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ABSTRACT This chapter contains a discussion of quantization over noisy channels.
The effects of channel noise on the performance of vector quantizers are discussed and
algorithms for the design of noisy-channel vector quantizers are presented. It is argued
that in certain practical situations where delay and complexity place hard limits on
system parameters, a combined source-channel coding approach might be preferable to
the more traditional tandem source-channel coding. Examples of full-searched, multi-
stage and finite-state vector quantization designed for a noisy channel are provided for

coding of speech line spectrum pair parameters.

1.1 Introduction

A generic point-to-point communication system can be described by a source en-
coder/decoder, a channel encoder/decoder and a modulator/demodulator pair as de-
picted in Fig. 1.1. The modulator/demodulator essentially maps the waveform channel

into a digital channel.
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FIGURE 1.1. Block Diagram of a Generic Communication System.
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It is established by Shannon that the separation of the source and channel coding
operations does not cause any loss of optimality in the limit of large block sizes [1],
[2]. It is in view of this separation principle that the two areas of source and channel
coding have evolved largely independently over the past three decades. Source coding
researchers have pursued the quest for designing codes that achieve performance close
to the source distortion-rate function while channel coding researchers have focused
their effort on designing powerful error detection/correction schemes [3] - [6].

After a few decades of research, source and channel coding problems are fairly well
understood and a number of powerful coding schemes have been developed. Within
the class of block-structured codes, vector quantization techniques for source coding
[4] and a variety of error correction codes (e.g., Golay, Reed-Solomon and BCH codes)
[5], [6] for channel coding have emerged as promising methods. Generally speaking,
larger block sizes (hence, larger delays and complexities) lead to better code perfor-
mance. Practical considerations however impose certain constraints on the encoding
delay and complexity, which, in turn, limit the performance of the code. These de-
lay and complexity constraints are especially important in situations where real-time
communication is needed and where power consumption, weight and cost of hard-
ware are to be kept small. A good example of such a situation is two-way speech
communication in a wireless communication network.

An important question that arises then is the following: How good (or close-to-
optimal) is the performance of a tandem source-channel code which is obtained by
concatenating a source encoder and a channel encoder subject to the practical con-
straints of encoding delay and complexity? This is a valid question because in the
absence of Shannon’s assumption of large blocks, there is no theoretical justifica-
tion for the separation of source and channel coders. In particular, in a lossy coding
situation where for example the ultimate objective is the minimization of average
squared-error distortion between the source output and its reproduction, it is not
clear why the bit (or symbol) error minimization criterion used for the channel code
is an appropriate design criterion. A follow up to this question would be whether it
is possible to design a combined source-channel code in which the design problem is
set up in such a way that the overall average distortion caused by source coding and
channel noise is minimized. Such a combined code will operate on the source output
and generate a bit stream that will be delivered directly to the digital channel, as
depicted in Fig. 1.2. If such a combined scheme can be designed, can it outperform a
good tandem source-channel code with the same delay and complexity constraints?

Source Combined Combined User
——= Source-Channel Digital Channel Source-Channel [——
Encoder Decoder

FIGURE 1.2. Block Diagram of a Generic Communication System Using a Combined
Source-Channel Code.

With the emergence of wireless communication technologies the above questions are
becoming more important than ever. In these communication problems, because of the
severe limitations on the available bandwidth, source coding is essential. On the other
hand, wireless channels are typically very noisy and suffer from various multipath
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fading and bursty errors problems and therefore some type of error control is neces-
sary. At the same time, the need for two-way communication places hard limits on
the end-to-end delay. Finally, in many wireless applications the transmitter/receivers
are required to be low-power (to better utilize battery life), light and inexpensive.
These requirements place a constraint on the system complexity. Clearly, the wireless
communication scenario presents an example where both source and channel coding
are essential components of the system and where delay and complexity are severely
constrained. It is therefore important to determine whether a combined approach to
source-channel coding might not be preferable to the tandem approach under these
conditions.

In the following sections we provide a brief discussion on combined source-channel
coding and provide partial answers to some of the questions posed above. Qur discus-
sion will be limited to block-structured coding schemes. We begin by a discussion of
full-searched vector quantization over a noisy channel and extend this to multi-stage
and finite-state vector quantization. Some examples of applications to speech coding
will also be discussed. Due to the limitation on the number of pages, our discussion
will be mostly qualitative. Details can be found in the references.

1.2 Vector Quantization over Noisy Channels

In this section, we consider two issues: (i) How to assign indices to the codevectors of
a given vector quantizer when they are to be transmitted over a noisy channel and (ii)
how to design a vector quantizer which is intended for use over a noisy channel. For
this discussion, we consider a real-valued, zero-mean, stationary and ergodic source

{Xt; t=0,1,...}.

1.2.1 VECTOR QUANTIZER INDEX ASSIGNMENT

A k-dimensional, M-level vector quantizer (VQ) is described by an encoder mapping o
and a decoder mapping . The encoder « : R — Ju = {0,1,..., M —1} is described
in terms of a partition P = {So, S1,...,Sm—1} of R* according to

a(x)=4, ifx€S;, i € Im, (1.1)
where x € IR¥ is a typical source output vector. The decoder mapping 3 : Jys — R¥,
is described in terms of a codebook C = {cq,¢1,...,cp—1}, according to

The quantization rule is ¢ = § o a where ¢(x) = B(a(x)).

At this point, we are not concerned with the design of the quantizer; we assume that
the quantizer (i.e., the partition and codebook) is designed and fixed. In many practi-
cal situations the encoder output indices are mapped into binary words (codewords)
and transmitted (or stored in storage situations). While in the absence of channel
noise the assignment of the codewords to the VQ codevectors does not affect the av-
erage distortion, in the presence of channel noise this assignment plays an important
role in determining the overall VQ performance.
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FIGURE 1.3. Block Diagram of the Vector Quantizer Based Coding System.

To be precise, consider Fig. 1.3 in which a one-to-one index (or codeword) assign-
ment mapping b takes the output ¢ of the encoder o and maps it into another integer
¥ = b(i) € Jum; the binary representation of ¢ is the codeword associated with S;
or ¢;. Let us assume that the channel is a discrete memoryless channel (DMC) with
input and output alphabets Jps and with P(j|i') denoting the probability that the
index j is received given that ¢’ is transmitted. We use d(x,y) to denote the distor-
tion caused by representing the source vector x by a reproduction vector y. Then the
overall average distortion per sample D(P,C;b) is given by

M-1M-1

DP.CH=F X > PH) [, P e (13)
where p(x) is the k-fold probability density function (p.d.f.) of the source. While
in general the contributions of the quantization noise and channel noise cannot be
separated, in the special case where the squared-error distortion measure is used,
d(x,y) = ||x — y||?, with the additional assumption that each VQ codevector is the
centroid of its corresponding encoding region, it is easy to show that the average
distortion in (1.3) can be decomposed into

D(P,C;b) = D, + D., (1.4)
where D;,, the contribution of the quantizer to the average distortion, is given by
1 M-1
D=1 3 [ plix—cilldx (1.5)
=0 8y
and D., the contribution of the channel noise to the overall distortion, is given by
1 M-1M-1
D, = F E E PiPjb())||e: — cb"‘(j)Hz’ (1.6)
i=0 j=0

where P; is the probability that x is in S;. Therefore, a good index assignment mapping
is one that minimizes (1.6). In a transmission system modeled by a binary memoryless
channel, binary words with a small Hamming distance are more likely to be confused
with one another than those with a large Hamming distance. Therefore, intuitively,
the index assignment mapping should be selected such that codevectors with a large
(small) Euclidean distance are assigned codewords with a large (small) Hamming dis-
tance. Various index assignment algorithms are reported in [8], [9], [10]. The general
conclusion is that if a VQ is designed for a noiseless channel but is to be used over a
noisy channel, a judicious index assignment is important and could result in perfor-
mance improvements which might be quite significant. The improvement is typically
more significant for larger codebooks and for more highly correlated sources. Specific
numerical results on Gauss-Markov sources can be found in [9].
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1.2.2 CHANNEL-OPTIMIZED VECTOR QUANTIZATION

Now we turn our attention to a slightly different problem in which the VQ encoder and
decoder are themselves design variables. Specifically, with reference to the diagram
of Fig. 1.3, for a given source, a given noisy channel, a fixed dimension & and a fixed
codebook size M, we wish to choose C, P and b in such a way as to minimize D(P, C; b).
Notice that in the diagram of Fig. 1.3 the decoder output is denoted c;-1(;). Since
now the codebook is a design variable, with a slight abuse of notation, we will write
ci-1(j) as ¢; — the codevector associated with the received index j.
Upon rewriting (1.3) as

1ﬂl—1 M-1
DP.CiH =1 3 [ P Y PUION(x, )}, (17)
i=0 Y5 j=0

it becomes clear that for a fixed b, the problem of minimizing the average distortion
is identical to the noiseless-channel VQ design problem with a modified distortion
measure [11] (the term in the braces in (1.7)). Specifically, for a fixed b and a fixed C,
the optimum partition P* = {S3, ST, ..., S}y_,} is such that

M-1 M-~1
St ={x: Y P(ilb@))d(x,c;) < Y P(Ib))d(x,¢c;), VI}, i€ Tu.  (18)
j=0 j=0

We remark here that any change in b(7) in (1.8) will only result in a relabeling of
the elements of P*. In fact, the average distortion obtained after the application of
(1.8) will be independent of the index assignment b. Thus, for this design problem,
we believe the choice of b is only of limited importance.

Similarly, it is easy to show that for a fixed b and a fixed P, the optimum codebook
C* = {cg,¢c},...,Chy_,} must satisfy

¢j = arg min E{d(X,y)|J = j}, j € Im. (1.9)
yelR

A successive application of equations (1.8) and (1.9) results in a sequence of encoder-
decoder pairs for which the corresponding average distortions form a non-increasing
sequence of non-negative numbers which has to converge. Therefore, a straightfor-
ward extension of the noiseless-channel VQ design algorithm in [7] can be used for
optimizing P and C. From now on, we will refer to the encoder-decoder pair obtained
from this modified algorithm as the channel-optimized VQ (COVQ).

For the squared-error distortion criterion, the optimum partition and the optimum
codebook are given, respectively, by

M-1 M-1
S5 =1{x: 3 PGIROIx-cilP < 3 PGIO)Ix— ;1% W), i € T, (1.10)
j=0 j=0

and
o = Tisa PUIOD) fo xp(dx
TS PGING)) s, p(x)dx |

€JIm. (1.11)
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In this case, it is established in [12] that the optimum encoding regions are con-
vex polyhedrons and that the encoding complexity is proportional to the number of
nonempty encoding regions. It is important to note that although the encoder is al-
lowed to have as many as M encoding regions, when the channel noise is high, the
optimum system trades quantization accuracy for reduced sensitivity to channel noise
by reducing the number of nonempty encoding regions. Generally, the more noisy the
channel is, the smaller the number of nonempty encoding regions will be. Assuming
that there are N nonempty encoding regions (N < M), only N codewords need to
be transmitted; of course, any one of M binary words may be received and therefore
the codebook remains of size M.

1.2.3 NUMERICAL RESULTS

We now present numerical results on the performance of COVQ and make comparison
with the Linde, Buzo and Gray VQ (LBGVQ) whose design is based on a noiseless
channel assumption [7]. We consider a Gauss-Markov source with correlation coeffi-
cients p = 0.9. The channel is assumed to be a Binary Symmetric Channel (BSC)
with bit error rate (BER) €. For R = 1 bit/sample, Signal-to-Noise Ratio (SNR) per-
formance results are presented in Table 1.1. The number of encoding regions (as a
measure of encoding complexity) for these different cases is included as well.

fe=0.00  [e=0.006 [e=0.01 [e=005 [e=0.10 |
k=1|{LBGVQ| 4.40(2) 4.25 (2) 4.10 (2) 3.09 (2) 2.09 (2)
CcovQ 4.40 (2) 4.25 (2) 4.11 (2) 3.15 (2) 2.27 (2)
k=2{LBGVQ| 7.87(4) 7.31 (4) 6.81 (4) 4.13 (4) 2.19 (4)
CcovQ 7.87 (4) 7.31 (4) 6.83 (4) 4.37 (4) 2.76 (4)
k=4[LBGVQ| 10.18 (16) 9.10 (16) 8.24 (16) | 4.37 (16) [ 2.00 (16)
covQ 10.18 (16) 9.15 (16) 8.37 (16) | 6.23 (11) | 4.65(9)
k=8|LBGVQ| 11.49 (256)| 9.99 (256)| 8.87 (256)| 4.46 (256)| 2.00 (256)
CcovQ 11.49 (256)| 10.31 (249)| 9.70 (230)| 7.44 (98) | 5.73 (61)

TABLE 1.1. SNR (in dB) Performance Results; Gauss-Markov Source; p = 0.9; R =1
bit/sample; Numbers in Parentheses Indicate Number of Nonempty Encoding Regions.

The assignment of binary codewords to the codevectors of the designed LBGVQ is
done via a simulated annealing algorithm described in [9]. The details of the COVQ
design algorithm can be found in [12].

The results in Table 1.1 indicate that COVQ performs better than LBGVQ with a
good index assignment; the performance improvements are more noticeable for larger
dimensions and noisier channels. Also, it is shown in [12] that the improvements
are larger for more strongly correlated channels. Note that, in fact, it is for these
cases (e.g., k = 8, p = 0.9 and ¢ = 0.1) that the largest reduction in the number
of encoding regions (hence, encoding complexity) is observed. Needless to say, if the
index assignment of LBGVQ is chosen randomly or inappropriately the performance
degradations could be significant; specific numerical results can be found in [9].
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The COVQ scheme described in this section is a simple combined source-channel
code. The code is designed not to minimize the quantization distortion but to minimize
the aggregate distortions caused by quantization and channel noise. To justify our
use of the term “combined source-channel code,” consider a channel-optimized scalar
quantizer (i.e., k = 1) designed for a memoryless Gaussian source and a BSC with
€ = 0.1 at 4 bits/sample. Using a design algorithm similar to the one described here,
the optimal partition, codeword assignment and codebook are obtained in [14] and
summarized in Table 1.2. In this problem M = 16 but N = 6. That is, there are only
6 nonempty encoding regions (intervals) implying that only 6 codewords are used
for transmission. Since the coding rate is 4 bits/sample, 16 codewords are available
and by selecting 6 out of 16 possible codewords the encoder effectively increases the
average Hamming distance between the used codewords. This is exactly what a good
channel code attempts to do. In a sense, an operation similar to channel coding is
implicitly included in the channel-optimized quantization operation. Since any one of
16 different binary words may be received at the receiver side, the codebook consists
of 16 reproduction levels, one for each word.

| Quantization Interval | Binary Codeword | Reconstruction Level |

(=00, —0.960] 0011 -1.335
(~0.960, —0.527] 0111 -0.817
(-0.527,-0.181] 0001 -0.416

(—0.181,0.283] 0000 0.070

(0.283,0.837] 1000 0.576

(0.837, 0] 1100 1.301
1011* -1.132
0010* -0.603
1111* -0.521
0110* -0.462
0101* -0.418
1001* 0.158
1010* 0.416
0100* 0.648
1101* 1.072
1110* 1.156

TABLE 1.2. Encoding Regions, Codevectors and Codewords of a Channel-Optimized Scalar
Quantizer; Memoryless Gaussian Source; 4 bits/sample; BSC with € = 0.1. A “*” Indicates
Untransmitted Codeword.

One might criticize the comparisons between COVQ and LBGVQ in that the
LBGVQ results are all based on a noiseless-channel assumption while the COVQ
results are based on the exact knowledge of the channel error rate. If COVQ is a
combined source-channel code, it should be compared against appropriately designed
tandem source-channel codes. At this point it is not clear which of the two approaches
results in a better performance.
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Let us concentrate on this issue for a moment. For the channel used in Table 1.2
the capacity can be computed to be 0.53 bits/channel use. Therefore, so long as the
coding rate is less than 4 x 0.53 = 2.12 bits/sample, an appropriately designed channel
code can be found which renders the channel effectively noiseless. In this case the only
source of distortion is the quantization noise. Thus, for the example of Table 1.2, a
4-level Lloyd-Max quantizer followed by such a channel code (thus, a tandem code)
can be used. The resulting SNR will be 9.30 dB [17]. The SNR associated with the
channel-optimized scalar quantizer of Table 1.2, however, is 5.60 dB [14]. Therefore,
there exists some tandem source-channel code that outperforms the specific combined
source-channel code used here. So, what is the merit of the combined source-channel
coding approach? The problem is that in the above tandem scheme, in order to find
a channel code to render the channel (approximately) noiseless, very large block sizes
are needed. On the other hand, the channel-optimized quantizer uses only a block
size of k = 1. So, the comparison is unfair in that the encoding delays of the two
approaches are very different. Unfortunately, the codebook size and complexity of
COVQ grows rapidly with the block size, making it impossible to design large block
size COVQs. In the next section we describe a suboptimal, structured, noisy-channel
VQ in which larger block sizes are possible and hence appropriate comparisons against
tandem codes can be made.

1.3 Multi-Stage Vector Quantization over Noisy Channels

1.3.1 PROBLEM FORMULATION AND DESIGN ALGORITHM

A multi-stage VQ (MSVQ) performs the quantization operation based on a “successive
approximation” approach. Instead of using a “full-rate” (M-level) VQ, the source
vector, X, is first approximated by a lower-rate (M-level) VQ with partition P,
codebook €; and quantization rule ¢; = £ o a; (M; < M). The quantization error
of this stage, e; = x — ¢1(x), is then quantized by a second-stage (Mz-level) VQ with
corresponding P, Cz and g2 = f2 0 az, [15], [16]. The quantization error of the second
stage, e = e; — ¢2(e1), can be further quantized by a third-stage VQ, and so on. In
general, an MSVQ can have § stages, with each stage having an intermediate rate
R, = %logz N,, a partition P,, a codebook C, and a quantization rule ¢, = B, o, for
s=1,2,...,5. The overall rate of the quantizer is R = Ry + Ra+- - -+ Rs. We denote
the overall encoder and decoder by « and 3, respectively. The overall quantization
rule is given by ¢(x) = f(a(x)) = Zf=1 gs(es—1), with eg = x.

In the rate-distortion sense, the performance of MSVQ is inferior to that of LBGVQ
[15]. The computational complexity of MSVQ however can be significantly less than
that of LBGVQ.

Assuming that the encoder o and the decoder 3 are separated by a DMC charac-
terized by the random mapping v : Jar +— Ju, the reconstructed vector is no longer
¢(x) = B(a(x)) but is a composition of the three mappings: ¢(x) = B(y(a(x))).

We now proceed to describe an algorithm for designing an MSVQ-based scheme for
a given noisy channel. The resulting scheme is thus called channel-matched MSVQ
(CM-MSVQ). We avoid the term “channel-optimized” since, by its definition MSVQ
is sub-optimal,
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A. Problem Statement

Consider the block diagram of Figure 1.4. The first-stage (or primary) encoder,
@1, is described in terms of a partition P, = {510,811, -y81,M;-1} according to
aj(x) =4, ifx € S1,i- The output of this encoder is transmitted over a DMC de-
scribed by the random mapping v1 : Ju, — Ju, and the transition probability
Q1(j9) = Pr{m(i) = j}. The primary decoder, S, is given in terms of the reproduc-

tion codebook, C; = {e1,0,€10,-. -y€1,M, -1} according to z = Bi(d) = c1 ;.
x € R | Primary i DMC j | Primaty |, ;
- Encoder 7() Decoder '
a(-) Br(-)
i X
E?_.
x Secondary DMC Secondary
Encoder ~a(") Decoder = 2y
ag() | ¥ Vol B() ’

FIGURE 1.4. Block Diagram of the MSVQ Scheme Over Noisy Channels.

Here the source vector, x, is directly sent to the second-stage (secondary) encoder.
This is different from the noiseless-channel case, where the input to the second-stage
encoder is the coding error, x — z, of the first stage. Since the channel here is noisy,
the value of j and hence z is not known at the transmitter. For now, let us assume
that the secondary encoder is the mapping «s : R¥ XIm, = Jum,, described by

axx,))=u if x € SY, t € Im,, u € IM,, (1.12)

where S} g 51N Sy y and Py = {52’0,52,1,...,52,1”2_1} is another partition of
IR*. The output of this encoder is transmitted over a second DMC described by
72 ¢ IM, = T, and Q2(v|u) = Pr{ys(u) = v}. In reality, the outputs of the primary
and secondary encoders are multiplexed and transmitted over a single DMC.

The secondary decoder, B35, depends on the output of the second channel, v, and is
described by the codebook, C, = {e2,0,€2,1, .. -y €2,M;~1}, according to w = Ba(v) =
c2,u. The reconstructed vector is X = z + w.

B. Necessary Conditions

Assuming that the primary encoder and decoder are given and fixed, our problem
is to minimize the average distortion D = %E[d(x, X)] by appropriate design of P
and C,. It is easy to show that the average distortion is given by

D= %Z/s- E Q(719)Q2(vlu)d(x, e1,; + €2,0) ¢ p(x)dx. (1.13)
iu ' v
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The term in the braces is defined as the modified distortion measure [11], [14],

d'(x;i,8) 2 3 Quili)Qa(vlu)d(x, c1,5 + 2,), (1.14)
i

which can be interpreted as the expected distortion between x and X given that ¢
and u are transmitted. With this modified distortion measure, it is clear that for a
fixed codebook, the optimum partition, P, must satisfy

o = {x:d(xau(x),u) S d(x500(x),4) Vo' €Im,}, uw€Tm,.  (115)

Similarly, for a fixed partition, the optimum codebook, C§ is given by

W

¢y, = arg min E[d(X,X)|v]
welR*

= arg min E[dX,Z+w)]v], v€EJTu,. (1.16)
welR*

For the squared-error distortion measure, the modified distortion of (1.14) can be
expressed as:

d’(x; i, U) = ”X”2 - 2(’%)’1,,') + 51,:’ + 52,i,u - 2(x - )’1,5,)’2,i,u), (1-17)

A 1 A N 1
where v, ; = 3, Qu(ili)ers, ¥au = 2, Qa(vlv)ez,e, 815 = 35 Qu(fli)ller;l|* and

82,4 S -, Q2(v|u)llc2,0]|?. The sum of the first three terms in (1.17) is defined as
d1(x;1) which can be viewed as the expected distortion of the first stage in encoding
x given that x is in Si;, where the expectation is taken over all possible channel
transitions. The sum of the last two terms is defined as da(x; %, u), where —da(x; ¢, u)
can be regarded as the amount of distortion reduction associated with the second
stage given that x is in S}.

The distortion dy corresponds exactly to the distortion measure used in the COVQ
codebook search with (x —y, ;) replacing x. Note that y; ; is the expected value of
Z (the output of the primary decoder) given that ¢ is transmitted. Thus, (x -y ;),
the vector which is encoded by the secondary encoder, is nothing but the ezpected
coding error of the first stage. This is in contrast with the ordinary MSVQ in which
the second stage is designed to be optimal for the actual error of the first stage.

Finally, for the squared-error distortion measure, it can be readily shown that the
optimum codebook of (1.16) reduces to

 Thu @l feu(x— v, Jp(x)dx
v = diu @2(v]u) fs: p(x)dx ’

The above necessary conditions can be used to develop a channel-matched MSVQ
design algorithm in which upon designing and fixing the first stage the second stage
is obtained using the above necessary conditions. The details of the design algorithm
including extension to S stages are omitted here but can be found in [18].

v € IM,. (1.18)
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1.3.2 COMPARISONS AGAINST A TANDEM SOURCE-CHANNEL CODE

Results on the performance of CM-MSVQ over BSC with different bit error rates are
presented in [18]. The general conclusion is that when the channel is very noisy the
channel-matched schemes outperform the ordinary MSVQ schemes with the same set
of parameters. For the Gauss-Markov source (with p = 0.9), the performance of the
channel-matched schemes tend to increase monotonically with k. Since the complexity
of CM-MSVQ is smaller than that of COVQ of the same rate and dimension, for the
same level of complexity larger dimensions are possible for CM-MSVQ. This, therefore,
allows us to make a meaningful comparison between the CM-MSVQ (a combined
source-channel code) and a tandem source-channel code with the same effective block
size (hence, encoding delay).

The block diagram of a tandem source-channel code is depicted in Figure 1.5. Here,
we assume that the source code is an LBGVQ with block size k, and rate R, = m/k,
bits/sample. The source encoder thus produces m bits for every k, source samples.
The channel code is assumed to be a (g,im) linear block code. Hence, the channel
encoder accepts Im information bits and produces ¢ bits for transmission (g > Im).
That is, the channel encoder takes ! successive m-bit codewords generated by the
source encoder and produces a ¢-bit codeword. The overall rate of the tandem scheme
is R = ¢/(lk,) transmitted bits per source sample and the effective block size (or
delay) is k = lk, source samples. We have considered LBGVQ and the linear block
code because they are both among the most well-known and conceptually simple
block-structured source and channel codes, respectively.

x € R*

e

) |
Source | ' [Channel BSC Channel| ' | Source ‘ x
Encoder [ | |Encoder (BER=¢) Decoder [ | | Decoder
i |

Equivalent BSC (BER=¢’)

FIGURE 1.5. Block Diagram of a Tandem Source-Channel Coding Scheme Over a BSC and
the Equivalent Channel Model.

From now on we will use (n,k’) to denote (g,Iim). The channel is assumed to
be a BSC. For an (n', k') linear block code operating over a BSC with BER ¢, the
probability of correct decoding is upper bounded by

t

4 > 7 : i
P, = Z ( 7; ) E(l—e)" ~ 4 ATl — e)* L (1.19)

i=0

where t is the greatest integer such that A, & o'~k E:=o( n’i ) > 0. This is
known as the sphere-packing bound and is achievable if and only if the (n’, k') code
is quasi-perfect [6].

To analyze the performance of the tandem scheme, we assume that the channel code
is quasi-perfect and model the channel encoder, the BSC and the channel decoder as
an equivalent BSC (the dashed box in Figure 1.5). This assumption leads to a simple
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analysis of the tandem scheme. Here, we assume that, in the equivalent channel, the
probability that a block of k' consecutive bits are received without error is equal to
P.. Thus the BER of this channel can be computed as

¢ =1- PU¥, (1.20)

With this equivalent model, the analysis for the tandem source-channel coding scheme
reduces to that of LBGVQ operating over a BSC with BER ¢’ [13],[12].

Using the equivalent model, we have evaluated the performance of the tandem
scheme for k, = 6 and I = 4. These results (for the Gauss-Markov source with
p = 0.9) are plotted in Figure 1.6. For the LBGVQ of the tandem scheme, a simulated
annealing algorithm [9] was used for index assignment. We have chosen m = 3,4, 5 and
6 (corresponding to R, = 0.5,0.67,0.83 and 1.0). In all cases, we have chosen ¢ = Ik,
so that the overall rate is always 1 bit/sample. We have also plotted in this graph
the optimum performance theoretically attainable (OPTA) obtained by equating the
rate-distortion function to the channel capacity [19] and the performances of the CM-
MSVQ (M = 1) and the multiple candidate CM-MSVQ (M = 8) [18] with the same
k as that of the tandem scheme (thus, similar encoding delays). In this graph, the
performance of the multiple candidate CM-MSVQ is always better than the tandem
scheme. It is clear that when the channel is relatively noise-free, all of the available
bits should be allocated to source coding. As the channel becomes noisier, more and
more bits should be allocated to channel coding. In any case, even with an optimum
allocation of bits between the source and channel codes, the tandem scheme is always
inferior to CM-MSVQ for the cases considered.

An important point to make is that CM-MSVQ is a suboptimal combined source-
channel coding scheme, whereas the tandem scheme consists of a source code which,
by itself, is optimum for its block size and a channel code which, by itself, is optimum
(according to the equivalent model) for its block size.

We should make a note that our analysis of the tandem scheme was somewhat
optimistic. First, a quasi-perfect code does not exist for all values of (n’, k') [6]. Sec-
ondly, even if a quasi-perfect code does exist for (n’, k'), there is still the question
about the validity of the equivalent BSC model and its implications on the perfor-
mance analysis. We conjecture that our analysis of the tandem scheme overestimates
its actual performance. To support this conjecture, we have simulated the tandem
scheme with R, = 0.5 using the (24,12) extended Golay code [6]. These simulation
results, which are reported in [18], establish that the simulation results coincide with
the analytical results when the channel is relatively clean, but that the analytical
results significantly overestimate the actual performance for very noisy channels. At
log,o € = —1, they differ by more than 3 dB. This observation further supports the
usefulness of the CM-MSVQ scheme as a combined source-channel code. Additional
results on mismatch and complexity issues in CM-MSVQ are provided in [18]. An
application of the CM-MSVQ approach to coding of speech line spectrum pair (LSP)
parameters over noisy channels is presented in [20] in which the superior performance
of CM-MSVQ to a tandem code is demonstrated.
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FIGURE 1.6. SNR (in dB) Performances of the Tandem Source-Channel Coding Scheme
and the CM-MSVQ Scheme for the Gauss-Markov Source with Correlation Coefficient 0.9;
Overall Rate = 1 Bit/Sample; M = Number of Candidates of CM-MSVQ; R, = Rate of
Source Code of Tandem Scheme.

1.4 Finite-State Vector Quantization over Noisy
Channels

In some practical applications where there is a large correlation between the source
output vectors, increasing the VQ block size or encoding multiple vectors simultane-
ously could potentially lead to performance improvements. A good example of such
a situation is in coding of speech LSP parameters where there is a significant inter-
vector correlation in addition to the intra-vector correlation [24]. As mentioned before,
increasing the block size of COVQ results in an increase in encoding complexity which
quickly becomes prohibitive. For CM-MSVQ, larger block sizes are possible, but for a
given encoding rate, this comes with an increase in the number of stages and therefore
further suboptimality.

An alternative to increasing the block size in these situations is to incorporate some
type of feedback mechanism in the code that utilizes the source inter-vector memory.
One such technique is finite-state vector quantization (FSVQ) [4], [15], [21], [22]. An
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FSVQ is a finite-state machine with one VQ associated with each state; the encoder
and the decoder share the same state space and the decoder can track the encoder
state sequence based on the received encoder output sequence.

Let us be more precise. A k-dimensional K-state code is specified by a state space
S = Jk, an encoder mapping a : RF xS — Ju, a decoder mapping B: Jpr x S — A
and a next state function f: Jar x S — S; where A is the reproduction space.

Let {x,}32, denote the input vector sequence, where x, € IR¥. Similarly, let
{in} 0, {50} 0 and {%,}32, denote the channel symbol sequence, state sequence
and reproduction vector sequence, respectively. Given an initial state so, the input
sequence determines the sequence of channel symbols, reproduction vectors and states
according to:

in = aXn,3s), (1.21)
Xn = PB(in,sn), (1.22)
Snt1 = f(in,8s), n=0,1,.... (1.23)

The next state depends only on the present state and the output channel symbol;
therefore, given the initial state and correct channel symbol sequence, the decoder
can track the state sequence. Here, C, = {f(3, s5),? € Ju} is the codebook associated
with state s and A = U:f_-—ol C,. As defined in [21], an FSVQ is a finite-state code with
« given by the minimum distortion rule

a(x, s) = arg Igz\rfn d(x, B(i,s)), s € S. (1.24)

The average distortion incurred in an FSVQ system is given by %E [d(X, X)], where
the expectation is taken with respect to the source distribution. The rate is given by
R = % logy M, bits/sample. Details of FSVQ design can be found in [4], [21], [22].

Clearly, the ability of the decoder to track the encoder state sequence critically
depends on the availability of the ezact replica of the transmitted codewords. Even a
single error occurring in the transmitted codeword can lead to an incorrect decoder
state. Once the decoder state is different from the encoder state, the decoder state
sequence can remain “derailed” for a long time. For the sake of this discussion, consider
an example with a Gauss-Markov source as before, encoded by LBGVQ (with an
appropriate index assignment), COVQ and FSVQ (as described in [21]) all operating
over a BSC with BER ¢. The SNR performance results for k¥ = 4 and R = 1 bit/sample
are tabulated in Table 1.3. Clearly, for a clean channel FSVQ gives the best SNR as
it can utilize the inter-vector correlation in the source; for noisy channels however
the error propagation (caused by incorrect tracking of the encoder state sequence)
eclipses this advantage of FSVQ and leads to a severe degradation in performance.

At this point it is natural to ask whether it is possible to design a finite-state
combined source-channel code along the lines of FSVQ while avoiding (or minimizing)
the state derailing problem. Such a system can exploit the inter-vector correlation of
the source vectors without introducing excessive sensitivity to channel errors. In what
follows, we outline the basic ideas behind such a code, hereafter referred to as the
channel-matched FSVQ (CM-FSVQ); the details can be found in [23].

The basic idea behind CM-FSVQ consists of two components. First, for M > K,
instead of a general next-state function it has a structured next-state function where
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[ Coder [ ¢=0.000 ] €=0.005] ¢=0.010 | ¢=0.050 | ¢=0.100

LBGVQ 10.18 9.10 8.24 4.37 2.00
covQ 10.18 9.15 8.37 6.23 4.65
FSVQ 11.31 4.30 1.98 -1.67 -2.53

CM-FSVQ 10.84 10.04 9.23 7.26 5.55

TABLE 1.3. SNR Performance of LBGVQ, COVQ, FSVQ and CM-FSVQ over a Binary
Symmetric Channel; Gauss-Markov Source (p = 0.9); k¥ = 4; K = 8; 1 bit/sample.

the next-state s,41 is given by f(in). That is, for any state, the selected index (code-
word) contains the information of the next state as part of the codeword. Imposing this
structure on the next-state function, of course, leads to some performance degradation
for noiseless channels [23]. In the presence of channel noise, however, this next-state
function significantly reduces the code’s sensitivity to channel noise. This is because
the state information is automatically corrected as soon as a correct codeword is re-
ceived. Second, this structured next-state function can be used to design a CM-FSVQ
scheme in which the state VQs are essentially COVQs as described in Section 1.2. We
refer the interested reader to [23] for the details of CM-FSVQ. However, to complete
our example, we have included in Table 1.3 the SNR results of CM-FSVQ. Clearly,
CM-FSVQ outperforms COVQ in all cases. This is done by exploiting the source
inter-vector correlation. Needless to say, CM-FSVQ is more effective in applications
where there is significant inter-vector correlation and therefore it might be a good
candidate for coding of speech spectral parameters over noisy channels.

1.5 Coding of Speech LSP Parameters over Noisy
Channels

We opened this chapter by a question about the possible application of combined
source-channel codes instead of tandem codes in two-way speech communication over
noisy channels. As a concrete example, we have studied the coding of LSP parameters
(used in the U.S. Government Standard FS1016 Codebook Excited Linear Predictive
(CELP) Coder [25] to represent the short-term spectrum) using COVQ, CM-FSVQ
[23] and CM-MSVQ [18], [20]. First, we considered a CM-MSVQ based system de-
signed based on certain assumptions on the channel noise and then applied it to a
variety of channels. This encoder, whose performance in terms of average spectral
distortion vs. bit rate (per 10 LSP parameters) is depicted in Fig. 1.7, is shown to
perform consistently better than a judiciously designed tandem source-channel code
[20]. This, by itself, supports the usefulness of the combined source-channel coding
approach in a practical situation. Furthermore, for comparison, we have simulated the
performance of COVQ and CM-FSVQ applied to coding of LSP parameters over the
same noisy channels. In this case, following Paliwal and Atal’s approach [24], to reduce
the design and encoding complexity of the VQs, the LSP vectors are split into three
subvectors; each subvector is encoded by a COVQ or a CM-FSVQ), separately. These
results are also included in Fig. 1.7. Note that the COVQ and CM-FSVQ scheme are
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designed separately for each value of channel noise ¢, whereas the CM-MSVQ results
are all based on one design. Our general conclusion from these results is that the CM-
FSVQ scheme gives the best results and provides an attractive alternative to tandem
source-channel coding strategies for speech LSP parameters over noisy channels. Our
informal listening tests on a CELP-type coder also confirm the superiority of the
CM-FSVQ scheme for encoding the LSP parameters over noisy channels. We have
conducted similar experiments on a Rayleigh fading channel and observed the same
general trend. We have not yet considered the application of the proposed combined
source-channel codes to encoding of other CELP parameters such as the pitch, gain,
and stochastic codebook indices. These issues are currently being investigated.
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FIGURE 1.7. Performance of Split COVQ, Split CM-FSVQ and CM-MSVQ in coding Speech
LSP Parameters over a Noisy Channel.

1.6 Concluding Remarks

In this chapter, we have provided a discussion of quantization for noisy channels and
presented methodologies for noisy-channel full-searched, multi-stage and finite-state
vector quantizer design. These noisy-channel quantization schemes, which constitute
examples of combined source-channel codes, are compared against tandem source-
channel codes. Our main conclusion is that in practical situations were due to delay
and complexity constraints very large block sizes are not possible, the traditional
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block-structured tandem source-channel codes may be far from optimal and com-
bined source-channel codes might therefore be preferable. Speech coding in wireless
environments is a communication problem which might benefit from this combined
approach to source-channel coding.

There remain many interesting open problems. Examples are: (i) Integration of
modulation with source-channel coding, (ii) design of combined source-channel codes
for more complicated (but realistic) channels, such as channels with memory and (iii)
design of sliding block source-channel codes.
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