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Methods for theoretically evaluating lattice dynamics, anharmonic effects and re-
lated optical properties from first-principles are designed and implemented. Applications of
density-functional theory and the pseudopotential approximation are adapted, via the Born-
Oppenheimer approximation, the Hellmann-Feynman force theorem, and wave-commensurate
supercells, to a direct calculation of the Born-von Karman force constants. With a sym-
metry analysis and interpolation of the Born-von Karman force constants, the complete
phonon spectra are obtained for the cubic systems Ar, Si, Ge, and diamond, and for the
stacked hexagonal system, graphite. The phonon spectra for the polar materials GaAs
and GaP, in which the degeneracy between longitudinal and transverse optical modes is
lifted, are also calculated. The splitting is a consequence of the macroscopic field associated
with long-range Coulombic interactions and longitudinal displacements. Diagrammatically-
derived expressions for the finite lifetime of the Raman mode arising from phonon-phonon
interactions are calculated for Si, Ge, and diamond from first principles, and agree with
experiment to within uncertainty. The infrared absorption spectra of GaAs and GaP are
calculated from first principles through the phonon anharmonic self-energy (phonon-phonon
interaction) and the Born effective charges (photon-phonon interaction). Several aspects of
the spectra are in detailed agreement with the experimental spectra, including: the strong

temperature dependence of the far-infrared absorption due to the onset of difference pro-



cesses; the linewidth and asymmetric lineshape of the reststrahlen; the spectral structure of
the absorption by two-phonon modes; and overall oscillator strengths. The theory allows for
the identification of narrow spectral transmission bands with an ionic mass mismatch in the
case of GaP. Analytic and complete calculations are performed for the ion-ion displacement
correlation function in solid Ar, and agree well. The correlations are evaluated for arbitrary
lattice vector and Cartesian displacement directions, and their pressure dependence leads

to the conjecture that anharmonic effects are less prominent at higher pressures.
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Chapter 1

Introduction

Many of the finest minds in modern physics have taken interest in the optical implications
of phonon-phonon interactions in insulators. The connection between such interactions
and the spectrally broad background absorption, which is observed to accompany the sharp
harmonic resonances, was pointed out by Pauli [1], in a study of a linear chain. Subsequently,
Born and Blackman showed that anharmonic interactions lead to secondary features in a
classical theory [2]. A quantum-mechanical treatment was developed by Barnes, Brattain
and Seitz [3], which emphasized secondary features but not damping, and a time-dependent
perturbative formalism was developed by Born and Huang [4].

About the time Green’s functions formalisms were being developed for the theory of
anharmonic effects on neutron scattering from crystals [5], it was recognized that the Born-
Huang theory was incomplete. The improved anharmonic dielectric formalism discussed by
Maradudin and Wallis, Cowley, and Vinogradov [6] is that implemented in this work.

Although the infrared dielectric theory had been worked out, not until recently could
phonon-photon and phonon-phonon interactions be calculated. The essential developments
were very successful first-principles calculations of Born effective charges [7] and phonon-
phonon scattering rates [8]. Prior to these theoretical developments, the realistic modeling
of quantities such as a phonon lifetime was elusive, even with parameters taken from exper-
iment [9)].

The far-infrared frequency regime and the response of semiconductors are of consid-
erable technological interest. The ability, as demonstrated in this work, to calculate from
first-principles detailed frequency and temperature dependence of the dielectric response

may prove to be a very useful application of modern theory.



Chapter 2 of this thesis provides an overview of the general theory and critical ap-
proximations which allow for the evaluation of ground-state energies, charge distributions,
and ionic forces in crystals. Chapter 3 details the extension of these methods to the calcula-
tion of phonon dispersion and phonon spectra. Chapter 4 motivates the physics associated
with macroscopic fields, in particular the relevance of macroscopic fields to dispersion and
infrared dielectric response. It is seen that the Lyddane-Sachs-Teller relation expresses
the close physical connection between phonon oscillator strength and the lifted degeneracy
between longitudinal and transverse zero-momentum modes in polar crystals. Chapter 5
reports the formalism and details of the Raman mode lifetimes in diamond-type systems.
Chapter 6 combines the theoretical approaches of Chapter 4 and Chapter 5 to present de-
tailed infrared spectra, and temperature dependence, of GaAs and GaP. Portions of the
work in Chapter 6 are to be published in Physical Review B this year.

In Chapter 7, analytic expressions for zero-temperature ionic-displacement correla-
tions are derived, evaluated, and compared to non-analytic, numerical results. The pressure
dependence of the correlations leads to the empirically untested, and perhaps counterin-
tuitive, conjecture that the anharmonic character of a crystal is less prominent at higher
pressures. Portionns of this work have been published in Physical Review B 69, 174104
(2004).

Beyond the fundamental nature of the topics discussed in this thesis, their relevance
to other areas of research are discussed in Chapter 8. Refinements and extensions of the

calculations reported here are also suggested.



Chapter 2
Total Energy and Tonic Forces in Crystals

2.1 The Adiabatic Approximation and Reduction of the Many-body Problem

For the purposes of lattice dynamics, the task of simultaneously determining the states of
a large number of interacting particles, both nuclei and electrons, can be conceptually and
computationally simplified with invocation of the Born-Oppenheimer approximation, where
for any given nuclear configuration, the electronic system is assumed to be in the ground
state.

Essentially, the Born-Oppenheimer approximation replaces the full Hamiltonian of

the solid, which includes kinetic energy of electrons, nuclei, and the interaction potentials,

H= Tnuc + Tel + Unucfnuc + Uelfel + Unucfel; (21)

with a simplified Hamiltonian to which the nuclei are subject:

Hg 0 =Thu+UB o- (22)

In this form, the Hamiltonian is a function only of the nuclear coordinates and their canonical
momenta. Thus the Born-Oppenheimer approximation subsumes all terms which depend
on electronic coordinates and the internuclear interaction into an effective nuclear potential.

The fundamental justification for the Born-Oppenheimer approximation lies in the
large ratio of nuclear to electronic masses. This implies that, with respect to time and
length scales appropriate to the nuclear motion, the electrons return to equilibrium rapidly
after a small nuclear displacement, so that the electronic system is capable of adiabatically

following the nuclear motion.



Below, each of the terms which contribute to the Born-Oppenheimer potential-within

the various further approximations to be made—are discussed.

2.2 Evaluating the Electronic Ground State

2.2.1 Density-Functional Theory

Currently realistic properties of materials are obtainable from first principles by application
of the Hohenberg-Kohn theorem [10]. This theorem states that the ground-state energy can
be expressed as a functional of, and can be ascertained by minimization with respect to, the
electron probability density. The minimization is performed with nuclear coordinates which
are assumed static, and enter the calculation classically. The functional, therefore, does not
explicitly include terms which correspond to the nuclear kinetic energy and the internuclear
potential in Eq. 2.1. In atomic units—where the electronic charge, the electronic mass and

Bohr radius are related by e = m, = ag = 1-the functional is then written:

E,[n] = T,[n] + / dPrv(r) / dPry / dPr |r17r2)+EXC[n]. (2.3)

r— 2|
In this expression, the electron-electron interaction is expressed as a sum of Hartree
and exchange-correlation terms, and V(r) is external to the electronic system, its source in
this case being considered as the presence of nuclei. The electronic density, n(r), is related

to a set of Kohn-Sham electron orbitals [11]:

n(r) = Zi|¢s(r). (2.4)

Minimization of the functional above, while conserving the number of electrons, is

equivalent to solving the self-consistent set of equations:

(7 +vatw) + [ar 2EL o B2xlD) ) = g, (25)

—1|
where the first term is the single-particle kinetic-energy operator. There are no known

means to determine the exchange-correlation functional exactly. In this work, the form is



approximated as a local-density functional:
Exc[n] = /d3rn(r)exc(n(r)), (2.6)

where exc(n) is the exchange-correlation energy per electron in a uniform gas with density
n. The exchange contribution to ex¢ is that which arises from a Hartree-Fock calculation,
and the correlation contribution is the remaining energy which can be obtained through
the optimization of more complicated many-body states. The correlation energy has been

parametrized for a range of electronic densities [12].

2.2.2 The Pseudopotential Approximation

Two considerations relevant to many crystals motivate the pseudopotential approximation.
First, when electronic core states are relatively inert with respect to cohesive, bonding,
and vibrational phenomena, an all-electron calculation can be limited to the case of isolated
atoms, with modifications of the core states arising from the crystal field presumed negligible.
Second, in many materials, particularly where valence states are s or p level and the potential
they experience in the interstitial region is weak, the nearly-free electron approximation is
useful and it is advantageous to work with a plane-wave basis.

In such situations, a pseudo Schrédinger equation can be written, where the valence
states are replaced by pseudo states with correct eigenvalues, and the core-valence and
nuclear-valence interactions are replaced by a pseudopotential. Not only is it then unneces-
sary to treat the core states within the solid, but serious computational problems in treating
the effects of the strong potential near the nuclei can be avoided. This can be appreciated
by recognizing that when using a plane-wave basis, for each electronic Bloch state, the
Fourier components of the periodic ionic potential, corresponding to the reciprocal-lattice
vectors, couple the plane waves with which it is expanded. This leads to a secular equation

whose solution is equivalent to that of a matrix of size equal to the number of plane waves



retained. An estimation of how quickly the valence states must oscillate in order to attain
orthogonality to the core state, and the magnitude of reciprocal lattice vectors which must
enter the expansion as a consequence, quickly leads to the necessity of solving very large
matrices.

On the other hand, by using psedopotentials which generate valence states reproduc-
ing the actual orbitals outside the core region, possessing no radial nodes within it, and
being well-matched at the boundary, the problem can be greatly simplified. In practice,
methods are sought which result in the transferability of the pseudopotentials. This means
that once a pseudopotential is calculated with respect to a reference valence configuration,
the pseudo states it generates for other valence configurations meet the above criteria and
have the correct scattering properties for a range of energies. Norm-conserving pseudopoten-
tials [13] have been shown to meet these requirements. To do so, they generally need to act
on valence angular-momentum components individually, and thus include nonlocal angular-
momentum-dependent projectors as well as a local term. With these pseudopotentials, the
density-functional procedure above is then carried out for the pseudized system. Below, the
ground state is understood to be calculated accordingly. In this thesis, pseudopotentials
were generated using Vanderbilt’s cutoff functions [14] and separable Kleinman-Bylander

non-local projectors [15] as modified in Ref. [16].

2.3 The Total Energy

Returning the nuclear coordinates to the problem, within the framework of density-functional
theory and the pseudopotential approximation, the Born-Oppenheimer potential in Eq. 2.2

can be rewritten as

U 0=T+Upucet + U +Uxc + Unucfnuca ) (27)



=20 [ des o) 09)

Unuc—et = Zfz/d3r¢* r)o-(r — R —s;);(r), (2.9)

iTR

and

2o
e = — SRoOrr1), 2.1
Unuc nuc ZT |R +s, —8, | ( (SRO(S ) ( 0)

where R is one of N Bravais lattice sites in the crystal, basis atoms are identified with the
indices 7 and 7', and the corresponding basis vectors are s, and s,.. The third and fourth
terms on the right of Eq. 2.7 are, respectively, the Hartree and exchange-correlation terms
from Eq. 2.3, and 0, (r — R — s;) is a pseudopotential. For clarity, the standard non-local
part of the pseudopotential is suppressed here. Fermi occupation factors are indicated with

fi in the above expressions.

2.4 The Hellmann-Feynman Force Theorem

With the Hellmann-Feynman force theorem [17], forces on ions are seen to be a meaningful
quantum-mechanical concept. Because the electronic orbitals are determined variationally,
and their contribution to the total energy is stationary for fixed ionic positions, evaluation of
the forces requires only terms in the total energy with explicit dependence on ion coordinates.
If the Cartesian component, a, of an ionic position is given by 7,4 (R) = Rq + $74 + Zro(R),
with the final term representing the displacement from equilibrium, it follows that the force

on the ion is [18]

6Unuc—el dUnuc—nuc

FreR) == a®) ™ drra(®)

(2.11)

The angular-momentum-independent term in OUpyc—er /07 depends only on the charge
density and local part of the pseudopotential, while projection operators between Kohn-

Sham orbitals arise because of the angular-momentum-dependent term.



Chapter 3
Phonon Dispersion Calculations: Si, Ge, diamond, and graphite.

3.1 Force Constants and the Dynamical Matrix

The inter-atomic force constants are defined by

o*V

C T’ab(R) = 6$Ta(RI)6$TIb(R+ Rl)7

T

(3.1)

where the simpler notation V' = Up_¢ is adopted for the Born-Oppenheimer energy surface,
R and R/ are lattice vectors, and z,,(R) is the displacement from equilibrium of basis ion
T at lattice vector R along Cartesian direction a. The Fourier transformed, or Born-von

Karman, force constants are
Ck) = ZRC(R)e“"R. (3.2)

The above transformation manifests the equivalence among lattice sites which must be
apparent in the dynamics of a system, which is symmetric with respect to lattice-vector
translation.

The ionic masses, {m- }, relate the Born-von Karman force constants to the dynamical
matrix:

D,tap(k) = ety (). (3.3)

With n, ions in the basis, the 3Nn, degrees of freedom of the crystal are spanned by the
3Nn, vibrational modes which diagonalize the dynamical matrix, with eigenvalues given
by the mode frequencies squared, at N wave vectors. In the harmonic approximation, the
modes are noninteracting oscillators. The independent oscillators then form the Fock space
with which an arbitrary state of the crystal can be conveniently expressed. The quanta

associated with such oscillators are phonons.



3.2 Calculating the Dynamical Matrix

The method described here proceeds in two steps: first, a set of high-symmetry wave vec-
tors {k} is chosen, and the corresponding Born-von Karman force constants, {C(k)} are
computed; and second, the counterpart inter-atomic force matrices are extracted through a
least-squares fit, which minimizes the difference between the two sides of Eq. 3.2. Details of
this procedure are provided in the Appendix. A fit is performed, rather than the familiar
Fourier transform, to conveniently accommodate an irregular wave-vector grid while abiding
by crystal symmetry. With the present treatment there is freedom to select the wave-vector
grid, provided that the corresponding periodicities are commensurate with carefully chosen
supercells.

The fit is performed subject to Eq. 3.2, together with the acoustic sum rule. Once
the inter-atomic force constants are known, Eq. 3.2 determines the Born-von Karman force

constants and the dynamical matrix at any wave vector within the Brillouin zone.

3.2.1 Sampling the Brillouin Zone

The periodic ionic displacements entering a frozen-phonon calculation are constructed with
supercells, which can be larger than the primitive cell. In particular, cells are constructed

such that ionic positions are given by
Tra(R) = Ry + 874 + dra cos(k-R). (3.4)

Above, the displacement from equilibrium, z,,(R) = d,, cos(k-R), is written to represent
a standing wave of wave vector k. As an illustration, considering constructions four times
the size of the primitive cell or smaller, the face-centered cubic lattice can be generated by
supercells corresponding to inequivalent wave vectors along the following Cartesian direc-
tions: (1,0,0), (1,1,1), (1,1,0), (2,1,0) and (3, 3,1). Lower-symmetry wave-vectors can be

represented with larger supercells. The Hellmann-Feynman force is computed as described



in the previous chapter.

The harmonic approximation implies that the forces and force constants are related

'

FTa(R ) = _ZR/TIbCTTIab(R, - R”)xT,b(R ) (3'5)

= Crr (R ),y cos(k(R” + R)),

where R’ is shifted, and the ionic displacements from equilibrium are substituted from
Eq. 3.4. If d_, is nonzero for only a single ion 7 and direction b, and is varied over two
successive electronic calculations, the following demonstrates that the finite difference in
Hellmann-Feynman forces can be related directly to the dynamical matrix. Starting with
aF " 7
52 . ZCTT »R)cos(k-(R" +R)), (3.6)
and using the basic identity

cos(a + b) = cos(a) cos(b) — sin(a) sin(b)

and Eq. 3.2, we obtain

] . OF,o(R") OF,,(-R")
Re (€, 4 (k)) = 2cos(k-R") < od.r, - ad,1, 0
) ~ 1 OFo(R") 0F,(-R’)
Im (Cr-rlab(k)) - 2511’1(1( . R”) ( 6d7_'b B 8d7"b -

The lattice vector R is arbitrary, but chosen within the supercell such that the denomi-
nator is nonzero. In the case that k is along certain high-symmetry directions and is half
of a reciprocal-lattice vector, k- R’ is a multiple of 7 for all R”. At these points the con-
dition C(k) = C(—k) is valid, and by Eq. 3.2, the equality C(k) = (C(—k))* follows,
demonstrating that the reciprocal-space matrix must be purely real at any such point.
The practical result of Eq. 3.7 is that an entire row of the reciprocal-space matrix
is known from two calculations, each equivalent to a supercell calculation of total energy.

Typically, knowledge of the Born-von Karman force constants at two or three wave vectors

10



along each high-symmetry direction is sufficient for a good phonon dispersion throughout the
BZ. The sampled matrices, which are calculated directly with a calculation of the electronic
ground state, incorporate interactions between ions which are not local to the supercell, by
virtue of its wave commensurability. However the interpolated matrices, to be discussed
below, are evaluated by introducing real-space cutoffs. While the standard approximations
to the electronic ground state are present in the calculated dynamical matrices, through
construction of supercells representing standing waves mapped to the BZ point considered,
Eq. 3.7 formally accounts for all the forces. This characteristic of the scheme distinguishes
it from the typical frozen-phonon techniques found in the literature.

In order to carry out the interpolation of the dynamical matrix, a discrete Fourier
transform on the complete set of vectors within a parallelopiped box may appear tempt-
ing. If one wishes to respect the symmetry of the crystal, however, this tactic will not
work. Generally, the set of vectors spanned by such a box will include some vectors within
a symmetry-related subset, and not others. If the set is inclusive enough, the artificial
asymmetry introduced may be negligible, because C(R) is expected to diminish reasonably
quickly with R, and the set can include all members of any subset whose components have
significant magnitude.

Rather than performing a Fourier transform, by overdetermining the inter-atomic
force constants used in Eq. 3.2 and then performing a least-squares fit, the crystal symmetry
is preserved here, and no nuisance is posed by the choice of wave-vector sampling. The
following section details how this procedure is implemented. Key features of the formulation
are that all symmetries of the crystal are respected, the symmetries are exploited to minimize
the number of parameters to be fit, and frequencies of the acoustic phonons are guaranteed
to go to zero in the limit of small wave vector.

The next section assumes that the real-space matrices are short-ranged, and do not

include the long-range Coulombic, ion-ion interactions. As a result, the treatment, without

11



being supplemented, can be applied only to nonpolar crystals, such as Si. The subsequent
chapter extracts the contributions from the Coulombic interactions and extends the formal-

ism to polar crystals.

3.2.2 Interpolation

The number of independent force constants can be reduced with application of the operations
comprising the crystal’s symmetry group. The set of such operations are indicated by U,
and may include a non-zero glide, g,.

We may indicate the paired basis ions 7 and 7/, at relative lattice vector separation

R, with the notation: (R, 7,7"). If the conditions,
Uns‘r =S, +8n + R(Un; ST);

U,s; =S, +gn + R(Un; STI)J

and

R' = U,R + R(U,,s.) — R(Up,s,), (3.8)

are met, the ion pairs (R, 7,7') and (R', 0, 0') are symmetry equivalent. The transformation
of the force constants can be conveniently discussed by decomposing them into 3 x 3 elements,
C.,(R), corresponding to the force constants between the ion pairs indicated above. The

transformations are,
(Unel)? - Coor(R)) - (Unep) = el - C.i(R) - . (3.9)

The corresponding Born-von Karman transformations are,

Coor (Unk) = exp(ik - (s, — s — Ut (s, — 84)))U;1Crr (K)U,.  (3.10)

n
The force constants must also satisfy the condition
cf_(-R)=C,.(R). (3.11)

12



With the above relations, the number of independent force constants is reduced, and it can
be deduced that many are zero.

With the reduced set of non-zero force constants, the select dynamical matrices calcu-
lated via the Hellmann-Feynman forces, and Eq. 3.3, a least-squares fit may be performed to
extract the optimal C,,/(R) for all the ion pairs subject to some cutoff: || R+s; —s+ ||< 7.
To enforce the acoustic sum rule, which guarantees acoustic phonon frequencies approach

zero at small wave vector, the fit is constrained so that it meets the condition

Z[CTT’ (R)]ap =0, (3.12)
Rt

where the sum is over all the ion pairs included within the cutoff. The above condition is
equivalent to translation invariance of the crystal, and can be motivated by analogy with
the form of a two-body harmonic force matrix, which depends on the relative coordinate,

and is independent of the center-of-mass coordinate.

3.3 Computational Details

Dispersion curves and phonon densities of states for diamond, Ge, Si and graphite are pre-
sented in the figures. Below are listed which phonon k points are used in each fit, and which
real-space triplet matrices are included. These particular selections are somewhat arbitrary,
so long as the BZ is adequately sampled and the triplet matrices are overdetermined. For
the case of graphite, extra weight is given to the T' point in the fit to ensure that at very
small k the very small eigenvalues of the dynamical matrix, w?, do not go negative.

The symmetries are determined from lattice structure: for Si, Ge, and diamond, the

primitive lattice vectors are
a a a
a; = 5(0,1,1), ag = 5(1,0,1), az = 5(1,1,0).

A lattice constant of 10.05 ag is employed for Si, 10.34 a¢ for Ge, and 6.68 a¢ for diamond

(all reported lattice constants correspond to the values for the theoretically relaxed crystals).

13



For the diamond-type crystals, the two basis sites are symmetry-mapped. The basis vectors

for each crystal can be written,

1 1
S;, = ‘g(al +ay +a3), s, = g(al +ay +a3).

The lattice vectors of graphite are:

a; :a<\/§ 1 0) ,a2:a<ﬁ 1 0) ,az = ¢(0,0,1),

272 27 2
the in-plane lattice constant is 4.88 ag, and the lattice parameters take the ratio, ¢/a = 2.72.

The basis for graphite is

1
Sr = 483, Sm = — 83, Sp, = —3 (a; +as) + 1% S =3 (a1 +a2) — 73

For diamond, the k points included in the fit are T, X, L, K, 2X, 2L, X,
1L, 3K, W, using cubic convention, and the lower-symmetry point (27/a)(1/4,3/4,—3/4).
The prototypical triplets are the basis pairs (r;71) and (1;72) for R = (0,0,0); (r171) and
(r172) for R = —ay; (mi72) for R = a; —ag; (1i71) and (mi72) for R = a3 —as, —ay; (1171)
and (ry7) for R = 2a3 — ay — 2a;; (ni72) for R = 2a; —ay —ag; and (7y71) for R = —2a;.
All triplets symmetry-related to those within the prototypical set enter the computation, so
that altogether 246 triplets are accounted.

Additional interactions and phonons are included in the studies of Si and Ge. In these
systems, wave-vector sampling is extended to the lower-symmetry points: (27/a)(3/5,1,—7/5)
and (27/a)(-3/5,1,-1/5). For Ge, triplet interactions (7171) for R = a3 — a; — 2a; and
those related are considered along with the set listed for diamond, for a total of 294 triplets.
For Si, the additional interactions related to the triplet (7172) for R = a; + a» are retained,
for a total of 318 triplets.

The graphite calculation includes the phonons at I', K, M, A, W, %M, %M, and

3K. The graphite triplets are: the pairs (1,71), (T172), (1173), (1174), (1373), and (7374) for
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R = (0,0,0); the pairs (7,71), (1172), (1173), (1373), and (7374) for R = —ay; the pairs (71 73)
and (1a74) for R = a; — a; and the pairs (ry71), and (1373), for R = ap — 2a;.

Different parameter sets were employed in the Si and Ge calculations as a check on
the robustness of the results with respect to these choices. With the wave-commensurate
method, there is some inherent limitation to wave-vector sampling, which in turn limits the
number of inter-atomic force constants which can be retained. Ultimately, the sufficient
nature of the paramter sets adopted in these calculations is evaluated by a comparison of
the present results with experimental values, described above. Below, the fitting procedure’s
contribution to the uncertainty is analyzed. The uncertainties associated with parameter
choices is closely related to those of the fitting procedure. For instance, with ideal sampling
and inter-atomic force constant inclusion, the fitting procedure would not be a significant

source of error.

3.4  Uncertainties and Comparison with Experiment

The phonon frequencies calculated are convergent to 1 % or better with respect to the com-
putational parameters. These include the number of electronic states within the Brillioun
zone sampled in evaluating the total energy and Hellmann-Feynman forces, and the number
of plane waves retained in the expansion. For the Brillioun zone sampling, a 4x4x4 grid is
sufficient, and for the plane waves, a cutoff corresponding to an electronic kinetic energy of
16 Ry is sufficient for Si and Ge, and 49 Ry for the carbon systems, diamond and graphite.
The convergence of the calculations with respect to these parameters was checked by in-
creasing sampling and plane-wave cutoff. The sensitivity was seen to be negligible compared
to the below-discussed sources of error and uncertainty.

The two most evident sources of error and uncertainty in the quantities reported here
are those relating to the theoretical equilibrium volumes at which the lattice dynamical

calculations are performed, and the fitting procedure. The lattice constant calculated is 2 %
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lower than the measured value for Si, 1 % lower for diamond and 3 % lower for Ge [19, 20].
When phonon frequencies are calculated at the T' and X points with the experimental
volume, the phonon frequencies are reduced by more than 5 % for these materials. The
equilibrium volumes for the diamond-type materials are determined by performing total-
energy calculations for a range of volumes, and then fitting the results to the Murnaghan
equation of state [21]. For graphite, the equilibrium volume is determined through mini-
mization of the total energy with a variation over two parameters: the volume and the ratio,
c/a.

A comparison of the mode frequencies derived from the electronic calculations, and
those returned by the interpolation, reveals another significant source of error. While the
difference for the majority of modes is less than 5 %, for a few of the acoustic modes
the difference is nearly 15 %. The largest difference between calculated and interpolated
frequency at any mode is approximately 6 % of the TO(T') mode frequency.

For diamond, when compared with experiment, the theoretical phonon frequency is
1 % too large for the mode TO(T'), 6 % too large for L(X), 6 % too small for TO(X), and
4 % too small for TA(X) [22]. For Si, the theoretical frequency is 3 % too large for the
mode TO(T), 9 % too small for L(X), 7 % too large for TO(X), and 34 % too large for
T A(X)[23]. For Ge, the theoretical frequencies agree with experiment to 1 % or better for
all above modes except for the mode T A(X), for which the theoretical value is 7 % too
large [23, 24].

Theoretical elastic constants for Ge are c;; = 116 GPa and c44 = 92.6 GPa, approx-
imately 10 % smaller and 45 % higher than the measured values, respectively [25]. For
Si, the values are ¢;; = 190 GPa and ¢44 = 93.2 GPa, each about 20 % larger than the
experimentally determined values [25]. For diamond, the values are ¢;; = 1230 GPa and
csa = 507 GPa, approximately 15 % too large and 15 % too small, respectively [20]. Al-

though c¢15 can be evaluated through an analysis of the three independent speeds of sound
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along the k = (110) direction, the analysis was not performed in this work.

The calculated bond lengths for graphite are approximately 5 % larger than the
measured value, but the ratio agrees with the experimental ratio to better than 1 % [26].
The three largest-frequency modes calculated at T' are, in order of energy, 3 % larger, 1 %
smaller, and 20 % smaller than experiment [27].

Inspection of the phonon dispersions and state densities reveals the expected similar-
ities between the results for Si and Ge, where the inter-atomic forces are very similar. In
contrast, in diamond, the transverse acoustic mode energies—relative to the other branches—
are greater than in the above materials.

The greatest disparity from experimental dispersion is for the low-lying transverse
acoustic modes. The numerical difficulty associated with the flattening of the transverse
acoustic branch as the zone boundary is approached may contribute to this difficulty. A
greater density of wave-vector sampling may improve these results.

As these results represent the calculation of a state continuum, different approxi-
mations have varying impacts on the different states. The acceptability of any calculation

depends on the particular quantity of interest.
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Figure 3.1: Calculated phonon dispersion in diamond.
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Figure 3.2: Calculated phonon density of states in diamond.
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Figure 3.3: Calculated phonon dispersion in Ge.
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Figure 3.4: Calculated phonon density of states in Ge.
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Figure 3.5: Calculated phonon dispersion in Si.
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Figure 3.6: Calculated phonon density of states in Si.
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Figure 3.7: Calculated phonon dispersion in graphite.
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Chapter 4
Polar Crystals: GaAs and GaP

4.1 Macroscopic Fields: Phonon Dispersion and Infrared Response

All of the discussion of the preceding chapter assumes boundary conditions which are peri-
odic with respect to the volume of a primitive cell in the crystal. An immediately apparent
violation of this condition is the presence of a macroscopic electric field, whose average over
a primitive cell in the crystal is nonzero.

In fact, light quanta which are of similar energy to the phonons have wavelengths
much greater than a lattice constant, and so consideration of the infrared response requires
a theoretical account of macroscopic fields. Further, in crystals which do not obey an
inversion-symmetry invariance, long-wavelength phonons are accompanied by macroscopic
fields when the phonon polarizations are longitudinal. Thus, small-momentum longitudinal
and transverse modes are not degenerate. It may not be surprising, and will be shown below,
that the longitudinal-transverse energy difference is closely related to the infrared response.
This thesis studies these effects in the polar, type ITI-IV materials GaAs and GaP.

The Hamiltonian density for a polar crystal in the presence of an electric field, E,

can be written as [2§]
1 5 1
H= — (Wi +¢@)-E-P¥ 4 —¢ E-E. 4.1
Z/\QNQ(MAQA+Q,\) T gpte (4.1)
The normal coordinate and frequency, respectively, of a phonon with wave vector and branch
indexed by A are indicated by gy and wy. For the long-wave modes, the restoring frequencies
above correspond to those of transverse polarization. These frequencies are obtained from

an electronic calculation satisfying periodic boundary conditions over a unit cell. It will be

shown below that the physical frequencies must be modified when considering the longitu-
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dinal modes, because of coupling between the macroscopic lattice polarization and electric
field. P!et is the lattice contribution to the macroscopic polarization, and its dimensions
are dipole moment per unit volume. The unit cell volume is 2 and the number of Bravais
lattice sites is N. The electronic dielectric constant of the crystal, £, may be considered to
be a scalar for the materials studied here. Because the primary focus of this work is lattice
dynamics, the indices related to ionic motion will, for the moment, be retained.

The lattice contribution to the macroscopic polarization in Eq. 4.1 can be written as,

‘leat Q Z Z \/_Z”qu i (42)

In the above, m, is the mass of ion 7, the phonon normal coordinate index, v, runs strictly

over the zero-momentum phonons, and €”; is a component of the polarization of such a

Tj
phonon. Cartesian directions are indicated with the indices 7 and j. The charges are

expressed as the change in macroscopic polarization with respect to sublattice displacement:

dplat
i
6uTj )

77 =0 (4.3)

Subtleties in the interpretation and calculation of Z;; are discussed below.
Substituting Eq. 4.2 into Eq. 4.1 the following driven-oscillator solution for the phonon

normal coordinate equation of motion is obtained,

g (w) = Z( : iw2> Z”'i/;j;_f S (4.4)

T'i'j v

It follows that the total polarization is:

P =5 ¥ (52

v TTZ]]

i 17§
T M 47

)ZTZT,,e Gy Br (@) | e -1

so that the dielectric function is written [28§],

47 1 ZTZI 167_ €T' .
Eiil(w) = 61'1'1600 + ﬁ e (m) Z 4, (46)

T1'55" My Mg

which is a well-known result.
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In a zincblende crystal, the charge tensors, as well as the electronic dielectric function,

are proportional to the identity matrix and are expressed as
giir (W) = dire(w). (4.7

This allows Eq .4.6 to be written as,

e(w) =€ + AnZ” ( ! ) , (4.8)

2 _ .2
Qu \wpy —w

where p is the basis-ion reduced mass. This is the case considered below.
Maxwell’s equations require the condition V - D = 0 within a bulk dielectric. This,
combined with the above equations, implies

47 ZT.77 € ", .
k ) o - 2T CTLT E — 0, 4‘9
(E HY <Z vmome (w2 — w2))> (49)

vrT!

where the w, in the absence of the macroscopic fields are implied to be degenerate, and k
is the simultaneous wave vector of the electric field and lattice displacement field. Note, as
discussed above, the dielectric function in Eq. 4.9 is expressed as a scalar.

Plainly, transverse fields—such as the TO phonon, and coupled TO-phonon-photon
modes, or polaritons—will always satisfy Eq. 4.9. The physical frequencies of the long-wave,
longitudinal modes are derived by looking for solutions of Eq. 4.9 without requiring the

condition k - E = 0. Denoting such a frequency
W =Wwro, (4.10)

and combining Eq. 4.9 with Eq. 4.6, the Lyddane-Sachs-Teller [29] relation is obtained. The
result is that the longitudinal frequency is related to the frequency appropriate to periodic
boundary conditions by

0 _ “io (4.11)

=
Eoo Wro

and we identify the latter with transverse displacements.
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4.2 The Modern Theory of Polarization and Calculation of the Born Effective

Charges

The modern theory of polarization takes up the interpretation and calculation of a bulk
solid’s electrical response to some long-wave change in configuration, such as a strain. Clas-
sical approaches, such as the Clausius-Mossotti model, are insufficient in the presence of
delocalized charge distributions. The ambiguities involved with evaluating dipoles in infi-
nite systems with covalency may be anticipated, and it has been shown that Wannier trans-
formations yield nonunique results depending on the nonobservable phases of the Bloch
functions.

To overcome these difficulties, the modern theory of polarization disregards the polar-
ization itself as an observable, and instead retains its change with respect to some adiabatic
evolution. By shifting from the polarization to its change, appropriate expressions can be ob-
tained which involve localized and neutral charge distributions, as in the Clausius-Mossotti

model. The change is written [7]:
AP = AP, + % / dCrr(laV (x)2 — a0 (r)[2). (4.12)

The electron Bloch bands are indexed by n above, the integral is over the primitive cell, and

the Wannier functions are calculated from the Bloch Kohn-Sham orbitals [11]:

a{d(r) = (;/7?)3 / d*q¢)(a,r). (4.13)

The superscript represents a particular state along the adiabatic evolution. So long as there
is a band gap, the above has been shown to be invariant with respect to the most general
unitary transformations on the occupied states. For the Born effective charges, the adiabatic
transformation appearing above is a sublattice displacement.

The electronic contribution to the component of polarization along a reciprocal lattice
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vector, P - G is calculated with

PG = _S%/dz’km*(kg, (4.14)

where the integral is performed over a surface in the parallelopiped Brillouin zone, normal
to G. The dimensionless phase, ¢*(k, ), is calculated through a line integral. The integral

is taken through the point k , parallel to G, and in the continuous limit is written as,

P00) =~ 5 [l (4.15)
Above, the periodic part of the Bloch orbitals of band n and wave vector k is indicated
by ug,, and the integral is taken from 0 to |G|. As discussed elsewhere, evaluation of the
above expressions require additional care, because of ambiguities associated with the phases

of ud,, and with band degeneracies and band crossing.

4.3 Phonon Dispersion and Macroscopic Fields

As mentioned, polar materials, in which distortions interior to the primitive cell can gener-
ate electric dipoles, require additional consideration for the calculation of phonon spectra.
This is because the periodicity built into the electronic calculations will not accomodate a
non-zero dipole over the supercell, and hence cannot capture any physics associated with
macroscopic electric polarizations or fields. As we have seen, the latter are connected to
the LO modes, and the electronic calculations are relevant only to the acoustic and TO
branches.

The situation is further complicated by the fact that it is only at the Brillouin-zone
center that the electronic calculations do not include all the interactions of lattice and electric
field. So the fitting procedure must reintroduce these interactions at small-momentum while
leaving the dynamical matrices at other points unaffected.

To do this the Born effective charges are first calculated. These charges govern the

LO-TO splitting. These charges must be zero for a nonpolar crystal.
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Considering two ions in the basis 7 and 7 at sites separated by lattice vector R,
the contribution to the inter-atomic force constants from the screened electrostatic energy
between the two is

CCoul (R) — OZECoul(R)

T4 Uy
The derivatives are with respect to displacements from equilibrium along the corresponding
ionic coordinates. (In this context it is appropriate to consider the screening appropriate to
bulk conditions, since when all manipulations are completed, the only information retained
is that relevant to the limit of small wave vector.) Gonze and Lee [30] write the reciprocal

space transform, in accord with the Ewald [29] formulation by first defining

“K?
4A2 )~

—Coul 47 K,'Kz'l .
CTT’ii’ (k) - ; ﬁ j_‘(‘-’? €xp (lK : (rT - rT')) exp(

> A% R H; (AA,, AD; . )(detess) ™
R

=

Nl=

4
——=A%6 e L (detess) 2.

G (4.16)

The reciprocal-space summation index has
K =G +k,

where G runs over reciprocal-lattice vectors. The dielectric tensor €., appears as a metric

in reciprocal space, giving the definition,

K? = E €iit oo KiK.
it

The parameter A arises through the Ewald summation and is in general arbitrary and chosen

for optimal convergence of the two sums. Eq. 4.16 uses the following three definitions:

_wxy (3 2 2,3 1 [ erfe(y) 2 eV
Hie9) =" (Eerfc(yH_e ' (y_2+2)> _eii'm< v E )

A= E €iiroo (Rit + 873t — S7141)
,i/
and

DTT' = A‘r‘l" . (ST - ST')'
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It is now possible to write

- 1 i
Coul _ Coul —ik-R
Coi) = 7 D COM(Rye (4.17)
R
as
Coul ~Coul
72'01;11’ Z ZT ZT i’ CTT i’ ) - 67'1"27—// Z ZT ZT 4! CTT”zz’( = 0) (418)
Jg'

The real space sum in Eq. 4.16 has a well-defined limit as k tends to zero, although
for 7 = 7', the R = 0 term is divergent and precisely negated by an identical contribution
from the second term on the right-hand side of Equation 4.18. In the limit of small k, the
nonanalytic, directionally dependent term (47/Q)k;k; /;cE, arising from the G = 0 term in
the reciprocal space sum of Equation 4.16, accounts entirely for the macroscopic fields and

LO-TO repulsion. Since the relation

> Z = (4.19)
—Coul

holds, C,.1;; (k = 0) in Equation 4.18 can be replaced by its analytical part.

As mentioned, the small-k, nonanalytic contribution to C(k) is missing in a super-
cell calculation. In order to reintroduce it, let the tensor CP¥7 (k) indicate the Born-von
Karman force constants calculated within the framework of the above discussion, and hence
missing the contribution of macroscopic fields. The transformation between the Born-von

Karman and interatomic forces constants can be modified as:
~ 1 i ~
DFT _ —ik'R
C (k) — T(k) = N ER e C(R) (4.20)

with the notation,

(4.21)
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and C%"(k) is the analytical part of CC°% (k). Within the fitting procedure, the Born-von
Karman and inter-atomic force constants are now replaced by C(R), and CP¥7 (k) — T(k),
respectively.

Then, the full Born-von Karman force tensor, with the effects of the macroscopic
fields, is:

C(k) = CO% (k) + %Ze_“"RC(R). (4.22)
R

4.4 Results for GaAs and GaP

Phonon dispersion curves and densities of states for GaAs and GaP are presented in Fig-
ures 1-4. The wave-vector sampling corresponds to that listed for the Si and Ge calculations
of the preceding section. For GaAs, all ion-pair interactions are included for a cutoff sep-
aration of 15 ag, and the calculated lattice constant is 10.46 ag, and for GaP, the cutoff
distance is 15.5 ag, and the lattice constant is 10.09 ag.

In zincblende systems, the Born-effective-charge tensor is cubic and diagonal, and so
the Born effective charge of any basis ion can be written as a scalar, Z,. In these systems,
the change in the polarization with respect to crystal translation must be zero. Since any
k = 0 strain of the crystal can be generated with a crystal translation and a change in the
relative coordinate of the two basis ions, the change in the polarization for such a strain
can only depend on the change in the relative basis coordinate. The adiabatic displacement
can be considered to take place with ion 7 at rest and ion 7 displaced by z;, or with ion 7’/
at rest and ion 7 displaced by —z;, and the polarization change must be the same in either
case. The charge neutrality condition of Eq. 4.19 follows. The calculated charge associated
with the gallium ion in GaP is 2.17e, and 2.12e in GaAs. The phosphorus and arsenic ions,
respectively, provide the canceling charge.

A comparison of the two dispersion plots is interesting. For GaAs, the near crossing

of the TO(T') and LA(X) modes is observed. In diamond-type materials, the degeneracy is
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symmetry-enforced. By contrast, in GaP, there is no such near degeneracy. This result may
be motivated by noting that in the Einstein approximation to the optical vibrations, each
ion vibrates independently, and there is no dispersion in the optical phonon frequencies. In
diamond-type crystals, the Einstein approximation does not hold, to the extent that the
optical frequencies bend downward approaching the Brillouin zone boundary, so that the
condition, wyo(r) = wra(x) is met. It may be expected that the Einstein approximation is
better realized in crystals where the basis ions have significant mass mismatch, and hence
the equivalent status of basis ions in diamond-type structures is greatly violated. In such
materials, a clear gap may be anticipated between the longitudinal and optical acoustic

phonon branches. This is indeed seen in the dispersion calculation of GaP.
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Figure 4.1: Calculated phonon dispersion in GaAs.
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Figure 4.2: Calculated phonon density of states in GaAs.
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Figure 4.3: Calculated phonon dispersion in GaP.
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Figure 4.4: Calculated phonon density of states in GaP.
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Chapter 5
Calculation of Anharmonic Effects

5.1 Beyond the Harmonic Approximation

Within the harmonic approximation, the phonon dispersion expresses the complete charac-
terization of the vibrational spectrum of a crystal. Experiments, such as neutron and x-ray
scattering, and the zero-parameter calculations of detailed spectra, demonstrate that the
harmonic approximation is quite appropriate, in that the phonons constitute a well-defined
excitation spectrum in typical materials.

The crystal’s state, in the harmonic approximation, is a superposition of many-body

states, with a particular many-body wave function written,

‘P({ankV}) = Hku¢ku(anku7qku); (51)

where the modes states ¢, , and normal coordinates, qx,, are indexed by wave vector and
phonon branch. The modes can be considered as a set of independent harmonic oscillators.

The state of each mode is

¢ky (ankua Qku) = Z anku(a:,,)nd)?cy (qku)7 (52)

the general harmonic oscillator states being written as arbitrary superpositions, with am-

plitudes ay,y,, of states formed through n creation operations on the ground state:

2

1/4
Fo (G) = (@) e 30 (5.3)
™

A general many-body state may then be formed from superpositions of the above many

body states,

U= Y Afan ¥{on ). (5.4)

{ankv}
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The eigenvalues of the dynamical matrix are wi , with normalized eigenvectors vy, .

Nevertheless, anharmonic terms—which are cubic or higher order in ionic displace-
ments from equilibrium—must be present in the Born-Oppenheimer potential energy. In the
absence of such terms, the harmonic approximation allows unitary transformations which
decouple the equations of motion. But in the presence of anharmonic terms, there is energy
transfer among modes. If these terms are weak compared to the harmonic forces, an expected
result is the damping—or acquisition of a finite lifetime—of the phonons, which nonetheless
possess well-defined resonance frequencies. These lifetimes, in accord with the uncertainty
principle, can be spectroscopically measured through the linewidth of the resonances. Such
experiments have been widely carried out, particularly measurement of zero-momentum
phonon linewidths with inelastic light, or Raman, scattering.

Of particular interest here is in the lifetime of the zero-momentum, optical phonon in
diamond-type crystals, or an excitation of the mode ¥y, the subscript standing in for any of
the three symmetry-equivalent, long-wavelength optical branches. The finite lifetime arising
from cubic anharmonic terms in the Born-Oppenheimer potential will be considered. While
the anharmonic terms are not limited to those cubic in ionic displacements, the retention
of cubic terms alone is a natural beginning for a theoretical evaluation of the damping.

Accordingly, the anharmonic Hamiltonian to be considered here is:

1
Hop = = Y Z UBZO(Rr, R'7, R"7")2ir (R) it (R') i, (R")
6 N
RR'R" 77'7"ii'¢
1
= Sk + k' + k"B &kv, K'v K"V ) iew i Gt (5.5)
W i

The Bloch-representation cubic terms above are related to the cubic coefficients of the ionic

coordinates according to:

o (kv k'Y K"V = (5.6)

[ n_n
U” 141 (OT, R T, R'r ) ) ) ) i(k’-Rl+k’I~R”)

VkuriVk!v! 1§t Vk! 1141 € -
R'R! 77! 7!" §i 3" Vv MMt Mgt
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The the full cubic Hamiltonian can be written in this form as a consequence of invariance
with lattice-vector translation.
For the following derivations, the phonon normal coordinates are best expressed in

terms of the phonon creation and destruction operators:

kv = (aku + atky)- (57)

2wku
5.2 Long-wave Optical Phonon Lifetime

Inspection of the state corresponding to a single excitation of the long-wave phonon, ¥r =
aiflIlo, where the many-body ground state is indicated on the right, leads to identification of
the states which are relevant to the lifetime of ¥p. The matrix elements of H,,; between ¥
and any final state are nonzero only if the final state is formed from the many-body ground
by the action of two or four phonon creation operators. This is seen by recognizing that
when the matrix elements are written in terms of the many-body ground state, the operator
products which appear must contain an even number of phonon coordinates in order for
the phonon creation and annihilation operators to be paired off. For the matrix elements
between ¥r and any final state to be non-zero, energy and momentum conservation must
hold, further restricting the relevant final states to those which are two-phonon, or those
which can be formed from the many-body ground state with a product of two creation
operators. Momentum conservation also ensures that the final states correspond to two-
phonon states where the two are of equal and opposite wave vector. Here these states are
denoted Uy, k.

As aresult, Eq. 5.5 can, for the purposes of calculating the lifetime of ¥r, be reduced

to:

1
Hypnh = —— ®(kv, —kv', ) quy, q—xu gr- 5.8
h QVN;; ( )icw 41 qr (5.8)

A periodic displacement configuration, as represented by a phonon normal coordinate,

41



for instance, can be expressed as x,(R) = d,e®R) For k = 0, any such configuration
can be generated by a relative sublattice displacement together with some crystal transla-
tion. Because of invariance with respect to translation of the entire crystal, then, the cubic

coefficient in the potential energy can be rewritten:

83U 1 83U Z 8D;T k)
Aqr 0quy 0y \/ 1 OulqK, 0q_xv 2\/

VkvriV—kv'7'i', (59)

‘r‘rn’

where u is the magnitude of the change in sublattice relative coordinate, evaluated about

equilibrium, and p is the reduced mass of the basis ions. The relation,

_ PTGk T (5.10)
9qroqi,0q_1xr VN ’ T ’

should also be noted.
The inverse of the long-wave phonon lifetime 2+, then, can be calculated with the

following expression:

2y = (5.11)
27 1 2
775 Do 1> (Tr[Hann| Toar-qr)[*d(wr —war — w-qn) =
QAN kvv!
(0k,qQ0y, ,\5./' A+ 0_k,Qux 00 2) 9
M, k|70 (wr —wax — w_qx
8uwrN QZ/\;\I |g’; W k|*d(wr —wax —w-qx)
My 20 (wr — wiey — w_10),
8upr Z WkpW_ k,,,l kl"0(wr — wi W)
with the definition,
oD (k
Muy’k = Z giu()vkuT'ivfku’T”i’- (512)

718!

The above is derived by application of Fermi’s Golden Rule, where the matrix elements of
the operator in Eq. 5.8 are evaluated between ¥r and the full phonon Fock space, subject
to the above discussed restrictions. The expression in Eq. 5.12 is appropriate to a system
at zero temperature.

Because the anharmonic lifetime effects can be modeled with a small imaginary part to

the phonon energy, corresponding to v, the calculations can be compared with experimental
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probes where the spectroscopic response is fit to Lorentzian parameters.

5.3 The Sublattice Displacement and Symmetry Considerations

The lifetime 2+ can be evaluated by calculating the change in the dynamical matrix, through-
out the Brillouin zone, with respect to a sublattice shift, as can be seen in Eq. 5.9. In
diamond-type crystals, the restoring forces resulting from a sublattice shift are isotropic
with respect to the shift’s direction. Consistent with the notation in preceding sections,
then, the cubic term in Eq. 5.12 is evaluated by calculating the full phonon dispersion for
sublattice shifts along positive and negative projections along a Cartesian direction, and
taking the finite difference. The phonon frequencies appearing in the lifetime expression are
evaluated for no sublattice shift. The magnitude of each displacement is 0.1 ag. All terms
are included in the finite difference, including the long-range Coulomb interaction appearing
in the Ewald-Kornfeld sums, which are evaluated for each distortion.

The dynamical matrices for two distorted crystals—one with a positive and one with a
negative sublattice shift—are subtracted to evaluate the derivative of the dynamical matrix
throughout the Brillouin zone. This necessitates repeating the symmetry analysis for the
distorted crystals. These possess symmetry operations which comprise a smaller subset of
the undistorted crystal’s symmetry group. Thus, evaluation of the dynamical matrix at the
same set of wave vectors for the distorted and undistorted crystals gives less information for
the distorted than the undistorted crystal. In order to retain equivalent physical sampling
for each case, then, the wave-vector sampling is increased for the distorted crystal. For
the distorted case, the original set of wave vectors is supplemented by those which fold to
the original set under the full symmetry group, but not under the reduced group. For the
distorted crystal then, the equivalent set of wave vectors correspond to an expanded set
of independent Born-von Karman force constants, which corresponds to an expanded set

of parameters entering the inter-atomic force constants within the interaction range. The
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interaction length range is taken to be the same for the distorted and undistorted lattice,

S0 as to retain the same physical set of interactions.

5.4 Results and Uncertainty

For Si, this calculation gives the result 2y = 2 cm™!, and for Ge and diamond, respectively,
0.6 cm™!, and 3 cm™!. These results, being evaluated with Eq. 5.12, are appropriate to the
zero-temperature limit. The corresponding experimental values range from 1.2 to 2.8 cm™!
for Si, 0.75 to 1.4 cm ™! for Ge, and 1.2 to 2.9 cm~! for diamond [31]. The results of prior
first-principles calculations are 1.48 and 1.44 cm™! for Si, 1.01 and 0.97 cm ™! for diamond,
and 0.67 cm™! for Ge [32].

Evaluating Eq. 5.12 with a Brillouin zone sampling set of 64,000 points, the lifetime
for Si is converged to within 1 % for Lorentzian simulations of the Dirac function with widths
of 0.3 cm™1, 0.1 cm™!, and 0.03 cm~!. Using the same widths, increasing the Brillouin zone
sampling to 512,000 points improves the convergence with respect to Lorentzian parameters
to less than 1 %, and the result is converged to that of the more limited Brillouin zone
sampling to within 5 %. Very similar convergence behavior is seen in Ge and diamond, so
that for each material, numerical uncertainty associated with broadening and sampling is
5 %.

The remaining uncertainties in the reported values are associated with the computed
dynamical matrix elements—and the consequent phonon frequencies—and evaluation of their
change with sublattice displacement.

The sensitivity of Eq. 5.12 to the optical phonon frequencies comes from the two-
phonon kinematics, as expressed in the appearance of wp in the argument of the Dirac
function. Changing the value of wr in Eq. 5.12 by 10 % modifies the lifetimes by approxi-
mately 30 %.

Inspection of the phonon dispersions clearly indicates that energy conservation, again
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expressed through the Dirac function of Eq. 5.12, that the dominant two-phonon decay
channels are acoustic modes. The sensitivity of the lifetime to these modes comes through
their frequencies and changes in appropriate projections of the dynamical matrix. The
variation in the relevant frequencies with sublattice shift is greater than the uncertainty in
the frequencies themselves, estimated at < 20 %. The uncertainty in appropriate projections
of the dynamical matrix is then the dominant uncertainty, contributing a 40 % uncertainty
to the lifetime.

In light of the above analyses, the lifetimes reported here should be considered deter-

mined within a factor of 2.
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Chapter 6
Anharmonic Effects and Infrared Response

6.1 Phonons and Infrared Absorption

The harmonic approximation is insufficient for a close inspection of the frequency depen-
dence of the dielectric response in the infrared. For instance, in the absence of direct
multiphonon transitions, the harmonic approximation predicts infinitely sharp absorption
at wro, the frequency of the long-wavelength, transverse optical phonon, or the disper-
sion oscillator, and nowhere else [4]. Measured spectra, however, show finite linewidth and
asymmetric lineshape of the infrared-active phonon and very broad background absorption,
which can exhibit fine features and singularities [33, 34, 35, 36], and temperature-dependent
absorption in the far-infrared [37]. These effects are closely related to the lifetime effects on
Raman spectra previously discussed.

A theory which incorporates the phonon-phonon interaction into the theory of the
optical response, where anharmonic terms in a crystal’s interionic potential introduce in-
teraction among the phonons, can help to explain asymmetric broadening and background
absorption [6]. As an example, in the long-wavelength limit, an infrared photon can, through
a virtual excitation of the infrared-active phonon and anharmonic corrections to its quan-
tum state, be absorbed by a pair of phonons whose momenta sum to nearly zero (relative
to Brillouin zone dimensions) and whose energies sum to that of the photon. These sum
processes endow the spectra with rich structure. At nonzero temperatures, the onset of
difference processes, where one phonon is emitted and another is absorbed along with the
photon, give a strong temperature dependence to the far-infrared absorption.

First-principles consideration of the phonon-phonon interaction, which determines the
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spectral structure of the response, and the phonon-photon interaction, which determines the
overall oscillator strength, are key to this work. Realistic, observable quantities arising from
phonon-phonon interactions, or anharmonic effects, are now calculated as well as measured,
such as the linewidth, asymmetric shape and temperature dependence of Raman modes [32,
38, 39, 40, 41]. The present theoretical work on zero-temperature, Raman mode lifetimes has
been discussed. The treatment of anharmonic effects on the optical response closely follows
the theoretical studies of Raman spectra, but with a study of their role in the dielectric
function.

Phonon-induced dipoles, representing the phonon-photon interaction, are given by
the Born effective charges. These charges enhance the longitudinal optical phonon fre-
quency while coupling the transverse optical phonon to infrared photons, and are calculated
according to the modern theory of polarization [7], as discussed. With these charges and
the infrared-active phonon’s self-energy, the spectral profile and the oscillator strength can
be calculated, and all the optical constants can be obtained.

The degree of similarity between observed spectra and the calculations reported here
strongly indicates that modern first-principles calculations and perturbative formalism re-
flect the microscopic processes governing infrared optical response, and may serve to stim-
ulate further work toward detailed characterization of crystalline materials.

Figure 6.1 summarizes these results and their comparison with measured spectra.
Its examination suggests that two-phonon processes are present over the entire infrared
spectral range through 2wro. Below wro, we predict the measured low-energy absorption
tail well into the far-infrared spectrum, and the expected temperature dependence [37].
The lineshape of the infrared-active phonon is strikingly reproduced. Between wro and
2wr0o, absorption and transparency features demonstrate a convincing correspondence with
measured data. These are associated, respectively, with critical points and gaps in the

zero-momentum, two-phonon density of states. There is more structure to the two-phonon
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spectrum of GaP than of GaAs, including a prominent narrow band of suppressed absorp-
tion, because its larger ionic mass mismatch widens the energy difference between various
phonon branches. The data for GaAs are from Ref. [35] and references therein. Some
data points are from fits to an oscillator model, and are “generally not determined better
than + 30 %” [35]. The reststrahlen and low-frequency data for GaP are from Ref. [34]
and references therein. The low-temperature and room-temperature data points above the
reststrahlen are from Ref. [33], and the data are from transmission measurements on a
high-purity sample.

In Figure 6.1, the optical response is characterized with the absorption coefficient,
a(v) = 4wvk(v), where k(v) is the index of absorption, and v is photon energy in cm™!.

The strong temperature dependence of the absorption in the far infrared is highlighted
in Figures 6.2 and 6.3. The experimental and theoretical results are plotted at 10-300 K for
comparison.

Below, the role of phonons in the dielectric response is summarized, the anharmonic

contributions and their many-body treatment are discussed, and finally results and details

of the calculations are presented.

6.2 Dielectric Response of the Lattice

In GaAs and GaP, infrared optical properties are dominated by phonons. The Hamiltonian

density for a polar crystal in the presence of an electric field, E, can be written as

1 ..

where ¢) and wy are the normal coordinate and frequency, respectively, of a phonon with
wave vector and branch indexed by A. The unit-cell volume is 2 and the number of Bravais-

lattice sites is V. The dimensions of the quantity P™?¢ are dipole moment per unit volume.
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Anharmonic potential-energy terms are assumed to be small, and expressed with Hy,p,.
Direct dipole transitions to multiphonon states are represented with H,,,. This coupling
has been observed and calculated [42, 43], but is not accounted for here.

The macroscopic polarization in Eq. 6.1 can be written as,

szac — a Z Z zqule:j' (62)

v=TO 7j

In the above, m, is the mass of ion 7, the phonon normal coordinate index, v, runs strictly
over the infrared-active phonons, and €” ; 1s a component of the polarization of such a phonon.
Cartesian directions are indicated with the indices ¢ and j. The charges are expressed as

the change in macroscopic polarization with respect to sublattice displacement:

. a‘Pimac
Z; =0 (6.3)

O Ougy

Formally, the following expressions can be derived with a Green’s function formal-

ism [44]. A heuristic oscillator model for the response can be written by expressing the
effects of H,,pn as a complex damping term, or self-energy that modifies wro: Tro(w) =
A(w) —ivy(w). Substituting Eq. 6.2 into Eq. 6.1, solving the driven-oscillator equation of mo-
tion for an infrared-active phonon’s normal coordinate, and then taking the sum indicated

in Eq. 6.2, the polarization is found to be:

71-/6 CIIE (u))

Prec(w) = Z Z ) _” oo (6.4)

T‘r’z’]] v=T0

1 1
(w+wTo+ETo(w) w—wTo—ETo(w)> ’
The dielectric function follows immediately. It is written [28§],

ZZ/1€ €Y,

Eig! (w) = Ecoii’ + Z Z ,—1 L)
T1'35' v=TO 2 Mo Wro
1 1
( - ) 6.5)
w+wro +Ero(w) w—wro — Tro(w)

with €04 representing the high-frequency dielectric constant. When all the infrared-active
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modes are symmetry-related, as is the case in a zincblende system, their frequencies and

self-energies are equal, and denoted by the subscript TO above.

6.3 The Phonon Self-Energy

Low-temperature phonon-phonon interactions have been the subject of thorough field-theoretic
analyses [5, 6, 45, 46]. Modern implementations successfully calculate realistic thermody-
namic and spectral properties which originate from such interactions [47, 48], demonstrating
the valuable predictive nature of first-principles studies. Phonon-phonon scattering events
are ranked with a dimensionless expansion parameter, for which Van Hove et al have posited
the ratio of zero-point ion delocalization to nearest-neighbor lengths [49]. The theory estab-
lishes lowest-order contributions to the anharmonic self-energy of a long-wave phonon from
three distinct multiphonon processes [5, 46]. These are shown in Figure 6.4. One of these
processes, (a), involves a single vertex, making it first order in Hy,, but second-order in the
expansion parameter because the vertex involves a four-phonon interaction. The remaining
two processes, (b) and (c), each involve three-phonon vertices, which are first-order in the
expansion parameter, and are second-order in H,,;, because of the appearance of two ver-
tices in the diagrams. Hence each of the three processes is second-order in the expansion
parameter, according to the theory.

The four-phonon process and one of the three-phonon processes represent simultane-
ous absorption and reemission of a phonon by the infrared-active phonon. Such interactions
are instantaneous, and therefore independent of frequency, contributing exclusively a line
shift [50]. The interest of this work is in spectral structure and multiphonon processes, so
frequency-independent terms are neglected. In any case, the calculations assume the the-
oretically relaxed rather than actual lattice constant, so the positions of wro and related
spectral features are affected by other factors as well.

The remaining term, (c), reflects the infrared-active phonon’s coupling to phonon-
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pair states of opposite crystal momenta, k and —k, where their role has been compared to
that of a “viscous medium” [4], and the matrix element between the infrared-active phonon

and such a state is

oDy (k k!
Muu’k = Z gTvafvT,lf,” . (66)

774!
The derivative of the dynamical matrix, DZTZ-,T'(k), is taken with respect to the sublattice
relative coordinate, as earlier discussed. For a zincblende crystal, the relevant anharmonic

contribution to the Hamiltonian is:

1
Hoph = ————F—=— M, —x3qv- 6.7
anh 2NQ\/N_M ”;O 1;@ afkqkaqd—ka4q ( )
The prefactor includes the reduced mass, p = (mg. +my+)~L, or p = (mg. +mp')~t. The

anharmonic interaction leads to a frequency- and temperature-dependent shift and damping

of the infrared-active phonon, expressed as the self-energy,

_ h l |Muu’k|2
16pwro N =~ Wi w—to

[( 14 nky + Nk ) N
Wky + Wk — W — 1N

14+ 1y + Nk
(wku + W gy +w+ in)

Nky' — Nky
+< k kv >+
Wky — Wkpyt — W — 1N
Nkxy — Nky' (68)
Wi — Wiy —w— i1/ |’ ’

which is the frequency- and temperature- dependent generalization of the zero-temperature

Trow) =

lifetime result already described. It is derived in detail in Refs. [6]. The summation includes
mode frequencies, wy,, and Bose occupation factors, ny, .

The real and imaginary parts of the self-energy for GaAs at 300 K are plotted in
Figures 6.5 and 6.6. The calculations represent evaluation of the real and imaginary parts of
Eq.6.8, with the Dirac delta function simulated with a Lorentzian, as discussed in Chapter 5.

The real and imaginary parts show characteristics expected of two functions related to one
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another by a Kramers-Kronig transformation.

6.4 Discussion

In Figure 6.1, along with the theoretical and experimental values for the absorption coeffi-
cient, the density of zero-momentum two-phonon states are also plotted for comparison with
the absorption features. In Figure 6.7, the calculated phonon dispersion for each material
is plotted.

The dispersion-oscillator-two-phonon quasiparticle model adopted is shown to agree
remarkably well with the experimental absorption near the reststrahl and qualitatively away
from it. The arrows in Figure 6.1 represent a few sum-process critical points as identified
in the caption. The wave vectors are indicated with the standard notation for the high-
symmetry points of a face-centered cubic reciprocal lattice, and the branches are labeled
L(T)A(O) for longitudinal (transverse) and acoustic (optical). The three most energetic
modes are denoted optical, the doubly degenerate modes are denoted transverse, and the
singlets are denoted longitudinal. The identified two-phonon overtones are identical for each
material, with the exception of the optical overtone at L, where the singlet is more energetic
in GaP, and the reverse is true for GaAs, as can be seen in Figure 6.7. The doublet overtone
is indicated for GaAs, and the singlet for GaP. The longitudinal-transverse band crossing
in GaAs is a result of its similar ionic masses, as discussed below. The slight overbending,
presumably, is an artifact of the calculation.

Above the reststrahlen, the theory reproduces spectral structure better than it does
overall amplitude in the absorption. In the measurements, the relative absorption is more re-
liable than its absolute value [35]. It may be that the two-phonon features are not completely
described through the infrared-active phonon self energy, and that direct multiphonon tran-
sitions should be considered. As can be seen from Eq. 6.8, our model cannot give absorption

above 2wro, where three-phonon and higher-order processes must be considered [36].
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1 is ascribable to dif-

The temperature dependence of the absorption below 100 cm™
ference processes, where a phonon is absorbed and one of the same momentum but differing
branch is emitted. Such processes are expressed in the third and fourth terms on the right
side of Eq. 6.8, and are only possible at temperatures corresponding to finite phonon occu-
pation numbers. The absorption grows as the material heats and the occupation numbers
increase, and this behavior has been measured in GaAs for three far-infrared frequencies [37].

The GaP spectrum possesses a richer two-phonon structure than that of GaAs, in-
cluding narrow bands of weak absorption, a consequence of its larger ionic mass mismatch,
which widens the energy difference between various phonon branches. In the case of similar
masses, such as those in GaAs, the optical and acoustic branches approach near degener-
acy at high-symmetry wave vectors, thus narrowing the gap between the bands associated
with the branches. The same is true for the transverse and longitudinal optical branches,
which, in the case of GaAs, show greater dispersion and again nearly degenerate behav-
ior at high-symmetry points. These effects can be seen through comparison of phonon
densities of states of Figure 6.1 and in the dispersions of Figure 6.7, as well as through
comparison of the absorption. The primary transparency band calculated for GaP, just
below 700 cm™!, is observed. Although this trough in the absorption appears weak next to
the sharp infrared-active phonon feature, it constitutes a local variation in the absorption
by two orders of magnitude. For both materials, spectral structure is also evident in the
temperature-dependent far-infrared absorption below the reststrahlen, where critical points

can be seen in the theoretical plots.
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Figure 6.1: The one-phonon (line) and zero-momentum two-phonon (+) densities of states

are plotted in (a) for GaAs to the left, and GaP to the right. In (b) and (c) the calculated

absorption coefficient is plotted at < 10 K and 300 K, respectively. Plotted theoretical

spectral features have been moved to 0.97 of their calculated position, in cm™!, to facilitate

comparison with the experimental 300 K spectra, which are plotted in (¢) (+). The arrows

index, from left to right, the two-phonon critical points: TA(L)+TA(L), TA(X)+TA(X),

and TO(L) + TO(L), with the exception of the overtone at L, as noted in the text. The

data are from Refs. [33, 34, 35], as dicussed in the text.
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Figure 6.2: The experimental and calculated temperature dependence of far-infrared re-
sponse in GaAs. The spectra are shown for the crystal at 10 K, 50 K, 100 K, 150 K, 200 K,
250 K, and 300 K. The absorption increases monotomically with temperature. The data

were taken by Simon Kaplan at the National Institute of Standards and Technology.
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Figure 6.3: The experimental and theoretical temperature dependence of far-infrared re-
sponse in GaP. The spectra are shown for the crystal at 10 K, 50 K, 100 K, 150 K, 200 K,
250 K, and 300 K. The absorption increases monotomically with temperature. The data

were taken by Simon Kaplan at the National Institute of Standards and Technology.

a) b) C)
< Y e

Figure 6.4: The vertex of diagram (a) represents a four-phonon interaction and is related
to energy shifts associated with quartic terms in lattice strain. Diagram (b) expresses shifts
associated with thermal expansion. Only diagram (c) contributes frequency dependence to

the self-energy.
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Figure 6.5: The calculated real and imaginary parts of the IR-active-phonon self-energy for

GaAs at 300 K.
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Figure 6.6: The calculated real and imaginary parts of the IR-active-phonon self-energy for

GaAs at 300 K near the reststrahl.
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Chapter 7
Ionic Displacement Correlations from the Zero-point Motion of Pressurized
Solid Argon

7.1 The Correlation Function

Equal-time, ion-ion correlation functions have been of theoretical interest since the early
days of theoretical lattice dynamics [51, 52]. The autocorrelations appear in the Debye-
Waller factor and crystal melting criteria [53, 54], and the two-site correlations are related
to a variety of measurable effects. They have been shown to imprint “extra spots” on the
diffuse, elastic x-ray scattering background arising from thermal fluctuations [55, 56], and
more recently, experiments concerning their relevance to extended x-ray absorption fine
structure [57] and electronic motion [58] have been performed. Bond-charge models have
been used to calculate a few of the correlations in covalent semiconductors [59].

Perhaps of particular theoretical interest, the correlation functions are relevant to
lattice dynamics beyond the harmonic approximation. A body of theoretical work over the
last five years marks a breakthrough in the first-principles considerations of anharmonic
effects [8, 38, 41, 60], and the correlation functions can be applied to the calculation of
related matrix elements. As an illustration of this, a term in the potential energy which is
cubic in ionic displacements hybridizes the crystal’s ground state with a state in which a
mode is occupied by a single phonon. The corresponding matrix element can be expressed as
a phased sum of fourth-order correlations multiplied by appropriate anharmonic potential
coefficients. These fourth-order correlations can be contracted into products of pairwise
correlations over the ground state, which are evaluated here. In a related connection between

anharmonic perturbation theory and the correlation functions, van Hove posited the ratio
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of the autocorrelation length to ion separation as the expansion parameter with which to
rank the multiphonon processes [49].

Commonly, the zero-point ionic motion’s greatest experimental significance is in the
study of the lightest elements, and would not be prominent in a system such as argon.
However, at zero temperature, non-zero values of the correlation functions can generally be
attributed solely to the quantum-mechanical zero-point motion of the ground state.

Ground-state correlations in solid argon are calculated here, for arbitrary lattice-site
separation, using 1) current first-principles methods, and 2) analytic expressions from long-
known approximations to the phonon spectrum [52]. Argon is a convenient choice for the
calculation of these correlations. It is an insulating crystal with a single atom in the unit
cell, and so complications associated with optical phonons and a Fermi surface need not
be addressed. A comparison of results obtained via the two approaches is interesting as a
mutual check on the modern technique, where the results are highly numeric in nature, and
the more traditional analytic methods, which are computationally transparent but rely on

more approximate assumptions.

7.2 Pressurized Solid Argon

Advanced spectroscopic techniques probing materials at high pressure have recently allowed
detailed experimental investigation of structural properties of solid argon [61, 62, 63, 64],
which is of interest as a fundamental solid. The equation of state and the pressure de-
pendence of elastic constants and phonon dispersion have been reported. These inves-
tigations and accompanying pair-potential calculations have been complemented by first-
principles studies which rely on local and semi-local approximations to density-functional
theory [65, 66, 67, 68, 69]. There is general agreement between the theoretical and experi-
mental results, and the degree of correspondence increases at higher pressures. This may be

expected, since local and semi-local functionals account for electronic correlations only when
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there is charge-density overlap, and hence cannot model strict van der Waals effects [65],
and at lower densities, or lower pressures, the relative importance of the van der Waals
forces obviously grows. Recently, functionals capable of treating van der Waals interactions
have been developed [70].

Nevertheless, the theoretically obtained properties are reasonable even to nearly am-
bient pressure when the generalized-gradient functional is employed. The local-density ap-
proximation [10], with which the present results are calculated, has been shown to give
an equation of state of poorer agreement with measurement than the generalized-gradient
approximation [66]. Indeed, at lower pressures, the associated densities reported here are
10 % to 15 % higher than those obtained from experiment. In addition to the local-density
approximation, these calculations are peformed with pseudopotentials and a plane-wave ba-
sis [13, 14, 15]. All values reported were checked for convergence with respect to Brillouin-
zone sampling and plane-wave cutoff.

The pressures are evaluated by first calculating points along a total-energy-vs-volume
curve, and then obtaining a best fit to the Murnaghan equation of state. At 3.1 GPa
and 6.7 GPa, the values are checked by introducing an internal strain. When the solid is
pressurized, the energy density, E, is modified from its equilibrium value, Ey, by a linear
as well as quadratic term with the uniaxial strain parameter e;1, £ = Eg — Pey; + %cue%l.
The coefficient ¢;; in the quadratic term is the standardly defined elastic constant. The
linear term represents work done as the volume varies with the strain, and the coefficient,
P, represents the pressure. The pressures obtained from the strain calculation and from the

equation of state agree to within 10 %.

7.3 Phonon Dispersion and Elastic Constants

The phonon dispersion is calculated through a diagonalization of the dynamical matrix,

which is calculated with Hellmann-Feynman forces [18] and density-functional theory. Su-
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percells with wave-commensurate geometries are utilized. Figure 7.1 displays theoretical
phonon dispersion along a few high-symmetry lines for a crystal at 3.1 GPa, and how it
compares to experimental dispersion along the (100) direction at the same pressure. The
uncertainty in the experimental data points is less than +1 meV. The present result and the
discrepancy from experiment is quite similar to that of other recently-reported work within
the local-density approximation [66]. The theoretical density reported here is 2.7 g/cm®. At
6.7 GPa, or a density of 3.0 g/cm?®, the frequency of the longitudinal mode at the Brillouin
zone boundary along (100) increases to 26 meV from the value 21 meV at 3.1 GPa. At
10 GPa and 70 GPa, the value is respectively 29 meV and 53 meV, and the corresponding
densities are 3.2 g/cm?® and 4.6 g/cm?3.

The elastic constants are reported through evaluation of the low-momentum speeds
of sound from the calculated dispersion relations. At 6.7 GPa, the constants are computed
twice. The second method entails monitoring of the total energy over a range of internal
strains. The two values are identical to the numerical accuracy reported for ¢y1, and differ
by about 20 % for c12 and css (for c12 the strain-derived value is lower, and for c44 the
strain-derived value is higher). The calculated elastic constants for various crystal pressures
are ¢11 = 36 GPa, c12 = 24 GPa, and ¢44 = 16 GPa at 3.1 GPa; ¢;1 = 54 GPa, ¢12 = 38 GPa,
and cqq = 23 GPa at 6.7 GPa; ¢11 = 72 GPa, ¢12 = 50 GPa, and ¢44 = 33 GPa at 10 GPa;
and c¢;; = 270 GPa, ¢;2 = 200 GPa, and ¢4y = 130 GPa at 70 GPa. These values for the
elastic constants differ from those of some earlier studies by more than 50 % at 3.1 GPa.

The agreement improves at higher pressures to about 10 % at 70 GPa.

62



7.4 Exact Formulas for the Correlation Function

The displacement of an ion at lattice site R along Cartesian direction ¢ is written as the

sum over phonon creation and annihilation operators, indexed by wave vector and branch:

1 kR h t
o Ny IS S 71
TiR _Nzkue o (axy + a' _xp)urcwi (7.1)

where the right-hand side makes reference to phonon polarization, and to square roots of

the ionic mass, phonon frequency, and number of lattice sites (or independent wave vectors)
in the denominators.
The ground-state expectation value of the product of two such operators, defined to

be the ground-state ion-ion correlation, is:

1 ik-S *
< ZiR4+STjR >= —— E €5 ———— Uy iUy, (7.2)
iR+S4) N kv 9 . vilkyjy

mwk

because only terms first creating and then annihilating the same phonon are nonzero, and
because of the relation, u_x, = wu}, . The vectors {uy,} form an orthonormal, diagonal
basis for the dynamical matrix D(k), and its eigenvalues are the squares of the phonon

frequencies, implying the relations

Ukpilly, ; 1
Zw — (D g(k))ij7

v Wk
and
< TRIST R >= LZ eik'S(D*%(k))-- (7.3)
iR+SLjR 2mN K Y :
The result is that the dynamical matrix contains all the infomation necessary to calculate

the ion-ion correlation functions.

7.5  Approximate Formulas

A cautious analysis of the correlations benefits from an analytic check on the numeric results

derived from the above expressions. The primary concern with the numerical results is the
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singularity which occurs in Eq. 7.3 as k tends to zero. Further, the coherent nature of the
contributions to the correlations from small-momentum wave vectors may indicate sensitiv-
ity to the sampling about the I' point. For these reasons, as well as for the sake of com-
paring exact and heavily computational results with common approximations in handling
the phonon spectrum, such as the Debye model, systematic analysis of the correspondence
between the two is performed. The comparison also provides a measure of anisotropy’s effect
on the correlations.

Three approximations bridge the transition from the expression in Eq. 7.3 to an
analytically treatable case. Two of the approximations are well known from the Debye
model: taking the acoustic, small-momentum linear dispersion as valid throughout the
whole Brillouin zone; and approximating the Brillouin zone itself as a sphere of the same
volume. The third approximation forces an isotropic condition on the elastic constants.

The linear-dispersion approximation can be expressed through examination of the
small-momentum expansion of the dynamical matrix. Considering the Cartesian compo-
nents of a deformation field u;(R) within the crystal, and the deformations vary slowly, the

local energy density of a cubic system can be written [71]:

U=l (29) Ly (B ) s omd
_2011 i \ OR; 2044 1 j<i 8Rj OR; 12 i4—j<i OR; BRJ'- '

Slowly varying deformations can be treated with a continuum model, where the

Fourier transform of the strain field is defined,

wi(k) = Qio / drus(r)e T, (7.5)

and Qg is the crystal volume. The dynamical matrix is,

1 o*U

D;j(k) = ;W)Buj(k)’

(7.6)

where p is the mass density, and the eigenvalues of the dynamical matrix are the squares

of the phonon frequencies. Working out the equations of motion from Eq. 7.4, the small-
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momentum dynamical matrix for acoustic phonons is:

c11 k%+044(k§+kg) (012 +C44)kzky (012 +C44)kzkz
1
D(k) = E (012+C44)kzky 011k§+044(k3+k3) (012+C44)kykz
(cr12+caa)kzk, (c12+caa)kyk, c11 k§+c44(k§+k§)
(7.7
The second approximation is that of an isotropic crystal:
c11 =C12 + 2044. (78)
This condition reduces Eq. 7.7 to projections onto longitudinal and transverse modes:
C11 k‘2 ~ C44k2 AL
D(k) = (k) (k| + ) (1 = [k)(k]), (7.9)

and makes the speeds of sound independent of wave vector.
The third, Debye-like approximation defines a sphere of radius kpp and replaces the
Brillouin zone integration with integration over the sphere volume, implying

4
%k%B = Qpy. (7.10)

7.6 Analytical and Numerical Results at 6.7 GPa

Via the three approximations above, a stepwise transition is made from realistic argon to
a model system with analytical expression of the correlation function. As each successive
approximation is made, its effect on the correlation function is monitored by making a
numerical calculation, and then performing the algebraic computation for the analytically
treatable approximations. Numerical calculations are done for the following cases: 1) exact
realistic calculation, 2) application of the small-momentum phonon spectrum, Eq. 7.7, and
3) and application of Eq. 7.7 and the isotropic crystal approximation, Eq. 7.8. The isotropic
elastic constants are selected to meet Eq. 7.8, and to not affect their average value or that

of the bulk modulus, giving ¢1; = 69 GPa, ¢;2 = 33 GPa, and ¢4y = 18 GPa.
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When the substitution of a sphere for the actual Brillouin zone is joined with the

conditions Eqs. 7.7 and 7.8, Eq. 7.3 becomes:

3 sz\/_ kikj | k?6ij — kik;
. 11
/dk ( o T (7.11)

The integration is performed over the sphere of Eq. 7.10. Making the following definitions

< x; TR >=
iR+S<LjR QmQBZ

¢ =kpgS,
S\ 2
w=1-(3)

5.5,

Vi = S2 )

and performing the integration, the result for ¢ = j is,

< T;R4+STiR >= (7.12)

)

ﬁé—g(\/;(l—cosdﬂ (2%—1-1-( i —1)cosg+ (2 — 304,)

and for i # j the result is,

h 47 3sin ¢
i i = ———%Yij | —— — —-2). .1
< TiR+STjR > 5 QBZc Sz’yj ( ¢ COS¢ ) (7 3)

Figures 7.2 and 7.3 represent the non-zero correlations between ions with separations
that lie in the indicated directions for a crystal held at a pressure of 6.7 GPa. (The correlation
is zero whenever %X; has no projection in the %;-S plane.) Four results are plotted representing
the sequential approximation from the real crystal to the analytically amenable idealization.
The first three plotted results are numerically calculated, and the final result is analytical.
The plots are for the actual crystal at 6.7 GPa, and the three successively imposed conditions:
use of the small-momentum rather than the full form of the dynamical matrix, use of an
isotropic set rather than the real set of elastic constants, and use of a sphere rather than
the actual Brillouin zone. In imposing the last condition, the transition to the idealization

is complete.
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For demonstration of the extent of agreement between the four cases, separation
distance between ions is treated as a continuous quantity. The first few actual site-separation

distances are indicated with arrows.

7.7 Pressure Dependence of the Correlation Function

The correlations are immediately associated with a length by taking their square root. In
Figure 7.4 the dimensionless ratio of the correlation length to the nearest-neighbor distance is
plotted with the dimensionless, normalized ion-ion separation along the (110) direction. The
figure corresponds to the exact calculation, Eq. 7.3. Actual lattice sites are represented by
the tics in the figure. The delocalization length associated with the autocorrelation decreases
from from 2 % to 1.5 % of the nearest-neighbor distance as the pressure is increased from
3.1 GPato 70 GPa. This result, together with van Hove’s ansatz, suggests that ground-state
anharmonic effects are less important at higher pressure. This conjecture is motivated by
recognizing that the higher-order correlations—which are proportional to products of lower-
order correlations—must diminish more quickly than the pair correlations. Therefore, as
the pair correlations decrease, the ions are less and less subject to the anharmonic forces
associated with displacements appearing in the higher-order correlations. This is a familiar
many-body result, where perturbations rise less rapidly than confinement energy as the

density is increased.

7.8 Conclusions

This study of the pressure dependence of the lattice dynamics and elastic properties of
solid argon confirms earlier findings that the local-density approximation is problematic
at low pressures, and improves at high pressures. Structural calculations are extended

to the ion correlation function. The analytical and exact results correspond as well as
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may be expected, and straightforward numerical approaches appear sufficient in spite of
concerns about sensitivity to sampling near the I" point. The impact of the small-momentum
approximation is the largest among the three, and tends to suppress the autocorrelation
function by approximately 20 %. At the same lattice vector, the correlations for varying
displacement orientations are of the same order (where not zero by symmetry). While there
is an order of magnitude decrease from the autocorrelation to that of the nearest neighbors,
the dimensionless parameter associated with the correlation decays more slowly, from 2 %
for the on-site correlation to just under 1 % for nearest ions at 6.7 GPa. Roughly similar
behavior with increasing lattice vector is demonstrated at other pressures. The dimensionless
correlation parameter associated with the autocorrelation is about 2 % at 6.7 GPa, and falls
to about 1.5 % at 70 GPa. This suggests that the anharmonic nature of the crystal’s ground

state is suppressed at higher pressures.
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Figure 7.1: Dispersion along a few high-symmetry lines (lines), and experimental data from

Ref [61] (points).
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Figure 7.2: Plots are for correlations, with ion separation along (110), in which both ions are
displaced along the x direction (top), for both ions displaced along the z direction (middle),
and for one ion displaced along the x direction and the other along the y direction (bottom).
Correlations for orientations not shown are zero by symmetry or symmetry-equivalent to
those shown. The nearest sites are represented by arrows. The crosses represent the full
calculation and the dashed line represents the analytical result. The intermediate approxi-

mations are represented by the stars (small-momentum approximation), and by the diagonal
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Figure 7.3: Plots are for correlations, with ion separation along (200), in which both ions
are displaced along the x direction (top), and for one ion displaced along the x direction and
the other along the y direction (bottom). Correlations for orientations not shown are zero
by symmetry or symmetry-equivalent to those shown. The nearest sites are represented
by arrows. The crosses represent the full calculation and the dashed line represents the
analytical result. The intermediate approximations are represented by the stars (small-
momentum approximation), and by the diagonal crosses (small-momentum approximation

and isotropic approximation).
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Figure 7.4: The square root of the x-x correlation function plotted with ion separation along
the (110) direction, both normalized to nearest neighbor distance, for various pressures. The

tics represent actual lattice sites.
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Chapter 8

Conclusions

The scheme of the ab initio calculations reported in this thesis can be summarized with
the following: 1) pseudopotentials are calculated in the limit of isolated atoms; 2) the
pseudopotentials are employed in solid-state calculations, which give Born-von Karman force
constants and anharmonic terms; 3) the force constants are interpolated over the Brillouin
zone for the evaluation of phonon spectra and self-energies.

Innovations in phonon spectra and anharmonic matrix elements calculations are re-
ported, and the results are similar to other first-principles methods in their agreement with
experimental phonon frequencies and lifetimes. The phonon self-energy and Born-effective
charges are applied to an ab initio calculation of the frequency and temperature dependence
of the infrared dielectric response of bulk GaAs and GaP, and the agreement with agree-
ment suggests microscopic validity of the model. The gain in insight and computational
power may prove useful in the infrared characterization of defects in materials, the study
of semiconductor heating, the engineering of infrared sensors, and the design of infrared
components.

There are several directions for theoretical advancement of the results. One is the
incorporation of direct two-phonon interactions with light, or higher-order charges, in the
calculation. These charges co-exist with the anharmonic two-phonon oscillator strength,
calculated through the admixture with the optical phonon, as discussed in Chapter 6. One
approach to the calculation of the two-phonon charges is frozen-two-phonon calculations
combined with the modern theory of polarization.

Calculating the anharmonic interactions of three-phonon states with the optical

phonon may also improve the theory. These processes contribute a signature temperature
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dependence of the absorption, and allow for the calculation of the absorption above twice
the optical-phonon frequency. Two essential pieces to this accomplishment are the identi-
fication and derivation of appropriate three-phonon Green’s functions, and the calculation
of three-phonon-optical-phonon interaction vertices. A possible strategy for calculating the
vertices may start with supercells which are simultaneously wave-commensurate with two
wave vectors. Geometrically, such a supercell must also be wave-commensurate with a third
wave vector, ks, satisfying ks = ko — k;. Thus, such a supercell would be amenable to
frozen-three-phonon calculations. The quartic terms relevant to the three-phonon-optical-
phonon vertices can be evaluated through the change in three-phonon potential energy terms
with respect to sublattice displacement. Another possible tactic for calculating the three-
phonon vertices is the combination of frozen-phonon calculations and density-functional
perturbation theory.

A further application of the present methods may be the calculation of the polarization—
as well as frequency and temperature-dependence of the infrared response in polar, non-
cubic crystals, such as wurzite GaN or graphite. In such a crystal, several symmetry-
independent IR-active phonons may coexist, each with their own Born-effective charges and
self-energies. The response for various photon polarizations may then be calculated.

The calculations of ionic displacement, correlations in Chapter 7 lead to the conjecture
that anharmonic effects are less prominent at higher pressure. The anharmonic treatment
of Chapter 5 is not a good test of this conjecture, because the tuning between the IR-active
phonon energy and two-phonon features is also critical. A better theoretical test of the
conjecture may be conducted, in a material like argon, through evaluation of the variation

in Griineisen parameters with pressure.

74



Appendix A

Fitting and Interpolation Algorithm
In Chapter 3, it was mentioned that the inter-atomic force constants, which allow interpola-
tion from the dynamical matrix, are obtained with a least-squares fit, subject to symmetry
constraints and the acoustic sum rule. Details of this procedure are provided here.

The Born-Oppenheimer energy surface of a lattice is given by V({x,(R)}), where
x,(R) denotes the displacement from equilibrium of the atom located at R + s, or at basis
vector s, indexed by 7 in the cell specified by the lattice vector R. The matrices, {C.,(R)},

are the 3 x 3 matrices denoting the IFCs. They satisfy

V({{x-(R)}) =V + % Z % 0(8)-Crrr(R) - % (S+R) +---.
S,R,77!

Because of crystal symmetry, there are simple symmetry relationships between interatomic-
force constants. Let U, be a symmetry operator of the crystal group (i.e., a 3 x 3 proper

or improper rotation matrix) indexed by n, which satisfies,

U,s; =8y + 8n + R(Up,s;) (A1)
UnSTI = Sy’ + gn + R(Un, S-,—/). (AZ)
R' =U,R +R(U,,s) — R(Uy,,s;), (A.3)

where g, is the glide associated with U, s, is the atomic position of the 7** atom relative
to a Bravais lattice site and, R(U,,s;), R/, and R are lattice vectors. The basic symmetry

transformation relating interatomic force constants is
(Unel)? - Coor(R) - (Unep) = el - C.i(R) - e, (A.4)
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where e, and e;, are unit-vectors in Cartesian directions labeled by the indices a and b.

We may call the triplets (R, 7,7') and (R',0,0') symmetry equivalent if they satisfy
Egs. A.1, A.2, and A.3, for some symmetry operation of the crystal group, U,,. We may
divide these triplets into triplet sets in which all of the members within the same set are
symmetry equivalent. After we divide all the triplets into sets, we assign to each triplet an
ordered pair, (j,i), where j labels the set to which the triplet belongs, and i labels which
member in the set the triplet corresponds to. There is then a one-to-one correspondence
between the triplet (R, 7,7') and the ordered pair (3, 1).

We are interested in computing the general form of C,,(R), that is, finding a minimal
set of 3 x 3 basis matrices, {Fy,k=1,..., M}, in terms of which C,,/(R) can be generally

expressed as a linear combination. That is, we have
M
C, (R) = Z apFpg. (A5)
k=1

To find {Fy,k =1,..., M}, we use the basic symmetry relation Eq. A.4, and other elemen-
tary properties of the matrix C,,/(R), to form general constraints on C,,(R). We express

these constraints as homogeneous linear equations that give us {F}. Plainly we have

2V B >’V (A.6)
02,0 (R)D274(0)  074(0)0z,1(R)’ '
and
2 2
o*V vV (A7)

02,4(8)0z,5(R+S)  02:4(0)0z,3(R)’
Eq. A.6 is the equality of mixed partials, and Eq. A.7 results from the discrete translational

symmetry of the crystal. Combining Eq. A.6 and Eq. A.7 and setting S = —R,, we obtain

0%V _ 0V (A.8)
a.Z'T/b(O)a.Z'Ta(—R) - 6.Z‘Ta(0)6.23‘7—lb(R) ’ )
Combining the definition in Eq. 3.1 and Eq. A.8, we have
CI.(-R) = C,~(R). (A.9)
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From this it follows that C,, (k) is a Hermitian matrix, if taken as a 3N x 3N matrix, where
N is the number of atoms in the unit cell. Because Eq. A.9 is equivalent to the Hermiticity
of the reciprocal-space IFC Cs(k), we will refer to Eq. A.9 as the “Hermiticity condition.”

For a given triplet (R, 7, 7'), we define the little group and transpose set (Lwr,,,, and
Twr,r,r) as follows. Ly ;. is the subgroup of the crystal group that transforms the triplet
(R,7,7') into itself. Twr, ;. is the subset of the crystal group that transforms the triplet

(R,7,7') to (-R,7',7). Tr,,,,» may or may not be a group. From Eq. A.4, we have
Crrr(=R) = UTC,p (R)U,., U, € T (A.10)

Combining Eq. A.10 with the Hermiticity condition (Eq. A.9), we have
CcT,(R)=UYC,(R)U,,U, € Tr r.- (A.11)

This constrains the transpose of the real-space IFCs. In particular, if one has cubic symme-
try, it implies that the diagonal blocks of the dynamical matrix must be symmetric. Further

constraints can be imposed by the little group:
C,»(R)=UYC,(R)U,U, € Ly, (A.12)

Eq. A.11 defines the transpose-set constraints, and Eq. A.12 defines the little-group con-
straints. The next step is to exploit the above constraints toward finding the basis matrices,
{F1}. Later, further constraints are introduced to enforce the acoustic sum rule.

We may define another set of 3 x 3 basic matrices, {B;,i =1,2,...,9}, as,



Here we employ the dyadic notation whereby Zy denotes a 3 x 3 matrix with all zero
entries except for a 1 in the 3rd row and 2nd column. We may define the scalar product of

two 3 x 3 matrices in terms of the basic matrices,

(Bi, Bj) = 4y (A.13)
We define the entries of the 9 x 9 matrices, S, and M(n), by,

Sij = (B, B}) (A.14)

and

M;;(n) = (B;, ULB;Uy,). (A.15)
If we express C.,/(R) as a linear combination of the nine basic matrices, i.e., as
9
C.(R) =) a;B;, (A.16)
i=1
the little-group constraints (Eq. A.12) become
9
Z(M”(n) - 6,~j)aj =0,U, € Lr+r, (A.17)
j=1
and the transpose-set constraints (Eq. A.11),

(MZJ (TL) - Si])a,] = 07 Un € TR,T,T’- (A18)

9
=1

J

If there are N operations in the little group and Nt operations in the transpose set, there
are a total of N' = 9(NL, + Nr) constraint equations, not all of which are independent. Let
us define a set of N’ 9-component vectors, {#(™,n = 1,..., N'}, such that the system of
equations,

9
Z/Bz(n)ai =0,TL=1,...,NI, (Alg)
i=1

is equivalent to the combined system of Eq. A.17 and Eq. A.18. We then define {v("),n =

1,...,M'}, with M' < N', as a Gramm-Schmidt, orthonormal basis that spans the same
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space as {#(™}. We define a 9 x 9 dimensional projector matrix, P, using
MI
Py =Y ol (A.20)
n=1

Let {W(k), k=1,..., M} be the complete set of M orthonormal eigenvectors of P with zero
eigenvalue. We then have
9
Fr =Y w"B.. (A.21)
i=1
In what follows, we consistently use the following symbols to denote the various

different kinds of indices involved. All of the below indices are integers.

e 1 : indexes the k,-point in the BZ.

a,b : are Cartesian vector indices.

e j : refers to a set of symmetry-equivalent dynamical matrices in real space.

e { : refers to a member in a set.

k : refers to the basis matrices of which the IFCs in real-space are a linear combination.

e 0,0’ : refer to the atomic basis within a unit cell.

e Ny(j) is the number of basis matrices in the j* set.
The variables and quantities which we will be using are:

e R;; : is the lattice vector corresponding to the j¢* triplet set and i*" member.

® 7ji,Tj; : are the indices of the basis atoms of the j** set and i** member.

e C(j) : is a 3 x 3 matrix for the 1°* member of the j®* set. It is the 7;1,7]; block of

the IFCs in real-space with separation vector R;y, i.e., C(j) = Cle)TJ’-l (Rj1)-

o Fj; : for agiven j, {Fjir,k=1,...,Ny(j)} is a linearly independent set of Ny(j) 3 x 3

matrices (the basis matrices). They are related to C(j) by

Ny ()
CG) = > ajxFj, (A.22)
k=1
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where the a;; are to be determined by a fitting procedure to be described and are not

determined by symmetry.
e C(u,0,0') : is a 3 x 3 matrix giving the 0,0’ block in the IFCs at Bloch vector k,,.

e Uj; : is the matrix transformation that relates an element in the set/member ji with

an element with set/member ji, according to, er,-r]’.,. Ryi) = UjTiCT].lT]/_1 (R;1)Uj;.

We consider the following quantity s, defined as,
s=> ) | > [U7:C()Ujilape™ R3¢ — [Cp,0,0")]asPw(p),  (A.23)
oo’ abp {i,j\rjiza',rjfiza’}
or

s({age}) =)D | > [UJiF 31 Ujilavajie’ ™ = [Cp, 0,0")]as *w(p),

oo’ abp {i,j,k|rji=0,7];=0"}

(A.24)
where here we show the explicit dependence on the set of coefficients {a;r} and the weights
{w(p)}, which are arbitrary and can be chosen for a variety of convenient ends, such as phase-
space weighting. The matrix, C(u,o0,0’), is determined by means described in preceding
chapters of this thesis. The parameters {a;;} are fitting parameters. Here we choose the

triplet sets, (4,%), for which we have
I Ryji + 750 — i |< e,

where 7. is some cutoff selected by the user.

To ensure that C, (k) is manifestly Hermitian, we divide the triplet sets into two
groups. Within group (1) are those for which there exists a paired counterpart in a
different set, i.e., a pair (j,¢) and (j',4'), such that we have R;; = —Rjy and 75 =
TirysTj; = Tjrer. Within group (2) are those for which there exists no such pair. We let
Q{i, jlmji = 0,7j; = o'} denote the set corresponding to group (2) and P{i, j|7j; = o,7j; = o'}

denote the set corresponding to group (1) with only one of the pair members counted to
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avoid overcounting. (Note that the triplet sets in group (1) occur in pairs.) This implies
including half of the triplet sets in group (1) when performing the fit, and using the Her-
miticity condition to deduce C,,(R) if it belongs to an excluded triplet set. It should not
matter which of a pair of triplet sets is included in the fit.

We then rewrite Eq. A.24 in terms of these two groups as:

s({age}) = DD > a;k[UFjxUjilape™* ™5 — [C(, 0,0")]an | w (1)
oo’ aby Q{i,j,leji:(T,T;i:U’}
+ ZZ| Z ajk[US;F 1 Ujilape™ 5t — [C(u, 0,0")]ap|*w(ps)
oo’ abp P{’i,j,k|T_7-,-:a,TJ’,i:a’}
+ 2| > ajk[ULF U jilhae™ % Rit — [C(u, 0", 0)]as 2w (p).

oo’ abp  P{ij,k|rji=0,7;,=0"}
We perform a constrained minimization on the quantity s({a;x}) subject to the acoustic

sum rule, which can be expressed by

> [Crr(R)]ap = 0. (A.25)
Rr

Here there is one equation for every combination of 7, a, and b, giving a total of 9V constraint
equations. The acoustic sum rule is therefore a further set of constraint equations linear

in the fitting parameters. To determine these linear equations explicitly, we first define the

quantity,
(A.26)
Ajk;uo’o" ab = Z [U;;ijUji]abeik#'Rﬁ
Q{ilrji=o,7};=0"}
+ > [U5iF e Ujilape™ 7 + > [U;F i Ujilpae it
Plilrji=o,7j;=0"} Pli|rji=o’,7};=0}
The acoustic sum rule applies to the wave vector
k, =0. (A.27)
It is helpful to take the value of u from Eq. A.27, and define:
Cjk;aa’ab = Ajk;;unf’ab- (A28)
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The acoustic sum rule is satisfied through the fitting parameters which satisfy the following
system of linear equations:

Z @k Cikioorab = 0. (A.29)
ik

This system of 9N equations is not necessarily linearly independent. For example, in
a system like diamond, there is only one linearly independent constraint equation in a set of
18 linear equations. To reduce Eq. A.29 to an equivalent smaller set of linearly independent
equations, we use Gauss-Jordan elimination. Supposing that they reduce to a system of N,

linearly independent equations, we have

g( ({ajr}) = Za]kc Ly =0, v=1,. (A.30)
By minimizing s({a;x}) subject to the constraint relation in Eq. A.30, we have

9s( {a]k} ( )69( ) ({aje I
v =0. A3l
6a Ikl ZA 604 lkl O ( 3 )

Here A(*) are Lagrange multipliers, which need to be found. Eq. A.31 reduces to

N,
Z Mj’k’,jkajk =+ Z )\(V)C‘gl,jzj = bjlkl, (A32)
ik v=1
with
M i, = Z W) Ajkpoo ab Ak po ot ab (A.33)
pooa’ab
and
b= 3 00 A0 s [C( 0,0 (A.34)
poo'ab

If there are Ny fitting parameters (i.e., the a’s), then Eqgs. A.30 and A.32 form a system of

N, + Ny equations with N, + Ny unknowns.
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