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Abstract

In order to successfully apply Run-to-Run (RtR) control or real time control in
a semiconductor process, it is very important to estimate the process model. Tradi-
tional semiconductor process control methods neglect the importance of robustness due
to the estimation methods they use. A new approach, namely the set-valued RtR con-
troller with ellipsoid approximation, is proposed to estimate the process model from a
completely different point of view. Because the set-valued RtR controller identifies the
process model in the feasible parameter set which is insensitive to noises, the controller
is robust to the environment noises. Ellipsoid approximation can significantly reduce
the computation load for the set-valued method. In this paper, the Modified Optimal
Volume Ellipsoid (MOVE) algorithm is used to estimate the process model in each run.
Design of the corresponding controller and parameter selection of the controller are in-
troduced. Simulation results showed that the controller is robust to environment noises
and model errors.
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1 Introduction

IN semiconductor manufacturing, run-to-run (RtR) control is paid more and more atten-
tion. The RtR control method is applicable to many semiconductor processes such as the
photolithography, the Chemical Mechanical Planarization (CMP), the Low Pressure Chem-
ical Vapor Deposition (LPCVD) furnace, the sputter deposition, the ion implantation , the
photoresist processes, etc.

In order to successfully apply RtR control or real time control in semiconductor process,
it is very important to estimate the process model. Traditional RtR control methods neglect
the important concept of robustness due to the estimation methods they use [16], [17],
[11], [3], [15], [19], [14], etc. A new approach, namely the set-valued RtR controller with
ellipsoid approximation, is proposed from a completely different point of view. Because of
the existence of noises, we can not accurately estimate the process model. The possible
estimates for the process model in the next run is a set. We call this set the feasible
model parameter set. Because the set-valued RtR controller identifies the process model
in the feasible parameter set which is insensitive to noises, the controller is robust to the
environment noises.

The spectrum of problems that have been approached by the set-valued approach are
control, image processing, speech processing, system identification, spectral estimation, etc
[7]. The main difficulty in the application of the set-valued based RtR controller lies in the
excessive computational time required to calculate the feasible sets and solving the opti-
mization problem within these sets. It is hard to describe these sets with explicit formulas,
because they can be very irregular.

Generally, the feasible parameter set of a process can be estimated by the set-valued
approach in the following ways [18]: 1. The ellipsoidal approach. It is natural to use ellipsoids
to approximate the region of indeterminacy. Because it has the following advantages: An
ellipsoid is simply characterized by a vector center and a matrix; for convex regions, ellipsoids
can be used to obtain a satisfactory approximation; linear transformations map ellipsoids
into ellipsoids. 2. The orthotopic bounding. The feasible parameter set S is bounded
with an orthotope aligned with the co-ordinate axes. S is defined by a set of 2N (N is the
output parameter vector dimension) linear inequalities. Each bound can be obtained by
solving a linear programming problem (e.g., the simplex method). 3. The exact bounding.
Some approaches are applicable to obtain the exact description of the set S in some special
situations [4], [13]. For approaches 2 and 3, they are usually very complex, and the estimate
of the process model within these sets is extremely difficult to obtain. Therefore, we choose
the ellipsoidal approach to approximate the feasible parameter set.



In application of the ellipsoid algorithms, the minimum volume ellipsoid that bounds
the parameter set is desired. According to the difference of the search for the minimum
bounding ellipsoid, there are mainly two algorithms: the Optimal Volume Ellipsoid (OVE)
algorithm [6] and the Optimal Bounding Ellipsoid (OBE) algorithm [8]. The OVE algorithm
was developed by M. F. Cheung, etc. It is based on Khachiyan’s ellipsoid algorithm[1]
developed for solving the linear programming problem. However, the OVE algorithm can
not track fast changing processes. In this paper, it is modified not only to track such
processes, but also to deal with various disturbances. The new algorithm is called the
Modified OVE (MOVE) algorithm. The OBE algorithm was developed by Fogel and Huang
as a set-membership parameter estimation algorithm [10]. An important OBE algorithm is
the Dasgupta and Huang OBE (DHOBE) algorithm [8]. It differs from the previous OBE
method by introducing a forgetting factor which tries to shrink the ellipsoid each time the
model is updated. For application of the DHOBE algorithm in RtR control, please refer to

[9]-

Both the MOVE algorithm and the OBE algorithm use ellipsoids to approximate the
feasible parameter sets, and both update the process models only when it is necessary.
The difference between them lies in: The derivation of the MOVE algorithm is based on a
geometrical point of view, but the OBE algorithm uses a Recursive Least Square (RLS) type
scheme to update the center of the ellipsoid. For a detailed comparison of the two ellipsoid
algorithms in RtR control, please refer to [20].

The rest of the paper is organized as follows: The introduction of the structure of the
set-valued RtR controller with ellipsoid approximation is given in section 2.1; the MOVE
algorithm is described in section 2.2; selection of important parameters for the controller and
the procedure of the controller are given in section 2.3 and section 2.4; the application of the
controller is simulated on several photoresist processes in section 3; finally, conclusions and
future work are given in the last section.

2 Design of the Set-valued RtR Controller with Ellip-
soid Approximation

The idea of the controller is to use the ellipsoid algorithm to estimate the process model
in each run. If the disturbance exceeds certain threshold, then the process model will be
updated.
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Figure 1: Structure of the set-valued RtR controller with ellipsoid approximation

2.1 Structure of the Set-valued RtR Controller with Ellipsoid Ap-
proximation

In general, the function of a RtR controller is to maintain the outputs of a process as close
to targets as possible. The structure of the set-valued RtR controller with ellipsoid ap-
proximation is shown in Figure 1. In this controller, the ellipsoidal parameter estimator
approximates the feasible sets with ellipsoids and estimates the process model for the next
run. The optimizer then optimizes the model supplied from the ellipsoidal parameter esti-
mator and adjusts inputs to the plant. The plant model can be linear or non-linear. There
are different methods to select the estimate of the process model within the ellipsoid. For
example, the estimate may be based on the worst case approach [2], where the authors seek a
process model within the ellipsoid to minimize the worst-case cost. In this paper, the center
of the ellipsoid is used as the estimate, since it has the following advantages:

1) Simplicity. The center of the ellipsoid is available right after each recursion of the
MOVE algorithm. The worst-case approach needs to take into account of the cost function,
and solve the mini-max problem in the estimation, which makes it very complex.

2) Optimality. The center of the ellipsoid is an optimal estimate in a geometric sense.
The worst-case approach may be conservative compared to this approach. Comparative
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experiments show that the controller using the center as the estimate of the process model
has better or comparable performance over the controller taking the worst-case approach [9].

3) Safety (Robustness). The center of the ellipsoid is a safe estimate of the process model.
Especially for convex sets, the center is one of the safest points that can not easily fall out
of the feasible parameter set under unknown disturbances, as shown in Figure 2. In the
figure, point B is not a safe estimate, since it can go easily out of the feasible set. Since most
semiconductor processes can be described by convex functions, the center of the ellipsoid is
safe in general.

The ellipsoidal parameter estimator uses the MOVE algorithm to calculate the ellipsoid
which bounds the feasible parameter set. It is introduced in the following section.

2.2 The MOVE Algorithm

For a linear-in-parameter system, it can be rewritten as the following form:
Y = Xp O + (1)

where k is the run number, ¥, is the output, X}, is the vector of inputs, 6, is the vector of
process parameters to be estimated, and 7 is the noise. For example, a process with model:

Ye = Ck1tCr2: Uk1+ Cr3: Uk + Cra- Uks
2
TCh5 " Uk,1 - Uk,2 + C6 " Up 3+ Nk (2)
where uy, 1, ug 2 and uy 3 are inputs, and ¢ 1, ..., ¢; 6 are the model parameters to be estimated.

. . . . 2 T
It can be rewritten in the form of equation (1), with Xy = [1,up1, ug 2, Uk 3, Uk1Uk2, Up 3]
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_ T
and 0 = [Cr.1, Ck,25 Ck,35 Chi,ds Chi,5y Chis6) -

Suppose that the noise bound is 7, then the feasible parameter set is:
Fo = {0k : lyp — X 0] <7} (3)

In general, this set is difficult to calculate. Then we want to find the minimum volume
ellipsoid FEj, such that:
Ex, = min{wol(Ellipsoid E)} (4)
with
Ellipsoid FE D F}, (5)
The ellipsoid algorithm then produces, at each step k, a set of estimates bounded by the
ellipsoid: X X
Ek = {Hk : (9k - Qk)TPk_l(Hk - Hk) S 1} (6)

Where P, determines the volume of the ellipsoid, and ék is the center of the ellipsoid at run
k. Therefore, with the change of the process, there is a series of moving ellipsoids that bound
the changing process parameter sets.

The MOVE algorithm can be generalized as the following steps:

Step 1. Calculate the following parameters:

oy ty— X160
a =

h )
\/ X Pr—1.Xk

R — (8)
VXL P X,

If o > 1, then reset ﬁtoﬁ—o‘T’l and a = 1. If 20 — a > 1, then reset (§ to HTO‘

Step 2. Calculate 3 intermediate variables 7, § and o.

(i) If  # (3, then find the real solution 7 of

(1+a)a—28+1)
60—«
+2[n(f —a) + 1]} +na(a—28)+1=0 9)

(n+1)7° +{

such that o — 23 < 7 < . In the above equation, n is the dimension of the estimated vector
6.



(T+12%(B—a)—17(1+a)(260—a—1)

0= 10
T+0—« (10)
—T
= 11
e (1)
(i) If &« = 3, then 7 = 0, and
n
§= 1-p3 12
(1) (12)
1 —n3?
Step 3. If o > 0, then update the ellipsoid:
- A P, 1 X
Oy = 0y + —— P10k (14)
X Py 1 X,
P, 1 X, XIP,_
Py = 6(Py_y — o2k “ kol (15)

XT P 1 Xy
If o <0, then the ellipsoid is not updated and go to next step directly.

Step 4. Expand the ellipsoid. This is the modified part. Due to the existence of drift
noise, the real size of the bounding ellipsoid will be larger than the one obtained by the
OVE algorithm. Therefore, the ellipsoid should be expanded a little bit in each step. The
expansion is closely related to the size of the drift noise.

P.=P.+F (16)
Where F is usually set as follows:
[ F(1,1) 0 0o - 0 7
0 F2,2) 0 --- 0
0 0 0 (17)
0o . 0
L0 0 F(n,n)




Without the expanding matrix, the OVE algorithm will fail in the case of drift distur-
bance. The value selection of the expanding matrix will be discussed in the following part.

The algorithm can be initiated with a sufficiently large Fj containing the feasible param-
eter set. For example, we can let Py = 10° - I.

The convergence of the OVE algorithm is given in [6] by using a Lyapunov value function.
The MOVE algorithm does not change the center of the ellipsoid. Instead, it insures the
expanded ellipsoid can cover the area that the parameter reside in the next step. Therefore,
the algorithm will not return a null value and reset with proper selection of parameters.

The corresponding set-valued RtR controller using the MOVE algorithm is called the
SVR-MOVE controller. Next, we introduce the parameter selection of the SVR-MOVE
controller.

2.3 The Parameter Selection of the SVR-MOVE Controller

There are three important parameters in the SVR-MOVE controller:

1) The threshold for judging drifts and shifts (step disturbances). To discern the existence
of a step disturbance in a process, a threshold parameter ¢ which is usually equal to the 3o
bound of the process is added. Once ( is exceeded, it means that a step disturbance occurs
and the ellipsoid matrix is reset to a large value, such as P = 10° - I.

2) The noise bound ~. It should be given a small value, which ensures that the volume of
the feasible parameter set is small. However, it can not be too small, otherwise the bounding
ellipsoid will be small, which causes the reset of the ellipsoid too often. In practice, it is
found that the range [0.01,0.1] is good enough.

3) The expanding matrix F. The most important parameter of F is F(1,1), since it is
directly related to the drift noise. As to the other parameter F(i,i)s, i=2, ..., n in the
expanding matrix F, they should be set smaller than F(1,1), since they are related to higher
order model parameters and have very strong effect on the process. A large value of F(i,i),
i=2,...,n may cause large variation and even instability. There is a trade-off in choosing
the value of F'(1,1). The larger the value of F'(1,1), the stronger the tracking ability; On
the other hand, F(1,1) increases the size of the bounding ellipsoid, which is contradictory
to the idea of finding the minimum volume ellipsoid. Therefore, an extremely large F(1,1)
may cause large variation and even instability. The tradeoff is illustrated here by simulation



on the following Low Pressure Chemical Vapor Deposition (LPCVD) furnace process. The

process model is:

Ry =  exp(20.65 + 0.29InP — 15189.217!
—47.97Q71)

1—0.0884R; Q1

R, =R
2 "1+ 0.0884R,Q 1

(18)

(19)

where T stands for the temperature in K, P the pressure in mtorr, and Q the silane flow
rate in sccm. They are the inputs (recipes) to the process. We adjust them to maintain

the process outputs on targets. R; and R, are the deposition rates in ;1 /min on the first

and last wafer respectively. The target rates are fixed at 169.75 A /min and 141.7 A /min

respectively.

Equation (18) can be simplified to a linear process by taking “logarithm” operation and

variables substitution.

In(Ry) = 20.65 + 0.29u; — 15189.21uy — 47.97us

where
u; = InP
Uy = TY_1
’u/3 = = Qil

But Equation (19) is still nonlinear after the operation.

In(Rz) = In(R1)+ In(l—0.0884R; u3)
“In(1 + 0.0884R,uy)
= 20.65 + 0.29uy — 15189.21uy — 47.97ug
+In(1 — 0.0884R,us)
“In(1 + 0.0884R,uy)

The outputs of the process in each run are:
Yp = Ri+di-k+uv

9

(20)

(22)
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Figure 3: MSEs of the process with respect to F(1,1)s
Yp =Ro+da-k+vy (23)

where y} and y? are outputs of the process at run k, d; and d, are the drifts, and v; and v,
are white noises. Here d; = dy = —0.3.

First, let us look at the relationship between a drift and F(1,1) without other disturbances,
ie., v; = vy = 0. We fix F(i,7) = 10712, i=2, 3, 4 in this section. The simulation result is
shown in Figure 3. It can be seen that when F1(1,1) and F2(1,1) are small, the Mean Square
Errors (MSEs) are large; when F1(1,1) and F2(1,1) are larger than 1072, the MSEs are small
and do not change much when F(1,1)s are increased. Therefore, without other noises except
the drifts, a fairly large F(1,1) is preferred.

In real life, there exist various noises. Next, white noises v; and v, are added to the
processes. The simulation results are shown in Figure 4 and Figure 5, where the MSEs are
obtained by setting F1(1,1)=F2(1,1)=5 x 107% and F1(1,1)=F2(1,1)=0.05 separately. In
both figures, MSEs are equal to zero when the drifts and noise variances are zero. But in
Figure 4, only MSEs are equal to zero at the point where the drifts and noise variances are

10
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Figure 4: MSEs with respect to white noise variances and drifts when F1(1,1)=F2(1,1)=5 x
1076

all equal to zero, and they increase rapidly when the drifts increase. In Figure 5, when the
noise variances are zero, the MSEs are approximately equal to zero all the time. It also can
be seen in Figure 5, the MSEs increase rapidly with the increase of noise variances.

Therefore, there is a trade-off in the selection of F(1,1)s in the MOVE algorithm. Usually
when the drifts are small, small F(1,1)s are preferred; when the drifts are large, large F(1,1)s
should be chosen. Furthermore, F(i,i)s, i=2, 3, ..., n should be given smaller values than

F(1,1) in general. When there exist very strong and irregular noises, F(i,i)s can be increased
correspondingly to increase the control ability of the controller.

2.4 Procedure of the SVR-MOVE Controller

The working procedure of the SVR-MOVE controller can be generalized as:

11
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Step 1: Initialize process model, cost function and recipes. The model can be obtained
from experiments.

Step 2: Setting targets and constraints for the inputs or outputs.
Step 3: Setting the controller parameters.
Step 4: Generating recipes by the process model to minimize the cost function.

Step 5: Measure outputs, update the process model if necessary. The process model is
updated only if noises exceed certain threshold, which reduces the variation of the process.

Step 6: Go to step 4.

3 Application of the SVR-MOVE Controller

3.1 An Almost Linear Photoresist Process 1

The following is the model used in the photoresist process I [12].

2.54 - 106 1.95- 107

T= — 13814+ +
VSPS ' BTE+/SPS
_ 378871 —0.285pPT — 010" (24)
' ' SPS

Where T is the resist thickness in Angstroms, and the target is fixed at 12373.621
Angstroms. SPS is the spin speed in RPM, SPT the spin time in seconds, BTI the baking
time in seconds, and BTE the baking temperature in degrees Celsius. They are the inputs
(recipes) to the process, which are confined to:

4500 < SPS < 4700
15 < SPT <90

13



105 < BTE < 135
20 < BT1 < 100

After changing process variables, it can be simplified to an almost linear process. The
simplified model is shown in the following equation:

T= — 13814+ 2.54-10%u; + 1.95 - 107w uqy
— 3.78u3 — 0.28uy — 6.16 - 107u,? (25)
where:
1
Uy =
V/SPS
1
Y2 = BTE
us = BTI
Uy = SPT

The output of the process in each run is:
yp =T +di-k+uv (26)

where d; = —0.3 and v; is Gaussian with zero mean and variance 9.

_ The parameters for the SVR-MOVE controller are n = 6, v = 0.05, Fy = 10° - 1,
0o = [—13814,
2.54-10%,1.95 - 107, —3.78, —0.28, —6.16 - 1077 and

20 0 0 0 0 0
0 108 0 0 0 0
0 0 10 0 0 0
F=10o 0o 0o 10 o o (27)
o 0 0 0 10% 0
0 0 0 0 0 10°%)

The simulation result is shown in Figure 6. In this figure, the solid line is the controlled
process output, which stays in the 30 region satisfactorily. The dashed line, which diverges

14
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Figure 6: Photoresist process I controlled by the SVR-MOVE controller under drift

because of the drift disturbance, is the uncontrolled process. The three straight dashed lines
in the figure are the +30, target and —3o lines respectively.

In the next, white noise in the process is removed and only the drift exists as the dis-
turbance. From Figure 7, it can be seen that the controlled process stays very close to the
target, and the uncontrolled process diverges as a straight line. This shows the validity of
the SVR-MOVE controller to deal with drifts.

3.2 A Full Second-order Nonlinear Photoresist Process 11

Now the process is a full second-order nonlinear process [12].

R = 134.4 — 0.046SPS + 0.32SPT — 0.17BTE

0.023BTI —4.34-107°- SPS - SPT

519-107°.SPS-BTE —1.07-107°

SPT-BTE +5.15-107° . (SPS)?

— 4.11-107*-SPT-BTI (28)

X + +

15
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Figure 7: Photoresist process I controlled by the SVR-MOVE controller under drift without
white noise

Where R is the reflectance in %, and the other variables are defined the same as in previous
section. The target is fixed at 39.4967%.

After variables substitution, the model is changed into:

R= 134.4 — 0.046u; + 0.32uy — 0.17us + 0.023uy
— 4.34- 10 %uqus
+ 5.19-10%ujus — 1.07 - 10 3uqus

+ 5.15-107%7 — 4.11 - 10" upuy (29)
where
Uy = SPS
Uy = SPT
u3 = BTE
uy = BTI

The output of the process in each run is:

yp = R+dy - k+ v (30)

16
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Figure 8: Photoresist process II controlled by the SVR-MOVE controller under drift

where d; = —0.3 and v; is Gaussian with zero mean and variance 9.

The parameters for the SVR-MOVE controller are n

0o = [134,

10, v = 0.05, Py = 10° - I,

—0.046, 0.32, —0.17,0.023, —4, 3410 5.19-10~°, —1.07-103,5.15- 1075, —4.11- 10~4|” and

[ 0.05
0

0

0 0 0
1075 0 0
0 0
o . 0
0 10°°

- 10

(31)

From Figure 8, it can be seen that the controller still controls the nonlinear process well,
and the uncontrolled process diverges.
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3.3 Photoresist Process I with a Large Model Error and Multiple
Noises

We still use the photoresist process I in section 3.1. Now assume that we do not know the
exact underlying process model. It means that there is a large model error at the beginning
of the process. Several different kinds of noises are added too. Now y = [—13600,2.5 -
10°,2.01 - 107, —4.02, —0.31, —5.99 - 107]~.

The output of the process in each run is:
yk:T+d1-k+Ul+Uz+U3+Ug'U4 (32)

where T is defined the same as in equation (25). The noises are: d; = —0.3, v; is Gaussian
with zero mean and variance 9, vy is the product of two independent Gaussian variables with
zero means and variance 1s, vz is a random variable with uniform distribution in [-1,1], and
vy is again Gaussian with zero mean and variances 1. A large step disturbance will occur at
run 30.

The parameters for the controller are: n = 6, v = 0.05, Py = 107> - I and

20 0 0 0 0 0 ]
0 006 0 0 0 O
0 0 005 0 0 O
F=19 0o 0 005 0 o (33)
0 0 0 0 005 0
0 0 0 0 0 005

The simulation result is shown in Figure 9. It can be seen that the process returns to
the target right after the process begins; when the large step disturbance occurs at run 30,
the process has a large disturbance too, but it returns to the target again immediately. This
shows the capability of the scheme to deal with large model errors, large disturbance and
multiple noises.

4 Summary

The set-valued RtR controller with ellipsoid approximation gives a good and safe estimate
of the process model in a minimum volume ellipsoid. It is easily applicable to various
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Figure 9: Photoresist process I with large model error and various disturbances controlled
by the SVR-MOVE controller

semiconductor manufacturing processes. The MOVE algorithm can track fast changing
processes and deals with various disturbances. The SVR-MOVE controller is much more
robust to disturbances and model errors than regular RtR controllers. For comparisons of
the SVR-MOVE controller with some other typical RtR controllers, please refer to [20].

In the selection of parameters for the SVR-MOVE controller, further theoretical analysis
is still needed. For those processes with dynamic nature that can not be expressed in a
polynomial form, a much more general scheme is still not available. Our ultimate goal is to
develop a general set-valued controller for a larger set of industrial processes.
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