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At the heart of any decision problem is some degree of “flexibility” in how to act. Most of-

ten, we aim to extract greatest possible value from this inherent flexibility. The three essays

compiled here are aligned with this same general aim, but we have an important secondary

concern: to highlight the value of flexibility itself in the various situations we study. In

the first essay, we consider the timing of an action: when to replace obsolete subsystems

within an extensive, complex infrastructure. Such replacement action, known as capital

renewal, must balance uncertainty about future profitability against uncertainty about fu-

ture renewal costs. Treating renewal investments as real options, we derive the unique,

closed-form optimal solution to the infinite horizon version of this problem and determine

the total present value of an institution’s capital renewal options. We investigate the sensi-

tivity of the solution to variations in key problem parameters. The second essay addresses

the promising of lead times in a make-to-order environment, complicated by the need to

serve multiple customer classes with differing priority levels. We tackle this problem with

a “model free” approach: after preparing a discrete-event simulation of a make-to-order

production system, we determine a policy for lead time promising through application of

a reinforcement learning algorithm. The third essay presents an empirical analysis of new

product launches in the automotive industry, showing that manufacturing flexibility is one

key indicator of superior productivity during launch. We explore the financial dimensions

of the apparent productivity differences and show that the use of flexible manufacturing

increases an automobile plant’s likelihood of being chosen to host a new product launch.
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CHAPTER 1

INTRODUCTION

1.1 DISSERTATION OVERVIEW

The concept of “flexibility” is a common point of return for the three essays in this disser-

tation. Since some element of flexibility lies at the heart of any decision problem, there

is nothing new nor hardly more important than showing how to extract greatest possible

value from it. The studies here attempt, however, to add a little to this essential concern,

by recognizing the value of flexibility itself in the various situations we study. This aim

is akin to the classic sensitivity analysis of mathematical programming, which reveals the

marginal value of each resource that is needed for the task at hand.

While sensitivity analysis is generally applicable to static, deterministic optimization

problems, flexibility is the analogous concern in dynamic, stochastic settings. Faced with

one or more elements of uncertainty, a more flexible position is on that ”leaves available

a larger set of future positions at any given level of cost” (Jones and Ostroy, 1984). This
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larger set of positions enhances the decision maker’s ability to take advantage of new in-

formation. Correspondingly, any benefit from flexibility is to be understood in the sense of

average or expected returns.

Just as the marginal value of a resource in a static optimization problem may be zero

or close to it, the value of flexibility is likely to be small in situations where the variance in

key processes is limited. Moreover, we make no assumption that flexibility will be the most

important element in our analyses: other problem parameters - including ones that may be

beyond immediate managerial control - and the quality of the solution approach itself may

have greater impact on overall returns. Nevertheless, as long as it is present, flexibility is a

dimension that warrants exploration in dynamic contexts.

The sections below provide a brief summary of the chapters to follow, highlighting the

form of flexibility that appears in each case and the key findings.

1.2 CAPITAL RENEWAL AS A REAL OPTION

An archetypal context for flexibility is the question of timing for an investment decision. In

chapter 2 we consider the problem of timing for reinvestments. For large, capital intensive

institutions, reinvestment in existing infrastructure is a recurrent necessity: obsolescence

of key subsystems entails higher operational costs and renders a business less attractive to

discerning clients. Reinvestment policies must, however, balance uncertainty about future

profitability against uncertainty about future renewal costs: acting too soon or too late may

diminish the value that renewal activity can create.

As with initial investment decisions, real options analysis provides a natural framework

for the modeling and analysis of the reinvestment problem. Option pricing in this context

is synonymous with the valuation of flexibility in timing. Treating renewal investments as

real options, we derive an optimal capital renewal policy for an institution subject to ex-

ogenous price levels. We calculate the total present value of an institution’s capital renewal
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options and show it is increasing in the variance of infrastructure evolution. Moreover,

we illuminate the impact of key policy parameters on the optimal policy: specifically, cost

scales, price trends, infrastructure decay rates, and variability in the infrastructure process.

1.3 DYNAMIC LEAD-TIME PROMISING

In addition to the constraints imposed by inventories and production capacity, the need to

serve multiple customer classes with differing priority levels can put great strain on a firm’s

ability to quote accurate lead times. While a mixed integer programming model allows lead

times to be fixed for batches of accumulated demands (Chen et al., 2002), approximate

dynamic programming methods hold the promise of a policy based solution, where lead

times can be quoted in real time. Chapter 3 proposes a "model free" approach to this

problem: after preparing a stochastic simulation of a make-to-order production system, we

determine a policy for lead-time promising through application of a reinforcement learning

algorithm, specifically, relative Q-learning for average reward (Gosavi, 2003).

Our simulation studies show how average rewards tend to vary with the likelihood of

supply chain disruptions, the cost of production overtime, and production capacity con-

straints. The dimension of flexibility lies here in the range of lead time offers that the firm

can make to its customers, and we find that in cases of higher demand variance, the value

of flexibility can be as important as the quality of our policy generation algorithm.

1.4 AUTOMOTIVE LAUNCH PRODUCTIVITY

Product flexibility in automobile manufacture enables the dramatic growth in model variety

that the industry has seen in the last 20 years, but the same flexible manufacturing methods

appear to have a negative impact on overall productivity (Van Biesebroeck, 2007). Our

analysis in chapter 4 suggests that flexibility may nonetheless be beneficial for productivity

in the context of a new product launch. Our results are based on eight years of recent
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data from North American automotive plants. Besides flexible manufacturing practices,

prior experience with similar products proves to be an important factor for productivity

performance during launch. Corresponding to these findings, we show that manufacturers

appear more likely to locate a launch at plants that have flexible production capabilities

and/or relevant prior experience.
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CHAPTER 2

CAPITAL RENEWAL AS A REAL OPTION

2.1 MOTIVATION

Large businesses and institutions often possess a substantial infrastructure on which their

economic activity is deeply dependent. Capital intensive industries such as energy produc-

tion, telecommunications, and transportation provide obvious examples of this dependence,

but it also occurs in enterprises that are essentially identifiable with their fixed assets, such

as hotels, museums, or universities. In all these cases, the condition of infrastructure is

an important managerial concern: aging facilities entail higher operational costs and con-

comitantly render the business less attractive to discerning clients. Nevertheless, it is rarely

either practical or desirable to replace an entire infrastructure; instead, problems must be

addressed by replacement of subsystems, such as roofs, HVAC equipment, pipelines, pave-

ments, or storage tanks. This process, known as “capital renewal” or “recapitalization,”

is key to restoring the economic value of infrastructure. Capital renewal activities should

5



therefore never be unnecessarily postponed, but the size of the expenditures involved usu-

ally also means that they should not be undertaken prematurely. Optimal timing of capital

renewal strikes a balance between these two considerations and provides maximal return

on renewal investments.

The problem of timing replacement or maintenance for a deteriorating system - which

could be anything from a piece of office equipment to a military aircraft - has been exten-

sively studied by economists and management scientists (Wang, 2002). Capital renewal

presents a subtle but important difference from these traditional problems, however, in that

it intentionally effects only a partial replacement of the system at hand. This is approach

is peculiar to extensive, complex infrastructures, where full replacement may be excluded

due to prohibitive cost or the need to preserve some historical continuity, yet regular main-

tenance of infrastructure subsystems cannot prevent their increasing technological obso-

lescence. As with full replacement or maintenance, capital renewal aims to restore the

economic value of infrastructure, but it does so by replacing only the subset of the entire

infrastructure that is no longer economically viable.

The practical distinction between traditional replacement or maintenance problems and

the capital renewal scenario entails additional requirements in the modeling of the latter.

Besides the common concern with increasing operating costs, renewal timing must recog-

nize that obsolescing subsystems imply an increasing potential replacement cost, due to

the greater number or extent of subsystems that will ultimately need replacement. More-

over, since operating and replacement costs are surely dependent on current and future

price levels, a capital renewal model should feature an exogenous price process, which in

turn conditions the revenues generated by either the current or a renewed infrastructure. In

order to examine this complex interplay of revenue and costs across potentially unlimited

renewal cycles, something other than a model of pure renewal is needed. Pure renewal

implies that the entire system is restored to a mathematically identical copy of its initial in-

stance. In order to reflect the financial exigencies of long term planning, a capital renewal
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model must distinguish the infrastructure system from the background reality of price lev-

els, since the latter may not be at all affected by the renewal of the former. This distinction

can be achieved through the use of separate price and system processes, which are related

through appropriate functional forms.

Existing literature on replacement or maintenance problems has hardly begun to admit

the distinction between system renewal and price continuation that is essential for a capital

renewal model. The field of real options analysis provides the closest approaches to date.

The real options perspective has greatly influenced the theory - and to some extent, the

practice - of capital budgeting in the last 25 years (McDonald, 2006). While early work in

this area was primarily concerned with the opportunity to invest in a new project, where

exogenous, stochastic price levels condition the potential return on investment, subsequent

research has used the same framework to show how variability in costs also conditions the

potential return on replacement investments. Nevertheless, the models either envision pure

renewal, where the key cost variable is returned to at a nominal level across all possible

replacements, or they confine the analysis to a single replacement decision. The capital

renewal model presented here will also utilize real options theory, but we shall fully allow

for the impact of price on the system renewal decisions in an infinite horizon context.

The essence of the real options approach is to make explicit allowance for the value

of flexibility in the timing of an investment decision. If the current expected net present

value (NPV) of the investment is less than the value inherent in the mere “option” to invest,

delaying the investment will be preferable to acting immediately. When applied to capital

renewal decisions, real options analysis allows us to make analogous provision for the

value of flexibility: reinvestment should not be undertaken unless the expected present

value of the renewed infrastructure, minus current the cost of renewal, is at least equal to

the combined value of the existing infrastructure and the option to renew it. Using this

key condition, we can derive an institution’s optimal capital renewal policy in an infinite

horizon context, and specify the expected value created through the series of optimally
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executed renewals.

The development of this analysis is organized as follows. In section 2.2 we take a closer

look at trade and academic literature that addresses capital renewal or related problems.

Section 2.3 formulates and illustrates our capital renewal model. Section 2.4 analyzes the

model in a deterministic context and shows the state-based version of the optimal renewal

policy, in anticipation of the analysis of the stochastic version of the model. Section 2.5

presents the stochastic analysis using the real options approach, resulting in closed form

expressions for the optimal renewal policy and the total expected value of the renewal

activity. Section 2.6 shows some numerical studies of the optimal policy’s response to its

various parameters and looks at the performance of the infinite horizon solution in finite-

horizon contexts. Section 2.7 gives concluding remarks and thoughts for further research.

2.2 LITERATURE SURVEY

The majority of writing on the subject of capital renewal appears to lie in trade publications,

commercial websites, or governmental studies. This literature is generally of a discursive

nature. Westfall (2001), for example, in a white paper for the company Tradeline, Inc.,

gives an overview of the capital renewal policies in use at IBM, Du Pont, and Freddie Mac.

June (2003) reviews the need for reinvestments in academic facilities. A discussion paper

by the Conference Board of Canada highlights the importance of renewal investments for

the Canadian and U.S. natural gas industry (Roland George, Purvin & Gertz, 2004). The

National Research Council of Canada investigated the domain of asset management and its

findings are available in the proceedings of several conferences (Vanier, 2000).

Nevertheless, detail of some quantitative approaches to renewal is available. Biedenweg

and Hutson (1982) and Kaiser (1984) argue for the use the life-cycle estimates in budgeting

facilities renewal and replacement expenses. This approach is highly case-specific, how-

ever, requiring that each facility be analyzed in terms of subsystems, each of which should
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receive its own life cycle and replacement cost estimate; the resulting data are used to make

projections for renewal needs over a five-year period. Rush (1991) introduces the Facility

Condition Index (FCI), a more general approach to facilities management. FCI is defined1

as the ratio of estimated cost of remedying any current deficiencies (CD) in a facility to

estimated current replacement value (CRV) of the facility,

FCI =
CD

CRV
, CD, CRV ≥ 0. (2.1)

FCI is widely used as a capital planning tool (Amekudzi and McNeil, 2008). Most U.S.

federal agencies base their facilities management plans on the index (Cable and Davis,

2005). It is a “current” measure that can be updated as needed, and its dimensionless nature

permits comparisons and benchmarking across facilities or institutions. Thus FCI can serve

as an objective for maintenance and renewal considerations. Consider, for example, Figure

2.1 and the accompanying text, both drawn from a recent capital planning report of the

National Aeronautics and Space Administration (NASA, 2008).
Facility Requirements Tools

Time (or Service Life)

Adequate

67 Years: Target service life of a facility with full sustainment

Pe
rf

or
m

an
ce

 (o
r 

FC
I)

Inadequate

New Facility

Replace facility.

Facility Life Cycle Performance Curve

FSM: Facility Sustainment Model; FCI: Facility Condition Index; FRR: Facility Revitalization Rate

Average Performance Curve for an inventory 
with full sustainment. The 

 10

FSM estimates the 
requirements necessary for full sustainment.

More rapid deterioration due to 
inadequate sustainment, and 
subsequent loss of service life.  

Repair necessary to bring facility 
to an acceptable condition.  The 

estimates these requirements.FCI

Recapitalization Investments: Addresses obsolescence, 
modernization, revitalization by replacement.  The
estimates revitalization requirements.

Also measure and use facility utilization, O&M costs, and mission dependency.

 FRR 

 
NASA Mission and Strategic Goals (Figure III-A) 

Figure 2.1: Facility Life Cycle Performance Curve, NASA Capital Plan, April 2008

1The definition given in (2.1) entails FCI ∈ [0,∞), but the index is often stated in the form 1− FCI, with
range [1,−∞).
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On the Y-axis is the Performance or Facility Condition Index (FCI) of the
building; on the X-axis is Time or the Service Life of the Facility. The first
curve (red) represents a new facility that has not had the proper repairs and
in which subsequent deterioration foreshortens the life of a facility. The sec-
ond curve (blue) represents a facility that has had the proper repairs (vertical
red arrow) to sustain the FCI of the facility to the target age of 67 years. The
amount needed to sustain facilities for their useful life is called the Facility
Sustainment Metric (FSM). The third and following partial curves (purple)
represent recapitalization of investments in which modernizations or repair-
by-replacement has occurred to extend the facility beyond the average target
age. The Facilities Revitalization Rate (FRR) (black vertical bar) is the amount
needed to revitalize facilities to this standard2.

NASA’s capital renewal model thus appears equivalent to the Facility Revitalization Rate

(FRR) that characterizes the discontinuous curves in the diagram. Nevertheless, the FRR

is not a decision rule, but a consequence of funding policies: according to Cable and Davis

(2005), FRR is “an indication of how often a facility is completely revitalized. It is calcu-

lated by dividing CRV by annual facility revitalization funding.” There does not seem to

be here any optimization of the revitalization trajectory with respect to financial measures.

In other words, the problem of setting a renewal policy that will minimize the expected

present value of capital expenditures (or, in the context of private enterprise, to maximize

NPV of capital investments) appears not to be addressed. In particular, the reduction of

capital renewal policy to an annual funding allowance suggests that an institution would

be less able to respond to deviations of facility conditions from the mean trajectory, which

might advance or postpone the need for capital investments.

Turning to research literature, we find that little explicit attention has been given to the

capital renewal problem. This apparent lack of academic interest is surprising, considering

the close relation of the problem to full replacement or preventative maintenance, which are

classic studies in business economics. Work on these problems predates Hotelling (1925),

who nevertheless provides perhaps the first consistent analysis of the depreciation of an

asset, by assuming interdependence between the operating costs of a production machine

2Emphasis added
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and its value. Terborgh (1949) subsequently suggests that machine operating costs may

be taken to grow at a constant rate, greatly facilitating the determination of replacement

intervals.

The earliest examples of stochastic replacement models appear to come from Weiss

(1956) and Welker (1959). These and other works of the same period are surveyed by Mc-

Call (1965). Most are concerned with systems that only have two possible states, operative

or failed, and the replacement policies derived for these are temporal rules. In contrast,

Derman (1963) analyzes a model in which the state S of the system can move through

n + 1 consecutive levels, with 0 and n denoting new and failed, respectively. The optimal

replacement policy for such a system is shown to be a control limit: for some computable

i ∈ {0, . . . , n}, replace when S ≥ i.

Although temporal rules remain more common, a distinct stream of research has pur-

sued the idea that replacement decisions can depend on some observable state of the under-

lying system. Wang (2002) describes these as “failure limit policies” and summarizes the

key features of typical models in the class. Other notable examples and extensions of the

approach include the work by Rust (1987), Hopp and Nair (1994), and Hartman (2000).

Despite the different perspectives covered by these works, they all share one important

point: the uncertainty in the system is restricted to some measure of cost. This restriction

means that no allowance is made for the evolution of prices in the system environment. In

the context of capital renewal, recognition of price as a variable is essential, since changes

price levels may impact system revenue as well as replacement costs.

With price included as a variable, profit becomes the appropriate objective for a capital

renewal decision. From this perspective, capital renewal is an investment timing problem.

The analysis of investment decisions under uncertainty has been revolutionized through the

introduction of the real options perspective, of which McDonald and Siegel (1986) provide

one of the earliest examples. In contrast to traditional discounted cash flow analyses of

investment opportunities, which requires only that the expected NPV of the asset acquired
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be positive, real options analysis suggests that investment should only be made if the ex-

pected NPV of the opportunity is at least as great as the value of retaining flexibility over

the timing of the decision.

The first study to admit replacement decisions in the real options framework is provided

by McLaughlin and Taggart (1992). Their analysis addresses primarily the opportunity cost

of refitting an idled plant to produce a different, more profitable product, but they consider

also how this cost changes if a plant can be replaced at the end of its useful life. Product

prices are exogenous to the decision process, but the cost of any action (refitting an existing

factory or building a replacement) is constant across time, unlike in the case of capital

renewal.

The work of Dixit and Pindyck (1994) remains an invaluable reference for the study

of real options theory. As with most early works in the field, however, the authors are

primarily concerned with the decision to investment in a new project, and assume in most

cases that the project, once undertaken, produces a fixed output indefinitely. They analyze

one scenario in which the lifetime of a project follows a Poisson process, and each project

can be replaced at the end of its useful lifetime, thereby entailing an infinite series of in-

vestment opportunities. Nevertheless, this reinvestment model differs in three key ways

from a capital renewal problem. First, it assumes that the profitability of a project remains

unchanged through its lifetime. Second, the costs of reinvestment are constant across the

entire infinite horizon. Third, the reinvestment option is not always present, but only comes

into existence with the death of the existing project. Each investment decision is therefore

analogous to the one required by an entirely new project. Upon expiration of one project,

it may be optimal to delay reinvestment if current price levels are not sufficiently high, but

management does not otherwise have the opportunity to optimize profits value across the

infinite horizon, for example, by reinvesting in a project before it dies3.

Subsequent work by Mauer and Ott (1995) effectively allows for variable costs in re-

3Admittedly, assuming constant profitability and constant reinvestment costs, reinvestment would not
anyway be optimal during the lifetime of a project.
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placement decisions: although the authors take the purchase price of a new asset to be

fixed, their model makes salvage cost a function of current operating cost, so the cost of

renewal is effectively state dependent. Nevertheless, the model omits the effect of a truly

exogenous price process: the initial operating cost of a replacement system is nominally

the same as the original system. This seems implausible, since the horizon of the analysis

is infinite and a discount factor is applied to the nominal costs.

Several more recent works present analyses that mirror the capital renewal problem in

many key respects. All take an infinite horizon perspective with an exogenously specified

discount factor, but each includes some constant factor of revenue or cost that seems in-

appropriate in that context. The scenario that Yilmaz (2001) considers is certainly one of

renewal investment, in that the system is partially faulty and the firm incurs compounding

losses until it chooses to fix the fault; but the renewal is only effected once, and the cost of

renewal is taken to be constant. In the model of Dobbs (2004), we have an infinite series of

entire system replacements, each at constant nominal cost. Adkins and Paxson (2006) also

envision an infinite series of system replacements, and allow for uncertainty in revenues as

well costs during each interrenewal period, but upon each renewal, revenue and cost revert

to their initial nominal levels.

The theoretical approach of our analysis is essentially consonant with these latter stud-

ies, but we tailor our model to the specific requirements of the capital renewal problem.

We retain the infinite horizon context, but our operating profits and renewal costs are con-

ditioned throughout by an exogenous price process. Renewal activity causes reversion to

an initial state, but the financial impact of this is interpreted indirectly, rather than directly

in terms of cash flows: renewed infrastructure allows us to realize fully our profit potential,

which can only be partially realized through decayed infrastructure.
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2.3 MODEL FORMULATION

We construct the capital renewal model from two key random variables. The index P

describes the market price of the the firm’s product or services (it is assumed to be a price

taker). The state variable S describes the profitability of the firm’s infrastructure. The

evolution of P and S proceeds according to two geometric Brownian motions,

dP = αPPdt+ σPPdzP ,

dS = αSSdt+ σSSdzS.

We assume that the price index does not influence the firm’s profitability, so dzP and dzS

are taken to be uncorrelated. The drift coefficient αP is positive, reflecting the tendency for

prices to increase. We take αS to be negative, however, reflecting the key assumption that

aging infrastructure tends to reduce profitability.

The use of a geometric Brownian motion process to describe a price index or the value

of some underlying asset is typical of all real options analyses. Its application to the case

of an infrastructure process alone is less common, but is needed as a way to distinguish the

impact of infrastructure on the firm’s profit from the exogenously given price level. The

impact of infrastructure on profit is described elsewhere by means of a single geometric

Brownian motion with negative drift (e.g., Blazenko and Pavlov, 2004), obscuring the fact

that profit may experience nominal growth in the short term, despite decaying profitability,

if the growth rate of price levels is greater. In our model, the interaction between price and

profitability is determined by other function forms employed for the model, as described

next.

First, we assume that the firm’s output rate is constant and denote the initial values of

P and S by P0 and S0. When a firm chooses to renew its infrastructure, the prevailing

value of P is unchanged, but S reverts to S0. The instantaneous profit of the firm, π, is a

function of variables P and S. Intuitively, π(P, S) is increasing with P and S (but note
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that S tends to decrease with time). The cost of infrastructure renewal, k, is also a function

of the variables P and S. Intuitively, k(P, S) is increasing with P but decreasing with S

(again, S tends to decrease with time, so k tends to increase).

The following functional forms and initial values capture these intuitive trends in profit

and renewal cost:

P0 = S0 = 1,

π(P, S) = PS,

k(P, S) = k0
P

S
, k0 > 0,

where k0 is a constant of proportionality between potential renewal costs and the profitabil-

ity level S.

The profit equation follows directly from the definition of profitability as the net frac-

tion of revenue that a firm realizes as profit. For the renewal cost equation, we apply the

“common wisdom” that asset deterioration is naturally exponential (Rodney, 2007), en-

tailing exponential increases in potential renewal costs, and the further observation that

infrastructure depreciation has a proportionally negative impact on profitability (Blazenko

and Pavlov, 2004). Rather than introduce a third variable to the model, we combine these

two points and use S as a proxy for the impact of infrastructure condition on renewal costs.

Since there is a positive cost of renewal at t = 0, it doesn’t make economic sense for

the firm to renew immediately. As time passes, however, the profit level of the firm falls in-

creasingly far below what could be generated with renewed infrastructure. Concomitantly,

the cost of renewal increases. If renewal is delayed too long, the net value gained from

renewal will be less than optimal.

If renewal activity can create positive net value, the number of optimal renewal epochs

for the firm is potentially unlimited. Thus we will analyze the renewal problem in the

context of an infinite time horizon. All profits and costs will be discounted at rate ρ > αP ,
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in order to ensure that the firm has a finite NPV at the outset.

In order to visualize the trade off between earlier and later renewal, consider first a

deterministic version of the model outline above (i.e., take σP = 0 and σS = 0). Take

k0 = 1.00, so the cost of renewal is initially equal to the firm’s annual profit. Suppose that

P increases at a rate of 4.25% per period, while the the firm’s profitability tends to decay at a

rate of 2.00% per period. Assuming a discount rate of 6.00%, the discounted level of profit

and cost are shown by the blue and red lines in Figure 2.2 below. The black line shows the

discounted profit that could be earned at any moment with renewed infrastructure. Thus

we can see that the capital renewal problem is to decide when to move from the blue curve

to the black curve, thereby incurring the prevailing renewal cost. For example, Figure 2.2

shows a policy of renewal at 15 year intervals. Our objective is to maximize the area under

the resulting discontinuous profit trajectory, minus the total cost of the renewals.
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Figure 2.2: Visualization of Deterministic System
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2.4 ANALYSIS OF DETERMINISTIC MODEL

Suppose the standard deviations σP and σS are identically zero in the stochastic differential

equations defining P and S. Since the curves in Figure 2.2 are all exponential, we can infer

immediately that the renewal periods of constant length T would entail only a difference

in the initial discounted price level at the beginning of each period. Also, if we consider

Pt to be the discounted price at time t (shown by the black line in Figure 2.2), then Pt is

monotonically decreasing from P0 = 1. The nth renewal occurs at t = nT and Πn is the

profit earned during the (n+ 1)th period, so we can write

Πn = PnTΠ(n−1).

Under the assumption of equal interrenewal times, the profits of each period constitute

a geometric series. A similar argument applies for the part of the renewal cost that depends

on P , so the profit over an infinite horizon is

∫ T

0

e(αP +αS−ρ)tdt+
∞∑
n=1

(∫ T

0

PnT e(αP +αS−ρ)tdt− k0
PnT
ST

)
.

Factoring out the geometric series of price points that condition the period profits, we arrive

at the following objective:

max
T

{
1

1− e(αP−ρ)T

(
e(αP +αS−ρ)T − 1

αP + αS − ρ
− k0e

(αP−αS−ρ)T
)}

.

In order to simplify notation, make the following definitions:

a = (αP + αS − ρ)

b = (αP − αS − ρ)

c = (αP − ρ)

v1(T ) =
1

1− ecT

v2(T ) =
eaT − 1

a
− k0e

bT
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The first order necessary condition for maximization of the objective function then

becomes

v1(T )v′2(T ) + v′1(T )v2(T ) = 0,

which can easily be solved for T . This is also a sufficient condition for the problem solu-

tion, since the objective is quasi-concave on the domain [0,∞).

In order to see better how this deterministic analysis relates to the stochastic problem,

we can eliminate T and find the stopping condition in terms of P and S only. Note first that

ecT is the discounted price PT at time T . Likewise, eaT gives the product PS at time T ,

while ebT gives the ratio P/S at T . We can therefore define functions V (P) and π(P , S)

that are equivalent to v1(T ) and v2(T ):

V (P) ≡ 1

1− P
=

1

1− ecT
= v1(T )

π(P , S) ≡ PS − 1

a
− k0

P
S

=
eaT − 1

a
− k0e

bT = v2(T ).

The first order condition in terms of P and S becomes

V (P)dπ(P , S) + dV (P)π(P , S) = 0.

Solving for P in terms of S yields

P =

(
1 +

(αP − ρ)(S(S − 1)− k0a)

αS(S2 + k0a)

)
.

Since the system is deterministic, we also have P = S(αP−ρ)/αS , so the optimal renewal

point is given by

1− S−g

g
=
S(S − 1)− k0a

S2 + k0a
, where g =

ρ− αp
αs

< 0. (2.2)
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Basing renewal activity on the state variable S is more appropriate in the stochastic

case, since profit and cost depend on the value of this variable, not on the time since last

renewal. Thus even with a policy of renewal when S = s, the interrenewal periods may

be quite different in length. For example, the interval of 15 years used to generate Figure

2.2 corresponds in the deterministic case to S = 0.7408. Taking this value and the other

parameters that generated Figure 2.2, but setting σP = 0.02 and σS = 0.01, a sample path

may be similar to the one shown in Figure 2.3. The second interrenewal period in Figure

2.3 is clearly about 5 years longer than the other two, even though the all renewals are

triggered when the system state reaches S = 0.7408. Thus we would like to derive an

optimality equation, similar expression to (2.2), for the case of a system with stochastic

price and profitability variables.
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Figure 2.3: Visualization of Stochastic System
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2.5 REAL OPTIONS MODEL

Assume that the value of the firm at any point is given by F (P, S). Furthermore,

F (P, S) = Fv(P, S) + Fo(P, S), (2.3)

where Fv(P, S) is the firm value with exclusion of all future renewals, and Fo(P, S) is the

additional value that may be realized through an optimal renewal policy.

Following the standard dynamic programming approach to real options analysis, we

derive a differential equation for F by requiring that the return from owning the firm during

time dt must equal the cash flow from the firm during dt, plus any capital gain in the firm

value:

ρFdt = πdt+ E(dF )

Expanding the term E(dF ) by Itō’s Lemma shows

1

2
σ2
PP

2∂
2F

∂P 2
+

1

2
σ2
SS

2∂
2F

∂S2
+ αPP

∂F

∂P
+ αSS

∂F

∂S
+ PS − ρF = 0 (2.4)

A particular solution to the above PDE is given by the expected value of all future profits,

excluding renewals, which we defined as Fv(P, S) above:

Fv(P, S) =
PS

ρ− αP − αS
= −PS

a
. (2.5)

The value of renewal options is therefore given by the homogeneous solution to the PDE,

Fo(P, S) = AP βSγ, (2.6)

where A, β and γ are coefficients to be determined through consideration of the boundary

conditions for the system.

Substituting the homogeneous solution into the homogeneous part of the PDE shows
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that the coefficients β, γ must satisfy an elliptical characteristic equation,

σ2
Pβ

2 + σ2
Sγ

2 + β(2αP − σ2
P ) + γ(2αS − σ2

S)− 2ρ = 0 (2.7)

Additionally, the following “value matching” condition is imposed to ensure that the firm

value immediately prior to renewal is equal to the value of the firm after renewal, minus the

cost of the renewal itself:

AP βSγ − PS

a
= AP β − P

a
− k0

P

S

⇒ AP βSa(Sγ − 1) = P (S(S − 1)− k0a) (2.8)

Finally, the partial derivative of (2.8) with respect to P or S gives us two “smooth pasting”

conditions that ensure optimality of the renewal point:

AβP β−1Sa(Sγ − 1) = S(S − 1)− k0a (2.9)

AγP β−1SaSγ = S2 + k0a (2.10)

Dividing (2.8) by P and comparing the result with (2.9) shows immediately that β = 1.

Thus P drops out of all three equations. Substituting for A from (2.10) into (2.8) yields our

optimality equation for this system,

1− S−γ

γ
=
S(S − 1)− k0a

S2 + k0a
, (2.11)

where γ is determined by setting β = 1 in (2.7):

γ =
−(2αS − σ2

S)±
√

(2αS − σ2
S)

2 + 8σ2
S(ρ− αP )

2σ2
S

. (2.12)
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Since (2.12) generally yields two values for γ, we need to consider whether both are

relevant to the stopping problem. Note first that (2.12) always has one negative solution and

one positive solution. This follows from the observation that γ0 ≡ (σ2
S − 2αS)/(σ

2
S) > 0

lies at the center of the ellipse defined by (2.7), so (2.12) can be rewritten

γ = γ0 ±

√
γ2

0 + 2

(
ρ− αP
σ2
S

)
.

The representation above shows that either γ > 2γ0 > 0 or γ < 0, because ρ − αP > 0.

We will thus use γp and γn to refer respectively to the positive and negative roots of (2.12),

while γ will be used where an assertion is valid for either root.

Considering the numerator of (2.12), we find

lim
σS→0

(σ2
S − 2αS) +

√
(σ2

S − 2αS)2 + 8σ2
S(ρ− αp) = 4|αS|

lim
σS→0

(σ2
S − 2αS)−

√
(σ2

S − 2αS)2 + 8σ2
S(ρ− αp) = 0,

since αS < 0. The first result clearly entails lim
σS→0

γp = ∞. In the second case, application

of l’Hôpital’s rule gives lim
σS→0

γn = g. Thus we can ensure that (2.11) corresponds to (2.2)

as σS → 0 if we use only γn in our calculations.

Substituting the initial conditions P0 = S0 = 1 into (2.6) shows that the total present

value of the firm’s renewal options is given by the constant A. From (2.10) we have

A(S, γ) =
S2 + k0a

aγSγ+1
. (2.13)

Assuming provisionally the existence of a pair (Sn, γn) that simultaneously solve (2.11)

and (2.12), the present value of the firm’s renewal options is A(Sn, γn).

Since the denominator of A(Sn, γn) is positive, we see that a renewal policy will not

add value if Sn ≤
√
−k0a. Thus we only need to investigate the characteristics of solutions

to (2.11) and (2.12) on the interval (
√
−k0a, 1]. This can be achieved by considering prop-
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erties of the left and right side of (2.11) for comprehensive and mutually exclusive cases

of k0a. The results are stated in three propositions below; proofs of these are given in the

appendix to this chapter (p. 138 ff.).

Proposition 1. If 1 + 4k0a > 0, there is a unique solution Sn to (2.11) on (
√
−k0a, 1] for

each solution γn of (2.12).

Proposition 2. The solution Sn ∈ (
√
−k0a, 1] established by Proposition 1 is strictly de-

creasing in k0. Moreover, holding a < 0 fixed, we have

1 + 4k0a ↑ 1 ⇒ Sn ↑ 1,

1 + 4k0a ↓ 0 ⇒ Sn ↓
1

2
.

Proposition 3. If 1+4k0a < 0, there is no solution to (2.11) on (
√
−k0a, 1] for any solution

γn of (2.12).

These three propositions entail in principle that we can meaningfully and unambigu-

ously discuss the characteristics of the solutions Sn and A(Sn, γn) with respect to the prob-

lem parameters. Nevertheless, the implicit form of equation (2.11) and its dependence in

turn on (2.12) effectively exclude an analytic approach to this task. We will thus rely in-

stead of computational studies, which allow us to illustrate the response of Sn or A(Sn, γn)

to parameter changes.

The base case for the computational studies is as follows:

• System drift (αS): −0.020

• System variance (σS): 0.010

• Price delta4 (ρ− αP ): −0.015

• Cost scale (k0): 1

In the next section we focus in turn on each of the base case parameters, showing the impact

of variations in it while holding the other parameters constant.

4The optimality equations only feature ρ and αP in the combination ρ−αP , so we fix ρ = 0.06 and vary
αP for our numerical studies.
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2.6 NUMERICAL EXPERIMENTS

We conduct three distinct sets of experiments. First, we consider how the optimal renewal

policy changes as we vary parameter values from the base case. Second, we look at corre-

sponding changes in the total value of renewal options. In order to put the option values in

perspective, we also show for each case the expected system value without renewal activity.

Finally, in order to evaluate the performance of the infinite horizon policy in finite horizon

contexts, we provide a set of simulation studies.

RENEWAL POLICY

Our experiments suggest initially that the presence of stochasticity in the model does not

have substantial impact on Sn, the threshold level for capital renewal. Instead, the renewal

threshold appears more sensitive to k0, the scaling factor for cost of renewal, and to the

price delta, ρ− αP .

Figure 2.4a illustrates the variation of Sn with ko and αS , the drift coefficient for prof-

itability. The range of threshold levels is clearly much greater than the range shown in

Figure 2.4b, where σS and αS are varied. Indeed, the differences in Sn in Figure 2.4b

are essentially indistinguishable once we move outside the plausible range for αS (e.g., if

αS < −0.10).

The practical significance of these small differences in the renewal threshold appears

much greater, however, when we consider the corresponding expected time to renewal.

This is because the expected time to renewal depends in turn on the system parameters

σS and αS . Following Harrison (1985), we calculate the expected time to reach Sn from

S0 = 1 as

E[T ] =
2

σ2
S − 2αS

ln

(
1

Sn

)
. (2.14)

Figures 2.5a and 2.5b portray the same variation as Figures 2.4a and 2.4b, but in terms

of expected time to renewal E[T ], instead of Sn. In Figure 2.5a we see that when the scale of
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(a) Sn versus αS and k0 (fixed ρ− αP = 0.015, σS = 0.010)
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Figure 2.4: Variation of Sn with αS, σS, and k0
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(a) E[T ] versus αS and k0 (fixed ρ− αP = 0.015, σS = 0.010)
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(b) E[T ] versus αS and σS (fixed ρ− αP = 0.015, k0 = 1)
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Figure 2.5: Variation of E[T ] with αS, σS, and k0
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(a) E[T ] versus αP and σS (fixed αS = −0.0050, k0 = 1)
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renewal costs is relatively low, i.e., when k0 is small, increasing αS , the expected annual rate

of profitability decline, has little effect on the expected time to renewal. Comparing Figure

2.5b with Figure 2.4b, we see that although increased variance of profitability implies a

lower renewal threshold, the corresponding expected time until renewal is generally shorter

than in cases where the variance is smaller. Nevertheless, there is some ambiguity in the

cases with smallest variance.

Since Figures 2.4a - 2.5b indicate that greatest variation in Sn or E[T ] appears for less

negative values of αS , we fix αS = −0.0050 in Figure 2.6a, in order to illustrate the effect

of the difference ρ−αP as well as σS . While we smaller values of ρ−αP indicate the same

diminishing effect of variance on E[T ] that we saw in Figure 2.5b, we see that for larger

values of ρ− αP , increasing variance may initially entail an increase in E[T ].

The implication of Figure 2.6a is taken further in Figure 2.6b. Here we further reduce

αS to−0.0005, approaching a limit where profitability is more similar to Brownian motion

without drift. Since the deterministic optimal renewal policy given in (2.2) is the limit of the

stochastic policy (2.12) when σS → 0, we can take the limit αS → 0 in (2.2) and infer that

Sn → 1/2 when σS = 0. In this case, 2.14 gives E[T ] →∞. When σS →∞, however, we

find E[T ] → 0. The implication here is that for values of σS in an intermediate range, such

as (0.05, 0.15), the value of E[T ] will be practically significant. This entails that even with

negligible drift, a finite optimal expected renewal cycle may exist, due of the stochastic

nature of the firm’s profitability.

RENEWAL OPTION VALUE

We turn now to consider the response of Fo, the expected value of the firm’s renewal op-

tions, to changes in the system parameters. Here, the initial expected NPV without any

renewals serves a point of comparison for renewal option value. From (2.5) and 2.6, this

NPV is Fv(1, 1) = 28.6 in the base case of our computational studies. In each of the figures

that illustrate the value of renewal options (Figures 2.7 - 2.9), we show the corresponding
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Figure 2.7: Option value Fo versus αS and k0 (fixed σS = 0.010, ρ− αP = 0.015)

values of Fv by a thicker black curve.

Holding σS and ρ − αP fixed at their base values, Figure 2.7 suggests that Fo is de-

creasing in cost scale k0 and convex in system drift αS . Moreover, while Fo is substantial

relative to Fv for intermediate levels of system drift and lower cost scales, extreme values

of αS bring a rapid decrease in the relative magnitude of Fo. When αS is small, renewals

add little or no value at any cost scale, and when αS is large, renewals are only profitable

for the lowest cost scales. Of course, these results are all contingent on the base value of

system variance, σS = 0.010. Responses at other levels of variance may differ. Since cost

scale has a great effect on the value of Fo but does not change the value of Fv, however, we

will consider separately a high cost and a low cost scenario when examining the variation

of Fo with other parameters.

Considering different levels of system variance σS , Figure 2.8a suggests that in the low

cost scenario, renewal activity may still be profitable when αS is small, provided σS is

larger than the base case value. This divergent set of outcomes corresponds to curves on
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Figure 2.8: Option value Fo versus αS and σS
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the right side of the figure. Here, if σS is small, renewal options have little value, as in the

right side of Figure 2.7. Nonetheless, for large values of σS the value of renewal options

can still be large. We also see in Figure 2.8a that the impact of system variance on Fo

is qualitatively similar to its impact on Sn or E[T ] (Figures 2.4b and 2.5b). Variance is

only important for smaller values of system drift αS . If αS is large, increases or decreases

in variance entail little change in the magnitude of Fo. The drift effectively overwhelms

the short-term variations in profitability, so that the renewal options tend towards their

deterministic value.

The higher cost scenario for changes in system variance, Figure 2.8b, is essentially a

miniature version of the low cost scenario. Although the option value is less overall and its

rate of change with system drift appears larger, the qualitative insights are the same within

the range of drifts for which the total value of renewal options is positive.

The effect of the price delta ρ − αP on Fo is shown in Figures 2.9a and 2.9b, which

correspond respectively to the lower cost scale and the higher cost scale. A small value of

system drift is used in both (αS = −0.005), in order to show a greater spread across the

different levels of system variance σS . As far as the the system variance is concerned, we

see again that the case of the higher cost scale appears qualitatively the same as the lower

cost scale. Higher costs force all curves closer together and bring an overall decrease in the

value of renewal options. Nevertheless, in both figures, the magnitude of Fo is substantial

relative to Fv at lower and intermediate levels of ρ − αP . When the rate of price growth

is small in comparison to the discount rate, however, as shown on the right of the figures,

renewals are less profitable . Effectively, the value realized through renewal activity is more

heavily discounted here, so the potential for renewal activity in the more distant future is

inconsequential to the present. This makes sense in light of Figure 2.6b and the discussion

above: expected renewal periods are longest in the case of heavier discounting and low

system drift.
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FINITE HORIZON PERFORMANCE

The preceding computational studies were conducted entirely in the infinite horizon con-

text. Financial plans generally have a finite horizon, however, even where long-term capi-

tal budgeting and infrastructure management are concerned. Thus the performance of the

infinite horizon policy Sn in finite horizon contexts is a question of inevitable practical im-

portance. In order to address this, we perform a series of simulation experiments. In each

experiment, we simulate the the operating profit and renewal costs from a range of renewal

policies, including the infinite horizon policy Sn, across a period of time T .

In light of our findings about the expected value of renewal options, the values we use

for system drift αS and price delta ρ − αP in our experiments should be such that the

outcomes are not trivial, i.e., we wish to exclude values where the infinite horizon analysis

already tells us that renewals are unlikely to be profitable. We therefore fix αS = −0.005

and ρ − αP = 0.005 for all experiments. A value for price variance is needed for the

simulation, even though it does not affect the calculation of the optimal infinite horizon

renewal policy, so we set σP = 0.020 throughout.

Given the fixed parameters, we examine the finite horizon performance of renewal poli-

cies at two different levels of the system variance σS and at two different levels of the cost

scale k0, entailing four distinct systems. For each of the four systems, we consider four

horizons: T = 50 years, T = 100 years, T = 150 years, and T = 200 years. We thus have

a total of sixteen simulations.

In each case, finite horizon performance is calculated as the total discounted net profit

derived from the system to time T , plus a salvage value, VT . In order to put policies

on an equal footing for comparison, and to allow comparison of each with the expected

system NPV from the infinite horizon problem, we use an estimate of the salvage value

that conforms to our calculation of the infinite horizon NPV,

VT = e−ρTPTSTF (1, 1). (2.15)
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From 2.3, the infinite horizon NPV is F (1, 1) = Fv(1, 1)+Fo(1, 1). Given the fixed values

of αS and ρ − αP , we find immediately that Fv(1, 1) = 100 for all experiments, whereas

Fo(1, 1) follows from 2.6 and 2.13.

Table 2.1 details the key values for the simulations. Each simulation includes 4,000

independent replications of each policy, using common random numbers.

Simulation σS k0 F (1, 1)

A 0.005 1 180.4

B 0.005 6 151.3

C 0.050 1 215.9

D 0.050 6 176.1

Table 2.1: Simulation Experiments

The results of the experiments appear in Figures 2.10 - 2.13. Each figure shows sim-

ulated policy thresholds S on the horizontal axis and policy performance on the vertical

axis. The performance of the infinite horizon policy is distinguished by a solid vertical

line, while best performance in each simulation is distinguished by a dashed vertical line.

For example, in Figure 2.10a, the infinite horizon policy is approximately Sn = 0.90, while

S∗ = 0.95 is approximately the best-performing policy. Dashed lines on either side of the

performance curve show a 95% confidence interval for the results.

The first figure in each set shows that the performance of the infinite horizon solution is

almost certainly not optimal for a short horizon, T = 50, but we also see that there is likely

to negligible difference between it and the finite horizon optimum when T = 150 or greater.

Indeed, the performance of the infinite horizon policy and the performance of the optimal

finite horizon policy tend to be statistically indistinguishable for T = 100. Simulation B

(Figure 2.11) presents the only contrast to this pattern, since the performance of the infinite

horizon policy there remains clearly suboptimal for all but the longest horizon. This agrees,
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however, with our insights derived earlier, since system B combines low infrastructure

variance with a high cost scale and the value of renewal options is small. (Table 2.1 also

shows that system B has the lowest total value of renewal options.) In this case, the infinite

horizon renewal policy corresponds to expected renewal every 63 years, so we would not

expect to renew at all in a capital budget for T = 50 years. Simulation suggests, however,

that one renewal in a 50 year period would be optimal, at about the 37-year mark. With a

system and context like this, a finite horizon analysis is needed to determine the optimal

renewal policy. Otherwise, the infinite horizon solution performs well.

In all results from the simulation experiments it is apparent that the performance curve

drops more sharply to the right of the optimal finite horizon policy than to the left of it,

and that the infinite horizon policy is always situation to the left. Thus we can conclude

that in the finite horizon context, extending the expected time between renewals is always

preferable to shortening it. This observation perhaps sheds some light on the otherwise

unfortunate phenomenon of public and private infrastructure being invariably in need of

renewal, rather than too frequently renewed.

2.7 CONCLUSIONS

Capital renewal decisions have received little attention from academic researchers, despite

their close relation to the classic problems of system replacement or maintenance. Our

treatment here is inspired by the real options approach to investment and replacement in-

vestment timing, but our contribution to this literature lies in explicitly recognizing the

impact of exongenous prices on capital renewal requirements; preexisting research has

viewed replacement investments as pure renewal activity, without recognition of back-

ground prices, which is quite implausible in the context of repeated renewals.

Several managerial insights emerge from our study. Most importantly, we affirm that

timely capital renewal may greatly enhance the return infrastructure investment. Neverthe-
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less, we have identified some specific instances where renewal may be less profitable: firms

facing high costs for renewal or large cost of capital should renew far less frequently and

will extract less benefit from the renewals they do undertake. We also show that the impact

of variance in infrastructure depreciation is limited in cases where either the expected rate

of depreciation is great, or where the firm’s cost of capital is high, relative to its expected

rate of price growth. Conversely, when infrastructure tends to depreciate slowly and price

growth is comparable to the cost of capital, variance in depreciation may be important for

the optimal renewal policy. A small amount of variance may advance the expected renewal

schedule, whereas higher levels of variance will tend to delay renewals.

These insights follow directly from our analysis of the infinite horizon renewal problem.

Our study of the performance of the infinite solution in finite horizon contexts amplifies the

analytical findings. Where the infinite horizon analysis shows a large expected value for

renewal activity, the performance of the infinite horizon solution is also close to optimal

within all but the shortest finite horizon problems. Where the infinite horizon analysis

shows little value for renewal activity, the infinite horizon solution performs poorly on

finite horizon problems. These cases would be better addresses by a finite horizon analysis.

Finally, we note that from a purely financial perspective, the simulation studies suggest that

if optimal renewal activity cannot be achieved, either because of lack of funding or because

it may be difficult to establish precisely a current measure of infrastructure profitability,

delaying renewal activity is better than advancing it.

One shortcoming of the current study is that geometric Brownian motion processes can

entail implausible increases in the infrastructure state variable on some sample paths of the

model. Future work could remedy this through further simulation work, with infrastructure

described by a non-increasing jump process. Future work could also consider the influence

of constraints or competition on renewal decisions: in the former case, when financial

resources are limited, prioritization of renewal funding will be needed; in the latter case, an

oligopolistic setting will entail endogeneity of price levels.
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CHAPTER 3

DYNAMIC LEAD TIME PROMISING

3.1 MOTIVATION

Electronic commerce allows the terms of a contract for goods or services to be arranged

within a matter of minutes or even seconds. A consumer may evaluate options and read

reviews at length before deciding what and where to purchase, but the transaction itself gen-

erally follows a quick, simple formula: select the item from the relevant website, choose

any desired options, verify the cost and delivery terms at “checkout,” then authorize pay-

ment and receive a printable receipt. The attractiveness of this “online shopping” model

is is apparently great for consumers and firms alike, despite the potential complications of

doing business remotely - e.g., the possibility of delayed or incorrect product deliveries.

The convenience and scope of the online market has lead to widespread participation.

Of course, the quickly and easily navigable steps of an online purchase are enabled

by systems that are themselves quite sophisticated. From the firm’s perspective, demands
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arrive in rapid succession; in order to specify products, costs, and delivery terms reliably for

each, information and operations management must proceed at the same fast pace. Thus,

organizations that can track inventory, optimize production, and schedule shipments in a

“real time” manner may gain a distinct competitive advantage.

Advanced ATP (available-to-promise) systems are designed to address these business

goals. Whereas conventional ATP is defined as the “uncommitted portion of a company’s

inventory and planned production, maintained in the master schedule to support customer

order promising” (Wallace and Dougherty, 1987), advanced ATP is a mechanism that “dy-

namically allocates and reallocates resources to promise and fulfill customer orders” (Chen

et al., 2002). In this chapter we analyze lead time promising as a Markov Decision Prob-

lem and use approximate dynamic programming methods to lay the foundation for a novel

advanced ATP system.

The ability to offer different lead times to customers is an important means by which

a firm can achieve efficient allocation of its resources in the face of demand or supply

uncertainty. Intuitively, if the range of possible lead time offers for new demands is greater,

the firm can more flexibly handle disruptions and challenging conditions. The benefits of

this flexibility may be tempered, however, by customers’ natural propensity to reject lead

time offers that are undesirably long. The optimal level of lead time flexibility is thus

ultimately an essential question for the design of an advanced ATP system.

In order to evaluate the marginal value of lead time flexibility, however, we must first

be able to determine an optimal lead time promising policy for each given system config-

uration. This prerequisite task is the focus of most of the current study. Our setting of

the lead time promising problem is enhanced by the assumption that customers constitute

multiple classes, each class having a distinct set of lead time expectations. Since two key

considerations for classification of a production system are (a) whether it serves single or

multiple classes of customer and (b) whether lead times are determined endogenously or

exongenously, our work is related to much existing literature. Nevertheless, the formula-

42



tion of our multiple class, endogenous lead time problem distinguishes it not only from

other studies of this type of system, but also from studies of multiple class, exogenous lead

time systems and from studies of single class, endogenous lead time systems. In general,

research in these areas considers production systems where jobs are scheduled individually

on a small number of servers and the time required for each job is important (Cheng and

Gupta, 1989). Contrastingly, our model envisions a system that has capacity to process

hundreds or potentially thousands of jobs in a single unit of production time. Thus the

challenge is not individual ordering of jobs for service, but construction of an appropriate

production “batch” from a rapidly arriving stream of heterogeneous orders.

The organization of this chapter is as follows. In section 3.2 we consider briefly the

historical development of the lead time promising problem, from early literature through to

the latest research on advanced ATP systems. Section 3.3 describes in detail the formulation

of the problem we study and outlines the additional assumptions that will be used to provide

solutions. Section 3.4 presents two small versions of the problem and shows their explicit

solution using a Markov chain model. This allows us to generate some exact results for

later use as benchmarks, and also to illustrate the curse of dimensionality and the curse of

modeling. Section 3.5 introduces Reinforcement Learning as a solution to these difficulties,

then discusses alternative formulations of the problem within the context of Q-learning,

a common variant of Reinforcement Learning. In particular, we describe a formulation

that adjusts the perspective from which lead time promises are made and allows us to

take advantage of structure inherent in the system. Section 3.6 presents our results. We

evaluate the performance of each of the different Q-learning formulation, and show how

these performances vary with key problem parameters: the level of lead time flexibility, the

frequency of supply chain disruptions, the capacity of the system, and the cost of overtime.

We also compare the performance of our best Q-learning results with the results from the

Markov chain model. Finally, section 3.7 summarizes the work and gives thoughts for next

steps in the analysis of the lead time promising problem.
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3.2 LITERATURE REVIEW

Early queueing models of production systems with multiple classes generally take cus-

tomers’ lead time requirements to be exogenous constraints. Cox and Smith (1961) con-

sider systems where distributions of service time are determined by the “priority” class of

each customer. They analyze performance objectives such as mean cost or mean time in

queue, both for preemptive and non-preemptive priorities. Studies by Harrison (1975) and

Tcha and Pliska (1977) extend the basic models, adding the possibility that individual re-

wards depend on a customer’s class and the length of time in queue. The key result for this

type of system is the optimality of a weighted shortest expected processing time rule, also

known as a cµ rule. Mieghem (1995) generalizes the cµ rule, and recent work has provided

even more sophisticated policies for exogenous lead time queues: the generalized longest

queue (GLQ) rule and generalized largest delay (GLD) rule. See, for example, Bertsimas

et al. (1998), Stolyar and Ramanan (2001), and Van Mieghem (2003).

Conway (1965) appears to be the first to stand apart and observe that system perfor-

mance may be improved if lead times are not taken as fixed requirements, but instead are

to some extent determined endogenously by the firm. Despite computational limitations,

several subsequent studies of the time use simulation methods to evaluate different rules for

making lead time quotes: examples include Eilon and Hodgson (1967), Eilon and Chowd-

hury (1976), and Weeks (1979). Analytical work in the multiple class setting is extended

to cover endogenous lead times by, for example, Seidmann and Smith (1981), Bertrand

(1983), Bookbinder and Noor (1985), and Wein (1991). As for single class problems with

endogenous lead times, Spearman and Zhang (1999) undertake minimization of average

leadtime for an M/M/1 queue, where service constraints are imposed for the percentage

of jobs delivered on time or for average tardiness. Hopp and Sturgis (2001) extend these re-

sults to M/G/1 queues and consider also a constraint of average tardiness as a percentage

of leadtime.

Most of works from the late 1990s and early 2000s explicitly anticipate the impact of
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new technology on order promising and fulfillment systems, and thus advanced ATP has

emerged as a very general concept, subsuming previously distinct research questions and

ERP tools within a comprehensive task of supply chain optimization. Indeed, advanced

ATP is not a single approach but “a variety of methods and tools to enhance the responsive-

ness of order promising and the reliability of order fulfillment” (Pibernik, 2005). Some of

the first work in this direction comes from Taylor and Plenert (1999), who use a heuristic

technique called finite capacity promising to track traditional ATP quantities and generate

feasible lead times. Hegedus and Hopp (2001) develop a lead time policy for a model that

include a procurement stage as well as a manufacturing stage, thus allowing for uncertain

vendor lead times. Subsequent notable contributions come from Chen et al. (2002), fea-

turing integer programming methods; Jeong et al. (2002), with a scheduling heuristic that

combines linear programming and minimum setup time, and Moses et al. (2004), using a

search algorithm on a memory resident database to determine the earliest availability of

resources to meet a newly arrived demand.

3.3 MODEL FORMULATION

Suppose a firm manufactures and sells a single range of products, but that it distinguishes

several different “priority” classes among its customers. Customers in higher classes expect

(and will pay for) shorter lead times than customers in lower classes. We assume that a

range of possible lead times is fixed for each class; when receiving a customer’s order,

the firm makes an explicit lead time offer from the relevant class range. A lead time offer

that is as short as possible within its class will be accepted, but longer lead times incur

an increasing likelihood that the customer will decide to withdraw the order. Since the

production schedule for any given day receives lower class demand assignments before

higher class assignments, the lead times offered to the former must leave “sufficient space”

for the latter; if necessary, by offering non-preferential lead times to certain lower class
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demands.

In accordance with this general scenario, our model of the basic parameters and rules

of the firm’s production system is as follows.

• The production schedule is tracked across a rolling horizon. Day 0 always denotes

the current day (where production occurs), while day 1 denotes tomorrow, day 2 the

day after tomorrow, etc. The load of day y at any instant is the number of demands

already assigned for production on the yth day after today. Time, measured in days, is

given by t ∈ R+, and thus we denote the load of day y at time t by lty ∈ N (throughout

this chapter, we take N to include zero).

• There are n classes of demand, denoted by integers 1, 2, . . ., n. A demand in a given

class i can receive one of Ni possible lead time offers, quoted in days. A specific

lead time offer option for class i is denoted by φij ∈ Z+, 1 ≤ j ≤ Ni. For example,

a lead time offer of φij = x means that a demand is offered production on the xth

day after today. We assume φij > 0, meaning that no new demands can be offered

production on the current day, and φij < φik for j < k.

• Demands arrive according to a Poisson process with rate λ per day and random (in-

dependent) splitting between classes. A demand is from class i with probability δi,

where
∑

i δi = 1.

• For j > 1, the probability that the customer in class i will reject an offer of φij is

given by hij ∈ R+.

• The nominal production capacity of the system is b units. Loads greater than b incur

production overtime costs: if lty ≥ b, an assignment to day y will incur a penalty of

u(lty − b+ 1), where u ∈ R+ represents unit overtime cost.

• The maximum capacity for any production day is c > b units. Demands will be lost

if they cannot be assigned to a day with load less than c.
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• Revenue r(i) is generated when a lead time offer is accepted by a demand from class

i. We normalize the revenues by setting r(1) = 1.0 and assume that r(i) > r(j) for

i < j, so that higher priority demands are more valuable than lower priority demands.

The basic model described above does not recognize any resource uncertainty, which

could result, for example, from inventory supply chain disruptions. If resources are not

available as expected at the start of a production day, some demands will have to be

rescheduled for production on later days. This additional dimension can be added through

a stochastic perturbation of the nominal capacity:

• At the start of each production day, a capacity loss occurs with probability τ , indepen-

dent of any previous occurrences of capacity loss. If there is a capacity loss, the mag-

nitude of the loss is θ% of the nominal capacity parameter b, where θ ∼ DU [0, 100]

is independent of τ .

• If capacity loss entails that a demand of class i needs to be rescheduled, a cost of

x(1+n− i) is incurred, where (min
i,j

φij) ≤ x ≤ (max
i,j

φij) is the number of days the

demand is delayed.

• If capacity loss is so severe that a demand of class i cannot be rescheduled, a cost of

(1 + max
i,j

φij)(1 + n− i) is incurred.

A lead time promising policy subject to resource uncertainty will presumably be different

than a policy for deterministic resources. By distinguishing the elements of resource uncer-

tainty from the basic system configuration, we allow for separate analysis and comparison

of the two cases.

We turn now to the decision mechanism in our model. Let Σ be the state and parameter

space of an instance of our production model, so that σ(t) ∈ Σ is a vector specifying load

information for all days within the production horizon at time t and all fixed parameters

for the given system configuration. A stationary policy π determines a lead time offer for a

47



new demand from class i,

π(i, σ(t)) ∈ {φi1, . . . , φiNi
}. (3.1)

Thus we can define the average system reward resulting from π,

ξ(π) ≡ lim
n→∞

1

n

n∑
k=0

r̂πk , (3.2)

where r̂πk ≥ 0 is the net reward from the kth demand when policy π is in force. Supposing

that the kth demand is of class i and arrives at time t, the net reward is defined by

r̂πk = 1{ltπ(σ(t),i) < c}
(
r(i)− u(ltπ(σ(t),i) − b+ 1)+

)
. (3.3)

Our objective is to find max
π

ξ(π).

Although π(.) depends in general on all state and parameter information contained in

σ(.), a computational approach to optimizing average reward will require some approxima-

tion of the policy function, in order to keep the dimension of the problem within tractable

limits. For example, in a system with a scheduling horizon of just 9 days and capacity of

100 units per day, the subspace of Σ representing the loads alone would contain 1018 points.

Possible approaches to approximation include selection of a subset of key elements from

σ(.), aggregation of sets of state vectors into representative single vectors, or more sophis-

ticated methods, such as functional approximation or neural network training. While the

latter often allow greater parameter reduction and/or less information loss, they also entail

increasing obscurity in the definition of the function π. We shall restrict the approximation

methods used here to selection of subsets from the elements of σ(.).
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3.4 MARKOV CHAIN ANALYSIS

The dimension of the state space of the problem depends on the capacity of the system

and the number of days in the production horizon, while the dimension of the action space

depends on the number of customer classes and associated lead times. If these factors

are all sufficiently small in magnitude and we fix a policy for lead time promising, the

production system constitutes a Markov chain with just a few hundred or thousand states.

We may then calculate the average reward from the chain and perform a direct search of

the policy space, in order to reveal the optimal policy and corresponding average reward.

We develop in this section such a Markov chain model, as a means to give further insight

into the problem and to derive a closed-form characterization of the average reward as a

function of the policy. The analytic results will provide a benchmark for the performance

of reinforcement learning methods that will be used to tackle larger system instances.

3.4.1 BASE CASE: ONE DEMAND CLASS

Suppose the production system faces only a single demand class, so each demand corre-

sponds to potential revenue of r = 1.0. Restrict the production horizon to two days, so that

the lead time options are just φ1 = 1 and φ2 = 2. We will describe this system as a Markov

chain {Xi | i ∈ N}, where Xi ∈ N denotes the number of demands already assigned to day

1 at the start of the ith day of production.

The transitions of the chain {Xi} represent periodic observations of the underlying

continuous-time Markov process (lt1, l
t
2). As noted earlier, lty ∈ N is the number of demands

assigned to day y after t ∈ R+ days have elapsed. At the end of each day, the demands

assigned to day 1 go into production, the demands assigned to day 2 become demands

assigned to day 1, and a new day 2 enters the scheduling horizon. Thus the number of

demands assigned to day 2 at the start of a period is always zero. With a slight abuse of

notation, using the integer index i for the corresponding magnitude in R, we can suppress
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li2 = 0 and take the state of the Markov chain to be Xi = li1, the number of demands

assigned to day 1 at the start of the ith day of production.

In the current context, the number of daily demands is a Poisson random variable Lwith

mean λ. Let Pλ(i) be the the p.m.f. of L. The evolution of (lt1, l
t
2) between observations Xi

and Xi+1 is conditioned by the lead time policy of the system. Lead time offers are made

according to a threshold policy, as follows:

• The lead time policy is defined as an integer 0 ≤ π ≤ c. A lead time of 1 day will be

offered at epoch t if and only if lt1 < π.

• If lt1 ≥ π but lt2 < c, then a lead time of 2 days will be offered1. If lt1 ≥ π and lt2 = c,

any arriving demand will be lost.

• If a lead time of 2 days is offered, the offer may be rejected with probability h or

accepted with probability a = 1 − h. If the offer is rejected, the reward from the

corresponding demand is zero; otherwise, the reward is r − u(lt2 − b+ 1)+.

The value of π thus determines the average reward ξ(π) that the system will generate.

Let π∗ be the choice of π that maximizes average reward.

In order to give an expression for ξ(π), we must determine the corresponding transition

probability matrix Qπ for {Xi} and the expected immediate reward in each state of the

chain. Let the entries of Qπ be qπjk, with 0 ≤ j, k ≤ c. Let the expected immediate reward

in state j be E[sπj ].

For better economy of notation in the following exposition, let ĵk denote the event that

the chain moves from state j to state k, and define Mxy = (x− y)+.

When k = 0, event ĵ0 corresponds to exactly one of the two following scenarios: (a)

there are at most Mπj demands and all receive a lead time of 1 day; (b) there are more than

Mπj demands, but all lead time offers of 2 days are rejected. When 0 < k < c, the event ĵk

1The case of more than π demands on day 1 can only arise if the day begins with more than π demands,
i.e., if more than π demands were assigned to day 2 in the preceding period.
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corresponds to the following scenario: there are at least Mπj + k demands, and exactly k

lead times offers of 2 days are accepted (after the first Mπj lead time offers of 1 day). Thus

we have

qπjk = I(k = 0)

Mπj−1∑
i=0

Pλ(i) +
∞∑
i=k

Pλ(Mπj + i)

(
i

k

)
akhi−k, 0 ≤ k < c, (3.4)

where I(k = 0) = 1 if k = 0 and I(k = 0) = 0 otherwise.

When k = c, we need to recognize that demands may be lost after the load on day 2

reaches c. This can lead to complicated expressions for qπjc. The first two cases are shown

below.

• If the event is ĵc and we have L = Mπj + c+1, then there are two possible subcases:

(a) the first c of the last c+ 1 demands are accepted and the last demand is lost (w.p.

1); (b) one of first c demands rejects its offer and the last demand accepts. These

subcases entail

qπjc|{L = Mπj + c+ 1} =

((
c

0

)
h0ac11 +

(
c

1

)
h1ac−1a1

)
Pλ(Mπj + c+ 1).

• If the event is ĵc and we have L = Mπj + c+2, then there are three subcases: (a) the

first c of the last c + 2 demands accept their offer and the last two are lost (w.p. 1);

(b) one of the first c demands is rejects its offer, one of the last two demands accepts,

and the other demand from the last two either rejects or is lost; (c) two of the first c

demands reject and both of the last two accept. These subcases entail

qπjc|{L = Mπj + c+ 2} =((
c

0

)
h0ac12 +

(
c

1

)
h1ac−1(h1a1 + a111) +

(
c

2

)
h2ac−2a2

)
Pλ(Mπj + c+ 2).

The expressions for qπjc|{L = x} proceed analogously when x > Mπj + c + 2. Fortu-
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nately, instead of computing qπjc explicitly, we can set

qπjc = 1−
c−1∑
i=0

qπji,

where the values of qπji are given by (3.4).

Turning now to the expected immediate rewards, let E[sπj ] be the expected immediate

reward in state j. With respect to the possible next state k, let Fjk denote the set of all

samples2 that could lead to event ĵk, and let s(f) be the immediate reward resulting from

f ∈ Fjk. Thus we have

E[sπj ] =
∑
k

∑
f∈Fjk

s(f)P (f).

When k > 0, the set Fjk has exactly one element: we must have L ≥ Mπj + k, so L

fills the remaining Mπj spaces on day 1, then fills k spaces on day 2. Thus P (f) = qjk

when k > 0, and each of the corresponding values of s(f) can be determined as the inner

product of two appropriately defined vectors of dimension π + c. Specifically,

s(f) = 〈v, w(j, k)〉 , (3.5)

where v is a vector of possible rewards,

vi = 1, 1 ≤ i ≤ min(π, b),

vi = 1− ui, (min(π, b) + 1) ≤ i ≤ π,

vi = 1, π + 1 ≤ i ≤ π + b,

vi = 1− u(i− π − b), π + b+ 1 ≤ i ≤ c,

2A sample that leads to event ĵk is a given number of demand arrivals and associated acceptances, rejec-
tions, or losses.
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and w(j, k) is a vector of binary selections,

wi(j, k) = 0, 1 ≤ i ≤ j, (3.6)

wi(j, k) = 1, j + 1 ≤ i ≤ π, (3.7)

wi(j, k) = 1, π + 1 ≤ i ≤ π + k, (3.8)

wi(j, k) = 0, π + k + 1 ≤ i ≤ c. (3.9)

When k = 0, the set Fj0 will usually have more than one element, since the number of

demands entering the system is a random variable with range [0, π − j]. Using

S(j, 0) ≡
∑
f∈Fj0

s(f)P (f) (3.10)

and the triangular number notation

T (n) ≡
n∑
i=1

i =
n(n+ 1)

2
,

we find:

• If π ≤ b, for 0 ≤ j < π,

S(j, 0) =

π−j∑
i=0

iPλ(i) + (π − j)
∞∑
i=1

Pλ(π − j + i)hi,

• If π > b, for 0 ≤ j < b,

S(j, 0) =

b−j∑
i=0

iPλ(i) +

π−j∑
i=b−j+1

(i− uT (i+ j − b))Pλ(i)

+ ((π − j)− uT (π − b))
∞∑
i=1

Pλ(π − j + i)hi,
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• If π > b, for b ≤ j < π,

S(j, 0) =

π−j∑
i=0

(i− uT (i+ j − b) + uT (j − b))Pλ(i)

+ ((π − j)− uT (π − b) + uT (j − b))
∞∑
i=1

Pλ(π − j + i)hi,

• If j ≥ π, S(j, 0) = 0.

The stationary probability vector υπ for the system satisfies the equation υπ = υπQπ

and the average reward per step is

ξ(π) =
c∑
j=0

υπj E[sπj ]. (3.11)

The average reward for policy π, as a fraction of possible reward, is thus
ξ(π)

λ
.

3.4.2 EXTENSION: TWO DEMAND CLASSES

Suppose the system faces two demand classes. The potential reward for class 2 demands is

r(2) = η, where 0 < η < 1.0. This case can be analyzed as extension of the single class

case, provided we assume that is no overlap of lead times across classes, meaning

• each specific lead time option is available for at most one class,

• if a lead time option for class i is greater (less) than a lead time option for class j,

then all lead time options for class i must be greater (less) than all lead time options

for class j.

With this assumption, we take the lead time options for current system to be as follows:

• φ11 = 1

• φ12 = 2

• φ21 = 3

• φ22 = 4
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The scheduling horizon for the system thus extends to four days after the current production

day, and the underlying Markov process for the system is (lt1, l
t
2, l

t
3, l

t
4), where again lty ∈ N

is the number of demands assigned to day y after t ∈ R+ days have elapsed. The system

capacity c, workload penalty threshold b, and unit overtime cost u apply to any of these days

in the same manner as before. The lead time policy for the current case is an extension of

the threshold concept employed for single class system, as follows.

• The lead time policy π is a vector (π1, π2), where 0 ≤ π1, π2 ≤ c.

• If an arriving class 1 demand finds lt1 < π1, it receives a lead time offer of 1 day; if

lt1 ≥ π1 but lt2 < c, the lead time offer is 2 days; if lt1 ≥ π1 and lt2 = c, the arriving

demand is lost.

• If an arriving class 2 demand finds lt3 < π2, it receives a lead time offer of 3 days; if

lt3 ≥ π2 but lt4 < c, the lead time offer is 4 days; if lt3 ≥ π2 and lt4 = c, the arriving

demand is lost.

• For either demand class, if the longer lead time is offered, the offer may be rejected

with probability h or accepted with probability a = 1 − h. If the offer is rejected,

the reward is zero. If the offer is accepted, the reward is the full amount for the class

type, minus any overtime penalty.

• The number of daily class 1 demands is a Poisson random variable L with mean λ.

Pλ(i) is the p.m.f. of L.

• The number of daily class 2 demands is a Poisson random variable K with mean κ.

Pκ(i) is the p.m.f. of K.

Since lt4 = 0 whenever t is an integer, we proceed in a similar manner as before and

describe the system by the Markov chain {(X1, X2, X3)i | i ∈ N}, where (X1, X2, X3)i ≡

(li1, l
i
2, l

i
3). The system states j and k are thus vectors, j = (j1, j2, j3) and k = (k1, k2, k3).
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In order specify consistently the transition probability matrix Qπ, we order system states

as follows:

If j1 > k1, then j > k;

If j1 = k1 and j2 > k2, then j > k;

If j1 = k1, j2 = k2, and j3 > k3, then j > k.

The analysis of the single-class system serves as a basis for analysis of the current

case. Indeed, after minor modifications to the preceding analysis, we can view each tran-

sition in the double-class system as simultaneous, independent transitions with each of

two single class subsystems. Specifically, consider the transition from j = (j1, j2, j3) to

k = (k1, k2, k3). As far as class 1 demands are concerned, this is the transition ĵ1k1 in a

single class subsystem, with the additional specification of j2 demands already assigned to

day 2 of the subsystem at the start of the relevant period. For class 2 demands, we have the

transition ĵ3k3 in a single class subsystem, with the additional specification of k2 demands

assigned to day 1 of the subsystem at the end of the relevant period. Let let ̂j1k1 | j2 be the

class 1 transition just described, and let q1(j1k1 | j2, π1, λ) be its probability. Similarly, let

̂j3k3, k2 be the class 2 transition, and let q2(j3k3, k2 |π2, κ) be its probability. Then we have

for the double class system,

qπjk = q1(j1k1 | j2, π1, λ)q2(j3k3, k2 |π2, κ).

We now calculate the transition probabilities q1(j1k1 | j2, π1, λ) for the class 1 subsys-

tem. For economy of notation, we employ scalar indices without subscripts, as follows:

j = j1, k = k1, m = j2, and π = π1, with transition probabilities qπjk for a single class

system with demand mean λ.

q1(j, k | 0, π, λ) = qπjk,
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q1(j, k | c, π, λ) = 1 for k = c,

q1(j, k |m,π, λ) = qπj(k−m) for 0 < m ≤ k ≤ c− 1,

q1(j, c |m,π, λ) = 1−
∑
i6=c

q1(j, i |m,π, λ) = 1−
c−1∑
i=m

qπj(i−m) for 0 < m ≤ c− 1.

For the class 2 transition probabilities, q2(j3k3, k2 |π2, κ), we again employ scalar in-

dices without subscripts, as follows: j = j3, k = k3, m = k2, and π = π2, with transition

probabilities qπjk for a single class system with demand mean κ.

If j ≥ π, then m = j for all k, so

q2(jk, j |π, κ) = qπjk,

q2(jk,m |π, κ) = 0 for j 6= m.

If j < π and k > 0, then m = π, so

q2(jk, π |π, κ) = qπjk,

q2(jk,m |π, κ) = 0 for m 6= π.

If j < π and k = 0, then

q2(j0,m |π, κ) = 0 for m > π,

q2(j0,m |π, κ) = 0 for m < j,

q2(j0,m |π, κ) = Pκ(m− j) for j ≤ m < π,

q2(j0, π |π, κ) = Pκ(π − j) +
∞∑
i=1

Pκ(π − j + i)hi.

Given the specification of the double class system as two independent single class sub-

systems, its immediate rewards are sums of subsystem immediate rewards, and the proba-

bility of any given immediate reward is the product of the corresponding subsystem tran-

sition probabilities. Thus is is fairly straightforward to calculate the expected immediate

reward E[sπj ] in state j = (j1, j2, j3). With respect to the possible next state k = (k1, k2, k3),
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let Fjk denote the set of samples that entail ̂j1k1 | j2 within the class 1 subsystem, and let

s(f) be the immediate reward resulting from f ∈ Fjk. Likewise, let Gjk denote the set

of samples that entail ̂j3k3, k2 within the class 2 subsystem, and let s(g) be the immediate

reward resulting from g ∈ Gjk. Then

E[sπj ] =
∑
k

∑
f∈Fjk,

g∈Gjk

(s(f) + s(g))P (f)P (g).

If the system event ĵk entails an infeasible event for either subsystem, we have Fjk =

Gjk = ∅.

In the case of the class 2 subsystem, if the event ̂j3k3, k2 is feasible, then the specifica-

tion of k2 means that we know exactly how many demands the subsystem accepts during

the transition. Thus g ∈ Gjk is unique, P (g) = q2(j3k3, k2 |π2, κ), and the immediate

reward s(g) is as follows.

• If k3 > 0, then s(g) = 〈v, w(j3, k3)〉, where v and w(j3, k3) are defined as in (3.5).

• If k3 = 0, then s(g) = 〈ṽ, w̃(j3, k2)〉, where

ṽi = 1, 1 ≤ i ≤ min(π2, b),

ṽi = 1− u(i−min(π2, b)), (min(π2, b) + 1) ≤ i ≤ π2,

w̃i(j3, k2) = 0, 1 ≤ i ≤ j3,

w̃i(j3, k2) = 1, j3 + 1 ≤ i ≤ k2,

w̃i(j3, k2) = 0, k2 + 1 ≤ i ≤ π2.

In the class 1 subsystem, a feasible event ̂j1k1 | j2 may entail that set Fjk have more

than one element. The possible cases are as follows:

• If j2 = k1 < c then either no demands are offered to the second day of the subsystem,

or any offers for the second day are rejected. This is equivalent to the event ĵ0 from the
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original single class scenario, so we can reuse the analysis of S(j, 0) following (3.10) and

write ∑
f∈Fjk

s(f)P (f) = S(j1, 0).

• If j2 = k1 = c then any demands offered to the second day of the subsystem are lost.

This is again similar to the event ĵ0 from the original single class scenario, except we set

h = 1 when calculating S(j1, 0).

• If j2 = 0 < k1 then Fjk has exactly one element, and using (3.5),

s(f)P (f) = 〈v, w(j1, k1)〉 q1(j1k1 | 0, π1, λ).

• If 0 < j2 < k1 ≤ c then Fjk has exactly one element and we can adjust (3.5), in order

to recognize that the first j2 allocations on day 2 of the class 1 subsystem are already taken.

Specifically, replace (3.8) by two equations,

wi(j1, k1) = 0, π1 + 1 ≤ i ≤ π1 + j2,

wi(j1, k1) = 1, π1 + j2 + 1 ≤ i ≤ π1 + k1.

This change gives reward 〈v, w(j1, k1|j2)〉, and we can write

s(f)P (f) = 〈v, w(j1, k1|j2)〉 q1(j1k1 | j2, π1, λ).

Now that we have specified the entries qπjk = q1(j1k1 | j2, π1, λ)q2(j3k3, k2 |π2, κ) of

the transition probability matrix Qπ and the components E[sπj ] of the expected immediate

reward vector, we proceed as before. The stationary probability vector υπ for the system

satisfies the equation υπ = υπQπ and the average reward per step is ξ(π) =
∑
j

υπj E[sπj ].

The average reward for policy π, as a fraction of possible reward, is thus
ξ(π)

λ+ ηκ
.
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3.4.3 RESULTS

We use MATLAB
®

to implement the formulations of the preceding two subsections. For

the base case of one demand class, the objective function appears to be quasi-concave, so

we can locate the optimal input π ∈ Z+ and the corresponding average reward by trial and

error. For example, consider a system facing 10 demands per day, with a nominal capacity

of 10 units and a maximum capacity of 15 units. Figure 3.1 plots average reward against π

and for various values of the unit overtime cost.
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Figure 3.1: Average Reward, Base Case

For the two class case, the length of time required to generate the results is much greater.

Indeed, for each input vector π = (π1, π2), computation of the average reward requires

approximately 75 minutes. Thus we do not give results for different values of the overtime

cost. For u = 0.25, Figure 3.2 plots average reward against (π1, π2).
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Figure 3.2: Average Reward, Two Classes

Each of the Markov chain outputs shows that the near-optimal policies may compare

very well with the optimum. For the base case with u = 0.25, we have average reward

0.9641 from π∗ = 11 and average reward 0.9577 from π = 12. With two classes and

u = 0.25, average reward is 0.9411 from π∗ = (12, 9) and 0.9395 from π = (12, 10).
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3.4.4 FURTHER EXTENSIONS

The principles of the preceding analysis can be extended to cases where three or more

demand classes exist and/or to cases where more than two lead times are possible within

classes. The only requirement is that the sets of lead time options have no overlaps, as

described in the basic model definition (page 54 above). Given this absence of overlap

among sets of lead times, the system can be decomposed into independent subsystems.

Although we thus have a rigorous framework for the computation of ξ(π), the imple-

mentation of the two class case in the previous subsection shows that the approach is of

limited practical value. A system with a scheduling horizon of n days and capacity of c

units per day has (c+1)n possible states, entailing (c+1)2n elements each for the transition

probability matrix and the transition reward matrix. For c = 100 and n = 4, allowing 4

bytes per element, we require 76.94PB of storage3.

Dynamic programming (DP) offers one theoretical means of improvement on this “ex-

haustive” analysis. DP methods for solution of MDPs were developed in the late 1950s

and remain widely applicable today (Bellman, 1957; Bertsekas, 2001). Nevertheless, DP

still requires knowledge or good estimates of probabilistic parameters for the system con-

cerned, and the computation of these parameters becomes increasingly difficult for our

current problem. One way around this obstacle is to use DP methods in conjunction with

a stochastic simulation of the system: optimal decisions can then be progressively ap-

proximated (or “learned”) from the simulation output. Researchers in the Artificial Intel-

ligence (AI) community first developed these approximate dynamic programming (ADP)

techniques, known as either “Temporal Difference” (TD) or “Reinforcement Learning”

(RL). Subsequently, researchers in other fields have made significant contributions to the

theory, and the name “Neuro-dynamic Programming” (NDP) has also become common.

In the next section, we introduce a specific variant of RL known as Q-learning and

discuss the adaption of the theory to our lead time promising problem.

31PB = 1,048,576GB
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3.5 REINFORCEMENT LEARNING

Despite multiplicity of names and many further levels of subtly different implementation

techniques, the key characteristic of most ADP approaches is that the value function vector

of standard DP can be estimated through the output of a discrete event simulation and a

stochastic approximation algorithm. The formalization of this insight is particularly evident

in Q-Learning (Watkins, 1989), one of the best known reinforcement learning methods and

the one we shall employ here to derive lead time promising policies. We present below

a summary development4 of Q-Learning for average reward problems. Further details of

this and many related methods can be found in the texts of Bertsekas and Tsitsiklis (1996),

Sutton and Barto (1998), Gosavi (2003), and Powell (2007). For a different perspective on

simulation-based DP, using population-based techniques, see Chang et al. (2007).

3.5.1 FROM DYNAMIC PROGRAMMING TO Q-LEARNING

Recall the Bellman optimality equation for a finite state, average reward MDP,

vπ
∗
(i) = max

a∈A(i)

[
n∑
j=1

paij
(
raij + vπ

∗
(j)

)]
− ρπ

∗
, (3.12)

where

n is total number of states in the problem,

vπ
∗
(i) is the value function element for state i under the optimal policy π∗,

A(i) is the set of possible actions in state i,

paij is the probability of transitioning from state i to state j under action a,

raij is the immediate reward for transitioning from state i to state j under action a,

ρπ
∗

is the average reward under the optimal policy π∗.

4Although there are many correspondences, the notation used in subsection 3.5.1 is independent of what
is used elsewhere in the chapter.
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Define a Q-factor for each possible state-action pair (i, a) as the maximand of the Bellman

equation,

Qa
i ≡

n∑
j=1

paij
(
raij + vπ

∗
(j)

)
. (3.13)

By substituting (3.13) back into (3.12), we have

Qa
i =

n∑
j=1

paij

(
raij − ρπ

∗
+ max

b∈A(j)
Qb
j

)
(3.14)

= E
[
raij − ρπ

∗
+ max

b∈A(j)
Qb
j

]
. (3.15)

Since (3.15) does not explicitly include any transition probabilities, it allows estimation

the Q-factors from the output of a system simulation. This is commonly achieved by means

of the stochastic approximation method of Robbins and Monro (1951), which provides an

algorithmic approach to updating an estimated mean value, based on new samples of a

random variable. Specifically, let si is the ith independent sample of a random variable X

and define

Xm ≡
∑m

i=1 s
i

m
, αm =

1

m
.

Then we have

Xm+1 = (1− αm+1)Xm + αm+1sm+1.

Fitting (3.14) into this algorithmic framework gives

[Qa
i ]
m+1 = (1− αm+1) [Qa

i ]
m + αm+1

(
raij − ρπ

∗
+ max

b∈A(j)

[
Qb
j

]m)
. (3.16)

Although ρπ∗ is not known in advance, we can distinguish at the outset of the algorithm

one Q-factor to use as an estimate of its relative magnitude. This is sufficient to ensure that

the Q-factors remained bounded and the algorithm converges.

To start the algorithm, we set the counter m and all Q-factors to zero. Distinguishing

then for example Q1
1 as our estimate of ρπ∗ , the complete Q-learning algorithm is
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(i) Set [Qa
i ]

0 = 0 for all a, i.

(ii) [Qa
i ]
m+1 = (1− αm+1) [Qa

i ]
m + αm+1

(
raij − [Q1

1]
m+1

+ maxb∈A(j)

[
Qb
j

]m+1
)

.

After sufficient iterations to estimate the Q-factors with a desired degree of precision,

the learned policy is read as the action index of the Q-factor with greatest magnitude for

each state,

π∗(i) = arg max
a∈A(i)

[Qa
i ] .

3.5.2 IMPLEMENTATION OF Q-LEARNING

Convergence of approximate dynamic programming algorithms can often be expedited by

exploiting any inherent structure of the modeled system, such as renewal cycles (Bertsekas,

2001). In our lead time promising model, one salient structural aspect is the relation be-

tween rewards generated by lead time offers that concern the same production day. If our

implementation of Q-learning explicitly relates a lead time offer to a low class demand for

production on a given date to any later offers to higher class demands for production on the

same day, approximation of the Q-factors may be more direct, yielding faster convergence.

Given the potentially large state space for the problem, this exploitation of structure may

make a significant difference to the time needed to generate a solution of acceptable quality.

In the real world, relation of demands to specific production dates is accomplished

by the unique indexing of the calendar system. In order to capture this information in

simulation, let successive positive integers denote different production dates. We extend

the indexing system to individual demands by letting dkj represent the j th demand to arrive

during the kth production day. The expression dkj = i indicates that dkj is a demand of class

i. All demands arriving during production date k will be scheduled for production on some

later day, i.e., a day with index in the set {k + 1, k + 2, . . .}.

Although integer indices allow us to distinguish different production dates, this does not

immediately induce any renewal structure. One possible recourse is as follows: a lead time
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offer of y days to demand dkj is construed as an action a taken for date k + y, and because

date k+y at that moment is only an instance of a date with y days remaining to production,

we can abstractly consider action a to be taken for day y in the production horizon. Since

each production date progresses from the furthest day in the production horizon to day 0,

relating actions to the time remaining until production entails that each production date is

an instance of a renewal cycle: a “scheduling” interval of fixed size, during which lead time

offers and associated rewards occur.

Whereas a lead time offer corresponding to day k + y is a range element of the policy

function π given by (3.1), the renewal perspective described above entails that y must in

some way serve as an argument to π. The form of π must be modified to allow for this.

For convenient reference, we will use the terms “demand-centric” for the policy form given

in (3.1) and “day-centric” for the policy form that considers actions to be based on days.

Retain π to denote the policy corresponding to the demand-centric approach, and let π′ be

the policy corresponding to the day-centric approach.

In order to implement policy π′, we need to distinguish and relate rewards earned for

each date k, so π′ must prescribe an action for demand dkj with respect to date k alone. The

action for a single date can only be binary: offer a lead time corresponding to production

on that day (action 1), or do not offer it (action 0). Thus, if three or more lead time offers

are formally possible for any demand, we need some additional structure to enable the

consistent application of π′. This structure follows naturally from the assumption that

customers prefer shorter lead times. For example, if the shortest possible lead time offer

for demand dkj is y days, we can evaluate π′ successively for date k + y, date k + y + 1,

and so forth, making the corresponding lead time offer as soon as action 1 is returned. If

action 1 is not returned before we reach the date that entails the longest possible lead time,

we return lead time offer corresponding to that latter date. Thus, with this approach, the

number of policy evaluations for a given demand will always be one fewer than the number

of possible lead time offers.
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In order to clarify the differences in implementation required by the demand-centric

or the day-centric approach, the following example presents an excerpt from the sample

path of a small system. Following the specification of the sample path, we show for each

approach how the system state may be recorded and the Q-factors updated.

3.5.3 EXAMPLE

Assume we have only two classes of demand and that we offer non-overlapping lead time

options, as in the two class Markov chain analyzed above (page 54). We assume that

demand within classes occurs according to independent Poisson processes, with means of

1 demand per day for class 1 and 3 demands per day for class 2. The example starts at the

beginning of the 9th production day, and we suppose that the loads already scheduled for

forthcoming production dates are as follows:

• k = 10 : 3 demands of class 2

• k = 11 : 2 demands of class 2

• k = 12 : 1 demand of class 2

• k = 13 : empty.

These loads are represented in the leftmost chart in Figure 3.3 below. The vertical axis

is taken to represent the boundary between the current production date (in this case, k = 9)

and future production dates (k ≥ 10). The production load for the current date is not

specified, since it is considered irrelevant to the question of lead time offering.

2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2 2 2

9 10 11 12 13 k 10 11 12 13 14 k 11 12 13 14 15 k

Load Load Load

Figure 3.3: System Evolution Example

The system state represented in the leftmost chart in Figure 3.3 evolves through the

incidence of each new demand, the associated lead time offer φ, and customer response,
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C. The lead time offer φ implies production on some date k, while C ∈ {A,R} indicates

whether the offer is accepted (A) or rejected (R) by the customer. The sample demand

path, lead time offers, and customer responses across productions dates 9, 10, and the start

of production date 11 are taken to be as follows:

k = 9



Demand φ C

d9
1 = 2 3 (⇒ k = 12) A

d9
2 = 2 3 (⇒ k = 12) A

d9
3 = 1 1 (⇒ k = 10) A

d9
4 = 2 4 (⇒ k = 13) A

k = 10



Demand φ C

d10
1 = 2 3 (⇒ k = 13) A

d10
2 = 1 1 (⇒ k = 11) A

d10
3 = 1 1 (⇒ k = 11) A

d10
4 = 2 4 (⇒ k = 14) R

d10
5 = 2 3 (⇒ k = 13) A

k = 11


Demand φ C

d11
1 = 1 1 (⇒ k = 12) A

...

The remaining two charts in Figure 3.3 show the evolution of the system, given the

above sample path. The second chart shows the system loads at the start of day 10, and the

third chart shows the state at the start of day 11.

DEMAND-CENTRIC FORMULATION

This approach to lead time promising is oriented around the individual demands as entities:

given a new demand of class i, we ask explicitly, what lead time offer should we make?
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As in (3.1), our policy function returns a element from the set of lead times available to

class i. Although the state vector σ(t) seen by the arriving demand is in principle the load

on all days in the system horizon, we approximate it here by the projection σ̂(t), the load

on the possible target days for the demand: σ̂(t) = (lt1, l
t
2), where ltn ∈ N denotes the load

of the day corresponding to the nth shorthest lead time available to dkj . Accordingly, given

demand dkj of class i, the argument of the policy function is the vector (i, σ̂(t)). A lead time

offer is an action a ∈ {1, 2}, where a = n corresponds to an offer of the nth shortest lead

time available to dkj .

With this formulation, the sample path from above will be recorded as follows (the

variable t is suppressed in the example):

k = 9



Demand (i, σ̂) a C

d9
1 = 2 (2,1,0) 1 A

d9
2 = 2 (2,2,0) 1 A

d9
3 = 1 (1,3,2) 1 A

d9
4 = 2 (2,3,0) 2 A

k = 10



Demand (i, σ̂) a C

d10
1 = 2 (2,1,0) 1 A

d10
2 = 1 (1,2,3) 1 A

d10
3 = 1 (1,3,3) 1 A

d10
4 = 2 (2,2,0) 2 R

d10
5 = 2 (2,2,0) 1 A

k = 11


Demand (i, σ̂) a C

d11
1 = 1 (1,3,3) 1 A

...

As usual, we define Q-factors as state-action pairs. The “state” is the policy argument,
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so a Q-factor id denoted uniquely by (i, σ̂; a). With the demand-centric formulation, two

approaches to updating Q-factors are plausible. First, updates could occur where demands

are of the same type:

• Updating for class 1 demands: . . . → (1, 3, 2; 1) → (1, 2, 3; 1) → (1, 3, 3; 1) →

(1, 3, 3; 1) → . . .

• Updating for class 2 demands: . . . → (2, 1, 0; 1) → (2, 2, 0; 1) → (2, 3, 0; 2) →

(2, 1, 0; 1) → (2, 2, 0; 2) → (2, 2, 0; 1) → . . .

This will, however, certainly lead to a greedy policy for both demand types.

As a second approach, updates could occur with all state transitions:

• . . . → (2, 1, 0; 1) → (2, 2, 0; 1) → (1, 3, 2; 1) → (2, 3, 0; 2) → (2, 1, 0; 1) →

(1, 2, 3; 1) → (1, 3, 3; 1) → (2, 2, 0; 2) → (2, 2, 0; 1) → (1, 3, 3; 1) → . . .

In this case, the first and last Q-factors, which concern lead time decisions for the same

production day, are separated by eight other Q-factors, all but one of which denote lead

time decisions for other production days. The value of these intervening Q-factors may be

rather irrelevant for the first and last Q-factors, so their presence will greatly complicate

the updating process.

DAY-CENTRIC FORMULATION

This formulation is oriented around the production days as entities: given a new demand

of class i, we consider assigning it to the production date corresponding to the shortest

possible lead time and ask explicitly, should we make this offer, or not? If we decide not to

make the corresponding offer, we then ask the same question for next available production

date5. Thus, in contrast to (3.1), our policy function must return binary responses. Since

the set of lead times available to class i is prescribed, we can replace the class variable in

5A demand considered for the last available production date will always receive the corresponding offer.
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the policy argument by the index of the day being considered. Also, as in the demand-

centric formulation, we utilize the project the state variable σ(t) to σ̂(t) = (lt1, l
t
2), where

ltn ∈ N denotes the load of the day corresponding to the nth shortest lead time available to

dkj . Accordingly, when a lead time offer of y days is evaluated for demand dkj , let (y, σ̂(t))

be the corresponding argument of the policy function. The policy function returns action

a = (b, k + y), where b ∈ {0, 1}, indicates whether a lead time offer corresponding to

production on date k + y is made (b = 1) or not made (b = 0).

With this formulation, the sample path from above will be recorded as follows (the

variable t is again suppressed).

k = 9



Demand (y, σ̂) a C

d9
1 = 2 (3,1,0) (1, 12) A

d9
2 = 2 (3,2,0) (1, 12) A

d9
3 = 1 (1,3,2) (1, 10) A

d9
4 = 2 (3,3,0) (0, 12) NA

d9
4 = 2 (4,3,0) (1, 13) A

k = 10



Demand (y, σ̂) a C

d10
1 = 2 (3,1,0) (1, 13) A

d10
2 = 1 (1,2,3) (1, 11) A

d10
3 = 1 (1,3,3) (1, 11) A

d10
4 = 2 (3,2,0) (0, 13) NA

d10
4 = 2 (4,2,0) (1, 14) R

d10
5 = 2 (3,2,0) (1, 13) A

k = 11


Demand (y, σ̂) a C

d11
1 = 1 (1,3,3) (1, 12) A

...
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With the day-centric formulation, when recording Q-factors, we suppress the element

k in the action vector: the Q-factor for state (y, σ̂) and action a is represented by (y, σ̂; b).

This is because we aim to generalize from the specific experience on date k to a general

policy for production days indexed solely by y, the number of days remaining until pro-

duction begins. Nevertheless, the programmatic record of k allows us to update Q-factors

in a way that reflects the connection between lead time decisions made with respect to the

same production day. Given that we assign an arbitrary terminal state T (and an associated

constant terminal reward) to each production day, the updating pattern with the day-centric

formulation is:

• k = 10 : . . .→ (1, 3, 2; 1) → T

• k = 11 : . . .→ (1, 2, 3; 1) → (1, 3, 3; 1) → T

• k = 12 : . . .→ (3, 1, 0; 1) → (3, 2, 0; 1) → (3, 3, 0; 0) → (1, 3, 3; 1) → . . .

• k = 13 : . . .→ (4, 3, 0; 1) → (3, 1, 0; 1) → (3, 2, 0; 0) → (3, 2, 0; 1) → . . .

• k = 14 : . . .→ (4, 2, 0; 1) → . . .

Here, the first and last Q-factors shown for k = 12, which were separated by eight

other Q-factors in the demand-centric formulation, are now only separated by two other

Q-factors. This outcome will be true in general, since are fewer demands are expected to

be assigned to any one day than to the system as a whole, in any fixed period. The greater

proximity between relatedQ-factors should allow for faster and more accurate approximate

of the desired policy.

3.5.4 ADDITIONAL CONSIDERATIONS

The day-centric formulation has the advantage of allowing a immediately plausible way to

reduce the dimension of the state vector. Because we consider assignment of a demand to
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each possible production date in turn, the state vector σ(t) can be further truncated to the

scalar value lty, the current load on the date under consideration. If policy π′ dictates that

demand dkj should not be assigned to date k + y, the next policy evaluation will nonethe-

less include the state information lty+1, so action a is still potentially informed by all load

information from the possible target days. With the demand-centric formulation, any sim-

ilar truncation of the load component results in a certain loss of information, since π is

evaluated only once to generate action a.

The recognition of rewards is, however, somewhat complicated by the day-centric per-

spective. In the demand-centric formulation, each reward results by definition from a single

policy evaluation, and thus the Q-learning framework can be unambiguously applied. Con-

trastingly, in the day-centric formulation, a reward may result from two or more policy

evaluations, each pertaining to a different Q-factor. Thus, before finally being accepted for

production on a certain day, a demand may have been rejected by one or more earlier days.

Since the nature of an optimal policy is such that any initial rejections - as well as ultimate

acceptance - should be prescribed, each new demand event in the day-centric formulation

must be followed by a Q-factor update for all days that make a decision with respect to it.

In order to reflect the outcome consistently across each of these updates, we divide the rel-

evant immediate reward equally among them. This approach must be further amended for

rescheduling of demands, since immediate rewards from rescheduling actions are always

negative, so simply dividing them among updates cannot reveal optimal decisions (rewards

from rejection would always be greater than rewards from acceptance). Thus immediate

rewards for rescheduling actions are taken as the difference between the true reward and

the worst possible reward. Each rescheduled demand is followed by a Q-factor update for

all days that make a decision with respect to the rescheduling, with the immediate reward

divided equally among them.
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3.6 SIMULATION

The simulation is implemented in the C language, using an event scheduling approach (Law

and Kelton, 2000). See the appendix to this chapter for implementation notes and listing of

the program.

Runtime of the simulation entails two distinct phases:

(i) given a set of input parameters6, the program engages in learning across a specified

number of simulated system days;

(ii) the program evaluates the performance of the learned policy through a set of in-

dependent replications, using otherwise the same system parameters that define the

learning phase.

Within each simulation phase, two different operational modes arise. In “regular” mode,

the system handles newly arriving demands by making lead time offers and receiving non-

negative rewards. In “rescheduling” mode, the system handles the effect of inventory sup-

ply disruption, by reassigning demands as necessary to later production days and receiving

negative rewards.

Figure 3.4 gives a schematic summary of the simulation. Solid lines indicate pro-

gression during regular mode, while dashed lines indicate progression during rescheduling

mode.

3.6.1 ORGANIZATION OF EXPERIMENTS

Our evaluation of the performance of Q-learning is organized around the assumption that,

as in most models, certain elements are more managerially significant than others. Gen-

erally, these are variables that a manager can to some extent control, subject of course

6Besides the input parameters discussed in this section, there are several simulation inputs that control
options such as the duration of the learning phase, the number of replications, the minimum number of visits
required before Q-factors are included in the policy determination, etc. These other parameters are noted in
the appendix.
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Demand Manager 

Timer 
Determine next event 
• End of phase. 
• Demand. 
• End of day. 

Initialize 
• Set or reset performance 
counters and data array 
contents. 
• Set phase indicator to 
learning or testing. 

End of Day 
• Evaluate inventory 
status for next day. 
• Perform end-of-day 
learning. 
• Proceed to rescheduling 
mode or return to timing. 
 

Update State 
• Increment load. 
• If rescheduling, return to 
reschedule manager, 
• else, return to timer. 

Schedule 
• If learning, make a 
random lead time 
offer. 
• If testing, use learnt 
policy to make offer. 

Reschedule Manager 
• Beginning with the 
lowest class, construct 
rescheduling queues. 
• Send individually for 
rescheduling until empty. 

RQ Learn 
• Record current state, 
action, and reward. 
• Update Q for previous 
state, action, reward. 

START 
• Read input parameters. 
• Create data arrays. 

End of Phase 
• If end of learning, record 
policy and begin testing. 
• If end of testing, record 
results and exit program. 

Get Reward 
Non-negative for new 
demands, negative for 
rescheduled demands.  

Figure 3.4: Simulation Schematic Summary
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to appropriate costs for doing so. For the lead time promising system, the set V of such

variables includes:

• Ni, the number of lead times to offer to each customer class,

• b, the nominal capacity of the system,

• u, the unit cost associated with overtime,

• τ , the probability of supply chain disruption.7.

In contrast, some elements have more the nature of parameters which describe the business

conditions faced by the firm, at least in the short run. Here, the set P of such parameters

includes:

• λ, total mean demand,

• n, number of customer classes,

• δ, the distribution of demand among classes (n-vector),

• r, the potential rewards from each class (n-vector),

• hij , the reject probabilities associated with different lead times for each class,

• c, the maximum capacity of the system.

We therefore proceed by fixing first several distinct sets of values for elements inP . For

each possible set of values in P , our simulation experiments then show the performance of

Q-learning for different choices of the elements in V .

Within P , we restrict our consideration to cases with n = 2 or n = 3. With n = 2 we

take δ = (0.3, 0.7), meaning the class with highest priority constitutes on average 30% of

7While perhaps not directly controllable, this may be important for choosing suppliers or negotiating
contracts with them.
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demand. With n = 3, we take δ = (0.1, 0.2, 0.7), so here the class with highest priority

constitutes on average 10% of demand.

For both possible values of n, we define three different reward structures. These are

detailed in Table 3.1. For each structure and value of n, the table shows the vector r, the

components of which correspond to the different rewards for each class, and the expected

reward under each structure, given the values of δ specified above. In each case, when

moving from n = 2 to n = 3, the definition of the reward structure entails the addition of

an intermediate reward level, while the reward for the upper class and the reward for the

lower class remain the same. Reward structure A is intended as a base case, with a relatively

broad distribution of reward values and intermediate expected reward values. With reward

structure B, the distribution of reward values is shifted more toward the top class value,

giving higher expected reward values. With reward structure C, the distribution of reward

values is shifted toward the lowest class value, giving lower expected reward values.

Structure n = 2 n = 3

A
r = (1.0, 0.50)
⇒ E[r] = 0.650

r = (1.0, 0.75, 0.50)
⇒ E[r] = 0.605

B
r = (1.0, 0.75)
⇒ E[r] = 0.825

r = (1.0, 0.90, 0.75)
⇒ E[r] = 0.805

C
r = (1.0, 0.25)
⇒ E[r] = 0.475

r = (1.0, 0.50, 0.25)
⇒ E[r] = 0.375

Table 3.1: Reward Structures and Expected Values

In order to specify total mean demand and maximum capacity as well as the number of

classes, we define the four demand scenarios in Table 3.2.

For the reject probabilities hij , we assume for all classes that the probability of rejection

for a lead time offer increases by 10% for each additional day beyond the most favorable
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Scenario n λ c

1 2 10 15

2 2 40 50

3 2 100 125

4 3 100 125

Table 3.2: Demand Scenarios

lead time for the class. The probability that a class i demand will reject a lead time of x

days is thus 0.1(φi1 − x)

Since any of these four scenarios can be evaluated with any one of the three reward

structures, we have a total of 12 parameter scenarios from P to serve as context for evalua-

tion of a set of values from V (i.e., for given Ni, b, u, and τ ). By varying simultaneously at

most two variables in V while holding the others constant, we can visualize their individual

impact on the performance of the system. By varying also the reward structure or the de-

mand scenario, we can see whether the performance impact of each variable in V appears

consistent across these contexts.

Turning now to the variables in V , we restrict the values of Ni to a single number N

for our evaluations. In particular, we compare the performance with N = 2 or N = 3 in

the simulations. As in the Markov Chain analysis of section 3.4, we assume that the set of

all lead times forms an unbroken sequence, 1, 2, . . . , N,N +1, . . . , nN . Base cases for the

other elements of V are b = λ, u = 0.25, and τ = 0.100.

In terms of these different scenarios, variables, and constants, the simulation sets per-

formed are listed in Table 3.3. All simulations are conducted for all three reward structures,

so this aspect is not noted. The simulation sets are numbered for ease of reference to the
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tables and charts of results in subsection 3.6.2.

Set Number Variables Constants Demand Scenarios

1
N ∈ {2, 3},

τ ∈ [0.00, 0.150]a
u = 0.25, b = λ 1, 2, 3, 4

2 u ∈ [0.0, 0.4]b N = 3, b = λ, τ = 0.100 4

3 b ∈ [95, 115]c N = 3, b = λ, u = 0.25 4

aUsing subintervals of length 0.025 for τ .
bUsing subintervals of length 0.01 for u ∈ [0.00, 0.05] and subintervals of length 0.05 otherwise.
cUsing subintervals of length 5 for b.

Table 3.3: Simulation Sets

For each distinct combination of parameters and variables in a simulation set, the dis-

cussion in sections 3.5.3 and 3.5.4 above suggests three possible policy types to determine

through Q-learning.

Type 1: Day-centric policy with state approximated by load of

day under consideration.

Type 2: Day-centric policy with state approximated by load of

all possible target days for given demand class.

Type 3: Demand-centric policy with state approximated by

load of all possible target days for given demand class.

While all three policy types are learned for demand scenarios 1 and 2, and for scenario

3 when N = 2, only policy type 1 is learned for scenario 3 when N = 3 and demand

scenario 4. In this latter case, policy types 2 and 3 entail a state space of intractable size8.
8The state space is exponential in N for policy types 2 and 3 (a total of (c + 1)N states for each class),

but linear in N for policy type 1 (a total of N(c + 1) states for each class). Thus, allowing 8 bytes to store
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In order to provide a baseline to the policies generated by these three methods, we also

use simulation to determine the performance of a heuristic, “policy type 0,” which focuses

purely on immediate rewards:

Type 0: offer each demand the first available lead time within

its class for which the immediate reward will be positive.

A final practical consideration for our experiments concerns a limitation of the Q-

learning approach: the learned policy may be incomplete, since rare events, i.e., system

states which are visited with small probability, may have been insufficiently visited during

learning to yield a reliable policy9. Such a state may nevertheless be visited in the testing

phase of an experiment. We thus need to extend our learned policies in some way, in order

to handle these eventualities.

One solution to the rare event problem would be simply to choose randomly from the

set of feasible actions whenever we reach a state where the learned policy is incomplete.

This is unsatisfactory, however, because policies that are based on a larger state space, such

as our types 2 and 3, will have relatively fewer visits to each state per unit time, and thus

greater incompleteness after a learning period of specified duration. The testing of these

policies will then require a greater number of random actions, and the overall results will

most likely not reflect the quality of the complete portion of the policy (unless the average

reward from the learned policy were very similar to the reward from a policy of random

actions). Another possibility would be to increase the length of the learning period for a

policy with a larger state space. This may entail exponential increases in simulation time,

however, and also makes it difficult to compare efficiency in learning across policies.

Instead, we implement a two-stage solution: first we extrapolate policy type 1 to cover

rare events, then we augment policy types 2 and 3 with type 1 actions wherever they are

each Q-factor as a double precision floating point value, 4 bytes to store each visit counter as an integer, and
providing for rescheduling mode as well as regular mode, we would need 2,670,540,192 bytes (2.487GB) of
RAM to learn three policies in scenario 4.

9In our experiments, we include in the learned policy only states that have been visited at least 100 times
during learning.
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incomplete. Extrapolation of policy type 1 can be plausibly done, since the state space for

each day is ordered. If a learned policy covers a subset of the states for a day and shows a

threshold level for acceptance, we can assume that the “reject” action should be extended

to all states above the threshold, even if the states at the upper extremity were not explicitly

decided through learning. Likewise, we can assume that the “accept” action should be

extended to all states below the threshold, even if the states at the lower extremity were not

explicitly decided through learning.

Figure 3.5: Extrapolation of a Learned Type 1 Policy
“Accept” actions are shown by black blocks, and “reject” actions are shown by red blocks.
Blocks that are situated on the line indicate the learned policy, while blocks that are slightly
raised indicate actions extrapolated from it.
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As an illustration, consider Figure 3.5, which shows a type 1 policy chart for a small

system: λ = 20 and n = N = 2, so there are four days in the scheduling horizon. The

horizontal sequences of blocks in the chart indicate actions to be taken when considering a

lead time of x days for a new demand. At each load level, “accept” actions are shown by
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black blocks, and “reject” actions are shown by red blocks10. For example, the sequence of

blocks for x = 1 shows that we should accept demands for that day as long as the current

load is 21 units or less. Blocks that are situated on the line indicate the learned policy,

while blocks that are slightly raised indicate actions extrapolated from it. Extrapolation of

the policy here incurs no ambiguity, since the threshold vector is clearly π = (21, 16). Type

1 policy thresholds could be ambiguous, but this did not occur in our experiments.

3.6.2 RESULTS

Results were generated on a 1.7 GHz CPU with 512MB of RAM. Q-learning for all poli-

cies was based on 107 simulated days of demand activity, and all policies were tested with

50 independent replications of 105 simulated days of demand activity. Common random

numbers were employed for the ith replication of each policy test, in order to achieve vari-

ance reduction. Examples of total runtime for learning and testing in simulation set 1 are

given in Table 3.4. These are average times to generate results for a single value of τ with a

single reward structure. In simulation set 2 (resp., set 3), average runtime for given N and

u (N and b) is similar to the average runtime of demand scenario 4 in simulation set 1 for

given N and τ .

Performance for all policies is stated in the following pages as the average fraction

earned from each potential unit of reward. This corresponds to the performance measure

derived in the Markov chain analysis of Section 3.4. Stating this measure facilitates policy

comparisons across different reward structures, since the average reward from a system

with higher expected value per demand could easily be large in absolute magnitude, even

though the policy were capturing a relatively small fraction of the potential reward.

Detailed output from the simulations appears in tables on pages 93 - 107. For each

of the variable values in each simulation set, the tables show the mean performance of

10Since a demand considered for the longest possible lead time in its class will always be accepted (up to
capacity c), days 2 and 4 have no red blocks.
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Demand 
Scenario

N

2 9.50          1.45          
3 13.06        1.52          
2 39.86        5.42          
3 60.05        5.82          
2 108.03      13.41        
3 42.04        12.15        
2 38.19        12.12        
3 42.82        12.35        

Testing
(per policy)

Learning
(all policies)

1

2

3

4

Table 3.4: Simulation Set 1, Average Runtimes (minutes)

each policy type, and a 95% confidence interval. The confidence intervals are narrow: for

example, across the 182 observations for reward structure C, simulation set 1, the average

half-width is 0.08% of the mean value, and the standard deviation of confidence interval

half-width for the same observations is 0.06% of the mean value. All other data exhibit

similarly small average half-widths and standard deviations across confidence intervals.

In order to facilitate the discussion of results, graphs of the mean performances of pol-

icy type 0 versus the best mean performances among learned policies appear on pages 108

- 113. Confidence intervals are omitted from these graphs, due to the general narrowness

noted above. While a small number of policy performances are statistically indistinguish-

able, these cases are also suggested by the proximity of means in the graphs.

SIMULATION SET 1

The objective of this set is to evaluate the performance of policies with respect to variations

in N , the number of lead times offered per class, and τ , the probability of supply chain

disruption. Within each reward structure, for each trial value of τ , we have results for

N = 2 and N = 3. Color-coding is used in the tables. The result from the best-performing

policy across both values of N is given in bold text and highlighted green. The best-

performing policy for the alternative value of N is highlighted yellow. In cases where
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there are two or more policies with statistically indistinguishable best performance, both

are highlighted. This does not occur in evaluations of the best policy across both values of

N , however, and it only occurs in three cases11 of the best policy for the alternative value

of N .

For simulation set 1, Tables 3.5 and 3.6 summarize the best outcomes with respect to

choice of N and choice of policy type. In the former, instances where N = 2 yields the

best result are highlighted; in the latter, instances of best performance from policy types 2

or 3 are highlighted respectively yellow and green.

As far as choice of N is concerned, we see a clear trend towards N = 3 in the cases of

higher mean demand (scenarios 3 and 4) and higher disruption probability, while N = 2

tends to perform better in the cases of lower mean demand (scenarios 1 and 2) and lower

disruption probability. Of course, increasing disruption probability effectively entails an

increase in the arrival rate to the system, since more orders have to be rescheduled. Since

the mean and variance of the Poisson distribution are identical, we can suggest that larger

values of N alleviate the deterimental impact of increased demand uncertainty. This is

the benefit that we would expect from increased lead time flexibility. Contrastingly, when

demand uncertainty is low, the advantage of longer lead times is offset by the increased

likelihood of customer rejection, and the less flexible policy performs better.

In evaluating the performance of policy types, bear in mind that policy types 2 and 3

are not evaluated in cases where the state space is prohibitively large (see discussion on

page 79). Thus, while it is clear that the Q-learned policies perform invariably better than

the heuristic (policy type 0), we cannot draw an overall conclusion as to which policy type

in principle performs best. The higher success rate of policy types 2 and 3 in instances

of lower mean demand and lower system capacity (scenarios 1 and 2) suggest, as is rea-

sonable, that the extra information afforded by a vectorial representation of loads for these

11The three cases are (1) reward structure A, simulation set 1, demand scenario 2, τ = 0.150; (2) reward
structure A, simulation set 1, demand scenario 3, τ = 0.025; (3) reward structure B, simulation set 1, demand
scenario 3, τ = 0.100.
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Demand 
Scenario

Reward 
Structure 0.000 0.025 0.050 0.075 0.100 0.125 0.150 Row 

Average
A 2 2 2 2 2 2 2 2.000
B 3 3 2 3 3 3 3 2.857
C 3 3 3 3 3 3 3 3.000
A 3 3 3 2 3 2 2 2.571
B 3 3 3 3 3 3 3 3.000
C 3 2 2 2 3 2 2 2.286
A 3 3 3 3 3 3 3 3.000
B 3 3 3 3 3 3 3 3.000
C 2 3 3 3 3 3 3 2.857
A 2 3 3 3 3 3 3 2.857
B 3 3 3 3 3 3 3 3.000
C 3 3 3 3 3 3 3 3.000

2.750 2.833 2.750 2.750 2.917 2.750 2.750Column Average

τ  (disruption probability)

1

2

3

4

Table 3.5: Performance Summary for N = 2 vs. N = 3

Demand 
Scenario

Reward 
Structure 0.000 0.025 0.050 0.075 0.100 0.125 0.150 Row 

Average
A 1 1 1 1 1 1 1 1.000
B 3 3 2 3 3 2 3 2.714
C 1 1 1 1 1 1 1 1.000
A 2 2 2 1 2 1 1 1.571
B 2 2 2 2 2 2 2 2.000
C 2 1 1 1 1 2 1 1.286
A 1 1 1 1 1 1 1 1.000
B 1 1 1 1 1 1 1 1.000
C 2 1 1 1 1 1 1 1.143
A 1 1 1 1 1 1 1 1.000
B 1 1 1 1 1 1 1 1.000
C 1 1 1 1 1 1 1 1.000

1.500 1.333 1.250 1.250 1.333 1.250 1.250Column Average

τ  (disruption probability)

1

2

3

4

Table 3.6: Performance Summary with Respect to Policy Type
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policies is beneficial. The distribution of successes between policy types 2 and 3 within

this same region is, however, worth noting. Policy type 2 does exceptionally well on the

combination of intermediate demand, intermediate capacity, and greater expected demand

value (demand scenario 2, reward structures A and B). Policy type 3 does exceptionally

well on the combination of the smallest demand, smallest capacity, and greatest expected

demand value (demand scenario 1, reward structure B). Despite the presumable benefit to

both policy types of vectorial load information, we may see here a trade-off between the

directness of updating in policy type 2 (day-centric formulation) and the burden of adding

the “time remaining” variable to the state space of this policy. When demand and capacity

are lowest, entailing the smallest number of Q-factors, the extra burden of the “time re-

maining” variable cannot be offset by greater directness in updating. With an intermediate

demand, capacity, and Q-factor count, the value of more direct updating is worthwhile.

Although it is possible that policy types 2 and 3 could perform better if computational

capacity constraints were greatly relaxed, policy type 1 appears to be an indispensable

recourse in the current context. Moreover, referring to the detailed tables of results, we

see that the performance of policy 1 is usually competitive, even when it is not best. For

example, on simulation set 1, demand scenario 1, reward structure B (where policy 3 has

the greatest number of successes), the average difference between policy 1 performance

and the best policy performance is 0.004152, with a standard deviation of 0.002308. Thus

it is possible that performance of policy type 1 on demand scenarios 3 and 4 is also close to

the performance that could be obtained from the other policies with greater computational

resources.

Turning now to the question of Q-learning performance as compared to the performance

of the heuristic policy (type 0), we refer primarily to the simulation set graphs on pages

108 - 110. For variables N and τ , these graphs show the performance of the best Q-learned

policy against the performance of the heuristic policy. The latter is always shown in red

color, while the former is always shown in black. Cases with N = 2 are shown by dashed
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lines, while cases with N = 3 are shown by solid lines. Thus, in order to compare Q-

learning with the heuristic, we must compare solid line with solid line or dashed line with

dashed line, not a combination of solid and dashed!

It is immediately clear from the graphs that the performance difference between all

policies tends to increase with τ . Considering reward structure A to be a base case, this

progressive difference is more marked in the case of reward structure C and less marked

in the case of reward structure B. The performance difference between Q-learning and the

heuristic follows the same pattern: greater in the case of reward structure C and less in the

case of reward structure B. Thus we can infer that the Q-learned policies are better able to

handle a greater level of value variance in the demand stream.

It also apparent from the graphs that in cases where the mean and variance of total de-

mand is high (scenarios 3 and 4), the level of lead time flexibility, as instantiated by N ,

tends to have greater impact on system performance than the choice of lead time policy12.

In the graphs for these scenarios, we see that the heuristic policy with N = 3 performs

distinctly better than the Q-learned policy with N = 2 in most cases13. Comparing perfor-

mances of Q-learned policies alone, we see that increasing lead time flexibility fromN = 2

to N = 3 when total demand is high may augment average reward by several percentage

points: for example, the benefit is 3% in the case of demand scenario 4, reward structure

A, with τ = 0.050.

SIMULATION SET 2

This set considers the performance of policies with respect to different levels of u, the unit

cost applicable to overtime. Under the assumption that all demand scenarios and lead time

configurations will react in qualitatively the same manner to variations in u, we conduct

experiments for demand scenario 4 and N = 3 only.

12Of course, truly negligent policies, such as accepting all demands up to capacity, irrespective of overtime
costs, could outweigh the choice of N .

13The only exception is demand scenario 3 with reward structure C, but even here the performance of the
heuristic policy with N = 3 lies close to the performance of the Q-learned policy with N = 2.
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Detail of the results appears in Tables 3.21a, 3.22a, and 3.23a. From these we see

• the Q-learned policy has better mean performance than the the heuristic policy in all

cases except u = 0.02 and u = 0.03 with reward structure B,

• in no cases does the Q-learned policy perform statistically worse than the heuristic

policy,

• the Q-learned policy performs statistically better than the heuristic policy for u ≥

0.05 with reward structure B,

• the Q-learned policy always performs statistically better than the heuristic policy with

rewards structures A and C.

Referring to the graphs of mean performance in figures 3.9a, 3.10a, and 3.11a, we find a

similar pattern across reward sets as we saw in Simulation Set 1. The relative performance

of the Q-learned policy improves with increasing u, and this improvement increases with

the value variance in the demand stream: we see greatest relative improvement with reward

structure C and least relative improvement with reward structure B. Again, we can infer

that the Q-learned policies are better able to handle variance in values across demands.

SIMULATION SET 3

Our third and final simulation set considers the performance of policies with respect to

different levels of b, the nominal system capacity. Under the same assumption of qualitative

similarity across demand scenarios and lead time configurations, we conduct experiments

for demand scenario 4 and N = 3 only.

The mean demand for scenario 4 is 100 units per day. While it is perhaps immediately

evident that having a nominal capacity less than mean demand is undesirable, we evaluate

the case of b = 95, in order to get an idea of the impact of such onerous constraints.

Detail of the results appears in Tables 3.21b, 3.22b, and 3.23b. From these we see

that the performance of the Q-learned policy is statistically superior to the performance of

88



the heuristic in all cases, although the performance difference is of course decreasing in

b, and on the order of 0.01 or smaller for b = 115. Nevertheless, the same pattern across

reward structures emerges: greatest benefit from Q-learning with reward structure C and

least benefit with reward structure B.

COMPARISON WITH MARKOV CHAIN ANALYSIS

A final perspective on the results of the simulation study is provided by the Markov chain

analysis of section 3.4. For all reward structures, when τ = 0, we can use the two-class

Markov chain implementation to search for the optimal policy and average reward of de-

mand scenario 1. These results are given in the Table 3.7.

The rows and columns in Table 3.7 indicate respectively the threshold level π1 for class

1 demands and π2 for class 2 demands. The optimal average reward for each case is shown

by bold type, and the reward corresponding to the policy determined by Q-learning is high-

lighted green. Any suboptimal average rewards that are higher than the Q-learning average

reward are highlighted yellow. On the assumption that the objective function for the prob-

lem is quasi-concave, the extent of the tables is restricted to the policies bordering the

yellow region (i.e., we assume that no policies outside the ones shown perform as well or

better than the Q-learning policy.)

The results in Table 3.7 indicate that although Q-learning does not provide an optimal

threshold policy, nor even the next-to-optimal policy, the results are not far removed from

optimality. The maximum deviation from optimality in the table is 0.009156, in the case

of reward structure B. In problems with three or fewer classes, a local search of the policy

space around the Q-learning solution may reveal the true optimum.
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(a) Reward Structure A, Demand Scenario 1, τ = 0

6 7 8 9 10
10 0.927066 0.940882 0.941255 0.935364 0.929299
11 0.930686 0.946589 0.949946 0.944399 0.938268
12 0.925734 0.940910 0.944053 0.939182 0.933668

π1

π2

(b) Reward Structure B, Demand Scenario 1, τ = 0

6 7 8 9 10 11 12
9 0.909733 0.924767 0.932220 0.931016 0.928615 0.925301 0.922721
10 0.927405 0.944468 0.949696 0.947494 0.943827 0.941975 0.939723
11 0.930240 0.948721 0.956267 0.954330 0.950783 0.948024 0.946339
12 0.926325 0.944247 0.951624 0.950219 0.947111 0.944762 0.943139
13 0.921396 0.939263 0.945158 0.941930 0.937834 0.935347 0.934100

π1

π2

(c) Reward Structure C, Demand Scenario 1, τ = 0

6 7 8 9
9 0.895800 0.901411 0.897324 0.886695
10 0.926478 0.935499 0.927554 0.914801
11 0.931463 0.942886 0.938967 0.926795
12 0.924708 0.935115 0.930903 0.919769

π1

π2

Table 3.7: Markov Chain Analysis of Demand Scenario 1
Optimal average reward for each case is shown by bold type; reward for the policy deter-
mined by Q -learning is highlighted green.

3.7 CONCLUSIONS

We have provided several perspectives on the lead time promising problem for a produc-

tion operation facing multiple customer classes. For small systems, an optimal threshold

policy for lead times can be derived through the combination of a Markov chain model and

direct search of the policy space. This analysis is contingent, however, on the assumption

of non-overlapping lead times. Moreover, since transition and reward matrices grow expo-

nentially with system capacity, the approach serves only to provide benchmark results for
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the performance of other techniques on small systems.

Q-learning allows us to mitigate the problem of dimensionality, but large state spaces

still pose a challenge for computational resources. Also, the updating pattern of the algo-

rithm is complicated by the presence of multiple customer classes, since directly related

lead time actions are unlikely occur in direct sequence. We address both of these problems

through the single device of reorienting lead time offers to focus on production days, rather

than on individual demands.

Our results from Q-learning suggest that, in most cases, it offers a distinct improvement

over a plausible heuristic approach to lead time promising. In particular, the relative ad-

vantage of learned policies is only small when the business conditions faced by the system

are easier: more homogeneity across demand classes, less likelihood of supply chain dis-

ruptions, higher nominal production capacity, or lower overtime costs. As any one of these

conditions becomes less favorable, the relative benefit from Q-learning increases.

Nevertheless, in light of the benchmark results established by our Markov chain model,

we can be almost certain that our Q-learning results still fall short of optimal lead time

policies. Further work is thus needed, in order to establish benchmarks for larger systems

and improve the output of our algorithms. Several possibilities for the latter are readily

apparent. We might employ other value function approximation techniques, such as neural

network training, either as a complement or as an alternative to our day-centric formu-

lation; adjustments to the learning rate of algorithm may prevent it “getting stuck” in a

near-optimal policy; or an iterative approach, using two or more rounds of Q-learning with

information from one taken as input to the next. We could also investigate solution meth-

ods other than Q-learning. In particular, since our day-centric formulation can readily be

interpreted as a stochastic shortest path problem, and since we are only concerned with

policies that are consistently improving (i.e., we do not anticipate ever making a lead time

offer that would entail a net cost if accepted), solution through a stochastic adaptation of a

label correcting algorithm is a possibility (Bertsekas, 2001).
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Besides the need for better algorithm performance, we have shown that inherent system

flexibility is an important concern for the lead time promising problem. When variance of

total demand is high, a heuristic approach that allows a greater range of lead time offers may

outperform an otherwise optimal lead time policy. When variance of total demand is low,

however, additional flexibility may add no benefit or even incur some net loss of revenue.

Due to assumptions made for the sake of tractability, these contrasts are outlined here in

broad strokes. In a more general framework, a more nuanced approach to the question of

lead time flexibility may be essential. How many lead times should be available for each

class? What advantage may be gained is we allow lead times to overlap across customer

classes? Our Q-learning implementation is not bound by an assumption of non-overlapping

lead times, although the system instances evaluated here do have that property.

Other conceptual extensions of the current research are readily apparent. We might con-

sider the possibility of non-stationary demand processes: for example, total demand may

exhibit autoregressive properties or be described by a non-homogeneous Poisson process.

A non-stationary lead time policy would be needed to handle such scenarios. The business

model of the firm could also be enhanced: the reward from each successful lead time offer

might be a deterministic function of the length of lead time, or the probability of rejection

might be reduced by offering a customer a discount along with a longer lead time offer.

Everything else equal, what reward or discount structure would entail an increase in the

firm’s average reward?
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Table 3.20: Reward Structure A, Simulation Sets 2 and 3

(a) Simulation Set 2, Demand Scenario 4.

u CI,
Lower Mean CI,

Upper
CI,

Lower Mean CI,
Upper

0.00 0.893571 0.893858 0.894146 0.895596 0.895869 0.896143
0.01 0.882111 0.882416 0.882722 0.883687 0.883985 0.884282
0.02 0.871240 0.871569 0.871898 0.871901 0.872219 0.872538
0.03 0.863467 0.863810 0.864152 0.864237 0.864569 0.864901
0.04 0.857747 0.858107 0.858467 0.859287 0.859628 0.859970
0.05 0.853208 0.853580 0.853952 0.854323 0.854675 0.855027
0.10 0.828455 0.828891 0.829326 0.837263 0.837678 0.838094
0.15 0.809668 0.810168 0.810667 0.819990 0.820468 0.820946
0.20 0.790881 0.791445 0.792008 0.806245 0.806784 0.807324
0.25 0.772093 0.772722 0.773351 0.794852 0.795447 0.796042
0.30 0.753304 0.753999 0.754694 0.783062 0.783704 0.784346
0.35 0.734515 0.735276 0.736037 0.771742 0.772442 0.773142
0.40 0.715725 0.716553 0.717381 0.759479 0.760244 0.761009

Policy 0 Policy 1

(b) Simulation Set 3, Demand Scenario 4.

b CI,
Lower Mean CI,

Upper
CI,

Lower Mean CI,
Upper

95 0.673485 0.674256 0.675028 0.707862 0.708600 0.709338
100 0.772093 0.772722 0.773351 0.794852 0.795447 0.796042
105 0.826735 0.827237 0.827739 0.843454 0.843918 0.844383
110 0.851576 0.852010 0.852443 0.859148 0.859550 0.859952
115 0.861917 0.862319 0.862721 0.864780 0.865164 0.865549

Policy 0 Policy 1
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Table 3.21: Reward Structure B, Simulation Sets 2 and 3

(a) Simulation Set 2, Demand Scenario 4.

u CI,
Lower Mean CI,

Upper
CI,

Lower Mean CI,
Upper

0.00 0.920174 0.920390 0.920606 0.921345 0.921552 0.921760
0.01 0.910827 0.911059 0.911291 0.912128 0.912353 0.912577
0.02 0.903494 0.903739 0.903985 0.903441 0.903682 0.903923
0.03 0.896456 0.896718 0.896979 0.896412 0.896666 0.896921
0.04 0.892119 0.892391 0.892663 0.892246 0.892511 0.892776
0.05 0.888501 0.888784 0.889067 0.890440 0.890713 0.890985
0.10 0.869791 0.870123 0.870454 0.875077 0.875394 0.875711
0.15 0.855789 0.856168 0.856546 0.862774 0.863139 0.863504
0.20 0.841786 0.842213 0.842640 0.847470 0.847892 0.848314
0.25 0.827782 0.828258 0.828733 0.834798 0.835264 0.835731
0.30 0.813778 0.814303 0.814827 0.826134 0.826648 0.827162
0.35 0.799774 0.800348 0.800922 0.818012 0.818552 0.819092
0.40 0.785770 0.786393 0.787016 0.809542 0.810129 0.810716

Policy 0 Policy 1

(b) Simulation Set 3, Demand Scenario 4.

b CI,
Lower Mean CI,

Upper
CI,

Lower Mean CI,
Upper

95 0.753137 0.753720 0.754303 0.770055 0.770620 0.771184
100 0.827782 0.828258 0.828733 0.834798 0.835264 0.835731
105 0.869152 0.869532 0.869912 0.877219 0.877579 0.877940
110 0.888059 0.888387 0.888715 0.890782 0.891097 0.891413
115 0.896029 0.896333 0.896636 0.897551 0.897845 0.898139

Policy 0 Policy 1
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Table 3.22: Reward Structure C, Simulation Sets 2 and 3

(a) Simulation Set 2, Demand Scenario 4.

u CI,
Lower Mean CI,

Upper
CI,

Lower Mean CI,
Upper

0.00 0.831205 0.831660 0.832114 0.835695 0.836123 0.836551
0.01 0.815824 0.816299 0.816773 0.817166 0.817628 0.818090
0.02 0.799511 0.800023 0.800534 0.805335 0.805818 0.806302
0.03 0.787645 0.788179 0.788712 0.793549 0.794055 0.794562
0.04 0.779087 0.779643 0.780199 0.787189 0.787709 0.788230
0.05 0.771993 0.772569 0.773146 0.778674 0.779209 0.779745
0.10 0.732725 0.733402 0.734080 0.755826 0.756447 0.757067
0.15 0.702666 0.703445 0.704225 0.735838 0.736556 0.737274
0.20 0.672606 0.673489 0.674371 0.717459 0.718272 0.719086
0.25 0.642545 0.643532 0.644518 0.694206 0.695123 0.696040
0.30 0.612482 0.613575 0.614667 0.681516 0.682517 0.683518
0.35 0.582419 0.583618 0.584816 0.663315 0.664420 0.665525
0.40 0.552356 0.553661 0.554965 0.639706 0.640932 0.642158

Policy 0 Policy 1

(b) Simulation Set 3, Demand Scenario 4.

b CI,
Lower Mean CI,

Upper
CI,

Lower Mean CI,
Upper

95 0.488586 0.489795 0.491005 0.565180 0.566321 0.567461
100 0.642545 0.643532 0.644518 0.694206 0.695123 0.696040
105 0.727897 0.728683 0.729469 0.764116 0.764821 0.765527
110 0.766414 0.767094 0.767774 0.785536 0.786147 0.786758
115 0.782159 0.782792 0.783424 0.792942 0.793526 0.794110

Policy 0 Policy 1
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(a) Simulation Set 2
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(b) Simulation Set 3
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Figure 3.9: Reward Structure A, Simulation Sets 2 & 3
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(a) Simulation Set 2
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Figure 3.10: Reward Structure B, Simulation Sets 2 & 3
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(a) Simulation Set 2
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Figure 3.11: Reward Structure C, Simulation Sets 2 & 3
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CHAPTER 4

AUTOMOTIVE LAUNCH

PRODUCTIVITY

4.1 MOTIVATION

The transition from development and testing to full-scale manufacturing is a critical phase

in the life of any new product. Even if initial market demand is strong, the firm may be hard

pressed to meet output targets, due to problems resulting from the “ramp up” of production

volume (Terwiesch and Bohn, 2001). Typical sources of difficulty include previously un-

seen flaws in the specification of production processes, breakdowns of machinery, or even

aspects of the product design.

The potential impact of manufacturing hitches during launch is particularly serious for

automotive companies: a new car or truck may represent the culmination of years of in-

vestment in design and engineering. Considering also the need to prepare a plant for the
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new vehicle, train workers, and coordinate with component suppliers, it is clear that a com-

pany’s operating costs may be significantly affected by the product launch process. Indeed,

an article appearing in Wards Automotive remarks that “whenever an auto maker launches

major products, there is a fear that the launch will drain productivity due to plant down-

time, which inevitably drags down productivity scores. There is the increased time needed

to build a newly installed vehicle at a plant, as well” (Stoll, 2004). Automotive companies

must therefore be concerned to avoid - or at least to mitigate - these adverse effects on

productivity during the initial manufacturing of a new product.

Japanese manufacturers have shown more success in this respect than their American

counterparts: “Detroit auto makers still lag Toyota, Honda and Nissan in several critical

areas: the time it takes to launch new vehicles and plant flexibility” (Winter, 2006). Thus it

is not surprising that Frank Ewasyshyn, EVP of manufacturing at Chrysler, should envision

better performance during launch as a key element for overall productivity improvement:

“we’ll see very short ramp-ups. We’ve run the pilots online. We’ll see short drops for

a matter of days, then right back up again. So the effect is very minimal compared to

what’s happened in the past” (Mayne, 2006). Of course, speed of ramp-up is only one

factor in the productivity equation. We will show here how productivity levels during

launch relate to a range of manufacturers’ production decisions and the characteristics of

the plants concerned.

The productivity effects of the launch process vary greatly between different automotive

plants. For example, Figure 4.1 below shows results from five different plants that hosted

a launch in 2001. Year 0 establishes a baseline: productivity levels in the year before

launch. Relative levels of productivity during the launch year are shown at Year 1, and

relative levels of productivity during the year after launch are shown at Year 2. Although

we see that productivity at all plants declines during the launch year and improves again

during the year after launch, no other patterns are immediately apparent. The magnitude of

productivity change observed in the year after launch seems independent of the magnitude
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of change in the launch year.

18%

8%

-17%

-30%

-19%
-28%

-2%

-6%

4%
-2%

Year 0 Year 1 Year 2

St. Louis North – Ram
St. Louis - Explorer
Moraine – Trailblazer
Smyrna – Altima
Georgetown - Camry

% change relative to baseline year.

Product Launch Effects: Hours per Vehicle

© 2004 Harbour and Associates, Inc. 
All Rights Reserved

Figure 4.1: Productivity Changes During Launch

Our research questions here concern two key aspects of the product launch process.

First, we analyze the “launch location decision” of manufacturers. Are plants that are likely

to be chosen to host a new product launch distinguishable in advance from others? For in-

stance, we might expect that highly productive plants or plants with experience on similar

vehicles to the launch model would be more likely chosen to host the launch. Second, we

examine the productivity effects of the launch, in light of quantitative plant data. What

factors are able to explain the variation in plant performance, as exemplified in Figure 1

above? Although interesting in themselves, the answers to these two questions should illu-

minate a third: to what extent do factors that influence choice of launch location correspond

to the factors that characterize better productivity during launch?

Using data that are publicly available from Ward’s Automotive and the Harbour Con-

sulting Group, we find support for two hypotheses concerning launch location: a plant’s
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likelihood of hosting a new product launch is significantly increased if it has prior expe-

rience with one of the forthcoming launch platforms, or if it employs flexible production

methods. Correspondingly, we find that prior experience or flexible production methods are

significant factors for productivity during the first year of the launch process: plants with

prior experience or with flexible production tend to show better productivity figures than

other plants. When we consider productivity changes from the year before launch to the

year after launch (Year 0 to Year 2 in Figure 1), however, neither experience nor flexibility

proves to be significant. Instead, only plant utilization appears important for productivity

levels across the two-year period.

4.2 LITERATURE REVIEW

This study has commonalities with several streams of literature. Our analysis is set in

the automotive industry, but our research questions relate conceptually to work on product

development or manufacturing productivity, each of which occurs in numerous contexts.

With focus on the automotive industry, Clark and Fujimoto (1991) provide a compre-

hensive survey of the processes that lead from new product design to the point of launch,

but they do not address the operational aspects of the subsequent transition to manufactur-

ing. Substantial work on the subject of productivity in automotive manufacture has come

from researchers affiliated with MIT’s International Motor Vehicle Program (IMVP). Kraf-

cik (1988) initiates the analysis of productivity in terms of HPV1 measures and notes the

superiority of Japanese plants from this perspective. Lieberman (1990) shows how produc-

tivity improvements may be achieved through more efficient labor utilization. MacDuffie

et al. (1996) find that the increased complexity of parts involved in production of an au-

tomobile tends to have a detrimental effect on productivity. Similarly, Fisher and Ittner

(1999) find that increased variability in vehicle options has a negative impact on produc-

1Hours-per-Vehicle: see below, p126
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tivity and quality. Lieberman and Demeester (1999) show a strong relationship between

higher productivity and inventory reduction. Nevertheless, none of these papers is specifi-

cally concerned with productivity during product launch.

Some studies focusing on manufacturing strategies for new products have appeared re-

cently, but these have mostly been set in the context of high-tech industries, where the prod-

uct life cycles and prior knowledge are generally much lower than in the case of automobile

manufacture. For example, Terwiesch and Xu (2004) describe an optimal ramp-up strat-

egy for electronic component manufacture that intentionally delays process change. Within

the automotive industry, a study by the Office for the Study of Automotive Transportation

(OSAT) at the University of Michigan seems to be the only one addressing productivity

during launch. In a series of six articles for Automotive Design and Production magazine,

OSAT researchers Smith et al. (1998) examine manufacturing performance during launch

at thirty North American automobile plants in the period 1992 to 1998. These authors con-

sider only single-product, single-plant launches, however, and the “series analyzes a launch

event in only the most basic form: the time it takes a facility to return to capacity in terms

of production” (part 2). Also, the authors’ treatment is primarily a discursive comparison

of different manufacturers’ performance with respect to return to capacity; no statistical

analyses are offered. They do, however, suggest the importance of at least one factor that

proves to be significant in our study: “General Motors’ body shops are currently much

more flexible than a decade ago. Such flexibility will enable quicker and likely smoother

launches in the future” (part 2). Likewise, “Ford has progressively moved away from hard

automation, and increased flexibility in its body shops” (part 3).

As is well known from the work of Womack et al. (1990), flexible production meth-

ods were a key component in the early success of Japanese automobile makers, but many

subsequent studies of flexibility are not directly concerned with its impact on productivity.

Some, such as Jordan and Graves (1995) or Chod and Rudi (2005), show how flexibility is

a useful means for hedging against demand uncertainty, particularly when demand correla-
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tion between products is low. Others, such as Fine and Pappu (1990) or Röller and Tombak

(1990) consider the strategic aspects of flexibility, concluding that it intensifies competi-

tion and depresses prices. Goyal and Netessine (2007) model flexibility adoption decisions

subject simultaneously to competition and demand uncertainty, finding that the benefits

of flexibility to any given firm will usually be tempered by the degree of its competitors’

investments in flexible production methods.

Automotive industry research has only recently begun to consider the significance of

flexible production methods for productivity. Goyal et al. (2006) consider the actual de-

ployment of flexible production methods in North American automobile plants and assess

consistency between the data and hypotheses drawn from current theoretical models. When

considering performance implications, they find that flexibility appears to have an adverse

effect on productivity. Van Biesebroeck (2007) arrives at a similar conclusion, but shows

also the existence of significant interactions between flexibility and other manufacturing

variables, which can lead flexibility to be beneficial for productivity in certain contexts.

Nevertheless, neither of these studies is concerned with productivity during launch, and

our research here thus addresses an apparently open question. We show what value flexible

production methods and prior knowledge, among other variables, may have for manufac-

turing productivity during the ramp-up stage of product development.

4.3 RESEARCH HYPOTHESES

The preceding discussion already suggests that some measure of manufacturing flexibility

should be a candidate for influence in the second of our two research concerns, productivity

during launch. Of course, we can also surmise that the purported benefits of flexibility

may make manufacturers more likely to launch new products in flexible plants. Indeed,

any circumstance offering a productivity advantage at a plant is a possible influence on

production location decisions. There may be constraints on these decisions that do not
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necessarily align with productivity goals, however, and some factors affecting productivity

may only become manifest during the period of production ramp-up, long after the location

decision had been made.

Based on insights derived from works already noted and others, we propose below a

total of nine research hypotheses. These concern key factors in manufacturers’ strategic

production planning, product life cycles and sales trends, past productivity performance,

speed of production ramp-up, flexible production methods, and existing organizational

knowledge. We discuss first our hypotheses relating to launch location decisions, then

hypotheses about productivity during launch. Without suggesting causality, we would like

to evaluate consistency between the hypotheses and our automotive industry data.

Regarding strategic production planning, a recent study by Fleischmann et al. (2006)

of practices at BMW indicates the enormous scale of planning involved in producing a

new automotive product. The time horizon for the company’s production model extends to

twelve years, thereby covering the full life cycle of products starting in the next five years.

Once new product choices and accompanying sales forecasts have been made, planners

begin working on production location decisions. The preeminent aim in making these

allocations is to ensure that capacity at each plant closely fits production needs, given the

forecast evolution in volume for each model that will be produced there over the twelve-

year planning period. Accurate provision of capacity at each plant is a critical factor for

the manufacturer, since expanding facilities after product launch can be very expensive, but

low utilization tends to harm profitability.

The need to tie total production volume closely to plant capacity entails that new loads

resulting from a product launch can compensate for decreased volume on one or more other

product lines. If production planning must simultaneously cover many different plants, the

complexity of modern automobile production processes and of the accompanying supply

chains mean that this compensation for one product by another cannot be optimally decided

by a one-dimensional look at unit volumes (Fleischmann et al., 2006). Nevertheless, the ba-
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sic element in the decision process remains the trade-off between models, and since we are

not interested here in the optimal solution to the problem, only in empirically demonstrable

correspondences, it suffices for us to observe them at this fairly coarse level of detail.

Production volume for a specific model may decline steadily over a period of years

or stop quite abruptly at some point. In the former case, the change may be part of the

manufacturer’s strategic plan, or it may follow from market conditions. Strategic planning

considerations may specify a life cycle for the product, towards the end of which it will

be intentionally phased out; market conditions would most obviously be declining sales.

In the case of an abrupt termination of production, strategic reasons are more likely than

market conditions.

Our first two hypotheses therefore address factors in a plant’s current production port-

folio that may lead to it being selected as the host site for a new product launch:

H1: Plants with one or more models nearing the end of their life cycle are more likely

to host a new product launch.

H2: Plants with one or more models for which sales are declining are more likely to

host a new launch.

With successful forecasting and planning, capacity utilization at an automotive plant

may remain high, despite variation in the constituent products and their respective pro-

duction volumes. In a less ideal situation, however, a manufacturer may have to confront

unexpected low utilization at a particular plant. In this case, unless the prevailing causes

of low utilization are expected to pass, the plant may become more attractive as a launch

site. Thus, as complement to H1 and H2, which address utilization concerns indirectly, we

add an explicit hypothesis relating low utilization to a plant’s likelihood of hosting a new

product launch.

H3: Plants with low utilization are more likely to host a new product launch.

As noted in our introduction, it is commonly believed within the automotive industry

that product launches have a negative effect on productivity. Terwiesch and Xu (2004)
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indicate that manufacturers of high-tech products also often experience problems with yield

losses during production ramp-up, while Pisano (1995) discusses the same phenomenon

within pharmaceutical industry. Carrillo and Gaimon (2000) show analytically that even an

optimal approach to change in manufacturing processes will entail some short-term losses

in productivity. In light of the attendant risks, automotive executives may face a dilemma:

launching a new car or truck at a plant that already has low productivity could make matters

even worse there, while launching at a plant with high productivity could create an entirely

new point of concern. A “rule of thumb” for this situation is by no means clear, but we

assume provisionally that loss of existing profitability poses a lesser threat.

H4: Plants with higher productivity are more likely to host a new product launch.

Referring to research where the impact of new or changed processes on manufacturing

productivity is analyzed in detail, we can discern a key explanatory variable: an organiza-

tion’s level of knowledge about the production process. In general, production ramp-up is

a phase characterized by a low level of understanding of the new product and its associated

production processes; but as the firm works through initial difficulties and learns how to

manufacture the product as efficiently as possible, its level of knowledge increases (Ter-

wiesch and Bohn, 2001). Early models of the learning curve claim that variable costs fall

with the logarithm of cumulative production (Wright, 1936; Levy, 1965). More recent stud-

ies also see knowledge as advantageous for production yields, however, and suggest that

knowledge levels can be improved by deliberate measures such as preparation and training

(Hatch and Mowery, 1998; Carrillo and Gaimon, 2000).

In addition to “direct” augmentations of knowledge through experience or training,

Levitt and March (1988) argue that one organization can benefit indirectly from the ex-

perience of another. Epple et al. (1995) show that the same phenomenon can take place

between units entirely within the firm: almost all knowledge gained by the first shift in

an automobile plant is transferred to the second shift 2. These findings suggest that perfor-

2The authors do not explain why the knowledge level at the plant is initially low. In particular, no reference
is made to implemented process change or product launch.
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mance during the production ramp-up phase may benefit from organizational knowledge of

processes used for similar products, and that such benefits could be greatest when this rel-

evant organizational knowledge has been developed at the very plant and workforce where

the product launch will occur. In automotive production, a significant degree of similarity

can obtain between two nominally distinct products when they share the same platform,

which may be defined as a subassembly unit that is common to an entire product family

(Muffatto and Roveda, 2002). Plants with manufacturing experience on the platform that

will be used in a new product should therefore have an advantage over others.

H5: Plants with experience on the launch platform are more likely to host the launch.

Turning now to flexible production methods, we find a large body of literature advo-

cating their value. Hayes and Wheelwright (1984) were perhaps the first to point out the

competitive importance of manufacturing flexibility, and the work of Womack et al. (1990)

greatly raised awareness about Japanese automakers’ advantage in this respect. More recent

research recognizes different types of manufacturing flexibility, distinguishing in particu-

lar volume flexibility from product flexibility (Parker and Wirth, 1999). We focus on the

latter type, which is arguably the more important for the automotive industry (Goyal and

Netessine, 2007; Jordan and Graves, 1995). Product flexibility means here that a given

plant is capable of producing more than one type of automobile on one or more of its pro-

duction lines. More precisely, we are interested in demonstrated product flexibility, since it

is essentially impossible - and perhaps not even practically relevant - to quantify a plant’s

potential for flexible production3.

Most studies of flexibility to date have not, however, been directly concerned with its

impact on productivity. Instead, flexibility has widely been evaluated as a means to mitigate

3As noted by Goyal et al. (2006), a automobile plant can in principle manufacture multiple types of
vehicle, but the cost of converting, replacing, or augmenting the plant’s equipment and human resources
in order to do so may in many cases be prohibitive. A well-known illustration of this point is provided by
Chrysler’s experience with the launch of its PT Cruiser. The company intended to manufacture the vehicle at a
plant that already produced the Dodge Neon, but the PT cruiser needed a slightly larger paint bath (Boudette,
2006). Replacing this equipment would have been so costly that Chrysler preferred to switch production to a
different plant.
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the negative effects of demand uncertainty, particularly when low demand correlation exists

between products. See, for example, Fine and Freund (1990), Van Mieghem (1998), and

Chod and Rudi (2005). Competitive equilibria in the adoption of flexibility are studied by

Fine and Pappu (1990), Röller and Tombak (1990), and Goyal and Netessine (2007).

Recent work by Van Biesebroeck (2007) does specifically examine the value of flexi-

bility for productivity, and in the context of the automobile industry. Its potential benefits

are shown to depend significantly on the degree of variety among products manufactured.

All else equal, flexibility tends to decrease productivity at a plant, but the penalty is itself

decreasing in the total number of chassis configurations and body styles produced at the

plant. Moreover, the value of flexibility is enhanced when plants "insource" rather than

outsource ancillary production activities.

In light of these broadly positive findings, we expect flexibility also to provide benefit

during the ramp-up period of product launch.

H6: Plants using flexible production methods are more likely to host a launch.

Unlike H1 - H3, which address circumstantial reasons why a plant might be chosen to

host a launch, H5 and H6 concern attributes of the plant itself - platform experience or use

of flexible production methods, respectively - that may entail productivity benefits during

launch, and thus influence manufacturers’ decisions. The question of whether these possi-

ble benefits tend to be realized during a launch period therefore provides us immediately

with two hypotheses about the productivity impact of the launch process. Indeed, a plant’s

experience with a launch platform appears essentially to be a variation of the case of delib-

erate preparation and training, the benefits of which are suggested by Hatch and Mowery

(1998) and Carrillo and Gaimon (2000).

H7: Plants with experience on the launch platform will show better productivity during

launch.

A hypothesis about the value of flexible production methods during launch is a natural

counterpart to the large research literature on flexibility. As noted earlier, however, the
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study made by Smith et al. (1998) suggests that flexibility should be beneficial for automo-

tive product launches, so our treatment of it here provides the first empirical verification of

their work.

H8: Plants using flexible production methods will show better productivity during

launch.

Our final hypothesis brings the speed of the ramp-up processes into the productivity

picture. The ramp-up phase is regarded as lasting from the start of production until the at-

tainment of full capacity utilization. “Faster” ramp-up therefore corresponds to a relatively

shorter time to reach full capacity utilization. As noted by Terwiesch and Bohn (2001), in

a situation where the nuances of a manufacturing process are new and poorly understood,

there may be a trade-off in this period between production rate and yields. As managers

apply pressure to accelerate production, the number of errors and defects requiring rework

may rise.

H9: Plants with shorter ramp-up phases will be relatively less productive.

In the following section we describe the data and derived variables that we use to test

the hypotheses just developed.

4.4 DATA & DERIVED VARIABLES

Our data are compiled from two sources: annual reports of the Harbour Consulting Group

and the Reference Center of Ward’s Automotive. The Harbour reports provide detailed sets

of production data and performance measures for the North American automotive indus-

try. Most automotive manufacturers voluntarily provide data to Michigan-based Harbour,

which audits the information provided by means of plant visits. From Ward’s Automo-

tive, we obtain supplementary detail of monthly sales and and production volume, to the

specificity of individual models and plant.

The data used for our study here are based on eight Harbour reports, covering produc-
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tion in the years 1999 to 2006. Although the reports include data from all active automotive

plants in North America, new product launches occur at only a small number of plants each

year. From eight years of data, we obtain a total of 333 plant records, of which 63 are

launch instances. Of these 63 records, 3 are excluded because of partially missing data4.

For each plant in each year, the Harbour reports indicate an inverse measure of produc-

tivity, Hours-per-Vehicle (HPV). This variable is constructed by dividing the total number

of working hours expended at the plant in the year by the number of vehicles produced in

the same year. The measure is an inverse in the sense that a greater value for HPV indi-

cates lower productivity, and vice-versa. HPV is accepted in the industry as a measure of

productivity and has been used in several other research studies (MacDuffie et al., 1996;

Goyal et al., 2006; Van Biesebroeck, 2007).

In addition to the variables explicitly reported by Harbour, we construct 23 others for

use in the analysis. These additional variables are described in the next few paragraphs.

Flexibility. We provide four measures of flexible production methods at plant. Follow-

ing the approach taken by other researchers, flexibility is construed as a relation between

the number of assembly lines or body shops at each plant and the number of platforms that

are produced at the same plant. If the number of platforms produced exceeds the number

of assembly lines, we consider the plant to be “assembly line flexible.” Otherwise, we

consider it to be inflexible (Goyal et al., 2006; Van Biesebroeck, 2007). Similarly, if the

number of platforms produced exceeds the number of body shops at the plant, we consider

the plant to be “body shop flexible.” Each of these two flexibility measures is recorded as a

binary variable (flexible vs. inflexible) and as an explicit ratio of the underlying measures

(number of platforms produced vs. number of assembly lines or body shops). By the cri-

teria described above, 13 of the 60 launch records in our data are “assembly line flexible,”

while 11 plants are “body shop flexible.”

Experience. Two binary variables are constructed to indicate whether a plant has prior

4The plants in question did not exist prior to the product launch year, so productivity changes cannot be
assessed.
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experience with a platform used to launch a car or truck in a given launch year. Two vari-

ables are needed here because we want to distinguish between the effect of experience on

the launch location decision and the effect of experience on productivity during launch. In

the context of our launch location analysis, we say that a plant that has prior experience in

a given year if it manufactures vehicles on at least one of the platforms that will be used

to launch new products in the succeeding year (this might be termed “potential experience

in launch”). Plants that do not manufacture on any of the platforms that will be used for a

launch in the succeeding year are noted as having no potential experience in launch. Since

we cannot presume that experience in this sense entails that a plant will host a launch, we

recode the experience variable when we look at productivity during launch. In this latter

context, saying that a plant hosting a launch has prior experience (which might be termed

“realized experience in launch”) is equivalent to saying that it did in fact manufacture ve-

hicles on the launch platform in the year preceding launch. Clearly, if a launch plant has

“realized experience in launch,” it must have had “potential experience in launch.” Nev-

ertheless, if a plant does not have “realized experience in launch,” it still may have had

“potential experience in launch,” since a plant with prior experience on one or more of the

platforms that will be used for launch may nevertheless host a launch on a platform that

lies outside its set of experience.

The “potential” and “realized” experience variables are particular respectively to the

launch location analysis and productivity analysis, so we henceforth refer to them both

simply as “experience.” Context indicates which variable we mean.

Production Ramp-up. Productivity during launch may be affected by the rapidity of

production ramp-up, so we add variables to measure the latter. Production ramp-up is de-

fined to be the period between the end of product development and full capacity production

(Terwiesch and Bohn, 2001). Manufacturers’ detail of production capacity for launch prod-

ucts is not available to us, so we estimate the ramp-up period from the data in four different

ways: the time taken for weekly production in the launch year to reach its maximum, its
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90th percentile, or the mean or the median of its weekly levels in the second half of the

year. Each of the four resulting variables is included in the analysis.

Sales Trends. In order to capture possible influence of sales trends on the decision for

launch location, we regress monthly sales data against time for each model produced at

each plant that hosts a launch. The regressions are run for 1, 2, 3, and 4 years prior to the

launch year (cases for which insufficient data exist are omitted). Parameter estimates from

the regressions are then matched to the launch plant records. Plants that produce more than

one product will receive several parameter estimates, which may present conflicting sales

trends. We address such conflicts by taking the minimum, maximum, and mean parameters

estimates from all regressions with the time frame. Thus we have a total of twelve aggregate

measures for each plant. The minimum coefficient from regression across two years proves

to be most significant for our models, however, so results with this measure are reported.

End of life-cycle. Our product data allows us to see when models are phased out of

production. At the plant level, we add an indicator variable in each year, to show whether

the plant manufactures a model that is within the last two years of its life cycle.

Control Variables. In order to control for possible trends across companies or time in

our analyses, we utilize indicator variables for manufacturer and year.

The full set of variables used in the study is described at the start of the appendix to

this chapter. Summary statistics appear in Table C.1. Sample correlations for the launch

location data are in Table C.2, while sample correlations for the productivity data are in

Table C.3. Data on shift patterns and plant capacity are available to us but ultimately not

used in the analysis. The great majority (82%) of launch plants in our data operate with two

shifts, and no statistically significant difference between the mean productivity of this group

and the mean of groups with other shift patterns (one, three, or four shifts) is discernable.

Plant capacity did not prove to be a significant factor for either of our research questions.
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4.5 ANALYSIS

We present the analysis of our data in four parts. First, we consider the general impact

of launch events on productivity. Notwithstanding anecdotal evidence cited earlier (see

section 4.1), we show from the data that a productivity penalty appears to be associated

with launch activity. Next, we model manufacturers’ launch location decisions by means

of logistic regression. This shows which variables in our dataset tend to contribute to the

probability of a launch occurring at a plant in a given year. Third, we give the productivity

analysis itself, showing which variables may mitiage the producitivity penalty that often

accompanies a launch. Finally, we address the possibility that our results on productiv-

ity could be biased by manufacturers’ choice of launch location. In order to support our

findings on the productivity penalty associated with launch, we use propensity scoring and

other methods to view productivity performance at launch plants in light of performance at

sets of comparable non-launch plants. In order to argue that the results of the productivity

analysis are unbiased, we estimate a Heckman correction model (Heckman, 1979).

4.5.1 LAUNCH IMPACT

OLS regression on our data provides an initial perspective on the productivity impact of a

launch event. Considering first a model that includes launch and non-launch plants alike,

but excludes the binary launch indicator variable, we find that significant predictors of pro-

ductivity at any plant in any year are plant utilization, the number of chassis configurations

on the assembly lines, and the productivity level in the preceding year (see "base model,"

Table C.4). When added to this base model, the binary launch indicator variable takes a

significant and positive parameter estimate. Thus launch tends to entail higher HPV fig-

ures, i.e., lower productivity (see “launch model,” Table C.4). The regression is on the

logarithmic scale, so the parameter estimate of 0.150 for the launch indicator implies that

launch plants tend on average to see 16.2% greater HPV than non-launch plants.
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4.5.2 LAUNCH LOCATION

In estimating a location model, we restrict our data to variables that provide data from

before launch, such as prior year capacity, utilization, HPV, and the regression estimates

of sales trends discussed earlier. We include the indicator variables for each company5 and

each production year, in order to control for any significant differences in these areas.

Since some plants in the data have multiple observations (across different production

years), tests of significance for each coefficient are computed using robust standard errors,

clustered by plant. Tests without clustered standard errors may bias the tests in favor of

accepting the null hypothesis.

The results of logistic regression on all relevant variables are shown in Table C.5. We

see that prior experience with the launch platform and body shop flexibility6 are significant

predictors of launch location, supporting hypotheses 5 and 6. As expected, the parameter

estimates for these variables are both positive: having prior experience or flexible pro-

duction methods increases a plant’s chance of hosting a launch. The parameter estimate

for prior-year HPV is also significant, but negative: poorer productivity (higher HPV) de-

creases a plant’s probability of hosting a launch. This entails support for hypothesis 4.

The regression does not give any support to our hypotheses about product life cycles,

sales, or plant utilization (hypotheses 1, 2, and 3). The estimates for the late model indi-

cator, sales trend, and utilization variables are not statistically significant. Since table C.1

indicates that mean prior utilization is close to 90%, we check further to see whether our

finding on hypothesis 3 may result from generally high plant utilization in our data. Of 147

plants with below mean utilization in a given year, however, only 28 were chosen to host a

product launch in the following year.

Among control variables, only DCX and 2004 are significant: the proportion of plants

5The indicator for GM is suppressed in the estimation.
6Due to high correlation among the four available flexibility measures, the model was estimated with the

inclusion of only one of them at a time. The parameter estimate for body shop flexibility proved to be the
most significant.
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hosting a launch is higher for Daimler-Chrysler than for other manufacturers, while the

overall number of launches in 2004 is proportionately higher than in other years.

4.5.3 LAUNCH PRODUCTIVITY

The results of our launch location analysis suggest relevant experience, flexible production

methods, and superior productivity at a given plant all contribute positively to the likelihood

that a manufacturer will choose to host a launch there. The question of whether these factors

correspond significantly to any productivity advantage during launch itself is thus highly

material (hypotheses 7 and 8).

We use OLS regression to model productivity changes during the first year and second

years following a new vehicle launch. Specifically, the effects modeled are the change in

HPV from the year preceding launch to the year of launch, which we call Y01effect; and

the change from the year preceding launch to the second year after launch, which we call

Y02effect. We do not present an analysis of the change in HPV between the first and second

years after launch (which we would call Y12effect), since the parameter estimates for this

model can generate ambiguities: a plant that shows a great improvement in HPV during

the second year after launch may be performing well over both years, or merely recovering

from a particularly great loss in productivity in the first year of launch.

The changes in HPV given by Y01effect and Y02effect can be measured as absolute

differences or as percentage measures. We estimate all four possible models, and find

greater statistical significance for our independent variables when using the percentage

measure. We present these more significant results. The parameter estimates for models

of Y01effect and Y02effect are given in tables C.6, C.7, and C.8. In order to highlight the

import of the experience and flexibility variables in the analysis, we estimate first a base

model, from which they are excluded. Alongside these estimates we present estimates for

an extended model, which includes the experience and flexibility variables.

Considering first the model for Y01effect shown in Table C.6, we note the following:
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(i) The estimate for the intercept is statistically significant at an HPV increase of 71.39%

with respect to productivity before launch. Any statistically significant negative pa-

rameter estimates therefore correspond to variables that tend to lower this increase.

(ii) Flexibility of the body shop with respect to platforms significantly mitigates increase

in HPV. Moreover, since Flexibility is a continuous measure of flexibility, a greater

degree of flexibility in the body shop entails a greater mitigation of HPV increases.

(iii) Also significant to the Y01effect is prior manufacturing experience on the platform

used for the launch. The estimate is again negative, suggesting, as we would expect,

that prior experience tends to result in better productivity during the launch year.

(iv) The estimate for plant utilization during the first year of launch (Utilization) is signif-

icant. In general, plants with higher levels of utilization show better productivity.

(v) The estimate for standard deviation of sales during the first year of launch (std-

Dev(Sales)) is significant. In general, plants with models for which sales are more

variable show lower productivity. This appears consistent with findings of Bresnahan

and Ramey (1994), who study of output fluctuations in the U.S. automotive industry.

They note that the shift-based manufacturing environment tends to make production

more volatile than sales, and that productivity often suffers when output levels are

increased, because workers on the newly added shifts are likely to be to relatively

inexperienced.

(vi) The estimate for the duration of ramp-up is not significant.

(vii) The estimates for the control variables (company and year) are not significant.

Thus flexibility and prior experience with the launch platform tend to entail a produc-

tivity advantage gained during launch., in accordance with hypotheses 7 and 8. Plants with

these characteristics may enjoy an economic advantage during launch. This result amplifies
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the relevance of the earlier findings that these factors contribute positively to the likelihood

of a plant hosting a launch.

Surprisingly, the regression of Y01effect offers no support for hypothesis 9. None of

the parameter estimates for the four measures7 of ramp-up duration is significant. This

outcome changes, however, if replace the experience indicator by its negation (i.e., an in-

dicator for lack of experience) and include an interaction term between this and ramp-up

duration. These results are shown in Table C.7. While the significance, magnitude, and

sign of other the estimates are much the same here as in the regression without the interac-

tion term, the coefficient estimate for ramp-up duration is now significant, the coefficient

estimate for the interaction term is close to significant (p-value of 0.145), the magnitudes

of the estimates are comparable, but their signs are opposite. The overall implication is

that ramp-up duration is not very important for plants without experience, but for plants

with experience, shorter ramp-ups correspond to better productivity, and vice versa. From

this perspective, ramp-up duration appears more akin to a performance measure than an

explanatory variable (cf. Terwiesch et al., 2001). Indeed, the correlation between ramp-up

duration and Y01effect is only 0.072 for plants without experience, while it is 0.397 for

plants with experience.

Turning to the regression of Y02effect, we see from the estimations in Table C.8 that

neither prior experience on the launch platform nor flexibility are significant factors for

productivity changes over the period of two years following launch. In the case of plants

that show improvement over the period (Table C.9), utilization is significant (avgUtiliza-

tion). Since the parameter estimate is negative, we infer in this limited case that higher

utilization tends to entail better productivity.

7As with the four flexibility measures, there is high correlation among the four available measures of
ramp-up duration, so the model was estimated with the inclusion of only one of them at a time. Results were
similar for all, but the time to reach mean productivity level gave best overall model significance.
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4.5.4 SELECTION BIAS

In order to account for the possibility that the results in Table C.4 may be biased by the

selection of launch plants, we benchmark against productivity changes at comparable non-

launch plants. In particular, for each launch plant, we first identify the set (possibly empty)

of plants within the same company that are active in the launch period, but do not host

a launch. From these sets, we determine a comparative non-launch productivity change,

according to each of the following criteria:

(i) HPV change at the single non-launch plant that includes the same product segment

classification as the launch model, and has the closest HPV to the launch plant prior

to launch.

(ii) Mean HPV change at all non-launch plants that include the same product segment

classification as the launch model.

(iii) HPV change at the single non-launch plant with the closest propensity score to the

launch plant.

The propensity scoring (PS) that we employ for criterion (iii) offers a theoretical basis

for matching subjects within a non-treatment group (e.g., plants that do not host a launch)

to statistically equivalent subjects within a treatment group (e.g., plants hosting a launch).

Introduced by Rosenbaum and Rubin (1983), PS relies on the conditional probability that

a subject will be in one group rather than in another. From the PS perspective, two subjects

are similar, irrespective of their de facto group membership, to the extent that their propen-

sity scores for group membership are a priori similar. PS has been employed by many

researchers who, while studying the effect of some treatment, need to select an unbiased

control group against which to benchmark (see Luellen et al., 2005, for an introduction).

For example, Lechner (2002) uses the PS method to evaluate the effectiveness of different

job training programs in Switzerland: PS enables a priori matching of individuals, even
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though their de facto selection into a particular job training program may not be random.

Logistic regression is a common means for determining propensity scores, so we can im-

mediately apply the results from our launch location analysis for our propensity scoring.

The non-launch plant with the closest propensity score to a given launch plant is the one

within the same company and launch period that appeared ex ante to have the most similar

chance as the launch plant to be chosen to host the launch.

Given matches of a non-launch plant to each launch plant, using in turn criteria (i) - (iii)

above, we calculate the adjusted mean productivity changes due to launch activity, i.e., the

HPV change at each launch plant minus the HPV change at the matched non-launch plant.

These results appear in Table 4.1.

Criterion Adjusted Mean HPV Change 95% Confidence Interval

(i) +19.06% (+13.66%, +24.46%)

(ii) +15.71% (+10.29%, +21.14%)

(iii) +19.36% (+14.44%, +24.30%)

Table 4.1: Adjusted Mean Changes in Productivity

From these figures we see that the mean productivity penalty associated with launch

activity is likely to be slightly greater than suggested by the OLS regression in Table C.4.

This is consistent with the assumption that launch plants are selected in order to provide

the best possible productivity performance during the launch period.

As also observed at the outset of this section, the selection of launch plants may influ-

ence productivity performance. Thus we may also ask whether the parameter estimates in

our regressions for launch performance are biased by the launch plant selection. In order to

address this point, we estimate a Heckman correction model (Heckman, 1979) for launch
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location and Y01effect (see Table C.10). Under the assumption that the error terms of the

selection model and the regression model are jointly normal, the Heckman model estimates

ρ, the correlation between them. Viewed as conditional on the selection model, the regres-

sion sample is random; thus the results can be considered unbiased if the estimate of ρ

is zero. The likelihood ratio test at the end of Table C.10 indicates that we cannot reject

the null hypothesis of ρ = 0, so so we can take the estimates from the OLS productivity

analysis to be unbiased. Indeed, comparing the coefficient estimates of the OLS model in

Table C.10 to the coefficient estimates in Table C.6, we see that they are highly similar8.

Thus we infer that the parameter estimates in our OLS regressions may be extrapolated to

cover automotive plants in general, rather than just the set of plants in our data that were

observed to host a launch.

4.6 CONCLUSIONS

New product launches tend to have a negative impact on productivity at North American

automotive plants, but this effect may be mitigated by careful choice of the plant that will

host the launch. Specifically, our analysis suggests that plants with prior product experience

and/or flexible manufacturing capabilities may show better productivity performance dur-

ing launch. Moreover, it is body shop flexibility that we find to be significant, in accordance

with conclusions reached heuristically in the study by Smith et al. (1998).

Consonant with our findings, product experience and flexibility appear to increase a

plant’s likelihood of being chosen to host a launch. Indeed, besides prior productivity

performance, product experience and flexibility are the only variables in our dataset that

are significant predictors of launch location. This seems to present a contrast with the work

of Fleischmann et al. (2006), which suggests that balancing loads across plants is a key

element of manufacturers’ production planning.

8The standard deviation of sales, stdDev(Sales), is not used in the Heckman model, since it is defined as
the standard deviation of sales of the launch product.
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OLS regression of productivity change during the first year of launch shows that flexi-

bility or experience yield, respectively, a 10% or 15% savings in HPV. Average productivity

for all plants in our dataset is 28.5 HPV, so we might suggest a savings of 3 or 4 HPV from

flexibility or experience. Average annual production at plants is 194,000. In 2006 a typi-

cal UAW-represented assembler at GM earned $27.81 per hour9, so implied savings at the

average launch plant are $16.2MM for flexibility or $21.6MM for experience.

Surprisingly, we find no evidence that Japanese automobile firms are more productive

during launch than their U.S. counterparts. References to “the time it takes to launch new

vehicles” in the trade press may be intended to include product development time, however,

which is not recognized in our study. We also find no evidence of change in general launch

productivity levels across the eight years covered by our data.

9UAW website.
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APPENDIX A

PROOFS FOR CHAPTER 2

Since much of the following discussion considers the relationship between the two sides of

the optimality equation (2.11), the following definitions will simplify notation:

ξ(S) ≡ S(S − 1)− k0a

S2 + k0a
,

ψ(S, γ) ≡ 1− S−γ

γ
.

Thus we can see

ξ(0) = −1, ξ(1) =
−k0a

1 + k0a
(A.1)

ψ(0, γn) =
1

γn
, lim

S↓0
ψ(S, γp) = 1 −∞ (A.2)

ψ(1, γ) = 0. (A.3)

1lim
γ↓0

ψ(S, γ) = ln(S)
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Lemma 1. If 1 + 4k0a > 0 then ξ(S) is concave on (
√
−k0a, 1].

Proof. The second derivative of ξ(S) is

ξ′′(S) =
−2S3 − 12S2k0a+ 6Sk0a+ 4(k0a)

2

(S2 + k0a)3
.

Define N(S) and D(S) as the numerator and denominator of ξ′′(S),

N(S) = −2S3 − 12S2k0a+ 6Sk0a+ 4(k0a)
2,

D(S) = (S2 + k0a)
3.

The sign of N(
√
−k0a) changes according to whether 1 + 4k0a < 0 or 1 + 4k0a > 0,

since

N(
√
−k0a) = −2(−k0a)

3
2 + 12(k0a)

2 − 6(−k0a)
3
2 + 4(k0a)

2

= (−k0a)
3
2 (16

√
−k0a− 8).

The multiplicand (−k0a)
3
2 is positive by assumption, while (16

√
−k0a − 8) is negative if

1 + 4k0a > 0 and positive if 1 + 4k0a < 0. Thus N(
√
−k0a) > 0 if 1 + 4k0a < 0 and

N(
√
−k0a) < 0 if 1 + 4k0a > 0.

Considering further the case 1+4k0a > 0, we note thatN ′(S) = −6S2−24Sk0a+6k0a.

The discriminant of N ′(S) is
√

4k0a(1 + 4k0a). Again, −k0a is positive by assumption,

so N ′(S) does not change sign when 1 + 4k0a > 0. Since N ′(0) = 6k0a < 0, we have

N ′(S) < 0 for all S ∈ [0, 1]. This and N(
√
−k0a) < 0, established above, imply that

N(S) < 0 for all S ∈ (
√
−k0a, 1]. Because D(S) > 0 for all S ∈ (

√
−k0a, 1], we have

ξ′′(S) < 0 on (
√
−k0a, 1] and therefore ξ(S) is concave on the interval.

Lemma 2. ψ(S, γn) is concave when γn ∈ (−1, 0) and convex when γn < −1.
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Proof. Follows immediately from

ψSS(S, γ) = −(γ + 1)S−(γ+2).

Proposition 1. If 1 + 4k0a > 0, there is a unique solution Sn to (2.11) on (
√
−k0a, 1] for

each solution γn of (2.12).

Proof: (All claims in the proof are made for S ∈ (
√
−k0a, 1].)

The endpoints of ξ(S) and ψ(S, γ) are

lim
S↓
√
−k0a

ξ(S) = −∞ < ψ(
√
−k0a)

ξ(1) >
1

3
> ψ(1, γ) = 0.

Since the functions are continuous, the conditions on the endpoints ensure that the set

{s} of points where ξ(s) − ψ(s, γn) = 0 is non-empty. Let sm = min{s}. If ψ(S, γn) is

convex then the result is immediate, since

ψ(λsm + (1− λ)1, γn) < λψ(sm, γn) + (1− λ)ψ(1, γn)

< λξ(sm) + (1− λ)ξ(1)

< ξ(λsm + (1− λ)1).

If ψ(S, γn) is concave, then sm is unique if ξ′(S) − ψS(S, γ) = 0 has at most one

solution; equivalently, if there is at most one solution to

ξ′(S)

ψS(S, γ)
= 1.
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We have ξ′(
√
−k0a) = ∞ and ψS(

√
−k0a, γ) finite, while ξ′(1) = 1+3k0a

(1+k0a)2
(finite) and

ψS(1, γ) = 1. Thus if ξ′(S)
ψS(S,γ)

is monotone decreasing, all solutions will be unique.

Thus we require

∂

∂S

(
ξ′(S)

ψS(S, γ)

)
< 0

⇔ ψS(S, γ)ξ
′′(S)− ξ′(S)ψSS(S, γ)

(ψS(S, γ))2
< 0.

⇔ ψS(S, γ)ξ
′′(S)− ξ′(S)ψSS(S, γ) < 0

⇔ ψS(S, γ)

ψSS(S, γ)
<
ξ′(S)

ξ′′(S)

⇔ S

γ
+

(S2 + k0a(4S − 1))(S2 + k0a)

2S3 + 12S2k0a− 6Sk0a− 4(k0a)2
< 0

⇔ − S +
(S2 + k0a(4S − 1))(S2 + k0a)

2S3 + 12S2k0a− 6Sk0a− 4(k0a)2
< 0.

The two multiplicands in the numerator of the right hand expression are positive, as is

the denominator. Thus we now require

(S2 + k0a(4S − 1))(S2 + k0a)− 2S4 − 12S3k0a+ 6S2k0a+ 4S(k0a)
2 < 0

⇔ q(S) ≡ −S4 − 8S3k0a+ 6S2k0a+ 8S(k0a)
2 − (k0a)

2 < 0.
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Checking the left endpoint shows

q(
√
−k0a) = 8(k0a)

2(2
√
−k0a− 1) < 0,

which is true because
√
−k0a <

1
2
. Similarly,

q(1) = −1− 2k0a+ 7(k0a)
2 < −1

2
+

7

16
< 0.

Nevertheless, q(S) is concave, as can be seen by calculating

q′′(S) = −12(S2 + k0a(4S − 1)) < 0.

Thus we need to check the possibility that q(S) takes its maximum at some point S̄ ∈

(
√
−k0a, 1].

The first order condition is

q′(S̄) = S̄3 + 6S̄2k0a− 3S̄k0a− 2(k0a)
2 = 0

⇒ q(S̄) = q(S̄) + (S̄ + 2k0a)q
′(S̄)

= (3S̄2k0a− (k0a)
2)(1 + 4k0a) < 0.

We conclude that q(S) < 0 for all S ∈ (
√
−k0a, 1], so ξ(S) − ψ(S, γ) has a unique

zero on the interval. ♦

Proposition 2. The solution Sn ∈ (
√
−k0a, 1] established by Proposition 1 is strictly de-
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creasing in k0. Moreover, holding a < 0 fixed, we have

1 + 4k0a ↑ 1 ⇒ Sn ↑ 1,

1 + 4k0a ↓ 0 ⇒ Sn ↓
1

2
.

Proof: Note first that for fixed S̄ ∈ (
√
−k0a, 1], taking k∗0 > k0 along with a < 0

implies

S̄(S̄ − 1)− k0a < S̄(S̄ − 1)− k∗0a,

S̄2 + k0a > S̄2 + k∗0a.

Thus, rewriting ξ(S) as a function of S and k0, we see that

ξ∗(S, k0) =
S(S − 1)− k0a

S2 + k0a

is strictly increasing with k0 when S is held fixed.

Now for some ε > 0, consider the point Sn − ε ∈ (
√
−k0a, 1]. Since ξ′(S) > 0 and

ψ(S, γn) > 0 for all S ∈ (
√
−k0a, 1], we have ξ(Sn − ε) < ξ(Sn) and ψ(Sn − ε, γn) <

ψ(Sn, γn). Moreover, since Sn is the unique point of equality between these two functions,

ξ(Sn − ε) < ψ(Sn − ε, γn). If we replace ξ(Sn − ε) by ξ∗(Sn − ε, k0), Proposition 1

guarantees that the existence of some k∗0 > k0 such that ξ∗(Sn − ε, k∗0) = ψ(Sn − ε, γn).

Thus Sn is strictly decreasing as k0 increases.

The upper limit for Sn follows because ξ∗(1, 0) = 0 = ψ(1, γn).

In order to obtain the lower limit for Sn, we show first that ψ(1
2
, γn) > −1. Specifically,

we have

1− (1
2
)−γn

γn
≥ −1

⇔ 1 + γn ≤ 2γn ,
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with equality obtaining only if γn = 0. Thus ψ(1
2
, γn) > −1 because

1 =
d

dγn
(1 + γn) >

d

dγn
(2γn) = 2γn ln 2.

Nevertheless, ξ(1
2
) = −1. Thus for ε > 0 we can choose k0 such that ξ∗(1

2
+ ε, k0) =

ψ(1
2

+ ε, γn). Taking ε ↓ 0 requires 1 + 4k0a ↓ 0 in order to maintain equality.

Thus 1 + 4k0a ↓ 0 ⇒ S ↓ 1
2
. ♦

Proposition 3. If 1+4k0a < 0, there is no solution to (2.11) on (
√
−k0a, 1] for any solution

γn of (2.12).

Proof: Since 0 < −k0a < 1, we have ξ(1) > 0. The discriminant of the numerator of

ξ(S) is negative on the interval, so ξ(S) > 0. Nevertheless, maxψ(S) = ψ(1) = 0. ♦
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APPENDIX B

SIMULATION CODE FOR CHAPTER 3

Simulation code appears in the “listing” portion of this appendix section. The listing works

with the BORLAND
®

C++ compiler (version 5.5) running on a WINDOWS
®

operating

system. Key parameters for the simulation are read at runtime from a text file in the same

directory as the executable. If the parameter file is, for example, run01.txt, then the exe-

cutable expects a command line parameter “run01” that enables it to locate the input data.

The policy simulation results are appended to the file results.txt (generated if needed) and

the learned policy is written to run01_policy.txt.

A sample input file is given below, followed by explantory notes for the content. (Note

the the consecutive integers given in the margin are line numbers, and should not be in-

cluded in the file itself.) Where appropriate, the corresponding variable names from sec-

tions 3.3 and 3.5 are given in parantheses.

1 NC 3
2 NL 3
3 ND 100000
4 l e a r n 1
5 minV 100
6 l e a r n M u l t i p l e 100
7 t o t a l R e p s 50
8 c a p a c i t y 125
9 p e n a l t y T h r e s h o l d 100

10 i n v D i s t P r 0 .1 00
11 interdemandMean 0 . 0 1
12 l e a r n R a t e 1 . 0 0
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13 p e n a l t y 0 . 2 5
14 c l a s s D i s t 0 . 1 0 0 . 2 0 0 . 7 0
15 p o t e n t i a l R e w a r d s 1 . 0 0 0 . 9 0 0 . 7 5
16 r e j e c t P r 0 . 0 0 0 . 1 0 0 . 2 0
17 leadT imes 1 2 3 4 5 6 7 8 9
18 u s e r P o l i c y 100 100 999 100 100 999 100 100 999

• NC - Number of demand classes (n).

• BL - Number of lead times per demand class (N ).

• ND - Number of production days simulated for a single policy test.

• learn - Learning mode: 0, 1, or 2. See comments in listing below, lines 306 - 316.

• minV - Number of visits needed to a state before its Q-factors are counted in the

learned policy.

• learnMultiple - Length of learning phase is learnMultiple*ND.

• totalReps - Number of replications for each policy test.

• capacity - Maximum system capacity (c).

• penaltyThreshold - Nominal system capacity (b).

• invDistPr - Probability of supply chain disruption (τ ).

• interdemandMean - Inverse of total daily demand (1/λ).

• learnRate - Multiplier of αm in the Robbins-Monro algorithm.

• penalty - Unit overtime cost (u).

• classDist - Distribution of demand across classes (δi).

• potentialRewards - Potential rewards per class (r(i)).

• rejectPr - Probabilities of rejection for lead times, ordered longest to shortest.
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• leadTimes - Possible lead times for the system, ordered from highest class and from

shortest length within each class.

• userPolicy - Fixed threshold levels for system days, ordered in correspondence to

possible lead times. To be tested as a user-defined policy when learn equals 0.

PROGRAM LISTING

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 # i n c l u d e <math . h>
4 # i n c l u d e < s t r i n g . h>
5 # i n c l u d e < t ime . h>
6
7 / * Parame ter s f o r random number g e n e r a t o r and l e a r n i n g . * /
8 # d e f i n e a ( double ) 16807 .0
9 # d e f i n e m ( double ) 2147483647.0

10 # d e f i n e q ( double ) 127773 .0
11 # d e f i n e r ( double ) 2836 .0
12 # d e f i n e SMALL ( double ) −1e6
13
14 / * ******* g l o b a l v a r i a b l e s **************
15 NP Number o f p o l i c y t y p e s .
16 NC Number o f c l a s s e s .
17 NL Number o f l e a d t i m e p o s s i b i l i t i e s days f o r each c l a s s . By

assumpt ion , NL > 1!
18 Ax R e s u l t i n g s i z e o f t h e a r r a y : NC*NL+1.
19 NS S i z e o f s t a t e space w i t h r e s p e c t t o each d e c i s i o n ( s i m p l e

t h r e s h o l d p o l i c y w i l l n o t use a l l s t a t e s ) .
20 NM Number o f s c h e d u l i n g modes .
21 NE Number o f s y s t e m e v e n t s .
22 ND Length o f s i m u l a t i o n ( days ) .
23 * /
24
25 i n t NP , NC, NL, Ax , NS , NM, NE, ND, c a p a c i t y , p e n a l t y T h r e s h o l d ,

simMode , minV , l e a r n M u l t i p l e , t o t a l R e p s , nex tEventType ,
demandType , cu r r en t Day , c u r r e n t D a y I n d e x , repDemands ,
r e p S u c c e s s e s , r e p R e j e c t s , r e p L o s s e s , r e p R e s c h e d u l e s ,
r e p R e s c h e d u l e L o s s e s , to ta lDemands , t o t a l S u c c e s s e s ,
t o t a l R e j e c t s , t o t a l L o s s e s , t o t a l R e s c h e d u l e d ,
t o t a l R e s c h e d u l e L o s s e s , t o t a l E x c e s s e s , i n t L e a r n D u r a t i o n , *
r e f S t a t e , ** leadTimes , ** u s e r P o l i c y ;

26
27 f l o a t * demandDist , * r e j e c t P r ;
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28
29 double simTime , interdemandMean , i n v D i s t P r , t imeNex tEven t [ 5 ] ,

p e n a l t y , l e a r n R a t e , repReward , r e p P o t e n t i a l R e w a r d , * repData , *
p o t e n t i a l R e w a r d s ;

30
31 s t a t i c double z rng [ 6 ] ;
32
33 FILE * f i l e I n p u t , * f i l e P o l i c y , * f i l e R e s u l t s ;
34
35 t i m e _ t t i m e S t a r t ;
36 / * ******* end g l o b a l v a r i a b l e s ************* * /
37
38 / * ************ t y p e d e f s ************
39 The d y n a m i c a l l y a l l o c a t e d a r r a y s f o r t h e s t r u c t s e n t a i l . . . .
40
41 t y p e d e f s t r u c t {
42 i n t s t a t e [NP] [NC+7][ Ax ] ;
43 do ub l e reward [NP] [ Ax ] ;
44 } s t c S t a t e ;
45
46 The f i n a l i n d e x i n t h e a r r a y s d e n o t e s t h e day ( r o l l i n g i n d e x )
47 The [NC + 7] i n d i c e s are ( f o r t h e day r e f e r e n c e d by t h e second )
48 0 t o NC−1: number o f s c h e d u l e d t y p e 0 t o t y p e NC−1 o r d e r s
49 NC 03: c u r r e n t L o a d ( sum o f s c h e d u l e d o r d e r s a c r o s s a l l t y p e s

)
50 NC+1 04: d a t e i n d e x ( i n t e g e r )
51 NC+2 05: c u r r e n t S t a t e A ( days r e m a i n i n g t o p r o d u c t i o n )
52 NC+3 06: p r e v S t a t e A ( days r e m a i n i n g t o p r o d u c t i o n a t t i m e o f

p r e v i o u s a c t i o n )
53 NC+4 07: p r e v S t a t e B ( g e n e r a l i z e d load a t t i m e o f p r e v i o u s

a c t i o n )
54 NC+5 08: p r e v A c t i o n ( p r e v i o u s a c t i o n )
55 NC+6 09: p r e v A r r i v a l T y p e ( p r e v i o u s a r r i v a l t ype , i . e . , new or

r e s c h e d u l e )
56 NC+7 10: c u r r e n t S t a t e B ( g e n e r a l i z e d load a t t i m e o f c u r r e n t

a c t i o n , i . e . , l oad a c r o s s one or more days )
57 reward : prevReward ( f o r t h e day r e f e r e n c e d by t h e second i n d e x

i n s t a t e )
58
59 t y p e d e f s t r u c t {
60 do ub l e Q[NP] [NC*NL ] [ NS ] [NM] [ NL+1]; The e x t r a space i n t h e l a s t

i n d e x o f Q i s t o s t o r e t h e l e a r n t p o l i c y .
61 i n t V[NP] [NC*NL ] [ NS ] [NM] [ NL ] ; The p e n u l t i m a t e i n d e x i s t o

d i s t i n g u i s h be tween s t a n d a r d s c h e d u l i n g and r e s c h e d u l i n g
e v e n t s (NM i s a lways b i n a r y ) .

62 } s t c S t a t ;
63 * /
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64
65 t y p e d e f s t r u c t {
66 i n t *** s t a t e ;
67 double ** reward ;
68 } s t c S t a t e ;
69
70 t y p e d e f s t r u c t {
71 double *****Q;
72 i n t *****V;
73 i n t p r e v C l a s s , p r e v A r r i v a l , p r e v S t a t e , prevAct , c u r r e n t S t a t e ,

c u r r e n t A c t i o n ;
74 double prevReward , c u r r e n t R e w a r d ;
75 } s t c S t a t ;
76 / * ************ end t y p e d e f s *********** * /
77
78 double round ( double x ) ;
79 double e x p o n V a r i a t e ( i n t s t r eam , double mean ) ;
80 double u n i f o r m V a r i a t e ( i n t s t r eam , f l o a t lower , f l o a t upper ) ;
81 double l c g r a n d ( i n t s t r e a m ) ;
82 double getReward ( s t c S t a t e * , i n t p o l i c y I n d e x , i n t i n t D e c i s i o n , i n t

i n t O f f e r I n d e x , i n t intLTO , i n t i n t N e w A r r i v a l ) ;
83 void i n i t i a l i z e ( s t c S t a t e * , s t c S t a t * , i n t r e p ) ;
84 void t i m i n g ( void ) ;
85 void demand ( s t c S t a t e * , s t c S t a t * , i n t i n t N e w A r r i v a l , i n t

p o l i c y I n d e x ) ; / * i n t N e w A r r i v a l = 0 i m p l i e s r e s c h e d u l i n g e v e n t
* /

86 void end_day ( s t c S t a t e * , s t c S t a t * , i n t r e p ) ;
87 void d e c o d e S t a t e ( i n t s t a t e , i n t * s t a t e L e v e l s , i n t p o l i c y I n d e x ) ;
88 void c o n c l u d e ( s t c S t a t * , i n t r e p ) ;
89 void u p d a t e S t a t e ( s t c S t a t e * , i n t p o l i c y I n d e x , i n t i n t O f f e r I n d e x ) ;
90 void l e a r n R e c o r d ( s t c S t a t e * , s t c S t a t * , i n t p o l i c y I n d e x , i n t

i n t O f f e r , i n t i n t N e w A r r i v a l , i n t i n t A c t i o n , double dblReward ) ;
91 void r q l e a r n ( s t c S t a t e * , s t c S t a t * , i n t i n t N e w A r r i v a l , i n t

i n t R e c o r d I n d e x , i n t t e r m i n a l , i n t p o l i c y I n d e x ) ;
92 void r e s c h e d u l e ( s t c S t a t e * , s t c S t a t * , i n t i n t T o R e s c h e d u l e , i n t

p o l i c y I n d e x ) ;
93 i n t s c h e d u l e ( s t c S t a t e * , s t c S t a t * , i n t i n t N e w A r r i v a l , i n t

p o l i c y I n d e x ) ;
94 i n t nextDemandType ( void ) ;
95 i n t makeOffer ( i n t i n t O f f e r ) ;
96
97 i n t main ( i n t argc , char ** a rgv ) {
98
99 i n t i , j , k , l , l e a r n , s t a r t , end , rep , maxRep ;

100 char * inputSummary , *pch , * p a t h U l t i m a t e , * p a t h P e n u l t i m a t e , *
f i l e I n p u t S t r , * f i l e P o l i c y S t r ;

101 s t c S t a t e s t a t e V a r s ;
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102 s t c S t a t s t a t ;
103
104 i f ( a r g c == 1) {
105 p r i n t f ( " Job i n p u t p a r a m e t e r s a r e needed ! \ n " ) ;
106 e x i t ( 1 ) ;
107 }
108 e l s e i f ( a r g c > 2) {
109 p r i n t f ( " Too many i n p u t p a r a m e t e r s ! \ n " ) ;
110 e x i t ( 1 ) ;
111 }
112 e l s e {
113 p a t h U l t i m a t e = " x " ;
114 pch = s t r t o k ( a rgv [ 0 ] , " \ \ . " ) ;
115 whi le ( pch != NULL) {
116 p a t h P e n u l t i m a t e = p a t h U l t i m a t e ;
117 p a t h U l t i m a t e = pch ;
118 pch = s t r t o k (NULL, " \ \ . " ) ;
119 }
120 inputSummary = a rgv [ 1 ] ; / * Shor t , c o n t i g u o u s s t r i n g

summar i z ing key i n p u t p a r a m e t e r s . * /
121
122 f i l e I n p u t S t r = c a l l o c ( s t r l e n ( p a t h P e n u l t i m a t e ) + s t r l e n (

inputSummary ) + 5 , s i z e o f ( char ) ) ; / * Add ’ inputSummary ’
and " . t x t \ 0 " * /

123 s t r c a t ( f i l e I n p u t S t r , p a t h P e n u l t i m a t e ) ;
124 s t r c a t ( f i l e I n p u t S t r , inputSummary ) ;
125 s t r c a t ( f i l e I n p u t S t r , " . t x t " ) ;
126
127 f i l e P o l i c y S t r = c a l l o c ( s t r l e n ( p a t h P e n u l t i m a t e ) + s t r l e n (

inputSummary ) + 12 , s i z e o f ( char ) ) ; / * Add ’ inputSummary ’
and " _ p o l i c y . t x t \ 0 " * /

128 s t r c a t ( f i l e P o l i c y S t r , p a t h P e n u l t i m a t e ) ;
129 s t r c a t ( f i l e P o l i c y S t r , inputSummary ) ;
130 s t r c a t ( f i l e P o l i c y S t r , " _ p o l i c y . t x t " ) ;
131 }
132 f r e e ( inputSummary ) ;
133 f r e e ( pch ) ;
134 f r e e ( p a t h U l t i m a t e ) ;
135 f r e e ( p a t h P e n u l t i m a t e ) ;
136
137 / * Open i n p u t f i l e . * /
138
139 f i l e I n p u t = fopen ( f i l e I n p u t S t r , " r " ) ;
140 i f ( f i l e I n p u t == NULL) {
141 p r i n t f ( " I n p u t f i l e m i s s i n g o r name n o t matched ! " ) ;
142 e x i t ( 1 ) ;
143 }
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144 f r e e ( f i l e I n p u t S t r ) ;
145
146 / * Looks as i f we have what we need ; s t a r t t h e c l o c k . * /
147 t i m e S t a r t = t ime (NULL) ;
148
149 / * Read some i n p u t p a r a m e t e r s . * /
150
151 f s c a n f ( f i l e I n p u t , "NC %d \
152 NL %d \
153 ND %d \
154 l e a r n %d \
155 minV %d \
156 l e a r n M u l t i p l e %d \
157 t o t a l R e p s %d \
158 c a p a c i t y %d \
159 p e n a l t y T h r e s h o l d %d \
160 i n v D i s t P r %l f \
161 in terdemandMean %l f \
162 l e a r n R a t e %l f \
163 p e n a l t y %l f " ,
164 &NC, &NL, &ND, &l e a r n , &minV , &l e a r n M u l t i p l e , &

t o t a l R e p s , &c a p a c i t y , &p e n a l t y T h r e s h o l d , &i n v D i s t P r ,
&interdemandMean , &l e a r n R a t e , &p e n a l t y ) ;

165
166 / * S p e c i f y t h e number o f p o l i c y t y p e s , number o f e v e n t s f o r t h e

t i m i n g f u n c t i o n , and number o f s c h e d u l i n g modes . * /
167 NE = 4 ;
168 NM = 2 ;
169 NS = ( c a p a c i t y +1) ;
170 Ax = NC*NL + 1 ;
171
172 i f ( l e a r n > 1) { / * C o n d i t i o n a l t h r e s h o l d s w i l l be l e a r n t and

t e s t e d . * /
173 NP = 3 ;
174 f o r ( i = 1 ; i < NL; i ++)
175 NS = NS*( c a p a c i t y +1) ;
176 }
177 e l s e / * Only t h e u n c o n d i t i o n a l t h r e s h o l d w i l l be l e a r n t and

t e s t e d . * /
178 NP = 1 ;
179
180 i f ( l e a r n > 0) {
181 f i l e P o l i c y = fopen ( f i l e P o l i c y S t r , "w" ) ;
182 f r e e ( f i l e P o l i c y S t r ) ;
183 }
184
185 / * Cr ea t e a r r a y s n e c e s s a r y t o read t h e r e m a i n i n g i n p u t
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p a r a m e t e r s . * /
186
187 demandDis t = c a l l o c (NC, s i z e o f ( f l o a t ) ) ;
188 i f ( demandDis t == NULL) e x i t ( 1 ) ;
189
190 p o t e n t i a l R e w a r d s = c a l l o c (NC, s i z e o f ( double ) ) ;
191 i f ( p o t e n t i a l R e w a r d s == NULL) e x i t ( 1 ) ;
192
193 r e j e c t P r = c a l l o c (NL, s i z e o f ( f l o a t ) ) ;
194 i f ( r e j e c t P r == NULL) e x i t ( 1 ) ;
195
196 leadT imes = ma l l oc (NC* s i z e o f ( i n t *) ) ;
197 i f ( l e adT imes == NULL) e x i t ( 1 ) ;
198 f o r ( i = 0 ; i < NC; i ++)
199 leadT imes [ i ] = ma l l oc (NL* s i z e o f ( i n t ) ) ;
200
201 u s e r P o l i c y = ma l l oc (NC* s i z e o f ( i n t *) ) ;
202 i f ( u s e r P o l i c y == NULL) e x i t ( 1 ) ;
203 f o r ( i = 0 ; i < NC; i ++)
204 u s e r P o l i c y [ i ] = ma l l oc (NL* s i z e o f ( i n t ) ) ;
205
206 / * Read r e m a i n i n g i n p u t p a r a m e t e r s . * /
207
208 f s c a n f ( f i l e I n p u t , " c l a s s D i s t " ) ;
209 f o r ( i = 0 ; i < NC; i ++) {
210 f s c a n f ( f i l e I n p u t , " %f " , &demandDis t [ i ] ) ;
211 }
212
213 f s c a n f ( f i l e I n p u t , " p o t e n t i a l R e w a r d s " ) ;
214 f o r ( i = 0 ; i < NC; i ++) {
215 f s c a n f ( f i l e I n p u t , " %l f " , &p o t e n t i a l R e w a r d s [ i ] ) ;
216 }
217
218 f s c a n f ( f i l e I n p u t , " r e j e c t P r " ) ;
219 f o r ( i = 0 ; i < NL; i ++) {
220 f s c a n f ( f i l e I n p u t , " %f " , &r e j e c t P r [ i ] ) ;
221 }
222
223 f s c a n f ( f i l e I n p u t , " l e adT imes " ) ;
224 f o r ( i = 0 ; i < NC; i ++) {
225 f o r ( j = 0 ; j < NL; j ++) {
226 f s c a n f ( f i l e I n p u t , " %d " , &leadT imes [ i ] [ j ] ) ;
227 }
228 }
229
230 f s c a n f ( f i l e I n p u t , " u s e r P o l i c y " ) ;
231 f o r ( i = 0 ; i < NC; i ++) {
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232 f o r ( j = 0 ; j < NL; j ++) {
233 f s c a n f ( f i l e I n p u t , " %d " , &u s e r P o l i c y [ i ] [ j ] ) ;
234 }
235 }
236 f c l o s e ( f i l e I n p u t ) ;
237
238 / * Cr ea t e r e s t o f t h e a r r a y s . * /
239
240 s t a t e V a r s . s t a t e = ma l l oc (NP* s i z e o f ( i n t **) ) ;
241 i f ( s t a t e V a r s . s t a t e == NULL) e x i t ( 1 ) ;
242 f o r ( i = 0 ; i < NP ; i ++) {
243 s t a t e V a r s . s t a t e [ i ] = ma l l oc ( (NC+8) * s i z e o f ( i n t *) ) ;
244 i f ( s t a t e V a r s . s t a t e [ i ] == NULL) e x i t ( 1 ) ;
245 f o r ( j = 0 ; j < NC+8; j ++)
246 s t a t e V a r s . s t a t e [ i ] [ j ] = ma l l oc ( Ax* s i z e o f ( i n t ) ) ;
247 }
248
249 s t a t e V a r s . r eward = ma l l oc (NP* s i z e o f ( double *) ) ;
250 i f ( s t a t e V a r s . r eward == NULL) e x i t ( 1 ) ;
251 f o r ( i = 0 ; i < NP ; i ++)
252 s t a t e V a r s . r eward [ i ] = ma l l oc ( Ax* s i z e o f ( double ) ) ;
253
254 s t a t .Q = ma l l oc (NP* s i z e o f ( double ****) ) ;
255 i f ( s t a t .Q == NULL) e x i t ( 1 ) ;
256 f o r ( i = 0 ; i < NP ; i ++) {
257 s t a t .Q[ i ] = ma l l oc ( (NC*NL) * s i z e o f ( double ***) ) ;
258 i f ( s t a t .Q[ i ] == NULL) e x i t ( 1 ) ;
259 f o r ( j = 0 ; j < NC*NL; j ++) {
260 s t a t .Q[ i ] [ j ] = ma l l oc (NS* s i z e o f ( double **) ) ;
261 i f ( s t a t .Q[ i ] [ j ] == NULL) e x i t ( 1 ) ;
262 f o r ( k = 0 ; k < NS ; k ++) {
263 s t a t .Q[ i ] [ j ] [ k ] = ma l l oc (NM* s i z e o f ( double *) ) ;
264 i f ( s t a t .Q[ i ] [ j ] [ k ] == NULL) e x i t ( 1 ) ;
265 f o r ( l = 0 ; l < NM; l ++)
266 s t a t .Q[ i ] [ j ] [ k ] [ l ] = ma l l oc ( ( NL+1) * s i z e o f ( double ) ) ;
267 }
268 }
269 }
270
271 s t a t .V = ma l l oc (NP* s i z e o f ( double ****) ) ;
272 i f ( s t a t .V == NULL) e x i t ( 1 ) ;
273 f o r ( i = 0 ; i < NP ; i ++) {
274 s t a t .V[ i ] = ma l l oc ( (NC*NL) * s i z e o f ( double ***) ) ;
275 i f ( s t a t .V[ i ] == NULL) e x i t ( 1 ) ;
276 f o r ( j = 0 ; j < NC*NL; j ++) {
277 s t a t .V[ i ] [ j ] = ma l l oc (NS* s i z e o f ( double **) ) ;
278 i f ( s t a t .V[ i ] [ j ] == NULL) e x i t ( 1 ) ;
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279 f o r ( k = 0 ; k < NS ; k ++) {
280 s t a t .V[ i ] [ j ] [ k ] = ma l l oc (NM* s i z e o f ( double *) ) ;
281 i f ( s t a t .V[ i ] [ j ] [ k ] == NULL) e x i t ( 1 ) ;
282 f o r ( l = 0 ; l < NM; l ++)
283 s t a t .V[ i ] [ j ] [ k ] [ l ] = ma l l oc (NL* s i z e o f ( double ) ) ;
284 }
285 }
286 }
287
288 r e p D a t a = c a l l o c ( t o t a l R e p s , s i z e o f ( double ) ) ;
289 i f ( r e p D a t a == NULL) e x i t ( 1 ) ;
290
291 r e f S t a t e = ma l l oc (NP* s i z e o f ( i n t ) ) ;
292 i f ( r e f S t a t e == NULL) e x i t ( 1 ) ;
293
294 r e f S t a t e [ 0 ] = ( i n t ) round ( ( double ) demandDis t [NC−1 ] / (NL*

interdemandMean ) ) ;
295 i f (NP > 1) {
296 r e f S t a t e [ 1 ] = ( i n t ) round ( ( double ) ( ( c a p a c i t y +2) * demandDis t [

NC−1]) / ( NL* interdemandMean ) ) ;
297 r e f S t a t e [ 2 ] = r e f S t a t e [ 1 ] ;
298 }
299 f o r ( i = 0 ; i < NP ; i ++)
300 p r i n t f ( " r e f S t a t e %d : %d \ n " , i , r e f S t a t e [ i ] ) ;
301
302 / * S e t s i m u l a t i o n c y c l e . * /
303
304 i f ( l e a r n == 1) { / * Learn and t e s t t h e u n c o n d i t i o n a l t h r e s h o l d

p o l i c y . * /
305 s t a r t = 0 ; / * A l so t e s t a f i x e d p o l i c y s p e c i f i e d by

u s e r P o l i c y . * /
306 end = 2 ;
307 }
308 e l s e i f ( l e a r n == 2) { / * Learn and t e s t a l l p o l i c i e s (

u n c o n d i t i o n a l and c o n d i t i o n a l t h r e s h o l d s ) . * /
309 s t a r t = 0 ; / * A l so t e s t a f i x e d p o l i c y s p e c i f i e d by

u s e r P o l i c y . * /
310 end = 4 ;
311 }
312 e l s e { / * ( i . e . , i f l e a r n == 0) t e s t o n l y a f i x e d

p o l i c y s p e c i f i e d by u s e r P o l i c y . * /
313 s t a r t = 1 ;
314 end = 1 ;
315 }
316
317 f o r ( simMode = s t a r t ; simMode <=end ; simMode ++) {
318
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319 i f ( simMode == 0)
320 maxRep = 1 ;
321 e l s e
322 maxRep = t o t a l R e p s ;
323
324 f o r ( r e p = 0 ; r e p < maxRep ; r e p ++) {
325
326 / * I n i t i a l i z e t h e s i m u l a t i o n . * /
327 i n i t i a l i z e (& s t a t e V a r s , &s t a t , r e p ) ;
328
329 / * Run t h e s i m u l a t i o n u n t i l i t t e r m i n a t e s a f t e r an end−

s i m u l a t i o n e v e n t ( t y p e 4 ) o c c u r s . * /
330 do {
331 t i m i n g ( ) ;
332
333 / * I n v o k e t h e a p p r o p r i a t e e v e n t f u n c t i o n . * /
334 sw i t ch ( nex tEven tType ) {
335 case 1 :
336 p r i n t f ( " Case 1 \ n " ) ;
337 break ;
338 case 2 :
339 i f ( simMode == 0) {
340 f o r ( i = 0 ; i < NP ; i ++)
341 demand(& s t a t e V a r s , &s t a t , 1 , i ) ;
342 }
343 e l s e
344 demand(& s t a t e V a r s , &s t a t , 1 , simMode − 2) ;
345 t imeNex tEven t [ 2 ] = simTime + e x p o n V a r i a t e ( 1 ,

in terdemandMean ) ;
346 demandType = nextDemandType ( ) ;
347 break ;
348 case 3 :
349 end_day (& s t a t e V a r s , &s t a t , r e p ) ;
350 break ;
351 case 4 :
352 c o n c l u d e (& s t a t , r e p ) ;
353 break ;
354 }
355 } whi le ( nex tEven tType != 4) ;
356 }
357 }
358 re turn 0 ;
359 }
360
361 void i n i t i a l i z e ( s t c S t a t e * s t a t e V a r s , s t c S t a t * s t a t , i n t r e p ) { / *

I n i t i a l i z a t i o n f u n c t i o n . * /
362
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363 i n t i , j , k , c l a s sDay , load , scheduleMode , a c t i o n , p o l i c y ;
364 double o f f s e t ;
365
366 o f f s e t = 1 e7 ;
367
368 / * I n i t i a l i z e t h e RNG. * /
369 i f ( simMode == 0) {
370 z rng [ 0 ] = 1383670351; / * R e j e c t i o n e v a l u a t i o n . * /
371 z rng [ 1 ] = 1985072130; / * In t e rdemand t i m e s . * /
372 z rng [ 2 ] = 748932582; / * S c h e d u l i n g e v e n t . * /
373 z rng [ 3 ] = 1631331038; / * Demand t y p e s . * /
374 z rng [ 4 ] = 443952721; / * I n v e n t o r y d i s r u p t i o n e v e n t . * /
375 z rng [ 5 ] = 1848090842; / * Magni tude o f i n v e n t o r y d i s r u p t i o n .

* /
376 }
377 e l s e {
378 z rng [ 0 ] = 1848090842 + r e p * o f f s e t ; / * R e j e c t i o n e v a l u a t i o n .

* /
379 z rng [ 1 ] = 443952721 + r e p * o f f s e t ; / * In t e rdemand t i m e s . * /
380 z rng [ 2 ] = 1631331038 + r e p * o f f s e t ; / * S c h e d u l i n g e v e n t . * /
381 z rng [ 3 ] = 748932582 + r e p * o f f s e t ; / * Demand t y p e s . * /
382 z rng [ 4 ] = 1985072130 + r e p * o f f s e t ; / * I n v e n t o r y d i s r u p t i o n

e v e n t . * /
383 z rng [ 5 ] = 1383670351 + r e p * o f f s e t ; / * Magni tude o f i n v e n t o r y

d i s r u p t i o n . * /
384 }
385
386 / * I n i t i a l i z e t h e s i m u l a t i o n c l o c k . * /
387 simTime = 0 . 0 ;
388
389 / * I n i t i a l i z e t h e s t a t e v a r i a b l e s . * /
390 f o r ( k = 0 ; k < NP ; k ++) {
391 f o r ( j = 0 ; j < Ax ; j ++) {
392 f o r ( i = 0 ; i <= NC; i ++) {
393 s t a t e V a r s −> s t a t e [ k ] [ i ] [ j ] = 0 ;
394 }
395 s t a t e V a r s −> s t a t e [ k ] [NC+ 1 ] [ j ] = j ;
396 s t a t e V a r s −> s t a t e [ k ] [NC+ 2 ] [ j ] = j ;
397 s t a t e V a r s −> s t a t e [ k ] [NC+ 3 ] [ j ] = 0 ;
398 s t a t e V a r s −> s t a t e [ k ] [NC+ 4 ] [ j ] = 0 ;
399 s t a t e V a r s −> s t a t e [ k ] [NC+ 5 ] [ j ] = 0 ;
400 s t a t e V a r s −> s t a t e [ k ] [NC+ 6 ] [ j ] = 0 ;
401 s t a t e V a r s −> s t a t e [ k ] [NC+ 7 ] [ j ] = 0 ;
402 s t a t e V a r s −>reward [ k ] [ j ] = 0 ;
403 }
404 }
405
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406 i f ( simMode == 0) {
407 / * I n i t i a l i z e l e a r n i n g v a r i a b l e s . * /
408 f o r ( l o a d =0; l o a d < NS ; l o a d ++) { / * Only t h e f i r s t ( c a p a c i t y +

1) e n t r i e s w i l l be used f o r p o l i c y t y p e 0 . * /
409 f o r ( scheduleMode = 0 ; scheduleMode < NM; scheduleMode ++) {
410 f o r ( c l a s s D a y =0; c l a s sDay <NC*NL; c l a s s D a y ++) { / * Only t h e

f i r s t NC e n t r i e s w i l l be used f o r p o l i c y t y p e 2 . * /
411 f o r ( p o l i c y = 0 ; p o l i c y < NP ; p o l i c y ++) {
412 f o r ( a c t i o n = 0 ; a c t i o n < NL; a c t i o n ++) {
413 s t a t −>Q[ p o l i c y ] [ c l a s s D a y ] [ l o a d ] [ scheduleMode ] [

a c t i o n ] = 0 ;
414 s t a t −>V[ p o l i c y ] [ c l a s s D a y ] [ l o a d ] [ scheduleMode ] [

a c t i o n ] = 0 ;
415 }
416 s t a t −>Q[ p o l i c y ] [ c l a s s D a y ] [ l o a d ] [ scheduleMode ] [ NL

]=−1.0 ; / * These are t h e e l e m e n t s t h a t w i l l ho ld
t h e l e a r n t p o l i c i e s * /

417 }
418 }
419 / * Go back and t h e Q− f a c t o r f o r r e j e c t t o SMALL i n p o l i c y

t y p e s 0 and 1 , i n o r d e r t o e n s u r e i t i s n o t t h e
p o l i c y c o n c l u s i o n . * /

420 f o r ( c l a s s D a y = 0 ; c l a s s D a y < NC*NL; c l a s s D a y ++) {
421 f o r ( p o l i c y = 0 ; p o l i c y < (NP > 1 ? 2 : 1 ) ; p o l i c y ++) {
422 i f ( ( c l a s s D a y +1)%NL == 0) / * The f i n a l day f o r each

c l a s s has o n l y one a c t i o n : a c c e p t . * /
423 s t a t −>Q[ p o l i c y ] [ c l a s s D a y ] [ l o a d ] [ scheduleMode ] [ 0 ] =

SMALL;
424 }
425 }
426 }
427 }
428 }
429
430 / * I n i t i a l i z e g l o b a l s t a t i s t i c a l v a r i a b l e s .
431 The f i r s t group are i n i t i a l i z e d f o r each r e p l i c a t i o n . * /
432 c u r r e n t D a y = 0 ;
433 c u r r e n t D a y I n d e x = 0 ;
434 repDemands = 0 ;
435 r e p S u c c e s s e s = 0 ;
436 r e p R e j e c t s = 0 ;
437 r e p L o s s e s = 0 ;
438 r e p R e s c h e d u l e s = 0 ;
439 r e p R e s c h e d u l e L o s s e s = 0 ;
440 repReward = 0 . 0 ;
441 r e p P o t e n t i a l R e w a r d = 0 . 0 ;
442 s t a t −>p r e v C l a s s = −1;
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443 s t a t −> p r e v A r r i v a l = −1;
444 s t a t −> p r e v S t a t e = −1;
445 s t a t −>prevAc t = −1;
446 s t a t −> c u r r e n t S t a t e = −1;
447 s t a t −>c u r r e n t A c t i o n = −1;
448 s t a t −>c u r r e n t R e w a r d = −1.0;
449 s t a t −>prevReward = −1.0;
450
451 / * The second group are summed a c r o s s a l l r e p l i c a t i o n s . * /
452 i f ( r e p == 0) {
453 t o t a l D e m a n d s = 0 ;
454 t o t a l S u c c e s s e s = 0 ;
455 t o t a l R e j e c t s = 0 ;
456 t o t a l L o s s e s = 0 ;
457 t o t a l R e s c h e d u l e d = 0 ;
458 t o t a l R e s c h e d u l e L o s s e s = 0 ;
459 t o t a l E x c e s s e s = 0 ;
460 }
461
462 / * I n i t i a l i z e t h e e v e n t l i s t . * /
463 t imeNex tEven t [ 1 ] = 1 . 0 e +30; / * Nex t o r d e r a r r i v a l t i m e . * /
464 t imeNex tEven t [ 2 ] = simTime + e x p o n V a r i a t e ( 1 , in terdemandMean ) ;

/ * Nex t demand a r r i v a l t i m e . . . * /
465 demandType = nextDemandType ( ) ; / * . . . and t y p e . * /
466 t imeNex tEven t [ 3 ] = 1 . 0 ; / * End o f f i r s t day . * /
467 i f ( simMode > 0)
468 t imeNex tEven t [ 4 ] = ( double ) ND; / * End o f s i m u l a t i o n run .

* /
469 e l s e
470 t imeNex tEven t [ 4 ] = ( double ) ND * l e a r n M u l t i p l e ; / * End o f

s i m u l a t i o n run . * /
471 }
472
473 void t i m i n g ( ) { / * Timing f u n c t i o n . * /
474
475 i n t i ;
476 double min_t imeNextEven t = 1 . 0 e +29;
477
478 nex tEven tType = 0 ;
479
480 / * De termine t h e n e x t e v e n t t y p e . * /
481 f o r ( i = 1 ; i <= NE; i ++) {
482 i f ( t imeNex tEven t [ i ] < min_ t imeNextEven t ) {
483 min_ t imeNextEven t = t imeNex tEven t [ i ] ;
484 nex tEven tType = i ;
485 }
486 }
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487
488 / * Check whe ther t h e e v e n t l i s t i s empty . * /
489 i f ( nex tEven tType == 0) {
490 / * The e v e n t l i s t i s empty , so s t o p t h e s i m u l a t i o n * /
491 p r i n t f ( " \ nEvent l i s t empty a t t ime %f \ n " , simTime ) ;
492 e x i t ( 1 ) ;
493 }
494
495 / * The e v e n t l i s t i s n o t empty , so advance t h e s i m u l a t i o n c l o c k

. * /
496 simTime = min_ t imeNextEven t ;
497 }
498
499 i n t s c h e d u l e ( s t c S t a t e * s t a t e V a r s , s t c S t a t * s t a t , i n t

i n t N e w A r r i v a l , i n t p o l i c y I n d e x ) {
500
501 i n t i , m u l t i p l i e r , baseLT , load , s t a t e V a l , r e t u r n V a l ;
502 double var , i n c r ;
503
504 r e t u r n V a l = NL − 1 ; / * S e t t h e r e t u r n v a l u e i n i t i a l l y a t t h e

maximum l e a d t i m e . * /
505 baseLT = leadT imes [ demandType ] [ 0 ] ;
506 i f ( p o l i c y I n d e x > 0) {
507 s t a t e V a l = 0 ;
508 m u l t i p l i e r = 1 ;
509 f o r ( i = 0 ; i < NL; i ++) {
510 / * T h i s c o n s t r u c t i o n e n t a i l s t h a t days c o r r e s p o n d i n g t o

l o n g e r l e a d t i m e s c o n t r i b u t e l e s s t o s t a t e V a l . * /
511 s t a t e V a l = s t a t e V a l + m u l t i p l i e r * s t a t e V a r s −> s t a t e [

p o l i c y I n d e x ] [NC ] [ ( c u r r e n t D a y I n d e x + baseLT + r e t u r n V a l −
i )%Ax ] ;

512 m u l t i p l i e r = m u l t i p l i e r * ( c a p a c i t y + 1) ;
513 }
514 }
515
516 i f ( simMode ==0) {
517 v a r = u n i f o r m V a r i a t e ( 2 , 0 , 1 ) ;
518 i n c r = ( double ) 1 /NL;
519 s t a t −> c u r r e n t S t a t e = s t a t e V a l ;
520
521 f o r ( i = 0 ; i < NL; i ++) {
522 i f ( p o l i c y I n d e x > 0)
523 s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 7 ] [ ( c u r r e n t D a y I n d e x +

baseLT + i )%Ax ] = s t a t e V a l ;
524 e l s e
525 s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 7 ] [ ( c u r r e n t D a y I n d e x +

baseLT + i )%Ax ] = s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC ] [ (

159



c u r r e n t D a y I n d e x + baseLT + i )%Ax ] ;
526 m u l t i p l i e r = i ;
527 i f ( v a r <= ( m u l t i p l i e r +1) * i n c r ) {
528 r e t u r n V a l = i ;
529 break ;
530 }
531 }
532 }
533 e l s e i f ( simMode > 1 && simMode < 4) { / * simMode == 2 or

simMode == 3 . * /
534 f o r ( i = baseLT ; i < baseLT + NL − 1 ; i ++) {
535 l o a d = s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC ] [ ( c u r r e n t D a y I n d e x +

i )%Ax ] ;
536 i f ( simMode == 2)
537 s t a t e V a l = l o a d ;
538 i f ( l o a d < c a p a c i t y ) {
539 i f ( s t a t −>Q[ p o l i c y I n d e x ] [ i − 1 ] [ s t a t e V a l ] [ i n t N e w A r r i v a l ] [

NL] == 1 . 0 ) {
540 r e t u r n V a l = i − baseLT ;
541 break ;
542 }
543 }
544 }
545 }
546 e l s e i f ( simMode == 4) {
547 r e t u r n V a l = ( i n t ) s t a t −>Q[ p o l i c y I n d e x ] [ demandType ] [ s t a t e V a l ] [

i n t N e w A r r i v a l ] [ NL ] ;
548 }
549 e l s e { / * simMode == 1 . * /
550 f o r ( i = baseLT ; i < baseLT + NL − 1 ; i ++) {
551 l o a d = s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC ] [ ( c u r r e n t D a y I n d e x +

i )%Ax ] ;
552 i f ( i n t N e w A r r i v a l ) {
553 i f ( ( l o a d < u s e r P o l i c y [ demandType ] [ i − baseLT ] ) && ( l o a d <

c a p a c i t y ) ) {
554 r e t u r n V a l = i − baseLT ;
555 break ;
556 }
557 }
558 e l s e {
559 i f ( l o a d < c a p a c i t y ) {
560 r e t u r n V a l = i − baseLT ;
561 break ;
562 }
563 }
564 }
565 }
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566 re turn r e t u r n V a l ;
567 }
568
569 void demand ( s t c S t a t e * s t a t e V a r s , s t c S t a t * s t a t , i n t i n t N e w A r r i v a l

, i n t p o l i c y I n d e x ) { / * Demand e v e n t f u n c t i o n . * /
570
571 i n t i , i n t O f f e r , i n t O f f e r I n d e x , intLTO , i n t D e c i s i o n ;
572 double dblReward , d i v i s o r , db lSchedu leReward ;
573
574 i f ( simMode > 0 && p o l i c y I n d e x < 0) / * We are t e s t i n g a f i x e d

s i m p l e t h r e s h o l d p o l i c y , * /
575 p o l i c y I n d e x = 0 ;
576
577 / * De termine o f f s e t from most f a v o r a b l e l e a d t i m e * /
578 intLTO = s c h e d u l e ( s t a t e V a r s , s t a t , i n t N e w A r r i v a l , p o l i c y I n d e x ) ;
579
580 i n t O f f e r = c u r r e n t D a y + leadT imes [ demandType ] [ 0 ] + intLTO ;
581 i n t O f f e r I n d e x = i n t O f f e r%Ax ;
582
583 i f ( s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC] [ i n t O f f e r I n d e x ] < c a p a c i t y )

{
584 i f ( i n t N e w A r r i v a l )
585 i n t D e c i s i o n = makeOffer ( i n t O f f e r ) ;
586 e l s e
587 i n t D e c i s i o n = 1 ;
588
589 dblReward = getReward ( s t a t e V a r s , p o l i c y I n d e x , i n t D e c i s i o n ,

i n t O f f e r I n d e x , intLTO , i n t N e w A r r i v a l ) ;
590 }
591 e l s e {
592 i n t D e c i s i o n = −1;
593 i f ( i n t N e w A r r i v a l )
594 dblReward = 0 ;
595 e l s e {
596 i f ( simMode > 0)
597 p r i n t f ( " Los t demand on r e s c h e d u l i n g . \ n " ) ;
598 dblReward = ( double ) − (NL+1) * (NC − demandType ) ;
599 }
600 }
601
602 i f ( simMode > 0 && s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 1 ] [

i n t O f f e r I n d e x ] >= Ax ) {
603 i f ( i n t N e w A r r i v a l ) {
604 repDemands ++;
605 r e p P o t e n t i a l R e w a r d = r e p P o t e n t i a l R e w a r d + p o t e n t i a l R e w a r d s [

demandType ] ;
606 i f ( i n t D e c i s i o n == 1)
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607 r e p S u c c e s s e s ++;
608 e l s e i f ( i n t D e c i s i o n == 0)
609 r e p R e j e c t s ++;
610 e l s e
611 r e p L o s s e s ++;
612 }
613 e l s e {
614 i f ( i n t D e c i s i o n == 1)
615 r e p R e s c h e d u l e s ++;
616 e l s e
617 r e p R e s c h e d u l e L o s s e s ++;
618 }
619
620 repReward = repReward + dblReward ;
621 }
622
623 i f ( simMode == 0) {
624 i f ( p o l i c y I n d e x == 2)
625 l e a r n R e c o r d ( s t a t e V a r s , s t a t , p o l i c y I n d e x , i n t O f f e r ,

i n t N e w A r r i v a l , intLTO , dblReward ) ;
626 e l s e {
627 i f ( i n t N e w A r r i v a l )
628 db lSchedu leReward = dblReward ;
629 e l s e
630 db lSchedu leReward = (NL+1) * (NC − demandType ) + dblReward ;
631
632 i f ( intLTO == 0)
633 l e a r n R e c o r d ( s t a t e V a r s , s t a t , p o l i c y I n d e x , i n t O f f e r ,

i n t N e w A r r i v a l , 1 , db lSchedu leReward ) ;
634 e l s e {
635 d i v i s o r = ( double ) intLTO + 1 ;
636 f o r ( i = −intLTO ; i <=−1; i ++)
637 l e a r n R e c o r d ( s t a t e V a r s , s t a t , p o l i c y I n d e x , i n t O f f e r + i ,

i n t N e w A r r i v a l , 0 , db lSchedu leReward / d i v i s o r ) ;
638 l e a r n R e c o r d ( s t a t e V a r s , s t a t , p o l i c y I n d e x , i n t O f f e r ,

i n t N e w A r r i v a l , 1 , db lSchedu leReward / d i v i s o r ) ;
639 }
640 }
641 }
642
643 i f ( i n t D e c i s i o n > 0) / * i n t D e c i s i o n i s 1 i f c u s t o m e r a c c e p t s or

a r e s c h e d u l i n g s u c c e e d s . * /
644 u p d a t e S t a t e ( s t a t e V a r s , p o l i c y I n d e x , i n t O f f e r I n d e x ) ;
645 }
646
647 void end_day ( s t c S t a t e * s t a t e V a r s , s t c S t a t * s t a t , i n t r e p ) { / *

End o f day e v e n t f u n c t i o n . * /
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648
649 i n t i , p o l i c y S t a r t , po l i cyEnd , p o l i c y I n d e x , i n t T o R e s c h e d u l e ,

i n tMaxReschedu le ;
650
651 in tMaxReschedu le = 0 ;
652
653 i f ( u n i f o r m V a r i a t e ( 4 , 0 , 1 ) < i n v D i s t P r )
654 in tMaxReschedu le = ( i n t ) round ( p e n a l t y T h r e s h o l d *

u n i f o r m V a r i a t e ( 5 , 0 , 1 ) ) ;
655
656 i f ( simMode == 0) {
657 p o l i c y S t a r t = 0 ;
658 p o l i c y E n d = NP − 1 ;
659 }
660 e l s e i f ( simMode == 1) {
661 p o l i c y S t a r t = 0 ;
662 p o l i c y E n d = 0 ;
663 }
664 e l s e {
665 p o l i c y S t a r t = simMode − 2 ;
666 p o l i c y E n d = simMode − 2 ;
667 }
668
669 f o r ( p o l i c y I n d e x = p o l i c y S t a r t ; p o l i c y I n d e x <= p o l i c y E n d ;

p o l i c y I n d e x ++) {
670
671 i n t T o R e s c h e d u l e = 0 ;
672
673 / * De termine t h e e x t e n t o f t h e c a p a c i t y d i s r u p t i o n , i f any .

* /
674 i f ( i n tMaxReschedu le > 0) {
675 i f ( s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC ] [ ( c u r r e n t D a y I n d e x +1)%Ax

] > in tMaxReschedu le )
676 i n t T o R e s c h e d u l e = in tMaxReschedu le ;
677 e l s e
678 i n t T o R e s c h e d u l e = s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC ] [ (

c u r r e n t D a y I n d e x +1)%Ax ] ;
679 }
680
681 / * End−of−day l e a r n i n g f o r p o l i c i e s 0 & 1 . CHECK: LAST

CONDITION MAY BE OMITTED . * /
682 i f ( simMode == 0 && p o l i c y I n d e x < 2 && s t a t e V a r s −> s t a t e [

p o l i c y I n d e x ] [NC+ 1 ] [ ( c u r r e n t D a y I n d e x +1)%Ax ] >= Ax &&
s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 5 ] [ ( c u r r e n t D a y I n d e x +1)%Ax
] > −1)

683 r q l e a r n ( s t a t e V a r s , s t a t , 1 , ( c u r r e n t D a y I n d e x +1)%Ax , 1 ,
p o l i c y I n d e x ) ; / * The p e n u l t i m a t e 0 means t h e a r r i v a l
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argument w i l l n o t be used i n r q l e a r n . * /
684
685 / * R e s e t t h e l o a d s f o r t h e c u r r e n t day ( which w i l l become

f u r t h e s t v i s i b l e day ) . * /
686 f o r ( i = 0 ; i <= NC; i ++)
687 s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [ i ] [ c u r r e n t D a y I n d e x ] = 0 ;
688
689 / * Add t h e d a t e f o r t h e f u r t h e s t v i s i b l e day . * /
690 s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 1 ] [ c u r r e n t D a y I n d e x ] += Ax ;
691
692 / * The f u r t h e s t v i s i b l e day s t a r t s w i t h no l a s t a c t i o n . * /
693 s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 5 ] [ c u r r e n t D a y I n d e x ] = −1;
694
695 / * Decrement a l l i n d i c a t o r s o f days r e m a i n i n g t o p r o d u c t i o n .

* /
696 f o r ( i = c u r r e n t D a y I n d e x ; i <= c u r r e n t D a y I n d e x + ( Ax−1) ; i ++)
697 s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 2 ] [ i%Ax ] = ( s t a t e V a r s −>

s t a t e [ p o l i c y I n d e x ] [NC+ 2 ] [ i%Ax ] + Ax − 1)%Ax ;
698
699 / * Advance t h e c u r r e n t day and c o r r e s p o n d i n g i n d e x f o r

r e s c h e d u l i n g . * /
700 c u r r e n t D a y ++;
701 c u r r e n t D a y I n d e x = c u r r e n t D a y%Ax ;
702
703 / * R e s c h e d u l e as needed from t h e new c u r r e n t day . * /
704 i f ( i n t T o R e s c h e d u l e )
705 r e s c h e d u l e ( s t a t e V a r s , s t a t , i n t T o R e s c h e d u l e , p o l i c y I n d e x ) ;
706
707 / * R e s e t t h e c u r r e n t day and c o r r e s p o n d i n g i n d e x f o r f u r t h e r

l o o p s . * /
708 c u r r en tDay −−;
709 c u r r e n t D a y I n d e x = c u r r e n t D a y%Ax ;
710 }
711
712 / * Advance t h e c u r r e n t day and c o r r e s p o n d i n g i n d e x d e f i n i t i v e l y

. * /
713 c u r r e n t D a y ++;
714 c u r r e n t D a y I n d e x = c u r r e n t D a y%Ax ;
715
716 / * P r i n t a s t a t e m e n t o f p r o g r e s s . * /
717 i f ( c u r r e n t D a y %10000 == 0)
718 p r i n t f ( " simMode %d , r e p %d , s t e p %d \ n " , simMode , rep ,

c u r r e n t D a y / 1 0 0 0 0 ) ;
719
720 / * S e t t h e t i m e o f t h e n e x t end−of−day e v e n t . * /
721 t imeNex tEven t [ 3 ] = simTime + 1 . 0 ;
722 }
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723
724 void r e s c h e d u l e ( s t c S t a t e * s t a t e V a r s , s t c S t a t * s t a t , i n t

i n t T o R e s c h e d u l e , i n t p o l i c y I n d e x ) {
725
726 i n t i , j , n e x t A r r i v a l T y p e , r e s c h e d u l i n g T y p e , * c u r r e n t L o a d s , *

c l a s s N e e d s ;
727
728 c u r r e n t L o a d s = c a l l o c (NC, s i z e o f ( i n t ) ) ;
729 i f ( c u r r e n t L o a d s == NULL) e x i t ( 1 ) ;
730
731 c l a s s N e e d s = c a l l o c (NC, s i z e o f ( i n t ) ) ;
732 i f ( c l a s s N e e d s == NULL) e x i t ( 1 ) ;
733
734 n e x t A r r i v a l T y p e = demandType ; / * Record t h i s i n o r d e r t o be

a b l e t o r e s e t i t when r e s c h e d u l i n g i s f i n i s h e d . * /
735 j = 0 ; / * j w i l l t r a c k t h e c u m u l a t i v e number o f demands

r e s c h e d u l e d as we proceed t h r o u g h t h e c l a s s e s . * /
736 r e s c h e d u l i n g T y p e = 0 ;
737
738 f o r ( i = 0 ; i < NC; i ++)
739 c u r r e n t L o a d s [ i ] = s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [ i ] [

c u r r e n t D a y I n d e x ] ;
740
741 f o r ( i = NC−1; i >= 0 ; i−−){
742 i f ( i n t T o R e s c h e d u l e − j > c u r r e n t L o a d s [ i ] ) {
743 c l a s s N e e d s [ i ] = c u r r e n t L o a d s [ i ] ;
744 j = j + c u r r e n t L o a d s [ i ] ;
745 }
746 e l s e {
747 c l a s s N e e d s [ i ] = i n t T o R e s c h e d u l e − j ;
748 break ;
749 }
750 }
751
752 f o r ( i = 0 ; i < NC; i ++) {
753 i f ( i > 0 )
754 r e s c h e d u l i n g T y p e = i ;
755 do{
756 demandType = r e s c h e d u l i n g T y p e ;
757 i f ( simMode != 1)
758 demand ( s t a t e V a r s , s t a t , 0 , p o l i c y I n d e x ) ;
759 e l s e
760 demand ( s t a t e V a r s , s t a t , 0 , simMode − 1) ;
761 c l a s s N e e d s [ i ]−−;
762 } whi le ( c l a s s N e e d s [ i ] > 0 ) ;
763 }
764 demandType = n e x t A r r i v a l T y p e ;
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765 f r e e ( c u r r e n t L o a d s ) ;
766 f r e e ( c l a s s N e e d s ) ;
767 }
768
769 void d e c o d e S t a t e ( i n t s t a t e , i n t * s t a t e L e v e l s , i n t p o l i c y I n d e x ) {
770
771 i n t i , modulus ;
772 double d i v i s o r ;
773 d i v i s o r = 1 ;
774 modulus = c a p a c i t y + 1 ;
775
776 / * See c o n c l u d e ( ) f o r c o n s t r u c t i o n o f t h e s t a t e i n p u t . * /
777 i f ( p o l i c y I n d e x == 0) {
778 s t a t e L e v e l s [ 0 ] = ( ( i n t ) f l o o r ( ( double ) s t a t e / ( double ) (NC*NL

*( c a p a c i t y + 1) ) ) ) ; / * S c h e d u l e mode * /
779 s t a t e L e v e l s [ 1 ] = ( ( i n t ) f l o o r ( ( double ) s t a t e / ( double ) (

c a p a c i t y + 1) ) ) %(NC*NL) ; / * C l a s s i n d e x * /
780 s t a t e L e v e l s [ 2 ] = s t a t e %( c a p a c i t y + 1) ;

/ * S i mp le s t a t e * /
781 }
782 e l s e i f ( p o l i c y I n d e x == 1) {
783 s t a t e L e v e l s [ 0 ] = ( ( i n t ) f l o o r ( ( double ) s t a t e / ( double ) (NC*NL*

NS) ) ) ; / * S c h e d u l e mode * /
784 s t a t e L e v e l s [ 1 ] = ( ( i n t ) f l o o r ( ( double ) s t a t e / ( double ) (NS) ) )

%(NC*NL) ; / * C l a s s i n d e x * /
785 s t a t e L e v e l s [ 2 ] = s t a t e%NS ; / *

G e n e r a l i z e d s t a t e * /
786 }
787 e l s e {
788 s t a t e L e v e l s [ 0 ] = ( ( i n t ) f l o o r ( ( double ) s t a t e / ( double ) (NC*NS)

) ) ; / * S c h e d u l e mode * /
789 s t a t e L e v e l s [ 1 ] = ( ( i n t ) f l o o r ( ( double ) s t a t e / ( double ) (NS) ) )

%(NC) ; / * C l a s s i n d e x * /
790 s t a t e L e v e l s [ 2 ] = s t a t e%NS ; / * G e n e r a l i z e d s t a t e * /
791 }
792
793 / * For g e n e r a l i z e d s t a t e s , d e t e r m i n e t h e s p e c i f i c l oad l e v e l s

f o r each t a r g e t
794 day w i t h i n t h e c l a s s ; s p e c i f i c a l l y , s t o r e t h e load l e v e l f o r

t a r g e t day
795 NL − 1 − i i n s t a t e L e v e l s [3 + NL −1 − i ] ( l a r g e r i n d e x f o r

l o n g e r l e a d t i m e ) . * /
796
797 i f ( p o l i c y I n d e x > 0) {
798 f o r ( i = 0 ; i < NL; i ++) {
799 s t a t e L e v e l s [3 + (NL−1) − i ] = ( ( i n t ) f l o o r ( ( double )

s t a t e L e v e l s [ 2 ] / d i v i s o r ) )%modulus ;
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800 d i v i s o r = d i v i s o r * modulus ;
801 }
802 }
803 e l s e {
804 f o r ( i = 0 ; i < NL; i ++)
805 s t a t e L e v e l s [3 + i ] = 0 ;
806 }
807 re turn ;
808 }
809
810 void c o n c l u d e ( s t c S t a t * s t a t , i n t r e p ) { / * Get p o l i c y or r e p o r t

r e s u l t s . * /
811
812 i n t i , p o l i c y I n d e x , g e n S t a t e , numGenStates ,

c u r r e n t C l a s s D a y I n d e x , cu r r en tSchedu leMode , i n t T e s t D u r a t i o n ,
* cu r ren tDayLoads , * s t a t e L e v e l s ;

813 double a c t i o n , qCur r en t , dblAverageReward , db lRewardVar iance ,
ciw , expectedDemandValue ;

814 t i m e _ t t i m e C u r r e n t ;
815
816 s t a t e L e v e l s = c a l l o c (3+NL, s i z e o f ( i n t ) ) ;
817 i f ( s t a t e L e v e l s == NULL) e x i t ( 1 ) ;
818
819 i f ( simMode == 0) {
820 f o r ( p o l i c y I n d e x = 0 ; p o l i c y I n d e x < NP ; p o l i c y I n d e x ++) {
821
822 f p r i n t f ( f i l e P o l i c y , " \ n POLICY %d \ n \ n " , p o l i c y I n d e x ) ;
823
824 / * I f p o l i c y I n d e x > 0 and NL > 2 , i . e . , t h e r e are more than

two p o s s i b l e l e a d t i m e s f o r each c l a s s and i t ’ s n o t a
s i n g l e t h r e s h o l d p o l i c y , t h e n s t a t e L e v e l s we w i l l
i n d i c a t e t h e l o a d s on each p o s s i b l e t a r g e t day . In
o r d e r t o p r i n t t h e p o l i c y , we need t o know when we
i n c r e m e n t t h e load on any e x c e p t t h e l a s t two t a r g e t
days . The curren tDayLoads a r r a y w i l l c o n t a i n t h e
r e l e v a n t l oad i n f o r m a t i o n . * /

825
826 i f ( p o l i c y I n d e x > 0 && NL > 2) {
827 c u r r e n t D a y L o a d s = c a l l o c (NL−2, s i z e o f ( i n t ) ) ;
828 i f ( c u r r e n t D a y L o a d s == NULL) e x i t ( 1 ) ;
829 }
830 e l s e
831 c u r r e n t D a y L o a d s = c a l l o c ( 1 , s i z e o f ( i n t ) ) ;
832
833 i f ( p o l i c y I n d e x == 0)
834 numGenStates = NC*NL * ( c a p a c i t y + 1) * NM;
835 e l s e i f ( p o l i c y I n d e x == 1)
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836 numGenStates = NC*NL * NS * NM;
837 e l s e
838 numGenStates = NC * NS * NM;
839
840 c u r r e n t S c h e d u l e M o d e = 0 ;
841 c u r r e n t C l a s s D a y I n d e x = 0 ;
842
843 f p r i n t f ( f i l e P o l i c y , " C u r r e n t s c h e d u l e mode = %d \ n " ,

c u r r e n t S c h e d u l e M o d e ) ;
844 f p r i n t f ( f i l e P o l i c y , " Days t o p r o d u c t i o n : %d \ n " ,

c u r r e n t C l a s s D a y I n d e x + 1) ;
845
846 i f ( p o l i c y I n d e x > 0 && NL > 2) {
847 f o r ( i = 0 ; i < NL−2; i ++) {
848 c u r r e n t D a y L o a d s [ i ] = 0 ;
849 f p r i n t f ( f i l e P o l i c y , " T a r g e t day %d l o a d = %d \ n " , i +1 ,

c u r r e n t D a y L o a d s [ i ] ) ;
850 }
851 }
852
853 f o r ( i = 0 ; i <= c a p a c i t y ; i ++)
854 f p r i n t f ( f i l e P o l i c y , "%d \ t " , i ) ;
855 f p r i n t f ( f i l e P o l i c y , " \ n " ) ;
856
857 f o r ( g e n S t a t e = 0 ; g e n S t a t e < numGenStates ; g e n S t a t e ++) {
858 d e c o d e S t a t e ( g e n S t a t e , s t a t e L e v e l s , p o l i c y I n d e x ) ;
859
860 i f ( s t a t e L e v e l s [ 0 ] != c u r r e n t S c h e d u l e M o d e ) { / * Note a

change o f s c h e d u l e mode . * /
861 c u r r e n t S c h e d u l e M o d e = s t a t e L e v e l s [ 0 ] ;
862 f p r i n t f ( f i l e P o l i c y , " \ n \ n \ n C u r r e n t s c h e d u l e mode = %d "

, c u r r e n t S c h e d u l e M o d e ) ;
863 }
864 i f ( s t a t e L e v e l s [ 1 ] != c u r r e n t C l a s s D a y I n d e x ) { / * Note a

change o f c l a s s day . * /
865 c u r r e n t C l a s s D a y I n d e x = s t a t e L e v e l s [ 1 ] ;
866 i f ( p o l i c y I n d e x < 2)
867 f p r i n t f ( f i l e P o l i c y , " \ n Days t o p r o d u c t i o n : %d \ n " ,

c u r r e n t C l a s s D a y I n d e x + 1) ;
868 e l s e
869 f p r i n t f ( f i l e P o l i c y , " \ n Demand C l a s s : %d \ n " ,

c u r r e n t C l a s s D a y I n d e x + 1) ;
870 }
871 i f ( p o l i c y I n d e x > 0 && NL > 2) { / * Note any changes i n

e a r l i e r t a r g e t day l o a d s . * /
872 f o r ( i = 0 ; i < NL−2; i ++) {
873 i f ( c u r r e n t D a y L o a d s [ i ] != s t a t e L e v e l s [3+ i ] ) {
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874 c u r r e n t D a y L o a d s [ i ] = s t a t e L e v e l s [3+ i ] ;
875 f p r i n t f ( f i l e P o l i c y , " T a r g e t day %d l o a d = %d \ n " , i

+1 , c u r r e n t D a y L o a d s [ i ] ) ;
876 }
877 }
878 }
879
880 i f ( p o l i c y I n d e x < 2) {
881 i f ( s t a t −>V[ p o l i c y I n d e x ] [ s t a t e L e v e l s [ 1 ] ] [ s t a t e L e v e l s

[ 2 ] ] [ s t a t e L e v e l s [ 0 ] ] [ 1 ] > minV ) {
882 i f ( s t a t −>Q[ p o l i c y I n d e x ] [ s t a t e L e v e l s [ 1 ] ] [ s t a t e L e v e l s

[ 2 ] ] [ s t a t e L e v e l s [ 0 ] ] [ 0 ] > s t a t −>Q[ p o l i c y I n d e x ] [
s t a t e L e v e l s [ 1 ] ] [ s t a t e L e v e l s [ 2 ] ] [ s t a t e L e v e l s
[ 0 ] ] [ 1 ] )

883 a c t i o n = 0 . 0 ;
884 e l s e
885 a c t i o n = 1 . 0 ;
886 }
887 e l s e i f ( p o l i c y I n d e x == 0) {
888 i f ( s t a t e L e v e l s [ 2 ] > 0)
889 a c t i o n = s t a t −>Q[ p o l i c y I n d e x ] [ s t a t e L e v e l s [ 1 ] ] [

s t a t e L e v e l s [2 ] −1] [ s t a t e L e v e l s [ 0 ] ] [ NL] + 0 . 2 / (
s t a t e L e v e l s [ 1 ] + 1 ) ;

890 e l s e
891 a c t i o n = 1 . 0 ;
892 } / * p o l i c y I n d e x > 0 && v i s i t s <= minV * /
893 e l s e
894 / * Q− f a c t o r r e s u l t s f o r p o l i c y 1 are i n c o n c l u s i v e a t

t h i s p o i n t , so s u b s t i t u t e t h e s i m p l e t h r e s h o l d (
p o l i c y t y p e 0 ) a c t i o n a t t h e load o f t h e
c u r r e n t C l a s s D a y I n d e x . The load o f
c u r r e n t C l a s s D a y I n d e x i s g i v e n by s t a t e L e v e l s [3 +
s t a t e L e v e l s [1]%NL ] . * /

895 a c t i o n = s t a t −>Q[ 0 ] [ s t a t e L e v e l s [ 1 ] ] [ s t a t e L e v e l s [3 +
s t a t e L e v e l s [1]%NL ] ] [ s t a t e L e v e l s [ 0 ] ] [ NL] + 0 . 2 ;

896
897 s t a t −>Q[ p o l i c y I n d e x ] [ s t a t e L e v e l s [ 1 ] ] [ s t a t e L e v e l s [ 2 ] ] [

s t a t e L e v e l s [ 0 ] ] [ NL] = f l o o r ( a c t i o n ) ;
898 }
899 e l s e {
900 i f ( s t a t −>V[ p o l i c y I n d e x ] [ s t a t e L e v e l s [ 1 ] ] [ s t a t e L e v e l s

[ 2 ] ] [ s t a t e L e v e l s [ 0 ] ] [ 1 ] > minV ) {
901 q C u r r e n t = SMALL;
902 f o r ( i = 0 ; i < NL; i ++) {
903 i f ( s t a t −>Q[ p o l i c y I n d e x ] [ s t a t e L e v e l s [ 1 ] ] [ s t a t e L e v e l s

[ 2 ] ] [ s t a t e L e v e l s [ 0 ] ] [ i ] > q C u r r e n t ) {
904 a c t i o n = ( double ) i ;
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905 s t a t −>Q[ p o l i c y I n d e x ] [ s t a t e L e v e l s [ 1 ] ] [ s t a t e L e v e l s
[ 2 ] ] [ s t a t e L e v e l s [ 0 ] ] [ NL] = a c t i o n ;

906 q C u r r e n t = s t a t −>Q[ p o l i c y I n d e x ] [ s t a t e L e v e l s [ 1 ] ] [
s t a t e L e v e l s [ 2 ] ] [ s t a t e L e v e l s [ 0 ] ] [ i ] ;

907 }
908 }
909 }
910 e l s e {
911 / * Q− f a c t o r r e s u l t s f o r p o l i c y 2 are i n c o n c l u s i v e a t

t h i s p o i n t , so s u b s t i t u t e t h e f i r s t day t h a t has an
a c c e p t a n c e a c t i o n f o r t h i s c l a s s i n t h e s i m p l e
t h r e s h o l d ( p o l i c y t y p e 0 ) . Note t h a t s t a t e L e v e l s [ 1 ]

g i v e s t h e c l a s s i n t h e c o n t e x t o f p o l i c y t y p e 2 , so
use t h e l o o p i n g i n d e x i f o r t h e c o r r e s p o n d i n g

c l a s s D a y I n d e x i n p o l i c y 0 . * /
912 f o r ( i = l eadT imes [ s t a t e L e v e l s [ 1 ] ] [ 0 ] − 1 ; i <=

leadT imes [ s t a t e L e v e l s [ 1 ] ] [ NL − 1] − 1 ; i ++) {
913 i f ( s t a t −>Q[ 0 ] [ i ] [ s t a t e L e v e l s [3 + i%NL ] ] [ s t a t e L e v e l s

[ 0 ] ] [ NL] == 1 . 0 ) {
914 a c t i o n = ( double ) ( i%NL) + 0 . 2 ;
915 break ;
916 }
917 }
918 s t a t −>Q[ p o l i c y I n d e x ] [ s t a t e L e v e l s [ 1 ] ] [ s t a t e L e v e l s [ 2 ] ] [

s t a t e L e v e l s [ 0 ] ] [ NL] = f l o o r ( a c t i o n ) ;
919 }
920 }
921
922 i f ( a c t i o n == f l o o r ( a c t i o n ) )
923 f p r i n t f ( f i l e P o l i c y , " %1.0 f \ t " , a c t i o n ) ;
924 e l s e
925 f p r i n t f ( f i l e P o l i c y , " %1.0 f * \ t " , a c t i o n ) ;
926
927 / * B e s i d e s t h e work done above t o d i s t i n g u i s h p o l i c y

r e g i o n s by load on e a r l i e r t a r g e t days , we s t i l l need
t o p u t t h e p r i n t e d p o l i c y f o r t h e l a s t two t a r g e t days

i n m a t r i x form . S t a r t a new l i n e e v e r y t i m e p o l i c y
v a l u e s f o r ( c a p a c i t y + 1) g e n e r a l i z e d s t a t e s have been

p r i n t e d . * /
928
929 i f ( ( s t a t e L e v e l s [ 2 ] + 1 ) %( c a p a c i t y +1) == 0)
930 f p r i n t f ( f i l e P o l i c y , " \ n " ) ;
931 }
932 }
933 f c l o s e ( f i l e P o l i c y ) ;
934 f r e e ( c u r r e n t D a y L o a d s ) ;
935
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936 t i m e C u r r e n t = t ime (NULL) ;
937 i n t L e a r n D u r a t i o n = t i m e C u r r e n t − t i m e S t a r t ;
938 t i m e S t a r t = t i m e C u r r e n t ;
939 }
940 e l s e {
941 r e p D a t a [ r e p ] = repReward / r e p P o t e n t i a l R e w a r d ;
942 t o t a l D e m a n d s = t o t a l D e m a n d s + repDemands ;
943 t o t a l S u c c e s s e s = t o t a l S u c c e s s e s + r e p S u c c e s s e s ;
944 t o t a l R e j e c t s = t o t a l R e j e c t s + r e p R e j e c t s ;
945 t o t a l L o s s e s = t o t a l L o s s e s + r e p L o s s e s ;
946 t o t a l R e s c h e d u l e d = t o t a l R e s c h e d u l e d + r e p R e s c h e d u l e s ;
947 t o t a l R e s c h e d u l e L o s s e s = t o t a l R e s c h e d u l e L o s s e s +

r e p R e s c h e d u l e L o s s e s ;
948 p r i n t f ( "T : %d , S : %d , R : %f \ n " , repDemands , r e p S u c c e s s e s ,

repReward ) ;
949 p r i n t f ( "Avg . reward : %f \ n " , r e p D a t a [ r e p ] ) ;
950 i f ( r e p == t o t a l R e p s − 1) {
951
952 expectedDemandValue = 0 ;
953 dblAverageReward = 0 ;
954 db lRewardVar i ance = 0 ;
955
956 f o r ( i = 0 ; i < NC; i ++) {
957 expectedDemandValue = expectedDemandValue + ( ( double )

demandDis t [ i ] ) * p o t e n t i a l R e w a r d s [ i ] ;
958 }
959
960 f o r ( i = 0 ; i < t o t a l R e p s ; i ++) {
961 dblAverageReward = dblAverageReward + r e p D a t a [ i ] ;
962 }
963 dblAverageReward = dblAverageReward / t o t a l R e p s ;
964
965 f o r ( i = 0 ; i < t o t a l R e p s ; i ++) {
966 db lRewardVar i ance = db lRewardVar i ance + pow ( r e p D a t a [ i ]−

dblAverageReward , 2 ) ;
967 }
968 db lRewardVar i ance = db lRewardVar i ance / ( ( double ) r e p ) ;
969 ciw = 2.009574018* s q r t ( db lRewardVar i ance / t o t a l R e p s ) ;
970
971 t i m e C u r r e n t = t ime (NULL) ;
972 i n t T e s t D u r a t i o n = t i m e C u r r e n t − t i m e S t a r t ;
973 t i m e S t a r t = t i m e C u r r e n t ;
974
975 f i l e R e s u l t s = fopen ( " r e s u l t s . t x t " , " a " ) ;
976
977 f p r i n t f ( f i l e R e s u l t s , " %1.3 f \ t " , expectedDemandValue ) ;
978 f p r i n t f ( f i l e R e s u l t s , "%d \ t " , NC) ;
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979 f p r i n t f ( f i l e R e s u l t s , "%d \ t " , NL) ;
980 f p r i n t f ( f i l e R e s u l t s , " %3.0 f \ t " , 1 / in terdemandMean ) ;
981 f p r i n t f ( f i l e R e s u l t s , "%d \ t " , c a p a c i t y ) ;
982 f p r i n t f ( f i l e R e s u l t s , "%d \ t " , p e n a l t y T h r e s h o l d ) ;
983 f p r i n t f ( f i l e R e s u l t s , " %2.3 f \ t " , p e n a l t y ) ;
984 f p r i n t f ( f i l e R e s u l t s , " %2.3 f \ t " , i n v D i s t P r ) ;
985 f p r i n t f ( f i l e R e s u l t s , "%d \ t " , simMode − 1) ;
986 f p r i n t f ( f i l e R e s u l t s , "%d \ t " , l e a r n M u l t i p l e ) ;
987 f p r i n t f ( f i l e R e s u l t s , "%d \ t " , i n t L e a r n D u r a t i o n ) ;
988 f p r i n t f ( f i l e R e s u l t s , "%d \ t " , i n t T e s t D u r a t i o n ) ;
989 f p r i n t f ( f i l e R e s u l t s , "%d \ t " , t o t a l D e m a n d s ) ;
990 f p r i n t f ( f i l e R e s u l t s , "%f%%\ t " , ( ( double ) t o t a l S u c c e s s e s

*100) / ( double ) t o t a l D e m a n d s ) ;
991 f p r i n t f ( f i l e R e s u l t s , "%f%%\ t " , ( ( double ) t o t a l R e j e c t s *100)

/ ( double ) t o t a l D e m a n d s ) ;
992 f p r i n t f ( f i l e R e s u l t s , "%f%%\ t " , ( ( double ) t o t a l L o s s e s *100) /

( double ) t o t a l D e m a n d s ) ;
993 f p r i n t f ( f i l e R e s u l t s , "%f%%\ t " , ( ( double ) t o t a l R e s c h e d u l e d

*100) / ( double ) t o t a l D e m a n d s ) ;
994 f p r i n t f ( f i l e R e s u l t s , "%f%%\ t " , ( ( double )

t o t a l R e s c h e d u l e L o s s e s *100) / ( double ) t o t a l D e m a n d s ) ;
995 f p r i n t f ( f i l e R e s u l t s , "%f \ t " , db lRewardVar i ance ) ;
996 f p r i n t f ( f i l e R e s u l t s , " %2.6 f %2.6 f %2.6 f \ n " ,

dblAverageReward − ciw , dblAverageReward ,
dblAverageReward + ciw ) ;

997
998 f c l o s e ( f i l e R e s u l t s ) ;
999

1000 f o r ( i = 0 ; i < t o t a l R e p s ; i ++)
1001 r e p D a t a [ i ] = 0 ;
1002 }
1003 }
1004 f r e e ( s t a t e L e v e l s ) ;
1005 }
1006
1007 i n t nextDemandType ( void ) {
1008
1009 i n t i , r e t u r n V a l ;
1010 double v a r ;
1011 f l o a t cumProb ;
1012 v a r = u n i f o r m V a r i a t e ( 3 , 0 , 1 ) ;
1013 cumProb = demandDis t [ 0 ] ;
1014
1015 f o r ( i =0 ; i <=NC−1; i ++) {
1016 i f ( v a r <= cumProb | | i == NC−1){
1017 r e t u r n V a l = i ;
1018 break ;
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1019 }
1020 e l s e
1021 cumProb = cumProb+demandDis t [ i + 1 ] ;
1022 }
1023 re turn r e t u r n V a l ;
1024 }
1025
1026 i n t makeOffer ( i n t t e s t D a y ) {
1027
1028 i n t i , r e t u r n V a l ;
1029 double r e j e c t L e v e l ;
1030 r e j e c t L e v e l = u n i f o r m V a r i a t e ( 0 , 0 , 1 ) ;
1031 r e t u r n V a l = 0 ;
1032
1033 f o r ( i = 0 ; i < NL; i ++) {
1034 i f ( ( c u r r e n t D a y + leadT imes [ demandType ] [ i ] == t e s t D a y ) && (

r e j e c t L e v e l > r e j e c t P r [ i ] ) )
1035 r e t u r n V a l = 1 ;
1036 }
1037 re turn r e t u r n V a l ;
1038 }
1039
1040 void u p d a t e S t a t e ( s t c S t a t e * s t a t e V a r s , i n t p o l i c y I n d e x , i n t

i n t O f f e r I n d e x ) {
1041
1042 s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [ demandType ] [ i n t O f f e r I n d e x ] += 1 ;
1043 s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC] [ i n t O f f e r I n d e x ] += 1 ;
1044 }
1045
1046 double getReward ( s t c S t a t e * s t a t e V a r s , i n t p o l i c y I n d e x , i n t

i n t D e c i s i o n , i n t i n t O f f e r I n d e x , i n t intLTO , i n t i n t N e w A r r i v a l )
{

1047
1048 i n t i n t C u r r e n t L o a d ;
1049 double dblReward ;
1050 dblReward = 0 ;
1051
1052 i f ( i n t D e c i s i o n ) {
1053 i f ( i n t N e w A r r i v a l )
1054 dblReward = p o t e n t i a l R e w a r d s [ demandType ] ;
1055 e l s e
1056 dblReward = ( double ) − ( intLTO + 1) * (NC − demandType ) ;
1057
1058 i n t C u r r e n t L o a d = s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC] [

i n t O f f e r I n d e x ] ;
1059
1060 i f ( i n t C u r r e n t L o a d >= p e n a l t y T h r e s h o l d ) {
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1061 dblReward = dblReward − p e n a l t y * ( i n t C u r r e n t L o a d + 1 −
p e n a l t y T h r e s h o l d ) ;

1062 t o t a l E x c e s s e s ++;
1063 }
1064 }
1065
1066 re turn dblReward ;
1067 }
1068
1069 void l e a r n R e c o r d ( s t c S t a t e * s t a t e V a r s , s t c S t a t * s t a t , i n t

p o l i c y I n d e x , i n t i n t O f f e r , i n t i n t N e w A r r i v a l , i n t i n t A c t i o n ,
double dblReward ) {

1070
1071 i n t i n t O f f e r I n d e x ;
1072
1073 i n t O f f e r I n d e x = i n t O f f e r%Ax ;
1074
1075 i f ( p o l i c y I n d e x < 2) {
1076 i f ( s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 1 ] [ i n t O f f e r I n d e x ] >= Ax

&& s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 5 ] [ i n t O f f e r I n d e x ] >
−1)

1077 r q l e a r n ( s t a t e V a r s , s t a t , i n t N e w A r r i v a l , i n t O f f e r I n d e x , 0 ,
p o l i c y I n d e x ) ;

1078
1079 s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 3 ] [ i n t O f f e r I n d e x ] =

s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 2 ] [ i n t O f f e r I n d e x ] ;
1080 s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 4 ] [ i n t O f f e r I n d e x ] =

s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 7 ] [ i n t O f f e r I n d e x ] ;
1081 s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 5 ] [ i n t O f f e r I n d e x ] =

i n t A c t i o n ;
1082 s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 6 ] [ i n t O f f e r I n d e x ] =

i n t N e w A r r i v a l ;
1083 s t a t e V a r s −>reward [ p o l i c y I n d e x ] [ i n t O f f e r I n d e x ] = dblReward ;
1084 }
1085 e l s e {
1086 s t a t −>c u r r e n t A c t i o n = i n t A c t i o n ;
1087 s t a t −>c u r r e n t R e w a r d = dblReward ;
1088
1089 i f ( s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 1 ] [ i n t O f f e r I n d e x ] >= Ax

&& s t a t −>prevAc t > −1)
1090 r q l e a r n ( s t a t e V a r s , s t a t , i n t N e w A r r i v a l , i n t O f f e r I n d e x , 0 ,

p o l i c y I n d e x ) ; / * i n t O f f e r I n d e x i s n o t used by p o l i c y
t y p e 2 * /

1091
1092 s t a t −>p r e v C l a s s = demandType ;
1093 s t a t −> p r e v A r r i v a l = i n t N e w A r r i v a l ;
1094 s t a t −> p r e v S t a t e = s t a t −> c u r r e n t S t a t e ;
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1095 s t a t −>prevAc t = s t a t −>c u r r e n t A c t i o n ;
1096 s t a t −>prevReward = s t a t −>c u r r e n t R e w a r d ;
1097 }
1098 }
1099
1100 void r q l e a r n ( s t c S t a t e * s t a t e V a r s , s t c S t a t * s t a t , i n t

i n t N e w A r r i v a l , i n t i n t R e c o r d I n d e x , i n t t e r m i n a l , i n t
p o l i c y I n d e x ) { / * R e l a t i v e Q−L e a r n in g * /

1101
1102 double qCur r en t , q P r e v i o u s , l e a r n W e i g h t , rimm ;
1103 i n t NA, a c t i o n , v i s i t s , c u r r e n t S t a t e A , c u r r e n t S t a t e B ,

p r evS t a t eA , p r e v S t a t e B , p r ev Ac t ion , p r e v A r r i v a l T y p e ,
d i s t Q s t a t e ;

1104
1105 i f ( p o l i c y I n d e x < 2) {
1106 p r e v S t a t e A = s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 3 ] [

i n t R e c o r d I n d e x ] − 1 ;
1107 p r e v S t a t e B = s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 4 ] [

i n t R e c o r d I n d e x ] ;
1108 p r e v A c t i o n = s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 5 ] [

i n t R e c o r d I n d e x ] ;
1109 p r e v A r r i v a l T y p e = s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 6 ] [

i n t R e c o r d I n d e x ] ;
1110
1111 c u r r e n t S t a t e A = s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 2 ] [

i n t R e c o r d I n d e x ] − 1 ; / * Deduct 1 because c u r r e n t S t a t e A i s
day i n d e x f o r t h e Q− f a c t o r a r r a y . * /

1112 c u r r e n t S t a t e B = s t a t e V a r s −> s t a t e [ p o l i c y I n d e x ] [NC+ 7 ] [
i n t R e c o r d I n d e x ] ; / * G e n e r a l i z e d load . * /

1113 rimm = s t a t e V a r s −>reward [ p o l i c y I n d e x ] [ i n t R e c o r d I n d e x ] ;
1114
1115 NA = 2 ;
1116 }
1117 e l s e {
1118 p r e v S t a t e A = s t a t −>p r e v C l a s s ;
1119 p r e v S t a t e B = s t a t −> p r e v S t a t e ;
1120 p r e v A c t i o n = s t a t −>prevAc t ;
1121 p r e v A r r i v a l T y p e = s t a t −> p r e v A r r i v a l ;
1122
1123 c u r r e n t S t a t e A = demandType ;
1124 c u r r e n t S t a t e B = s t a t −> c u r r e n t S t a t e ;
1125 rimm = s t a t −>prevReward ;
1126
1127 NA = NL;
1128 }
1129
1130 i f ( t e r m i n a l ) {
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1131 rimm = s t a t e V a r s −>reward [ p o l i c y I n d e x ] [ i n t R e c o r d I n d e x ] ;
1132 q C u r r e n t = 0 ;
1133 }
1134 e l s e { / * T e r m in a l i s a lways 0 f o r p o l i c y t y p e 2 . * /
1135 q C u r r e n t = SMALL;
1136 / * Find t h e b e s t Q− f a c t o r i n t h e c u r r e n t s t a t e * /
1137 f o r ( a c t i o n = 0 ; a c t i o n < NA; a c t i o n ++) {
1138 i f ( s t a t −>Q[ p o l i c y I n d e x ] [ c u r r e n t S t a t e A ] [ c u r r e n t S t a t e B ] [

i n t N e w A r r i v a l ] [ a c t i o n ] > q C u r r e n t )
1139 q C u r r e n t = s t a t −>Q[ p o l i c y I n d e x ] [ c u r r e n t S t a t e A ] [

c u r r e n t S t a t e B ] [ i n t N e w A r r i v a l ] [ a c t i o n ] ;
1140 }
1141 }
1142
1143 q P r e v i o u s = s t a t −>Q[ p o l i c y I n d e x ] [ p r e v S t a t e A ] [ p r e v S t a t e B ] [

p r e v A r r i v a l T y p e ] [ p r e v A c t i o n ] ;
1144
1145 s t a t −>V[ p o l i c y I n d e x ] [ p r e v S t a t e A ] [ p r e v S t a t e B ] [ p r e v A r r i v a l T y p e ] [

p r e v A c t i o n ] + + ;
1146 v i s i t s = s t a t −>V[ p o l i c y I n d e x ] [ p r e v S t a t e A ] [ p r e v S t a t e B ] [

p r e v A r r i v a l T y p e ] [ p r e v A c t i o n ] ;
1147 l e a r n W e i g h t = l e a r n R a t e / v i s i t s ;
1148
1149 d i s t Q s t a t e = r e f S t a t e [ p o l i c y I n d e x ] ;
1150 / * Q[ p o l i c y I n d e x ] [ ( NC−1)*NL ] [ d i s t Q s t a t e ] [ 1 ] [ 1 ] i s t h e

d i s t i n g u i s h e d f a c t o r * /
1151
1152 i f ( p o l i c y I n d e x < 2)
1153 q P r e v i o u s = q P r e v i o u s * ( 1 . 0 − l e a r n W e i g h t ) + ( l e a r n W e i g h t * (

rimm + q C u r r e n t − s t a t −>Q[ p o l i c y I n d e x ] [ ( NC−1)*NL ] [
d i s t Q s t a t e ] [ 1 ] [ 1 ] ) ) ;

1154 e l s e
1155 q P r e v i o u s = q P r e v i o u s * ( 1 . 0 − l e a r n W e i g h t ) + ( l e a r n W e i g h t * (

rimm + q C u r r e n t − s t a t −>Q[ p o l i c y I n d e x ] [ NC−1][ d i s t Q s t a t e
] [ 1 ] [ 1 ] ) ) ;

1156
1157 s t a t −>Q[ p o l i c y I n d e x ] [ p r e v S t a t e A ] [ p r e v S t a t e B ] [ p r e v A r r i v a l T y p e ] [

p r e v A c t i o n ] = q P r e v i o u s ;
1158
1159 re turn ;
1160 }
1161
1162 double u n i f o r m V a r i a t e ( i n t s t ream , f l o a t lower , f l o a t uppe r ) { / *

Uniform v a r i a t e g e n e r a t i o n f u n c t i o n . * /
1163
1164 / * Re tu rn a U( a , b ) random v a r i a t e . * /
1165 double v a r i a t e ;
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1166 v a r i a t e = lower + l c g r a n d ( s t r e a m ) * ( uppe r − l ower ) ;
1167 re turn v a r i a t e ;
1168 }
1169
1170 double e x p o n V a r i a t e ( i n t s t ream , double mean ) { / * E x p o n e n t i a l

random v a r i a t e g e n e r a t i o n f u n c t i o n . * /
1171
1172 / * Re tu rn an e x p o n e n t i a l random v a r i a t e w i t h mean " mean " . * /
1173 double v a r i a t e ;
1174 v a r i a t e = −mean * l o g ( l c g r a n d ( s t r e a m ) ) ;
1175 re turn v a r i a t e ;
1176 }
1177
1178 / * Genera te t h e n e x t random number . * /
1179 double l c g r a n d ( i n t s t r e a m ) {
1180
1181 double hi , t e s t , lo , s eed ;
1182
1183 seed = z rng [ s t r e a m ] ;
1184 h i = f l o o r ( s eed / q ) ;
1185 l o =seed−q* h i ;
1186 t e s t =a * lo−r * h i ;
1187
1188 i f ( t e s t >0 .0 )
1189 seed = t e s t ;
1190 e l s e
1191 seed = t e s t +m;
1192
1193 z rng [ s t r e a m ] = seed ;
1194 re turn s eed /m;
1195 }
1196
1197 double round ( double x ) {
1198 i f ( x + 0 . 5 > c e i l ( x ) )
1199 re turn c e i l ( x ) ;
1200 e l s e
1201 re turn f l o o r ( x ) ;
1202 }
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APPENDIX C

STATISTICAL RESULTS FOR CHAPTER 4

Description of Variables

All records for the following variables relate to a specific combination of plant and year.
In some cases, the variable gives a performance measure from an earlier period or across a
period of more than one year. These instances are noted.

Chassis
Number of different chassis configurations in production at the plant.

CumulativeProduction 01 (Launch plants only)
Cumulative production on the launch platform to end of the launch year.

CumulativeProduction 02 (Launch plants only)
Cumulative production on the launch platform to the end of the year after launch.

ExperiencePotential
Indicator of whether a plant has production on a platform that will be used for a launch in
the forthcoming year. For instance, if platform P is launched at plant X in 2000, then all
plants producing on platform P in 1999 have ExperiencePotential = 1. There may some
oversimplification in this assignment, since if platforms P and Q are launched in 2000,
plant Y will have ExperiencePotential = 1 if it produces on either platform.

ExperienceReal (Launch plants only)
Indicator of whether, given a launch on platform P at plant X in a given year, plant X had
production on P in the preceding year.

FlexAssembly
Assembly Line Flexibility: ratio of number of platforms produced by a plant to number of
assembly lines in the plant.

FlexBody
Body Shop Flexibility: ratio of number of platforms produced by a plant to number of body
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shops in the plant.

priorHPV
Overall HPV (i.e., across all models).

HPV
Prior year overall HPV (i.e., across all models).

LateModel
Indicator variable: whether a plant manufactures a model that is within the last two years
of its life cycle.

RampUp
The length of the ramp-up period following launch. Defined in four possible ways on the
two years following launch: time to reach maximum production level, mean production
level, median production level, or 90th percentile of maximum production (see p127).

Sales
Total sales for all models produced at the plant in the year preceding the record year.

SalesTrend
Agregate slope coefficient from linear regressions of monthly sales data from the preceding
two years for each model produced at the plant. Defined in three possible ways: average of
coefficients, maximium coefficient, or minimum coefficient (see p128).

stdDev(Sales)
Standard deviation of total monthly sales for all models produced at the plant in the year
preceding the record year.

priorUtilization
Utilization at a plant in the year prior to a particular year.

Utilization
Utilization at a plant in a particular year.

avgUtilization (Launch plants only)
Average utilization across the two year period following launch.

WorkingDays (Launch plants only)
Number of working days.

Y01effect (Launch plants only)
Percentage change in total HPV from the year preceding launch to the year of launch.

Y02effect (Launch plants only)
Percentage change in total HPV from the year preceding launch to the year following
launch.
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Table C.1: Summary Statistics
Variable Mean Std. Dev Min Max
Chassis 2.667 1.782 1 10
CumulativeProduction 01 125862.000 119612.100 3284 638276
CumulativeProduction 02 315389.800 182705.300 43514 1009491
ExperienceReal 0.267 0.446 0 1
FlexAssembly 1.242 0.500 1.000 3.000
FlexBody 1.164 0.437 0.500 3.000
HPV 31.362 8.959 17.300 56.410
RampUp (90th Percentile) 19.200 9.669 3 43
RampUp (Max.) 28.900 13.614 4 52
RampUp (Mean) 13.117 8.967 2 43
RampUp (Median) 14.883 9.151 2 33
Sales 165094.500 196691.100 1471 876716
stdDev(Sales) 5672.389 7845.135 543.089 61969.860
avgUtilization 0.925 0.219 0.291 1.406
Utilization 85.648 25.978 25.709 154.470
WorkingDays 240.883 21.314 190 336
Y01effect 11.839 15.991 -18.923 57.392
Y02effect -3.466 13.203 -28.310 33.816

ExperiencePotential 0.127 0.334 0 1
FlexAssembly 1.206 0.473 0.500 3.000
FlexBody 1.118 0.387 0.500 3.000
Chassis 2.761 2.302 1 16
LateModel 0.130 0.337 0 1
SalesTrend (Avg.) -9.976 271.978 -1841.436 2104.311
SalesTrend (Min.) -76.999 277.409 -2246.021 2104.311
SalesTrend (Max.) 70.888 303.109 -542.862 2104.311
priorHPV 29.212 10.473 15.741 103.075
priorUtilization 89.989 26.736 15.021 147.848
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Table C.2: Variable Correlations - Launch Location Model

Chassis Experience
Potential

Flex
Assembly

Flex
Body

prior
HPV

Late
Model

SalesTrend 
(avg.)

SalesTrend 
(max.)

SalesTrend 
(min.)

ExperiencePotential  0.0894
FlexAssembly  0.0668 -0.0025
FlexBody  0.2942***  0.0078  0.5258***
priorHPV  0.3152***  0.0775  0.0901  0.2796***
LateModel -0.1035* -0.0352 -0.0087 -0.0853  0.1098*
SalesTrend (avg.)  0.0819  0.0929 -0.0158  0.0655  0.1051* -0.0298
SalesTrend (Max.)  0.1057*  0.244*** -0.0089  0.0654  0.0808 -0.0242  0.7749***
SalesTrend (Min.)  0.058  0.0374 -0.0538  0.066  0.1414** -0.0140  0.8644***  0.4858***
priorUtilization  0.2005***  0.0338 -0.0695 -0.0874 -0.3618*** -0.1847 -0.0165  0.0252 -0.0852
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Table C.3: Variable Correlations - Productivity Model
Flex

Assembly
Flex
Body Chassis Cumulative

Prod. 01
Cumulative

Prod. 02
Experience 
Potential

Experience 
Realized

FlexBody  0.6178***
Chassis  0.0634  0.0532
Cprod01  0.0146 -0.0925  0.1169
Cprod02 -0.0882 -0.1235  0.0999  0.8989***
Experience Potential -0.0081 -0.1241  0.0349  0.4872***  0.3450***
Experience Realized  0.0101 -0.1557 -0.0995  0.5430***  0.4384***  0.5409***
RampUp Max  0.1194  0.0503  0.0755  0.0894  0.1763 -0.0036 -0.2635**
RampUp Mean  0.0031  0.0261 -0.0251  0.0402  0.0729 -0.0374 -0.0206
RampUp Median -0.0475 -0.0312 -0.0565  0.0935  0.1312 -0.0286 -0.0296
RampUp Percentile  0.0670  0.0108 -0.0876  0.11740  0.13460 -0.0517 -0.0558
Sales -0.0887  0.0445  0.2546** -0.0474  0.0735 -0.1896 -0.2406*
StDevSales -0.0832 -0.0840 -0.1091  0.0114  0.1043 -0.1168 -0.0468
Total HPV Prior -0.0036  0.0211  0.2466* -0.0773 -0.2367*  0.0178 -0.1316
Utilization -0.1144 -0.2112  0.1882  0.3531***  0.4079*** -0.0080  0.0561
avgUtilization -0.1549 -0.1890  0.1756  0.3267**  0.4581*** -0.0676  0.0522
Utilization Prior -0.0437 -0.1363  0.3587***  0.2729**  0.3507***  0.0877  0.0723
Working Days -0.0259 -0.0028  0.2123  0.2601**  0.1915  0.0927  0.0443
Y01 effect -0.0109 -0.1082 -0.0431 -0.2228* -0.1094 -0.2366* -0.3579***
Y02 effect  0.2078  0.0904  0.0424 -0.0341 -0.0333 -0.1250 -0.1721

RampUp 
Max

RampUp 
Mean

RampUp 
Median

RampUp 
Percentile Sales stdDev

(Sales)
FlexBody
Chassis
Cprod01
Cprod02
Experience Potential
Experience Realized
RampUp Max
RampUp Mean  0.4627***
RampUp Median  0.4783***  0.8836***
RampUp Percentile  0.6741***  0.7312***  0.8033***
Sales  0.1375 -0.0133  0.0088 -0.0363
StDevSales  0.1811 -0.0121 -0.0183  0.0637  0.1576
Total HPV Prior -0.0323  0.2086  0.1255  0.0304 -0.2328* -0.2913**
Utilization  0.1043  0.0113  0.0284 -0.0096  0.3301**  0.1040
avgUtilization  0.1215  0.1753  0.1946  0.0933  0.3471***  0.1873
Utilization Prior  0.1597  0.0677  0.0673  0.0486  0.4394***  0.0950
Working Days  0.1233  0.1522  0.1698  0.1556 -0.2031 -0.0308
Y01 effect  0.1769  0.1363  0.2130  0.1954  0.0864 -0.0180
Y02 effect  0.1031 -0.1810 -0.2036 -0.0695  0.1765  0.0470

Total HPV 
Prior Utilization avg

Utilization
prior

Utilization
Working 

Days Y01 effect

FlexBody
Chassis
Cprod01
Cprod02
Experience Potential
Experience Realized
RampUp Max
RampUp Mean
RampUp Median
RampUp Percentile
Sales
StDevSales
Total HPV Prior
Utilization -0.1815
avgUtilization -0.1545  0.8526***
Utilization Prior -0.1418  0.6704***  0.6876***
Working Days  0.1305  0.2282*  0.3432***  0.2980**
Y01 effect -0.2156* -0.2056 -0.1530 -0.1275 -0.0492
Y02 effect -0.4099***  0.1370 -0.0504  0.1272 -0.1797  0.4681***
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Table C.4: OLS Regression for Launch Impact

1 

Appendix II – OLS Regression for Launch Impact 
 
Dependent variable: log(HPV). 
 
     Base Model   Launch Model 
Parameter   Coefficient   Coefficient 

Intercept      0.557***      0.469*** 
DCX       0.019       0.009 
Ford       0.046***      0.051*** 
Nissan     -0.003      -0.045 
Toyota      0.019       0.031 
2000      -0.003       0.006 
2001       0.046**       0.057*** 
2002      -0.011       0.009 
2003      -0.000       0.016 
2004      -0.009      -0.036 
2005      -0.018      -0.023 
log(Chassis)     0.013       0.011 
log(priorHPV)     0.822***      0.844 
priorUtilization   -0.000      -0.000*** 
FlexBody      0.003      -0.013 
Launch           0.151*** 
 
    R-sq.  0.817    R-sq.  0.862 
 
 
 

182



Table C.5: Logistic Regression for Launch Location

2 

Appendix III – Logistic Regression 
 
Dependent variable: launch occurrence  
at each plant (indicator). 
 
Parameter       Odds Ratio Coefficient 

Intercept    NA     0.958 
DCX      1.959*     0.682* 
Ford      0.903    -0.080 
Nissan     2.898     1.059 
Toyota     0.596    -0.518 
2000      1.271     0.218 
2001      1.284     0.215 
2002      0.449    -0.610 
2003      1.187     0.085 
2004      3.736**     1.395** 
2005      2.549     0.909 
log(priorHPV)    0.280**    -1.375** 
LateModel     1.943     0.740 
SalesTrend    1.000     0.000 
priorUtilization   1.000     0.000 
Experience    7.564***     2.010*** 
FlexBody     2.790**     0.976** 
 
    Wald chi2(15)   69.010 
     P > chi2    0.000 
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Table C.6: OLS Regression, Y01 effect

3 

Appendix IV(a) – OLS Regression, Y01 effect 
 
Dependent variable: percentage HPV change, 
launch year from prior year. 
 
     Base Model  Extended Model 
Parameter   Coefficient    Coefficient 

Intercept     51.539       71.385** 
Auto Alliance   -10.091      -12.882 
DCX      -5.740       -8.607 
Ford       7.685        6.455 
Nissan    -93.322     -101.640* 
Toyota      7.104        3.506 
2000      -5.359       -8.336 
2001       1.428        0.591 
2002       8.776        4.957 
2003       3.554        2.658 
2004      -3.934       -1.118 
2005     -12.939       -6.021 
log(Chassis)     0.702        0.875 
CumulativeProd.    0.000*        0.000 
RampUp      0.276        0.283 
log(Sales)    -2.250       -2.178 
stdDev(Sales)     1.487        1.544* 
Utilization    -0.115       -0.166* 
WorkingDays    -0.040       -0.053 
Experience         -15.055** 
FlexBody          -10.163** 
 
       R-sq.  0.370        R-sq.  0.487 
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Table C.7: OLS Regression, Y01 effect with interaction term

4 

Appendix IV(b) – OLS Regression, Y01 effect with interaction term 
 
Dependent variable: percentage HPV change,  
launch year from prior year. 
 
     Base Model  Extended Model 
Parameter   Coefficient    Coefficient 

Intercept     51.539       48.105 
Auto Alliance   -10.091      -13.917 
DCX      -5.740      -10.238* 
Ford       7.685    4.377 
Nissan    -93.322     -121.562** 
Toyota      7.104    1.923 
2000      -5.359      -11.289 
2001       1.428       -2.189 
2002       8.776    1.696 
2003       3.554       -0.024 
2004      -3.934       -2.571 
2005     -12.939       -5.974 
log(Chassis)     0.702    0.933 
CumulativeProd.    0.000    0.000 
RampUp      0.276    0.896* 
log(Sales)    -2.250       -1.699 
stdDevSales     1.487    1.864** 
Utilization    -0.115       -0.163* 
Working Days    -0.040       -0.058 
NoExperience*Ramp-up        -0.821 
NoExperience          26.375** 
FlexBody          -12.018** 
 
   R-sq.   0.400    R-sq.   0.515 
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Table C.8: OLS Regression, Y02 effect, all plants

5 

Appendix V(a)– OLS Regression, Y02 effect, all plants 
 
Dependent variable: percentage HPV change from 
year before launch to second year after launch. 
 
     Base Model  Extended Model 
Parameter   Coefficient    Coefficient 

Intercept     -1.185        2.635 
Auto Alliance     9.708       10.574 
DCX       1.567        1.741 
Ford      13.315***      13.631*** 
Nissan    -52.217      -55.899 
Toyota     11.844       12.496 
2000      -2.353       -5.412 
2001      -0.731       -2.861 
2002       0.322       -2.746 
2003      -2.375       -5.696 
2004       1.658        0.043 
2005      -8.733       -5.372 
log(Chassis)     3.113        3.019 
log(Sales)    -0.197       -0.537 
stdDev(Sales)     0.001        0.001 
avgUtilization   -11.618      -10.685 
Experience          -6.310 
FlexBody            1.678 
 
   R-sq.   0.294    R-sq.   0.320
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Table C.9: OLS Regression, Y02 effect, improving plants only

6 

Appendix V(b)– OLS Regression, Y02 effect, improving plants only 
 
Dependent variable: percentage HPV change from  
year before launch to second year after launch. 
 
     Base Model  Extended Model 
Parameter   Coefficient    Coefficient 

Intercept    -22.125      -15.397 
DCX       7.339**        6.023 
Ford       9.352**        8.366* 
Nissan    -43.153      -61.810 
2000      -2.793       -3.416 
2001      -6.143       -5.209 
2002       3.404        4.185 
2003      -0.642        0.572 
2004       3.584        5.149 
2005      -8.219*       -8.644* 
log(Chassis)     3.405        3.257 
log(Sales)     1.035        0.715 
stdDev(Sales)     0.001        0.001 
avgUtilization   -12.933*      -13.527* 
Experience          -0.951 
FlexBody           -2.723 
 
   R-sq.   0.551    R-sq.   0.563 
 
 
 
 
 

187



Table C.10: Heckman Correction

7 

Appendix VI – Heckman Correction for Y01 effect 
 
           Coefficient 

    Intercept    49.166*** 
    DCX    -11.161** 
    Ford      5.427 
    2000     -2.653 
    2001      9.208 
Productivity Model  2002     13.321 
Dependent variable  2003      8.351 
Y01effect   2004     -3.735 
    2005     -1.841 
    log(Chassis)   -0.433 
    CumulativeProd.  -0.595 
    Utilization   -0.127 
    Experience  -15.037** 
    FlexBody   -11.255** 
 
 
           Coefficient 

    Intercept     1.161 
    Ford     -0.046 
    DCX      0.441* 
    2000      0.128 
    2001      0.118 

 2002     -0.331 
Launch Location Model 2003      0.051 
Dependent variable  2004      0.708* 
Launch occurrence  2005      0.261 
    log(priorHPV)   -0.980** 
    LateModel     0.415 
    SalesTrend    0.000 
    priorUtilization  -0.001 
    Experience    1.121*** 
    FlexBody     0.635*** 
 
/athrho    -0.571 
/lnsigma     2.631*** 
rho     -0.516 
sigma    13.892 
lambda    -7.171 
 
LR test of independent equations (rho = 0) 
Chi2(1) = 0.870, Prob > chi2 = 0.350 
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