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Sulfur dioxide (SO2), a gas emitted by both volcanoes and anthropogenic activity, is a 

major pollutant and a precursor to sulfate aerosols. Sulfates can be deposited back to the ground 

where they have adverse impact on the environment or reside in the stratosphere as aerosols and 

affect radiative forcing. I investigated two components that stem from SO2: the deposition of 

sulfate, and the remote sensing of the SO2 layer height, important for aviation safety and 

chemical modeling. In the first study, I used column SO2 data from the Ozone Monitoring 

Instrument (OMI), and sulfate wet deposition data from the National Atmospheric Deposition 

Program to investigate the temporal and spatial relationship between trends in SO2 emissions and 

the downward sulfate wet deposition over the northeastern U.S. from 2005 to 2015. The results 



showed that emission reductions are reflected in deposition reductions within this same region. 

Emission reductions along the Ohio River Valley led to decreases in sulfate deposition not only 

in eastern OH and western PA, but also further downwind at sites in Delaware and Maryland. 

The findings suggested that emissions and wet deposition are linked through not only the 

location of sources relative to the observing sites, but also photochemistry and weather patterns 

characteristic to the region in winter and summer. The second part of this dissertation focuses on 

SO2 layer height retrievals and their applications. To this end I applied the Full Physics Inverse 

Learning Machine (FP-ILM) algorithm to OMI radiances in the spectral range of 310-330 nm. 

This approach utilized radiative transfer calculations to generate a large dataset of synthetic 

radiance spectra for a wide range of geophysical parameters. The spectral information was then 

used to train a neural network to predict the SO2 height. The main advantage of the algorithm is 

its speed, retrieving plume height in less than 10 min for an entire OMI orbit. I also compared the 

SO2 height retrievals to other data sources and explored some potential applications, in particular 

their use in volcanic SO2 plume forecasts and estimating the total mass emitted from volcanic 

eruptions. 
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Chapter 1: Introduction 

1.1 Background 

 Sulfur dioxide (SO2) gas is a toxic pollutant released by both volcanoes and human 

activity, in particular through burning of sulfur-rich fossil fuels such as coal and petroleum. It 

can be also produced from smelting of metals. From anthropogenic sources around ~55-65 Tg S, 

are released into the atmosphere each year [Smith et al., 2011]. In the last twenty years, the 

regions with the most severe SO2 pollution have been in India and China where coal combustion 

has been a primary source of energy. Other locations such as Norilsk, Russia and the Persian 

Gulf have been the largest point sources of SO2 in the world due to nickel smelting and oil 

industry respectively. Through pollution controls such as flue gas desulfurization technology, the 

level of sulfur pollution can be greatly reduced. China is a good example of this: from 2010 to 

2017 the SO2 emissions from the country were reduced by around 62% [Zheng et al., 2018]. In 

the northeast United States, areas that previously experienced high SO2 pollution, SO2 levels 

have decreased significantly since the start of the 21st century thanks to sulfur scrubbers and 

phasing out of coal power plants. While anthropogenic emissions of SO2 have gone down in 

some areas, coal remains an important energy source particularly in some developing countries 

such as India [Li et al., 2017a]. As a result, anthropogenic SO2 sources continue to play an 

important role in regional air quality. 

One of the main sinks of SO2 in the atmosphere oxidation into sulfates (SO4
2-). The 

hydroxyl radical (OH) is the dominant driver of oxidation process in the gas phase. It reacts with 

SO2 in a multi-step reaction (Eq 1.1-1.3) which eventually results in formation of sulfuric acid 

[Margitan, 1984]:  
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SO2 + OH + M → HOSO2 + M  (1.1) 

HOSO2 + O2 → HO2 + SO3          (1.2) 

SO3 + H2O → H2SO4     (1.3) 

 

Alternatively, SO2 can be taken up by water droplets and heterogeneous reactions with 

dissolved hydrogen peroxide (H2O2) or ozone (O3) [Seinfeld and Pandis, 2006] yield sulfate. The 

aqueous phase reaction is faster than the homogeneous reaction and accounts for roughly 85% of 

the global sulfate source [Chin et al, 1996]. Sulfate that resides in the troposphere eventually 

undergoes deposition through either dry or wet processes. In wet deposition, the sulfate is 

removed through precipitation, which results in acid rain and can cause damage to various 

ecosystems by destroying vegetation and changing the acidity of ground water [Singh and 

Agrawal, 2008; Likens and Bormann, 1974]. In dry deposition, the sulfate is deposited to the 

environment without the presence of precipitation. Ground monitoring networks as well as 

several studies have attempted to make estimates through modeling deposition velocities in order 

to determine the flux [Odabasi and Bagiroz, 2002; Xu and Carmichael, 1998]. As a result, dry 

deposition has larger errors in its estimates than wet deposition since it is not measured directly 

but rather through a product of measured concentration and modeled velocities. The amount of 

wet sulfate deposition and its fraction of the total deposition vary by region depending on the 

proximity to sulfur emission sites and precipitation frequency. For instance, at a strongly 

polluted site in China, the dry deposition was estimated to be 2-4 times greater than wet 

deposition [Quan et al., 2008]. Conversely, dry deposition accounted for about 40% of the total 

according to a study on the eastern United States [Baumgartner et al., 2002]. Historically, sulfate 

deposition and acid rain have occurred downwind of SO2 emission sources, most notably coal-
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fired power stations. I will discuss sulfate deposition in more detail in Chapter 2 of this 

dissertation. 

 Volcanoes are the largest natural source of SO2 and are estimated to emit 20-25 Tg S 

through passive degassing [Carn et al., 2017] each year. Explosive volcanic eruptions, however, 

can additionally release large amounts of SO2 high into the atmosphere. While anthropogenic 

SO2 typically has a lifetime of a few days [Lee et al., 2011], volcanic SO2 injected into the lower 

stratosphere can take a few weeks to convert into sulfate [von Glasow et al., 2009, Krotkov et al., 

2010; Gorkavyi et al., 2021]. This can also lead to formation of sulfate aerosols which can 

remain in the stratosphere for months to years, with an e-folding residence time of one year 

[Robock, 2000]. Sulfate aerosols are known to have a cooling effect on climate, especially if a 

large SO2 plume is injected into the lower stratosphere and remains there for longer periods of 

time. This is demonstrated by significant eruptions such as El Chichon in 1982 [Krueger 1983] 

and Mt. Pinatubo in 1991 that released 7 Mt and 15-20 Mt of SO2 into the atmosphere 

respectively [Bluth et al., 1992; Carn 2021]. In the case of the Mt. Pinatubo eruption, the most 

explosive eruption of the 20th century, global average temperatures were reduced by around 

0.5℃ [McCormick et al, 1995; Stenchikov et al., 2021]. This eruption had other atmospheric 

effects such as depleting ozone in the mid-latitudes and altering atmospheric circulation patterns 

[Robock and Mao, 1995; Robock, 2002]. 

Aside from releasing SO2, volcanic eruptions also emit large amounts of ash into the 

atmosphere [Stenchikov et al., 2021] which can have adverse impacts on air travel. Ash from 

volcanic plumes can often interfere with flight paths, greatly reduce visibility near the ground, 

and cause damage to the aircraft including possible engine failures [Carn et al., 2009]. In 

addition, SO2 that is converted to sulfuric acid can cause sulfidation in the engines, an effect that 
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can reduce their lifetimes [Bernard and Rose, 1990]. From 1953 to 2009, over 120 aviation 

incidents involving volcanic activity were reported, with roughly 80 of them involving serious 

damage to the airframe or engine [Guffanti et al., 2010]. Due to the Mt. Pinatubo eruptions in 

June 1991, more than 40 separate aviation incidents occurred [Casadevall et al. 1996]. There is 

also the possibility of highly concentrated volcanic SO2 plumes producing acidic aerosols which 

can cause irritation of the eyes, nose, and respiratory airways of occupants inside airplanes 

[Schmidt et al., 2014]. In many cases volcanic SO2 and ash are collocated, thus making SO2 a 

useful proxy for the location of the ash plume. This aids in aviation hazard mitigation and 

volcanic plume forecasting [Krotkov et al., 2021]. 

1.2 Remote Sensing of SO2 

1.2.1 UV Spectrometers 

For purposes of measuring pollution, concentrations of SO2 can be measured with in-situ 

sensors on the ground and or aboard aircraft. However, these measurements do not provide 

spatial coverage over the entire globe. For this purpose, remote sensing instruments on satellites 

are used. A variety of gases such as SO2, NO2, O3 and CO2 can be measured from satellites by 

extracting absorption features from the measured spectrum. SO2 information is found both in the 

UV spectrum in the 300-380 nm range as well as in the infrared range. The absorption of UV 

light results in an electronic transition (i.e., excitation of an electron) at wavelengths defined by 

the absorption cross section (Figure 1.1). The IR absorption, however, is caused by vibration and 

rotations in the molecule. The symmetric and nonlinear geometry of SO2 allows 3N-3 internal 

degrees of freedom, where N is the number of atoms in the molecule. Thus it has 3 rotational and 

3 vibrational modes (symmetric stretch, antisymmetric stretch and bending) which all interact 

with infrared radiation. 
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Figure 1.1: The (a) SO2 absorption cross section from Bogumil et al., (2013) in the 300-330 nm 

UV range and (b) SO2 transmittance in the IR spectrum. These cross section peaks in (a) show 

the wavelengths at which there is the highest probability of interaction with UV radiation, while 

the inverted peaks in (b) show the SO2 IR absorption bands. The IR spectrum data was obtained 

from the NIST Chemistry WebBook (https://webbook.nist.gov/chemistry). 

  

Backscattering ultraviolet (BUV) spectrometers have been used to monitor SO2 from 

volcanic plumes for the last 40 years and starting in the mid 1990s pollution near the ground. 

One of the first instruments to monitor volcanic SO2 was the Total Ozone Mapping Spectrometer 

(TOMS) [Krueger 1983; Krueger et al., 1995;], launched in 1979 with the National Aeronautics 

and Space Administration (NASA) Nimbus-7 satellite. Ozone data from TOMS aided greatly in 
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visualizing the ozone hole discovered in the 1980s, as well as a number of volcanic eruptions. 

TOMS used 6 wavelength bands to measure ozone and SO2, however the next generation of 

instruments were hyperspectral meaning they could measure the UV spectrum at hundreds of 

wavelengths and at relatively fine spectral resolutions (~1 nm or finer). This led to improvements 

in detection and in separating SO2 signals from other species, helping to reduce retrieval noise. 

One of those was the Global Ozone Monitoring Experiment (GOME) instrument [Burrows et al., 

1999], launched in 1995, and later improved upon with the GOME-2 instrument [Munro et al., 

2016], which currently flies on the MetOp satellites. The OMI instrument [Levelt et al., 2006], 

the primary instrument used in this work, is a Dutch-Finish contribution to the NASA Aura 

satellite and has been operational since 2004. The instrument senses the atmosphere with a 2600 

km swath width in a push broom style as the satellite travels in a near-polar sun synchronous 

orbit with a local equator crossing time of ~13:45. It has 60 cross track positions (rows), a 13 × 

24 km2 spatial resolution at the nadir position, and a ~0.5 nm spectral resolution. The instrument 

has two UV channels and one visible channel to measure backscattered radiances from the 

Earth’s atmosphere across the 270-500 nm range. For this work I exclusively used the UV2 

channel which makes BUV radiance measurements between 307 and 380 nm. OMI also has a 2-

D charge coupled device (CCD) detector, one spectral dimension and other covering the cross-

track viewing rows [Levelt et al, 2002]. These aspects are illustrated in Figure 1.2. 
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Figure 1.2: Measurement principle of OMI showing the 2-dimensional CCD and the 

measurement swath. This image was obtained from the OMI Algorithm Theoretical Basis 

Document (Levelt et al., 2002). 

 

Since 2009, the quality of OMI Level 1 radiance data from about half of the OMI rows 

has been affected by the row anomaly. This anomaly affects individual rows and slowly evolves 

over time. As a result, the row anomaly has reduced the daily spatial coverage of Level 2 data 

products. These products are the geophysical quantities, such as gas column amounts, derived 

from the Level 1 backscattered radiance data. The cause of the row anomaly is thought to be an 

internal obstruction of the sensor [Torres et al., 2018]. 

 In 2011 NASA launched the first of the Ozone Mapping and Profiler Suite (OMPS) 

instruments onboard the NASA/NOAA Suomi-NPP (SNPP) satellite. It consists of three 

components: a downward looking nadir mapper, a nadir profiler, and a limb profiler [Jaross et 

al., 2013] which is used to obtain vertical profiles of ozone and aerosol extinction. OMPS was 

intended for operational forecasting purposes but also been used for extending NASA’s data 

record of ozone and SO2 with TOMS and OMI. Newer instruments have been launched that 
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further improve on the resolution of previous generation of instruments. One such spectrometer 

is the TROPOspheric Monitoring Instrument (TROPOMI) launched in 2017 on the Sentinel-5 

Precursor satellite. TROPOMI improves upon OMI through its drastic increase in spatial 

resolution – 7 × 3.5 km2, which is around 13 times higher than OMI. This allows the instrument 

to observe SO2 plumes in unprecedented detail. In the years since its launch the instrument has 

provided highly detailed observations of significant volcanic eruption such as Mt. Sinabung [de 

Laat et al., 2018], Mt Etna [Queißer et. al, 2019] and Raikoke [de Leeuw et al., 2021], as well as 

small SO2 emission sources from volcanic degassing [Theys et al., 2019] and anthropogenic 

activities [Fioletov et al., 2020; Theys et al., 2021]. Another OMPS instrument was also 

launched onboard the NOAA-20 satellite in 2017. It has a spatial resolution of 17 by 17 km2, 

around 8.5 times greater than that of the SNPP/OMPS.  

 

1.2.2 SO2 Retrieval Algorithms 

 SO2 can be retrieved using a technique called Differential Optical Absorption 

Spectroscopy (DOAS)[Platt, 1994; Platt and Stutz, 2008]. While implementation details for each 

instrument vary, the idea remains similar. DOAS utilizes the Beer Lambert Law to find the 

absorption of solar irradiance for each wavelength. In its simplest form it is expressed as such:  

 

𝐼(𝜆, 𝑠) = 𝐼0 exp(− 𝜎(𝜆)𝜌𝑠)      (1.4) 

 

Where 𝐼(𝜆, 𝑠) is the light intensity at the end of the path, I0 is the incoming intensity, 𝜎 is the 

absorption cross section 𝜌 is the concentration of the absorbing gas and s is the length of the light 

path. In practical applications, additional terms are added to the equation to account for the 
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Rayleigh and Raman scattering from air molecules, aerosols, and clouds in the atmosphere. This 

method helps to obtain the slant column density (SCD) which represents the amount of the gas 

along the light path. The next step is the conversion of the SCD into a vertical column density 

(VCD), which is the amount of gas in the column directly above a given location at the surface 

This is done using Air Mass Factors (AMFs). The AMF is defined as the ratio of the VCD to the 

SCD: 

𝐴𝑀𝐹 =
𝑉𝐶𝐷

𝑆𝐶𝐷
      (1.5) 

 

With the absence of scattering, a simple geometric AMF is used which is just a function of the 

solar zenith angle (SZA) 𝜃𝑠, and viewing zenith angle (SCD), 𝜃𝑣 [Palmer et al., 2001]: 

𝐴𝑀𝐹𝑔 = 𝑠𝑒𝑐𝜃𝑠 + 𝑠𝑒𝑐𝜃𝑣     (1.6) 

However, in practice, AMFs also depend on a number of different quantities including the 

vertical profile of the trace gas, surface albedo, the viewing geometry, and effects of clouds and 

aerosols. These variables take into account the scattering and absorption in the atmosphere and 

surface BRDF [Vasilkov et al., 2017]. Therefore the AMF can also be expressed as: 

𝐴𝑀𝐹 = 𝐴𝑀𝐹𝑔 ∫ 𝑤(𝑧)𝑆(𝑧)𝑑𝑧
∞

0
   (1.7) 

Where w(z) is the “scattering weight” describing the atmospheric scattering and surface BRDF 

processes [Palmer et al., 2001; Martin et al., 2002; Eskes and Boersma 2003; Krotkov et al., 

2017; Lamsal et al., 2021] and S(z) is the vertical profile shape of the absorber (normalized to 

VCD). In most cases a forward radiative transfer model is used to calculate the w(z) and a-priori 

absorber vertical profile, Sa(z), to calculate AMF (1.7). Column amounts of SO2 are commonly 

expressed in Dobson Units (1 DU = 2.69 x1016 molecules/cm2) similar to ozone.  



 10 

The DOAS technique is widely employed to retrieve weakly absorbing trace gases with 

spectral optical thickness less than 1 [Eskes and Boersma, 2003]. It was used as the legacy SO2 

algorithms for UV-based instruments such as GOME and SCIAMACHY [Richter et 

al., 2006; Lee et al., 2009] and OMI [Theys et. al., 2015]. The first operational SO2 retrieval for 

OMI was based on the band residual difference (BRD) algorithm in the strong ozone and SO2 

absorption UV2 region between 310nm and 313nm [Krotkov et al., 2006]. This algorithm used 

wavelength pairs consisting of four wavelengths that are centered on the SO2 absorption bands. 

The SO2 amount was retrieved by finding the difference in absorption in the pairs and 

minimizing the residuals in the radiative transfer model. This algorithm had reasonable 

sensitivity to low SO2 amounts, as it took advantage of the strongest SO2 absorption bands, thus 

making it suitable for retrieving SO2 in the PBL. However, for large SO2 column amounts, as is 

the case for strong volcanic eruptions, there was notably more uncertainty due to band pair 

residual starting to show nonlinear and nonmonotonic responses to increases in SO2 [Yang et al., 

2007]. The Linear Fit algorithm [Yang et al., 2007] attempted to rectify this issue by introducing 

longer wavelength (> 320 nm) bands into the retrieval for large SO2 loadings. At the longer 

wavelengths, the response to changes in VCD are more linear than shorter wavelength because 

SO2 absorption is weaker. Similar to BRD, the idea of the algorithm is to minimize the residuals 

of total ozone column amounts retrievals, between the measured top-of-atmosphere (TOA) 

radiance and the radiance calculated by the forward radiative transfer (RT) model. The calculated 

radiance is a function of the O3 and SO2 column amounts and surface reflectivity. Thus, through 

fitting the measured spectra both the SO2 and O3 VCD can be retrieved.  

These two legacy algorithms were used operationally until the invention of the alternative 

data driven principal component analysis (PCA) algorithm [Li et al., 2013], which retrieves SO2 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014JD022657#jgrd52025-bib-0060
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014JD022657#jgrd52025-bib-0043
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VCDs by fitting Principal Components (PCs) of the covariance matrix of the OMI spectral 

radiance measurements. The PCA technique was also extended to OMI volcanic SO2 retrievals 

and operational OMPS instrument on NASA/NOAA Suomi NPP polar orbiting satellite [Li et 

al., 2017; Zhang et al., 2017; Li et al., 2020]. The PCA method is based on fitting principal 

components (PCs) extracted from measured radiance data over SO2 free regions. These PCs 

implicitly represent combined effect of different interfering processes such as the O3 absorption, 

Raman scattering and instrument effects (e.g., wavelength shift). The PCs are then fitted with the 

pre-calculated column SO2 Jacobians from a look up table in order to obtain the SO2 VCD. 

Column Jacobians represent the sensitivity of the backscattered radiance to the SO2 VCD. The 

relationship between the logarithm of the sun normalized radiance (N), the nv PCs (𝑣𝑖), 

coefficients of the PCs (𝜔), the VCD (Ω𝑆𝑂2
) and SO2 Jacobians (

𝜕𝑁

𝜕Ω𝑆𝑂2

 ) is expressed as follows 

[Li et al., 2013]: 

𝑁(𝜔, Ω𝑆𝑂2
)  =  ∑ 𝜔𝑖

𝑛𝑣
𝑖=1 𝜐𝑖 + Ω𝑆𝑂2

𝜕𝑁

𝜕Ω𝑆𝑂2

  (1.8) 

 

This data-driven approach is advantageous since the SO2 signals can be derived directly from 

BUV measurements. This removes the need for on-line RT calculations (aside from pre-

computed Jacobian LUTs). Furthermore, it improves significantly over previous algorithms by 

reducing biases and suppressing noise by a factor of 2. For volcanic retrievals, all satellite 

algorithms still have low bias in retrieved total SO2 mass in fresh opaque volcanic plumes, 

especially in the presence of volcanic ash [Fisher et al., 2021]. However, the OMI PCA-based 

volcanic SO2 algorithm has improved the sensitivity in observing small volcanic sources as well 

as increasing accuracy in large eruptions by automatically shifting spectral fitting window to the 

longer and more transparent UV wavelengths [Li et al., 2017]. Overall, the PCA algorithm is 
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similar to DOAS, but the key difference is that it uses spectral fitting vectors extracted directly 

from the measured radiances to implicitly account for combined effect of all interfering 

atmospheric and instrumental processes rather than lab-measured cross sections and 

parameterized interferences.  

The retrieval process for all satellite SO2 algorithms assume an a priori vertical profile of 

SO2. Vertical profiles are needed in the calculation of the SO2 Jacobian look-up table. Since 

volcanic plume heights vary for different eruptions, operational retrievals typically assume four 

different Gaussian profiles with center of mass altitudes of 3, 8, 13 and 18 km. The altitudes 

represent the lower troposphere (TRL), middle troposphere (TRM), upper troposphere (TRU) 

and lower stratosphere (STL), respectively. Note that the TRL, TRM and STL profiles were also 

used in legacy SO2 algorithms [Krotkov et al., 2006; Yang et al., 2007; Fisher et al., 2019]. The 

OMI SO2 VCDs contain 4 separate datasets based on the different height assumptions. The PCA 

algorithm is also used for the operational OMPS SO2 products. The OMPS retrieval data were 

shown to be largely consistent with OMI retrievals, especially for larger sources [Zhang et al., 

2017]. 

Lastly it should be noted that SO2 retrievals can also be obtained from IR-based 

instruments [Realmuto, 2000; Thomas and Prata, 2011; Hyman and Pavolonis, 2020]. For 

instance, the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric Infrared 

Radiation Sounder (AIRS) [Prata and Bernardo, 2007] have both been used extensively in the 

last 20 years to retrieve and observe SO2. IASI is one of the most advanced current operational 

IR sounders and was launched in 2006, 2012 and most recently in 2018, onboard the MetOP-A, 

MetOp-B and MetOp-C satellites respectively. It has a high spectral resolution (0.5 cm-1) and a 

12 km diameter circular footprint at nadir. The main advantage of IR instruments is that unlike 
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visible and UV instruments, they do not need sunlight to make measurements, making them 

useful for sensing at night and during the winter at high latitudes [Krotkov et al., 2021]. 

However, SO2 IR retrievals are generally less sensitive to SO2 at lower altitudes in tropics due to 

interference with water vapor and surface emissivity. The SO2 retrieval for IASI [Clarisse et al., 

2012], and most other IR instruments, such as MODIS and VIIRS [Realmuto 2000; Krotkov et 

al., 2021] utilizes the mid IR-range and exploits one or multiple of three SO2 absorption bands 

centered at 4, 7.3, and 8.7 µm. These bands are of varying strengths; for example, 7.3 µm band is 

the strongest by far and the combination band (4 µm) is the weakest and can only be used with 

reflected solar light. Infrared retrievals from IASI have produced good results for volcanic 

eruptions in the last 10 years and have been an important addition to SO2 observation. 

1.2.3 Retrievals of SO2 Layer Heights 

In addition to column amounts, backscattered radiances can provide important 

information about the height of an SO2 layer, useful information for volcanic ash advisory 

centers (VAAC) which play a major role in mitigating aviation hazard related to volcanoes. 

Conceptually, a change in altitude of an SO2 plume alters the number of backscattered photons 

going through the layer. If a plume is high in the atmosphere, more photons that are scattered 

from below the layer pass through the absorbing SO2 plume. Thus, information about the plume 

altitude can be found in the BUV spectra, especially in the 310-320 nm range where Rayleigh 

scattering is dominant. Relative to the SO2 amount, obtaining a fast retrieval of the height of a 

volcanic plume presents a greater challenge. The retrieved SO2 amount is dependent on the SO2 

height thus making the two quantities interlinked; this makes more challenging to separate the 

impacts of each in BUV radiances. Consequently, retrieving the height of a plume with satellite 

measurements would require disentangling the two quantities in the BUV radiances. This is more 
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difficult for the SO2 height given that the SO2 absorption is a more dominant feature in the 

spectra.  

Until recently, SO2 layer height retrieval techniques have involved direct spectral fitting 

approaches that use backscattered ultraviolet (BUV) measurements in conjunction with extensive 

forward radiative transfer modeling. The Iterative Spectral Fitting (ISF) algorithm [Yang et al., 

2009] was the first OMI SO2 height algorithm to include simultaneous retrieval of SO2 height 

and column amount. Similar to SO2 amounts, it determined the altitude of the SO2 layer by 

adjusting the height at each iteration while minimizing the differences between measured 

radiances and forward RT calculations. The key to separating the impact of SO2 height from the 

amount was to calculate the Jacobians of both the height and amount, and update them through 

each iteration. Similar spectral fitting techniques involving the VLIDORT RT model [Spurr et 

al., 2006] were also implemented for the GOME-2 instrument [Nowlan et al., 2011]. The SO2 

plume height has also been retrieved with IR measurements from IASI. The algorithm utilized 

brightness temperature changes and relative intensities of radiation between absorption lines 

[Clarisse et al., 2008; Clarisse et al., 2010]. While the height retrievals from spectral fitting 

methods are accurate, the main disadvantage is the extensive use of radiative transfer modeling 

and other assumptions including a reasonable first guess for the plume altitude. This makes 

retrievals too slow for applications in near real time (NRT). Newer schemes were developed for 

GOME-2 using the SO2 Plume Height Rapid Inversion (SOPHRI) algorithm [Rix et al., 2012], a 

DOAS based technique that worked by minimizing differences between plume height from 

simulated spectra and the assumed height from measured spectra. This technique allowed for 

reasonably fast retrievals that could be used in near real-time, thanks to the use of pre-calculated 

GOME spectra stored in a look up table classified according to SO2 column, SO2 heights and 
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other physical parameters. An updated algorithm was also developed for IASI [Clarisse et al., 

2014], this time implementing an optimal estimation fit approach with pre-calculated Jacobians. 

Even faster and more efficient methods for GOME-2 [Efremenko et al., 2017] and TROPOMI 

[Hedelt et al., 2019] have made use of machine learning algorithms, specifically neural networks 

(NNs), to develop a trained, full-physics inverse learning machine (FP-ILM) for retrieving SO2 

plume height. The neural network based algorithms provides a quicker and more efficient way of 

separating out the height information in spectra than previous spectral fitting approaches. This 

approach has shown good accuracy and speed fast enough for near-real-time operations. The FP-

ILM has also been used for retrieving ozone profile shapes [Xu et al., 2017] and geometry-

dependent Lambertian equivalent reflectivity [Loyola et al., 2020]. This algorithm is the basis for 

my work on the OMI volcanic SO2 height retrieval presented in Chapter 3. 

 

1.3 Research Overview 

 Since its launch in 2004, the SO2 data from OMI has been applied to study the trends in 

SO2 pollution, to analyze the sources and sinks of SO2, and to advance the record of data 

products valuable to both researchers and the general public. In this dissertation I will present 

two studies to demonstrate the use of OMI and other satellite data in monitoring sulfur pollution 

and volcanic SO2.  

 First, I analyze trends of SO2 and sulfate pollution in the northeastern United States and 

the Ohio River Valley, a region with a considerable number of coal-fired power plants. Since the 

late 20th century SO2 emissions from the region have been decreasing. Even during the time of 

OMI operations (post 2005), swift regulations on coal plants have led to further downward trends 

in SO2. As a result, sulfate deposition is also expected to decrease as compared. I attempt to link 
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regions of decreased SO2 emission with downwind areas where there is a negative sulfate wet 

deposition trend using OMI data, ground deposition data from the National Atmospheric 

Deposition Program (NADP), and trajectory modeling. I also quantify these contributions and 

analyze the seasonal difference in the trends. While this work has focused on the United States, 

this methodology I developed can be potentially used for diagnosing trends and effects of 

environmental policy changes for other polluted regions. This work was published in Fedkin et 

al. [2018]. 

In chapter 3, I present a fast new volcanic SO2 layer height retrieval for the OMI and 

OMPS instruments. This retrieval uses machine learning to train the algorithm to find SO2 height 

signals in BUV radiance data. The primary advantages of this approach are the execution speed 

and the good spatial coverage provided by OMI and OMPS. I separated the training phase, which 

involves time consuming radiative transfer computations and machine learning model training, 

from the application phase, where the desired parameter can be retrieved within milliseconds for 

a single satellite ground pixel using the trained model. I also show comparisons of the height 

retrievals with other sensors. Because this retrieval is faster than previous OMI and OMPS 

retrievals it can potentially be transitioned into a NRT data production system that will aid in 

aviation hazard mitigation and provide information for chemical models and data assimilation 

within a few hours. This work was published in Fedkin et al. [2021]. 

The fourth chapter will focus on the potential applications of the volcanic SO2 height 

retrieval. First, I examine how the retrieval can be used in volcanic plume forecasting. While 

observations are valuable, in many cases forecasts are needed by Volcanic Ash Advisory Centers 

(VAACs). For this purpose, I analyze how well HYSPLIT can forecast the plume height and 

location if supplied with the OMI retrieved heights and compare the location of the trajectory 
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end points with observations obtained at the same time. The second half of the chapter explores 

how the retrieved height can help to refine the SO2 mass estimates from volcanic eruptions. One 

question I seek to answer is how much the height retrieval alters mass estimates as opposed to 

the standard OMI products that use pre-defined, fixed plume heights. Mass estimates from other 

sensors and literature are provided for comparison. The summary of the results of this 

dissertation and suggestion for future work are provided in Chapter 5. 
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Chapter 2: Analyzing Sulfate Wet Deposition Trends in the Eastern 

United States 

2.1 Introduction 

Sulfate wet deposition negatively affects surface and ground water and certain 

ecosystems through changing chemical characteristics of soil [U.S. EPA, 2003; Butler et al., 

2001; Likens et al., 2002]. While posing a major pollution problem in the second half of the 20th 

century, both species have shown a definite downward trend in the eastern United States. The 

reason for their decreases is undisputed –initiatives such as the various phases of the Clean Air 

Act [U.S. EPA, 2015; Butler et al., 2001] and introduction of flue gas desulfurization in coal 

power plants have led to drastic reductions in sulfur emissions and the subsequent SO4
2- 

formation, especially in regional hotspots such as the Ohio River Valley. In addition, the 

monitoring of these pollutants and deposition increased, in part due EPA’s Acid Rain Program 

[U.S. EPA, 2002]. Sulfate is produced chemically in the atmosphere mainly through the 

oxidation of SO2. Sulfur dioxide’s lifetime in the atmosphere strongly depends on the oxidation 

rate. The lifetime was shown to vary from up to 48 hours in winter to around 13 hours in summer 

based on a study performed with GEOS-Chem model simulations and observations [Lee et al., 

2011]. The deposition of SO4
2- does not necessarily occur near the emission site or in the same 

areas with high SO2 concentrations. The wet deposition process is driven by precipitation and air 

flow patterns in addition to sulfur chemistry. It is important to quantitatively attribute changes in 

emissions to those in the deposition trends over downwind areas in order to characterize benefits 

of regulatory controls. 

The advent of satellite remote sensing has greatly aided in quantifying amounts of 

various pollutants. One remote sensing instrument used for obtaining of SO2 column amounts is 
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OMI, onboard the Aura satellite. This product has proved useful in locating SO2 sources and 

observing their changes in emissions [McLinden et al., 2016; Li et al., 2017a]. For example, a 

study using the previous OMI SO2 product detected a 40% decline in SO2 near the largest coal 

power plants in the United States between 2005-2007 and 2008-2010, consistent with regulations 

on emissions [Fioletov et al, 2011]. The latest OMI product is based on a new retrieval technique 

[Li et al., 2013; 2017b] that further reduces retrieval noise and artifacts, allowing for better 

detection of sources. A study using this new OMI SO2 products demonstrates good correlation (r 

= 0.91) between reported emission rates and OMI-estimated emissions, and sources with 

emissions greater than 30 kt/y can be detected [Fioletov et al., 2015], as compared with 70 kt/y 

from the previous OMI products. Another study [Krotkov et al., 2016] indicates that from 2005-

2015, OMI column amounts of SO2 decreased by up to 80% in the eastern United States due to 

stricter pollution control measures.  

The wet and dry deposition of SO2 and its secondary SO4
2- aerosol product are a 

significant environmental issue, especially downwind of the source areas. In particular, acid 

deposition is harmful for tree health, can cause damage to crops, and can alter soil chemistry by 

depleting plant nutrient cations and increasing acidity [Bell, 1986; Driscoll et al., 2001]. Much of 

the aerosol formed from gaseous pollutants gets deposited in areas downwind of sources. A 

number of studies have been published attempting to link the wet deposition with emissions and 

atmospheric transport processes. Samson et al. [1980] performed a meteorological analysis based 

on air trajectories and found little relationship between SO4
2- and sulfur emissions. However, a 

later study by the same group showed that the two could be explicitly linked in several areas 

while being unrelated in others [Brook et al., 1994]. Wet deposition was shown through 

modeling to have a statistically significant relationship with SO2 emission reduction due to policy 
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changes in the late 1980s and early 1990s [Shannon, 1999]. An earlier study also estimated 

separation distances and atmospheric transport for atmospheric SO2 and SO4
2 [Shannon, 1997]. 

In the late 20th century, locations in upstate New York, despite their relatively low local SO2 

concentrations, experienced acid rain and deposition problems. Emission reductions upwind have 

been found to have a linear relationship with SO4
2 aerosol concentrations in several locations in 

the area [Dutkiwicz et al., 2000]. The study used NOAA Hybrid Single Particle Lagrangian 

Integrated Trajectory (HYSPLIT) model [Stein et al., 2015] to track air trajectories to identify 

major source regions of SO4
2- in Ontario and the Ohio River Valley. In particular, lakes in the 

Adirondack region in upstate New York have shown decreases in SO4
2- concentrations and 

reasonable correlation (r2 = 0.58) between SO2 emission in the eastern United States and wet 

deposition changes downwind, at Whiteface Mountain and Huntington Forest [Driscoll et al., 

2003]. Estimating the potential source regions of the sulfate deposition is especially important in 

cases where acid rain can be caused by pollution from different countries. For instance, 

environmental problems relating to acid rain near the U.S-Canada border have led to debates on 

the sources of the acid rain between the two countries. This ultimately led to the 1991 U.S-

Canada Air Quality Agreement [Roelofs, 1993]. 

Several more recent works have also focused on how meteorology plays a role in aerosol 

transport and deposition. One such study incorporated methods such as the Positive Matrix 

Factorization (PMF), Conditional Probability Function (CPF) and the Potential Source 

Contribution Function (PSCF) to attribute sources of PM2.5 in the Pittsburgh, PA area through 

trajectory modeling [Peckney et al, 2017]. In another study [Begum et al, 2002], the PSCF 

method was employed to identify the source location of a Quebec forest fire from PM2.5 

measurements. An earlier study modeled the transport of sulfur species from source to the 
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receptor sites in Southern California [Gao et al, 1993]. Other localized trends in particulate 

matter have also been addressed, particularly in the I-95 corridor of the Mid-Atlantic region. A 

study incorporating modeling and observations showed contributions from both regional and 

local sources within 100 km of the Baltimore-Washington, D.C. corridor and that the local 

contribution to PM2.5 mass varies seasonally, from >60% in winter to <30% in the summer [Chen 

et al., 2002].  

 Similar studies were performed for sites in Wisconsin, where enhanced SO4
2- and nitrate 

concentration originated from air arriving from potential sources near the Ohio River [Heo et al., 

2013]. Recent work incorporated observations of satellites such as GOME and SCHIAMACHY 

along with GEOS-Chem transport model to constrain global reactive nitrogen deposition rates 

and trends since 1996 [Geddes et al., 2017].  

While a considerable number of studies have quantified source-receptor relationships in 

regard to atmospheric deposition for multiple sites, less work has been done with more recent 

deposition data and satellite data. This study aims to take advantage of the availability of OMI 

column SO2 measurements, ground based SO2 observations, and measurements of wet SO4
2- 

deposition. Between 2005 and 2015, many sites in the eastern U.S. saw substantial reductions in 

wet deposition of SO4
2-. But it is not yet clear which sources of atmospheric SO2 contributed 

most to these reductions in deposition and whether there is significant difference in between 

summer and winter. This study aims to shed some light on these important questions. The 

methodology and analysis presented in this study can be applicable to other areas, especially 

those experiencing significant pollution and deposition problems. 
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2.2 Methodology 

2.2.1 Datasets 

The Ozone Monitoring Instrument (OMI) has been providing remote sensing products of gaseous 

pollutants, including sulfur dioxide since 2004. As described in Chapter 1, the SO2 column 

amount is retrieved using an algorithm based on principal component analysis of BUV radiances 

measured by the satellite [Li et al., 2013]. The SO2 data from OMI has been used in a number of 

previous studies, particularly those on SO2 emission source regions. For the purposes of this 

study, Level 3 column SO2 data [NASA GES-DISC, 2017] was used to derive the trend over the 

eastern United States for the period of 2005-2015. Level 3 data is a gridded dataset with spatial 

resolution of 0.25° latitude by 0.25° longitude and is limited to scenes with relatively small cloud 

fraction (< 0.3). To reduce the impacts of extreme values on the average trend, negative outliers 

(< – 2σ) were filtered out in the calculation of the averages, following Zhang et al. [2017]. In 

addition, to remove the effects of positive extreme values likely caused by transient volcanic 

plumes, values greater than the 99th percentile of the SO2 values in the U.S. domain were 

excluded from the averaging process as well [McLinden et al., 2016]. The OMI column SO2 ten-

year trend (Figure 2.1a) was obtained by calculating the three year running mean from 2005 to 

2015 and deriving to a linear trend with an annual time step. This trend also highlights the areas 

that have experienced reduced emissions in the last ten years. 
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Figure 2.1: (a) Annual trend in OMI Column SO2 in the eastern United States calculated using 

yearly averages, from 2005 to 2015 (b) Change in wet SO4
2- deposition between 2005 and 2015 

over the same domain and time period, based on NADP deposition measurements. 

 

Sulfate wet deposition data was obtained from the National Atmospheric Deposition 

Network (NADP). This network, consisting of over 150 monitoring sites nationally, collects 

rainwater samples on a weekly basis and analyzes them for various chemical species [Lamb et al, 

2000]. Total SO4
2- wet deposition is estimated annually for each station, as end of year totals 

with the deposition given in units of kg S/ha. Due to the non-gridded nature of the data, I 

interpolated the annual deposition to a regular grid, using Inverse Distance Weighting (IDW) and 

Kriging interpolation methods, shown to be most efficient for calculating special deposition 

patterns [Qu et al, 2016]. A ten-year trend and net reduction (Figure 2.1b) in SO4
2- over the entire 

U.S. domain (CONUS) was calculated for each grid box in the same way as for the SO2, to 
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provide SO2 and SO4
2- trend values for each grid square. While the NADP does not have ideal 

coverage, there are sufficient active sites in the Eastern U.S. to create a gridded field with spatial 

interpolation (Figure 2a), albeit with some error. 

 Another dataset employed in this study is from the Environmental Protection Agency 

(EPA) Air Quality System (AQS). This network provides hourly and daily ground-based 

measurements of SO2. For the purposes of this study, AQS data was used in the PSCF analysis, 

described later in this section. Dry deposition, a variable percentage of total SO4
2- deposition 

[Vet et al, 2013], is measured by the CASTNET network [U.S. EPA CASTNET, 2017]. Our 

primary focus in this study was on wet deposition, since wet deposition is more dependent on 

weather and precipitation tracks than is dry deposition. At sites in our domain west of the 

Appalachians, dry deposition contributed >50 % of the S deposition, but east of the mountains 

wet deposition dominated [NADP, 2016] for the study period. The deposition trends discussed in 

the methodology and results will refer to wet deposition unless otherwise stated. Lastly, I used 

some hourly SO2 emission data obtained from power plant continuous emission reporting 

systems (CEMs) through the EPA [U.S. EPA, 2017]. 

 

2.2.2 Trajectory Analysis 

A trajectory analysis was used to diagnose the possible origins of the air containing elevated 

amounts of SO2 at various sites in the Eastern United States. Airflow patterns revealed by this 

analysis can help to establish the link between the trends in SO2 emissions and SO4
2- wet 

deposition. The sites chosen for the trajectory analyses (Figure 2.2b) are in the AQS network 

with available SO2 in-situ data, as well as a corresponding NADP site nearby with deposition 

data. The five sites chosen were 1) Hackney, OH [81.670° W, 39.632° N], 2) Beltsville, MD 
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[76.817° W, 39.028° N], 3) Akron, OH [81.469° W, 41.0635° N], 4) South Fayette, PA [80.167° 

W, 40.3756° N] and 5) Wilmington, DE [75.558° W, 39.7394° N]. All of these sites had a 

significant downward trend and at least 50% decrease in deposition between 2005 and 2015 

(Table 2.1). A site in upstate New York [74.500° W, 43.4336° N], Piesco Lake, was also 

considered due to a considerable downward 10-year SO4
2- wet deposition trend in the region, 

however the in-situ SO2 concentrations were too low to perform a meaningful trajectory analysis. 

The SO2 at this AQS site only exceeded 2.5 ppb 28 days in the winters and not once in the 

summers over a three-year period. 

 

Table 2.1: The 2005 and 2015 sulfate wet deposition amounts for the six initial case sites. 

Values were obtained directly from the annual NADP dataset for each site. 

Site 

SO4
2- Wet 

Deposition 

2005 (kg S /ha) 

SO4
2- Wet 

Deposition 

2015 (kg S /ha) 

% decrease 

2005-2015 

Hackney, OH 26.70 8.76 67.2 

Akron, OH 22.08 11.08 49.8 

Beltsville, MD 18.83 6.93 63.2 

Wilmington, DE 19.41 5.57 71.3 

South Fayette, PA 25.82 9.82 62.0 

Piesco Lake, NY 19.04 7.93 58.3 
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Figure 2.2: Locations of (a) observing sites in the NADP network, shown by the red squares and 

(b) AQS sites initially chosen for the main analysis. These sites are in reasonably close proximity 

to NADP sites. Refer to the text for the exact coordinates. The site in New York was removed 

from the analysis due to SO2 concentrations frequently below the detection despite having a 

considerable sulfate wet deposition trend. 

 

The HYSPLIT trajectory model from NOAA (Stein et al, 2015) was used to calculate 

back trajectories. Three-day back trajectories were calculated each day using archived Eta Data 

Assimilation System (EDAS) meteorological data at 40 km resolution. The HYSPLIT model 

runs were initialized daily at 18Z near the overpass time of the satellite. The initialized height 

was kept constant in the model runs at 500 m above ground level. A climatology of back 

trajectories was obtained for each site by running daily 72-hour back trajectories for three 

summers (JJA) and three winters (DJF), in the period 2006-2009. This period was selected 

because larger downward trends in column SO2 and SO4
2- wet deposition occurred in 2005-2010 

than in 2010-2015, as shown by trend maps for the two time periods (Figure 2.3). However, 

changes in the average seasonal large-scale flow pattern are unlikely to be strongly dependent on 

the period selected.  
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Figure 2.3 : Annual trend for a) NADP sulfate wet deposition and b) OMI Column SO2 for 

2005-2010 (left) and 2010-2015 (right). The improvements in column SO2 occurred at sites 

closer to the sources than did the improvements in deposition, but the trends are consistent. 

 

2.2.3 Potential Source Contribution Analysis 

The need for a trajectory and PSCF analysis stems from the fact that the spatial 

correlation between wet SO4
2- deposition and OMI column SO2 trends is overall fairly weak 

across the entire domain. The low R2 coefficient (0.036) showed poor correlation between the 
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two normalized trends (Figure 2.4) at the Beltsville, MD location. The method used to normalize 

the trends will be discussed further in section 2.4.  

 

Figure 2.4: A scatter plot of the normalized trends for the Beltsville, MD site domain. Each 

point represents a grid box in the domain with a unique normalized SO2 and SO4
2- wet deposition 

trend value. The bounds for the domain are [88.875̊, 73.875̊ W] and [35.125̊, 45.125̊ N]. 

 

To link the trends, characteristic air patterns for a given location are needed to understand 

the trends occurring in those locations. The calculated trajectories were obtained for the purpose 

of calculating the probability of high concentrations of SO2 coming from a given grid box in the 

domain. The Potential Source Contribution Function (PSCF) is defined as the number of 

trajectories passing through a grid box carrying an amount of SO2 exceeding a set threshold (m) 

divided by the number of total trajectories going through that same grid box (n). Thus, each grid 

box would have its own PSCF value, between 0 and 1. The function is expressed as: 
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𝑃𝑆𝐶𝐹𝑖𝑗 =
𝑚𝑖𝑗

𝑛𝑖𝑗
                 (2.1) 

The subscript ij denotes a single grid box on the grid domain. The domain over which the 

function was calculated was ±5 degrees latitude and ±7.5 degrees longitude from each site. The 

domain size and location were chosen based on the typical distance covered by trajectories 

within 72 hr. Based on the arithmetic mean and median concentrations of SO2 recorded at each 

of the sites over the three year period (Table 2.2), I chose a value of 5 ppb as the SO2 threshold 

for all of the base cases except for the winter South Fayette, for which the threshold was set at 

7.5 ppb. These thresholds were kept constant throughout the entire analysis. Even though using a 

sulfate deposition value as the threshold would be more accurate, the SO2 measurements are 

available on a daily time frame, consistent with the trajectory calculations. The SO2 at the site, 

when used with the PSCF can still be a useful parameter to find general source regions of sulfur 

pollution, and given its relatively short lifetime is a reasonable option considering the ground 

data availability. A simple weighting scheme was assigned for the PSCF calculation to remove 

the influence of low sample size [Pollisar et al, 1999]. The weighting factors were added in order 

to eliminate the sample size issues, or occurrences of low values of nij. For grid boxes with n < 8 

trajectories, the PSCF value is multiplied by a weighting factor of 0.07. Similarly, for grid boxes 

with 8-16 and 16-24 trajectories, I used a weighing factor of 0.45 and 0.7, respectively. The 

weighting factors were assigned values of < 1 in order to maintain a value of PSCF between 0 

and 1. These new values are the weighted potential source contribution functions (WPSCF) and 

were calculated for each of the five sites for JJA and DJF. The weighted scheme is arbitrary and 

varies across literature, however the one used here is very similar to a study to identify potential 

source regions of PM2.5 in Beijing using the same type of back-trajectory analysis [Zhang et al, 

2015]. Aside from using HYSPLIT to acquire trajectories and graphics generating scripts, I used 
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a GIS-based program called Trajstat to analyze the trajectories and PSCFs. This software was 

originally produced for statistical analysis of air pollution data and includes basic geographic 

map layers and trajectory file conversion capabilities [Wang et al, 2009]. 

 

Table 2.2: Mean and median winter SO2 concentration as measured by the five 

AQS sites over the 2006-2009 period. These metrics were used to choose a 

threshold value for the PSCF analysis. 

Site Mean(ppb) Median (ppb) 

Akron, OH 5.15 4.3 

Hackney, OH 6.62 4.9 

S. Fayette, PA 7.62 6.9 

Beltsville, MD 4.35 6.3 

Wilmington, DE 5.14 4.8 

 

 

2.2.4 Normalized Trends 

To factor in the effect of the PSCF on the trends, I transformed both trends to the same, 

normalized scale. The SO4
2- wet deposition trends were normalized to a scale of 0 to 1 with the 

grid box having the highest downward trend assigned a value of 1 and the grid box with the 

highest positive trend assigned a value of 0 (Eq. 2.2). The cases of an upward 10-year trend in 

the deposition were very few in the eastern domain and thus did not influence the outcome. The 

column SO2 trend over the entire domain was also normalized the same way. In general, the 

equation used for normalizing a trend is :  

𝑥𝑖𝑗,𝑛𝑜𝑟𝑚 =  
𝑋𝑖𝑗−𝑚𝑖𝑛(𝑋)

𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋)
              (2.2) 
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Where x is the normalized SO2 or SO4
2- trend value for a given grid box, Xij is the raw trend for 

the same grid box and X is the set of gridded trend values for the entire domain. Multiplying the 

normalized trends result by the PSCF produces a relative product value that describes the relative 

contribution of the air coming in that grid box to the trend. A grid box with both a high PSCF 

and large downward wet deposition trend would indicate that air arriving from there has seen 

significant reductions in sulfur over the years, thus contributing to the decrease in wet deposition 

at the receptor locations. To relate the NADP trend and WPSCF to OMI observations, the 

normalized 10 year trend in column SO2 was added into the calculation: 

zij = norm(SO2 Trend) × [ WPSCF × norm (SO4
2-

 Trend) ]       (2.3) 

This product value helps to identity, for a given receptor site, upwind source locations that not 

only frequently influence the site through transport and also have large decreases in SO2 

emissions between 2005 and 2015 according to OMI. All three factors in Equation 2.3 are 

necessary since the deposition trend, emissions and transport are accounted for. Using only the 

normalized SO2 trend would only indicate contributions to decreasing SO2 at the site, rather than 

deposition. Likewise using only the normalized SO4
2- wet deposition trend, the influence of 

emission reductions is removed from the contribution. Thus equation 2.3 is instrumental in 

producing an “overlap” of all three components. A percent contribution was then calculated for 

each grid box by diving each individual grid box value of zij by the sum of all boxes in the 

domain. Thus this new value expresses the normalized contribution of a particular grid box to the 

SO4
2- wet deposition trend at the AQS or NADP site, relative to the domain. This provides a 

quantitative assessment of the trend data relationship. 

% 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  
𝑧𝑖𝑗

𝑠𝑢𝑚(𝑧𝑖𝑗)
×  100%        (2.4) 
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2.3 Results  

2.3.1 Percent contribution 

This section describes the qualitative and some quantitative aspects of the grid boxes that 

contribute to wet deposition trends at five different sites. Figures 2.5 and 2.6 show grid cells in 

the domain with a color representing the final percent contribution value calculated with 

equation 2.4. I aim to show the specific grid boxes which had the most contribution in the 

domain to the wet deposition trend at the receptor site, as well as the cumulative contribution at 

various distances from the site through summations of the percent contribution values. 
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Figure 2.5: Percent contribution for each grid box in the domain with only values above 0.5%. 

Shown for (a) Hackney, OH and (b) Beltsville, MD sites in JJA (left) and DJF (right). The 

observation sites are marked with a blue dot. 

 

 

Figure 2.6: Percent contribution for each grid box in the domain with only values above 0.5%. 

Shown for (a) Akron, Ohio, (b) South Fayette, PA and (c) Wilmington, DE AQS sites in JJA 

(left) and DJF (right). The observation sites are marked with a blue dot. Note that only values 

greater than 0.5% are colored. 
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Hackney, OH 

Due to its proximity to numerous sulfur emitting coal-fired power plants, the Hackney, OH AQS 

site shows high concentrations of SO2 with average daily value of around 7 ppb and often 

exceeding 20 ppb in winter. The corresponding NADP site for this area is in Caldwell, OH (Site 

ID OH49), ~18 km away. I would expect similar characteristic deposition and trajectory patterns 

for the two locations given the flat terrain and proximity to the same SO2 sources. In wintertime 

(DJF), wet deposition trend at the Caldwell NADP site is driven by the dominant southwesterly 

flow and high outputs of emissions upwind near the Ohio River (Figure 2.5a). The observed 

annual wet deposition at the Caldwell site decreased from 23.35 kg S/ha in 2005 to 8.76 kg S/ha 

in 2015 according to the NADP dataset. The wet deposition has significant year-to-year 

variability (Figure 2.7), however, the overall 10-year trend from 2005 to 2015 was downward. 
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Figure 2.7: Sulfate Wet Deposition amounts at Caldwell, OH NADP site, shown as a time series 

from 1980 to 2015. The plotted data is from the NADP network at the OH49 site [39.7928 N, 

83.5311 W] 

 

Qualitatively, the area with the colored grid boxes in southern Ohio largely contributed to 

the decreasing deposition (Figure 2.5a). In summer (JJA), major areas in southwestern PA with 

large SO2 columns somewhat contribute to the observed trend at the Hackney site, however less 

so than the sources along the Ohio River. The trajectory climatology for this site (Figure 2.8) 

shows a clear seasonal change in direction trajectories indicating that emission reduction in the 

west have likely contributed to the majority of the observed trend at the site. 
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Figure 2.8: Map of (a) summer (JJA) and (b) winter (DJF) trajectory climatology for 2006-2009 

at Hackney, OH. The yellow star shows the location of the site and the blue lines are the 

individual 72 hour back trajectory for each day, initialized at 18Z using the HYSPLIT model.  

 

Beltsville MD 

The Beltsville, MD site experienced a downward SO4
2- wet deposition trend, especially in the 

years 2008-2012, and has two primary regions that contributed to the 10-year decrease. The 

Southwest PA region shows the greatest cumulative percent contribution which implies that wet 

deposition has dropped due to the decrease in sulfur emissions in Pennsylvania. However, there 

is also a signal to the east of the site in Maryland in the PSCF and contribution map (Figure 

(a) 

(b) 
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2.5b). While the dominant trajectory is from the northwest in winter, air can occasionally arrive 

from the east in both seasons. In summer, wind direction is more variable compared to winter, as 

indicated by the trajectories from HYSPLIT (Figure 2.9). Note that in the summer case, there are 

grid boxes with a relatively large percent contribution in southern New Jersey. While there were 

several coal power plants in that area before 2015 that have since been closed, the features in 

Figure 2.5b are more likely due to sampling issues since SO2 and sulfate deposition amounts are 

lower than in winter. Just before the turn of the decade in 2010, Maryland’s Healthy Air Act led 

to cuts of sulfur emissions of 80-85% from levels in the early 2000s [He et al., 2016]. While 

most of the contribution is due to decreased emissions to the west, it is probable that local 

emission controls have also played a role in decreasing SO4
2- deposition in the general vicinity. 

The case for this site will be further investigated in section 2.3.3. 
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Figure 2.9: Same as Figure 2.8 but for Beltsville, MD AQS site. The trajectories are denoted by 

green lines in this figure 

 

Akron, OH 

Sources to the south and southwest dominate the wet deposition trend for the Akron, OH (Figure 

2.6a). Most of the grid cells with a non-negligible percent contribution (greater than 0.5 %) are 

located near major SO2 sources, approximately 100-300 km away from Akron in both winter and 

summer. The percent contributions show fewer grid boxes with contributions over 1.5% in 

(a) 

(b) 
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winter as the contribution is spread out over larger number of grid boxes, especially those further 

away. This is reflected by higher emissions, generally higher wind speed and longer trajectory 

distance within the 72 hours in wintertime. In summer months there is also signal from southwest 

PA with over 1.5% contribution for two grid cells in that region.  

South Fayette, PA 

The AQS site in South Fayette, PA had the highest median in-situ SO2 amounts of the five sites 

reported in the 2006-2009 period for both winter (~7.0 ppb) and summer (~3.5 ppb), whereas in 

Hackney those median amounts were 5.4 and 2.7 ppb respectively. Sulfate deposition is affected 

by local sources, but the PSCF analysis also shows elevated SO2 concentrations arriving from the 

east and southwest, near the sources along the Ohio River. During summer, there is slightly more 

contribution from the east, indicating a shift from a predominantly western zonal flow that 

occurs during winter. However, the seasonal difference in the contribution appears to be smaller 

than at other sites. The highest percent contributions in both seasons are from southern Ohio and 

just to the east of the site (Figure 2.6b), which indicates the presence of sulfur emission sources. 

In this sense, the site is quite similar to the patterns in Hackney, OH, except it is more affected 

by the local power plants to the east in PA. 

Wilmington, DE 

For the Wilmington, DE site (Figure 2.6c), the region contributing the most in winter to the 

deposition trend is from upwind in Pennsylvania, which is home to several large power plants. 

As shown by OMI, the region had a strong decrease in column SO2. Given the winter trajectory 

pattern, it follows that any reductions in Pennsylvania benefitted the Wilmington area in terms of 

deposition amounts. In summer, there is not much signal from any particular area, with isolated 

grid boxes in the New York area and in southern PA. It is reasonable to assume that most of the 
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decrease in annual SO4
2- wet deposition were due to large decreasing trend in winter SO2 

concentrations over upwind areas to the west. While there may have been some minor summer 

contributions as well, their magnitude was not as great as in winter. This shows an absence of 

SO2 source near the site and that a stronger wintertime flow pattern is needed to have impacts on 

the deposition trends. 

 

2.3.2 Contribution Distributions by Distance 

I extended the analysis in the previous by calculating the total percentage contribution to trend 

observed at a receptor site from all grid boxes within a certain distance from the site. Distances 

of 50, 100, 200, 300, 400, 500 and 1000 km were used in the analysis. The calculation was 

performed by creating a circle with a radius of the distance from the site and summing up the 

contribution of all grid boxes that fall within the circle. This process leads to cumulative 

distributions of total contribution moving away from the site. This would help in diagnosing if 

the wet deposition at the site is primarily driven by local or upwind sources and the direction 

from which the sulfur is arriving at the site. I calculated a cumulative contribution for two sites 

with significant climatological and geographical differences, Beltsville (Figure 2.10) and 

Hackney (Figure 2.11), for summer and winter seasons.  
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Figure 2.10: The cumulative percentage of contribution to the SO4
2-wet deposition trend at the 

Beltsville NADP site, from areas within a given radius from the site (x-axis) for (a) winter and 

(b) summer. The orange, green and blue lines represent contributions from locations with a 

longitude east of the site, west of the site and all locations within the radius respectively. 
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Figure 2.11: Same as Figure 2.10 but for the Hackney AQS site.  

Beltsville, MD 

For the Beltsville site, half (50%) of the sulfur contributing to the ten-year wet deposition trend 

is linked to SO2 observed within a 300 km radius in winter and 200 km in summer (see Table 

A.1 and Table A.2). However, more contribution comes from locations over 300 km away in 

winter (44%) than in summer (17.5 %), showing that the lifetime and transport distances are 

generally greater in winter. The lower in-situ SO2 amounts in summer than in winter are 

consistent with the fact that the largest SO2 emitting power plants in the domain are more than 

300 km away. Higher contribution values come from several grid boxes closer to the site in the 

Beltsville, MD case (within 100 km), yet the accumulated contribution in the southwest PA 
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region has arguably more effect on the deposition trend. This is evidenced by sources more than 

300 km to west of Beltsville, MD that contribute more than 50% of the SO4
2-. The result shows 

the benefit in reducing emissions upwind in western PA and eastern Ohio, as the decrease has led 

to a downward deposition trend in addition to improved SO2 levels in the second part of the 

study period. In summer, 83% of the contribution comes from within 300 km, with roughly 63% 

of this coming from the east of the site. This indicates that summer transport distance is short and 

pollutants are less likely to reach from beyond 500 km away as they do in winter. 

Hackney, OH 

In winter, while the total contribution from within 300 km (63%) is similar to summer for this 

site, 54% of it is from the west (see Table A.3). For summer, roughly 66% of the contribution is 

from within 300 km of the site, with 29% of it from the east and 37% from the west (see Table 

A.4). While more of the contribution is from the west, the eastern component indicates that some 

of the SO4
2- originates from areas to the northeast of the site in PA in addition to areas to the 

southwest of the site. Areas within 100-200 km from the site, contributed to about 24% and 27% 

of the SO4
2- wet deposition trend in winter and summer respectively, meaning the emission 

source within that radius are more or less contributing the same in both seasons relative to the 

rest of the domain. This is a different characteristic from Beltsville, MD since for Beltsville more 

contribution came from further distances in winter and was not as greatly affected by SO2 

sources within 200 km of the site. Due to proximity of this site to some of the sources, it is 

possible that the SO2 from these sources was not resolved in the trajectory analysis with only 40 

km resolution of the meteorology data. Over all distances, the western component dominates in 

both winter and summer with roughly two thirds coming from the west in winter and 90% in 
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summer. This indicates the dominance of the climatological westerlies over source proximity and 

deposition processes. 

 

2.3.3 Impact of Maryland Healthy Air Act 

Evidence exists that a significant amount of Maryland’s sulfur pollution originates 

upwind in Pennsylvania and Ohio River valley. However, it is interesting to assess the impact of 

local statewide regulations on the improvements in pollution in the ten-year period. The Brandon 

Shores power plant is one of the biggest emitters of sulfur dioxide in Maryland, especially before 

the enactment of the Healthy Air Act of 2010. The plotted average monthly emissions show that 

the facility cut its SO2 emissions by over 80% post 2009 (Figure 2.12). 

 

Figure 2.12: Monthly averages of hourly SO2 emissions from the Brandon Shores power 

generating facility, located just to the south of Baltimore, MD. The data were obtained from 

Continuous Emission Monitoring Systems (CEMs) and are distributed by EPA’s Air Markets 

Program database. 
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Maryland state emission inventories (Figure 2.13a) also show roughly 80% drops in SO2 

emissions between 2005 and 2015 in the fuel combustion sector, which includes power plant 

emissions. There is a 78% drop in 2007-2012 and 45% drop for 2005-2009, indicating that 

Maryland cut more of its emissions in 2008-2012. At the same time, emissions have been 

decreasing consistently in Ohio and Pennsylvania, as well as nationally (Figure 2.13b). The 

trends for SO4
2- and SO2 are also of greater magnitude in 2005-2010 than in 2010-2015 (Figure 

2.3), which aligns with emission trends and the enactment of the Healthy Air Act.  

 

Figure 2.13: The SO2 emission inventory for (a) three states: MD, PA and OH and (b) the entire 

United States. Only the total values for the fuel combustion sector, which includes primary 

power plant emissions, are included. This sector is the dominant portion of the inventory and 

accounts for over 80% of the total. Emission inventory data can be found on the EPA Emission 

Inventory site: https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-

data 
 

Using the same PSCF analysis method as above, I was able to identify contributions to the SO4
2-

sulfate wet deposition trend for 2008-2012 by using the trend and PSCF corresponding to this 

time period only. As seen in Figure 2.14, there is noticeably larger total contribution from areas 

close to the site than farther away. There is also a difference between the original 10-year case 
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and this four-year time period in that the grid boxes directly to the northeast (Baltimore area), 

contribute to the decreasing trend slightly higher, from 1-1.5% in the 10-year case to 2-3% for 

2008-12. This indicates that the state rule helped in somewhat reducing deposition in the short 

term. 

 

Figure 2.14: Percent contribution to the Beltsville, MD winter wet deposition trend for 2008-

2012. The same procedure was used as in the other maps, except with a 2008-2012 winter 

trajectory climatology and PSCF 

 

This result can also be related to the specific dry and wet deposition amounts occurring in 

Beltsville over the years. The data in Table 2.3 indicates that dry SO2 and SO4
2- deposition have 

decreased overall from 2005 to 2015. The decrease is better seen in the SO2 than SO4
2- between 

the first and second 5 years. The effect of cutting emissions at Brandon Shores has clearly 

decreased local dry deposition of SO2. The result is less obvious in the dry SO4
2-, although by 

2015, the deposition has dropped by almost 50%, from 1.12 to 0.59 kg S/ha. The fraction of total 
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sulfur deposition due to dry deposition of SO2 has fallen by roughly a factor of two over this 

decade, consistent with greater partition into sulfate [Shah et al., 2018]. According to Figure 

2.15, the steepest trend in wet deposition occurred from 2008-2012. The wet deposition end-of-

year total for 2012 decreased to 8 kg S/ha from around 20 kg S/ha, reported at the end of 2009 

(Figure 2.15).  

Table 2.3: Flux of dry SO2 and SO4
2- at the Beltsville, MD site in the CASTNET network with 

the annual NADP wet deposition totals. The flux value can be seen as dry and wet deposition of 

SO4
2- at the site. Note that several years of dry flux data were missing in the dataset and that 

there is no available measurement for wet SO2 flux. 

Year 

Dry SO2 Flux  

(kg S/ha) 

Dry SO4 Flux 

(kg S/ha) 

Wet SO4 Flux  

(kg S /ha) 

2005 7.547 1.857 17.42 

2007 4.296 1.777 15.49 

2008 4.268 1.426 15.72 

2009 3.112 1.005 19.36 

2010 2.227 1.126 9.34 

2011 1.361 1.048 12.04 

2013 1.009 0.785 5.95 

2014 1.410 0.706 7.14 

2015 1.071 0.588 6.46 
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Figure 2.15: Sulfate Wet Deposition amounts at Beltsville, MD, shown as a time series from 

2004 to 2015. The plotted data is from the NADP network at the MD99 site. 

 

However, wet deposition is largely driven by the precipitation patterns and consequently 

more closely related to air trajectory climatology. Given that only less than 25% of back 

trajectories arrive from east of the site in winter, it is difficult to conclude that the drop in local 

emissions was the dominant factor in the overall decreasing trend. Yet the effect is non-

negligible and may have certainly played a role as the steepest slope indeed occurred between 

2009 and 2010. Thus, I can speculate that the signal associated with the contribution values to 

the east and northeast of the site as well as the increase in percent contribution for the 2008-2012 

four year period, are not anomalies or artifacts of the method, but significant characteristics of 

the contribution to the wet deposition trend in Beltsville between 2008 and 2012. The local and 

statewide emissions likely only affected the short-term trends in deposition given the drastic 

changes in emissions, rather than the long term deposition changes over a 10 year period. The 
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latter is likely driven by a systematic drop of emissions on a larger regional scale and consistent 

trajectories from the northwest. Lastly the SO2 lifetime is qualitatively estimated from the 

contribution maps. In general, there is indication that lifetime is less than 1 day in the summer, 

while in winter the SO2 gets carried 100-200 km more especially for the eastern sites. The latter 

indicates a longer SO2 lifetime in excess of 1-1.5 days in winter. This is consistent with the SO2 

lifetimes of 13 h and 48 h for summer and winter respectively found by Lee et al. and may be 

due to seasonal differences in oxidation rates; Shah et al. [2018] reported only 18% of SO2 was 

regionally (over the eastern US) oxidized to SO4
2- in winter, but 35% of summer. As shown 

previously, SO2 and SO4
2- deposition trends can appear in geographically different areas. 

Locations that have drastically reduced their sulfur emissions can still have SO4
2- deposition 

problems due to upwind sources and likewise can benefit from the reduction of emissions from 

those areas. Thus, both local and regional pollution controls are not only important for air quality 

but for the environment since air trajectory patterns control the transport and deposition of 

chemical species. 

2.4 Discussion 

Although the methodology presented in this study was used consistently for all sites, it did not 

come without limitations or systematic errors. In this section I discuss potential sources of error 

and uncertainty stemming from the methods and factors that were difficult to constrain in this 

study.  

2.4.1 Quantitative Error Estimates 

From the trend calculations, error statistics showed around ±0.1 kg S/ha /yr on average for the 

SO4
2- wet deposition trend for grid cells with relatively high trend magnitudes. The actual error 

across the domain varied based on the magnitude of the NADP site distribution. Likewise, the 
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OMI SO2 trend calculation carried a ±0.001 to ±0.0025 DU/yr error with greater uncertainties for 

grid boxes with low SO2 amounts or low trends. These errors were estimated by repeating the 

trend calculation with slight variation based on the uncertainties in OMI SO2 and interpolated 

NADP data, with the difference between the calculations being the trend error. Interpolation of 

irregular spaced data such as the case of NADP sites (Figure 2.2a), inherently carries uncertainty 

due to varying site coverage and the interpolation method itself. The uncertainty was in the 10-

20% error range for more than half the grid boxes in the domain, while areas with less observing 

sites contained higher percent error. The error analysis was performed through validation of 

annual wet deposition output from the Community Multi-scale Air Quality (CMAQ) model. 

These interpolation errors, while having potential impacts on the results, could not be avoided 

due to limitation of the NADP observing network. 

The error in the percent contributions results directly from the uncertainties in the 

normalized trends and the PSCF, as those are the two components used in the calculation (Eq. 3). 

Uncertainties in the PSCF can originate from trajectory calculations and from different 

possibilities of choosing the threshold. Changing the threshold by ±1 ppb resulted in only 25-30 

of the 2400 grid boxes in the domain having a PSCF change of greater than 0.1, as determined by 

a sensitivity test. Therefore, the overall result across the domain is not significantly affected by 

this parameter. The calculations of the trajectories inherently contained errors as a result of 

limited temporal and spatial resolutions of the model reanalysis meteorological data. However, 

given the spatial resolution of the OMI instrument, the resolution of the meteorological data was 

appropriate. I can still estimate roughly 20% relative uncertainty, which is proportional to 

trajectory distance [Stohl, 1998]. In regard to the normalized trends, the grid cells with high 

trends were estimated through sensitivity tests to have an uncertainty on the order of 20-30%, 
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accounting for OMI and NADP data uncertainty in addition to the normalized trend calculations. 

In grid boxes with smaller trends, the uncertainty is higher because their weight is closer to 0. 

However, the areas with low SO2 and SO4
2- trends generally do not strongly impact the results 

presented. The total uncertainties in the percent contribution can be estimated to have an upper 

limit 30-40% in most grid cells of the domain, as an upper limit. This result was obtained by 

combining the square error of the PSCF and the two normalized trends. 

2.4.2 Other Limitations and Uncertainties 

One big limitation in this study is the characteristics of wet deposition. Whether the SO4
2- is 

being deposited or carried further downwind is dependent on nature of the trajectory and if 

precipitation occurred. Given the uncertainties in diagnosing rain or cloud formation events 

along the trajectory, I primarily focus on determining where deposition is highly decreasing 

along with an active flow pattern from trajectory analysis showing possible origins of SO4
2- from 

nearby sulfur in the atmosphere. The trajectories are utilized as rough interpretations of air flow 

and to contribute to a seasonal climatology as shown in Section 2.2. Furthermore, HYSPLIT 

model parameters were rather simple in the sense that the model was not run at multiple times 

during the day or from different heights. I kept the constant initialization height of 500 m (above 

ground) which is a reasonable representation of mid boundary layer height. The back trajectories 

were only run once a day to match the temporal resolution of OMI and around the time the 

instrument would pass over the Eastern U.S to make measurements. Due to keeping the 

initialization time constant at 18Z and the height at 500 meters, there could have been error 

associated with analyzing the trajectories with respect to high SO2 amounts since these can 

change due to weather patterns and within hours. Another limitation was the difficulty in 

distinguishing between sulfate coming from rainout or washout. With the nature of the data, 
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relative simplicity of HYSPLIT and lack of a chemistry model, there was not much information 

that could be gathered regarding the exact origin of the sulfate. However, I would expect a lot of 

the sulfur from power plants to be found closer to the surface than aloft, consistent with the 500 

m trajectory initial height. Overall, chemistry related factors such as how much of the SO2 is 

converted to SO4
2- on a daily basis, how much is exported or removed through other pathways, 

and cloud processes could not be adequately captured by the method, therefore producing 

additional uncertainty in the results. Lastly, in many cases, the trajectories and the sulfur residing 

in the atmosphere can be influenced by local and smaller scale meteorology, in addition to the 

synoptic airflow. This can complicate the deposition and sulfur dioxide transport and can lead to 

a loss of important information regarding the connection between the two trends. These 

uncertainties are difficult to quantify but likely do not strongly impact the conclusions of the 

study, because the lifetime of SO2 is relatively short and wet deposition is a main sink. 

Addressing complexities in the future, as opposed to this simplified approach, might gain 

additional insight on the link between the two trends. 

There is also possibility of biases in precipitation collection based on the collector 

instrument used [Wetherbee et al, 2009]. Likewise, the OMI retrieval of SO2 while much 

improved over the years, still has substantial noise and errors and could also have had a minor 

effect on the calculated trends. Another source of error in the method itself could be the low 

detection rates of SO2 exceeding a threshold at a site. This happens during summer when the 

exceedance rate was low compared to winter, resulting in a more scattered PSCF and 

contribution maps. The resulting PSCF calculation (Eq. 1) would be fairly sporadic as the 

number of trajectories with SO2 amounts above the 5 ppb threshold (m) would be low compared 

to the total number of trajectories (n). Since the calculated percent contribution was heavily 
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based on PSCF (Eq. 3), some grid boxes may not be represented as accurately, especially in JJA 

and at low SO2 sites (Wilmington and Beltsville). It is important to note that these methods are 

mostly probabilistic, meaning I cannot discern concrete locations and say with complete 

certainty that a specific source contributed to the deposition changes.  

2.5 Conclusion 

In summary, the origin of pollutants in acidic wet deposition can be determined with a 

combination of in situ and satellite observations coupled to trajectory analysis. In this study I 

quantified the possible origin of SO4
2- wet deposition for five sites in the eastern United States 

over 2005-2015. Each site showed characteristic source regions, generally consistent with 

seasonal wind patterns and observed SO2 from OMI. Dominant sources depend on prevailing 

westerly winds, faster summer rates of SO2 oxidation, and the synoptic conditions associated 

with precipitation. I also found that contribution changes pattern in direction and range with the 

season.  

Reported emissions, observed concentrations, and monitored deposition all tell a 

consistent story – efficient scrubbing SO2 in the eastern US has led to dramatic improvements in 

SO4
2- wet deposition in the same region and benefits are generally seen within 500 km of the 

source. At the Beltsville, MD site in winter, about 2/3 of the SO4
2- wet deposition originates from 

the west and 1/3 from the east, in keeping with the dominance of westerly winds. In summer, 

when SO2 has a shorter lifetime with respect to oxidation to SO4
2-, closer emitters generally have 

a greater influence – the bulk of the deposition (80%) is due to sources < 300 km away; in winter 

this range is expanded to over 500 km. Nearby sources to the east do however have a substantive 

impact in colder months. The winter season is associated with a higher frequency of strong mid-

latitude extratropical weather systems, which will produce periods of northeasterly winds off the 
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Atlantic Ocean and larger amounts of moisture and precipitation. Likewise, wind direction 

becomes more variable and, on average, weaker during the summer months. The region also 

experiences less precipitation during the summer, with the exception of heavy localized 

precipitation in convective storms. Nonetheless, 2/3 of the contribution (Table 4) is from east of 

the site, indicating the importance of source proximity and summer weather patterns. Both 

statewide emission controls and those upwind, out-of-state appear to have contributed to the 

decreasing SO4
2- deposition trend. While higher contribution values come from several grid 

boxes within 100 km of the Beltsville site for the 2008-2012 period, the accumulated 

contribution in the southwest PA region has arguably more effect on the full ten year deposition 

trend overall. At the Hackney, OH site, the summer-winter difference is weaker, with 80% of the 

deposition from within ~400 km in both seasons, reflecting sources located closer to the site. 

Despite major SO2 sources to the east, transport of sulfur from the west dominates, accounting 

for 2/3 of the deposition in the summer, and 9/10 in the winter. At this site, the prevailing wind 

pattern rather than proximity to emitters is the governing factor for this distribution. 

Without the implementation of the appropriate methodology, such as the trajectory 

analysis used in this work, the regional SO2 concentrations and deposition could not be 

adequately linked given their geographic displacement. The satellite data provide a consistent 

context for interpreting in-situ measurements and trajectory-based PCSF analyses, allowing me 

to identify major source areas that contribute to the observed decreases in SO4
2- wet deposition.  
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Chapter 3: Volcanic SO2 Effective Layer Height Retrieval for OMI  
 

In this chapter, I present a newly developed volcanic SO2 layer height retrieval for OMI. 

As stated earlier, the main motivation for this work is to obtain SO2 height data quick enough for 

near real time operation, which has not yet been achieved for OMI. The volcanic SO2 layer 

height is important because it can be used as a proxy for the ash plumes which can impact air 

traffic, as well as being an essential input for chemical and climate models. The retrieval 

algorithm I used was the Full Physics Inverse Machine Learning (FP-ILM) model originally 

implemented by Hedelt et al. [2019] for TROPOMI SO2 height retrievals. The FP-ILM approach 

consists of two parts, the training phase, and the application (or operational) phase. The retrieval 

is fast due to the time consuming portions, the radiative transfer modeling and machine learning, 

being done in an offline training phase. The satellite radiance data is only introduced in the 

application phase, once the algorithm has been trained. This makes for a quick calculation from 

the BUV radiance inputs to the output (SO2 layer height). The height results from this retrieval 

and comparisons with other instruments and previous studies are also presented in this chapter. 

3.1 FP-ILM Methodology  

The training phase of FP-ILM starts with the generation of a synthetic training dataset of 

top of the atmosphere (TOA) reflectance spectra from a radiative transfer model. This spectral 

dataset is then used to train a Multi-Layer Perceptron Regression (MLPR) NN model to predict 

the SO2 layer height as an output. In the application phase, the trained inverse model is applied to 

real OMI radiance measurements. This inverse model is optimized from the training, and the 

predictions of SO2 layer height based on the model are very fast as compared with the time-

consuming RT calculations during the training phase. The main steps of the algorithm are shown 

in a flowchart (Figure 3.1) and discussed in detail in the next sections. 
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Figure 3.1: The flowchart of the FP_ILM methodology for retrieving OMI SO2 Effective Layer 

Height. The steps above the dashed line are part of the training phase done prior to incorporation 

of OMI measurements. The application phase involves deployment of the trained model to the 

OMI radiance measurements to obtain estimates of effective volcanic SO2 layer heights.  

 

3.1.1 Forward Radiative Transfer Model 

The first step in the training phase is to build a large data set of synthetic backscattered 

UV Earthshine radiance spectra from forward radiative transfer (RT) calculations. Earthshine 

spectra express the outgoing radiance from Earth’s atmosphere – they differ from solar spectra 

due to scattering processes by molecules and aerosols as well as absorption by various gases. 

These calculations are performed using the LInearized Discrete Ordinate Radiative Transfer 

(LIDORT) model with the rotational Raman scattering (RRS) capability [Spurr et al., 2008]. This 

version of the model treats first-order inelastic Raman scattering in addition to all orders of 

elastic (Rayleigh) scattering processes. Rotational Raman scattering occurs when a photon is 

scattered at lower or higher energy levels than the incident radiation. RRS cannot be neglected; it 
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is known to be responsible for the Ring effect [Grainger and Ring 1962], a spectral interference 

signature characterized by the filling-in of Fraunhofer lines and telluric-absorber features. 

Allowing for RRS in the RT model leads to differences in calculated radiances compared to 

those made with purely elastic scattering, as characterized by the filling-in factor. This quantity 

is generally of the order of a few percent, consistent with estimates that 4% of the total scattering 

in the atmospheric is inelastic [Young, 1981]. Fundamentally the SO2 layer height information 

can be retrieved by backscattered radiance spectra because the amount of scattering occurring in 

the overlying atmosphere is determined by the height of the volcanic SO2 plume. This is 

demonstrated by comparing two otherwise identical RT calculations with different SO2 layer 

heights (Figure 3.2a). At shorter wavelengths where Rayleigh scattering is stronger, there is less 

backscattered radiance for the case with higher SO2 plume height, particularly at shorter 

wavelengths < 320 nm (Figure 3.2b). Likewise, the filling-in factor (Figure 3.2c) shows the 

importance of including RRS in the RT calculations as in some cases there can be 2-3% 

difference between the Raman and elastic calculations. 
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Figure 3.2: (a) Simulated top of the atmosphere (TOA) Earthshine radiances for two different 

SO2 layer heights (10 km and 20 km) from the LIDORT-RRS model. Also shown:(b) the SO2 

height Jacobian (change in radiance per km between the two spectra) along with the absorption 

cross-sections of SO2 for reference; (c) the filling-in factor. The filling-in factor is defined as the 

difference between the total and elastic-only radiance results, divided by the total radiance, 

expressed as a percentage. An SO2 column amount of 200 DU was used in the two calculations 

and all other parameters were kept constant except for the SO2 layer height. 

 

All LIDORT-RRS calculations in this study were performed for the 310-330 nm spectral 

range, which captures strong SO2 and ozone absorption features. The model is supplied with 

ozone [Daumont et al., 1992] and SO2 absorption [Bogumil et al., 2003] cross sections, 
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atmospheric profile, ozone profile and a high resolution Fraunhofer solar irradiance spectrum. 

The atmospheric profile has 48 layers and contains a temperature/pressure/height grid from the 

standard US atmosphere, with an increased vertical resolution of 0.5 km below 12 km. The 

ozone profile is determined by the total column amount, latitude zone and month as specified in 

the TOMS V7 ozone profile climatology [Bhartia, 2002]. Using the input of total column 

amount, an interpolated profile is calculated based on two TOMS climatological profiles with 

fixed ozone amount values. In these simulations, surface ozone pollution would not have a 

significant effect on the profile due to a coarse vertical resolution in the atmospheric profile and 

the majority of the ozone being located in the stratosphere. A unique SO2 profile is also 

calculated for each model simulation based on the input of the SO2 plume height and SO2 

column amount parameters. It is assumed to be a Gaussian shape with a full width half maximum 

(FWHM) of 2.5 km, centered around the given height. This is a reasonable approximation for the 

average thickness of an SO2 plume and slightly varying the FWHM did not impact the result of 

the calculation significantly. The solar spectrum is a re-gridded version of the high resolution 

synthetic solar reference spectrum [Chance and Kurucz, 2010], originally with a spectral 

resolution of 0.01 nm. The re-gridded version has a resolution of 0.05 nm, finer than that for 

OMI (0.16 nm sampling for a FWHM spectral resolution of ~0.5 nm). The advantage of using 

this reference spectrum over the instrument-measured irradiance is that only one set of 

calculations is needed; they can be applied to multiple instruments and instrument cross track 

positions without utilizing unique measured solar flux spectra for each situation. Using 

instrument-measured solar flux data may carry less potential error and be able to better handle 

issues with instrument degradation. However, the downside is that the inverse model would need 

to be re-trained whenever a new measured solar flux spectrum is used. Since I expect the 
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retrieval to be primarily sensitive to SO2 absorption signatures, the radiative transfer calculation 

was performed for a molecular atmosphere with no aerosol scattering.  

In order to obtain a large number of different spectra, eight key physical parameters were 

varied for the LRRS calculations. These parameters include solar zenith angle (SZA), relative 

azimuth angle (RAA), viewing zenith angle (VZA), surface albedo, surface pressure, O3 column 

amount, SO2 column amount and SO2 layer height. The ranges of these parameters are given in 

Table 3.1. 

Table 3.1: Ranges of the eight physical parameters varied in LIDORT-RRS for the synthetic 

spectra calculations. 

Parameter Range 

Solar Zenith Angle 0-90° 

Viewing Zenith Angle 0-70° 

Relative Azimuth Angle 0-180° 

Surface albedo 0-1 

Surface pressure 250-1013.25 hPa 

O3 VCD 225-525 DU 

SO2 VCD 0-1000 DU 

SO2 Layer Height 2.5-20 km 

 

The number of calculations and the parameter sets for each simulation were determined 

through a smart sampling technique (Loyola et al. 2016). A selective parameter grid with sets of 

parameters for each simulation was established through the use of Halton sequences (Halton, 

1962) in 8 dimensions. The calculations are continued until the moments of the output data, 

mean and median converged across all wavelengths. In total around 200,000 calculations were 

done to achieve sufficiently comprehensive sample size for the variation in the eight parameters 

across all rows of OMI. This sampling was done in order to ensure that 1) each set of parameters 

was unique and training data is diverse; and 2) that the sample size of the entire dataset is large 

enough for the machine learning application. 
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3.1.2 Data Pre-Processing and Machine Learning 

After the RT calculations are completed, the spectra are convolved with the OMI 

instrument slit function. Since each cross-track position of OMI contains a unique slit function, 

the appropriate function was applied based on the VZA input for that particular calculation. The 

VZA ranges from 0-70° across all rows in the OMI swath, with the middle (nadir) rows having a 

VZA of close to 0. For each row, only spectra within +/- 3° of the actual VZA were convolved 

with the appropriate slit functions. In addition, Gaussian noise with a signal-to-noise ratio (SNR) 

of 1000 was added to the spectra. While the SNR of OMI tends to be lower [Schenkeveld et al., 

2017], adding too much noise can greatly decrease performance of the machine learning (Table 

2). The root mean squared error (RMSE) and mean absolute difference (MAE) between the SO2 

height from the RT calculation parameter sets and the height predicted by the neural network 

were used as metrics (see Section 3.1.3). At SNRs of less than 500, the performance starts to 

increasingly degrade. Between 1000 and 500 SNR, there is an increase of ~0.1 km in RMSE 

(Table 3.2). However, adding some degree of noise is necessary to account for errors in satellite 

instrument measurements. 

 

Table 3.2: The RMSE and the mean absolute difference (km) of all data points in the 

independent test set after adding noise as indicated by different SNR values. All other parameters 

and input data were kept constant. SZA < 75 degrees and SO2 VCD > 40 DU were excluded 

from the test set for these comparisons. 

 No noise SNR=1000 750 500 200 100 

Mean Absolute 

Difference (y_known - 

y_pred) (km) 

0.894  0.904  0.939 0.996 1.114 1.362 

RMSE (km) 1.454 1.498 1.521 1.632 1.807 2.143 

R-coefficient 0.988 0.985 0.983 0.980 0.972 0.955 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Schenkeveld%20VE%5BAuthor%5D&cauthor=true&cauthor_uid=29657582
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Next, the PCA analysis was applied to the spectral dataset for each row, in order to 

extract the most significant features of the spectra, and to reduce dimensionality. Since each 

convolved sample consists of 142 wavelength points, the dimensionality of this problem 

becomes very large. However, PCA transforms each sample to a set of weights based on 8 

principal components (PCs). These principal components explain 99.998% of the variance in the 

synthetic dataset (Figure 3.3). Including additional PCs does not add any significant value to the 

retrieval and may even lead to overfitting. Prior to starting the machine learning process, the 

dataset is split into a training subset (90%) and a testing subset (10%). The training subset is used 

for the neural network learning, while the testing subset only deployed verifying the performance 

of the network to predict the output. 

 

 
Figure 3.3: Explained variance ratio as a function of the number of principal components of the 

spectral dataset.  

 

The 8 PCs, and selected parameters including the SZA, RAA, VZA, surface pressure and 

surface albedo were used as input for training a MLPR, which is sometimes referred to as a deep 
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neural network. This machine learning technique is especially useful for problems such as this 

one, as it can provide a nonlinear mapping between multiple numeric inputs and outputs. The 

output layer of the NN contains the effective SO2 layer height. Column amounts of SO2 were not 

included in the training or in the application stage because of the large dependency of column 

amounts on SO2 layer height. The ozone column amount was included initially but was also 

excluded for simplicity, as it did not improve performance in the NN. To improve stability, the 

inputs (PC weights, SZA, VZA, etc.) and output (effective SO2 height) are scaled between -0.9 

and 0.9 according to the minimum and maximum of each input variable prior to input into the 

NN. In a NN, the input and output layers are connected by hidden layers containing neurons 

(also known as nodes). Each neuron is connected to others by a series of weights, by means of 

which the input data is passed to the next level as a weighted sum of all inputs. Inside the neural 

network, the Adam optimizer with a stochastic gradient descent algorithm (Kingma and Ba, 

2015) is used to minimize the loss function, in this case the mean squared error (MSE) between 

the result of each iteration and the actual SO2 layer height used to generate the synthetic spectral 

sample. With each iteration, the partial derivative of the MSE with respect to each node is 

calculated; this is used to update the weights. The training of a NN progresses by cycling through 

iterations of the entire training dataset, called epochs, until the training and validation MSE is 

minimized and there is no improvement to be obtained from further training. Throughout the 

training, the NN uses 10% of the training subset for validation to assess the performance with 

each iteration. This validation set is different from the independent test data that was set aside 

from training. The “tanh” (hyperbolic tangent) activation function is applied at the hidden layers 

to further increase stability in the NN. Other activation functions (e.g., ReLU and PReLU) were 

tested, however tanh was found to produce slightly better NN performance. There is also 
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considerable flexibility in the structure of the NN, in particular the number of hidden layers and 

nodes in each layer. The final configuration of the NN in this study includes 2 hidden layers with 

20 and 10 nodes in the first and second layer, respectively. This was determined through testing 

and analyzing the errors of the NN with respect to the synthetic test data set and the quality of 

the retrieval results after application to satellite measurements. More complex configurations of 

hidden layers and number of neurons were also tested and found to have worse performance 

when using OMI data as input. Hence the relatively simple configuration was chosen as the final 

setup for this study. The general concept and structure of the neural network used in the retrieval 

is illustrated in Figure 3.4. 

 

Figure 3.4: Diagram of a neural network with 2 hidden layers. The PCA-transformed data is 

provided into the input layer and the solution is obtained by minimizing error of SO2 height. 
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 In neural networks a common problem known as overfitting often occurs when the 

machine learning model is tuned so closely to the training inputs that it does not perform well on 

new data. During training this can be diagnosed if the validation error is much higher than the 

training error. To reduce overfitting, L2 regularization was implemented in the training. The 

regularization reduces the effect of small and very large weight values by penalizing the MSE 

loss function. For this study, the training was done separately for each OMI row due to the 

different VZAs and slit functions between rows; however, the configuration of the NN was kept 

constant between rows. The only difference in the training is the number of training epochs 

conducted for each row before the solution becomes optimal for that row. The number of epochs 

varies slightly but is in the 200-300 range for all rows. The final trained version of the NN, the 

inverse operator, contains the optimal weights needed to predict the SO2 layer height from an 

input of separate test data. 

 An important aspect for neural network performance is the number of training samples. 

Aside from smart sampling, the appropriate number of samples for training can be determined by 

comparing errors from training runs where different percentages of training samples were 

removed (e.g., 10%, 20%, 50%) beforehand. The mean absolute error between height predicted 

by the NN and the test set height was calculated when using different numbers of input samples. 

With a 50% reduction in training samples, the absolute error went up by around 0.3 km. In 

contrast, reducing the training set by 10% had little impact on the error (see Table 3.3). These 

results provide confirmation that for this case the training data are adequate, and that there would 

likely be diminishing returns in NN performance with a larger training dataset.  
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Table 3.3: Mean absolute difference and RMSE for different reductions of the original training 

dataset. The test was performed on training sets for five different OMI rows and the errors were 

averaged. 

% of samples 

withheld 
0 10 20 30 40 50 

Mean Abs 

Difference 
0.95 0.98 1.02 1.08 1.12 1.24 

RMSE 1.46 1.45 1.62 1.69 1.79 2.00 

 

3.1.3 Application to satellite measurements 

In the application phase of the retrieval, the inverse operator is applied to OMI radiance 

spectra, resulting in a predicted SO2 layer height for each ground pixel in the OMI swath. For 

this the OMI L1B Geolocated Earthshine radiance dataset is used. Since OMI only provides 

absolute radiances, these data were normalized with respect to the same solar flux spectrum as 

used in the generation of the synthetic spectra. In other words, the measured input becomes the 

fraction of backscattered radiance to the incoming solar irradiance (i.e., reflectance spectrum). 

Prior to normalizing, the irradiance spectrum was convolved with an OMI slit function for the 

particular OMI row and orbit. The irradiance spectrum is convolved with the appropriate OMI 

slit function in order to have consistency in wavelength points between the measured radiances, 

synthetic radiances and irradiance of each row. To follow the same procedure as was used in the 

training step, the PCA operator from the training phase is applied to the OMI spectra to perform 

the dimensionality reduction and obtain a set of PC weights for each sample. The other inputs are 

VZA, SZA, RAA, albedo and surface pressure parameters from the OMI data files. As in the 

training phase, all inputs are scaled to the [-0.9, 0.9] range. After SO2 heights are retrieved 

separately for each row, one height value is given for each pixel (and spectral sample). The 

application phase of the retrieval takes only 2-3 seconds for a given row. This short duration 

includes the application of the training phase PCA operator to OMI measurements, the scaling of 
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inputs and the deployment of the inverse operator. The whole process is repeated for each row in 

order to get a prediction for an entire OMI swath. For some rows the retrieval is unreliable due to 

the row anomaly, which negatively affects the quality of the OMI L1B radiance data at all 

wavelengths and consequently L2 retrievals. 

3.1.4 Parameter Sensitivity Analysis  

From the training phase, it becomes clear that the performance of the algorithm will 

depend on several factors. As demonstrated in Figure 3.5, two important factors are the SO2 

column amount and SZA which affects the retrieval error in some test samples.  
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Figure 3.5: Dependence of retrieval errors on (a) SO2 amount and (b) SZA for cases with SO2 

VCD > 40 DU. The error is defined as the difference between the SO2 layer height predicted by 

the neural network using inputs from the independent test set, and the actual height from the 

same samples. The test set comprises 10% of the original spectral dataset withheld from training 

the neural network. The plots show that the retrieval error is mostly within +/- 2.5 km for SZA < 

70 but increases significantly for large SZAs.  

 

Overall, the NN makes better predictions for the test data subset for SO2 amounts > 40 DU. 

Below 40 DU, information content on the layer height to be retrieved becomes increasingly 

small, as evidenced by large differences between predicted heights and those in the actual test set 

(Figure 3.5a). Additionally, larger SO2 loadings result in greater sensitivity between two heights, 
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as seen by comparisons of SO2 height Jacobians for multiple amounts (Figure 3.6). For instance, 

the height Jacobian is reduced by 60-80% for the lower absorption wavelengths when the SO2 

amount in the RT calculation is 40 DU versus 200 DU. Quantitatively, if samples with SO2 

amounts less than 40 DU are excluded, the RMSE decreases from 1.48 to 1.15 km (Table 3.4). 

As with other sensitivity analyses, the RMSE and MAE in Table 3.3 are calculated between the 

predicted output from NN and the height from the independent test dataset.  

Table 3.4: The RMSE and the mean absolute difference of all data points in the test set under 

different conditions. For each condition, the appropriate points were removed and excluded in 

error calculations. All cases in this table used synthetic training spectra with added SNR 1000. 

  

All 

cases 

SO2 > 

20 DU 

SO2 > 

40 DU 

 SO2 > 

60 DU 

SZA < 

75º 

SO2 > 40 

DU and 

SZA < 

75º 

Albedo < 

0.6 

SO2 > 40 DU, 

SZA < 75º ,  

Albedo < 0.6 

RMSE 1.487 1.216 1.150 1.109 1.281 0.931 1.524 0.895 

Absolute Mean 

Difference (km) 

(Predicted – 

Actual) 

0.910 0.834 0.803 0.782 0.795 0.697 0.895 0.667 

 

Therefore, I can expect the retrieval to produce reasonable results for moderate to large volcanic 

eruptions. In widely dispersed plumes where the SO2 VCD is low or for volcanic degassing 

events, the retrieval would be less accurate . The second major dependency is on SZA. The 

problem here stems from the occurrence of relatively large errors in RT modeling due to shallow 

light paths and lower OMI SNR at the higher SZAs. Reasonably accurate results are to be 

expected only for SZA < 75º. Figure 3.5b shows significant differences in predicted and actual 

heights in spectra associated with large SZAs, after removal of low VCD samples.  
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Figure 3.6: SO2 Height Jacobians (dI/dz) for 4 different assumed SO2 column amounts. The 

Jacobians were calculated from the difference between two radiance spectra with 10 km and 20 

km SO2 height. All other physical parameters were identical in the calculation of the spectra. 

 

 

Due to these sensitivities, for the final training approach it was necessary to exclude 

spectra with large SZAs. Dependencies on other physical parameters are small when compared 

with these two issues discussed here, although there is some evidence that high surface albedo 

also increases error. If spectra with albedo > 0.6 are removed, there is a minor improvement in 

RMSE from 0.93 to ~0.89 km (Table 3.4). However, even with strong volcanic SO2 signals, I 

can realistically expect that on average the absolute error to be at least 1 km, due to inherent 

simplifications in the neural network retrieval approach. The errors in actual retrievals using 

OMI data are expected to be larger due to introduction of measured spectra (see Section 3.3).  

 

3.2 OMI SO2 Layer Height Results 

For testing the FP_ILM retrieval on OMI data, four volcanic eruption cases with 

sufficiently strong SO2 signals were selected (i.e., where peak SO2 VCDs were greater than 40 

DU). Each case is described in detail in the following subsections. For each case, comparisons 

were made to other satellite-derived datasets where available, for example the Cloud-Aerosol 

Lidar with Orthogonal Polarization (CALIOP) lidar instrument onboard the Cloud-Aerosol Lidar 
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and Infrared Pathfinder Satellite Observation (CALIPSO), the IASI SO2 layer height retrieval 

[Clarisse et al., 2014], and the GOME-2 [Efremenko et al., 2017] and TROPOMI retrievals 

[Hedelt et al., 2019]. It is important to note that the CALIOP lidar indicates the height of the ash 

plume rather than the SO2 height. Although ash and SO2 plumes are often collocated, this is not 

always the case, thus making direct comparisons difficult. In addition, CALIPSO measures one 

cross section of the plume and does not have the spatial coverage of the entire plume like OMI.  

3.2.1 Kasatochi (2008) 

Kasatochi is a volcano located on the Aleutian Islands of Alaska (52.178°N,175.508°W). 

It underwent a series of eruptions beginning late in the day on August 7th, 2008, which injected 

great amounts of ash and SO2 into the stratosphere. Overall, the explosion released roughly 2 

million tons of SO2, at the time the highest SO2 loading since the Mt Pinatubo eruption [Yang et 

al, 2010]. SO2 effective layer heights retrieved using the machine learning model for OMI (orbit 

21650) on August 10th, 2008, were around 11-12 km with some portions being slightly lower 

(Figure 3.7a). This is in reasonable agreement with previous SO2 height retrievals of 9-11 km 

which used the ISF algorithm for OMI [Yang et al., 2010], considering that the uncertainty of 

both retrievals are around 2 km. Likewise, Nowlan et al. [2011] showed that the majority of the 

plume was around 10 km, and up to 15 km in some parts. There is also agreement with IASI 

(Figure 3.7b) and CALIOP data (Figure 3.7d) which showed plume heights of 10-12 km and 

12.5 km respectively. The lidar data is considered the most accurate source, however it only 

offers one cross section of the plume in its overpass rather than full spatial coverage. It is 

important to note that the IASI overpass occurred later in the day than those for OMI and 

CALIPSO. Another verification source I used was the GOME-2 SO2 layer height retrieval that 

uses FP_ILM [Efremenko et al., 2017]. The study found a height of around 10 km and up to 14 
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km in areas of high SO2 loading for August 10th (Figure 3.7c). The GOME-2 overpass occurred 4 

hours earlier than OMI. The mean, median, standard deviation, and the inner quartile range 

(IQR) of the three retrievals (Table 3.5) also show good agreement for this case. Although the 

OMI results agree well in general with the results of these studies and datasets, the retrieval is 

less sensitive with respect to detecting variability in the SO2 layer height within the plume.  

 

 

Figure 3.7: Comparison between the volcanic plume heights from (a) OMI, (b) IASI, (c) 

GOME-2 and (d) CALIOP lidar 532-nm attenuated backscatter, for the 2008 Kasatochi eruption. 

The black dotted line in (a) shows the CALIPSO track. Some rows of OMI in this case were 

affected by the row anomaly, as seen by the gaps in the plume. The red dots in (d) show the OMI 

retrieval near the CALIPSO path and the black dashed line denotes the height of the ash plume 

observed by CALIPSO. 
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Table 3.5: Statistical comparisons of the SO2 height retrievals for two days of the Raikoke 

eruption and the Kasatochi eruption cases.  

  
Raikoke (June 23rd, 2019) Raikoke (June 24th, 2019) 

Kasatochi (Aug 10th, 

2008) 

Metric (km) OMI IASI TROPOMI OMI IASI TROPOMI OMI IASI GOME-2 

Std. 

Deviation 1.67 0.85 1.96 2.38 0.65 1.04 1.39 0.72 1.29 

Median 10.60 9.00 12.10 10.30 10.00 13.24 9.70 10.00 10.21 

Mean 10.20 9.63 12.15 10.00 9.83 13.30 9.84 10.40 10.02 

IQR 1.79 1.00 2.71 2.68 1.00 1.20 1.36 1.00 1.67 

 

3.2.2 Kelud (2014) 

Kelud, a stratovolcano located in East Java, Indonesia (7.935°S, 112.315°E), erupted on 

February 13th, 2014 at 1550 UTC, in the process depositing ash in a 500 km diameter around the 

volcano and leading to mass evacuations from nearby towns. Even though this case has 

somewhat lower SO2 VCDs than those from Raikoke and Kasatochi, the peak SO2 VCDs of ~60-

70 DU should still allow for retrievals with reasonable accuracy. The OMI retrieval results 

indicate that the maximum height of the main plume was 18-19 km (Figure 3.8b), although other 

studies suggest that several smaller layers of SO2 and ash were located as high as 26 km [Vernier 

et al., 2016] on the previous day. However, the SO2 loading at that level was most likely too low 

for an accurate retrieval using OMI radiances. CALIOP lidar detected ash plumes at around 19.5 

km and the IASI retrievals registered the plume at 17.5 km over the same area as that for OMI. 

The height of the ash plume from this eruption was also estimated using Multifunctional 

Transport Satellite (MTSAT 2) observations and transport modeling [Kristiansen et al., 2015]. 

That study found an injected height of around 17 km, which is in agreement with the OMI result, 

especially when considering the most probable heights on the PDF (Figure 3.9b). I note here that 

only a small portion of the plume was retrieved with our algorithm, given the relatively low SO2 

VCDs and interference due to the OMI row anomaly. It is promising to note that the OMI 
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retrieval was able to identify heights at the upper end of the height range used in the training 

phase. On the other hand, while the retrieval can extrapolate to heights above 20 km, the 

accuracy would likely degrade due to the lack of training data with heights outside of this limit. 

 
 

 

 

Figure 3.8: Comparisons of plume heights for the 2015 Calbuco eruption (left) and the Kelud 

eruption (right) for OMI (a,b), IASI (c,d) and 532-nm total attenuated backscatter from the 

CALIOP lidar (e,f). For OMI, only pixels with > 30 DU of SO2 are shown and retrievals were 

unavailable for some parts of the plume due to the row anomaly. The black dotted line in (a) and 

(b) marks the CALIPSO track. Direct comparison with CALIPSO was not possible due to 

obstruction by the OMI row anomaly 
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Figure 3.9: Probability histograms of SO2 effective layer height retrievals for (a) the Calbuco 

eruption on April 24, 2015 and (b) the Kelud eruption on February 14, 2014. 

 

3.2.3 Calbuco (2015)  

The Calbuco volcano is located in Chile (41.331°S, 72.609°W). The primary eruption 

had a volcanic explosivity index (VEI) of 4 and occurred on April 22nd with little warning. The 

primary plume ascended higher than 15 km, while plumes from smaller subsequent eruptions 

stayed in the troposphere. The volcanic plume spread northeast in the following days, resulting in 

flight cancellations at Uruguayan and south Brazilian airports. The OMI-retrieved SO2 effective 

layer heights in the area of greatest VCD was in the 15-17 km range (Figure 3.8a). In the same 

region, IASI results (Figure 3.8c) show similar plume heights, approximately around 15 km, 

although as with the previous events, the overpass times of the two instruments are different. 

CALIOP lidar shows the ash plume to at roughly 17 km (Figure 3.8e). Unfortunately, the 

overpass of CALIPSO occurs over an area of OMI’s swath that is affected by the row anomaly, 

and this makes a direct comparison unfeasible. Nevertheless, the CALIPSO aerosol layer height 

is still comparable to OMI-retrieved effective SO2 layer heights for the portion of the plume 

further to the west. The retrieval for OMI is consistent with the other instruments for SO2 
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plumes, with the exception of the part of the plume with low SO2 amounts (< 30 DU) for which 

results were not plotted in Figure 3.8a due to lower biases. 

3.2.4 Raikoke (2019) 

The eruption of the Raikoke stratovolcano (48.2932°N, 153.254°E), located on the Kuril 

Islands of Russia, occurred on June 21st, 2019 at 1800 UTC. A series of explosions during the 

eruption sent large amounts of ash and SO2 into the lower stratosphere. Maximal loadings of SO2 

measured by OMI and other sensors exceeded 500 DU. In the following days the plume 

underwent dispersion and spread out over the northern Pacific Ocean and later over eastern 

Russia. Early estimates of plume injection height for the eruption were predominantly in the 10-

13 km range with potentially larger heights in some areas of the plume. In Figures 3.10a and 

3.10b, the SO2 effective layer heights retrieved from OMI data are shown for the Raikoke plume 

on June 23rd and June 24th respectively. The plume heights for both days are predominantly in 

the range 10-12 km, although some areas of the plume had estimated peak heights of 13-14 km. 

In comparison, the TROPOMI results show slightly larger heights (13-14 km) for June 24th and 

similar heights to OMI for June 23rd (Figure 3.10c and d). The difference may partially be due to 

the finer resolution of TROPOMI and catching more of the peak heights than OMI. The IASI 

SO2 height product also shows fairly good agreement, with heights mainly at the 10-11 km level 

(Figure 3.10e and f). It is also useful to look at a distribution of heights predicted for the domain 

(Figure 3.11) in order to get a more quantitative comparison between the datasets. Based on this 

distribution, there is clearly at least 2 km difference between the most probable heights from 

OMI and those from TROPOMI for June 24th (Figure 3.11b and d) and slightly lower heights in 

the distribution for IASI. This is also displayed in Table 3.5 which shows a 2-3 km difference in 

the mean and median of retrieved heights between OMI and TROPOMI.  
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Figure 3.10: The SO2 layer height retrieval for the Raikoke eruption plume on June 23rd, 2019 

(left) and June 24th, 2019 (right) for the OMI (a, b), TROPOMI (c, d) and IASI (e, f) instruments. 

For all 3 sensors, only pixels where SO2 VCD > 30 DU are shown.  
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Figure 3.11: Probability histograms of SO2 layer height retrievals for (a,b) OMI and (c,d), 

TROPOMI on June 23rd, 2019 (left) and June 24th, 2019 (right) and (e,f) IASI. Only pixels with 

SO2 column amount greater than 30 DU are included. These plots correspond to the results 

plotted in Figures 3.10a-f.  

 

Additionally the IQR and standard deviation provide a quantitative measure of the variation 

in the distribution of the retrieved heights, which can change from one orbit to another. Note that 

points with lower than 30 DU are not included in the PDFs for all sensors. The results are also 

compared with CALIOP lidar onboard CALIPSO, which shows ash plume heights of 12-13 km 

for both days (Figure 3.12a and b). Although there is overestimation for some OMI pixels, 
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especially for June 24th, the section of the plume with the CALIPSO flyover has similar heights 

(around 12.5 km) to lidar-determined aerosol layer altitudes. Lastly, I note that a recent study 

highlighted probabilistic height retrievals using the Crosstrack Infrared Sounder (CrIS) for 

Raikoke. This study found a median height of 10-12 km across a large part of the plume, 

however with some areas upwards of 15 km. While there are some notable differences across all 

of the datasets, the OMI retrieval for this case falls within the general consensus of plume height 

estimates for this volcanic event.  
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Figure 3.12: CALIPSO lidar 532-nm attenuated backscatter for the Raikoke eruption on (a) June 

23rd and (b) June 24th, 2019. The black dashed line symbolizes the height of ash plume seen by 

CALIPSO and red dots show the results from the OMI retrieval along CALIPSO’s flight path. 

The flyovers occurred shortly after 01:30 and 00:30 UTC on June 23rd and 24th respectively, 

around the same time as OMI. 

 

3.3 Discussion 

It is clear that predicting SO2 layer height with FP_ILM is an efficient process, but one 

that is not flawless in terms of accuracy. As comparisons between instruments/retrievals have 

shown, on average there were 1-2 km differences in heights, especially for the Raikoke event, 

although I consider this to be good agreement given the estimated MAE and RMSE associated 

with this retrieval. In this regard, the retrieval is an approximate estimate of the SO2 plume 

height rather than a precise determination Differences in the retrieved heights between different 

studies/algorithms result from differences in instruments, forward model assumptions and 

retrieval techniques as well as uncertainties in each retrieval. For instance, IASI is a thermal IR 

instrument and its retrieval does not use FP_ILM. Therefore exact agreement with IASI results is 

difficult to achieve, especially since the IASI retrieval itself has a stated error range of ±2 km, 

although its retrievals serve as a good verification dataset. The stated uncertainty for TROPOMI 

retrievals [Hedelt et al., 2019] is ~2 km for SO2 amounts of greater than 20 DU, similar to our 

estimated uncertainties for OMI. While the general retrieval approach for TROPOMI [Hedelt et 

al., 2019] is similar to that for OMI in the present study, there are also important instrument 

differences that can lead to differences in the retrieved heights between the two instruments, such 

as the pixel size, noise, radiometric accuracy and the level of degradation. TROPOMI has a 

much finer spatial resolution compared to OMI, with footprints typically 5.5 × 3.5 km2 up to 

maximum size 7 × 3.5 km2; TROPOMI also has larger maximal SO2 signals. Consequently, 

TROPOMI is better able to resolve localized variations in the height throughout the plume and is 
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likely to be more accurate overall due to better SNR. However, current TROPOMI L1 data are 

known to have issues with instrument degradation and radiometric accuracy in the UV spectral 

range [Ludewig et al., 2020]; this could be a potential contributing factor the differences between 

the two instruments. OMI retrievals show more or less uniform height levels across the entire 

plume with the peak heights in areas with the best SO2 signal. Note, CALIOP lidar profiles 

sometimes show disagreements with OMI retrieved heights, because CALIOP only identifies the 

height of the ash or aerosol plume. It also offers a comparison for only a single cross section of 

the entire plume per orbit. Despite the uncertainties, the consensus provided by different 

instrumental datasets can provide a reasonable estimate for the SO2 layer height, and if done in 

near real time, can aid in decision making with regards to aviation safety.  

  Another source of error is present in the training phase. One difficulty here is finding the 

ideal choice of neural network setup. With many parameters to consider, such as the number of 

input PCs, number of layers, number of nodes, learning rate, regularization, weight initialization, 

etc., it is very time consuming to optimize the neural network setup. The relatively simple 

configuration that I found performed reasonably well with both test data and real OMI 

measurements for all scenarios and events considered. However, even after optimization of the 

parameters, random error inherently exists in the neural network. A measure of random error can 

be obtained by altering the random state of the neural network whilst keeping other parameters 

constant. For ten trial runs with different random seeds, variations of the MAE error were around 

0.15-0.2 km (Table 3.6).  
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Table 3.6: Effect of altering random seed number on error obtained using the test dataset, and 

the SO2 height retrieval result after application to OMI. For the results, heights for two different 

pixels within the orbit from the Raikoke event (June 24th, 2019) are shown. Heights were 

retrieved using separate inverse models trained using 10 random states.  

  
Random Seed 

Number 
1 2 3 4 5 6 7 8 9 10 

NN Training 

error 

Abs. Mean 

Error 0.98 1.14 1.03 1.16 1.08 1.18 1.05 1.01 1.12 0.98 

RMSE 1.69 1.85 1.71 1.78 1.79 1.92 1.71 1.67 1.73 1.70 

Application 

(Raikoke - 

OMI Orbit 

79463) 

Sample pixel 1  10.52 10.69 10.49 9.72 9.98 10.23 10.53 10.19 10.07 10.48 

Sample pixel 2 12.42 13.15 12.08 11.70 11.88 12.01 12.38 11.22 11.94 12.16 

 

 

Although the differences in the errors calculated with the synthetic test data are relatively 

small, larger changes can be expected during the application phase. Indeed, when applying the 

inverse models to OMI, there is noticeable, up to 1 km variation in the retrieved height for the 

same pixels. It is thus difficult to improve results further than ~1 km absolute error, even in the 

training phase. In the application phase, some additional error comes from the differences 

between synthetic spectra and real satellite measurements with noise errors. For example, with 

an SNR of 500 used in training, which is a typical noise level for OMI, the RMSE of the neural 

network prediction is around 1.25 km (see Table 3.2).  

This can be considered the lower limit of retrieval error when the inverse operator is used 

on OMI measurements. Lastly, some deviations between the measured and synthetic training 

spectra originate from the RT modeling. The calculations contain several assumptions including 

the SO2 plume shape, atmospheric profiles, gas profiles, and a molecular scattering atmosphere. 

Further testing is required in order to determine if the inclusion of aerosols in RT calculations 

would improve the algorithm performance. 

 



 83 

3.4 Conclusion 

In this study I introduced a new algorithm for OMI retrievals of the volcanic SO2 

effective layer height from UV earthshine radiances. This algorithm is based on an existing 

FP_ILM method which combines a computationally time-consuming training phase with full 

radiative transfer model simulations and a machine learning approach to develop a fast inverse 

model for the extraction of plume height information from radiance spectra. Fast performance 

means that the algorithm can be considered for operational deployment, given that the retrieval 

of a SO2 layer height prediction from the inverse model takes only a matter of milliseconds for a 

single OMI ground pixel. For the training, a synthetic dataset of earthshine radiance spectra were 

created with the LIDORT-RRS RT model for a variety of conditions based on choices of 8 

physical parameters determined with smart sampling techniques. A dimensionality reduction was 

performed through PCA in order to reduce the complexity of the problem and to separate those 

features that best capture the great majority of variance of the dataset; 8 principal components 

were sufficient for this purpose. Dimensionally-reduced data together with the associated 

parameters were used to train a double hidden-layer neural network to predict SO2 plume height 

from any given input data. The PCA from the training phase and the inverse operator resulting 

from the optimal NN framework were then applied to real satellite radiance spectra and 

parameters to get retrieved values of SO2 plume heights for several volcanic eruption events. 

Through comparisons with CALIPSO lidar overpasses, as well as TROPOMI and IASI 

retrievals, it was shown that the retrieval for OMI can estimate reasonable SO2 layer height for 

all the events considered, with absolute errors in the range of 1-2 km. These results can give an 

indication of plume heights achieved during medium- to large-scale eruptions, and guide 

important decisions in aviation hazard mitigation. For all events treated in this study, there was 
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general agreement with CALIOP lidar, although SO2 could not be retrieved for the locations of 

the CALIPSO flight path for the Kelud and Calbuco cases due to OMI row anomaly issues.  
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Chapter 4: Application of SO2 Layer Height Retrieval 

4.1 Application of the algorithm to other instruments 
  

In Chapter 3, the new OMI SO2 layer height retrieval with the FP-ILM algorithm was discussed. 

One of the advantages of this algorithm is that it is not restricted specifically to OMI. It has 

already been used for TROPOMI and GOME-2 retrievals and can be applied to other UV 

instruments as well. The process of implementing the algorithm with other instruments is similar 

to that for OMI, and involves multiple steps including PCA of the data and training of the neural 

network. The main difference in the retrieval process between different instruments is that during 

the training phase, the synthetic spectra are convolved with the instrument slit functions (or 

spectral response functions) that are unique to the specific sensor. The SNR in the added noise 

can also depend on the instrument. The training process of the neural network was therefore 

adjusted to account for the instrument-specific slit function and SNR. I applied the FP-ILM 

algorithm to two additional instruments – the Ozone Mapping and Profiler Suite (OMPS) 

onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite, and the newer copy of 

the instrument on board the NOAA-20 satellite (NOAA-20 OMPS).  

4.1.1 Background on SNPP/OMPS and NOAA20/OMPS 

 The Suomi-NPP OMPS instrument has been in operation since 2011 [Flynn et al., 2014] 

 and like OMI has been used for retrievals of ozone, SO2, and other gases. It measures 

backscattered UV radiances in the 300-380 nm range. OMPS contains a nadir mapper with a 

2800 km cross track, 36 cross track positions, a 50 km × 50 km spatial resolution at nadir, and a 

spectral resolution of ~1 nm. These resolutions are both coarser than OMI, which has 13×24 km 

resolution at nadir and ~0.5 nm spectral resolution. Although the relatively coarse resolution can 

lead to dilution in SO2 signals from anthropogenic and small degassing volcanoes as compared 
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with OMI, OMPS has a higher SNR of around 1500 at 310 nm [Yang et al., 2013]. Another 

advantage of OMPS is that it does not suffer the same instrument issues as OMI, namely the row 

anomaly (see section 1.2), which reduces the quality and spatial coverage of the instrument 

radiance data. Therefore, OMPS together with OMI can provide better overall coverage, as well 

as being a useful source for intercomparisons for SO2 amount and SO2 height retrievals. As a 

newer instrument, OMPS can also continue the existing OMI data records of ozone and SO2. The 

OMPS SO2 VCD retrievals are currently produced with the same PCA algorithm that is used for 

the OMI SO2 product. These retrievals have been found to be consistent with OMI for moderate 

to large volcanic eruptions (Li et al., 2017. Although OMPS has lower sensitivity for 

anthropogenic point sources than volcanic, another study found that the correlation between the 

two instruments is still around r= 0.9 for anthropogenic SO2 sources on average globally [Zhang 

et al., 2017]. The same study also notes that OMPS can detect 50% of 10-50 kt yr-1 emission 

sources and 100% of sources greater than 130 kt yr-1 that are detected by OMI. As with the OMI 

product, the OMPS SO2 product also has different retrieved VCDs using the same assumed 

reference plume center heights – 3 km (lower troposphere), 8 km (mid troposphere), 13 km 

(upper troposphere) and 18 km (lower stratosphere). 

 Operations for the NOAA-20 OMPS instrument began in late 2017, as part of the Joint 

Polar Satellite System (JPSS-1). It flies ~50 min ahead of SNPP OMPS in the same Sun-

synchronous orbit. It is similar to SNPP/OMPS but operates at significantly finer spatial 

resolution. The nadir mapper of NOAA-20/OMPS has a 17 km×17 km spatial resolution from a 

nadir viewing position due to less co-adding of pixels. This gives the NOAA-20 more utility at 

observing volcanic plumes in better detail compared to the lower resolution instruments. 

However, it is important to note the NOAA-20 OMPS has not been as thoroughly calibrated as 
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the SNPP/OMPS, which may lead to biases in the SO2 height retrievals. It also has a lower SNR 

due to the higher resolution. 

4.1.2 FP-ILM Results 

 The 2019 Raikoke eruption was chosen as the test case for the retrievals of the OMPS 

instruments, as it is a large eruption with a strong SO2 signal that was captured by both OMPS 

instruments. The SO2 layer height retrievals were tested for two orbits on June 24th, 2019 (Figure 

4.1). Results can also be compared to OMI results in Chapter 3 since the overpass times are 

generally within one hour for each day.  

Figure 4.1: Mapped SO2 layer heigh retrievals for (a) orbit 8253 and (b) orbit 8267 of NOAA-20 

OMPS, and (c) orbit 39649 and (d) orbit 39663 of SNPP/OMPS. Pixels with SO2 VCD < 20 DU 

are excluded. The Data corresponds to overpasses on 06/23/2019 and 06/24/2019 around 00Z, 

the second and third day after the start of the eruption. The overpass of NOAA-20 occurs 50 

minutes ahead of SNPP/OMPS. 
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Figure 4.2: Probability density histograms of SO2 layer height retrievals for (a,b) NOAA-20 

OMPS and (c,d), SNPP/OMPS on June 23rd, 2019 (left) and June 24th, 2019 (right). Only pixels 

with SO2 VCD greater than 20 DU are included in the calculation. These plots correspond to the 

results plotted in Figures 4.1a-d. 

 

Overall the results for SNPP/OMPS and NOAA-20 OMPS are consistent with OMI within the 2 

km uncertainty range. The differences in mean and median between instruments are less than 1 

km which is consistent with the peaks of the height distributions (Figure 4.2). The probability 

density functions of the results (Figure 4.2) shows that the NOAA-20/OMPS retrieved SO2 

heights are centered at around ~9 km which is slightly lower than SNPP/OMPS, which had a 

mode at 10-10.5 km. The standard deviation and inner quartile range for the OMPS instruments 

are higher (by around 0.5 km and 1-1.5 km respectively) than OMI the retrieval, which indicates 

slightly larger spread the retrieved SO2 layer heights across the plume domains. It is possible the 
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retrieval algorithm may be further refined for the two OMPS instruments; however, for a 

preliminary test the results show fairly good agreement. 

 

Table 4.1: Statistics of OMI, SNPP/OMPS and N20-OMPS height retrievals for the Raikoke 

eruption case. 

 
Raikoke Day 1 (06/24/19 00Z)  Raikoke Day 2 (06/24/19 23Z) 

Metric (km) OMI SNPP/OMPS N20-OMPS OMI SNPP/OMPS 
N20-

OMPS 

Standard Deviation 2.38 2.73 2.93 1.67 1.97 2.17 

Median 10.30 10.27 9.46 10.60 9.75 9.44 

Mean 10.00 10.11 9.52 10.20 10.00 9.21 

IQR 2.68 2.87 3.38 1.79 3.10 2.55 

 

 The promising results show that the FP-ILM algorithm can be applied to more 1 

hyperspectral UV instruments and thus build a long-term data record of volcanic SO2 layer 

heights from multiple satellites. Given the excellent signal to noise ratio of OMPS and improved 

spatial resolution in the case of NOAA-20 OMPS, these instruments would be ideal for 

operational NRT retrievals of volcanic SO2 layer height. 

 

4.2  Volcanic Plume Tracking 
 

The second application of the SO2 plume height retrieval is to aid in plume forecasting. 

While satellite observation of the SO2 height via the retrievals provides useful information about 

the current state of the volcanic plume, another crucial component is forecasting where the 

plume will go in the near future. This can give advanced warning for addressing aviation safety 

concerns. In general, the transport of a constituent such as ash or SO2 is simulated through a 

chemical transport model or a trajectory model combined with initial meteorological conditions, 

that can track where an air parcel will go hours or days into the future. For instance, the model 
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used by NASA for volcanic applications is the GEOS-5 earth system model coupled with the 

Goddard Chemistry Aerosol and Radiation (GOCART) module [Chin et al., 2000; Colarco et al., 

2010]. It performs simulation with an input of SO2 and ash flux from the eruption and an 

assumed injection height. Due to their speed and simplicity, trajectory models can have an 

advantage in producing quick and relatively accurate forecasts. In this section, the ability of 

using the retrieved SO2 height within the HYSPLIT trajectory model is demonstrated for 

forecasting the movement of the plume. While a full chemical transport model would incorporate 

more details such as fluxes and chemical processes, HYSPLIT is a suitable tool for solely 

determining the future location and height of an SO2 plume. One of the most important 

parameters is the SO2 height, which can strongly affect the forecast produced by both chemical 

transport and trajectory models. In many cases the height is estimated rather than observed which 

can lead to some inaccuracies; thus it is important to have SO2 height retrieval algorithms. In this 

section I will use my retrieved height as input into the HYSPLIT to assess plume forecasts. 

 

4.2.1 HYSPLIT Trajectory Modeling 

To demonstrate how the retrieved SO2 height can be applied, I use forward trajectories calculated 

by HYSPLIT from a grid of starting points (Figure 4.3). The points are composed of re-gridded 

height retrievals in the vicinity of the volcanic plumes of interest.  
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Figure 4.3: Starting grid setup with the SO2 layer heights from OMI FP-ILM retrieval for (a) 

Kasatochi case and (b) Raikoke case. The heights used are from OMI orbit 21650 and 79449 

respectively. Each point with the associated altitude represents a single starting point for a 

HYSPLIT trajectory calculation. 

 

As described in Chapter 2, the trajectory calculation is initialized with the starting coordinates 

and altitude of the air parcel, along with the meteorological data such as temperature, pressure, 

and wind data for the starting day and time. The meteorological dataset used for this application 

was the NCEP Global Data Assimilation System (GDAS) that has a horizontal resolution of 1° 

latitude by 1° longitude and contains 23 vertical layers. Forward trajectories were calculated for 

3 days into the future from the initial observation. I note that the OMI overpass does not occur 

exactly the same time each day but rather around an hour earlier than the previous day. Therefore 

the trajectory data analyzed here were for 23, 46, and 69 hours from the start time. The OMI SO2 
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Layer height was re-gridded to a 0.5° by 0.5° grid that covers the domain of the volcanic plume. 

It was then used an input into HYSPLIT as the starting altitude. Since the plume height can be 

somewhat uncertain, a vertical SO2 profile was assumed with a near Gaussian distribution within 

±2 km of the retrieved height (Figure 4.4). The 3D grid initialized into the model contained 

thousands of points, the exact number depending on the size of the domain covered by the 

plume.  

 
Figure 4.4: Example of the distribution of SO2 height for a single grid point in the HYSPLIT 

initialization. The rod dots indicate all the points where the trajectory is initialized. The 

distribution is centered around the retrieved height from FP-ILM interpolated at that point. The 

total SO2 amount for this particular point was 149.7 DU and the center height is 10.34 km.  

  

The two cases considered for this analysis were the Raikoke and Kasatochi eruptions. These 

were chosen since there were multiple consecutive days of coverage from OMI with relatively 

strong SO2 signals. Height retrievals for OMI Orbit 79463 (Raikoke) and Orbit 21650 

(Kasatochi) were used to initiate the trajectory model. After the trajectory calculation, the 
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endpoints at 23, 46 and 69 hours are compared with the retrieved heights for the corresponding 

orbits during the following OMI overpasses. 

 

Figure 4.5: Trajectory endpoints of HYSPLIT calculations at (a) 23 hours, (c) 46 hours and (e) 

69 hours from the OMI orbit 21650 observation. The points are color coded based on the height. 

The OMI SO2 layer height retrieval for (b) orbit 21664, (d) orbit 21678 and (f) orbit 21992 are 

shown for comparison of each time frame. The HYSPLIT calculation was initialized at 01 UTC 

on August 10, 2008, which matches with the observation time of OMI orbit 21650. 
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For the Kasatochi eruption (Figure 4.5), the endpoints are spatially aligned with OMI 

observations, especially the portion with the densest cluster of points. Comparing the altitudes of 

the end points with height observations is more difficult. This is due to the fact that HYSPLIT 

calculations can vary based on meteorological conditions at different altitudes and low biases 

originating from the lower heights in the initial SO2 profile. The third day shows the least 

agreement where the retrieved OMI heights for orbit 21692 are 12-14 km in a big bulk of the 

plume and only 10-12 km in the final trajectory endpoints. The trajectory error also likely 

increases in HYSPLIT by 15-30% of the distance traveled [Draxler and Rolph, 2007] thus 

making longer forecasts more uncertain. Lastly, there is some potential uncertainty due to the 

GDAS meteorological data used in this analysis as it is a relatively coarse resolution. 
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Figure 4.6: Trajectory endpoints from HYSPLIT calculations at (a) 23 hours, (c) 46 hours and 

(e) 69 hours for the Raikoke eruption. The points are color coded based on the height. The OMI 

SO2 layer height retrieval for (b) orbit 79463, (d) OMPS orbit 39677 and (f) OMPS orbit 39692 

are shown for comparison of each time frame. The HYSPLIT calculation was initialized at 1 

UTC on June 23, 2019 at 00 UTC which matches with the observation time of OMI orbit 79449. 

 

In the Raikoke case (Figure 4.6) the plume moved relatively slowly and did not move as far from 

the initial observation, staying between 50-60° N and 170-180° E. The trajectory results confirm 

this and are comparable to the OMI SO2 height fields. 

For more quantitative comparisons, I calculated the difference in the center of mass 

between the observed height retrieval field and the trajectory endpoints. I also compare this 

quantity between the FP-ILM starting altitudes and those from two reference model runs, one 
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using the OMI TRU product with a 13 km reference height to initiate the trajectory model, the 

other using the OMI TRM product with an 8 km reference height. For a 1-3 day forecast the 

error in the plume center between the OMI observation and the trajectory clusters is less than 150 

km (Table 4.2). The TRU reference run had comparable results while the TRM reference run 

performed worse in forecasting the plume center. The plume center was defined as the center of 

mass of all points or pixels with an SO2 VCD > 1 DU in the domain which was calculated as the 

weighted average location. 

 

Table 4.2: Distances between the center of masses of the OMI observation and the modeled 

plume from HYSPLIT.  

 

In order to account for the spread of the plume, the location metric [Prata et al., 2021] was used. 

It is defined as: 

𝐿 = 𝐿1 + 𝐿2               ( Eq. 4.1) 

The first term L1, is the difference in the center of mass of the plume between the HYSPLIT 

result and OMI height field. L2 is the difference in weighted average distances of the two fields. 

The average distance is obtained by taking the mean of the differences between the center of 

plume and each individual data point in the domain. After normalization, the metric L has a 

range of 0-2, with 0 representing a perfect agreement between the forecast and observed plumes. 

Overall, the forecast using FP-ILM input has similar performance with the reference one using 

HYSPLIT Height 

Input 

Raikoke 

distance 

from obs 

(24h traj) 

[km] 

Raikoke 

distance 

from obs 

(48h traj) 

[km] 

Raikoke 

distance from 

obs (72h 

traj)[km] 

Kasatochi  

distance 

from obs 

(24h traj) 

[km] 

Kasatochi  

distance 

from obs 

(48h traj) 

[km] 

Kasatochi 

distance 

from obs 

(72h 

traj)[km] 

FP-ILM  124 129 156 75 91 111 

TRU Ref (13 km) 105 156 127 79 69 93 

TRM Ref (8 km) 201 344 354 144 172 193 
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the TRU (13-km) retrievals for model initialization (within 0.1 for all cases). The small 

difference in L may possibly be attributed to similar meteorological transport at the 13 km level 

and 10-11 km (FP-ILM retrieved height). It is also notable that based on the location metric the 

error is greater for the day 3 (69h) calculation. This shows that although the general location of 

the plume is well predicted by HYSPLIT, this method is most accurate for 1-2 day forecasts 

especially in a plume such as Kasatochi’s, where it disperses and covers a large area. 

 

Table 4.3: Location metric (L) for the FP-ILM inputs and the OMI TRU SO2 Column Amount 

dataset at 23, 46, and 69 hour of the HYSPLIT trajectory calculation. 

 Raikoke 

23h 

Kasatochi 

23h 

Raikoke 

46h 

Kasatochi 

46h 

Raikoke 

69h 

Kasatochi 

69h 

FP-ILM 0.1285 0.1495 0.211 0.155 0.283 0.526 

TRU (13 km height) 0.154 0.195 0.1 0.118 0.303 0.5008 

 

 

 

4.2.2 Reconstructed Vertical Profiles 

After trajectory calculations, the vertical SO2 profile can be reconstructed. Initially each 

starting point in the grid contains an amount of SO2 based on the OMI SO2 VCD data for the 

orbit. Assuming each grid point is an air parcel with that specific amount of SO2, by tracking 

each parcel within HYSPLIT I can get an idea of where it will end up. Note that the SO2 would 

be lost over time through various chemical and physical processes that are ignored in the present 

study. Despite this, the vertical distribution of SO2 within the core part of the plume can be 

estimated using the HYSPLIT calculated trajectories. This was done by obtaining a sum of SO2 

amount for twenty nine 0.5 km layers between 4.5 and 18 km along a Gaussian distribution, 

excluding points that were originally outside of the main plume detected by OMI. The sums were 

normalized to show a relative weight for the profile (Figure 4.7). However, knowing the 
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approximate structure can be useful as a supplement to volcanic plume forecasts ahead for up to 

48 hours. 

 
 

Figure 4.7: The reconstructed SO2 vertical profile using trajectory endpoints for (a) 23 hours 

and (b) 46 hours. The profiles correspond to the points in Figure 4.4a and 4.3b respectively. The 

weight is a measure of how much each layer contributes to the total mass of the plume.  

 

Figure 4.8: The reconstructed SO2 vertical profile using trajectory endpoints for (a) 23 hours and 

(b) 46 hours. The profiles correspond to the points in Figure 4.4a and 4.4b respectively. The 

weight is a measure of how much each layer contributes to the total mass of the plume.  
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The reconstructed SO2 profiles show that the dominant height in the Kasatochi case (Figure 4.7) 

is 11 km for both the 1 and 2 day trajectories. There are also low biases as evidenced by 

secondary peaks at around 8 km, which are expected given the known low biases in the original 

OMI SO2 LH retrievals. The assumed Gaussian distribution in the starting heights also 

introduces lower initial heights into HYSPLIT. The Raikoke distribution (Figure 4.8) for both 

days shows a peak at around 10 km and smaller amounts of SO2 above 12 km. As discussed in 

the SO2 height retrieval results, this is lower than the TROPOMI estimates but agrees with the 

IASI retrieved heights. This is supported by a study [ de Leeuw et al., 2021] which compares the 

emission profiles constructed from IASI observations (VolRes 1.5) with one based on 

TROPOMI VCDs (StratProfile); the former has a center height at 10 km with a smaller peak near 

14 km, while in the latter, the largest portions of SO2 are found at 12-13 km. In their simulations 

using these two profiles, the difference in center altitude caused different percentages of the SO2 

to be emitted into the lower stratosphere and upper troposphere. Overall the StratProfile agreed 

better with TROPOMI observation of peak mass burden and e-folding time. This shows that 

estimates of injection height are crucial for modeling the dynamics of the SO2 plume.  

4.2.3 Discussion 

The results in sections 4.2.1 and 4.2.2 demonstrate how the SO2 layer height retrievals can be 

integrated with HYSPLIT in order to forecast the movement and height of the plume up to 2-3 

days with reasonable accuracy. The greatest advantage of this type of application is also the 

speed of the forecasts. Producing quick and reliable ways of tracking and forecasting volcanic 

plumes will be of great value for addressing aviation disruptions caused by these eruptions. As 

discussed previously, the FP-ILM height retrieval can be performed in a matter of minutes which 

makes it suitable for near real time operations. Likewise, HYSPLIT while less complex than 
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other models, has the advantage of speed in performing the trajectory calculations. Even for a big 

domain like the Kasatochi case where 9000 initial points were used, the trajectories can be 

calculated for 3 days in under 10 minutes. Therefore, it would be feasible to have an operational 

framework for this application (Figure 4.9). First, the OMPS SO2 heights would be retrieved 

with the most recent OMPS Level 1 radiance data the product for which is readily available for 

operational use. By using available OMPS SO2 Column Amount data, an automated script can 

determine if there is SO2 above a certain threshold in order to initiate the plume tracking. The 

operational system would then set the domain of the grid based on the observed plume location. 

The gridded SO2 LH data and grid coordinates would be fed into HYSPLIT, which would then 

perform the forward calculations for up to 72 hours. Note that only one model run is needed 

since the location and altitude data is calculated for each intermittent hour up to the maximum 

time (72h). A readily available meteorological dataset such as the output from the NCEP GFS 

with a 0.25° by 0.25° grid would be fed into HYSPLIT. After the trajectory calculations the 

endpoints can be re-gridded into a height field forecast for that particular time. Height profiles as 

shown in Figures 4.7 and 4.8 would also be obtained. This would provide information on the 

vertical distribution of the SO2, and determine the most likely plume height for the desired 

forecast time. Errors in the initial SO2 profile, in particular the center height can potentially 

affect the forecast accuracy. Since there is quite a bit of variation in the final altitude of trajectory 

endpoints, the reconstructed height profile can give better confidence for a probabilistic forecast. 

Note that the OMPS instrument should be used for operational application instead of OMI since 

it does not have row anomaly issues that can reduce spatial coverage. Nonetheless, future work 

on this application will need to address the issue of collocation of ash and SO2 as it is the ash that 

poses the greatest risk to airplanes. While in many cases SO2 can be used as a proxy for volcanic 
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ash, in some situations SO2 can be separated from the ash plume especially if wind shear is 

present and the injection heights are different between the two species [Sears et al., 2012]. 

Additionally, ash has a shorter lifetime than SO2 due to gravitational settlement. Therefore using 

a method like this in conjunction with ash plume models could be useful for volcanic plume 

forecasting. 

 
Figure 4.9: Flowchart of a potential operational volcanic SO2 plume forecast system using 

HYSPLIT and retrieved OMPS SO2 layer heights. Rectangles indicate datasets while circles 

indicate a computational step. 

 

4.3 SO2 Mass Estimates Using Retrieved Heights 

The second application of FP-ILM OMI retrieval is using it in estimations of the total SO2 mass 

in the plume. Determining the SO2 mass from eruptions is important as it is used to determine the 

SO2 flux from the volcano which in turn is used as an input to chemical models and data 

assimilation systems. It is also important to determine the amount of SO2 being injected into the 

stratosphere where it can perturb the climate system. Obtaining the flux of SO2 from volcanoes is 
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less straightforward and more challenging than the total mass. Flux can be estimated with one of 

three methods - the transect method, the delta-M method or the inverse method [Theys et al., 

2013]. The transect method takes into consideration the variable wind speed and a defined 

transect perpendicular to the plume. Delta-M method requires successive satellite overpass data 

and aims to invert the mass conservation equation. Lastly, the inversion method requires 

additional dispersion models, for example the FLEXPART dispersion model [Stohl et al. 2005], 

and a known mass loading. On the contrary, SO2 mass can be calculated directly from just 

satellite observations. The total mass is determined by calculating the sum of the mass for each 

individual OMI pixel. The individual pixel mass is the product of the VCD, area of the pixel and 

a conversion factor (1 DU = 0.02848 g SO2 m-2) 

𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑠𝑠 =  ∑ 𝑉𝐶𝐷𝑝 ∗ 𝐴𝑝 ∗ 0.02848𝑛
𝑝=1       (Eq 4.2) 

 For OMI, mass estimates can be obtained with the standard OMI SO2 VCD products with an 

assumed reference height. In reality, the actual plume heights can be quite different from the 

assumed plume height in the standard VCD retrievals. Additionally, the heights of the SO2 can 

be variable throughout the plume. Thus it is beneficial to use the retrieved heights to “correct” 

the SO2 amounts and to account for height variations across the plume. In this case, the FP-ILM 

retrieved height would be used to generate a new VCD field that is interpolated from OMI 

standard SO2 VCD retrievals assuming different reference heights. For example, a pixel with a 

retrieved height of 10 km would have a VCD value between the TRM VCD (assumed plume 

height of 8 km) and TRU VCD (assumed plume height of 13 km).  

These calculations were performed for the Raikoke and Kasatochi cases in order to 

determine the total SO2 mass of the plume for several days of the eruption in the following 
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section. Comparisons are also made with the OMPS instrument, as well as previous estimates in 

literature. 

4.3.1 Raikoke Mass Estimates 

The interpolated VCD field was calculated for OMI orbits 79449 and 79463 which 

correspond to June 23rd, 2019 at 00 UTC and June 24th, 2019 at 01 UTC. A noticeable difference 

between the two days is that the plume was more concentrated on the first of the two orbits as 

seen by the swath of VCD greater than 250 DU in the middle of the plume. On the following day 

the plume was more spread out and had VCDs of 100-200 DU, Based on the interpolated VCD 

fields (Figure 4.10), the calculated total SO2 mass was 1.71 Tg and 1.633 Tg for June 23rd and 

June 24th, respectively (Table 4.4). Given that this is only a few days after the eruption, most of 

the SO2 has not been oxidized and dispersed, hence the similar total mass for the two days. The 

same mass calculation was also done with SNPP/OMPS for comparison. For the first day, the 

calculated total mass for OMPS orbit 39649 was 1.602 Tg while for the second day it was 1.66 

Tg (Table 4.4). This agrees well with the OMI estimates, indicating consistent VCD retrievals 

with the same PCA-based algorithm between the two instruments. The mass estimates also agree 

with recent findings using the TROPOMI and IASI instrument [de Leeuw et al., 2021]. This 

study found peak loadings of around 1.5 ± 0.2 Tg for the Raikoke eruption during the early 

stages of the eruption with 0.4-0.7 Tg injected into the lower troposphere and 0.9-1.1 Tg into the 

lower stratosphere. These values were based on IASI observations and the Volcanic Response 

(VolRes) emission profile. The estimates for a SO2 profile derived with TROPOMI VCD 

observations were 1.4-1.6 Tg.  
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Figure 4.10: The OMI Column Amounts calculated by interpolating the FP-ILM retrievals with 

the standard SO2 products for (a) June 23rd at 2352 UTC (OMI orbit 79449) and (b) June 24th, 

2019 (OMI orbit 79463) at 0045 UTC. All pixels with VCD > 5 DU are shown.  

 

Table 4.4: Estimated total SO2 mass of the interpolated VCD field, the TRM (8 km reference) 

product and TRU (13 km reference) product for two days of the Raikoke eruption. The OMI 

estimates are calculated with orbit 79449 and 79463 and orbits 39649 and 39663 for OMPS. 

 

FP-ILM 

OMI 

8 km standard 

OMI 

13 km standard 

OMI 

FP-ILM 

OMPS 

8 km standard 

OMPS 

13 km 

standard 

OMPS 

Raikoke 

Day 1 1.711 2.031 1.426 1.615 1.642 1303 

Raikoke 

Day 2 1.633 1.654 1.425 1.601 1.701 1395 
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4.3.2 Kasatochi Mass Estimates 

 

For the Kasatochi case, the SO2 estimates were calculated for four orbits on the days of 

August 9-13th, 2008. In this plume, there was considerable movement compared to Raikoke due 

to the presence of a low pressure pattern that drifted the plume into northwestern Canada and 

caused the plume to swirl counterclockwise. As seen below the plume is highly concentrated for 

Orbit 21650 at 00Z on August 10th, but rapidly spreads out over the following days (Figure 4.) to 

the east. The density of the plume also decreases from around the 650 DU peak for orbit 21650 

to 240 DU for orbit 21692. Mass estimates also have a reduction over the course of the four days 

(Table 4.5). The total estimates are 2.22, 1.54, 1.17 and 1.04 Tg for a, b, c and d respectively in 

Figure 4.11. Over the four days there is a fairly large range of mass estimates between 1-2.2 Tg. 

This change may be due to evolution of the plume over time with portions of the SO2 being 

oxidized or transported away from the main bulk of the plume. For the last orbit the plume had 

been spread much thinner in which case the SO2 signal would be harder to detect in the height 

retrieval. As a result, since the same SO2 VCD threshold was used in the calculation for all days, 

there may be some low biases in the mass estimate for days 3 and 4. 

 The OMI estimates are generally in line with previous total mass estimates from other 

instruments. For two IR-based instruments, AIRS and IASI, estimates of 1.2 Tg [Prata et al., 

2010; Kristiansen et al, 2010] and 1.7 Tg [Karagulian et al., 2010] were obtained respectively. 

With GOME-2 peak loadings of 2.5 Tg were reported [Richter et al., 2009], which is 

substantially higher than the average over the four orbits, but still quite similar to calculated 2.2 

Tg in orbit 21650. Given the consensus of all the estimates, it is likely that Kasatochi plume 

reached a peak loading of 1.5-2.0 Tg in the few days after the eruption. 
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Figure 4.11: The OMI Column Amounts calculated by interpolating the FP-ILM retrievals with 

the standard SO2 products for (a) August 10th at 0000 UTC, (b) August 10th, at 2300 UTC, (c) 

August 11th at 2215 UTC and (d) August 12th at 2125 UTC.  

 

 

It is also important to compare the differences in total mass when calculating the SO2 

mass using the standard VCD product versus the interpolated field. The mass estimates of all 

orbits of Kasatochi and Raikoke are provided in Table 4.3. The differences between the 

interpolated field and the closest reference heights (8 and 13 km) are generally within 0.2-0.3 Tg 

for all cases. However, without the interpolated field, for some orbits such as 21650 and Day 1 of 

Raikoke (orbit 79449), the difference can be as large as 0.6 Tg. In general, the SO2 mass is a 

fairly precise quantity between instrument, assuming the height is correct. If the height is off, the 

difference in SO2 total mass can be fairly significant and can make an influence on the SO2 flux 

calculation and model simulations that use this data. Therefore, there is some benefit in using the 
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retrieved plume heights to adjust the VCD field for the mass calculations. In the comparisons it 

is also worth noting that the low bias in the height retrievals can also affect the mass estimates. 

Since the low SO2 height pixels with sufficiently high SO2 amounts are included in the 

calculation, the resulting total SO2 mass is closer to the 8 km reference height mass than the 13 

km due to larger contribution from those pixels. This issue will be resolved once the issue with 

low biases is diagnosed.  

This analysis leaves opportunities for future work. The interpolation method is this case 

is simple but can be less accurate than other methods. Another way to update the VCD data 

would be to use the retrieved heights to improve SO2 Jacobian or AMF calculations (which 

depend on SO2 height) and to use the refined SO2 Jacobians in VCD retrievals. This will 

improve the accuracy of SO2 Jacobians and further improve the accuracy of the SO2 VCD 

retrievals.  

Table 4.5: Estimated total SO2 mass of the interpolated VCD field, the TRM (8 km reference) 

product and TRU (13 km reference) product for 4 OMI orbits of the Kasatochi eruption. 

 

Total Mass using 

Interpolated VCD 

(Tg) 

Total mass using 

TRM VCD (Tg) 

Total Mass using 

TRU VCD (Tg) 

Orbit 21650 2.225 2.341 1.656 

Orbit 21664 1.494 1.583 1.286 

Orbit 21678 1.143 1.203 1.055 

Orbit 21692 1.038 1.020 0.440 
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4.4 Conclusions 

In this chapter, some potential applications of the FP-ILM retrieval were discussed. In 

section 4.1, the FP-ILM was applied to the SNPP/OMPS and NOAA20/OMPS instruments 

which are crucial for continuing the data record of SO2 from volcanic eruptions. The process to 

retrieve height for the two instruments was mostly identical to OMI, but involves using the 

instrument-specific slit function to convolve synthetic data and retraining the neural network. 

Results showed lower retrieved heights for the NOAA20/OMPS than the other instruments 

where the mean of the retrieval was around 9 km as compared with retrieved heights of 10-10.5 

km with OMI and SNPP/OMPS. One potential application of the retrieval is to use it in an 

operational setting where the height of the SO2 layer help to improve forecasts of volcanic 

plumes for aviation safety. I conducted HYSPLIT trajectory simulations using the FP-ILM 

heights as input for up to 3 days. In this analysis, the model did well in predicting the position 

and heights of the plume for up to 69 hours, although with increasing error over time. I also 

constructed SO2 profiles from trajectory end points at 23 and 46 h after trajectory initialization. 

For Kasatochi and Raikoke cases both 23h and 46h the reconstructed profiles had a center height 

of 11 km and 10 km respectively, with the latter being biased low as compared with CALIPSO 

and TROPOMI. In general, having fast and efficient tools such as a trajectory model and the 

NRT height retrieval algorithm can improve the forecasts for volcanic disaster monitoring and 

mitigation. The other section of this chapter focused on SO2 mass estimates. The mass depends 

on the VCDs that are retrieved from OMI, however there is a substantial difference in estimated 

mass depending on which reference height is used in VCD retrievals. Interpolating with the 

height field can therefore slightly improve mass estimates. Between the TRM and TRU SO2 

datasets, there can be a difference of greater than 0.5 Tg for a large eruption which shows the 
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need for introducing an observed height field into mass calculations. The OMI total mass 

estimates using the retrieved heights were comparable with estimates from literature as well as 

those from the OMPS instrument. Overall, the results in this chapter highlight the potential 

benefits of the having an operational, fast SO2 height retrieval. With the future availability of 

NRT data, an increase in speed of applications such as volcanic plume tracking, data assimilation 

and SO2 flux estimates can be expected. 
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Chapter 5 Overall Conclusions 
 

5.1 Summary of research 

 
The research presented in this dissertation focuses on two different aspects of sulfur 

dioxide. The first component deals with the anthropogenic emissions of SO2, in particular how 

reductions in SO2 pollution have led to decreases in sulfate deposition. To this end, I found the 

contribution of source areas to improvements in sulfate deposition downwind using trajectory 

analysis, OMI data and ground based measurements. The second component deals with natural 

emissions of SO2 from volcanoes, which can have significant impacts on air travel as well as 

climate. Here my primary objective was to develop a highly efficient SO2 layer height retrieval 

algorithm for OMI and OMPS using only BUV measurements and viewing geometry. Chapter 4 

is an extension of this work where I provided some examples of potentially useful applications 

for the OMI/OMPS SO2 height retrievals. In all these studies I have made use of data from OMI 

and OMPS instruments.  

In Chapter 2, trends in annual mean OMI SO2 VCDs and sulfate wet deposition were 

calculated for the period 2005-2015. Over the 10-year period, SO2 VCDs decreased by around -

0.020 DU yr-1 in areas along the Ohio River where there were a number of coal power plants. 

The sulfate wet deposition reduction in the same ten-year period was in the range between –16 

and -12 kg S hectare-1 over a larger portion of the study domain in the Eastern U.S, with the 

biggest negative trends of 18-20 kg S hectare-1 in some locations. At all of the five National 

Atmospheric Deposition Program (NADP) sites that I selected for case studies, the sulfate wet 

deposition decreased by at least 50% from 2005 to 2015. The HYSPLIT model was then used to 

calculate 72 h back trajectories from the NADP sites, initialized at 500 m above the ground. 

Since the SO2 and sulfate deposition are not spatially correlated, the PSCF method was used to 
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connect the areas of SO2 origin to the ground receptor sites. Using the PSCF along with the 

trends of SO2 and sulfate deposition, I obtained a percent contribution of each grid cell to the 

sulfate deposition trend at each NADP/AQS site. The contributing source regions for each site 

reflect the dominant flow pattern shown by the trajectories and the areas of negative SO2 column 

trend observed by OMI. A seasonal dependence was also found because of the prevailing 

westerly wind in winter changing to a more variable direction in summer. The strongest 

contribution to the sulfate trend is from west of the sites in winter months, but during summer 

months some contribution comes from the east as well. This seasonality can also be attributed to 

faster oxidation of SO2 in the summer, when contributing grid cells are closer to the receptor 

sites. In the case of the Beltsville, MD site, in winter roughly 2/3 of the contribution to the 

deposition trend is from the west and from sources greater than 500 km away. In summer, 

however, most of the contribution was from within 300 km, consistent with weaker winds and 

faster SO2 oxidation. For the AQS site in Hackney, OH, the SO2 sources are much closer, and the 

seasonal pattern is much less pronounced: 80% of the contribution to sulfate trend comes from 

within 400 km from the site for both summer and winter, although summer months do see some 

more contribution from the east instead of west. The differing results for the two sites shows that 

the proximity to sources and weather patterns influence the sulfate deposition occurring at a 

given location. However, the main idea remains the same - pollution controls for coal-fired 

power have led to dramatic improvements in sulfate wet deposition in the eastern United States 

both near the source and further downwind. The effect of state legislations is also noticeable in 

the data such as the case of the Maryland Healthy Act which reduced SO2 emissions from power 

plants by over 80%. The PSCF and source-receptor analysis for the Beltsville site showed that 

between 2008-2012, the largest contribution to the sulfate deposition trend came from nearby 
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sources, even during winter months. During this time period both dry and wet sulfate flux 

decreased drastically which indicates that the pollution controls also indirectly affected the dry 

deposition.  

The other component of my research is centered around volcanic SO2 layer height 

retrieval (FP-ILM) for OMI. The SO2 layer height is important because it can be used as a proxy 

for tracking the height of volcanic ash plumes, which are major hazards for aviation and air 

travel. The SO2 height is also a crucial input needed for volcanic plume forecasting and data 

assimilation. Lastly, the height can also aid in assessing the impacts of volcanic eruptions on 

radiative forcing. The SO2 LH retrieval algorithm was trained through a neural network with 

thousands of synthetic BUV spectra and physical parameters for varying conditions. The OMI 

BUV radiances were input to the trained inverse model to obtain the heights. The height retrieval 

results were tested for 4 eruptions and all of them agreed with other sensors within the 2 km 

uncertainty range. The algorithm estimated 10-12 km height for Kasatochi is in agreement with 

the IASI instrument and previous OMI height estimates of 9-11 km in Yang et al. [2010]. For the 

2015 Calbuco and 2014 Kelud eruptions, heights were found to be around 15-17 km and 18-19 

km, respectively. Although a direct comparison with CALIPSO was not possible in these cases 

due to the lost OMI spatial coverage related to instrument anomaly, for the same plume 

CALIPSO showed an ash plume at 17 km for Calbuco and 19.5 km for Kelud. Lastly for the 

2019 Raikoke eruption, the OMI retrieval indicated SO2 heights of 11-12 km for the densest part 

of the plume, again in agreement with IASI and CALIPSO.  

This algorithm could also be applied to SNPP/OMPS and NOAA20/OMPS instruments 

(Section 4.1), provided that the spectra were treated with the unique slit functions of each 

instrument. In Chapter 4 I also demonstrated two potential applications of the height retrievals. 
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The first one is volcanic plume forecasting. When provided as an input into HYSPLIT, the 

retrieved SO2 heights can help to produce reasonably accurate forecasts on the location of the 

plume for up to 2 days from the initialization time. SO2 height retrievals can also be used to 

refine the estimates of total SO2 mass loading in a plume for a given OMI (or OMPS) orbit. By 

using the retrieved SO2 heights, I estimated that the SO2 mass from the Kasatochi eruption was 

nearly 2 Tg on August 10th, 2008 and then reduced to around 1.1 Tg over the following days as 

the plume was oxidized, and was transported and dispersed to the east. The Raikoke plume had 

totals of around 1.7 Tg and 1.4 Tg on June 24th and June 25th, 2019 respectively, which was 

within 0.25 Tg of OMPS and TROPOMI estimates. The difference in estimated total mass 

between using fixed height and retrieved height was also apparent, where in some cases they 

varied by more than 0.2 Tg. For some orbits, the mass estimates using the OMI VCDs refined 

with the retrieved heights were closer to the total mass found by other instruments, compared to 

OMI estimates using a fixed height. These results showed that more accurate height input can 

lead to improved SO2 mass loading estimates. 

 

5.2 Future Work 

Additional work can lead to improvement in quality of results and to further applications. 

For the sulfate deposition trend study, future work can incorporate further chemical transport 

models in addition to the existing statistical method used in the study. Additional meteorological 

analyses can also be useful in determining the role of seasonal precipitation patterns and 

climatology on wet deposition rates. One such analysis could be linking varying magnitudes of 

precipitation events and weather systems to the uptick in sulfate wet deposition, on a smaller 

time scale. The results focused on the differences between summer and winter seasons, however 
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the analysis can also be extended to spring and fall seasons. A larger number of sites and 

extension of the trajectory climatology to more than 5 years may increase the robustness and 

accuracy of the results. The methods presented here may prove useful in areas that are 

experiencing large changes in sulfur pollution such as East Asia or South Asia and could help 

guide the selection of key targets for pollution control. The method can be particularly useful for 

in situ data-poor areas, given that satellite data will help to capture the fast-paced changes in 

emissions and provide more frequent updates than conventional bottom-up emission inventories. 

Lastly, other forms of acid deposition can be explored, for instance, nitrogen deposition which 

stems from NOx pollution.  

The height retrieval algorithm presented in this dissertation has shown promising results 

but can be further optimized to improve the accuracy of the retrievals and reduce the 

uncertainties. One assumption is that ash and sulfur dioxide plumes are mostly collocated when 

using CALIPSO as a source to verify the plume height. Although this is often true at the initial 

stage of many eruptions, dispersion of the plume and gravitational settling of the ash in the 

following days can separate the two effluents. Therefore, tracking these plumes becomes 

challenging when using reflectance spectra alone; further analysis may need to include trajectory 

modeling and wind data to simulate the movement of the ash. The neural network model was 

trained on synthetic spectra calculated for molecular atmosphere conditions in the absence of 

aerosols. The impact of including aerosols in the simulations is another subject for a follow-up 

study as aerosols complicate the radiative transfer calculations. Another potential improvement is 

to generate data sets of synthetic spectra using a vector RRS model to account for polarization as 

well as adding significantly more spectra with low SO2 VCDs into the training. This may help in 

reducing the low bias in the results and overall increase the performance of the retrievals at low 
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SO2 amounts (< 30 DU), common in small to moderate volcanic eruptions. Further analysis is 

also needed for determining effect of the SO2 and ozone profiles used for the LIDORT-RRS 

model calculations. For instance, using different sets of ozone climatological profiles or varying 

shapes and FWHM in the constructing the SO2 profile would be a helpful in better determining 

the impact of assumed a priori profiles on the generating the spectral dataset and algorithm 

results. For improving the performance and efficiency of the machine learning, the use of neural 

network ensembles and a further optimized setup of NN structure and parameters will be 

explored. These parameters may include the number of hidden nodes, regularization techniques 

and activation function types. I may also reassess the number of PCs used in training as more 

may be needed for optimal performance than the eight PCs used in the study. The FP_ILM 

algorithm has the potential to be applied operationally to the OMPS instruments although further 

optimizing the quality of the retrievals is necessary.  

The results of this work show the benefit of using both satellites and ground monitoring 

for observing SO2 and its effects. Some of the next generation of VIS/UV satellite instruments 

will be onboard geostationary satellites and allow for multiple observations per day over an area 

of interest as opposed to polar orbiting satellites. Some examples of this are the Geostationary 

Environmental Monitoring Spectrometer (GEMS) launched by South Korea, NASA’s TEMPO 

instrument, and the Sentinel-4 from the European Space Agency. Through these future 

improvements in the capabilities and coverage of satellite instruments, the coverage in observing 

networks, and cutting edge retrieval methods, the speed and quality of information about not 

only SO2 but other important atmospheric species can be greatly enhanced. 
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Appendix: Chapter 2 Supplementary Tables  

Table A1: Cumulative distribution of winter (DJF) percent contribution to SO4
2- deposition 

trend at the Beltsville, MD site within given ranges from the site. The totals are summed 

through each distance range and are broken up by direction with respect to the longitude of the 

site. The first column is the distance range from the site over which the contribution of grid 

boxes is summed. The last column is the percent contribution for only the single distance 

range, not the cumulative amount. 

Distance from Site (km) East West Total 
Incremental difference 

(between two radii) 

0-50 3.11 0.24 3.35 3.35 

50-100 17.04 1.74 18.78 15.43 

100-200 33.1 11.34 44.44 25.66 

200-300 34.31 21.67 55.98 11.54 

300-400 35.51 35.54 71.05 15.07 

400-500 35.62 41.88 77.5 6.45 

500-1000 35.62 62.41 98.03 20.53 

 

Table A2: Same as Table A.1 but for summer (JJA) 

Distance from Site (km) East West Total 
Incremental difference 

(between two radii) 

0-50 0.00 0.00 0.00 0.00 

50-100 0.81 2.09 2.90 2.90 

100-200 27.86 14.11 41.97 39.07 

200-300 63.05 19.47 82.52 40.55 

300-400 66.36 19.47 85.83 3.31 

400-500 65.34 21.02 86.36 0.53 

500-1000 66.37 32.87 99.24 12.88 

 

Table A3: Cumulative distribution of winter (DJF) percent contribution to SO4
2- wet deposition 

trend at the Hackney, OH site within given ranges from the site. The totals are summed through 

each distance range and are broken up by direction with respect to the longitude of the site. The 

first column is the distance range from the site over which the contribution of grid boxes is 

summed. The last column is the percent contribution for only the single distance range, not the 

cumulative amount. 

Distance from Site (km) East West Total 
Incremental difference 

(between two radii) 

0-50 4.93 5.94 10.87 8.71 

50-100 6.91 16 22.91 12.04 

100-200 9.01 38.16 47.17 24.26 

200-300 9.09 53.96 63.05 15.88 
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300-400 9.09 67.9 76.99 13.94 

400-500 9.28 76.62 85.9 8.91 

500-1000 9.28 90.72 100 14.1 

 

Table A4: Same as Table A.3 but for summer (JJA) 

Distance from Site (km) East (%) West (%) Total (%) 
Incremental difference 

(between two radii) 

0-50 2.95 1.75 4.70 4.703 

50-100 5.56 5.438 11.00 6.297 

100-200 18.14 20.67 38.81 27.81 

200-300 29.10 37.01 66.11 27.3 

300-400 31.16 47.06 78.22 12.11 

400-500 31.70 54.73 86.43 8.205 

500-1000 31.87 67.15 99.02 12.595 
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