∑

j=0

πj = 0. (2.30)

µjπj = 0, µj ≥ 0, πj ≥ 0 for all j ∈ {0, 1, . . . , T}. (2.31)

Consider the following cases:

Case 1: Consider the case where Action0 is never employed, i.e.,π0 = 0. It is

easy to see that in this case,πk > 0 for everyk ∈ T . Hence, from (2.31) it follows

thatµ0 ≥ 0 andµk = 0 for everyk ∈ T . Then, from (2.29) we obtain,

πk =
|D(k)|

λ
. (2.32)

Using (2.30) and (2.32) and the fact thatπ0 = 0, we can solve forλ as

λ =
∑

k∈T

|D(k)|, (2.33)
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which implies that

πk =
|D(k)|∑
j∈T |D(j)|

, ∀k ∈ T . (2.34)

Finally, from (2.28) it follows that

∑

k∈T

r0
k

rk
k

≤ 1. (2.35)

Case 2: Now let us consider the alternative case that Action0 is employed with

strictly positive probability, i.e., there will be a fraction of the time that all trans-

mitters operate concurrently. Also, assume that a subsetJ of the transmitters is

further individually activated with positive probability, while the rest of the trans-

mitters,J c = T \ J are not chosen for individual operation. This implies that

π0 > 0, πj > 0 for everyj ∈ J , andπi = 0 for everyi ∈ J c. Hence, (2.31) yields

µ0 = 0, µj = 0 for everyj ∈ J , andµi ≥ 0 for everyi ∈ J c. From (2.28) we have

λ =
∑

j∈J

|D(j)|r0
j

π0r
0
j + πjr

j
j

+
∑

i∈J c

|D(i)|

π0
. (2.36)

Also from (2.29) it follows that for allj ∈ J we have

λ =
|D(j)|rj

j

π0r0
j + πjr

j
j

, (2.37)

or equivalently
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πj =
|D(j)|

λ
− π0

r0
j

rj
j

. (2.38)

Using the fact thatπ0 +
∑

j∈J πj = 1, we obtain

π0 =
λ−

∑
j∈J |D(j)|

λ
(
1−

∑
j∈J r0

j/r
j
j

) . (2.39)

Combining (2.36), (2.37), and (2.39) yields

λ =
∑

k∈T

|D(k)|, (2.40)

π0 =

∑
m ∈J c |D(m)|

(∑
k∈T |D(k)|

)(
1−

∑
j∈J r0

j/r
j
j

) , (2.41)

πj =
|D(j)| −

∑
i∈J c |D(i)|

r0
j /rj

j

1−
P

j∈J
r0
j /rj

j∑
k∈T |D(k)|

. (2.42)

In addition, for alli ∈ J c, from (2.29) it is true that

r0
i

|D(i)|ri
i

≥
1

λπ0
. (2.43)

Furthermore, using (2.40) and (2.41) we rewrite the RHS of (2.43) to obtain

r0
i

|D(i)|ri
i

≥
1−

∑
j∈J r0

j/r
j
j∑

m∈J c |D(m)|
, ∀i ∈ J c. (2.44)

After some straightforward manipulation (2.44) yields
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∑

k∈T

r0
k

rk
k

≥ 1, (2.45)

providing the necessary and sufficient condition forπ0 > 0.

Note also that from (2.9) the right hand side in (2.44) is the thresholdR(J ). Hence,

i ∈ J c if and only if

r0
i

|D(i)|ri
i

≥ R(J ). (2.46)

Also, (2.41) can be written in terms of (2.9) as

π0 =
1(∑

k∈T |D(k)|
)
R(J )

. (2.47)

Then, (2.37), (2.40) and (2.47) together yield

|D(j)|rj
j =

r0
j

R(J )
+ πjr

j
j

∑

k∈T

|D(k)|.

By dividing both sides of the equality by|D(j)|rj
j and by using the fact that

πj

|D(j)|

∑
k∈T |D(k)| > 0 for j ∈ J , it is easy to obtain thatj ∈ J if and only if

r0
j

|D(j)|rj
j

< R(J ). (2.48)

Therefore, from (2.46) and (2.48) it is clear that the optimal policy is of threshold

type.

�
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2.9 Proof of Lemma 1

For notational convenience, let us define the following quantities:

vk :=
r̃0
k

r̃k
k

,

M :=
T∑

k=1

|D̃(k)|,

mk := |D̃(k)|.

Under the ordering given in (2.13), for everyk ∈ J we have by definition that

vk

mk
< R(|J |) <

1−
∑k

j=1 vj −
∑|J |

j=k+1 vj

M −
∑k

j=1 mj −
∑|J |

j=k+1 mj

.

The above can be rewritten as

vk

mk
(M −

k∑

j=1

mj) < 1−
k∑

j=1

vj −

|J |∑

j=k+1

(
vj −

vk

mk
mj

)
.

Due to the fact that under the ordering of (2.13) we havevk

mk
≤ vj

mj
for all j ≥ k, we

obtain

vk

mk

<
1−

∑k
j=1 vj

(M −
∑k

j=1 mj)
, for everyk ∈ J

vk

mk
< R(k), for everyk ∈ J . (2.49)

Furthermore, from (2.49) we obtain that for everyk ∈ J the following is true

vk

mk
<

1−
∑k−1

j=1 vj − vk

M −
∑k−1

j=1 mj −mk

,
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which can also be written as

vk(M −
k−1∑

j=1

mj) < mk(1−
k−1∑

j=1

vj)

or vk

mk
< R(k − 1). (2.50)

On the other hand, using the definition ofR(k), we obtain

R(k)− R(k − 1) =
1−

∑k−1
j=1 vj − vk

M −
∑k

j=1 mj

− R(k − 1)

=
R(k − 1)(M −

∑k−1
j=1 mj)− vk

M −
∑k

j=1 mj

−R(k − 1)

=
R(k − 1)(M −

∑k−1
j=1 mj)− R(k − 1)(M −

∑k
j=1 mj)

M −
∑k

j=1 mj

−
vk

M −
∑k

j=1 mj

=
mkR(k − 1)− vk

M −
∑k

j=1 mj

, (2.51)

which implies that

R(k − 1) ≤ R(k) ⇐⇒
vk

mk

≤ R(k − 1). (2.52)

Hence, from (2.49) and (2.50) we obtain that

R(k − 1) ≤ R(k), for all k ∈ J . (2.53)
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Now, let us considerk ∈ J c. By definition we have

vk

mk

≥ R(|J |),

By simply lettingk = |J |+ 1 we have

v|J |+1

m|J |+1

≥ R(|J |).

However, from (2.52) it follows that

R(|J |) > R(|J |+ 1).

Combining the above two results, we have

v|J |+1

m|J |+1

≥ R(|J |) ≥ R(|J |+ 1). (2.54)

Furthermore, due to the aforementioned ordering, we also have

v|J |+2

m|J |+2

≥
v|J |+1

m|J |+1

≥ R(|J |+ 1), (2.55)

which, from (2.52), implies that

R(|J |+ 1) ≥ R(|J |+ 2).

Repeating the same pattern it is easy to see that

R(k) ≥ R(k + 1), for all k ∈ J c. (2.56)
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Finally, combining (2.53) and (2.56) yields the desired result.

�
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Chapter 3

Utility Maximization for Multicast Traffic in Time-Varying Networks

3.1 Background

The policy of Chapter 2 focused on characterizing the exact relation between the

current channel conditions and the optimal rate control andscheduling decisions, where

optimality was assumed with respect to sum throughput maximization and proportional

fairness. Nevertheless, it has four limitations, namely it(i) assumes that the wireless

channel does not change with time, (ii) assumes the network control policy has perfect

channel state information at every decision instant, (iii)is limited to the objectives of

proportional fairness and total throughput maximization,and (iv) considers a restricted

set of rate control actions in the analysis of proportionally fair schedules.

In this chapter, we consider time-varying networks, with channel conditions that are

potentially not perfectly known by the network control policy, under a general family of

utility functions. We focus on finding a rate and power control algorithm for the problem,

rather than an explicit characterization of the schedulingdecisions with respect to the

channel conditions. Specifically, we consider a system of multiple transmitters withmul-

ticasttraffic destined for a set of receivers. Each transmitter is associated with a multicast

session and the receivers of different sessions can be overlapping. We are interested in

the problem of scheduling the transmitters through joint rate and power control decisions

so that the overall system utility, measured in terms of the average rate of each receiver, is
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maximized. We obtain an optimal policy that jointly allocates the transmission rates and

powers of each transmitter by having access to only a perhapsinaccurate estimate of the

wireless channel state. We prove optimality of this policy through the theory of stochastic

approximation for any utility function that is strictly concave, continuously differentiable,

and increasing in the average rate.

The problem of joint scheduling and rate control has been studied extensively in the

literature. A large body of work focuses on scheduling of thedownlink channel of a base

station transmittingunicastdata traffic to a set of mobile terminals. The base station at

any given time has to select a single terminal to transmit to according to a Time Division

Multiple Access (TDMA) scheme. One particular example is the proportional fair sharing

scheduler (PFS) introduced by Qualcomm. The PFS selects a single terminal for trans-

mission at any given time, the one that maximizes the ratio ofa user’s instantaneous rate

to the average rate it has received so far in order to achieve proportional fairness. There-

fore, those terminals that received comparably lower average data rates until the current

decision instant are more likely to be selected in the optimal solution ([17], [20], [21]).

However, as it is shown in a variety of settings ([14], [22], [23]), TDMA scheduling

of a set of nodes one at a time need not be optimal. In fact, it isshown in [14] that in a

static wireless network, depending on the channel conditions it may be beneficial to allow

all the nodes to operate concurrently for a certain period oftime under the objective of

proportional fairness for unicast traffic. Similar resultsare obtained in [23] for the case

of multicast traffic.

In a different work [16], the authors consider the problem ofrate control for unicast

traffic in time-varying wireless networks. Their formulation permits the scheduling of
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concurrent unicast transmissions. The authors introduce an optimal rate control policy

under the objective of maximizing the sum of user utilities for utility functions that are

strictly concave, increasing in the average rate of each receiver, and continuously differ-

entiable. A subsequent work, [13], considers the problem ofoptimal rate allocation for

a switch serving a set of queues under the objective of utility maximization. Although a

broader class of utility functions is considered in [13], the switch is restricted to change

states according to a finite-state, stationary and ergodic Markov Chain.

Although [13], [14], [16], [17], [20], [21], and [23] consider the problem of rate

control for utility maximization under unicast traffic, a large amount of traffic in networks

is comprised of multicast data. In [18] the authors considera base station that multicasts

traffic to various groups of receivers. It is assumed that only a single multicast group can

be chosen for transmission at any given time and that all the terminals in the multicast

group receive at the same rate (i.e., single-rate multicast). The multicast scheduler needs

to decide whichuniquegroup to serve and at whichrate under two objectives; when

the objective is to be proportionally fair with respect to the (i) total rate of each multi-

cast group and (ii) overall rate of each terminal when it is a member of various multicast

groups. Further, in a recent work [15] we considered the problem of utility maximiza-

tion for multicasttraffic in time-varying wireless networks, through joint rate and power

control decisions by permitting concurrent node activations.

However, a fundamental assumption in all prior work is the availability of perfect

channel state information to the scheduling policies at each decision instant1. In practice,

1In [16], a limited discussion on the subject of channel estimation is presented only for the restricted

case of TDMA scheduling.
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the channel conditions can only be estimated, and hence exact knowledge of the current

channel state is unlikely to be available. Depending on the quality of the channel estimates

the performance degradation can be high. For example, in a fast fading environment the

channel state at the time it is observed can be significantly different from the channel

state at which the actual transmissions take place (see e.g., [24], [25]). The effect of this

discrepancy in the channel state may be two-folded; first, certain scheduled transmissions

may fail, and second, transmissions which would be successful may never be activated.

In this chapter we study the problem of utility maximizationfor time-varying wire-

less networks under channel estimation. We assume a set of multicast transmitters that

are always backlogged. The set of receivers of different multicast sources may be over-

lapping. The objective is to schedule the transmitters by selecting their transmission rates

and powers so that the sum of user utilities is maximized. We consider policies that

take scheduling decisions basedonly on a possibly inaccurate estimate of the wireless

channel state. We introduce an on-line, gradient-based policy and establish its optimality

among all policies that have access only to the current estimate. We employ the theory of

stochastic approximation to prove our results.

In this chapter, we further generalize prior works of [13], [14], [15], [16], [17],

[18], [20], [21], and [23] by considering the problem of utility maximization for multicast

traffic under channel estimation. We also extend the resultsof [18] in two aspects: we

(i) consider a wireless network where multiple multicast transmissions can be scheduled

concurrently, and (ii) assume a broad class of utility functions, that includes the utility of

proportional fairness.
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3.2 Model Formulation

3.2.1 Network Model

We consider a time-varying, single-hop, wireless network,consisting ofT trans-

mitters andD receivers. We denote byT = {1, 2, . . . , T} andD = {1, 2, . . . , D} the

sets of transmitters and receivers in the network respectively. Each transmitterk ∈ T is

associated with amulticastsession and multicasts traffic to a set of receiversD(k) ⊆ D.

We denote by|D(k)| the cardinality of the setD(k). Our model captures the special cases

of unicast(|D(k)| = 1) andbroadcasttraffic (|D(k)| = D). We assume that different mul-

ticast sessions may have overlapping receiver sets, i.e., for any two transmittersj, k ∈ T

it is possible thatD(j) ∩ D(k) 6= ∅. As an example, in Fig. 3.1 both transmitters1 and

2 multicast to receiver1. In this chapter, again, we assume that each multicast source

is always backlogged and has enough data to send whenever it is activated. This traffic

model is to be distinguished from other alternatives that assume burstiness in traffic.

We consider a slotted-time model. We denote byPn(k) the transmission power

level of transmitterk at time slotn. We also denote byPn theT -dimensional vector of

transmission powers of every transmitter at time slotn, i.e.,Pn = (Pn(k), k ∈ T ). We

further assume that for every slotn the power vectorsPn take values from a compact set

P of allowable power allocations, i.e.,Pn ∈ P. Finally, we denote the thermal noise

power at receiverd ∈ D by N(d).

We consider a channel process{Gn}∞n=0 with channel stateGn = {Gn(i, j), i ∈

T , j ∈ D} at every slotn representing the channel conditions between each transmitter i
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and receiverj. We assume that{Gn}∞n=0 follows a block fading model, namely it changes

at the beginning of every slot and stays constant therein. Byassuming that slot durations

can be sufficiently small this assumption becomes less restrictive. The channel process

reflects the variations of the channel quality that can be dueto node mobility, channel

fading, path loss, shadowing, etc. We make the assumption that {Gn}∞n=0 is stationary

andergodic.

A fundamental aspect of our model that contrasts it from prior work [15] is the fact

that at the beginning of each time slotn the network controller is assumed to have access

to only an estimate of the true channel state. This is in fact the reality in wireless systems;

the channel can only be estimated and this estimate can be highly misleading. The effects

of the inaccuracy of the available channel state information at the network controller can

be two-fold: (i) it can lead to the failure of certain scheduled transmissions and (ii) it

can prohibit certain transmissions from being activated although they would have been

successful. These effects get mitigated as the qualities ofthe estimates improve.

Let the estimate of the channel stateGn at time slotn be denoted byĜn =

{Ĝn(i, j), ∀i ∈ T , j ∈ D}. This estimate represents theestimated channel state

Ĝn(i, j) between each transmitteri ∈ T and receiverj ∈ D at slotn. Naturally, at any

given time slotn the estimated channel statêGn and the true channel stateGn are cor-

related. In fact, they can be identical under perfect estimation. The estimated channel

process{Ĝn}∞n=0 also follows a block fading model. It is also assumed to be stationary

and ergodic with stationary distribution given byfĜ(·). In this chapter, we restrict our at-

tention to network control policies that at any given time slot n take scheduling decisions

based only on the estimatêGn. To have a “fair” comparison, we only consider policies
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that have access to a common channel estimateĜn. We denote the class of these policies

by Π̂. We further assume that both process{Gn}
∞
n=0 and{Ĝn}

∞
n=0 take values from a

common state space, that is a continuous setG. The above are illustrated in Fig. 3.1.
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Figure 3.1: A network ofT multicast transmitters andD receivers.

Again, we capture the effects of interference in the networkthrough the SINR in-

terference model under two types of receivers; (i) receivers that can only receive from a

single transmitter at any given time (i.e., single packet reception, SPR), and (ii) receivers

with multi-packet reception (MPR) capabilities. Under MPRa receiver may successfully

receive concurrently from multiple transmitters as long asthe SINR from each one of

them exceeds the required threshold. Hence, two multicast transmitters with overlapping

receiving nodes can concurrently transmit successfully, unlike the SPR case where only a

single transmission can be received successfully at any given time.

Under unicast traffic, throughput is unambiguously defined as the rate at which data

49



is delivered to a receiver successfully. However, this is not the case under multicast traf-

fic. It is possible that a multicast transmission reaches successfully only a subset of the

receivers. In such a case depending on the requirements of the application under consid-

eration this transmission can be assumed to be successful, and hence count as throughput,

or not. For example, if the application expects that at leastsomeof the receivers obtain

the message successfully then such a transmission is assumed to be successful. As an

alternative, the requirements of the application may be more strict and require thatall

the receivers of the multicast group receive the message. Inthis chapter, we consider the

latter case and will assume that a transmission from transmitterk is successful if it is re-

ceived by all the receivers in the multicast groupD(k). If any receiver fails to receive the

message, then the transmission is assumed to fail and the message has to be retransmitted.

As in the previous chapter, we focus on the dependence of the threshold only on

the transmission rate. Assume that the transmission rate and power of each transmitter

k ∈ T at time slotn arern(k) andPn(k) respectively. Letrn = (rn(k), k ∈ T ) and

Pn = (Pn(k), k ∈ T ) be the respective transmission rate and power vectors. Thenthe

SINR at each receiverd ∈ D(k) at time slotn is given as

SINRPn

n (k, d) :=
Pn(k)Gn(k, d)

N(d) +
∑

j∈T , j 6=k Pn(j)Gn(j, d)
. (3.1)

As discussed previously, we will assume that transmitterk multicastssuccessfully at rate

rn(k) if the SINR at each receiverd ∈ D(k) exceeds the required threshold. We denote

by γn,d(r) the SINR threshold at time slotn that represents the minimum value of SINR
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that allows successful transmission at rater at receiverd. Then, for a given pair of vectors

rn andPn a multicast transmission from thekth transmitter is successful if

SINRPn

n (k, d) ≥ γn,d(rn(k)), ∀d ∈ D(k). (3.2)

In this chapter we assume policies that take decisions at every given time slotn

based on the channel estimateĜn. Thus, the transmissions are scheduled based on the

estimated SINR, namely

ŜINR
Pn

n (k, d) :=
Pn(k)Ĝn(k, d)

N(d) +
∑

j∈T , j 6=k Pn(j)Ĝn(j, d)
. (3.3)

and a transmission is expected to be successful by the scheduling policy if

ŜINR
Pn

n (k, d) ≥ γn,d(rn(k)), ∀d ∈ D(k). (3.4)

Since the policies under consideration take decisions based on the estimated SINR

criterion (3.4), it is possible that certain scheduled transmissions fail. To capture this

effect we introduce theT × T diagonal matrixQ(rn,Pn)
n , whose(k, k)th entry satisfies

Q(rn,Pn)
n (k, k) =





1, if SINRPn

n (k, d) ≥ γn,d(rn(k)), ∀d ∈ D(k)

0, otherwise.

(3.5)

In other words the matrixQ(rn,Pn)
n is an indicator diagonal matrix whose(k, k)th diag-

onal entry takes the value one if a scheduled transmission based on (3.4) is in fact also

successful with respect to the true SINR criterion (3.2).
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We also define bȳQ(r,P)
g theT × T dimensional matrix whose(k, k)th entry gives

the probability of success of a scheduled transmission fromtransmitterk to all receivers

d ∈ D(k) at rater(k) and powerP (k) given that the estimated channel state isg ∈ G.

Specifically, the matrix̄Q(r,P)
g is defined as

Q̄(r,P)
g = E[Q(r,P)

n |Ĝn = g], g ∈ G. (3.6)

Note that theQ̄(r,P)
g is stationary with respect to time since the true and estimated

channel processes are both stationary.

We proceed to define the set of feasibleinstantaneoustransmission rates that can be

achieved through all possible rate and power control actions under the current estimated

channel state conditions. Note that the set of feasible rates depends on the capabilities

of the receivers as well, specifically on whether they have SPR or MPR capabilities. Let

RSPR(Ĝn) andRMPR(Ĝn) be the feasible rate regions corresponding to channel state

Ĝn = g, g ∈ G under SPR and MPR respectively. Since under SPR a transmission cannot

be successful if more than one transmitter transmits to the same receiver, we first identify

subsets of the transmitters with non-overlapping receivers. We define avalid activation

vectorc to be a binaryT -element vector that takes values in{0, 1}T . All the non-zero en-

tries of a valid activation vector correspond to transmitters with non-overlapping receiver

sets that can be activated successfully under some rate and power allocation. In other

words, for any two elementsc(j), c(k) of an activation vectorc with c(j) = c(k) = 1

it must be true thatD(j) ∩ D(k) = ∅. We further define theconstraint setC to be the

set containingall such activation vectors. Based on the above,RSPR(Ĝn) is defined as

follows:
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RSPR(Ĝn) = co

{
r = (r(k), k ∈ T ) : ∃P ∈ P, ∃ c ∈ C, such that∀ d ∈ D(k)

c(k)Pn(k)Ĝn(k, d)

N(d) +
∑

j∈T ,j 6=k c(j)Pn(j)Ĝn(j, d)
≥ γn,d(r(k))

}
, (3.7)

whereco(·) is the convex hull of the set. Hence, the setRSPR(Ĝn) is the set obtained by

time-sharing of feasible rates, achieved by some power vectorP ∈ P such that concurrent

transmission from two or more transmitters to a common receiver is prohibited. Similarly,

RMPR(Ĝn) is given by

RMPR(Ĝn) = co

{
r = (r(k), k ∈ T ) : ∃P ∈ P, such that∀ d ∈ D(k),

ŜINR
P

n (k, d) ≥ γn,d(r(k))

}
. (3.8)

3.2.2 Problem Formulation

In this chapter, we are interested to maximize the sum of utilities of all receivers

where the utility is defined in terms of the long-term averagethroughput. We assume

utility functionsU(·) that are strictly concave, increasing, and continuously differentiable

with respect to the received user rate. As an example, a utility function that satisfies these

properties is the utility ofα-fairness presented in Chapter 1.

To distinguish from the regionRSPR(Ĝn) of instantaneoustransmission rates, we

also define the average rate region,R̄SPR when the receivers have only single-packet

reception capabilities as
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R̄SPR =

{
r̄ = (r̄(k), k ∈ T ) : ∃ rg ∈ RSPR(g), ∀g ∈ G

s.t. r̄(k) =

∫

G

rg(k)Q̄π
g (k, k)fĜ(g)dg

}
. (3.9)

This region corresponds to the long term average rate regionof throughput rates that are

achievable when the scheduling decisions are based only on an estimate of the true chan-

nel state. It is easy to see that no rate outside the regionR̄SPR is achievable unless a policy

π /∈ Π̂, i.e., has access to a better estimate of the channel state which would improve the

probabilities of the matrix̄Qπ
g . The corresponding average rate region under MPR ca-

pabilities,R̄MPR, is defined similarly by replacingRSPR(g) with RMPR(g) wherever it

appears in (3.9).

From now on, to simplify our notation we will writeR(Ĝn) to refer to the in-

stantaneous feasible rate regionRSPR(Ĝn) or RMPR(Ĝn), depending on the receiver

capabilities. Further, we denote bȳR the corresponding average rate region. Finally, we

denoteQ̄(r,P)
g (k, k) andQ

(rn,Pn)
n (k, k) by Q̄π

g (k, k) andQπ
n (k, k) respectively where the

superscriptπ is used to denote the pair of rate and power choices by a policyπ.

Given the above definitions, the utility maximization problem under consideration

can be formulated as follows:

max
r̄∈R̄

∑

k∈T

|D(k)|U(r̄(k)), (3.10)

whereU(r̄(k)) is the rate utility that any receiverd ∈ D(k) receives from thekth trans-
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mitter. By multiplying this utility with the number of receivers in the multicast group, we

obtain the overall utility of all receivers.

Note that this is a convex optimization problem. One approach to solve this problem

is to use interior point methods to obtain the optimal vectorof average rates and in the

sequel map these average rates to a sequence of instantaneous transmission rate selections

(and corresponding powers) over the time. However, due to the large number of variables

involved in the optimization, finding these instantaneous rates can be difficult. Further,

the complexity of this reverse process is exacerbated by thefact that at any given slot

there may be more than one such instantaneous rate selection. In this chapter, we follow

a different approach by introducing an on-line, gradient-based solution that at every time

slot selects the instantaneous rates so that the long-term average rate is the maximizer of

(3.10).

3.3 Optimal Rate and Power Control Policy under Uncertainty

In this section we specify an optimal, centralized policyπ⋆, which takes rate and

power control decisions at the beginning of each time slot and is claimed to solve (3.10).

Let rπ
n (k) denote the transmission rate of transmitterk under policyπ at time slot

n and letrπ
n denote theT dimensional vector of ratesrπ

n = (rπ
n (k), k ∈ T ). Also let us

define byθπ
n (k) the time-average rate of transmitterk under a policyπ until time slotn.

From now on we will refer to this time-average rate as theeffective rateof transmitterk

at time slotn. Note that this coincides with the rate that each receiverd ∈ D(k) receives
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up to time slotn. Specifically,

θπ
n (k) =

1

n

n∑

ν=1

rπ
ν (k)Qπ

ν (k, k). (3.11)

We also define the vector of effective rates of all transmitters up to time slotn by θπ
n =

(θπ
n (k), k ∈ T ). The vectorθπ

n can be written recursively according to

θπ
n+1 = θπ

n + ǫnY
π
n , (3.12)

where

Yπ
n = rπ

n+1
⊤
Qπ

n+1 − θπ
n , (3.13)

and

ǫn =
1

n + 1
. (3.14)

Assume that at time slotn, the estimated channel state satisfiesĜn = g for some

g ∈ G and the effective rates at the previous time slotn− 1 are given asθπ⋆

n−1 = θ. Then,

therate and power controlpolicy π⋆ under channel state uncertainty is defined as

[Pπ⋆,θ,g
n ,Rπ⋆,θ,g

n ] =

{
arg min

r∈Mθ,g,P∈P

∑

k∈T

P (k) : ∀k ∈ T , ∀ d ∈ D(k)

}
, (3.15)

whereMθ,g is given by

Mθ,g =

{
r̃ = arg max

r∈R(g)

∑

k∈T

|D(k)|r(k)Q̄π
g (k, k)

∂U(θ(k))

∂θ(k)

}
. (3.16)

Note that the setMθ,g may not be well defined when the gradient of the utility

function is not finite. An example to this is the utility of proportional fairness where for
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values ofθ(k) close to0 the gradient is ill-defined. However his problem can be overcome

by adding arbitrarily small initialization constants to the argument of the gradient of the

utility, as was done in [15] and [21].

The optimality ofπ⋆ defined in (3.15) and (3.16) with respect to the utility maxi-

mization problem of (3.10) is established next.

3.4 Asymptotic Analysis of the Optimal Policy

To show the optimality of the policyπ⋆ given by (3.15) and (3.16) we use the

theory of stochastic approximation ([26], [27]). Note thatthe recursion (3.12) is in the

standard stochastic approximation form with decreasing step sizeǫn. Let t0 = 0 and for

n = 1, . . . let tn =
∑n−1

i=0 ǫi. We define the continuous time interpolation processθ0,π⋆

on (−∞, +∞) as follows:

θ0,π⋆

(t) =





θπ⋆

0 , if t < t0,

θπ⋆

n , if tn ≤ t < tn+1.

We further define theshiftedprocessθn,π⋆

on (−∞, +∞) as:

θn,π⋆

(t) = θ0,π⋆

(tn + t), ∀t ∈ (−∞, +∞).

The basic idea behind this method is to interpolate the discrete process of effective rates

θπ⋆

n , n ∈ {0, 1, 2, . . .} to a continuous processθ0,π⋆

, with interpolating length equal to

the decreasing step sizeǫn of the algorithm. The shifted versionθn,π⋆

of the continuous

process is created by shiftingθ0,π⋆

to start at thenth interpolation interval. It is easy to

see that the tail of the sequenceθπ⋆

n follows that of the processθn,π⋆

. Showing that the
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latter converges to a set of limit points of an ordinary differential equation (ODE) proves

that the sequenceθπ⋆

n converges to the same set of limit points.

The convergence can be either with probability one or in distribution. Although

weaker, convergence in distribution often yields the same information about the asymp-

totic behavior in practical applications as the probability one methods [26]. Hence, we

only focus on convergence in distribution.

Due to the fact that the bandwidth of the communication is finite and the power

vectors are chosen from a compact setP, the rate regionR(g) is compact. Letξπ⋆

n denote

the transmission rates assigned by policyπ⋆ until timen, i.e.,ξπ⋆

n = {rπ⋆

ν , ν ≤ n}. From

the above it follows thatξπ⋆

n also belongs in a compact set. We denote the later byΞ.

To show optimality of the policyπ⋆ described by (3.15) and (3.16) we make the

following assumptions.

Assumption 1 For every time slotn and sequenceξπ⋆

n the functiongθ,ξπ⋆

n defined as

gθ,ξπ⋆

n
n := E[rπ⋆

n+1

⊤
Qπ⋆

n |θ, ξπ⋆

n ]− θ, (3.17)

is measurable with respect to theσ-algebra generated by{θ, ξπ⋆

i , i = 1, . . . , n}. Fur-

thermore, for every compact set∆ ⊂ Ξ, the functiongθ,ξπ⋆

n
n is continuous inθ uniformly

in n and inξπ⋆

n ∈ ∆.

Assumption 1 guarantees that small changes in the current time average rate will not affect

significantly the rate selection of the next decision instant.

Assumption 2 The function̄gθ defined as

ḡθ := E[rπ⋆

n+1

⊤
Qπ⋆

n+1]− θ, (3.18)
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is continuous inθ and satisfies

lim
m,n→∞

1

m

n+m−1∑

ℓ=n

(
E[rπ⋆

ℓ+1

⊤
Qπ⋆

ℓ+1|θ
π⋆

0 , ξπ⋆

n ]− θ − ḡ(θ)

)
1{ξπ⋆

n ∈ Ξ} = 0, (3.19)

where the limit is in the mean and taken asn → ∞ andm → ∞ simultaneously in any

way at all.

The second part of Assumption 2 resembles a weaker version ofthe law of large

numbers, since we only require that the time average of a sequence of expected values

must converge. When the channel process is ergodic, then (3.19) holds even without the

expectation. The following two theorems establish the optimality of the proposed policy.

Theorem 4 Consider the policyπ⋆ ∈ Π̂ specified by(3.15)and (3.16). Under Assump-

tions 1-2 and for any initial condition,θn,π⋆

converges in distribution to the set of limit

points of the ODE given by

θ̇ = E[rπ⋆

n+1

⊤
Qπ⋆

n+1]− θ. (3.20)

The proof is given in Section 3.7.

Theorem 5 The ODE given in(3.20)has a unique limit pointθ⋆ ∈ R̄ whereθ⋆ is the

solution to(3.10), i.e.,

θ⋆ = arg max
r̄∈R̄

∑

k∈T

|D(k)|U(r̄(k)).

The proof of Theorem 5 is given in Section 3.8.
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3.5 Simulation Results

In this section, we analyze the performance of our proposed policy through a set of

simulations both for unicast and multicast traffic. For the sake of simplicity, we assume

perfect channel estimation, i.e.,Gn = Ĝn for every time slotn. Throughout this section,

we consider the utility of proportional fairness. We observe the performance of our policy

both in the presence and absence of channel fading. As we willsee later in this section

unicast traffic is significantly benefitted from the presenceof fading. These benefits are

mitigated in the case of multicast.

Throughout our simulation analysis we consider a single-hop, wireless network

with three transmitters and three receivers. The duration of a time slot is assumed to be

equal to one second. For simplicity in our simulations we only consider rate control, and

assume that each transmitterk at every time slotn can either remain silent or transmit

at a maximum powerP (k), k = 1, 2, 3. Specifically, we assume that the transmission

powers satisfyP (1) = 6.0 ∗ 10−5 Watts,P (2) = 3.0 ∗ 10−5 Watts, andP (3) = 2.0 ∗ 10−5

Watts. Further, the power of the Additive White Gaussian Noise is assumed to beN(d) =

3.34 ∗ 10−6 Watts at all receivers.

In our model we consider quasi-static, Rayleigh fading. Letthe received signal

power under path loss and shadowing between transmitteri and receiverj at time slot

n be denoted byP r
n(i, j). Moreover, let the average received power beP̄ r(i, j). Then,

under Rayleigh fading the received signal powerP r
n(i, j) is exponentially distributed with

meanP̄ r(i, j) (see e.g., Chapter3 in [28]).

Let us define the average path loss matrixḠ = (Ḡ(i, j), i, j = 1, 2, 3), which
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is obtained by averaging the path losses over all different states of the channel (fading)

process{Gn}
∞
n=0. With the common assumption that the shadowing process varies ac-

cording to a zero mean Gaussian random variable it follows that the channel coefficients

Gn(i, j) satisfyGn(i, j) = P r
n(i, j)/P (i) at timen, and furthermore the average path loss

is equal toḠ(i, j) = P̄ r(i, j)/P (i). We study the performance of our policy under two

scenaria, namely under (i) pure path loss and (ii) Rayleigh fading. For the comparison

to be meaningful, we assume that the matrix of path losses under scenario (i) is given by

the matrixḠ, which is the mean of the Rayleigh fading of scenario (ii). The matrixḠ is

parameterized as follows:

Ḡ =




0.9 β 0.9 β 0.9

β 0.9 0.9 β 0.9

β 0.9 β 0.9 0.9




,

whereβ ∈ [0, 1] multiplies the cross channel path losses. For the case of unicast traffic, we

dub the parameterβ as theinterference coefficientwhile we call itcross-link coefficient

for the case of multicast. In the case of unicast traffic, thisparameter reflects the level

of interference in the network. For example, whenβ = 0, the channels between the

three transmitter/receiver pairs can be seen as three parallel channels that can operate

simultaneously without causing any interference to each other. On the other extreme,

whenβ = 1, the path losses at the direct channels between every transmitter and receiver

are equal to the path losses over the cross channels, and therefore the level of interference

at every receiver is very high. In the case of multicast traffic the parameterβ gives the

quality of the cross links and has an effect not only on the interference, but also on the
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transmission rate. Throughout the section, we obtain the data rater(·) at the receivers

through the single-user Shannon formula, i.e.,r(SINR) = log2(1 + SINR), by assuming

unit bandwidth.

3.5.1 Case I - Unicast Sessions

In this subsection, we consider the special case of unicast sessions, i.e.,D(1) = {1},

D(2) = {2}, andD(3) = {3}.

In Fig. 3.2, we present the convergence effective rates of each receiver when we

employ the optimal policy presented in Section 3.3 under a fading and a non-fading chan-

nel model. The interference coefficient is set toβ = 0.2. From Fig. 3.2 it follows that the

effective rate of each receiver quickly converges to its corresponding proportionally fair

rate. We also observe that naturally the effective rates areproportional to the transmission

powers, and thus receiver one has a higher rate than receivertwo, and the latter has a

higher rate than the third receiver.

From the figure we can also draw an important conclusion; the effective rate of

each receiver is higher under fading than in the absence of fading. This demonstrates the

opportunistic nature of our policy. If a transmitter sees a bad channel at the current time

slot, the policy will not activate this transmitter in general, since withhigh probability

in the future its channel conditions will improve. Moreover, at the current time slot with

high probability some other transmitter having a better channel will be activated by the

policy.

We proceed to compare the proposed optimal policy when (i) itcan take all possible
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Figure 3.2: Convergence of the utility optimal policyπ⋆ for unicast traffic.
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rate control actions in the setR(Gn), and (ii) it is restricted to take TDMA scheduling

and rate control actions, i.e., it can only activate a singletransmitter at any given time

at its maximum achievable rate. Note that since the transmission powers take binary

values from the set{0, P (k)} for every transmitterk, the setR(Gn) contains7 rate

vectors obtained by finding all possible subsets of transmitters and assigning them the

maximum transmission rates such that the SINR criterion is jointly satisfied at all their

receivers. We refer to the former as the “optimal rate control policy” and to the latter as

the “TDMA scheduling policy”. The comparison of the two policies is performed under

various interference levels.

In Fig. 3.3 the proportionally fair effective rates at each receiver are plotted as a

function of different values of the interference coefficient β for the optimal rate control

policy and for the TDMA scheduling policy in the absence of fading. We observe that

when the interference levels are relatively low, the optimal rate control policy achieves

higher rates for every transmitter and receiver pair, as opposed to the TDMA schedul-

ing policy. We also observe that the two policies have comparable performance under

higher interference levels. This result is natural since the proposed policy exploits the

potential benefits of concurrent transmissions when the interference is relatively low and

it effectively operates as a proportionally fair TDMA scheduling when the interference is

relatively high. A similar pattern is observed in Fig. 3.4, where fading is considered.
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Figure 3.3: Proportionally fair rates with increasingβ in the absence of fading.
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Figure 3.4: Proportional fair rates with increasingβ under Rayleigh fading.
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3.5.2 Case II - Multicast Sessions

In this subsection, we consider the case where there are three sessions, one broad-

cast, one multicast, and one unicast. Specifically,D(1) = {1, 2, 3}, D(2) = {1, 2}, and

D(3) = {3}. We assume multi-packet reception capabilities (MPR) at the receivers, e.g.,

both sessions1 and2 can be activated simultaneously as long as the SINRs for eachre-

ceived transmission at every receiver exceed the appropriate thresholds. In Fig. 3.5, we

present the convergence of the effective rates of each receiver achieved under the proposed

policy by setting the cross-link coefficient equal toβ = 0.2.

Again in this figure we observe that the effective rate of eachmulticast session con-

verge quickly to its respective proportionally fair rate. We further observe that unlike

unicast, in the case of multicast traffic it is no longer true that the rates under fading are

always better than the corresponding rates in the absence offading. The reason behind

this observation is the fact that now a transmission involves multiple links and the multi-

cast rate is constrained by the link with the worst channel due to the single rate multicast

assumption. Hence, for transmitter1 to effectively observe a “good” channel, all the three

channels to which it broadcasts have to be good simultaneously. Clearly, the probability

of occurrence of this event decreases as the number of receivers of a multicast session

increases. Therefore, the average received multicast rateof the broadcast session is nat-

urally worse under fading. On the other hand, the average received rate under multicast

session2 and under the unicast from transmitter3 is still better under fading due to the

opportunistic nature of the optimal policy.

In Fig. 3.6 and 3.7 the proportionally fair rates of each multicast session are plot-
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Figure 3.5: Convergence of the utility optimal policyπ⋆ for multicast traffic.
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ted as a function of the cross-link coefficientβ under a non-fading and a fading channel

model. As in the unicast case, we plot both the proposed optimal rate control policy, as

well as the TDMA scheduling policy. From Fig. 3.6 we observe that the only session that

enjoys a higher rate under the optimal rate control policy isthe unicast session. For the

broadcast transmission from transmitter1 and the multicast transmission from transmitter

2, no benefits are observed under concurrent operation of the transmitters, even for small

values of the parameterβ. The reason behind this observation is the multi-packet recep-

tion capabilities of the receivers in adjunction with the fact that the quality of the direct

links is fixed and equal to0.9 in this numerical experiment. For example, in the case of

broadcasting from transmitter1, the high quality of the direct link will not only poten-

tially increase the rate of the broadcast session using thislink, but will also cause high

interference to the multicast session using receiver1. The same observation is true for the

multicast session. Therefore, regardless of the value ofβ rate control does not provide

any additional gains in terms of rate compared to TDMA for multicast and broadcast.

However, the above discussion is valid only under non-fading channels. As shown

in Fig. 3.7 the statistical gains observed by allowing more multicast sessions to operate

concurrently makes a TDMA based scheduling suboptimal in the presence of fading.

3.6 Summary

In this chapter, we obtained a joint rate and power control policy that allocates the

transmission rates and powers to each multicast transmitter optimally so that the total

utility of the average rate at each receiver is maximized. Weconsidered policies that have
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70



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Cross−link coefficient

E
ffe

ct
iv

e 
ra

te
 (

bi
ts

/s
ec

)

Effect of interference on effective rates

 

 

Transmitter 1
Transmitter 2
Transmitter 3

Transmitter 1 − Rate Control

Transmitter 3 − Rate Control

Transmitter 2 − Rate Control

Transmitter 1 − TDMA

Transmitter 2 − TDMA
Transmitter 3 − TDMA

Figure 3.7: Proportional fair rates with increasingβ under Rayleigh fading.
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access to only an estimate of the channel state, that can be possibly inaccurate.

In Section 3.2, we presented the network model under consideration and we defined

the utility maximization problem. In Section 3.3 we introduced an online gradient-based

algorithm claimed to be optimal with respect to the utility maximization problem of Sub-

section 3.2.2. The main results of optimality of the proposed solution were presented in

Section 3.4. In Section 3.5 we presented numerical examplesthat complement our an-

alytical results by providing engineering insights on the optimal scheduling solution. In

particular, we confirmed that the average received rate under unicast can be higher under

a fading environment than in a non-fading one with path loss equal to the average path

loss under fading. This improvement is decreasing for multicast traffic as the number of

multicast receivers increases. Further, our numerical results showed that under unicast

traffic the optimal solution achieves strictly higher ratesthan a pure TDMA scheduling

policy in the low interference regime, and as interference increases our approach remains

at least as good. The optimality of the algorithm was shown byemploying the theory of

stochastic approximation. The proofs of our results appearin Section 3.7, 3.8 and 3.9.

3.7 Proof of Theorem 4

We make use of Theorem 2.3, p.258 in [26] stated below:

Lemma 2 Consider the algorithm given by(3.12), (3.13)and (3.14)and where the step

sizesǫn satisfy:

∞∑

n=0

ǫn =∞, ǫn ≥ 0, and ǫn → 0 for n ≥ 0; ǫn = 0, for n < 0. (3.21)
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Further, assume that the following assumptions are true:

(A.1) The sequence{Yπ
n}

∞
n=0 is uniformly integrable.

(A.2) There are measurable functionsgθn,ξn
n and random variablesβn such that

En[Yπ
n ] = gθn,ξn

n + βn. (3.22)

(A.3) For each compact set∆ ⊂ Ξ, the functiongθ,ξn
n is continuous inθ uniformly

in n and inξn ∈ ∆.

(A.4) For eachδ > 0, there exists a compact setAδ ⊂ Ξ such that

inf
n

P [ξn ∈ Aδ] ≥ 1− δ. (3.23)

(A.5) The following sets{gθn,ξn
n }, {gθ,ξn

n } for eachθ are uniformly integrable.

(A.6) The following is true:

lim
n,m→∞

1

m

n+m−1∑

i=n

En[βi] = 0, (3.24)

where the limit is in the mean.

(A.7) There is a continuous function̄gθ such that for eachθ and compact setΞ it is

true that

lim
n,m→∞

1

m

n+m−1∑

i=n

En[gθ,ξi

i − ḡθ]1{ξn ∈ Ξ} = 0, (3.25)

where1{·} is the indicator function and where the limit is in the mean.

(A.8) The decreasing sequenceǫn changes slowly in the sense that there is a se-

quence of integersλn →∞ such that

lim sup
n→∞, 0≤i≤λn

∣∣∣∣
ǫn+i

ǫn

− 1

∣∣∣∣ = 0. (3.26)
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Then for every subsequence ofθn(·) there is a further subsequence, which will be indexed

bynk and a processθ(·) such thatθnk(·)⇒ θ(·) (in distribution), where

θ(t) = θ(0) +

∫ t

0

ḡθ(s)ds.

For anyδ > 0, the fraction of time thatθn(·) spends in aδ-neighborhood ofLH on [0, τ ]

goes to one (in probability) asn→∞ andτ →∞, whereLH is the set of limit points of

the ODEθ̇ = ḡθ.

The proof of Theorem 4 is readily obtained by verifying that the conditions of

Lemma 2 are satisfied under Assumptions 1 - 2. First, note thatthe required conditions

regarding the step sizeǫn in (3.21) are satisfied by our choice of step size given in (3.14).

As we mentioned previously since the bandwidth of the communication is finite and the

power vectors are chosen from a compact setP, the achievable rate regionR(g) for

everyg ∈ G is compact. Hence, for every slotn it follows that both the transmission

rate allocationR
π⋆,θπ⋆

n−1,Ĝn

n of policy π⋆, as well as the effective rateθπ⋆

n , are bounded

almost surely. Moreover, from (3.13), the sequence{Yπ⋆

n }
∞
n=0 is almost surely bounded

and hence uniformly integrable, i.e.,

sup
n

E[Yπ⋆

n 1{Yπ⋆

n > c}]→ 0, as c→∞.

Thus condition(A.1) of the Lemma 2 is satisfied. In addition, from (3.13) it follows that

E[Yπ⋆

n |θ
π⋆

0 , ξπ⋆

n ] = E[rπ⋆

n+1

⊤
Qπ⋆

n+1 − θπ⋆

n |θ
π⋆

0 , ξπ⋆

n ]

=E[rπ⋆

n+1

⊤
Qπ⋆

n+1|θ
π⋆

0 , ξπ⋆

n ]− θπ⋆

n .
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Hence, by choosing the function theg
θπ⋆

n ,ξπ⋆

n
n asgθπ⋆

n ,ξπ⋆

n
n = E[rπ⋆

n+1
⊤
Qπ⋆

n+1|θ
π⋆

0 , ξπ⋆

n ]−

θπ⋆

n and the random variablesβn asβn = 0, for everyn, (A.2) is satisfied. From Assump-

tion 1, (A.3) follows. Condition(A.7) follows from Assumption 2. Condition(A.4)

follows trivially from the fact thatΞ is a compact set and therefore every subset ofΞ is

compact as well. Since{Yπ⋆

n }
∞
n=0 is uniformly integrable,(A2.5) is satisfied from the

definition ofgθπ⋆

n ,ξπ⋆

n
n . Also, sinceβn = 0 for everyn, (A.6) trivially follows. Finally, for

ǫn given by (3.14), it is easy to verify(A.8).

Hence, since the conditions(A.1)-(A.8) and (3.21) are all satisfied we conclude

thatθn,π⋆

converges in distribution to the set of limit points of the ODE given in (3.20).

�

3.8 Proof of Theorem 5

We need to show that the ODE of (3.20) has a unique limit pointθ⋆ irrespective

of the initial conditions, whereθ⋆ is the solution of (3.10) and hence the processθn(t)

converges toθ⋆ asn→∞.

From (3.16), it follows thatRπ⋆,θ,g
n+1 ∈Mθ,g ⊆ R(g), ∀θ. Let us define the setMθ

for someθ according to

Mθ =



r̃ : r̃ = arg max

r̄∈R̄




∑

k∈T

∑

d∈D(k)

r̄(k)
∂U(θ(k))

∂θ(k)







 , (3.27)

whereR̄ is given by (3.9) in the case of SPR capable receivers and is defined similary in

the MPR case.
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Lemma 3 The following is true:

R̄π⋆

:= E[rπ⋆

n+1

⊤
Qπ⋆

n+1] ∈M
θ, (3.28)

whereMθ is given by(3.27).

The proof is presented in Section 3.9. Forθ⋆ to be an limit point we need to have that

θ⋆ ∈ R̄ andθ̇ = 0, i.e.,E[rπ⋆

n
⊤
Qπ⋆

n ] = θ⋆. Sinceθ⋆ ∈ Mθ⋆

from (3.27) it follows that

for everyθ ∈ R̄

∑

k∈T

|D(k)|
∂U(θ⋆(k))

∂θ⋆(k)

[
θ(k)− θ⋆(k)

]
≤ 0,

which from Proposition 2.1.2 of [29] implies thatθ⋆ maximizes the utility problem de-

fined in (3.10).

Further, to show thatθ⋆ is a stable equilibrium point to which the ODE converges

we use Lyapunov stability criteria. We will use the utility functionU(·) as a Lyapunov

function. We then have
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d

dt
U(θt) =

∑

k∈T

|D(k)|
∂U(θt(k))

∂θt(k)
θ̇t(k)

=
∑

k∈T

|D(k)|
∂U(θt(k))

∂θt(k)

[
R̄π(k)− θt(k)

]

=
∑

k∈T

|D(k)|
∂U(θt(k))

∂θt(k)
× arg max

r̄∈R̄

(∑

k∈T

|D(k)|r̄(k)
∂U(θt(k))

∂θt(k)

)

−
∑

k∈T

|D(k)|
∂U(θt(k))

∂θt(k)
θt(k)

= max
r̄∈R̄

(∑

k∈T

|D(k)|
∂U(θt(k))

∂θt(k)
r̄(k)

)

−
∑

k∈T

|D(k)|
∂U(θt(k))

∂θt(k)
θt(k) ≥ 0, ∀θt ∈ R̄.

Therefore the utilityU(θt) is a Lyapunov function for the ODE since it is strictly

increasing with timet unless the equilibrium pointθ⋆ is reached. In such a case, i.e.,

whenθt = θ⋆, the above inequality holds with equality proving that the ODE defined in

(3.20) converges toθ⋆. This completes the proof.

�

3.9 Proof of Lemma 3

We have the following:

R̄π⋆

n+1 := E[rπ⋆

n+1

⊤
Qπ⋆

n+1]

= E[E[rπ⋆

n+1

⊤
Qπ⋆

n+1|Ĝn+1 = g]]

= E[rπ⋆

n+1

⊤
Q̄π⋆

g ]

=

∫

G

rπ⋆

n+1

⊤
Q̄π⋆

g fĜ(g)dg.
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Therefore, by the definition of̄R, it follows thatR̄π⋆

n+1 ∈ R̄. As a result we have

∑

k∈T

|D(k)|R̄π⋆

n+1(k)
∂U(θ(k))

∂θ(k)
≤ max

r̄∈R̄

∑

k∈T

|D(k)|r̄(k)
∂U(θ(k))

∂θ(k)
.

Further,Rπ⋆,θ⋆,g
n ∈Mθ⋆,g, hence for every other policỹπ we have

∑

k∈T

|D(k)|R̄π⋆

n+1(k)
∂U(θ(k))

∂θ(k)
=
∑

k∈T

|D(k)|

∫

G

rπ⋆

n+1(k)Q̄π⋆

g (k, k)fĜ(g)dg
∂U(θ(k))

∂θ(k)

≥

∫

G

∑

k∈T

rπ̃
n+1(k)|D(k)|Q̄π̃

g (k, k)fĜ(g)dg
∂U(θ(k))

∂θ(k)

≥ max
r̄∈R̄

{∑

k∈T

|D(k)|r̄(k)
∂U(θ(k))

∂θ(k)

}
.

This concludes that̄Rπ⋆

= E[rπ⋆

n+1
⊤
Qπ⋆

n+1] ∈M
θ.

�
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Chapter 4

Minimum-Length Scheduling

4.1 Background

The performance metric of utility optimization studied in Chapters 2 - 3 relies on

the fundamental assumption that the average rate is well defined and the average rate

region can be characterized. This is also a common assumption when the objective is

to maximize the network stability region or the informationtheoretic capacity region.

However, for instance, the unpredictability of the wireless channel or the finite energy of

the wireless nodes can lead to non-stationary and non-ergodic channel behavior. For this

reason, alternative measures should be investigated to account for the cases of non-ergodic

and non-stationary wireless channel processes.

In this chapter we consider an alternative approach, that ofminimum-length schedul-

ing. The problem of minimum-length scheduling involves obtaining a sequence of activa-

tions of wireless nodes so that a finite amount of data, residing at a subset of the nodes in

the network reaches its intended destinations in minimum time. This topic has attracted a

lot of attention recently ([4], [5], [6], [7], [8]). It is closely related to the problems of net-

work throughput or stable throughput maximization, since minimizing the time to deliver

a fixed amount of data, can be seen as maximizing the effectiverate at which data traverses

the network. Furthermore, it is a useful alternative metricthat characterizes the traffic-

carrying capabilities of wireless networks with non-stationary and non-ergodic channel
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variations, where the commonly used performance criteria of stable throughput and net-

work capacity are not well defined. Although in this chapter we focus on networks with

stationary and ergodic channel behavior, we expect our analysis to yield valuable insights

regarding the more general case of non-ergodic and non-stationary wireless channels.

In [4], the authors obtain a centralized, polynomial-time algorithm for static net-

works that finds a schedule of minimum-length satisfying a set of link traffic requirements.

However, in [4] modeling of the physical layer is overly simplified as it is assumed that

any two links can be successfully activated simultaneouslyas long as they do not share any

common vertices. This simplification relates the minimum-length scheduling problem to

the problem of obtaining a maximal matching in a non-bipartite graph [30]. However, due

to the broadcast nature of the wireless mediumall concurrent transmissions can poten-

tially contribute to the total amount of interference at each receiver and make its reception

to fail.

In [5], the authors consider the problem of obtaining a schedule of minimum-length

under the SINR interference model. They assume that the transmission rates are fixed and

each transmitting node selects its transmission power optimally. In [5], the minimum-

length scheduling problem is formulated as a linear program[31], that can possibly have

a prohibitively large number of variables and thus is hard tosolve. In [6] and [7] the

authors consider the minimum-length scheduling problem under different sets of opti-

mization parameters. Specifically, they consider the caseswhere (i) both the transmission

powers and rates are fixed, (ii) the transmission powers can be optimized but the trans-

mission rates are fixed, and (iii) the transmission powers are fixed and each transmitter is

allowed to choose its rate from a predetermined, finite set ofrates, that is common among
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transmitters. In [6] and [7] the minimum-length schedulingproblem is also formulated

as a complex linear program, with a relatively small number of constraints and a large

number of variables. To address the high complexity, the authors employ the technique

of column generation [31], whose running time is faster on the average than that of the

original linear program. However, the worst case performance of column generation can

be significantly worse than that of the original linear program.

Most of the prior work on the minimum-length scheduling problem focuses on se-

lecting the transmission powers while keeping the transmission rates fixed. Due to the

coupling between the physical layer and the medium access control in wireless systems,

it is clear that a joint optimization of link activation and rate control will yield a better

performance, which is the focus of this chapter. In the first part of this chapter, we con-

sider static networks where the channel effect is due to purepath-loss. We first assume

a slotted-time model, and formulate the minimum-length scheduling problem as a short-

est path between a given source-destination pair on a Directed Acyclic Graph (DAG).

We obtain an optimal joint scheduling and rate control solution that provides a shortest

path on a DAG. Although finding a shortest path on a DAG has a polynomial complex-

ity in the number of its vertices and edges, this number in ourDAG construction grows

exponentially as the size of the network and initial data traffic increase. For this rea-

son, we make the following simplifications. We first map the discrete-time problem to a

continuous-time equivalent, where slots are replaced withperiods of time. We then re-

duce the possible scheduling and rate control decisions to include only “one at a time”

or “all together” communication and explicitly characterize the optimal solution of this

reduced problem. Understanding the behavior of the optimalpolicy, even for the reduced
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problem, is significant since it provides valuable intuition about which scheduling and

rate control actions are expected to be in the optimal solution, i.e., in the minimum-length

schedule. This intuition, for example, can improve the performance of the column gener-

ation technique in [6] and [7] by providing the algorithm with those scheduling and rate

control actions that are expected to be employed by an optimal policy.

Further, all prior work (see e.g., [4], [5], [6], [7], [8]) studies the minimum-length

scheduling problemonly for wireless networks with time-invariant channel conditions,

which is not the case in reality. Thus, in the second part of this chapter, we extend prior

work by considering time-varying wireless networks. Our goal in the time-varying net-

work case is to find an optimal policy that minimizes theexpected timerequired to de-

liver all the traffic to its respective destinations. We solve the minimum-length schedul-

ing problem by formulating it as astochastic shortest path, which is a special case of a

Markov Decision Process (MDP). We obtain an optimal scheduling and rate control pol-

icy through stochastic control methods. For time-invariant channel processes, this model

reduces to finding a shortest path on a DAG and methods described in the first part of this

chapter are applicable to compute the optimal solution.

The results presented in this chapter differ from [4] since we model the interference

more accurately through the SINR interference model. We follow a different approach

from [5], [6], and [7] since we formulate the minimum-lengthscheduling problem as

finding a shortest path on a single-source DAG, and we give an optimal graph-theoretic

algorithm. Furthermore, we provide an explicit characterization of an optimal policy

for a simplified model that is obtained by reducing the set of feasible scheduling and rate

control decisions to either communication “one at a time” or“all together”. Our results are
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different from [5] since we consider joint scheduling and rate control decisions. Finally,

we generalize existing work in this subject to time-varyingchannels.

4.2 Model Formulation

We consider a slotted-time single-hop, wireless network comprising ofK transmit-

ter and receiver pairs. Without loss of generality, the slotduration is equal to one second.

Each transmitter has a finite amount of data units, e.g., a fileto deliver to its correspond-

ing receiver. The objective is to activate the transmittersso that the time to deliver all

the traffic to its intended receivers is minimized. The single-hop network assumption,

albeit simplifying, is interesting since it captures the fundamental problems that arise due

to the interference when multiple nodes attempt to obtain channel access. We denote by

K = {1, . . . , K} the set of all transmitter and receiver pairs in the network.At every time

slot, each transmitterk ∈ K can either transmit at its maximum transmission powerPmax
k

or remain silent. We denote the transmission power of thekth transmitter at time slott by

Pk(t), wherePk(t) ∈ {0, Pmax
k }.

It is assumed that each transmitterk has afixed amount ofdk bits to deliver to

its corresponding destination. We denote byd = (d1, . . . , dK) the vector of initial data

traffic at each transmitter. We also denote byXk(t) the queue size at transmitterk at time

slot t and byX(t) = (X1(t), . . . , XK(t)) the corresponding vector of queue sizes at all

transmitters in the network. The queue size of each transmitter at time slot0 is equal to

its initial data traffic, i.e.,X(0) = d. The state space of the process{X(t)}∞t=0 is denoted

byX .
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We also consider a channel process{G(t)}∞t=0 that takes values from a finite setG.

For every time slott, the channel stateG(t) = (G(k,j)(t), ∀k, j ∈ K) gives the channel

quality between every transmitterk and receiverj. This model captures the effects of

channel variations due to e.g., node mobility, fading, or fixed path loss. It is assumed that

the channel follows a block fading model with block length equal to the duration of a time

slot. Hence, the channel conditions changeonly at the beginning of each time slot and

remain constant throughout the slot duration. The above notions are summarized in Fig.

4.1.

!"

#"

$"

!"

#"

$"

Figure 4.1: A network ofK transmitter/receiver pairs.

We model the physical layer by adopting the Signal to Interference plus Noise Ratio

(SINR) criterion. We denote byγt,k(rk(t)) the SINR threshold value at receiverk that

must be met or exceeded in order to receive successfully fromtransmitterk at raterk(t)

at time slott. Consequently, we say that at slott transmitterk transmits successfully to

receiverk at raterk(t) if
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SINRk(t) =
Pk(t)G(k,k)(t)

Nk +
∑K

j=1,j 6=k Pj(t)G(j,k)(t)
≥ γt,k(rk(t)), (4.1)

whereNk is the thermal noise power at receiverk.

A joint scheduling and rate control policy at any given time needs to decide (a)

which transmitters to activate and (b) their respective transmission rates. This information

can be captured by the K-dimensional rate vectorr(t) = (r1(t), . . . , rK(t)), whererk(t)

is the rate of transmitterk at slott. If a transmitter is assigned a zero rate then it is not

activated by the policy. In other words, a transmission ratevector implicitly specifies the

scheduling decisions. The set of all feasible rate vectors contains those that are obtained

by the following two-step procedure. We first identify all possible subsets of activated

transmitters (by assigning to each transmitterk either power0 or Pmax
k ) and then we

assign them the maximum rates that allow all activated transmitters to jointly satisfy the

SINR criterion. Thus, there exist2K−1 suchK-dimensional transmission power vectors,

each of which corresponds to an achievable rate vector. Clearly, the set of achievable rates

depends on the current channel stateg ∈ G. Hence, for every channel stateg, we denote

by R(g) the finite, discrete set ofK-dimensional rate vectors. Then, the cardinality of

R(g), i.e.,|R(g)|, is equal to2K − 1 for every channel stateg ∈ G.

In this chapter we are interested to obtain optimal policiesthat take joint scheduling

and rate control decisions under the objective of minimizing the (expected) time to deliver

all data to its corresponding destinations. The policies weconsider are aware of the

network queue-sizes. Further, they are assumed to know the current channel conditions

in order to make accurate scheduling decisions. For every slot t the pair of the channel
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stateG(t) and queue sizesX(t) comprises the system stateS(t). We denote byS the

state space of the system state process{S(t)}∞t=0 which is given by

S := {(x, g) : x ∈ X , g ∈ G}. (4.2)

We restrict our attention tostationarypolicies that take decisions merely based on

thecurrent system state information. Let the system state at time slott satisfyS(t) = i =

(x, g) ∈ S. Then, we consider policies that are given by the mapping

r(t) = π(i), π : X × G → A(i) ⊆ R(g). (4.3)

The setA(i) is a subset of the overall feasible decisions. If it is a strict subset,

scheduling will be suboptimal in general at the benefit of decreased complexity. Further,

it is possible by “smartly” choosing the elements of the setA(i) to obtain performance

close to optimal while achieving considerable reduction incomputational complexity.

We assume that every admissible policy uses the channel state information ratio-

nally so that a scheduled transmission is always successful. Naturally, as reflected by the

cardinality of the setR(g), the policies we consider arenon-idling, i.e., they always acti-

vate at least one transmitter that has a non-empty queue until all the queues in the network

are empty. Otherwise, an idling policy would potentially waste a slot by not activating any

transmissions. We call the class of stationary, non-idlingpolicies given by the mapping

(4.3) asadmissibleand denote them byΠ.

Consider a scheduling and rate control policyπ that at every slot selects the trans-

mission rates of all the transmitters. Then, the queue size process evolves according to
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the following equation

X(t + 1) =

[
X(t)− π(t)

]+

, (4.4)

where[z]+ = max{z, 0}.

Clearly, the queue size at each transmitterk takes its maximum value at time slot

0, when it is equal to the initial demanddk, and due to the absence of external arrivals it

keeps decreasing over time until it reaches zero. Under the above model, we proceed to

formulate the minimum length scheduling problem for staticand time-varying networks.

4.3 Static Networks

In this section, we restrict our attention to static networks, where the channel qual-

ities G(k,j)(t) are equal for every time slott, i.e., we ignore effects of fading or user

mobility. Thus, the cardinality of the setG is equal to one. To simplify notation, in this

section we denote the channel qualityG(k,j)(t) asG(k, j). We will drop this assump-

tion in Section 4.4 where we will consider time-varying channel processes. Further, to

simplify notation we denoteR(g) for g ∈ G by R andA(i) for i = (g,x), g ∈ G by

A. At every time slott the scheduling and rate control policy identifies a rate vector

r(t) = (r1(t), . . . , rK(t)) ∈ A ⊆ R that specifies which transmitters are activated at time

slot t and their respective rates.

We can formulate the minimum-length scheduling problem as follows:
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minimize : T (4.5)

subject to : X(T ) = 0, X(0) = d, (4.6)

T ∈ N. (4.7)

In the specific case of pure Time Division Multiple Access (TDMA) scheduling,

combined with rate control, where only a single transmittercan be active at any given

time, the solution of the above problem becomes trivial. Specifically, each transmitter

must be active for as many time slots as needed to empty its queue. The required number

of such time slots for each transmitterk is equal to the ratio of its initial demanddk

divided by its corresponding rate when it accesses the channel individually. Then, the

minimum total time that is needed until all the queues are empty is equal to the sum of

the time slots required by each transmitter. The order in which the transmitters must be

activated is immaterial; they can be chosen in a round-robbin or random fashion or a

single transmitter may keep transmitting until its queue empties, after which time another

transmitter with a non-empty queue is chosen.

However, the solution of the optimization problem given by (4.5)-(4.7) is in general

a non-trivial discrete optimization problem. In the following subsections, we provide an

optimal graph-theoretic algorithm by mapping it to a shortest path problem on a DAG

and we also give an explicit characterization of the optimalpolicy for a reduced version

of this problem.

88



4.3.1 The Equivalent DAG Representation

To solve the optimization problem defined in (4.5)-(4.7), wefollow a graph-theoretic

approach, and formulate it as a single source shortest path problem on an equally-weighted

DAG.

We construct the weighted DAGG = (V, E) as follows: We assume that every

vertexu ∈ V of the DAG represents a queue-size vector that can be obtained through

some scheduling and rate control action chosen from the setA starting from a vector of

queues,X(t). Further, every directed edge(u,v) ∈ E represents one such action inA.

We say that the edge(u,v) is incident fromu andincident tov. Hence, from every vertex

xi we can have|A| edges that are incident fromxi, each corresponding to a different rate

vectorri, i = 1, . . . , |R|. Each such edge is incident to a nodeyi = [xi − ri]+. We

disallow those edges that correspond to rate vectors, whichactivate transmitters with

empty queues. Therefore, the actual number of edges that areincident from a vertex can

be less than|A|. The weight of each edge is equal to one. From now on, we will refer to

actionri through the edge(xi,yi). The unique source nodes of the DAG represents the

vector of initial demands,X(0).

In Fig. 4.2 we give an example of such a graph for a network of two transmitters and

two receivers. We assume that the initial demands ared1 = 4 bits andd2 = 6 bits and that

we have three possible scheduling and rate control actions:(i) only transmitter1 accesses

the channel at a rate of3 bits/sec, (ii) only transmitter2 accesses the channel at a rate of

3 bits/sec, and (iii) both transmitters concurrently transmit at a rate of2 bits/sec. Fig. 4.2

depicts the DAG that is obtained by these three actions. Notethat from each vertex all the
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three rate control actions are allowed, as long as each action schedules transmitters with

non-empty queues. For example, in Fig. 4.2 the only viable rate control action for the

queue-size vector[4, 0] is to activate transmitter1 individually.

Figure 4.2: A DAG construction corresponding to initial demandsd1 = 4 bits andd2 = 6

bits and three rate control actionsr1 = [3, 0], r2 = [0, 3], andr3 = [2, 2].

As we observe from Fig. 4.2 for any path of vertices< s,x1,x2, . . . ,xm > the

queue-size vector of each vertex in the path has to be component-wise larger or equal to

the queue size of any other vertex that succeeds it in the pathand the queue-size vectors of

any two vertices on the graph cannot be the same. As a result, the overall graph represent-

ing the queue size dynamics is a DAG. Further, it is clear thatevery path starting at the

sources ends at the0-vector. Moreover, the weight of any sub-path< s,x1,x2, . . . ,xm >

is equal to its lengthm, which is effectively the number of time slots to go froms to xm

on the specified path, as each weight of the DAG represents theduration of one time slot.
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Thus, the initial problem given by (4.5)-(4.7) is transformed into a single-source shortest

path problem on a weighted DAG.

4.3.2 Finding A Shortest Path on a DAG

Shortest path problems on single-source DAGs can be solved optimally in poly-

nomial time [30]. In [30] an optimal algorithm that finds a shortest path on a DAG is

presented. Below, for the purpose of completeness, we provide this algorithm.

In order to compute a shortest path, we first need to sort the DAG in topological

orderand then use a sequence of edgerelaxationsuntil we obtain a shortest path from the

sources to the vertex corresponding to the0-vector. Topological order is a linear ordering

of all the vertices of the DAG so that for every edge(xi,xj), the vertexxi appears before

xj in the ordering. The process of edge relaxation verifies whether the current best-known

path from the sources to a vertexy can be improved by passing through a different vertex

x.

We proceed with a few definitions that will be useful in the rest of this subsection.

We define thedistanceof a vertexx to be the minimum distance from the source in terms

of edges that must be traversed to reachx. We also denote byδ[x] an upper boundon

the distance of vertexx. For every edge(x,y) we say thatx is the predecessor ofy and

we writex = π[y]. We denote by Adj[x] a list that contains all the verticesy that are

adjacent tox, i.e., such that there exists an edge(x,y) ∈ E. The pseudo-code of the

algorithm is provided below.

DAG-SHORTEST-PATHS(G, s)
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1 topologically sort the vertices ofG

2 INITIALIZE-SINGLE-SOURCE(G, s)

3 for each vertexx taken in topologically sorted order

4 do for each vertexy ∈ Adj[x]

5 do RELAX(x,y)

The topological sorting of the first line of the algorithm canbe completed inΘ(|V |+

|E|) time, by running a Depth-First Search (DFS) [30]. The secondline of the algorithm

involves the initialization of various variables as shown next:

INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertexx ∈ V

2 do δ[x]←∞

3 π[x]← NIL

4 δ[s]← 0

This process requires time of the order ofΘ(|V |). Finally, in lines 3-5 of the DAG-

SHORTEST-PATHS(G, s) algorithm, at each time step the next vertex in the topological

order is selected and a sequence of relaxations over all edges that are incident from this

vertex is performed. The procedure RELAX(x,y), given next, verifies whether the cur-

rent shortest path froms to y can be improved by passing throughx.

RELAX(x,y)

1 if δ[y] > δ[x] + 1

2 then δ[y]← δ[x] + 1
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3 π[y]← x

For the example given in Fig. 4.2, the shortest path algorithm selects the sequence

of actionsr3, r3, r2. Note that the sequences of actionsr2, r3, r3 andr3, r2, r3 are also

optimal as the order in which the actions are taken is immaterial in terms of minimizing

the time needed to empty the queues, under the assumption of static channels. Also, it is

worth to mention that the length of the optimal schedule obtained through rate control is

naturally shorter than that of TDMA which is, in this example, of length4. Further, it is

reasonable to expect that the difference between the two would become significant as the

number of transmitter/receiver pairs in the network increases as well as for larger values

of initial demands.

The optimality of DAG-SHORTEST-PATHS(G, s) can easily be verified (see e.g.,

[30], Theorem 24.5). Also, it is easy to see that its overall running time isΘ(|V | + |E|).

Hence, the number of operations needed to compute a shortestpath of a single-source

DAG is of polynomial complexity on the number of vertices andedges. However, in our

DAG construction this number grows exponentially (i) in thenumber of transmitters when

A = R since from every vertex there exist2K − 1 potential edges that are incident from

it and (ii) as the initial demands increase. The above renderthe overall complexity of the

algorithm exponential.
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4.3.3 Continuous Time Model

As it is clear from the above discussion, the DAG solution becomes infeasible

quickly as the number of transmitters and initial demands increase. In this subsection,

to decrease the complexity that stems from the discrete nature of this problem, we map

the problem given by (4.5)-(4.7) to a continuous time one. Therefore, instead of seeking

for the minimum number of time slots required to deliver all data traffic to its respective

destinations, we are interested to obtain the minimum “duration” or “period of time” that

has to elapse until all network queues empty. In this way, theminimum length scheduling

problem becomes a linear program with a relatively small number of constraints and a

large number of variables as in the formulations of [5], [6],and [7]. In order to solve this

linear program, we follow a different approach than [5], [6], and [7]. In particular, we

reduce the number of variables involved, i.e., the scheduling and rate control decisions

that the policy employs, and then obtain an optimal solutionfor this reduced problem.

Specifically, we restrict the setA to contain feasible rate vectors obtained by two

simple schemes, namely scheduling asingle transmitter at a time or concurrently acti-

vating all the transmitters, as considered in [14], [23]. By doing so, we decrease the

cardinality ofA to K + 1. Although such a reduction is expected to be suboptimal, we

anticipate to gain valuable insights regarding the nature of optimal scheduling and rate

control for the general problem.

We define Actionk for k ∈ K to be the action of individually activating transmit-

ter k and Action0 to be the corresponding action when allK transmitters are activated

simultaneously. Let the rate of transmitterk under individual operation berk
k and the
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corresponding rate under concurrent operation ber0
k. Further, let us denote byτi for

i ∈ {0, . . . , K} the period of time that Actioni is utilized. Then, the continuous time

equivalent of (4.5)-(4.7) under the reduced space of actions is:

minimize :

K∑

i=0

τi (4.8)

subject to : dk ≤ τkr
k
k + τ0r

0
k, ∀k ∈ K (4.9)

τi ≥ 0, i ∈ {0, . . . , K} (4.10)

The following theorem characterizes an optimal schedulingand rate control policy

that solves (4.8)-(4.10).

Theorem 6 A minimum-length scheduling and rate control policy solving (4.8)-(4.10)

takes actions according to the following:

1. If it is true that

K∑

k=1

r0
k

rk
k

≤ 1,

for everyk ∈ K Actionk is chosen for a duration of

τk =
dk

rk
k

,

and Action0 is never employed, i.e.,

τ0 = 0.

95



2. If it is true that

K∑

k=1

r0
k

rk
k

≥ 1,

then a subset of transmittersJ is chosen such that for everyk ∈ J Action k is

chosen for a duration of

τk =
dk − τ0r

0
k

rk
k

,

and Action0 is selected for a period of

τ0 = max
i∈K\J

di

r0
i

.

The proof appears in Section 4.6. To completely characterize the policy we need to spec-

ify the setJ . The following result is true:

Lemma 4 Consider an ordering of the transmitters in decreasing order of their values

dk/r
0
k for everyk ∈ K. Let the corresponding indexing of the transmitters be{ℓk}Kk=1

such thatdℓ1/r
0
ℓ1
≥ . . . ≥ dℓK

/r0
ℓK

. Then, the setJ contains those transmitters with the

highestdk/r
0
k ratios and the cardinality|J | of the setJ is given by

|J | = arg min
k∈{0,...,K}

{
dℓk+1

rℓ0
k+1

+

ℓk∑

j=ℓ1

djr
0
ℓk+1
− dℓk+1

r0
j

rj
jr

0
ℓk+1

}
.

The proof of the lemma appears in Section 4.7.
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From the above we conclude that the setJ contains the transmitters with the highest

|J | values ofdk/r
0
k, where|J | is given by Lemma 4. Hence, an optimal scheduling and

rate control policy individually activates the transmitters that either have a very high initial

demand or whose rates under concurrent operation are very low, e.g., due to excessive

amounts of interference caused by other concurrent transmissions. Those transmitters

must be further assisted towards emptying their queues by being granted individual access

to the channel.

4.4 Time-Varying Networks

In the previous section, we focused on time-invariant channels. However, the wire-

less channel is actually time-varying, due to fading, node mobility etc. In this section, we

extend our model by considering time-varying channels. We make the following assump-

tion on the wireless channel process{G(t)}∞t=0.

Assumption 3 The channel process{G(t)}∞t=0 varies according to a stationary Markov

Chain with transition probability to go from some channel stateg ∈ G to another channel

stateg′ ∈ G given by

pG(g, g′) := P [G(t + 1) = g′ | G(t) = g], ∀g, g′ ∈ G. (4.11)

Due to the time variability of the channel process the lengthof the scheduleT is a

random variable and thus “minimum-length” is meant “in the expected sense”. This can

be formulated as follows:
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minimize : E[T ] (4.12)

subject to : X(T ) = 0, X(0) = d, (4.13)

T ∈ N. (4.14)

We proceed to present a solution to the problem of (4.12)-(4.14) through stochastic

control methods by considering admissible policies in the classΠ.

4.4.1 Stochastic Shortest Path Formulation

Since the wireless channel process{G(t)}∞t=0 is Markov and the queue size process

evolves according to (4.4), for every admissible policy, itis easy to show that the system

process{S(t)}∞t=0 is also a Markov Chain, with state spaceS given by (4.2). We further

define a subsetSterm of the state spaceS to be the set ofterminating statesthat correspond

to empty queues, i.e.,

Sterm := {(x, g) : x = 0, g ∈ G}. (4.15)

Evidently, from (4.4) it follows that once the system reaches any state inSterm it remains

there forever. The objective is then to reach a terminating state in minimum expected

time by choosing the next state. This will yield the scheduleof minimum expected-length.

Note that, by construction this Markov Chain is absorbing and from every non-terminating

state a terminating state is reached with probability one infinite time under all admissible

policies. This is astochastic shortest pathproblem, which is a special case of an MDP. In

98



the case where we assume that there is no randomness in the channel state, i.e., the entire

wireless channel state realization is known at priori at thevery first time slot, our results

in Section 4.3 follow from this model.

The set of feasible scheduling and rate control actions corresponding to each system

statei = (x, g) ∈ S is the setA(i) ⊆ R(g). Further, the system is driven by the

time-varying channel process{G(t)}∞t=0. Taking an action leads to different states with

different probabilities depending on the evolution of the channel process unless the system

has already reached to a terminating state.

Let pr(i, j) be the transition probability of going from system statei = (x, g) to

statej = (x′, g′) by taking actionr = π(x, g) ∈ A(i). Then we have

pr(i, j) = P [X(t + 1) = x′, G(t + 1) = g′
∣∣ X(t) = x, G(t) = g, π(x, g) = r].

From (4.4) and Assumption 3 it is easy to see thatpr(i, j) can be written as

pr(i, j) =





pG(g, g′), if (x− r)+ = x′, i, j ∈ S

0, otherwise.

(4.16)

Note that from the Markovianess of the channel process and the admissibility of the policy

π, the transition probabilitypr(i, j) is time invariant and does not depend on the previous

system states.

We define the cost of taking actionr and going from statei to statej as c̃r(i, j).

For every system statei, actionr ∈ A(i), and system statej such thatpr(i, j) > 0, we

assume that̃cr(i, j) = 1. This represents the fact that in order to go from statei to state

j by taking this action one needs to spend the duration of one time slot. Let us further

define thecost per stagecr(i) to be the expected cost when at statei ∈ S \ Sterm control
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r ∈ A(i) is chosen. It is clear thatcr(i) =
∑

j∈S pr(i, j)c̃r(i, j) = 1. Once a terminal

statei ∈ Sterm is reached no more cost is incurred and the system remains there forever,

i.e.,cr(i) = 0, ∀ r ∈ A(i), i ∈ Sterm.

4.4.2 An Optimal Policy

Let T π(i) be the expected time to empty the queues in the network starting from

statei under a policyπ ∈ Π. Then the minimum expected schedule lengthT ⋆(i) is given

by

T ⋆(i) = min
π∈Π
T π(i), ∀i ∈ S \ Sterm.

A policy π⋆ is optimal if it achieves the minimumT ⋆(i) for every non-terminating state

i ∈ S \ Sterm, i.e.,

T π⋆

(i) = T ⋆(i), ∀i ∈ S \ Sterm.

To optimally solve the above shortest path problem two commonly used methods are

policy iteration and value iteration [32]. Due to the large state space of the problem, value

iteration is easier to compute and hence will be used here. Consider the value iteration

algorithm and the corresponding “expected” timeTk(i) to empty the queues starting from

statei at thekth iteration. Assume thatT0(i) = ∞ for all statesi ∈ S. We borrow the

following properties from [32].

Lemma 5 The value iteration method converges to the optimal cost function, i.e.,
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T ⋆(i) = lim
k→∞
Tk(i), ∀i ∈ S \ Sterm,

where

Tk+1(i) = 1 + min
r∈A(i)

∑

j∈S

pr(i, j)Tk(j), i ∈ S \ Sterm.

Lemma 6 The optimal solution to a stochastic shortest path problem must satisfy Bell-

man’s equation, i.e., for every non-terminating statei ∈ S \ Sterm it is true that

T ⋆(i) = 1 + min
r∈A(i)

{∑

j∈S

pr(i, j)T
⋆(j)

}

Hence, the optimal scheduling and rate control policyπ⋆ for every statei ∈ S\Sterm

is given by

π⋆(i) = arg min
r∈A(i)

{∑

j∈S

pr(i, j)T
⋆(j)

}
, ∀i ∈ S \ Sterm.

Although the value iteration method optimally solves the aforementioned stochastic

shortest path problem, in general it may require an infinite number of iterations until it

converges. However, if the Markov Chain of the system evolution is acyclic, then it was

shown in [32] that the value iteration method for each state converges in a finite number

of iterations (at most as many as the non-terminating statesof the Markov Chain).

It is easy to see that the Markov Chain driving our system is acyclic. This is because

starting from one of the statesi whose queue size satisfiesX(0) = d, the queue sizes in
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the network constantly decrease with time as given in (4.4) under any admissible policy.

This ensures that, the Markov Chain is acyclic and terminates at some nodei ∈ Sterm.

4.4.3 Numerical Results

In this subsection, we illustrate our analytical results through a few numerical ex-

periments. We consider a network of two transmitter and two receiver pairs. The channel

process{G(t)}∞t=0 is Markov, and switches between two states, namely agoodstate,G,

and abadstate,B. When the channel is in good state, both transmitters have channels of

good quality to their receivers otherwise both channels arebad. The transition probabili-

ties of this Markov Chain are shown in Fig. 4.3.

!""#$ %&#$

0.7 
0.3 0.3 

0.7 

Figure 4.3: A two-state Markovian channel process.

Since we have2 transmitter/receiver pairs, there exist3 possible rate vectors corre-

sponding to each channel state. Thus, we denote byri(g), i = 1, 2 the rate vector when

only theith transmitter is activated under channel stateg ∈ {B,G}. We also denote by

r3(g) the corresponding rate vector when both transmitters are activated.

We first consider that the initial demands ared1 = 4 bits andd2 = 6 bits which is

the case discussed in Subsection 4.3.1. We consider3 scenarios associated to different

achievable rates corresponding to different channel states.
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• Scenario 1:We consider the case that under both channel states, when theith trans-

mitter is activated alone its achievable rate is3 bits/slot and when both transmitters

are activated simultaneously, the corresponding rates are2 bits/slot for each. In

this case, the channel realization is immaterial and the minimum expected time to

empty the queues is3 slots, i.e., equal to the result of the static network case of

Subsection 4.3.1.

• Scenario 2:We assume that under good channel state the achievable ratesare equal

to the case of Scenario 1, i.e., when theith transmitter is activated alone its achiev-

able rate is3 bits/slot and when both transmitters are activated simultaneously, the

corresponding rates are2 bits/slot for each. However, under bad channel the achiev-

able rates are strictly worse (2 bits/slot for individual transmission and1 bit/slot for

each transmitter under concurrent transmission). Naturally, we observe that the

expected time required to empty the queues is more than3 slots.

• Scenario 3:We assume that under bad channel state the achievable rates are equal

to the ones in Scenario 1 but the good channel is better and thus allows higher rates

(4 bits/slot when a transmitter is activated individually and3 bit/slot when they are

both activated simultaneously). Naturally, the expected time to empty the queues

will decrease to a value less than3.

The same pattern was observed for higher initial demands (d1 = 100 bits andd2 = 100

bits). The above are shown in Table 4.1 by assuming that the channel starts from a good

channel state.

Further, in Fig. 4.4 we illustrate the performance comparison between the optimal
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Demands
Good Channel

r
1(G) r

2(G) r
3(G)

Bad Channel

r
1(B) r

2(B) r
3(B)

E[T ]


 4

6




[
3

0

] [
0

3

] [
2

2

] [
3

0

] [
0

3

] [
2

2

]
3.00

[
3

0

] [
0

3

] [
2

2

] [
2

0

] [
0

2

] [
1

1

]
3.86

[
4

0

] [
0

4

] [
3

3

] [
3

0

] [
0

3

] [
2

2

]
2.91


 100

100




[
3

0

] [
0

3

] [
2

2

] [
3

0

] [
0

3

] [
2

2

]
50.00

[
3

0

] [
0

3

] [
2

2

] [
2

0

] [
0

2

] [
1

1

]
66.95

[
4

0

] [
0

4

] [
3

3

] [
3

0

] [
0

3

] [
2

2

]
40.37

Table 4.1: Expected time required to empty queues for different values of initial demands,

under Scenarios 1-3, assuming that the channel starts from agood state.
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policy and a pure TDMA scheme that activates only a single transmitter at any given

time. Specifically, we consider the same single-hop networkof two transmitter/receiver

pairs discussed above under Scenario 2. Further, we vary thevalues of initial data traffic.

For simplicity the initial queue sizes at each node are assumed to be equal. As expected,

we observe from the figure that the difference between the expected time to empty the

queues under the optimal policy and under the TDMA scheme grows as the initial queue

sizes increase. This result illustrates the fact that employing concurrent transmissions can

provide considerable gains.
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Figure 4.4: Performance comparison of the optimal policy with respect to TDMA

scheduling.
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4.5 Summary

In this chapter we focused on the problem of joint schedulingand rate control in

single-hop wireless networks under the objective of minimizing the required time to de-

liver all data traffic to its respective destinations.

In Section 4.2 we presented the network model. In the first part of this chapter, i.e.,

in Section 4.3, we considered networks with time-invariantlinks. Under this assumption,

in Subsection 4.3.1 we presented a graph-theoretic formulation for the minimum-length

scheduling problem. An optimal algorithm was given in Subsection 4.3.2. Motivated

by the combinatorial nature of this problem, in Subsection 4.3.3 we first mapped the

problem to continuous time and then restricted the set of feasible scheduling and rate

control actions that can be chosen. By doing so, we were able to explicitly characterize

an optimal policy that finds a minimum-length schedule.

In the second part of this chapter, i.e., in Section 4.4, we considered time-varying

wireless networks. In Subsection 4.4.1 we formulated the minimum-length scheduling

problem as a stochastic shortest path and in Subsection 4.4.2 we introduced an optimal

policy by employing the principles of stochastic control theory. Specifically, we em-

ployed the value iteration method to optimally solve the stochastic shortest path problem,

which under our framework is guaranteed to converge in a finite number of iterations.

A set of numerical experiments complementing our analytical results were presented in

Subsection 4.4.3. The proofs of our results appear in Chapters 4.6 and 4.7.
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4.6 Proof of Theorem 6

We can write the Lagrangian of the above problem as:

L(τ , µ, λ) = −
K∑

i=0

τi +
K∑

k=1

µk(τkr
k
k + τ0r

0
k − dk) +

K∑

i=0

λiτi,

whereµ and λ represent the Lagrange multipliers. The Karush-Kuhn-Tucker (KKT)

conditions yield:

1. For every Actionk ∈ K we have

∂L(τ , µ, λ)

∂τk
= −1 + µkr

k
k + λk = 0. (4.17)

2. For Action0 we have

∂L(τ , µ, λ)

∂τ0

= −1 +
K∑

k=1

µkr
0
k + λ0 = 0. (4.18)

3. For every Actionk ∈ K it must be true that

µk(τkr
k
k + τ0r

0
k − dk) = 0 ⇒

µk ≥ 0, τkr
k
k + τ0r

0
k ≥ dk. (4.19)

4. For all actionsi ∈ {0, . . . , K} we have

λiτi = 0⇒ λi ≥ 0, τi ≥ 0. (4.20)

107



Consider the following cases:

Case 1: Assume that Action0 is never employed, i.e.,τ0 = 0. Since the traffic

demands of every transmitter must be met we have thatτk > 0 for everyk ∈ K.

Hence, from (4.20) it follows thatλ0 ≥ 0 andλk = 0 for everyk ∈ K. From (4.17)

we obtain,

µk =
1

rk
k

. (4.21)

Further, sinceµk > 0 andτ0 = 0, (4.19) yields

dk = τkr
k
k ,

i.e., for everyk ∈ K we get

τk =
dk

rk
k

. (4.22)

Finally, from (4.18) and (4.21) it follows that

K∑

k=1

r0
k

rk
k

≤ 1. (4.23)

Case 2:Assume that Action0 is employed and also a subsetJ of the transmitters

are further selected to transmit individually. This implies thatτ0 > 0, τj > 0 for

everyj ∈ J andτi = 0 for everyi ∈ K \ J . Hence, (4.20) yieldsλ0 = 0, λj = 0
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for everyj ∈ J andλi ≥ 0 for everyi ∈ K \ J . Also, for everyj ∈ J , (4.17)

yields

µj =
1

rj
j

, (4.24)

and for everyi ∈ K \ J it follows that

µi ≤
1

ri
i

. (4.25)

Moreover, from (4.19) and (4.24) for everyj ∈ J we get

τj =
dj − τ0r

0
j

rj
j

, (4.26)

and from (4.19) and (4.25) for everyi ∈ K \ J we have

di ≤ τ0r
0
i , (4.27)

or equivalently

τ0 ≥ max
i∈K\J

di

r0
i

. (4.28)

Finally from (4.18), (4.24), and (4.25) it follows that

K∑

k=1

r0
k

rk
k

≥ 1. (4.29)

�
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4.7 Proof of Lemma 4

From (4.26), (4.27), and the fact thatτj > 0 for everyj ∈ J , for i ∈ K \ J it

follows that

0 < τj ≤
djr

0
i − r0

jdi

rj
jr

0
i

,

which yields that

di

r0
i

<
dj

r0
j

. (4.30)

Hence, from (4.30) it follows that there exists a threshold,i.e., a transmitter index, below

which all the transmitters must belong in the setJ and above which all of them must

belong in the setK\J . Since the objective is to minimizeτ0 +
∑

j∈J τj , from (4.26) and

(4.28) it follows that

|J | = arg min
k∈{0,...,K}

{
τ0 +

ℓk∑

j=ℓ1

τj

}

= arg min
k∈{0,...,K}

{
τ0 +

ℓk∑

j=ℓ1

dj − τ0r
0
j

rj
j

}

= arg min
k∈{0,...,K}

{
dℓk+1

r0
ℓk+1

+

ℓk∑

j=ℓ1

djr
0
ℓk+1
− dℓk+1

r0
j

rj
jr

0
ℓk+1

}
.

�
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Chapter 5

Stable Throughput Maximization under Channel Uncertainty

5.1 Background

In this chapter, we turn our focus on obtaining joint scheduling and routing network

control policies that maximize the stable throughput region of time-varying wireless net-

works.

There exists a rich literature on the subject of stable throughput maximization (see

e.g., [9], [10], [33], [34]). Specifically in [33], a scheduling policy that maximizes the

stable throughput in single-hop time-varying networks is identified. Moreover, in [9],

the authors characterize the stable throughput region of static, multi-hop radio networks

with multiple commodities, and propose a centralized, stationary, scheduling and routing

rule, commonly referred as the “back-pressure”, that maximizes the stable throughput.

The “back-pressure” policy forwards the traffic through thenetwork from queues with

high loads to queues with lower loads and achieves stabilityby load-balancing the queues

in the network. Furthermore, the authors in [9] show that their proposed policy is at

least as good as any stationary policy. Under the assumptionthat a scheduled transmis-

sion is always successful, they prove that their policy performs at least as well as any

non-stationary policy with respect to maximizing the stable throughput region of the net-

work. In fact, the “back-pressure” algorithm of [9] has beenshown to maximize the stable

throughput region under a variety of contexts. In [34], we proved optimality of a policy
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inspired by the back-pressure algorithm of [9] within the set of all stationary policies in

the more general setting of wireless networks withtime-varying topologies. Further, [34]

also differs from [9] in that our proposed policy gives priority to each commodity accord-

ing to a preassigned commodity weight. In both [9] and [34], it is assumed that links are

imperfect and that a scheduled transmission may fail, basedon a link failure probabil-

ity, which is independent of the identity, and the number of the simultaneously activated

links. Finally, in another related study, [10], a joint scheduling, routing and power con-

trol policy, also inspired by the back-pressure algorithm,is proposed that maximizes the

stable throughput region of time-varying wireless networks. The authors in [10] consider

a time-varying process of perfect channels, i.e., a transmission through a link is always

successful.

However, in practice the channel conditions can only be estimated, and hence exact

knowledge of the current channel state is likely to be unavailable. The effect of this

discrepancy in the channel state may be two fold; first, certain scheduled transmissions are

going to fail, and second, transmissions through certain links which would be successful

if scheduled, are not activated. Naturally, this situationwill affect the set of stabilizable

rates and will result in a smaller stable throughput region that is a subset of the stable

throughput region under perfect links or under perfect channel estimation.

In this chapter, we are interested in capturing the effect ofimperfect channel estima-

tion and characterize the maximum achievable stable throughput region. We also obtain

a policy that maximizes the stable throughput region under this setting. Towards this end,

our results are different from [10], and generalize [9] and [34], in that we consider policies

with knowledge of only anestimateof the true channel state. Specifically, we propose a
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stationary, joint scheduling, and routing policy formulti-hop, time-varyingnetworks that

maximizes the stable throughput region of the network by having access to only a, perhaps

highly inaccurate,estimateof the current channel state. Our proposed policy, inspiredby

the “back-pressure” idea of [9], is shown to be optimal within a broad class of stationary,

non-stationary, even anticipative policies. We improve onthe results of [9] and [34] in

two aspects. First, we show that our proposed policy performs at least as well in terms

of stable throughput as a large class of policies that do not have more information on the

current true channel state than our policy and where this information is limited to be given

through an estimate of the channel state. In contrast with [9], this result holds even when

scheduled transmissions are not guaranteed to succeed. Second, our model of uncertainty

in the channel state is more sophisticated than the simplistic model used in [9] and [34]

in two respects: (i) the existence of a link is explicitly modeled through the Signal to

Interference plus Noise Ratio criterion imposed by the physical layer and (ii) our model

accounts for the fact that the probability of success of a transmission is affected by the

interference caused by other nearby concurrent transmissions.

5.2 Model Formulation

We consider slotted time and a wireless network consisting of N , possibly mo-

bile, nodes each of which is equipped with a single transceiver. We denote byN =

{1, 2, . . . , N} the set of all nodes in the network. Each noden ∈ N transmits at a fixed

power levelPn.

We also consider a setJ = {1, 2, . . . , J} of distinct commodities of traffic with
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packet lengths equal to one time slot. The number of exogenous packet arrivals of com-

modity j at noden during time slott is denoted byAnj(t). We let Aj(t) denote the

N-vector(Anj(t) : n = 1, 2, . . . , N) of arrivals of thejth commodity during time slott at

every node in the network andA(t) denote theN×J matrix(Anj(t), n = 1, 2, . . .N, j =

1, 2, . . . J) of arrivals in time slott at every noden and for every commodityj. Traffic of

commodityj ∈ J is routed in a multi-hop fashion through the network until itreaches

anynode in a set ofexit nodesfor that commodity,Vj ⊂ N , where it exits the network.

For any commodityj′ 6= j, the setsVj′ andVj may overlap. We further assume that there

are no exogenous arrivals of a particular commodity at the exit nodes of that commodity,

i.e.,Anj(t) = 0 for all n ∈ Vj , j ∈ J .

At each noden there existJ infinite capacity buffers, each holding separately the

packets of a particular commodityj ∈ J that have reached noden. We denote the

queue size for commodityj at noden at the endof time slott by Xnj(t). At time slot

0 the queue sizes at all nodes are arbitrary but finite, i.e.,Xnj(0) ≥ 0 for every node

n ∈ N and commodityj ∈ J . Moreover, the queue size at each exit noden ∈ Vj of

some commodityj and for all time slotst ≥ 0 satisfiesXnj(t) = 0. Finally, for every

commodityj ∈ J we denote byXj(t) theN-vector(Xnj(t), n = 1, 2, . . .N) of queue

sizes of thejth commodity at every node in the network at the end of time slott and by

X(t) theN × J matrix (Xnj(t), n = 1, 2, . . .N, j = 1, 2, . . . J) of queue sizes of every

commodity at every node in the network at the end of time slott. The set of possible

values ofX(t), i.e., the state space of the process{X(t)}∞t=0, is denoted byX .

The channel process{S(t)}∞t=1 defines the channel conditions between any pair of

nodes in the network and is assumed to change only at the beginning of each time slott ∈
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{1, 2, . . .}. Specifically, at time slott, the channel stateS(t) = {(G(n,m)(t), No(m), ∀n, m ∈

N} is characterized by the path lossG(n,m)(t) between each pair of nodesn, m, as

well as the noise power,No(m), at each receiving nodem. A fundamental aspect of

our model that contrasts it from prior work of [33], [34], and[10] is that at the begin-

ning of each time slott the network controller has access only to anestimateŜ(t) =

{(Ĝ(n,m)(t), N̂o(m)(t), ∀n, m ∈ N} of the current channel stateS(t). The estimated

channel statêS(t) during slott is characterized by theestimatedpath lossĜ(n,m)(t) be-

tween each pair of nodesn, m and theestimatednoise powerN̂o(m)(t) at each receiving

nodem. Note that although the noise powerNo(m) is time invariant, its estimatêNo(m)(t)

depends on time, since as time progresses we may naturally get a monotonically improv-

ing estimate.

We further assume that the state space of thetrueandestimatedchannel processes is

a finite set of cardinalityK, which is naturally assumed to be common for both{S(t)}∞t=1

and{Ŝ(t)}∞t=1. For example, that would be the case if we consider node mobility that

is restricted to occur only among points of a finite grid. We denote this common set by

S = {S(1),S(2), . . . ,S(K)}. We will further denote byK = {1, 2, . . . , K} the set of

indices that label the elements ofS.

At every time slott, a (unidirectional) linkℓ = (n, m) from noden to nodem under

the true channel stateS(t) ∈ S is defined to exist, if the Signal to Noise Ratio (SNR) at

m exceeds a certain, non-negative, thresholdγm, i.e.,

SNR(ℓ, t) :=
Pn G(n,m)(t)

No(m)

≥ γm. (5.1)
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We denote the source noden of link ℓ by s(ℓ) and its destination nodem by d(ℓ). Given

the time variability of the channel conditions, and the factthat nodes are mobile, the total

number of links,L, can be as large asN × (N − 1). We denote byL = {1, 2, . . . , L} the

set of indices of all links in the network.

The fact that the wireless medium is a shared resource poses limitations on the set

of nodes that may successfully transmit simultaneously. Hence, not every subset of links

in L can be concurrently activated. In order to take the physicallayer access constraints

into account, appropriate medium access control schemes need to be introduced. In this

chapter, we focus on conflict free scheduling. Towards this end, we define anactivation

vector to be anyL-element binary vector, each entry of which corresponds to a(unidi-

rectional) link. At any time slott, the entries of this vector are equal to one for those

links that are concurrently activated at time slott and zero for all other links. We also

require that an activation vector complies with the single transceiver assumption. This

assumption implies that simultaneous transmission and reception from the same node as

well as receiving/transmitting simultaneously from/to multiple nodes are not allowed. We

further define an activation vectorc to bevalid with respect to some channel stateS(t) if

for every linkℓ ∈ L such that theℓth entrycℓ of c satisfiescℓ = 1, the SINR criterion as

shown in (5.2)

SINR c(ℓ, t) :=
Ps(ℓ) G(s(ℓ),d(ℓ))(t)

No(d(ℓ)) +
∑

ℓ′ ∈ L \ {ℓ}

s.t. cℓ′ = 1

Ps(ℓ′) G(s(ℓ′),d(ℓ))(t)
≥ γd(ℓ), (5.2)

is satisfied withcℓ′ being theℓ′th entry ofc. The criterion of (5.2) implies that the cor-
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responding transmissions through all linksℓ ∈ L with cℓ = 1 will be successful under

channel stateS(t). Similarly, the estimated SINR criterion underŜ(t) can be written as

ŜINR c(ℓ, t) :=
Ps(ℓ) Ĝ(s(ℓ),d(ℓ))(t)

N̂o(d(ℓ))(t) +
∑

ℓ′ ∈ L \ {ℓ}

s.t. cℓ′ = 1

Ps(ℓ′)Ĝ(s(ℓ′),d(ℓ))(t)
≥ γd(ℓ). (5.3)

Note that due to the inaccuracy of the estimate, an activation vector selected at time slott

may be valid with respect to the estimated channel stateŜ(t) at slott, but not valid with

respect to the true channel stateS(t) and vice versa.

For every possible channel stateS(k) ∈ S wherek ∈ K, we denote byTk the

constraint setof S(k), i.e., the set of allvalid activation vectors with respect toS(k). Note

that for every activation vectorc′ ∈ {0, 1}L that is componentwise smaller than some

vectorc ∈ Tk, i.e., c′ ≤ c , it follows that c′ ∈ Tk. This is natural because for any

collection of links that jointly satisfy the SINR criteria of (5.2) - (5.3), these criteria will

still be satisfied by switching off certain transmissions. From the above observation it

follows trivially that for everyk ∈ K the0-vector is also a valid activation vector for each

channel stateS(k) ∈ S.

For each commodityj, consider a process{Ej(t)}∞t=1 that for every time slott

gives the link activations for packets of commodityj. In other words for every time slot

t the vectorEj(t) is anL-element binary vector, the entries of which are equal to onefor

those links that are simultaneously activated and packets of commodityj are transmitted

through them, and are equal to zero otherwise. Further, for every time slott we define

E(t) :=
∑J

j=1 Ej(t). The process{E(t)}∞t=1 corresponds to the overall link activations

for every time slott and it is such that whenever the at time slott the estimated channel
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process is in stateS(k), the vectorE(t) is a valid link activation vector with respect toS(k).

This means thatE(t) is a vector from the constraint setTk, i.e,E(t) ∈ Tk. We call the pro-

cess{Ej(t)}∞t=1 anactivation process. Recall that the constraint set has the property that

for any vector in the constraint set, any other vector that issmaller component-wise must

be in the constraint set as well. SinceE(t) ∈ Tk, the aforementioned property implies

that for every commodityj the corresponding vectorEj(t) is also a valid activation vector

with respect toS(k), i.e., it satisfiesEj(t) ∈ Tk. Further, we require that for each commod-

ity j, a vectorEj(t) must be such that itsℓth component,(Ej(t))ℓ, takes the value zero for

all those time slotst that the queue size at source node of the link,s(ℓ), for commodityj

is equal to zero at the time of the link activation, i.e.,Xs(ℓ)j(t− 1) = 0. We say that every

such process{E(t)}∞t=1 is anadmissible policyand the process{Ej(t), j ∈ J }∞t=1 is an

admissible policy corresponding to thejth commodity. Unless otherwise specified all the

policies we consider are valid.

Further, for every time slott where Ŝ(t) = S(k) for somek ∈ K and for any

activation vectorc ∈ Tk, we construct theL× L diagonal indicator matrixQc(t), whose

ℓth diagonal entry,(Qc(t))ℓ, satisfies

(Qc(t))ℓ =





1, if
(

SINRc(ℓ, t) ≥ γd(ℓ), ŜINRc(ℓ, t) ≥ γd(ℓ)

)
or

(
SINRc(ℓ, t) < γd(ℓ), ŜINRc(ℓ, t) < γd(ℓ)

)
,

0, otherwise.

(5.4)

Intuitively, for any given activation vectorc ∈ Tk and estimated channel stateS(k), the

ℓth entry of the matrixQc(t) takes the value one only when the estimator estimates the

channel correctly in the sense that the values of the corresponding SINRs under both the
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trueandestimatedchannel state lie on the same side of the inequality. Note that whether

(Qc(t))ℓ is equal to one or zero depends on the overall link activations given by the vector

c. In the ideal case of perfect channel estimation, the matrixQc(t) is the identity matrix,

i.e.,Qc(t) = I, for every time slott where the estimated channel state is in stateS(k) for

somek ∈ K and for any activation vectorc ∈ Tk.

Also, for every commodityj we define the matrixRj as anN × L matrix that

denotes the changes in the queue sizes after a successful link activation. The(n, ℓ) entry,

Rj
nℓ, of this matrix equals

Rj
nℓ =





1, if n = d(ℓ) /∈ Vj ,

−1, if n = s(ℓ),

0, otherwise.

(5.5)

Note thatRj
nℓ = 0 whenn = d(ℓ) ∈ Vj, as packets of commodityj arriving atn exit the

system. Overall, the above yields the following dynamic equation for the queue sizes

Xj(t + 1) = Xj(t) + Rj QE(t+1)(t + 1) Ej(t + 1) + Aj(t + 1), t ≥ 0. (5.6)

Throughout this chapter we make use of the following assumption on the input

processes.

Assumption 4 (a) The triplet{S(t), Ŝ(t),A(t)}∞t=1 is i.i.d. over time and independent of

X(0). (b) The arrival process has finite second moments, i.e.,E[A(t)2] <∞.

Assumption 4 (a) guarantees that each of the processes{S(t)}∞t=1, {Ŝ(t)}∞t=1, and
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{A(t)}∞t=1 are individually i.i.d, and hence have a stationary distribution. In particular,

the probabilitypŜ(k) of the occurrence ofestimatedchannel stateS(k) ∈ S, given by

pŜ(k) := P [Ŝ(t) = S(k)], ∀k ∈ K, (5.7)

does not depend ont. Without loss of generality, we assume that

pŜ(k) > 0, ∀ k ∈ K. (5.8)

Indeed, all our results are probabilistic in nature, and arenot affected if we discard sample

paths corresponding to a nullset of outcomes. Moreover, from Assumption 4(a) it follows

that although the processes are i.i.d. in time, for any particular time slott they can be

correlated among themselves. For example, the true and estimated channel statesS(t)

andŜ(t) are naturally correlated but notS(t) andŜ(t− 1).

From Assumption 4(b), it follows that the first moments of thearrival process

{A(t)}∞t=1 are also finite, i.e.,λnj := E[Anj(t)], where the quantityλnj corresponds

to the arrival rate of commodityj at noden. We also denote byλ thearrival rate matrix

(λnj, n = 1, 2, . . .N, j = 1, 2, . . . J) of arrival rates at every node in the network and

for every commodity. Finally, for each commodityj ∈ J we writeλj for theN-vector

λj = (λnj, n = 1, 2, . . .N) of arrivals of thejth commodity at every node in the network.

All arrival rates in our model are measured in terms of packets per time slot.

The nomenclature defined so far is summarized through an example in Fig. 5.1,

where we consider a network of3 nodes, i.e.,N = {1, 2, 3}. Nodes1 and2 transmit

at a fixed powersP1 andP2 respectively. We consider that the channel conditions are

such that we have two possible channel states, namelyS = {S(1),S(2)}. On the left side
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of the figure, we give the possible links that can be established under channel stateS(1)

and on the right side of the figure we give the set of possible links under channel state

S(2). Specifically, when the estimated channel state isS(1), there exist two possible links,

namely links1 and2, where a “link” satisfies the SNR criterion of (5.1) and when it is

S(2) no connectivity exists among the nodes. Hence,L = {1, 2}. Further, although both

links 1 and2 are inL, we assume that they cannot be activated simultaneously dueto the

fact that they do not jointly satisfy the physical layer constraints of SINR. Specifically, we

assume that at most one of them can be activated at any given time. Since the constraint

setTk for channel stateS(k) contains all the valid activation vectors with respect toS(k),

we have thatT1 = {[0, 0], [0, 1], [1, 0]} andT2 = {[0, 0]}. There exist two commodities of

traffic in the network, i.e.,J = {1, 2}. A11(t) andA22(t) denote the arrivals in packets

per slot, during time slott, of commodity1 at node1 and of commodity2 at node2

respectively. We assume that packets of each commodity exitthe network at node3, i.e.,

Vj = {3}, for j = 1, 2. At every node in the network, there exist two infinite capacity

buffers, that hold separately the packets of each commodity. We indicate the queue size

of commodity1 at node2 at the end of time slott by X21(t) and the queue size of

commodity2 at the same node byX22(t). Note that, due to the estimation errors, the

policy may schedule e.g., link1 assuming that the current channel state isS(1) when in

fact the current state isS(2) and hence the scheduled transmission through link1 will fail.
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Figure 5.1: The possible connectivities of a3 node network under2 possible channel

states,S(1) andS(2).

5.3 Stable Throughput Maximization under Channel State Uncertainty

In this section, we consider a policy that maximizes the stable throughput region

of the network by making use ofonly an estimate of the true channel state. Our policy

is built upon the “back-pressure” idea in [9]. As its name suggests, this policy attempts

to maximize the stable throughput by spreading the traffic from the more congested to

the less congested areas in the network. Accordingly, the policy we introduce activates

the nodes of the network in a way that the weighted queue sizesfor every commodityj

will be kept as close to equal as possible, while at the same time the constraints imposed

by the physical layer are being satisfied. Since the physicallayer information available

to our policy is limited due to the uncertainty in the channelstate, our policy will try to

maximize the stable throughput region of the network, within a broad class of policies,

by having access to only an estimate of the channel conditions.

The routing component of the introduced policy resembles the so-called “hot-potato”
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routing approach in which nodes simply unload packets to neighboring nodes with smaller

queue loads ([35]). In fact, in our model, the route any packet follows is determined by

the link activation schedule that aims at maximizing the stable throughput region of the

network. Hence, although an individual packet may follow a circuitous route towards one

of its exit nodes, the overall characteristics of the routesare expected to be reasonable,

albeit non-optimal. Since our objective is to achieve maximum stable throughput, this

sort of routing is legitimate. No other routing will increase the stable throughput region,

although it may decrease the delay that packets of the different commodities experience

in the network.

The introduced policyπw
0 is parameterized by a weight assignmentw = (wj, j =

1, 2 . . . , J), wherewj is a positive weight assigned to each commodityj. Packets corre-

sponding to a commodity of a larger weight are given priorityover the others, by being

scheduled and routed through the network more frequently. For every given weight vector

w, thestationary policyE(t) := πw
0 (t) is a certainJ-tuple of mappingsπw

0
j : X × S →

{0, 1}L, each corresponding to a commodityj and whereEj(t) := πw
0

j(t). So, we also

have thatπw
0 =

∑J
j=1 πw

0
j. For every time slott, the quantityπw

0
j(t) indicates the link

activations for packets of commodityj andπw
0 (t) gives the overall link activations in the

network.

We proceed by specifying the stable throughput maximizing policy πw
0 in detail.

Given the current queue size matrixx ∈ X , weight assignmentw and activation vector

c ∈ Tk, for every estimated channel stateS(k), let

D
wj
kc (x) := −wj Q̃c

k Rj⊤xj , k ∈ K, j ∈ J , c ∈ Tk, (5.9)
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where

Q̃c
k := E

[
Qc(t) | Ŝ(t) = S(k)

]
. (5.10)

From this definition it follows that the matrix̃Qc
k is anL × L diagonal matrix. Its

ℓth diagonal entry(Q̃c
k)ℓ gives the conditional probability that both the estimated and true

SINR values corresponding toℓ lie at the same side of the inequality, provided that the

overall link activations in the network are determined through the activation vectorc and

the estimated channel state isS(k). For any given linkℓ, our model allows this probability

to be dependent on the concurrent transmissions. For example, this probability is expected

to be higher when linkℓ is the only link activated than when linkℓ is activated along with

other concurrent nearby transmissions. Also, Assumption 4(a) guarantees that the matrix

Q̃c
k for everyk ∈ K andc ∈ Tk, defined in (5.10), is time invariant.

Since the queue sizexnj is equal to zero whenevern ∈ Vj , it follows that theℓth

component
(
D

wj
kc (x)

)
ℓ

of Dwj
kc (x) is the weighted queue size difference

(
D

wj
kc (x)

)
ℓ
= wj(Q̃

c
k)ℓ(xs(ℓ)j − xd(ℓ)j). (5.11)

For every linkℓ ∈ L, let

(Dw
kc(x))ℓ := max

j∈J

(
D

wj
kc (x)

)
ℓ
, (5.12)

and

Dw
kc(x) := ( (Dw

kc(x))ℓ, ℓ = 1, . . . , L) . (5.13)

Finally, define

124



(j⋆
k(x))ℓ := arg max

j∈J

{(
D

wj
kc (x)

)
ℓ

}
, (5.14)

to be the maximizer in (5.12) and also let

c⋆
k(x) := arg max

c∈Tk

{
Dw

kc(x)⊤c
}

. (5.15)

Recall that the entries of every valid activation vectorc ∈ Tk are either0 or 1, with

1 indicating activation of the corresponding link. HenceDw
kc(x)⊤c is a partial sum of

weighted queue size differences over all the links, maximized over all the elements of

the constraint setTk. If there exist more than one maximizer in (5.15) ties are resolved

arbitrarily provided that a linkℓ will be left inactive whenever the corresponding maxi-

mum weighted difference associated with that link is0. Furthermore, if there exist more

than one maximizer in (5.14), ties are resolved arbitrarily. With the above in hand, and

in the spirit of the optimal policy of [9], our proposed policy πw
0 is such that itsℓth entry

(πw
0

j(x,S(k)))ℓ is given by

(πw
0

j(x,S(k)))ℓ =





1, j = (j⋆
k(x))ℓ, (c

⋆
k(x))ℓ = 1, andxs(ℓ)j > 0,

0, otherwise,

(5.16)

where (c⋆
k(x))ℓ is the ℓth entry of the vectorc⋆

k(x). When a linkℓ is activated, i.e.,

(
πw

0 (x,S(k))
)

ℓ
= 1, the policyπw

0 will select for transmission through that link a packet

of one of the classesj that achieves the “max” in (5.14). Note that from (5.14), (5.15),

and (5.16) the policyπw
0 also satisfies

(
Dw

k (x)⊤ −D
wj
k (x)⊤

)
π

wj
0 (x,S(k)) = 0. (5.17)
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Note that the matrix̃Qc
k is all the information our policy has regarding the current

channel conditions as shown through (5.11), (5.14), and (5.15). The policy employs this

information by giving a higher preference to those links forwhich both the true and the

estimated SINRs lie at the same side of the inequality. Specifically, the policy will have

the tendency to activate links that have a higher chance of successful transmission.

Clearly, for every commodityj we have thatπw
0

j(x,S(k)) ∈ Tk. Note further that

for every link ℓ that is activated, a packet of a single commodityj is transmitted, and

hence there will exist a singleπw
0

j(x,S(k)) that satisfies(πw
0

j(x,S(k)))ℓ = 1. From

this observation it follows thatπw
0 (x,S(k)) ∈ Tk. The above, along with the fact that

the policy leaves a linkℓ inactive whenever the maximum weighted difference over that

link is 0, guarantees thatπw
0 satisfies the conditions for being an admissible policy. In

Section 5.5, we will show the maximizing property of this policy under the following

mild assumption.

Assumption 5 Let n′ ∈ N be a node such that for somen ∈ N , j ∈ J with λnj > 0

there exists a sequence of links{ℓi}mi=1 ∈ L, with s(ℓ1) = n, d(ℓi) = s(ℓi+1), i =

1, . . . , m− 1, andd(ℓm) = n′ such that∀ i = 1, . . . , m

P [SNR(ℓi, t)≥ γd(ℓi), and ŜNR(ℓi, t)≥ γd(ℓi)] > 0, (5.18)

whereSNR(ℓ, t) is obtained through(5.1)andŜNR(ℓ, t) is defined similarly as

ŜNR(ℓ, t) :=
Ps(ℓ) Ĝ(s(ℓ),d(ℓ))(t)

N̂o(d(ℓ))(t)
. (5.19)

126



Then, there exists a noden′′ ∈ Vj and a sequence of links{ℓ′i}
m′

i=1 ∈ L with s(ℓ′1) = n′,

d(ℓ′i) = s(ℓ′i+1), i = 1, . . . , m′ − 1, andd(ℓ′m′) ∈ Vj such that(5.18)holds with{ℓi}
m
i=1

replaced by{ℓ′i}
m′

i=1.

Assumption 5 is an assumption on sufficient connectivity of the network. Specifi-

cally it requires that for any node that may receive traffic ofa particular commodity, there

should also exist a downstream path of links to some exit nodefor that commodity under

both the true and estimated channel states.

5.3.1 System Stability

The state of our system is driven by the process of the queue sizes. In this section,

we show that under Assumption 4(a) and policyπw
0 , the queue size process defined by

(5.6), i.e., the state of our system, evolves according to a homogeneous Markov Chain.

Our aim is to show that this Markov Chain is stable and thus derive network stability for

as large a set of arrival rates as possible.

Proposition 1 Under Assumption 4(a), the process{X(t)}∞t=0 generated by(5.6) with

Ej(t) = πw
0

j(X(t− 1), Ŝ(t)) for everyj ∈ J is a homogeneous Markov chain. Further-

more,X(t) is independent of(S(t′), Ŝ(t′),A(t′)) for all t′ > t ≥ 0.

The result in the above proposition is a direct consequence of the fact that any

process defined by a recurrence equation driven by white noise input, with initial value

independent of the input, is Markov (See, e.g., [36, Theorem2.1].).

A usual definition for stability of an irreducible Markov Chain is that the Markov

Chain is positive recurrent. When the Markov Chain is not guaranteed to be irreducible,
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a more general definition for stability needs to be employed.Following [9], we adopt the

following definition for stability of a (not necessarily irreducible) homogeneous Markov

Chain.

Definition 1 [9] Let {Y (t)}∞t=0 be a Markov Chain with, possibly empty, transient class

Y and recurrent communicating classesZi, i = 1, 2, . . .. Then{Y (t)}∞t=0 is stableif

P [min{τ ≥ 0 : Y (τ) /∈ Y}<∞ | Y (0) = y] = 1, ∀ y ∈ Y ,

and all statesz ∈ ∪∞i=1Zi are positive recurrent.

We will say that the network is stable if the state process{X(t)}∞t=0 is stable, as defined

in Definition 1.

5.4 A Broad Class of Policies under Channel State Uncertainty

In this section, we introduce a general class of policies,E . Our objective will be

to compare the performance of the members inE to πw
0 with respect to maximizing the

stable throughput region of the network. This comparison will be performed in Section

5.5.

In order to specify the classE we definenŜEQ(t; k, c,Q) to be the number of time

slots in the interval[0, t] that the estimated channel state is in stateS(k), the activation

vectorE(t) takes valuec ∈ Tk and the matrixQE(t)(t) is equal toQ ∈ Q. HereQ is the

set of allL × L diagonal matrices whose diagonal is in the set{0, 1}L. Also, we define

nŜE(t; k, c) to be the number of time slots in the interval[0, t] that the estimated channel

state isS(k) and the activation vectorE(t) takes valuec ∈ Tk. We define the setE as
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follows. We say that a policy{E(t)}∞t=1 belongs toE if for everyk, k′ ∈ K and time slot

t ∈ {1, 2, . . .} the following is true

P [S(t) = S(k′)|Ŝ(t) = S(k),E(t) = c] = P [S(t) = S(k′)|Ŝ(t) = S(k)], (5.20)

and for everyk ∈ K, activation vectorc ∈ Tk, and matrixQ ∈ Q the following is true

nŜEQ(t; k, c,Q)

nŜE(t; k, c)
→

P [Qc(t) = Q, Ŝ(t) = S(k),E(t) = c]

P [Ŝ(t) = S(k),E(t) = c]
, almost surely ast→∞,

(5.21)

whennŜE(t; k, c) 6= 0 as t → ∞. Note that ifnŜE(t; k, c) = 0 as t → ∞, then the

corresponding activation vectorc is not used by the policy. In such a case, this activation

vector can be eliminated from its constraint set. Recall that the constraint set is the set of

all valid activation vectors with respect to the current channel state estimate.

The condition (5.20) is natural. It requires that at any timeslot t, E(t) and the true

channel stateS(t) are conditionally independent given the estimateŜ(t). In other words,

all policies{E(t)}∞t=1 we may consider have no more information on the true channel state

S(t) than the stationary policyπw
0 . Naturally, a policy that has additional information

regarding the true channel state at time slott can potentially exploit this knowledge and

for example avoid collisions by not scheduling the corresponding nodes. Also, (5.21) is

natural and it is in spirit similar to regular ergodicity conditions. From (5.20) and (5.21)

we may easily deduce that

nŜEQ(t; k, c,Q)

nŜE(t; k, c)
→ P [Qc(t) = Q|Ŝ(t) = S(k)], (5.22)
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where from Assumption 4(a),P [Qc(t) = Q|Ŝ(t) = S(k)] is independent of timet. Note

also that the setE includes all the stationary policies since for stationary policies both

(5.20) and (5.21) are being satisfied. It may further includesomenon-stationary, as well

asanticipativepolicies as long as they comply with the conditions for beingin setE . Fi-

nally, we remind the reader that anticipative network control policies are all those policies

that have knowledge on the future values of the quantities that affect the evolution of the

state process, driven by (5.6).

5.4.1 The Notion of Intermittent Boundedness

When the policy{E(t)}∞t=1 belongs to the classE , the resulting queue size process

{X(t)}∞t=0 generated by (5.6) is not necessarily a Markov Chain. Therefore, the stability

definition according to Definition 1 is not applicable anymore. Instead, we will make use

of a weaker notion of stability, that of intermittent boundedness.

Definition 2 The random process{Y (t)}∞t=0 is almost surely intermittently bounded, if

there exists a subsetW of the sample space, withP [W ] = 1, such that for everyω ∈ W

there exists a sequence{ti}∞i=1 and a finiteYmax for which |Y (ω, ti)| < Ymax, ∀ i =

1, 2, . . ., whereY (ω, t) denotes the sample path of the process{Y (t)}∞t=0 corresponding

to outcomeω. Further,{Y (t)}∞t=0 is said to be intermittently bounded with positive prob-

ability, if there exists a subsetW of the sample space, withP [W ] > 0, such that for

everyω ∈ W there exists a sequence{ti}∞i=1 and a finiteYmax for which |Y (ω, ti)| <

Ymax, ∀ i = 1, 2, . . ..
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5.5 Optimality of the Proposed Policy

In this section we will prove optimality of the policy introduced in Section 5.3 with

respect to maximizing the stable throughput region of the network under uncertainty in

the channel state. We will first define some sets of rates that are important in our proofs.

In a stable network, traffic at any given noden ∈ N cannot accumulate without

bound. Hence, stability can be viewed through the concept offlow conservation, namely

that for any commodity the sum of departing flows at any node, except for the exit nodes

for this commodity, must be equal to the sum of arriving flows for this commodity. There-

fore, we define the set offeasiblearrival ratesΛ as

Λ =

{
λ ∈ RNJ

+ : ∃f j
k ∈ RL

+, such that λj = −Rj
K∑

k=1

pŜ(k)f j
k , and

J∑

j=1

f
j
k ∈ co(Q̃k)

}
,

(5.23)

whereQ̃k = {Q̃c
k c, c ∈ Tk}, f

j
k are flow vectors of thejth commodity under esti-

mated channel stateS(k) andco(·) denotes the convex hull of a set. Further, let the stable

throughput regionCπw
0

underπw
0 be defined as

Cπw
0

=
{

The set of arrival ratesλ such that for all processes
{
S(t), Ŝ(t),A(t)

}∞

t=1
,

satisfying Assumptions 4 and 5, whereλ = E[A(t)], the network is stable

underπw
0 .
}

We also denote bỹC1
πw

0
the following set of rates
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C̃1
πw

0
=

{
The set of ratesλ such that for all processes

{
S(t), Ŝ(t),A(t)

}∞

t=1
, satisfying

Assumptions 4 and 5, whereλ = E[A(t)], the process of the queue sizes is

almost surely intermittently bounded underπw
0 .
}

Finally, to compare withCπw
0

andC̃1
πw

0
, we introduce the set of arrival rates̃C

p
E as

C̃
p
E =

{
The set of ratesλ such that for some processes

{
S(t), Ŝ(t),A(t)

}∞

t=1
, satisfying

Assumption 4 whereλ = E[A(t)], the process of the queue sizes is intermittently

bounded with positive probability under some policy{E(t)}∞t=1 ∈ E .
}

Note that although the requirement for an arrival rate beingin Cπw
0

is that the process

of the queue sizes is stable underπw
0 , the set of arrival rates̃Cp

E only requires that the

queue size process satisfies the weak notion of intermittentboundedness with positive

probability.

Let ri(·) denote the relative interior of a set. The following theoremstates our main

result. The proof can be found in Section 5.7.

Theorem 7 The setΛ is a convex polytope. Furthermore, forall weight assignments

w = (wj, j = 1, 2, . . . , J), with wj > 0 for every commodityj ∈ J , the following

relationships hold

ri(Λ) ⊆ Cπw
0
⊆ C̃1

πw
0
⊆ C̃

p
E ⊆ Λ. (5.24)
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We proceed to give some more insight into the meaning of this theorem. From

(5.24) it follows that for all weight assignmentsw, the rate regionsCπw
0

, C̃1
πw

0
, andC̃

p
E

are all squeezed between the convex polytopeΛ, and its relative interior. Hence, the

sets of ratesCπw
0

, C̃1
πw

0
, andC̃

p
E can differ by at most points on the relative boundary

of Λ, and therefore they are almost identical sets. In fact, thisimplies that for any rate,

except perhaps for a few rates in the relative boundary ofΛ, that cannot be stabilized

by our introduced stationary policyπw
0 , there exists no policy in the large classE that

can even make the process of the queue sizes intermittently bounded with some positive

probability.

1/8

1/4

Stability Region under 

perfect channel estimation

1/4

Relative boundary of 

Stability Region       under

imperfect channel estimation

1/2

Figure 5.2: Stable throughput region of the network presented in Fig. 5.1 under perfect

and imperfect channel estimation.

As an example, by utilizing (5.23), in Fig. 5.2 we depict the stable throughput

region for the example network presented in Fig. 5.1. Here, it is assumed that the channel
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estimation is such that the matricesQ̃
[0,0]T

1 , Q̃
[0,1]T

1 , Q̃
[1,0]T

1 are all equal to a diagonal

matrix with diagonal entries given by 0.5, while the values of Q̃
[0,0]T

2 are immaterial due

to the fact that there are no links available under channel stateS(2). Further, we assumed

that the stationary probabilities of the estimated channelstates are both equal to 0.5, i.e.,

pŜ(1) = pŜ(2) = 0.5. As discussed above, the set of stable achievable rates may differ

from Λ by only the relative interior ofΛ, which is the union of three line segments

shown in Fig. 5.2. Further, in Fig. 5.2 we also provide the stable throughput region of

the network under perfect channel estimation, obtained by replacingQ̃[0,0]T

1 , Q̃[0,1]T

1 , and

Q̃
[1,0]T

1 with the identity matrix in (5.23). It is evident that the channel estimation errors

have a significant impact on the stable throughput region.

5.6 Summary

In this chapter, we characterized the stable throughput region of a multi-hop net-

work with multiple commodities in which the true channel state cannot be known by the

network control policy.

In Section 5.2 we presented the network model. In Section 5.3we discussed the

problem of stable throughput maximization under channel state uncertainty. We defined

the notion of stability considered in this work. Specifically, we assumed that the system

is stable if the underlying Markov Chain of the network queuesizes is positive recurrent.

We introduced a joint scheduling and routing policy that assigns weights of preference to

each commodity and attempts to maximize the stable throughput region of time-varying

wireless networks, independently of the weight assignment, while having access only to
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a possibly inaccurate estimate of the true channel state. InSection 5.4 we introduced a

large class of stationary, non-stationary, perhaps anticipative policies. A restriction we

posed on these policies was that they are not permitted to know more about the current

true channel state than what the estimate reveals. Since under the broad class of policies

the queue size process need not be a Markov Chain any more, in the sequel we gave an al-

ternative, very weak definition for stability called as intermittent boundedness. In Section

5.5 we characterized the common set of stable arrival rates that our optimal policy sup-

ports and proved its optimality with respect to maximizing the stable throughput region

of the network within a broad class of stationary, non-stationary, and possibly anticipative

policies, under some mild conditions. We finally showed through an example that the net-

work stable throughput region can be considerably smaller than the corresponding stable

throughput region under perfect channel estimation. The proofs of our results appear in

Section 5.7.

5.7 Proof of Theorem 7

In this section we prove each individual inclusion relationship of Theorem 7. The

third inclusion, that is̃C1
πw

0
⊆ C̃

p
E , follows trivially from the definitions of the sets̃C1

πw
0

,

andC̃
p
E . Next, we prove the three remaining inclusions, namely that(i) ri(Λ) ⊆ Cπw

0
,

(ii) Cπw
0
⊆ C̃1

πw
0

, and (iii) C̃p
E ⊆ Λ.
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5.7.1 Proof ofri(Λ) ⊆ Cπw

0

Consider a rateλ ∈ ri(Λ). We show thatλ ∈ Cπw
0

, i.e., that this rate is stabilized

by our proposed policyπw
0 . We make use of Extended Foster’s Theorem ([9]), which

provides a sufficient condition for stability.

Theorem 8 (Extended Foster Theorem)Consider a Homogenous Markov Chain{Y (t)}∞t=0

with state spaceY . Suppose there exists a real valued, functionV : Y → R, that is

bounded from below, such that

E[V (Y (t + 1)) | Y (t) = y] <∞, ∀y ∈ Y , (5.25)

and such that for someǫ > 0, and some finite subsetY0 ofY

E[V (Y (t + 1))− V (Y (t)) | Y (t) = y] < −ǫ, ∀ y /∈ Y0 (5.26)

Then,{Y (t)}∞t=0 is stable in the sense of Definition 1.

We will show that the process of the queue sizes{X(t)}∞t=0 satisfies the conditions

of this theorem. For compactness of notation, we uset+ to denotet + 1. Givenw > 0,

andx ∈ X , let V (x) :=
∑J

j=1 wjx
j⊤xj, be a candidate Lyapunov function. We show

that, withV (·) thus defined under policyπw
0 , and given any process{A(t)}∞t=1, such that

E[A(t)] = λ, the process{X(t)}∞t=0 given by (5.6) withEj(t) = π
wj
0 (X(t − 1), Ŝ(t))

for all j ∈ J satisfies the conditions of Theorem 8.

First, it is immediate thatE[V (X(t+)) |X(t) = x] < ∞, ∀x ∈ X . To see this, let

x ∈ X , and let
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Gj(t) := xj + RjQπ(x,Ŝ(t))(t)πj(x, Ŝ(t)) + Aj(t). (5.27)

Note that for everyt the matrixQπ(x,Ŝ(t))(t) is a function ofS(t), andŜ(t). Since by

Proposition 1, the variablesS(t+), Ŝ(t+), A(t+) are independent ofX(t), (5.6) yields

E[V (X(t+)) |X(t) = x] =
J∑

j=1

wjE
[
Gj(t+)⊤Gj(t+)

]
, (5.28)

which is finite for allx since from Assumption 4 (b) the process{A(t)}∞t=1 is assumed to

have finite second moments, and further the policyπj(x, Ŝ(t+)), as well as the process

{Qπ(x,Ŝ(t))(t)}∞t=1 take values in finite sets. This in fact holds independently of the choice

of stationary policyπ, and of the arrival rateλ. To complete the proof, we show that,

when policyπw
0 is used, there exists a finite setX0 such that (5.26) holds. For compact-

ness of notation, we define

∆V (x) := E
[
V (X(t+))− V (X(t)) |X(t) = x

]
.

We first prove two lemmas that will be useful in proving the desired result.

Lemma 7 Given any policyπ, arrival rate λ, and queue size matrixx ∈ X , the Markov

Chain{X(t)}∞t=0 given by(5.6)satisfies

∆V (x) ≤ 2

(
J∑

j=1

wjx
j⊤λj −

∑

k∈K

pŜ(k)
J∑

j=1

D
wj

kπ(x,S(k))
(x)⊤ πj(x,S(k))

)
+ B, (5.29)

whereB does not depend onx.

137



Proof: From (5.28), and the definition of our candidate Lyapunov function we have

∆V (x) =

J∑

j=1

wjE

[(
Xj(t+)−Xj(t)

)⊤ (
Xj(t+) + Xj(t)

)
|X(t) = x

]

=
J∑

j=1

wjE

[(
Xj(t+)−Xj(t)

)⊤ (
2Xj(t) + Xj(t+)−Xj(t)

)
|X(t) = x

]

= 2
J∑

j=1

wj

(
xj⊤E

[
Xj(t+)−Xj(t) |X(t) = x

])

+

J∑

j=1

wjE
[
(Xj(t+)−Xj(t))⊤(Xj(t+)−Xj(t)) |X(t) = x

]
.

By using (5.6) we obtain

∆V (x) = 2

J∑

j=1

(
wjx

j⊤E

[
RjQπ(x,Ŝ(t+))(t+)πj(x, Ŝ(t+)) + Aj(t+) |X(t) = x

])

+

J∑

j=1

wjE

[(
RjQπ(x,Ŝ(t+))(t+)πj(x, Ŝ(t+)) + Aj(t+)

)⊤

(
RjQπ(x,Ŝ(t+))(t+)πj(x, Ŝ(t+)) + Aj(t+)

)
|X(t) = x

]
.

Since{A(t)}∞t=1 is stationary, and has finite first and second moments, and thepolicy

πj(x, Ŝ(t+)), as well as the process{Qπ(x,Ŝ(t))(t)}∞t=1, whereπ(x, Ŝ(t)) =
∑J

j=1 πj(x, Ŝ(t)),

take values in finite sets, the second term is finite and bounded for everyj ∈ J by a quan-

tity independent of the queue size matrixx, and time slott. Hence for everyx ∈ X ,

∆V (x) ≤ 2
J∑

j=1

(
wjx

j⊤E

[
RjQπ(x,Ŝ(t+))(t+)πj(x, Ŝ(t+)) + Aj(t+) |X(t) = x

])
+ B

for someB independent ofx, andt. Further by making use of Proposition 1, namely that

A(t+) is independent ofX(t), and using conditional expectations it follows that

138



∆V (x) ≤ 2
J∑

j=1

wjx
j⊤λj + B

+ 2
J∑

j=1

wjx
j⊤Rj

∑

k∈K

pŜ(k)E
[
Qπ(x,S(k))(t+)|X(t) = x, Ŝ(t+) = S(k)

]
πj(x,S(k)).

Using (5.10), and the fact thatQπ(x,S(k))(t+), and Ŝ(t+) are independent ofX(t) we

obtain

∆V (x) ≤ 2

J∑

j=1

wjx
j⊤λj − 2

J∑

j=1

∑

k∈K

pŜ(k)
(
−wjQ̃

π(x,S(k))
k Rj⊤xj

)⊤
πj(x,S(k)) + B.(5.30)

Finally, by using (5.9), the above equation becomes

∆V (x) ≤ 2

(
J∑

j=1

wjx
j⊤λj −

∑

k∈K

pŜ(k)

J∑

j=1

D
wj

kπ(x,S(k))
(x)⊤ πj(x,S(k))

)
+ B,

which completes the proof.

�

When an arrival rateλ belongs tori(Λ), a useful upper bound can be obtained on

the first term in the parenthesis of (5.29), by means of the following lemma.

Lemma 8 Letλ ∈ ri(Λ). Then there exist nonnegative scalarsµ′c
k, for all c ∈ Tk, k ∈ K,

with
∑

c∈Tk
µ′c

k < 1, such that, for allx ∈ X ,

J∑

j=1

wjx
j⊤λj ≤

∑

k∈K

pŜ(k)
∑

c∈Tk

µ′c
kD

w
kc(x)⊤c. (5.31)
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Proof: Let rateλ ∈ ri(Λ). Thenλ ∈ Λ, asri(Λ) ⊆ Λ. Hence, with reference to (5.23)

there exists a scalarδ > 1, and non-negative flow vectorsf j
k ∈ RL

+ such that

λj = −Rj
∑

k∈K

pŜ(k)f j
k , (5.32)

and whereδ
∑J

j=1 f
j
k ∈ co(Q̃k) i.e., for someµc

k ≥ 0 such that
∑

c∈Tk
µc

k = 1 we have

δ
J∑

j=1

f
j
k =

∑

c∈Tk

µc
kQ̃

c
kc. (5.33)

Note that from (5.33) it follows that, for allj ∈ J , andk ∈ K, we have

(f j
k)ℓ = 0 , ∀ℓ 6∈ S(k). (5.34)

Using (5.32), and the fact each of the vectorsf
j
k are non-negative component-wise we can

write

J∑

j=1

wjx
j⊤λj ≤

∑

k∈K

pŜ(k)

J∑

j=1

(
max
j∈J

(
−wjx

j⊤Rj
)
f
j
k

)

=
∑

k∈K

pŜ(k) max
j∈J

(
−wjx

j⊤Rj
)∑

c∈Tk

µc
k

δ
Q̃c

kc, (5.35)

where (5.35) follows by making use of (5.33). Letµ′c
k :=

µc
k

δ
. By definition,µ′c

k ≥ 0.

Also, since
∑

c∈Tk
µc

k = 1, andδ > 1, it follows that
∑

c∈Tk
µ′c

k < 1. Further, (5.35) can

be written as

J∑

j=1

wjx
j⊤λj ≤

∑

k∈K

pŜ(k)
∑

c∈Tk

µ′c
k max

j∈J

((
−wjQ̃

c
kR

j⊤xj
)⊤)

c

=
∑

k∈K

pŜ(k)
∑

c∈Tk

µ′c
kD

w
kc(x)⊤c, (5.36)
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where (5.36) follows by making use of (5.9), (5.12), and (5.13). This completes the proof

of Lemma 8.

�

We proceed to finalize the proof of the claim thatri(Λ) ⊆ Cπw
0

. From Lemmas 7

and 8 we conclude that, givenλ ∈ ri(Λ), there exist nonnegative scalarsµ′c
k, for all

c ∈ Tk, andk ∈ K, with
∑

c∈Tk
µ′c

k < 1, such that, for allx ∈ X , and all stationary

policiesπ,

∆V (x) ≤ 2
∑

k∈K

pŜ(k)

(∑

c∈Tk

µ′c
kD

w
kc(x)⊤c−

J∑

j=1

D
wj

kπ(x,S(k))
(x)⊤πj(x,S(k))

)
+ B.

(5.37)

So farπ was an arbitrary stationary policy. We now focus on the policy πw
0 . In view of

the fact thatπ(x,S(k)) =
∑J

j=1 πj(x,S(k)) ∈ Tk, from (5.17), and of the definition of

πw
0 , we obtain

J∑

j=1

D
wj

kπw
0 (x,S(k))

(x)⊤π
wj
0 (x,S(k)) = Dw

kπw
0 (x,S(k))(x)⊤

J∑

j=1

π
wj
0 (x,S(k))

= Dw
kπw

0 (x,S(k))(x)⊤πw
0 (x,S(k))

= max
c∈Tk

{Dw
kc(x)⊤c}.

By substituting into (5.37), we get

141



∆V (x) ≤ B + 2
∑

k∈K

pŜ(k)

(∑

c∈Tk

µ′c
kD

w
kc(x)⊤c−max

c∈Tk

{Dw
kc(x)⊤c}

)

≤ B − 2
∑

k∈K

pŜ(k) max
c∈Tk

{Dw
kc(x)⊤c}

(
1−

∑

c∈Tk

µ′c
k

)

≤ B − ρ max
k∈K

max
c∈Tk

{Dw
kc(x)⊤c},

where from (5.7), and the fact that
∑

c∈Tk
µ′c

k < 1

ρ := 2 min
k∈K

(
pŜ(k)

(
1−

∑

c∈Tk

µ′c
k

))
> 0.

Now, letx ∈ X , with x 6= 0, and supposeX(t) = x. Choose a noden, and a commodity

j such thatxnj > 0. The Markov property of{X(t)}∞t=0 implies that

∆V (x) = E
[
V (X(t+))− V (X(t)) |X(t) = x,X(0) = 0

]
.

Hence, without loss of generality, assume that the queue size process at time slot0 satisfies

X(0) = 0. SinceXnj(t) = xnj > 0, andXnj(0) = 0, there must exist a sequence of

links in L from some noden′, with λn′j > 0, to noden that satisfy Assumption 5.

Further, Assumption 5 then implies that there exist linksℓi ∈ L, i = 1, . . . , z, for somez,

satisfying0 < z < N , such thatn = s(ℓ1), and nodesn1, . . . , nz, such thatd(ℓ1) = n1,

s(ℓi+1) = ni, d(ℓi+1) = ni+1, i = 1, . . . , z − 1, andnz ∈ Vj . For notational simplicity,

also letn0 := n. Sincexnzj = 0, whenevernz ∈ Vj, we can write

xnj =

z∑

i=1

(xni−1j − xnij) ≤ z max
i,j

(xni−1j − xnij). (5.38)
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It follows that there exists some linkℓi⋆ for which the above queue size difference through

it, is maximized for some commodityj⋆ ∈ J . Letni⋆−1 = s(ℓi⋆), andni⋆ = d(ℓi⋆). Then,

from (5.38) we have

xni⋆−1j⋆ − xni⋆ j⋆ ≥
xnj

z
≥

xnj

N
. (5.39)

Recall thatℓi ∈ L for all i = 1, . . . , z. Further, letk⋆ be such thatℓi⋆ satisfies (5.1)

under the estimated channel stateŜ(t) = S(k⋆). Let eℓi⋆
∈ RL be a vector with itsℓi⋆

th

component equal to1, and with all other components equal to0. Then, from the property

of the constraint set it follows thateℓi⋆
∈ Tk⋆. Also, it follows from (5.12) and (5.13) that

max
k∈K

max
c∈Tk

{Dw
kc(x)⊤c} ≥ max

c∈Tk⋆

{Dw
k⋆c(x)⊤c}

≥ Dw
k⋆eℓi⋆

(x)⊤eℓi⋆
=
(
Dw

k⋆eℓi⋆
(x)
)

ℓi⋆

≥
(
D

wj⋆

k⋆eℓi⋆
(x)
)

ℓi⋆

,

where
(
D

wj⋆

k⋆eℓi⋆
(x)
)

ℓi⋆

is theℓi⋆
th entry of the vectorDwj⋆

k⋆eℓi⋆
(x). In view of (5.11), and

(5.39), it follows that

max
k∈K

max
c∈Tk

{Dw
k (x)⊤eℓi⋆

} ≥ wj⋆(Q̃
eℓi⋆

k⋆ )ℓi⋆
(xni⋆−1j⋆ − xni⋆ j⋆) ≥

wmin q̃min xnj

N
,

where(Q̃
eℓi⋆

k⋆ )ℓi⋆
is theℓth

i⋆ diagonal entry of the matrix̃Q
eℓi⋆

k⋆ , while

wmin := min
j∈J

wj > 0,

and, in view of Assumption 5,̃qmin > 0. Note that the entrieswmin andq̃min do not depend

onx. Overall, we have
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∆V (x) ≤ B −
ρ wmin q̃min xnj

N

so that, given anyǫ > 0,

∆V (x) < −ǫ, ∀x /∈ X0 :=

{
x ∈ X : xnj ≤

N(B + ǫ)

ρ wmin q̃min

}
.

Since vectors inX have integer components, the setX0 is finite, and the proof is complete.

�

5.7.2 Proof ofCπw

0
⊆ C̃1

πw

0

Consider an arrival rateλ ∈ Cπw
0

. In order to prove thatλ ∈ C̃1
πw

0
, we need to

show that stability according to Definition 1 implies intermittent boundedness with prob-

ability 1. We proceed by giving a theorem that gives a sufficient condition for intermittent

boundedness of a Markov Chain.

Theorem 9 Let {Y (t)}∞t=0 be a Markov Chain, withY the, possibly empty, set of its

transient states. If{Y (t)}∞t=0 almost surely exits the set of transient states in finite time,

i.e. if

P [min{τ ≥ 0 : Y (τ) /∈ Y} <∞ | Y (0) = y] = 1, ∀y ∈ Y (5.40)

(which holds vacuously whenY is empty), then{Y (t)}∞t=0 is intermittently bounded

with probability1.
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Proof: Consider the Markov Chain{Y (t)}∞t=0 that satisfies (5.40). Then with probability

1, the Markov Chain{Y (t)}∞t=0 will be eventually confined within a single recurrent class.

It follows (e.g. from Theorem7.3 in Chapter2 of [36] ) that, with probability1, some

(recurrent) state will be visited infinitely many times. Hence, there exists a setW , that is

a subset of the sample spaceΩ, i.e. W ⊆ Ω, with P [W ] = 1 such that for every event

ω ∈ W , there exist a statey, and a sequence{ti}∞i=1, such that in the sample pathω the

process satisfies

Y (ω, ti) = y, ∀i = 1, 2, . . . .

Hence, by Definition 2 it follows that{Y (t)}∞t=0 is intermittently bounded with probabil-

ity 1.

�

A direct consequence of Theorem 9 is Corollary 3, that we state next.

Corollary 3 Let {Y (t)}∞t=0 be a stable Markov Chain. Then,{Y (t)}∞t=0 is intermittently

bounded with probability1.

From Corollary 3, the desired result follows.

5.7.3 Proof ofC̃p
E ⊆ Λ

We need to show that ifλ ∈ C̃
p
E thenλ ∈ Λ. We start by introducing the no-

tation required for our proof. We define the random variablenŜ(t; k) to be the number

of time slotsτ in the interval[0, t] during whichŜ(τ) takes the valueS(k). Moreover,

we denote by{nŜ(ω, t; k)}∞t=1, {nŜE(ω, t; k, c)}∞t=1, {nŜEQ(ω, t; k, c,Q)}∞t=1 the sam-
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ple pathω of the corresponding processes (Recall that the processes{nŜE(t; k, c)}∞t=1,

{nŜEQ(t; k, c,Q)}∞t=1 are defined in Section 5.4.). Finally by{A(ω, t)}∞t=1, {Ŝ(ω, t)}∞t=1,

{E(ω, t)}∞t=1, {Q
c(ω, t)}∞t=1 and{X(ω, t)}∞t=1 we denote each of the sample pathsω of

the respective processes.

Sinceλ ∈ C̃
p
E , there exists a policy{E(t)}∞t=1 ∈ E and an i.i.d. process{S(t), Ŝ(t),A(t)}∞t=1

such thatE[A(t)] = λ. In particular

P

[
ω : lim

t→∞

1

t

t∑

τ=1

Aj(ω, τ) = λj

]
= 1, ∀j ∈ J , (5.41)

P

[
ω : lim

t→∞

nŜ(ω, t; k)

t
= pŜ(k)

]
= 1, ∀k ∈ K. (5.42)

Furthermore, from (5.22) we have that

P

[
ω : lim

t→∞

nŜEQ(ω, t; k, c,Q)

nŜE(ω, t; k, c)
= P [Qc(t) = Q|Ŝ(t) = S(k)]

]
= 1. (5.43)

Also, since the process{X(t)}∞t=0 is intermittently bounded with positive probability it

follows that

P [ω : X(ω, τi) < Xmax, for some finiteXmax, and for some sequence{τi}
∞
i=1] > 0.

(5.44)

Since the events in (5.41), (5.42) and (5.43) have probability 1 and the event in (5.44) has

a positive probability, their intersection will have a positive probability. Hence, it follows

that the4 events have a non-empty common intersection. We first fix an outcomeω′ that
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belongs to this common intersection and onceω′ is selected, we identify anXmax and a

sequence{ti}∞i=1 as specified by (5.44). We have

lim
i→∞

1

ti

ti∑

τ=1

Aj(ω′, τ) = λj (5.45)

lim
i→∞

nŜ(ω′, ti; k)

ti
= pŜ(k) (5.46)

lim
t→∞

nŜEQ(ω′, t; k, c,Q)

nŜE(ω′, t; k, c)
= P [Qc(t) = Q|Ŝ(t) = S(k)] (5.47)

X(ω′, ti) < Xmax, for some Xmax, ∀i = 1, 2, . . . . (5.48)

We now proceed to first sum both sides of (5.6) from time slot0 to ti for some

i = 1, 2, . . . and cancel the identical terms. Then, by dividing both sidesof the resulting

equation byti we obtain

1

ti
Xj(ω′, ti) =

1

ti
Xj(ω′, 0) +

1

ti

ti∑

τ=1

RjQE(ω′,τ)(ω′, τ)Ej(ω′, τ) +
1

ti

ti∑

τ=1

Aj(ω′, τ).

(5.49)

From (5.48), we have

lim
i→∞

1

ti
Xj(ω′, ti) = 0, (5.50)

and

lim
i→∞

1

ti
Xj(ω′, 0) = 0. (5.51)

Taking the limit in (5.49) asi → ∞, and by using (5.45), (5.50) and (5.51) we

obtain
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λj = − lim
i→∞

{
1

ti

ti∑

τ=1

RjQE(ω′,τ)(ω′, τ)Ej(ω′, τ)

}

= − lim
i→∞

{
Rj
∑

k∈K

1

ti

∑

τ ∈ {1, . . . , ti}

s.t. Ŝ(ω′, τ) = S(k)

QE(ω′,τ)(ω′, τ)Ej(ω′, τ)

}

= − lim
i→∞

{
Rj
∑

k∈K̃

1

ti

∑

τ ∈ {1, . . . , ti}

s.t. Ŝ(ω′, τ) = S(k)

QE(ω′,τ)(ω′, τ)Ej(ω′, τ)

}
, (5.52)

where

K̃ =
{
k ∈ K s.t. Ŝ(ω′, τ) = S(k) for someτ ∈ {1, . . . ,∞}

}
.

Thus, fork ∈ K̃, and fori large enough it follows thatnŜ(ω′, ti; k) > 0. With-

out loss of generality (by redefining the sequence{ti}∞i=1 if necessary), assume that

nŜ(ω′, ti; k) > 0 for all k ∈ K̃ andi = 1, 2, . . .. Then, (5.52) can be written as

λj =− lim
i→∞

{
Rj
∑

k∈K̃

nŜ(ω′, ti; k)

ti

1

nŜ(ω′, ti; k)

∑

τ ∈ {1, . . . , ti}

s.t. Ŝ(ω′, τ) = S(k)

QE(ω′,τ)(ω′, τ)Ej(ω′, τ)

}
. (5.53)

Note thatEj(ω′, τ) ∈ Tk whenever̂S(ω′, τ) = S(k). Also, for every time slotτ , the matrix

QE(ω′,τ)(ω′, τ) is a diagonal matrix, whose diagonal entries take values in the set{0, 1}.

Therefore, it is also true that the productQE(ω′,τ)(ω′, τ) Ej(ω′, τ) ∈ Tk. Also, since

∑

τ ∈ {1, . . . , ti}

s.t. Ŝ(ω′, τ) = S(k)

1

nŜ(ω′, ti; k)
=

1

nŜ(ω′, ti; k)

∑

τ ∈ {1, . . . , ti}

s.t. Ŝ(ω′, τ) = S(k)

1 =
1

nŜ(ω′, ti; k)
nŜ(ω′, ti; k) = 1,
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we have that for everyi ∈ {1, . . .}, j ∈ J andk ∈ K̃,

1

nŜ(ω′, ti; k)

∑

τ ∈ {1, . . . , ti}

s.t. Ŝ(ω′, τ) = S(k)

QE(ω′,τ)(ω′, τ)Ej(ω′, τ) ∈ co(Tk).

SinceK̃ is a finite set and since for everyk, the setco(Tk) is a compact set, there exists a

subsequence{tiℓ}
∞
ℓ=1 and vectorsf j

k such that

lim
ℓ→∞

{
1

nŜ(ω′, tiℓ ; k)

∑

τ ∈ {1, . . . , tiℓ
}

s.t. Ŝ(ω′, τ) = S(k)

QE(ω′,τ)(ω′, τ)Ej(ω′, τ)

}
= f

j
k , (5.54)

for all j ∈ J , k ∈ K̃. Hence from (5.46), (5.53) and (5.54) we obtain

λj = −Rj
∑

k∈K̃

pŜ(k)f j
k , ∀k ∈ K̃. (5.55)

Finally, by letting the correspondingL×1 vectorf j
k be the0-vector, wheneverk ∈ K \ K̃

we conclude that

λj = −Rj
∑

k∈K

pŜ(k)f j
k , ∀k ∈ K. (5.56)

Clearly, f j
k ∈ RL

+ for everyk ∈ K andj ∈ J . To complete the proof we need to show

that
∑J

j=1 f
j
k ∈ co(Q̃k) for everyk ∈ K. We consider two cases.

1. k ∈ K \ K̃: For everyk ∈ K \ K̃, we have that

J∑

j=1

f
j
k ∈ co(Q̃k), (5.57)

since0 ∈ Tk for everyk ∈ K.
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2. k ∈ K̃: From (5.54), and sinceE(ω′, τ) =
∑J

j=1 Ej(ω′, τ), for all k ∈ K̃ we have

J∑

j=1

f
j
k = lim

i→∞

{ ∑

τ ∈ {1, . . . , ti}

s.t. Ŝ(ω′, τ) = S(k)

1

nŜ(ω′, ti; k)
QE(ω′,τ)(ω′, τ)E(ω′, τ)

}

= lim
i→∞

{
1

nŜ(ω′, ti; k)

∑

c∈Tk

∑

Q∈Q

∑

τ ∈ {1, . . . , ti}

s.t. Ŝ(ω′, τ) = S(k),

E(ω′, τ) = c,

Qc(ω′, τ) = Q

Q c

}

= lim
i→∞

{∑

c∈Tk

∑

Q∈Q

nŜEQ(ω′, ti; k, c,Q)

nŜ(ω′, ti; k)
Q c

}

= lim
i→∞

{∑

c∈Tk

∑

Q∈Q

nŜEQ(ω′, ti; k, c,Q)

ti

ti
nŜ(ω′, ti; k)

Q c

}
. (5.58)

Since each of the terms involved in the sum are non-negative,and since the outer

limit exists, it follows that each of the product terms in thelimit are bounded. Fur-

ther, sincen
Ŝ
(ω′,ti;k)

ti
converges to a non-zero value, we may extract a converging

subsequence such thatlimi→∞

{
n
ŜEQ

(ω′,ti;k,c,Q)

ti

}
exists, and therefore

J∑

j=1

f
j
k =

∑

c∈Tk

∑

Q∈Q

lim
i→∞

{
nŜEQ(ω′, ti; k, c,Q)

ti

}
1

pŜ(k)
Q c. (5.59)

Note also thatlimi→∞
n
ŜE

(ω′,ti;k,c)

ti
exists and can be written as a finite sum of exist-

ing limits as

lim
i→∞

nŜE(ω′, ti; k, c)

ti
= lim

i→∞

∑

Q∈Q

nŜEQ(ω′, ti; k, c,Q)

ti
=
∑

Q∈Q

lim
i→∞

nŜEQ(ω′, ti; k, c,Q)

ti
,

(5.60)
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where we made use of the fact that the limitlimi→∞
n
ŜEQ

(ω′,ti;k,c,Q)

ti
exists. As

discussed in Section 5.4, for allc ∈ Tk, the quantitynŜE(ω′, ti; k, c) 6= 0 ast→∞.

Hence, we can write

lim
i→∞

{
nŜEQ(ω′, ti; k, c,Q)

ti

}
= lim

i→∞

{
nŜEQ(ω′, ti; k, c,Q)

nŜE(ω′, ti; k, c)

nŜE(ω′, ti; k, c)

nŜ(ω′, ti; k)

nŜ(ω′, ti; k)

ti

}
.

(5.61)

It follows from (5.46) and (5.60) that

lim
i→∞

nŜE(ω′, ti; k, c)

nŜ(ω′, ti; k)
=

limi→∞
n
ŜE

(ω′,ti;k,c)

ti

limi→∞
n
Ŝ
(ω′,ti;k)

ti

exists. Let this limit be equal to

γc
k := lim

i→∞

nŜE(ω′, ti; k, c)

nŜ(ω′, ti; k)
. (5.62)

From (5.46), (5.47) and (5.62) it follows that the individual limits in (5.61) exist.

Hence, it can be written as

lim
i→∞

{
nŜEQ(ω′, ti; k, c,Q)

ti

}
= P [Qc(t) = Q|Ŝ(t) = S(k)] γc

k pŜ(k). (5.63)

By replacing (5.63) in (5.59) we get

J∑

j=1

f
j
k =

∑

c∈Tk

∑

Q∈Q

γc
k P [Qc(t) = Q|Ŝ(t) = S(k)] Q c

=
∑

c∈Tk

γc
kQ̃

c
kc, (5.64)
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where (5.64) follows by employing (5.10). Consequently, itfollows that

J∑

j=1

f
j
k ∈ co(Q̃k),

and the proof is complete.

�
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Chapter 6

Concluding Remarks

6.1 Thesis Contributions

The main contribution of this thesis is to shed light in the scheduling problem by

understanding whether it is preferable to allow more concurrent transmissions at lower

rates or fewer concurrent transmissions at higher rates. Westudied this trade-off under

various performance objectives.

In Chapter 2 we considered static networks comprising of a set of, always back-

logged, sources, eachmulticastingtraffic to its corresponding destinations. First, we

considered the problem ofjoint scheduling and rate controlunder the objective ofsum

throughputmaximization and thenproportional fairness. We introduced an optimal joint

scheduling and rate controlpolicy that assigns aprobability distributionto the set of

feasible rate control and scheduling decisions. In the caseof proportional fairness, we

restrictedthe set of feasible rate control and scheduling decisions toeither activation of

one transmitter at a time, in a pure Time Division Multiple Access (TDMA) manner or all

together. Under this restricted framework we obtained the optimal probability distribution

for the restricted set of actions so that the average rate of areceiver is proportionally fair.

The corresponding optimal policy for the special cases of unicast and broadcast traffic

follows from our analysis. These results were also published in [14] and [23].

Next, in Chapter 3 we consideredtime-varyingwireless networks and a broader
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class ofutility functionsthat are strictly increasing, continuously differentiable, and con-

cave functions of the average rate. These utility functionsinclude the utilities of total

throughput maximization and proportional fairness studied in Chapter 2. We considered

the problem of scheduling a set of multicast sources with theobjective to maximize the

total user utility. We assumed policies that do not accurately know the current channel

conditions but rather base their decisions on anestimateof the channel state. We obtained

anonlinealgorithm that yields theoptimal transmission rate among all policies with the

same estimate of the current channel state. In the case wheremore than one rate alloca-

tions is optimal, the optimal algorithm selects the one thatminimizes the power sum. We

proved optimality of the proposed algorithm through the theory of stochastic approxima-

tion. A related work corresponding to the case of perfect channel estimation appeared in

[15].

Unlike Chapters 2 - 3 where saturated networks were considered, in Chapter 4 we

assumed that the network sources have a finite amount of data traffic to send to their

corresponding destinations. We considered unicast traffic. We studied the problem of

joint scheduling and rate controlin wireless networks with the objective to minimize the

required time for all network sources to deliver the traffic demands to their respective

destinations. We considered bothstaticandtime-varyingnetworks. In the static network

case we mapped the minimum-length scheduling problem into finding ashortest pathon

a Directed Acyclic Graph (DAG). In the time-varying networkcase the corresponding

problem was mapped to astochastic shortest pathand an optimal solution was provided

through stochastic control methods. The case of time-invariant channels was published in

[8].
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Unlike the saturated queue assumption of previous chapters, traffic in reality is

bursty and guaranteeing stability of the network is of paramount importance. Thus, in

Chapter 5 we turned our focus on the objective ofstable throughputmaximization for a

set of commodities ofanycasttraffic for multi-hopwireless networks. Each commodity

is assigned a weight of preference. We introduced ajoint scheduling and routingpolicy,

having access to only anestimateof the channel state. We incorporated the physical

layer into the scheduling and routing decisions through theSINR interference model.

We assumed that the SINR thresholds that determine the outcome of a transmission are

fixed, i.e., the transmission rate isconstantand each packet is assumed to be comprised

of a fixed number of bits. We characterized the stable throughput region of the network.

Moreover, we showed that the introduced policy is optimal with respect to maximizing the

stable throughput region of the network, irrespective of the weight assignment, within a

broad class of stationary, non-stationary, and anticipative policies. These results appeared

in [34], [37], [38], and [39].

6.2 Future Work

In this thesis, we studied the scheduling problem under various contexts and as-

sumptions. However, there are still a lot of questions on this subject awaiting to be an-

swered and thus, we conclude this thesis with a few potentialfuture directions.

1. Distributed Solutions

One of the basic assumptions in this thesis was the existenceof a centralized sched-

uler. This assumption allowed us to obtain optimal results.However, in practice the
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existence of such a controller may be infeasible. By using our centralized results as

benchmarks, it will be of great interest to investigate alternative solutions that are

distributed.

2. Modeling the Interference

In this thesis we employed the SINR model to account for the interference. This

model albeit tractable and widely used, it is approximate and assumes that the in-

terference behaves as Additive White Gaussian Noise. Giventhe strong coupling

between the physical layer and the layers above it, it is natural that the network

performance can be improved by modeling the physical layer in a more accurate

fashion. It will be of great merit to obtain alternative models that describe the phys-

ical layer properties more appropriately.

3. Dealing with Non-Stationary and Non-Ergodic Behaviors

Commonly employed performance measures in communication networks are those

of utility maximization, stability, and delay. However, aswe mentioned previously,

these performance measures depend critically on the assumption that the wireless

channel process is stationary and ergodic. In reality, fading effects are rather un-

predictable, network nodes have finite energy reservoirs, and may move in arbitrary

patterns. Thus, it is likely to observe a non-ergodic and non-stationary behavior. It

will be of interest to study and explore new measures that canbe meaningful in de-

scribing performance of wireless systems under conditionsof non-stationarityand

non-ergodicity.
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Appendix A

Rate Formulas

Assume that a transmission is successful if the received SINR exceeds a thresh-

old γ, i.e., SINR≥ γ. By successful transmission we mean that for a given modulation

scheme the probability that a bit is received erroneously isbelow a target probability of bit

errorPb. It follows from the principles of wireless communications[28] that the thresh-

old valueγ is a decreasing function of the probability of bit error for agiven modulation.

Moreover, the thresholdγ depends on thetransmission rate. In this section, we will ex-

emplify this by relating the maximum transmission rate for successful communication to

the SINR thresholdγ for the specific case ofM-ary Phase Shift Keying (PSK) modula-

tion with symbol rate control where the target probability of bit error is fixed. However,

rate expressions under different modulation schemes can beobtained in a similar fashion.

Let W be the available bandwidth of the communication. Let alsoTs be the symbol

duration,Rs = 1
Ts

be the symbol rate andM be the number of distinct symbols in the

alphabet. From [28], for general pulses the symbol rate mustsatisfyRs = W/k for some

constantk. Here we assume thatk = 1, which results in a maximum symbol rate value

Rmax
s equal toRmax

s = W . UnderM-ary PSK modulation [28] the relation between the

SINR thresholdγ and the symbol rateRs so that the target probability of bit error isPb is

given by
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γ =





Rs

2
[Q−1(Pb)]

2
, M = 2

2Rs [Q−1(Pb)]
2
, M = 4

Rs

(
1

2 sin2(π/M)

) [
Q−1

(
Pb log(M)

2

)]2
, M > 4,

whereQ(x) is defined to be the probability that a Gaussian random variable with zero

mean and unit variance exceeds the valuex. Hence, the maximum bit rate underM-ary

PSK modulation for any fixedM is given by

RM, PSK(γ) =





min
{

2 γ

[Q−1(Pb)]
2 , Rmax

s

}
, M = 2

2 min
{

γ

2[Q−1(Pb)]
2 , Rmax

s

}
, M = 4

log(M) min

{
2 sin2(π/M)γ

h

Q−1
“

Pb log(M)

2

”i2 , Rmax
s

}
, M > 4.

Moreover, by further optimizing the distinct number of symbols M the maximum

bit rate is given by

RPSK(γ) = max
M=2,4,...

RM, PSK(γ). (A.1)

In Fig. A.1 we illustrate the maximum achievable rate underM-ary PSK modula-

tion (M = 2, 4, 8, 16, 32, 64) as a function of the SINR thresholdγ when the bandwidth

equals1 Hz (spectral efficiency) and the target probability of bit error isPb = 10−6. The

corresponding rate when the symbol rate and the number of distinct symbols,M , are

jointly controlled is also shown in the figure by the dashed line.

We observe that the rate function is a piecewise increasing function of the SINR

threshold, where each increasing segment corresponds to a different value ofM . Further,
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Figure A.1: The maximum achievable rate (bits/sec) as a function of the SINR threshold

γ (dB) for M-ary PSK modulation, i.e.,2-PSK, 4-PSK, 8-PSK, 16-PSK, 32-PSK and

64-PSK. (W = 1 Hz, Pb = 10−6)
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from Fig. A.1 we observe that the maximum transmission rate over allM depicted by the

dashed line is anincreasingfunction of the SINR threshold.

In the literature, the single-user Shannon formula is commonly used to tieγ with

the corresponding maximum achievable rate. The Shannon rate RSh(γ) that corresponds

to a given threshold is given by the following expression

RSh(γ) = W log2 (1 + γ) . (A.2)

This formula is an upper bound on the achievable rate that canbe achieved asymptotically

through coding. It further assumes that the probability of bit error of the communication

approaches zero. Although both expressions are approximate for multi-user systems,

they provide useful insights on how the physical layer channel conditions relate to the

maximum achievable rate.
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