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In this study a cyber physical system (a system of collaborating computational 

elements that monitor and control physical entities) test bed was developed to 

demonstrate the viability of real-time decision support for smart firefighting and to 

provide validation data for continued cyber physical system (CPS) development. This 

CPS utilizes current technologies in the modern built environment and emerging 

virtualization tools.  The smart networked fire test bed consisted of a multi-story 

instrumented building, a variety of fire and non-fire networked sensors, and a 

computational framework anchored by a Building Information Modeling (BIM) 

representation of the building. Well-controlled full-scale fire experiments were 

conducted (physical domain) and represented in the three-dimensional BIM 

(computational domain) allowing for visualization of critical static and dynamic 

building and fire information needed to support firefighter decisions. The CPS test 

bed produced remarkable evidence about the opportunities for fire safety created by 

the communication between sensors, BIM, and fire. 
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Chapter 1: Introduction 

A cyber physical system (CPS) is a system of collaborating computational elements 

that monitor and control physical entities. In this project, a CPS system was 

developed as a test bed to explore next-generation fire safety.  The CPS developed in 

this project utilizes current technologies in the modern built environment and 

emerging virtualization concepts. Sustainability goals, security concerns, and rapidly 

evolving information technology have driven a profound expansion in the use of 

sensors in the modern built environment. This rich sensor data, typically used for 

building services related to comfort, security, and energy management, can be 

integrated with fire sensor information to inform emergency decisions in the event of 

a fire.   

The smart networked fire test bed developed in this study consists of a multi-story 

fully instrumented building, a variety of fire and non-fire networked sensors, and a 

computational framework anchored by a Building Information Modeling (BIM) 

representation of the building.  Building Information Modeling has become an 

increasingly popular design tool allowing virtual construction of the building 

supporting solution of physical construction and maintenance design challenges.  In 

the test bed established for this study, well-controlled full-scale fire experiments are 

conducted (physical elements) and represented in the three-dimensional (3D) BIM 

model (computational elements) allowing for visualization of critical static and 

dynamic building and fire information needed to support fire fighter decisions. The 
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literature review focuses on different aspects of CPSs’ and how they contribute to the 

fire problem. 

1.1 Motivation 

Over the years, changes in modern infrastructure have introduced new challenges to 

fire fighters. Training and research programs have been developed to manage these 

challenges but there are still significant losses from fires each year. This project 

focuses on both the fire safety challenges and opportunities presented by modern 

infrastructure. These opportunities include harvesting the environmental data 

collected by intelligent infrastructures to improve situational awareness in a possible 

fire environment. Another increasingly popular technology, BIM, presents a major 

opportunity for not only harvesting physical data, but also visualizing physical and 

environmental data for fire scene evaluation and decision making (i.e. size up). The 

advancements in emerging smart sensor technology and more sophisticated models 

have generated a new area of technology called CPS.  This project focuses on 

utilizing these advancements to create a CPS for fire safety.   

1.1.1 Modern Fire Safety Challenges 

Modern fire fighting has evolved with advancing technology, improved training, and 

new research.  Even with these developments, the consequences of fire continue to be 

tremendous. U.S. municipal fire departments responded to an estimated 1,375,000 

fires in 2012. These fires killed 2,855 civilians (non-firefighters) and caused 16,500 

reported civilian fire injuries. Direct property damage was estimated at $12.4 billion 
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dollars. Sixty-four firefighters died while on duty or of injuries incurred while on 

duty. The 480,500 structure fires accounted for 35% of all reported fires [1]. 

The current research project was funded in part by the Chief Donald J. Burns 

Memorial Grant, supported by Bentley Systems, Incorporated. This grant was created 

to advance fire fighter science and technology. Chief Burns died in the collapse of the 

World Trade Center Towers on September 11, 2001, while setting up his command 

post to direct the evacuation. The purpose of this grant is to advance information 

modeling as a means of improving infrastructure safety and first-responder 

preparedness. To achieve this goal, it is important to understand current methods used 

by first-responders and the challenges presented by the modern built environment.  

Fire fighters currently make tactical decisions with limited information based on 

quick, visual assessments of the emergency. ‘Size-up’ is a strategy used by fire 

fighters through these assessments to determine information like the building's height 

and area, class of construction, occupancy type, the location and extent of the fire, as 

well as any exposure concerns. Determining this key information efficiently is critical 

when fighting fires. Modern structure fires can develop so rapidly that seconds can 

change the destruction level significantly. New methods for fire safety need to be 

developed to respond to the challenges associated with the modern built environment. 

Changes in modern structures such as open layouts and economy construction 

(materials and methods) have resulted in new and unpredictable hazards, not the least 

of which is rapid fire growth. The emergence of CPS technology, with the potential to 

deliver real-time high quality actionable information to fire fighters, presents 

opportunities to address these extreme challenges in ways never before possible.  A 
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modern fire-fighting framework is envisioned where mission critical information is 

acquired and visually communicated in a CPS supporting informed, fast, and 

effective fire fighter decisions and actions. 

1.1.2 Modern Infrastructure and Technology Opportunities 

A sustainable infrastructure is designed to allow humans and nature to coexist in 

productive harmony environmentally, economically and socially. Resources that are 

needed by both parties for survival and well-being are utilized efficiently. Sustainable 

goals are driving modern infrastructure in a direction that causes new issues for fire 

protection. These goals also bring benefits for fire protection that should be utilized. 

The increased sensor density and building intelligence (i.e. CPS) used in modern 

infrastructure deserves the attention of the fire safety community with a focus on new 

opportunities to advance fire emergency response effectiveness and safety.   

Sensing is a key function of intelligent building infrastructure, and therefore a 

significant amount of research has examined various sensing modalities and 

techniques. Smart wireless sensor networks have emerged as enablers for delivering 

sensor data. There are many sensors that are currently being used in these new 

sustainable structures. Temperature, light, and humidity are some of the aspects that 

are monitored. Using this data, building automation systems manage resources within 

the building. For example, an occupancy sensor monitors motion within a room and 

sends a signal to the automation system if the motion state changes and detects an 

occupant in the room. The automation system will then activate the lighting system to 

provide light to the room and the occupant. Intelligence can also be added to the 
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system when combined with a contact sensor on a door to the room. The state of the 

door provides additional information to determine if an occupant is actually within 

the room. The combination of multiple types of sensors communicating together 

through an automation system efficiently and intelligently utilizes the energy required 

to maintain occupant comfort. Occupancy is just one environmental condition that is 

monitored and affects the building automation systems and building utilities. An 

intelligent building with many sensors and building utilities from The Sustainably 

City Network is shown in Figure 1.1 [2].  

 

 
Figure 1.1: Modern Sustainable Structure with Sensors and Utilities 

 

Not only has the variety of sensors increased, but also the sensor’s capabilities. All 

types of sensors, such as fire, security, energy, and others have all significantly 

advanced. In 2008 The Society of Fire Protection Engineers (SFPE) released an 

article “Factors in Performance-Based Design of Facility Fire Protection” [3]. It 

discusses how fire alarm system technologies have become far more advanced, with 
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simpler circuits and more capabilities. The devices themselves are smart and can tell 

the panel when something is wrong. For example, a smoke detector knows when it is 

dirty, adjusts its own sensitivity and reports this to the panel [3]. The report also states 

that these alarm systems can be programmed to display any information desired to 

responders. For example, the system can tell a responder where every device is 

located and what type of device it is [3]. Fire Alarm Light Emitting Diode (LED) 

graphic annunciators are used to show a fire alarm device location within a floor 

layout. An example of a graphic annunciator is shown in Figure 1.2. This system can 

be useful but the two-dimensional representation on the fire alarm panel can be 

difficult to interpret and provides limited use until first-responders physically arrive 

on scene and locate the panel.  

 
Figure 1.2: Fire Alarm Annunciator 
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This project utilizes the information gathered from typical fire protection sensors such 

as smoke detectors, while also considering data from non-fire building sensors. In the 

same way that Global Positioning System (GPS) mapping has led to convergence of 

different kinds of information, from navigation tools to restaurant reviews, sensor 

integration can create a virtual framework offering a window into the otherwise 

invisible details and dimensions of a fire.  

1.1.3 Cyber Physical Systems 

A cyber physical system (CPS) is a system of collaborating computational elements 

that monitor and control physical entities. An example of a CPS tool is a Building 

Information Model (BIM). BIM is officially defined in the National BIM Standard 

(NBIMS-US™) as a digital representation of physical and functional characteristics 

of a facility [4]. Modern construction use BIMs to visualize a project in a three-

dimensional cyber physical environment before completing the project in reality. A 

2004 NIST study identified a lack of interoperability as an additional cost to the U.S 

Capital Facilities Industries of $15.8 billion annually [5].  The collaboration and 

exchange of information between the many stakeholders involved in the building 

process needs to be improved. Although other factors influence interoperability, 

BIMs can significantly aid this issue.  The national BIM standard references this 

study and states that using BIM principles and practices, elements of the capital 

facilities industry are represented and exchanged digitally. Digital representation 

means that computers can be used to ‘build’ the capital facility project virtually, view 

and test it, revise it as necessary, and then output various reports and views for 

purchasing, fabrication, assembly and operations [5]. An example of a complex BIM 



 

 8 
 

created with Bentley AECOsim Building Designer is shown in Figure 1.3 [6]. Three 

different views of the various disciplines are shown within the figure; the left view 

displays the realistic outside of the final building design, the middle view focuses on 

the structural elements, and the right focuses on the mechanical elements. BIMs have 

the capability to store a tremendous amount of information across multiple disciplines 

but can also be manipulated to only show specific information of interest.   

 
Figure 1.3: Multidiscipline Features of BIM 

 

BIMs have many uses to designers and project managers. The model itself can be 

used to visually communicate design concepts to the owner. A major utility of a BIM 

is clash detection, which describes how the model electronically checks to make sure 

building systems are designed properly. Making changes electronically rather than on 

the job site reduces change orders, which minimizes the opportunity to jeopardize the 
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project’s budget and schedule [4]. Along with the many benefits already realized, it is 

also beneficial to utilize BIM as a tool for fire safety.  

BIMs have the ability to store, manage, and visualize three-dimensional static and 

dynamic building and fire environment information. Static information elements that 

are included in modern BIMs that are also important for fire safety include but are not 

limited to; building geometry, construction materials, use, occupancy, water supply, 

hydrant locations, location of the annunciator panel, and location of the standpipes. 

This study considers these elements and also incorporates dynamic information such 

as room temperature, smoke obscuration, and carbon monoxide (CO) concentrations 

into a BIM. This study defines a framework that visualizes a fire environment a BIM 

and how it can be used to improve fire safety. This framework is based on a literature 

review of past fire safety research and a fire protection engineering assessment of 

building performance criteria. 

1.2 Literature Review 

Inverse fire models (IFMs) and building information models (BIMs) are emerging 

tools that can be brought together to provide a cyber physical system for fire safety. 

Traditional forward fire modeling uses initial conditions such as expected fire size, 

heat release rate (HRR), and room geometry to determine the impact of the fire on the 

environment. An inverse fire model uses the measurements within the fire 

environment and then calculates the fire size and fire location. The use of inverse fire 

models have recently become more relevant because the increased sensor density in 

the modern built environment.  Sensors can provide the environmental conditions 
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such as temperature profiles, ceiling jet temperatures, heat fluxes, optical densities, 

CO concentrations, and gas velocities.  Using these measurements, and an IFM, a fire 

size and location can be calculated.  Various studies have attempted to develop a 

reliable IFM with varying results. The accuracy of the IFMs is limited to known 

variables and computing capabilities. This section provides a review of the methods 

taken to determine fire size using compartment fire dynamics and IFMs. 

1.2.1 Inverse Fire Model Development 

Past studies have developed various inverse fire modeling methods to calculate fire 

information based on environment measurements. Ceiling jet temperatures are used 

by Lee and Lee as well as Davis and Forney to calculate the heat release rate (HRR) 

of a fire within a compartment [8] [9] [10]. Pairing an optimization algorithm 

focusing on the sequential regularization approach with the Fire Dynamics Simulator 

(FDS 81), Lee and Lee determined an estimate of the location and size of the fire 

using temperature measurements along the ceiling inside a compartment [8]. The 

research compared temperature profiles inside a compartment to predictions from an 

FDS model of the compartment. By minimizing the residuals between measured and 

predicted values, the location and heat release rate of the fire were calculated. 

Davis and Forney developed the National Institute of Standards and Technology’s 

Sensor-Drive Fire Model (SDFM) to calculate fire size [9][10]. The SDFM uses 

ceiling-jet correlations with sensor measurements to approximate heat release rates 

(HRR) of fires. The HRRs are used as an input for a Consolidated Model of Fire and 

Smoke Transport (CFAST). CFAST, a computational inexpensive model, then makes 
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quick predictions of HRR growth, hot gas layer temperatures, smoke/visibility 

concerns, and even predict structural failure. CFAST is a zone fire model that 

performs more simplified calculations than a full scale CFD model.  

FireGrid explored a variety of methods aimed to perform super-real time modeling of 

building fires [11] [12]. The project used measurements from full-scale compartment 

fire experiments undertaken in Dalmarnock, Glasgow in 2006. A six-room 

experiment, the compartment was instrumented with temperature, heat flux, optical 

density, gas velocity and structural monitoring sensors. FireGrid also explored taking 

data from numerous building sensors to obtain temperature, smoke, and CO 

measurements to plug into a simultaneous Computational Fluid Dynamics (CFD) and 

Finite Element models. This approach was able to calculate not only fire size and 

location, but also the impact the fire had on the structure. Ultimately, the FireGrid 

approach was too computationally expensive to achieve its super-real time goals. 

Neviackas developed an inverse fire model aimed to determine the heat release rate of 

a fire in a compartment given the temperature of a hot gas layer over a function of 

time [13]. The IFM was initially successful for a variety of configurations and fuel 

sizes within ten percent and on the order of one percent. However, the IFM solution 

became non-unique when incorporating the size of doors and windows in any given 

room. Recently, Price conducted multi-room compartment fire experiments to obtain 

measurements of hot gas layer temperature and depth [14]. These measurements were 

used as an input to the inverse fire model created by Neviackas that coupled a genetic 

algorithm with a zone fire model to calculate a unique solution to the original fire size 

and door opening used in the experiments. The objective of this research was to 
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calculate simultaneously the real-time fire size and fire door opening of the 

experiment using a combination of hot gas layer temperature and hot gas layer height 

measurements from a multi-room compartment in concert with an inverse fire model. 

This study emphasized the need for knowing the ventilation state of the fire in order 

to determine the fire size.  

Many different approaches to calculating fire size in a building have been attempted. 

From these studies it is determined that temperature profiles, ceiling jet temperatures, 

optical densities, CO concentrations, and ventilation conditions are important 

environment conditions to measure in order to calculate fire size using an inverse 

model. The approach will utilize this information when determining what types of 

sensors to use for the full scale fire experiments. 

1.2.2 BIM Utilization Concepts 

The first phase of the Chief Donald J. Burns Memorial Research Grant was awarded 

to O.A. Ezekoye to explore the use of BIM for improving fire safety. Anderson and 

Ezekoye designed a framework to provide an informed risk analysis of a building 

using a combination of BIM software, fire models, and statistical analysis [15].  A 

fire scenario is created when a potential heat source overlaps with a fuel package, the 

hazard is identified and a fire scenario is created featuring the heat source as an 

ignition source on the object.  A statistical analysis is applied to these features along 

with the other features that affect the development of the fire environment such as 

probability of vent opening area and probability of an alarm or sprinkler operation 

[15].  The end goal of the framework is to improve the level of fire hazard and risk 
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information that is available to the building owner, fire service, or any other 

interested stakeholder. This project provided insight of how BIM can be utilized for 

forward modeling to predict fire scenarios. Ultimately, a fire event could be analyzed 

by coupling this framework that can predict fire scenarios with cyber physical 

framework of this study of an actual fire scenario. This process could provide insight 

into the size of the fire, growth rate of the fire, and forecast the future fire 

environment.  

The Society of Fire Protection Engineers (SFPE) that supported the previous project 

also released a position statement in 2011 about BIM and fire protection engineering 

[16]. The statement discussed the benefits and challenges of integrating BIM and fire 

protection engineering design such as fire suppression systems design, fire alarm and 

notification systems design, life safety and code compliances, along with performance 

based design. There is potential to develop specific tools within the BIM platform to 

automatically incorporate system design and performance characteristics such as 

hydraulic and water supply calculations, atrium smoke control calculations, fire 

effects, and egress modeling.  The review of the worth of combining BIM and fire 

protection engineering provides insight for the relevance of also using BIM as a 

method of displaying critical building and fire information.  

The National Institute of Standards and Technology (NIST) conducted a workshop to 

identify information needs for emergency responders during building emergencies 

[17]. The goal of the workshop was to gain guidance on what specific building 

information would be of greatest benefit to public safety officials as well as how to 

best present it. A report of their findings provides insight for developing the cyber 
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physical framework for this project. The information is broken down into two types, 

static and dynamic information. Static information is defined as the building 

information that is available before an incident. Examples of static information are 

given as room geometries, sensor locations, and ventilation system schematics. All of 

these items can be represented using BIM, although the study does not reference this 

tool.  

Dynamic information is defined as the set of information that comes from real-time 

status of building system controllers and sensors. The report describes dynamic 

information as including both direct sensor readings and the output of decision 

support tools that analyze the sensor data [17]. Although many different types of data 

are referenced, two main examples are specifically given; one being a fire decision 

tool that would use the fire system sensors along with knowledge of the building 

geometry to produce fire size, location, and fire growth rate estimates. The other 

example is a security support tool that estimates occupant location based on 

occupancy sensor and light system reports. The first example refers back to the 

concept of an inverse fire model discussed in the previous section of the literature 

review. Although an inverse fire model is not mentioned within the report, with the 

right sensor measurements and the proper tools, the dynamic information such as the 

fire size can be determined.  Both of these examples directly influenced the sensors 

chosen for this project.  

The display of the static and dynamic information is explored during the NIST 

workshop. A three dimensional display was discussed, and is determined that in order 

to be useful the display must be both rich in information but presented in a simple 
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uncluttered easy to use interface.  Examples of icons were approved such as a person 

icon for an occupant in need of rescue, and a fire icon for the location of the fire. It 

was also noted that the attendees did not think that text only displays would work. 

This supports the need for the use of a three dimensional BIM model that can 

represent a vast amount of information but can also limit the display to what is 

specifically important.  

Within the NIST report there is also an Appendix that provides an example scenario 

using a three dimensional program for an incident command tactical system. The 

Appendix provides visual examples and reasoning of how to display the various types 

of dynamic information. Two examples are shown in Figure 1.4 [17].  The 

temperatures measured by a heat sensor in each room are given an associated color 

depending on the amount of heat in the room, as shown in the left of Figure 1.4. 

Although exact temperature thresholds for each color were not determined, it was 

stated that red would best represent a hot temperature. The example also indicates that 

it is better if only areas that are given an associated color are those that register as 

abnormal. Location of people in need of rescue is one of the most important pieces of 

information for a first responder. A visual on the location of the people is shown in 

the image on the right of Figure 1.4. 
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Figure 1.4: Examples of Incident Command Tactical System 

In 2006, NIST expanded on the previous workshop and developed an outline for 

intelligent building response for safety officials [18]. A technology data path is 

proposed that will allow information collection and transport to the emergency 

response. A demonstration of the technology with a decision support system 

transmitting real-time building information to first responders was held at NIST.  

The decision support system is a Sensor Driven Fire Model (SDFM) that converts 

sensor signals from the fire sensors to predictions usable by first responders. The 

proposed SDFM is a computer modeling software that has the capabilities to provide 

the following analysis; uses heat and smoke sensor signals to identify fire growth and 

size, provides hazardous condition warnings for first responders, uses sensor signals 

to identify open/closed door status to provide real-time building configuration 

information.  

The model is planned to have the warnings that can be shown as a series of colors on 

a building floor plan. The warnings are based on smoke layer height measurements 
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and temperature measurements. The first warning is for visibility problems when a 

smoke layer is measured 2.0 m above the floor. The second warning level occurs 

when the smoke layer is dense enough to be toxic and a breathing apparatus is 

needed. This occurs when the smoke layer has descended to 1.5 m above the floor 

and reached a temperature of 50 °C.  The third warning is when the temperature is at 

500 °C, when flashover can occur and the area needs to be evacuated immediately. 

Guidance of how to color code these warnings are provided in Appendix C, the NIST 

Experimental Implementation Report [18].  The interface is shown as a single floor 

building plan with various colors indicating different levels of alarm in each 

compartment. These colors are represented in Figure 1.5 and are the following; white 

is free of any hazard, blue indicates that a possible hazard has been detected, green 

indicates that a hazard has been detected, yellow is a significant hazard and that the 

compartment can only be entered using special equipment, and red means the 

compartment has flashed over and is lethal to anyone. The conclusions in these 

studies influence the approach for developing a CPS for fire safety.  
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Figure 1.5: Example of Intelligent Building Response Interface 

 

1.3 Project Focus 

1.3.1 Objectives 

In this study a cyber physical system (CPS) framework was developed to  

• Demonstrate real-time fire information viability through visualization of a 

measured fire environment  

• Provide validation data for continued CPS development 

1.3.2 Scope 

The CPS framework was developed for an existing Maryland Fire and Rescue 

Institute (MFRI) training structure. The cyber element of this study utilizes 

Microstation, a Building Information Model (BIM) software created by Bentley 
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Systems. This BIM is coupled with physical environmental information gathered by 

conventional fire and non-fire sensors and laboratory instruments during well-

controlled full-scale fire experiments at the training structure.  The data gathered 

during fire experiments is transformed into fire safety information and visualized in 

BIM. The overall motivation and methods for cyber physical system for fire safety is 

shown in Figure 1.6. The framework of the CPS determines what information an 

emergency fire responder (EFR) could need and how to display that information. It is 

demonstrated that collaboration of sensor data and a BIM is the start of a CPS that is 

useful for EFRs to make more informed decisions in the event of an emergency. If 

EFRs could make more informed decisions, respond faster, and more effectively to 

the continuously and often rapidly changing hazards associated with modern fires, 

they could save more lives while minimizing their exposure to hazards and risk of 

injury.  

 
Figure 1.6: Cyber Physical System for Fire Safety 
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Chapter 2: Approach 
 

In this study a cyber physical system (CPS) framework was developed to demonstrate 

the viability of delivering real-time fire information for fire safety and to provide 

validation data for continued CPS development. The Maryland Fire and Rescue 

Institute (MFRI) training structure was the physical test bed for the CPS framework. 

In the physical environment the structure was fully instrumented with commercial 

sensors and experimental sensors and is used to conduct full-scale fire experiments in 

a complex geometry. The fire environment was controlled by well-characterized 

source and ventilation conditions defined in a test matrix. In the virtual environment 

the structure was characterized in a BIM by its static information such general 

building materials, geometries, occupancy classification, and use. The BIM and the 

data gathered in the experiments are coupled to demonstrate a CPS that has static 

information as well as dynamic information. Using guidance from past studies, a 

framework has been developed to display fire safety information that caters to the 

capabilities of the BIM and the measurements taken by the sensors.  

2.1 Physical Environment 

An objective of this project was to create, observe, and measure a physical fire 

environment through full-scale experiments. The experiments were conducted at a 

training structure at the Maryland Fire and Rescue Institute (MFRI). Full-scale fire 

experiments were conducted at the training structure with various fuel packages and 

ventilation characteristics. The experimental methods were predetermined by first 

creating the desired environment in a NIST tool, the Fire Dynamic Simulator (FDS) 
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[7]. FDS is an open source freeware fire model that is the leading fire simulation 

software used by fire safety engineers and fire researchers. The desired environment 

was achieved when certain given ventilation and fuel conditions result in substantial 

environment changes but aren’t so extreme that would exceed the capabilities of the 

training facility and instrumentation. The controlled desired environment safely 

allows for the experiments to be measured at all stages of the fire from growth, peak, 

decay, and during ventilation until normal conditions are reached.  

Each element of the testing matrix such as fuel type, fuel configuration, sensor 

location, ventilation conditions, etc. was evaluated. Past studies and research 

influenced the prescribed elements of testing. The testing matrix is shown in Table 

2.1. The specific fuel packages and ventilation conditions provided comparably 

different scenarios in each testing case. The goal is to create an environment that is 

representative of a realistic fire scenario and will provide useful data for continued 

CPS development. Data gathered such as temperature, smoke concentration, carbon 

monoxide concentration, fuel mass loss, and ventilation conditions will provide 

validation data for future inverse fire models.  
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Table 2.1: Testing Matrix 

Test 
# 

Fire  Configuration Sensors 

Small 
(Crib)  

Large 
(Pallet)  

Door 2 
Open 

Door 
2 Clos 

Therm 
Load 
Cell 

Smoke 
Detector Security 

Temp 
Mass 
Loss 

CO, 
Temp, 
Smoke 
Obs. 

Contact, 
Occupant 

1 X   X   X X X X 

2 X     X X X X X 

3   X X   X   X X 

4   X   X X   X X 
 

Specific Siemens sensors were installed into the training structure to monitor dynamic 

environmental conditions during the fire tests; multi-criteria smoke detectors monitor 

temperature, smoke obscuration, and carbon monoxide concentrations; contact 

sensors monitor the condition of windows (open/close); and occupancy sensors 

monitor if an occupant is present in the area. These measurements were 

communicated to a control panel and stored in data file. An overview of the sensors is 

shown in Table 2.2. Thermocouples measuring temperatures and a load cell 

measuring the mass of the fuel during the duration of the fire experiment provide 

accurate measurements of the fire. The information gathered by these sensors 

demonstrated a rich dataset of this dynamic information that is not only integrated 

into this study’s CPS but can also be for more elaborate CPSs that may include data 

assimilation and inverse modeling features. 
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Table 2.2: Sensor Overview 

Siemens DesigoTM Fire Safety System  

  
252 Point Fire Alarm Control Panel - 

Model FC 2025 
Security Panel – Model 

D8125INV 

Sensor Smoke Detector 
Contact 
Sensor  

Occupancy 
Sensor  

Model # FDOOTC441  EN1210W EN1260  

Alarm Type Temperature  
Smoke 

Obscuration 
Carbon 

Monoxide 

State of 
Window or 

Door 

Presence 
of an 

Occupant  

Alarm 
Threshold 57 C - 79 C 

3 % 
Obscuration/ft. 

30 ppm, 
50 ppm 

Open or 
Closed Yes or No 

Direct 
Measurement Yes Yes No No No 

Location Each Room, Ceiling Mounted 1st Floor 
1st, 2nd, 
3rd Floor 

Number 13 7 3 
 

2.1.1 Testing Facility 

The Maryland Fire and Rescue Institute (MFRI) of the University of Maryland is the 

State’s comprehensive training and education system for emergency services. The 

institute plans, researches, develops, and delivers programs to enhance the ability of 

emergency services providers to protect life, the environment, and property. MFRI 

has had a long time standing partnership with the Department of Fire Protection 

Engineering at the University of Maryland. This partnership encouraged the 

availability of MFRI facilities for use in this project.  The facility of interest for this 

project is the MFRI structural fire fighting building, which is used as a training 

structure. 
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Figure 2.1: MFRI Structural Fire Fighting Building 
 

The four story MFRI structural fire fighting building is shown in Figure 2.1. The 

footprint of the building is approximately 12.6 m by 7.8 m and each floor is 

approximately 2.8 m in height. The size and construction of the training facility 

allowed for full-scale fire scenarios to be designed and tested safety within the 

structure. The building is constructed with fire resistant materials to withstand 

extreme fire conditions created by fire fighter training exercises. Protective materials 

are applied to the walls, the doors and stairs are made of metal, and building utilities 

are limited.  An extensive building description and photos of the protective materials 

and building elements are in the Appendix. 
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2.1.2 Sensor Selection and Instrumentation 

Intelligent building infrastructure use sensors that monitor the environmental 

conditions to determine the specific need for building utilities. These sensors have 

become increasingly prevalent and can gather a high density of data.  This project 

creates a cyber physical test bed that reflects these complex intelligent building 

infrastructures on a smaller scale. This cyber physical test bed was created by 

choosing the sensors that fulfill the fire safety goals and objectives of this project. 

Environmental sensors, security sensors, fire and smoke sensors, HVAC and airflow 

sensors are all considered. For this project the data that was focused on are 

measurements that not only provide information about the environment, but also can 

be used for fire safety such as determining a fire source. Past studies like the one by 

Price, determined that temperature, smoke layer heights, room geometries, and 

ventilation conditions can be used to determine the size and location of the fire [14]. 

These data types not only can be used to determine the characteristics of the fire, but 

also give a direct measurement that is useful for emergency first responders such as 

temperature. Ultimately the gathered data was used as dynamic information within 

the BIM using Microstation. The chosen sensors need to be compatible with 

Microstation in order to achieve this goal. The fire safety system designed for the 

training facility also needed to be designed to be portable, this process is explained 

further in the Appendix.  

Siemens has had a long time standing partnership with the Department of Fire 

Protection Engineering at the University of Maryland. This partnership encouraged 

the availability of Siemens resources for use in this project.  All Siemens sensors and 



 

 26 
 

data management systems are reviewed and specific ones are chosen for this project 

based on applicability and feasibility. Data sheets for all sensors and products used as 

well as product descriptions are provided in the Appendix. Siemens donated the 

chosen sensors and management systems to this project. Siemens provided 

consultation with how to use the products, designed and programmed the system, and 

provided in depth data sheets on how the products operated. An overview of the 

instrumentation is shown in Table 2.2. 

In order to manage, record, and store the data gathered by the sensors, it is necessary 

to connect the chosen sensors to a system such as a building management system or a 

control panel. A Siemens Fire Safety System with the capability of incorporating a 

security system was used to manage the data from the smoke detectors, contact 

sensors, and occupancy sensors. A DesigoTM Fire Safety System, 252 – Point Fire 

Alarm Control Panel – Model FC 2025 is determined to be the optimal system. The 

customized system was installed into a portable weather-proof rolling case and is 

shown in Figure 2.2. All of the recordings collected by the control panel are exported 

into a program TeraTerm. TeraTerm is a terminal that creates text documents that are 

records of the measurements made by the smoke detectors, contact sensors, and 

occupancy sensors over time.  
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Figure 2.2: Customized Siemens Fire Safety System – Fire Alarm Control Panel 

A multi-criteria fire detector, Model FDOOTC441, was determined to be an optimal 

sensor as it can measure multiple types of data using optical, thermal and CO sensors. 

Smoke detectors are a prevalent reliable sensor used throughout most buildings, as 

they are required in the United States by most state and local laws as defined by 

NFPA 72 (National Fire Protection Association, National Fire Alarm and Signaling 

Code). Direct measurements of temperature and smoke obscuration as well as 

temperature, smoke, and CO alarms were relayed to the panel. The multi-criteria 

smoke detectors were located throughout the MFRI structural fire fighting building. 

The coordinates of the smoke detectors are shown in the Appendix. The origin is 

taken from the bottom left corner of the BIM as shown in Figure 2.3. Each floor 
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consists of two-five rooms and the detectors are placed to cover each of the rooms. 

The spacing of the detectors does not exceed the recommended nominal spacing of 

thirty feet of NFPA 72. This instrumentation layout gives high density of data that 

would be similar to an actual commercial building’s instrumentation density.  

Contact sensors measures the ventilation conditions by monitoring state of the 

windows and doors of whether they are closed or open. The contact sensors were 

installed on the first floor on all of the exterior windows and doors, along with the 

interior door that is closed or open for certain tests. The locations of the sensors are 

shown in Figure 2.3. Contact sensors were chosen because they are prevalently used 

in modern infrastructure for security purposes. Price and Neviackas also determined 

that knowing the open or closed state of a door or window to a fire room is essential 

for calculating the fire size and location [14] [15]. Using contact sensors in a fire test 

will help determine if their recordings could be used for a cyber physical system that 

would aid fire safety.  

Other than knowing the fire environment, one of the most important pieces of 

information for a fire fighter is the location of an occupant. Past literature and 

interviews with fire fighters all conclude this. A commonly used sensor in energy 

efficient buildings is an occupancy sensor. An occupancy sensor detects motion in a 

room and sends a signal to either turn lights on or off, depending if an occupant is in a 

room. Occupancy sensors were used in the fire experiments to observe their 

capabilities of detecting movement. Using occupancy sensors in the fire tests is a step 

in determining if these sensors are able to convey this information and can be used for 
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further cyber physical systems development. The locations of the sensors are shown 

in Figures 2.3-2.6.  

 

Figure 2.3: MFRI Structural Fire Fighting Building First Floor 



 

 30 
 

 

Figure 2.4: MFRI Structural Fire Fighting Building Second Floor 

 

Figure 2.5: MFRI Structural Fire Fighting Building Third Floor 
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Figure 2.6: MFRI Structural Fire Fighting Building Fourth Floor 
 

2.1.3 Laboratory Sensors 

Laboratory sensors such as K-type thermocouples, a load cell, data acquisition center, 

and a moisture content probe were used in this project to gather precise measurements 

of the fire environment. This data will be compared to commercial sensor 

measurements and used for future inverse modeling validation. Several K-type 

thermocouples were used in the experiments to measure temperature throughout the 

building. These K-type thermocouples have a maximum error of 0.75% for readings 

above 0oC. The measurements were taken every second throughout the fire 

experiments. The K-type thermocouples were at all of the smoke detector locations, 

and two trees of ten thermocouples were in the ventilation doorways on the first floor. 

The thermocouple locations are shown in Figure 2.3. The thermocouples were located 
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adjacent to each smoke detector so that the measurements made at each location can 

be compared to corresponding commercial sensor measurements obtained from the 

smoke detector. The thermocouple trees each have ten thermocouples evenly spread 

out to give a temperature distribution from the ceiling to the floor. The thermocouple 

tree, using a temporary stand set up, is shown in the appendix. As in the experiments 

done by Price [14], the ventilation doorways were chosen for the location of 

thermocouple trees. Using the temperature distribution and smoke layer height, the 

average hot gas layer temperature could also be calculated for inverse modeling 

interests [14]. Providing a thermocouple tree at each ventilation door also quantifies 

the ventilation status of the fire.  

During the experiments, a load cell placed below the fuel package measured the 

weight of the fuel as it burns. The load cell measurements are accurate to 0.1 g and 

are taken at 1 Hz. The load cell measurements will provide the mass loss rate data of 

the fuel during the fire. This data will be useful for future inverse model development 

and describes the fire’s burning characteristics. A heat shield was used to protect the 

load cell from the heat of the fire. The load cell was only used for the crib fuel load.  

The thermocouples and load cell are connected to a data acquisition center that was 

located outside of the MFRI structural fire fighting building. The data acquisition 

center was located a safe distance away from the building, was covered from the 

elements using a tent provided by MFRI, and was located next to the control panel. 

The data gathered was transferred and stored in the data acquisition center and was 

used for analysis.  
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2.1.4 Fuel Package Location 

For training exercises at the facility of interest, fuels are typically located on the first, 

third, or fourth floors.  For this project, the first floor was chosen as the ideal location 

for the tests. The first floor has a larger burn room, which limits the possibility of 

extreme conditions within the room. The location of the fuel package where the fire 

will take place is shown in Figure 2.3. By placing the fire on the first floor, the smoke 

will rise and spread to the upper floors and throughout the entire building. The 

internal stairway is made of grated metal stairs, which will allow the smoke to move 

easily upward through the stairwell.  

2.1.5 Fuel Package and Ventilation Conditions 

The fuel and ventilation conditions used in testing were well characterized so that the 

resulting fire environment was controlled and the data gathered can be used for future 

inverse model validation. These conditions were guided by the practices used in 

typical training exercises at MFRI, by past studies, and by FDS simulations. The 

testing matrix defines two different ventilation conditions and two different fuel sizes. 

Various fuel types and ventilation conditions from past experiments and training 

exercises were simulated using FDS. The four cases ultimately chosen in the testing 

matrix result in controlled fire environments that are significantly unique from each 

other. 

The size of the fire was optimized so that the smoke and temperatures could spread 

throughout the structure while still having a certain fire behavior in the fire room. The 

fire in the fire room could not be so large that would exhibit extreme temperatures for 
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a long period of time which would result in the destruction of the building’s fire 

resistant panels, or result in a ventilation limited fire. The fire was intended to burn 

out before conditions become too severe in the fire room and would therefore not 

have to be extinguished by the MFRI personnel. Since this environment was 

prescribed, the data can be collected throughout the entire lifetime of the fire. From 

the developing stage, to peak, to decay, and even ventilation data after extinguish can 

also be gathered. This will provide a significant contribution to future inverse model 

validation.  

The FDS model used for the simulations was created from the BIM model. The BIM 

model was originally a MicroStation file. The MicroStation file to was saved as a 

CAD (Computer Aided Drawing) file. The CAD file was then imported into FDS 

using PyroSim. PyroSim, a program created by Thunderhead Engineering, is a 

graphical user interface for FDS.  It allowed for the complexities such as building 

geometries to be transferred. The transformation between drawing files is shown in 

Figure 2.7. Some building elements such as stairways and handrails were deleted to 

reduce to complexity of the FDS file. This was done to limit the computational power 

needed to run the simulations. 
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Figure 2.7: Transformation of BIM File PyroSim to FDS File 

The two different ventilation conditions refer to the state of Door 2, which is located 

on the first floor. As shown in Figure 2.3, Door 2 connects the fire room to the other 

room on the first floor. One case is that Door 2 is fully open and the other case is that 

the door is fully closed. All of the doors inside the building, other than the prescribed 

closed door in one case, were open to allow smoke to freely travel. All exterior 

windows and doors were closed. These two different cases result in different 

ventilation conditions for the fire room and affects the resulting fire environment. 

These two different scenarios were simulated in FDS to determine the resulting fire 

environment. Case 1, with Door 2 open, provides more ventilation to the fire. The 

resulting temperature slice file in the burn room at a time of 520 seconds is shown in 

Figure 2.8. It can be seen that the highest temperature is around 170 C and occurs 

within the one or two feet below ceiling height. Case 2, with Door 2 closed, reduces 

the ventilation area and the resulting fire environment at the same time of 520 

seconds is shown in Figure 2.9. The same maximum temperature of 170 C is 

exhibited but is now four to five feet below ceiling height. These two simulations 
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were similar but unique enough for comparison. The same fire size was used for these 

two simulations, similar results occur when the fuel size was changed respectively.  

 

Figure 2.8: Temperature Slice File for Case 1, Door 2 Open 
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Figure 2.9: Temperature Slice File for Case 1, Door 2 Closed 

A wood crib was used as the small fire size, with an expected peak heat release rate of 

approximately 400 kW. This was calculated using a fuel burning rate of 22 g/s [19] 

and an effective enthalpy of combustion of wood of 19 kJ/g. [20].   

 

The size and composition of the wood crib was specified by using guidance from 

Underwriters Laboratories (UL) 711 Standard for Safety of Rating and Fire Testing of 

Fire Extinguishers and UL 2167 Light Hazard Area Fire Test [21]. The chosen wood 

crib was the same used in experiments done by Bryson Jacobs at the University of 

Maryland in 2011 [22]. The general configuration of the wood crib is illustrated by 

Figure 2.10 [22]. The individual wood members in each layer were evenly spaced 

forming a square. The average crib mass was around 21 kilograms (kg) and mass 
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moisture content was around 5%. The exact weights and moisture contents are 

provided in the Appendix. A controlled amount of excelsior, a fuel used by MFRI, 

was used to ignite the crib as petroleum based products were not allowed in the 

training facility.  

 

Figure 2.10: Wood Crib Configuration 

The second fuel source, considered the large fuel source in the testing matrix, was a 

triangle shaped fuel package consisting of three reduced sized pallets and a half-bale 

of excelsior, as shown in Figure 2.11. This triangle package was a smaller version of 

the typical fuel package used for fire training at MFRI. Since the pallet fuel package 

can be very different depending on the type of wood and moisture content, heat 

release rate measurements from NIST on these types of packages were used as the 

input for FDS [23]. Two full sized triangle pallet packages were tested along with a 

smaller half-sized triangle package, their properties are in the Appendix.  
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Figure 2.11: Triangle Pallet Configuration 

The resulting heat release curves for the first two larger fuel packages are shown in 

Figure 2.15 [23].  The heat release rate of this smaller triangle is shown in Figure 2.16 

[23]. The expected heat release rates of the fuel were modeled in FDS to predict the 

resulting environment as presented previously.  It was determined using FDS that full 

sized pallets triangles resulted in too large of a heat release rate for the compartment 

and the fire quickly became ventilation limited. The smaller pallet however, resulted 

in a desired fuel limited scenario. The wood crib was also modeled in FDS to observe 

the resulting environment and gave the desired fuel limited scenario. The resulting 

fire environments for the crib and small triangle fuel configurations were also 

determined to not reach temperatures that would threaten the building’s fire resistant 

panels.   
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Figure 2.12: HRR Curves of Triangular Fuel Packages [23] 

 

 

Figure 2.13: HRR Curve of Small Triangular Fuel Package [23] 

2.1.6 Experimental Methods 

The test matrix was designed using the sensors and fuel load selected; it was then 

determined how to execute the experiments using the planned set up. Before each 

test, the ambient outside temperature was noted, the mass of the fuel was weighed, 
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and the test start time was noted. These recordings and procedures are presented in 

the Appendix.  After the initial conditions are recorded, the final set up of the tests 

was conducted. Experienced fire fighters set up the fuel as described in the previous 

section. Photos of the set up are included in the Appendix. The inside doors are all 

opened, and the outside doors and windows are closed. Once the set up was ready, the 

team initiates device recording by starting the data acquisition center and control 

panel. Within seconds, the fire fighters were notified via a handheld transceiver to 

ignite the excelsior with a lighter.  

As the conditions were not extreme within the fire room, the fire fighters could 

remain within the room wearing their protective gear and breathing apparatus. During 

the fire evolution the fire fighters were in communication with the team to convey 

visual observations of the fire. The visual observations consist of when the excelsior 

was ignited, when the excelsior ignited the wood crib or wood pallets, when the fuel 

collapsed, and any other visual observations. The event times were recorded and used 

in the analysis. One crib fire evolution and one pallet fire evolution was recorded 

using a high definition video camera. The videos provide insight to the development 

of the fire over time and various burning characteristics such as flame height. 

Recording the fuel collapsing also shows how much of the fuel falls off of the load 

cell, a quantity that otherwise would not be known. The fire fighters were instructed 

to walk in front of the occupancy sensors at certain times.  

The Model FDOOTC441 was programed to convey smoke obscuration measurements 

and temperature measurements to the panel. This is not a typical capability of smoke 

detectors in commercial settings, but for this application we are able to achieve this 



 

 42 
 

through the support of engineers at Siemens. The detectors and the panel were 

programed so that not only the alarm state was communicated but also the raw 

temperature and smoke obscuration readings that cause the alarms. It was attempted 

to program the communication of the raw CO readings but the effort was 

unsuccessful. During the tests a team member pushed a query button to request 

temperature and smoke obscuration readings. A photo of this is shown in the 

Appendix.  

2.2 Virtual Environment 

An objective of this project was to transform the data collected in the full-scale 

experiments into information that would be useful for fire safety if these tests were to 

be an actual fire scene. Two types of data are collected; one is static data such as the 

building geometries and materials, and the other is dynamic data such as room 

temperatures and smoke obscuration levels. The data was visually represented in a 

virtual environment using a Building Information Model (BIM). Two Bentley 

products are used to display the static and dynamic data as fire safety information in 

this virtual environment: MicroStation information modeling software along with 

AECOsim Building Designer. The visual layout and quantity of the information is 

determined using guidance from past literature and caters to the capabilities of the 

Bentley software.  

2.2.1 Program Selection 

As a part of the SFPE Chief Donald Burns Memorial Grant, Bentley donated access 

to their various software programs. Many programs for building analysis, design, and 
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information modeling are available. Two products were determined to be the most 

practical and useful for this particular project. The first is MicroStation; a 2D and 3D 

Computer Aided-Design (CAD) and information modeling software that can model, 

document, draft, and map projects of virtually any shape and size. It can produce 

lifelike renderings and animations and simulate the performance of the building.  

These capabilities make it an ideal program to utilize for simulating a lifelike 

representation of an actual building fire environment. It has also become an 

increasingly prevalent tool for construction because it can also resolve utility clashes 

and simulate schedules. With current buildings be designed using this program, those 

files could also be utilized to carry out the future goal of this project of visually 

conveying a fire environment.  

MicroStation information modeling software is the platform for architecture, 

engineering, construction, and operation of all infrastructure types including utility 

systems, roads, bridges, buildings, communication networks, etc. AECOsim Building 

Designer is determined to be the ideal program to use with MicroStation since this 

project virtually recreates the MFRI structural fire fighting building. AECOsim 

Building Designer allows a solid mass to be transformed into a collection of building 

elements such as walls, roofs, windows and doors. Intelligence is added to these 

objects by storing information in a collection of files called a dataset. The 

combination of MicroStation and AECOsim Building Designer provides the 

capability to recreate the MFRI Building with all of its building elements and the 

environment created by the full-scale tests. 
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2.2.2 Program Information Organization 

In order to utilize MicroStation and AECOsim Building Designer to store and display 

the information about the MFRI structural fire fighting building, it is necessary to 

understand how the programs organize the information. The dataset information is 

organized into two main areas; the Family and Part System and the DataGroup 

System. Datasets are split to allow project specific information to be located at a 

project location, while maintaining an overall building dataset that stores information 

that can be shared by many projects. The Family and Part System defines a building 

object’s graphical representation in both the 3-D model and in 2-D drawing views. 

The Part properties include the model definition, drawing symbology, cut patterns, 

centerline symbology, rendering properties, and possible structural and analytical 

information.  

The original purpose of these products is for creating building information models of 

construction projects where engineers can virtually design their systems within the 

model. Design teams for every discipline need a system that enables them to assign 

important model data to objects to distinguish their use. Whereas the same Family 

and Part information can be applied to many objects in the building model, 

DataGroup information is individually applied to each object that stores DataGroup 

information. Assigned catalog item data is placed with each item instance and the 

system also tracks and manages this data for schedules and reporting.  
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2.2.3 MFRI Structural Fire Fighting Building Data Collection 

In order to input the information about the MFRI structural fire fighting building into 

MicroStation and AECOsim Building Designer, the data had to be gathered through 

measurements and observations. Using the floor plans from the University of 

Maryland website, the MFRI structural fire fighting building was observed and 

measured with a MFRI employee. Each room was measured for its complete 

dimensions and recorded onto the scaled floor plans. The location and size of the 

doorways, windows, and stairs were all measured and photographed. Additional 

photos are included in the Appendix.  

2.2.4 MFRI Structural Fire Fighting Building Data Transformation  

The MFRI Structural Fire Fighting Building was modeled in AECOsim Building 

Designer V8i using MicroStation. A comparison of the photo of the building and the 

comprehensive BIM is shown in Figure 2.14. The model has the exact dimensions as 

the measurements made within the actual building. Exact building materials were 

used for the walls, floors, doors, windows, stairs, and other building elements. Only 

the fire resistant paneling could not be modeled as there was not an option for this 

specific type of wall. The exterior walls are made of one foot thick brick, the floors 

are one foot concrete slabs, and the interior walls are either six inch CMU (Concrete 

Masonry Unit) or four inch thick brick walls. The windows are single or double metal 

casement. The doors are metal with metal frames. The scuttles are metal louvers with 

metal frames. The stairs are made of metal grates and metal piped railings. There 

three access panels on the roof that can be used for ventilation that are shown in the 
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model. Building history information like construction date, past and current uses, 

number of floors, square footage, and building construction were also included in the 

model. Each room was modeled as a specific space and was automatically associated 

with a room number, floor number, and square footage.  

  

Figure 2.14: Comparison of Building Photograph and Comprehensive BIM 

 

The smoke detectors were imported into BIM using a Revit file from BIM file 

database that contains many different products. The file contains inputs for many 

properties of the detector such as cost, assembly code, and manufacturer; these 

properties are shown in the Appendix. When a detector is placed within a room, it is 

associated with that space.  The exact coordinates of the smoke detectors within the 

BIM are the same the locations of the detectors in the fire tests.  

2.2.5 Static and Dynamic Data Transformation to Information 

A tremendous amount of data can be stored within a BIM.  Not all of that data will be 

useful to show to a fire fighter during an event. The data rather could be used for fire 
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modeling calculations to determine information that is worth showing such as the fire 

size and location. Important types of information to know when assessing a fire 

environment are room geometries, wall thermophysical properties, ventilation 

conditions, and fuel load. These are the basic inputs for a fire dynamics analysis or 

simulation. These initial conditions combined with and the measured fire 

environment characteristics such as temperature, smoke obscuration, and CO 

concentration can be used for an inverse fire model to determine the fire size and 

location. This project defines how this information can be utilized from a BIM and 

from commercial sensors.  

Many of the inputs for a fire dynamic analysis are already imbedded into a BIM 

model when it is designed. For example, when each room is created a floor number 

and square footage is automatically assigned to it based on the geometry. In Figure 

2.3 the room description is left on for the room on the left to show the automatic 

assignment of the square footage. When a wall is created in BIM there are many 

options for the designer to choose from such as brick, CMU (Concrete masonry 

units), or gypsum drywall that have embedded properties such as fire resistance 

ratings, and surface spread of flame values. These values are determined and 

referenced from the appropriate UL standard, and NFPA 255, Standard Methods of 

Test Surface Burning Characteristics or ASTM E 84. These values can provide 

insight into the proper thermophysical properties that could be used for them within a 

fire dynamics analysis. In the approach, the BIM created is imported into FDS and 

automatically provided all of the geometry information and thermophysical properties 
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of the walls. This project takes this process a step further by setting up how more 

information stored within a BIM can be used for fire modeling.  

Room geometries, wall properties, and fuel load information are all static information 

components that can be stored within a BIM. To complete the analysis, dynamic 

information about the current fire environment can to be transferred from sensors into 

a inverse fire model and combined with the static information to determine the fire 

size and location. Although this is process is not determined within this project, the 

data collected during the full-scale fire tests could be used to carry out this process. 

The sensors are chosen to provide the necessary information needed to conduct an 

inverse modeling analysis. The measurements obtained are temperature, smoke 

obscuration, carbon monoxide, and open or closed condition states of doors and 

windows.  

Each element can store specific data that is unique to that device. An imported 

Siemens smoke detector file can be manipulated to create new properties associated 

with the device. Properties that were assigned to the specific detector within this BIM 

are coverage area, mounting height, humidity, smoke obscuration, and temperature, 

as shown in a figure in the Appendix If these values could to be linked to actual 

sensors readings in the built environment it would provide the temperature within an 

environment and the location that the temperature was recorded at. Ventilation 

conditions are another aspect that can determine fire information. The window and 

door geometries and locations within BIM combined with contact sensor information 

can provide the ventilation conditions for a fire.  
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A recent study conducted by Anderson developed a framework to provide an 

informed risk analysis of a building using a combination of BIM software, fire 

models, and statistical analysis. Fuel packages are defined in this framework based on 

a statistical analysis. While this process was intended to be used with forward 

modeling techniques, its method can be utilized and combined with the inverse model 

framework developed for this project. Fuel load information can provide insight into 

the fire size, fire location, and possibility of fire spread. 

Other aspects that could be included in the model for fire protection purposes are 

egress components and locations, location of roof access, hazardous materials, and 

location and description of fire hydrants. Also fire department hookups for sprinkler 

system/standpipes, staging areas with entrances and exits to building, location and 

description of fire alarm panel and remote annunciator panels, and areas (zone 

boundaries) protected by sprinklers or other devices are all important considerations 

to include in the model since they provide useful information to fire safety officials.  

Chapter 3: Results 
 

The cyber physical system test bed created for fire safety provides insight for its 

feasibility for future fire fighting strategies. The data collected during the fire tests 

can be used for future inverse model development and validation. The visualization 

exploration examines current fire safety needs and BIM capabilities.  This cyber 

physical system test bed framework is tested using the approach outlined in the 

previous section. The observations and results of the fire tests conducted are 

presented in this section. Data from fire tests in the MFRI Structural Fire Fighting 
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Building using laboratory sensors and Siemens commercial sensors are evaluated 

using simple fire dynamic principles. Using guidance from previous research the fire 

state is visualized in BIM and through a timeline format presented in this section. 

Each fire scenario defined in the test matrix in Table 2.1 was executed at least twice, 

and a total of ten tests were conducted. The initial conditions such as ambient 

temperature, fuel mass, fuel moisture content, and start time are included in the 

Appendix. Test event times such as fuel ignition, occupancy sensing, fuel collapse, 

and ventilation changes are also provided in the Appendix. Examples of the raw data 

collected by the Siemens system of temperature, smoke obscuration, and security 

switches are in the Appendix.  

The four cases of the test matrix as shown in Table 2.1 consisted of different two fuel 

loads, and two different ventilation states. Case one was the crib fuel load with the 

ventilation doorway, door number two in Figure 2.3, as open. Case two was the crib 

fuel load with door two closed.  Case three and four are the pallet fuel load with door 

two or closed. The most interesting case of one crib fire and one pallet fire test, case 

two and case four, were chosen and their results are provided in this section.  

3.1 Timeline 

A timeline was created to provide an overview of the events that occurred during the 

test and when they occurred. While real-time fire information visualization is 

important, the history of a fire event can also provide important information about the 

fire. Both the timing of the events, as well as what events have occurred in the past 

can provide insight into understanding the fire. For example, knowing which smoke 
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detectors went into alarm at what times can provide insight into where the fire started 

and how quickly the fire developed. Both reports written by NIST identified two 

different types of information presentation, one to be shown enroute and one for on-

site [17] [18]. NIST identified the enroute presentation to be about the area 

surrounding the building, where the incident was located and the presence of unusual 

hazards [18]. For this project, a timeline is developed to be used as the main source of 

information for the enroute stage of an event, and could also be used on site. The 

timeline developed for this project was manually created, it is envisioned that a 

timeline would be automatically created in the future through communications 

between sensors, a building management system and BIM.  

The events chosen for the timeline are those that occur at a single time such as a 

smoke detector going into an alarm state, or the fuel collapsing. The events are only 

the measurements taken by the commercial sensors, events associated with the 

commercial sensors, or events of the fire that are assumed because of the 

measurements of the commercial sensors.  The events are best represented by a 

timeline as each event’s location and relation to other events provide insight into the 

fire development and how the sensors responded to the environment over time. The 

timeline for a crib fire, the smaller fuel load, is presented in Figure 3.1. The timeline 

for a pallet fire, the larger fuel load, is presented in Figure 3.2. The timeline provides 

a visual reference for the history of the sequence of events throughout the entire fire 

duration.  
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Figure 3.1: Timeline of Crib Test (Small Fuel) 

 

Figure 3.2: Timeline of Pallet Test (Large Fuel) 
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Figure 3.3: Beginning Timeline of Crib Test (Small Fuel) 

 

Figure 3.4: Beginning Timeline of Pallet Test (Large Fuel) 
 

3.1.1 Crib Timeline (Small Fire) 

Once the excelsior ignited the crib after one minute, the crib burned at a steady state 

for about twelve minutes. During that time, temperatures (Significant Readings) on 
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the first floor, in the burn room and in the adjacent room increased and remained 

steady until the crib fire started to decay. The smoke traveled to the upper floors and 

throughout the building. During this time, the smoke detectors responded (Local and 

Remote Alarms) with smoke alarms, temperature alarms, and CO alarms, the times 

are shown in Figure 3.1 and 3.3.  About twelve minutes into the fire, the crib 

collapses (Fire Event) from its original configuration. Immediately after, the smoke 

detectors report higher temperatures for a period of a few minutes. After twenty 

minutes the ventilation of the fire floor is initiated and the contact sensors report their 

open status to the panel (Security Readings). During the ventilation stage the 

temperature and smoke obscuration measurements reduce.  

3.1.2 Pallet Timeline (Large Fire)  

For the fire few minutes the initial fire environment is governed by the large amount 

of excelsior used in the fuel. The large amount of smoke produced by the excelsior 

quickly spreads throughout the floors. The first floor smoke detectors quickly respond 

with temperature alarms, smoke alarms, and CO alarms (Local Alarm). Once the 

excelsior decays the pallets provide a sustained burning for about ten minutes. Similar 

to the crib fire, temperature increase was noted just after the time the fuel was 

observed to collapse (Significant Readings). For this particular test, the contact 

sensors reported an open state at an early stage of the fire and no upper floor alarms 

were initiated (Security Readings).  
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3.1.3 Timeline Details 

The ambient conditions, measured by smoke detectors A and B in room one, are 

described in the first event shown in blue. Significant smoke obscuration and 

temperature measurements for detectors A and B throughout the rest of the 

experiment are also provided on the timeline (Significant Readings). These 

measurements are events shown in blue. Detectors A and B are the closest detectors 

to the fire. They are located in the room adjacent to the fire room, which provides 

important quantitative measurements to describe the fire environment and can put the 

events of the timeline into perspective. Other unique events are written out: “crib 

collapse” or “pallet collapse” is when the fuel falls apart and looses its original 

configuration (Fire Event). This event is included as the smoke detectors reported the 

temperature elevated after the temperature were decreasing, providing insight that the 

fuel had changed. “Contact Open” is when a contact sensor reports an open state to 

the panel (Security Reading). “Ventilation” is when the windows to the outside are 

opened on the first floor, and was known from the contact open signal (Fire Event). 

The events shown in red are when detectors A and B go into an alarm state: “smoke” 

is for a smoke alarm, “temp” is for a temperature alarm, and “CO” is for a carbon 

monoxide alarm (Local Alarm). A closer look at the exact times the alarms are 

initiated for the crib test and pallet test are shown in Figures 3.3 and 3.4.  
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3.2 Test Measurements 

3.2.1 Siemens Smoke Obscuration 

The recorded smoke obscuration levels for the crib test and pallet test are displayed in 

Figure 3.5 and Figure 3.6 respectively. The four different colors correspond to the 

four different floor levels: the first floor is shown in red, second floor is purple, third 

floor is blue, and the fourth floor is green. As discussed in the approach, the reported 

smoke obscuration is the amount of smoke needed to go into alarm, not the amount of 

smoke in the chamber. Therefore, using the 3%/ft. threshold, the raw smoke 

obscuration readings are converted into the actual smoke obscuration levels within 

the fire environment.  

 

Figure 3.5: Smoke Obscuration of Crib Test (Small Fuel) 
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Figure 3.6: Smoke Obscuration of Pallet Test (Large Fuel) 
 

3.2.2 Siemens Temperature Readings 

The smoke detector temperature readings for a crib test and for a pallet test are shown 

in Figure 3.7 and Figure 3.8 respectively. The same colors are used for the different 

floors. Detector A and B are distinguished by dash length, temperature measured by 

detector A is shown with long dashed lines and short dashed lines for detector B. The 

gaps within the upper floor data are when the system is unable to communicate the 

temperature readings for the fire because it is interrupted by alarm warnings.  
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Figure 3.7: Siemens Temperature of Crib Test (Small Fuel) 

 

Figure 3.8: Siemens Temperature of Pallet Test (Large Fuel) 
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Raw thermocouples readings for each detector location are compared and the most 

interesting cases are presented here. Detectors A and B are concluded to be the most 

interesting cases.  The temperature measured by the detectors is compared to the 

temperature measured by the thermocouples for one crib test and one pallet test in 

Figures 3.9 and 3.10 respectively. Location A for both the thermocouple and the 

detector is shown in blue, and red for location B. The smoke detector readings are the 

“X” locations, and the solid lines are the thermocouple measurements. These figures 

provide insight into the accuracy of the sensors as compared to the thermocouple 

measurements, as well has how frequent the data from the detectors can be conveyed.  

 

Figure 3.9: Siemens Temperature and Thermocouple Temperature at Locations A and 
B of Crib Test (Small Fuel) 
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Figure 3.10: Siemens Temperature and Thermocouple Temperature at Locations A 
and B of Pallet Test (Large Fuel) 

 
 

3.2.3 Thermocouple Temperature 

The raw data for all of the temperature measurements for one crib test and one pallet 

test is presented in Figure 3.11 and 3.12. Only the top measurement from the two 

thermocouple trees are used for these figures. This raw data shows the temperatures 

throughout the first, second, third, and fourth floors. As before the four different 

colors correspond to the four different floor levels: the first floor is shown in red, 

second floor is purple, third floor is blue, and the fourth floor is green.  Figures 3.11 

and 3.12 display the very different fire environments created by the two fuel sources. 

The temperatures exhibited during the pallet test are significantly larger than those 

exhibited in the crib test. However, the temperatures are sustained for a longer period 
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of time during the crib test. In Figure 3.12 the temperature significantly increases 

right after when the pallet triangle fuel package collapses. 

 

Figure 3.11: Raw Thermocouple Temperature of Crib Test (Small Fuel) 

 

Figure 3.12: Raw Thermocouple Temperature of Pallet Test (Large Fuel) 
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To provide insight into the repeatability of the experiments, the raw temperature 

measurements for the first floor for Test 1, Trial 1 and Test 1, Trial 2 are shown in 

Figure 3.13. The darker colors are for Trial 1 and the lighter colors are for Trial 2. 

The colors correspond to the location of the thermocouple, location A is red, location 

B is blue, location C is green, location D is purple, and location E is orange. For 

locations D and E the third highest thermocouple was chosen. It can be seen in Figure 

3.13 that the measured temperatures are similar for the two trials.  

 

Figure 3.13: Raw Thermocouple Temperature of Two Crib Tests; Location A (Red); 
B (Blue); C (Green); D (Purple); E (Orange); Trial 1(Light); Trial 2 (Dark) 

 

Contour plots for each of the two thermocouple trees over time is presented in Figures 

3.14, 3.15, 3.16, and 3.17. The contour plots provide a visual for the temperature 

distribution along the height of the compartment throughout the entire fire evolution. 

The raw 1800 point data is averaged for every ten second interval to provide the 180 
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inputs for the contour plot. The contour plots provide insight into the ventilation state 

of the fire.  

Recently, Price conducted multi-room compartment fire experiments to obtain 

measurements of hot gas layer temperature and depth [14]. These measurements were 

conducted by using thermocouple trees at the ventilation doorways just like the 

thermocouple trees used in this study. These measurements are used by Price to 

determine the location and size of a fire using an Inverse Fire Model (IFM). The 

measurements taken in this experiment can be used for future IFM validation. Once 

an accurate process for using an IFM is developed, fire size and location could be 

conveyed to fire fighters, which is one of the most significant elements of information 

during a fire event.  

 

Figure 3.14: Thermocouple Tree Temperature of Location D of Crib Test  
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Figure 3.15: Thermocouple Tree Temperature of Location E of Crib Test  

 

 

Figure 3.16: Thermocouple Tree Temperature of Location D of Pallet Test 
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Figure 3.17: Thermocouple Tree Temperature of Location E of Pallet Test  

 

3.2.4 Mass Loss Rate 

Three tests successfully measured the mass of the crib throughout the duration of the 

fire evolution. The three results are presented in Figure 3.18. The raw data is 

averaged between three points to smooth the data. A five point derivative average is 

then applied to the smoothed average to get the resulting mass loss rate (mdot) 

presented in Figure 3.18. The five point derivative method is taken from equation (9) 

of section 13.3.2 in ASTM E1354 [24]. The mass loss rate for each crib is similar for 

the first ten minutes of the experiment. The prescribed crib configuration provided 

controlled steady burning. The cribs collapsed between times of twelve minutes to 
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fourteen minutes. The mass loss measurements have a lot more noise during this time 

interval and could be caused by the significant mass level change from collapsing.  

 

Figure 3.18: Mass Burning Rate of Crib Test (Small Fuel) 

 

3.2.5 System Limitations 

During the first few minutes of each test, the system is overloaded with sending alarm 

signals that the temperature and smoke obscuration measurements are not conveyed.  

This is an unusual feature of the system that will significantly limit the critical data 

needed to determine information about the fire. The first few minutes and the 

developing stage of the fire was a very important time to be making temperature and 

smoke obscuration measurements. This needs to be repaired in the future so that 

accurate fire environment measurements can be made. The only smoke obscuration 
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readings relayed are the beginning measurements of 0.06% and the maximum 3% 

obscuration given three minutes later.  After a detector reaches the 3.00% alarm 

threshold, it is not capable of describing the smoke environment further. This is 

important to consider when determining if smoke obscuration measurements read by 

smoke detectors can actually give an accurate description of the fire environment or 

can be used for inverse modeling purposes.  

Although some of the smoke alarms on the third and fourth floors were relayed to the 

panel, not all of them did. When the 3% threshold is reached the detectors should 

have relayed an alarm state to the panel. The measured smoke obscuration 

measurements shown in Figures 3.5 and 3.6 displays that most of the detectors 

reached the 3%/ft. threshold, but as shown in Figures 3.1 and 3.2, not all of these 

detectors relayed a smoke alarm state to the panel. This is a system limitation and 

should be explored further. In all tests, there were no indications that when the fire 

fighter walked in front of the sensor that the detection of an occupant was relayed to 

the panel. 

During the first experiment the smoke detector in location E, as shown in Figure 2.3, 

within the burn room was ignited and a short circuit was reported. The single short 

circuit caused the entire Siemens device loop to go down during this experiment. The 

system still had power and the display was still up but the system was only displaying 

trouble messages. It was not expected for one device failure to cause an entire system 

to stop recording entirely. Later, it was realized that all of the devices were looped 

together, where if one fails, the entire system would fail. In real buildings, a few 

sensors may be looped together in certain areas, but codes and regulations limit this, 
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as many sensors need to stay operating in the case of one failing.  Disconnecting the 

other sensors within the burn room and connecting the sensors in room one onto a 

separate loop rectified this issue. In this case if A or B failed, the entire system would 

not go down. This solution worked but in future tests it is recommended to not 

disconnect the detectors in the fire room but rather place them on a separate loop. The 

other two detectors within the fire room were never ignited throughout all the tests 

and would have been able to stay operational.  

3.2.6 Inverse Fire Modeling Validation Data 

Some of the data collected was not intended to be incorporated into the BIM, as it is 

not something that is typically within a commercial building. Rather these 

measurements were taken to provide more rich dataset about the specific fires that 

occurred during the full-scale fire tests. Thermocouple tree data provides insight into 

the ventilation status of the fire, and the load cell provides insight into the mass 

burning rate of the fuel. These measurements can be used to determine the heat 

release rate of the fire.  

3.3 Real-Time Cyber Physical System Framework 

MicroStation information modeling software along with AECOsim Building Designer 

were used to create the virtual framework for the cyber physical test bed for fire 

safety. In this section the static and dynamic data incorporated into BIM is presented. 

The visual layout and quantity of the information is determined using guidance from 

past fire safety literature and caters to the capabilities of the Bentley software. A 
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method to utilize inverse modeling techniques to describe the fire environment is 

presented.   

3.1.1 Real-Time Critical Fire Information Visualization 

A framework for visualizing a virtual a fire environment was developed. The 

framework utilizes a BIM and measurements collected from sensors during an actual 

fire scenario. The framework defines how the data is displayed based on past fire 

safety research. The previous section defined how the data can be transformed into 

information such as fire size and fire location. This section defines what dynamic 

information can be transferred directly into a BIM as the value itself is useful for a 

fire fighter and not just for a fire analysis that determined the fire size and location. 

The framework is carefully determined using the past fire safety research defined in 

the literature review.  

There are two different stages of fire response, enroute and on the fire scene. The 

timeline could be used for both stages to provide a history of the fire development. A 

visualization of the current real-time information of the fire environment will allow 

EFRs to make informed decisions on the fire scene. An overview of the BIM created 

of the MFRI structural fire fighting building is shown in Figure 3.19.  
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Figure 3.19: Visualization of Building and Fire Environment  

 

A visual of the entire building infrastructure will allow EFRs to quickly see the 

location of the stairs, exits, balconies, and if the structure had it; fire hydrants, 

standpipes, sprinklers, and HVAC utilities. It is important to realize that many of the 

building elements that were created as a part of the building design also provide 

information about the fire environment. A 3-D representation of the building allows 

for the fire fighter to know the floor layout beforehand. Navigating stairwells, exits, 

finding standpipes, are all important building information that can automatically be 

shown without real-time sensor information.  

The view in Figure 3.19 makes it difficult to see the complexities of each floor and 

therefore a single floor option is shown in Figure 3.20. The floor of importance can 
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be seen immediately in Figure 3.19 through the use of color to show a certain 

temperature reached on that floor.  

 

Figure 3.20: Visualization of Test Bed Fire Environment  

 

Another method of viewing the building materials is shown in Figure 3.20. A 

wireframe method is shown in Figure 3.19 and allows for the building elements such 

as the stairwells to be highlighted easily. This illustration method shown in Figure 

3.20 allows for the walls, doors, windows and overall geometry of the floor to be seen 

easily, just as it would be seen in actuality.  

One snapshot of the fire environment observed during testing is shown in Figure 3.19 

and 3.20. The dynamic fire information is shown through methods determined from 

past studies and the capabilities of the BIM software. Room temperature is a 

significant measurement that defines the hazard within a specific area. Fire fighters 
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and occupants can be exposed to certain temperature ranges for a limited amount of 

time. For this framework, these ranges are determined to have a certain hazard value 

and are associated with a certain color. “A Guide to Smoke Control in the 2006 IBC” 

is referenced by SFPE and the ICC as indicating that humans can typically tolerate 

continuous exposure to humid are at 66 C for a period of twenty minutes [25]. Also, 

the first temperature warning threshold used by the NIST study is 50 C and requires a 

breathing apparatus for fire fighters [18]. Madrzykowksi observed various fire 

training scenarios and determined that temperatures in excess of 260 C and with heat 

fluxes in excess of 20 kW/m2 would result in a survival time of less than 30 seconds 

for someone that was in full personal protective equipment (PPE) [23]. With this 

insight is it determined to provide four temperature thresholds with corresponding 

colors and hazard levels. The first warning is for when temperatures reach 50 C, and 

the corresponding color is green. The second warning is for when temperatures reach 

100 C, and the corresponding color is yellow. The third warning is for when 

temperatures reach 150 C, and the corresponding color is red. The fourth warning is 

for when temperatures reach 250 C, and the corresponding color is black. The colors 

are assigned to each room and are placed on the floor of the BIM, as seen in Figure 

3.20. The solid colors on the bottom of the compartment allow the rest of the 

compartment to be seen, there will be no color assigned to it if there is no alarm.  

It is determined that only an alarm state will be shown for the detectors since they can 

only measure up to the alarm threshold of 3%/ft. obscuration. A detector shown in red 

will signal an alarm state. If a smoke detector fails, the detector will be shown as 

black. Detectors in alarm and detectors that have failed are shown in Figure 3.20. A 
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sphere, as shown in Figure 3.20, represents an occupant. This representation was also 

used in the NIST example discussed in the literature review [17]. The location of an 

occupant, taken from an occupancy sensor, would allow a fire fighter to recover a 

person in need safely. The ventilation status of the windows, transmitted from a 

contact sensor, is shown by either having an open clear window or a closed blacked 

out window as shown in Figure 3.20. The visual cues described in this section that are 

incorporated into BIM to describe the fire environment had to be manually created. In 

the future this process would be automated using a macros and visual basic program. 

This project only focused representing the data that was gathered by the commercial 

sensors such as temperature, smoke obscuration, open or closed state of the windows, 

and occupancy detection. There are many more elements that can be visualized using 

BIM as described in the literature review, such as fire size and fire location.  

3.4 Conclusions 

A robust large-scale CPS test bed was formulated and assembled, producing a CPS 

dataset to explore the viability for supporting critical fire safety decision-making. 

Novel tests methods were developed for the CPS, which included careful selection of 

fire and non-fire sensors to observe controlled fire environments. Various realistic fire 

environments were designed by prescribing well-characterized fuel sources. The fuel 

sources varied in size and growth, with 1.5 MW peak HRR and 0.4 MW peak HRR. 

The executed test methods successfully recreate the fire environments simulated 

using FDS.  



 

 74 
 

The physical infrastructure, which consisted of a multi-story building integrated with 

a customized Siemens fire panel collecting signals from conventional fire and non fire 

sensors and laboratory instruments. The sensor output was directed to a virtual 

framework designed for visualization of critical fire safety information. The virtual 

framework consisted of a detailed BIM representation and custom visual cues based 

on fire safety research guidance. Rich sensor data of a well-controlled fire 

environment provides valuable information for developing inverse fire models.  

Measured temperature profiles, smoke obscuration, ventilation areas, and mass 

burning rates can be utilized for inverse fire model validation. The CPS test bed 

developed produced remarkable evidence about the opportunities created by the 

communication between sensors, BIM, and fire for fire safety. The CPS test bed 

developed has many opportunities for expansion.  
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Appendix 
Facility Description:  

Building utilities such as HVAC and plumbing are not used within the building 

because there would be little use for them and would be damaged during the fire 

fighting training exercises. The walls are constructed of concrete masonry units or of 

brick, and the floors are made of concrete. The walls and ceilings are protected with 

different types of additional fire resistive materials. The first is a sprayed-on fire 

resistive material known as Pre-Krete G-8. Pre-Krete G-8 is composed of hydraulic 

calcium aluminate cement. The second type of fire resistive material used in the burn 

structure is 51 mm thick, high-temperature tiles composed of refractory concrete 

placed on top of a 25 mm thick insulation known as SuperTemp_L. The high 

temperature tile insulation combination is attached to the ceiling of the third floor. 

The third type of fire resistive material is Duraliner HT insulating panels. The first 

floor of the building recently was renovated with new Padgenite panels. Padgenite 

boards are made of calcium silicate and provide a thermal barrier for the walls on the 

first floor. The rest of the building elements are made of metal, which can withstand 

extreme conditions. The metal doors and windows are free swinging with a manual 

latch. The stairs inside of the building and the fire escape on the outside are grated 

metal stairs with metal handrails. Although these materials will interact with the fire 

environment differently than typical materials used in commercial buildings, the 

protected environment allowed for full scale burns to take place without risking the 

integrity of the structure.  
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The building is a part of the University of Maryland campus and is building number 

196 of the building inventory. Within the facilities website there are floor plans and 

general details about the building. According to the website, the MFRI structural fire 

fighting building has a gross square footage of 5,701 feet and 4,828 net assignable 

square feet. It also states that the year of construction was in 1989, undergoes normal 

maintenance, and its function is non-academic. The replacement value is $3,082,117 

and the renovation cost is $1,541,059.  

 

 
Figure A.1: New Padgenite Insulating Panels on First Floor 
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Figure A.2: Metal Free Swinging Window with Manuel Latch 

 

 
Figure A.3: Metal Grate Stairs with Metal Handrails  
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Siemens Fire Safety System Descriptions: 

The system can monitor 252 addressable devices, which is the smallest option that 

exceeds our need of monitoring 25 of addressable devices. The control panel has an 

LED screen display that provides detailed information about the nature and location 

of the event. During testing this is used to get an update on the condition of the fire 

tests. The control panel is connected to a security panel so that the data collected by 

the contact and occupancy sensors is recorded.  

All smoke detectors are wired back to a fire alarm control panel. The hard wiring is 

necessary to relay the significant amount of data gathered by the detectors to the fire 

alarm control panel. The wiring used is Honeywell Genesis 41111004 16/2 Solid 

Unshielded Cable. The wiring can withstand high temperatures but can not be in 

direct flame contact. The security sensors are wireless and are monitored by Siemens 

HTRI-D devices. The HTRI-D devices are dual-impute modules that are designed to 

supervise and monitor two sets of dry contacts and report the status to the control 

panel. These are included in the left side of the case, as shown in Figure 2.2. 

This system is used to gather data during fire tests at the MFRI structural fire fighting 

building. The system is designed be portable so that temporary installation can be 

achieved to not harm the integrity of the training facility. The weight, size, and power 

requirements of the two panels allowed for the system to be portable. 

Temporary installation techniques needed to be utilized as the facility conducts 

training exercises regularly. The system prescribed would not withstand the 

conditions of the training exercises if it were to be permanently installed. The system 
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also could not be physically attached to the facility in a way that could damage the 

integrity of the fire resistant panels. Using adhesives and other non-penetrating 

attachment methods were determined to not be robust enough to stand up to the fire 

environment. The resulting installation design used for the ceiling mounted detectors 

is a temporary stand as shown in the Figure. The stand is constructed of a metal 

Christmas tree stand and a metal conduit pole. The heights of the poles are 

determined based on the different ceiling heights. The smoke detectors are propped 

up against the ceiling using a metal clamp that is attached to the top of the metal 

stand. The measurements are uniform at the highest elevation in each room. The 

highest elevation measurement was also chosen due to past studies observing that 

ceiling temperature can be related to fire size and is therefore an important 

measurement for inverse modeling. To provide a more rich dataset closer to the fire, 

there are three smoke detectors in the fire room and two in the adjacent room on the 

first floor. 
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Figure A.4: Temporary Sensor Instrumentation 

 
Figure A.5: Temporary Thermocouple Tree Instrumentation 
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Multi-Criteria Smoke Detector Description: 

The photoelectric sensor uses optical detection and can measure the specific optical 

density of smoke. This specific optical density is also called smoke obscuration. 

Obscuration is a unit of measurement that has become the standard definition of 

smoke detector sensitivity. This is a useful measurement that quantifies the 

concentration of smoke in the environment. The detector combines the smoke 

obscuration measurement with temperature and carbon monoxide measurements for 

enhanced fire detection.  

Model FDOOTC441 can measure smoke obscuration between 0% and 3%. This is a 

measurement of the smoke density present having the capacity of blocking a percent 

of a light source per linear foot. This is based on a system having a light source at one 

end and a light receiver at the other, typically 100 meters apart, and the measurement 

is based on the percent of light lost with the smoke interrupts the light. The detector 

can only measure up to 3% smoke obscuration, after which it goes into a smoke alarm 

state. This is a typical threshold for a smoke detector and this limitation should be 

considered when trying use measured smoke density for fire calculations.  The 

reported smoke obscuration is the amount of smoke needed to go into alarm, not the 

amount of smoke in the chamber. For example, a reported obscuration level of 3% 

means that there is 0% within the chamber and 3% is needed to go into alarm.   

Model FDOOTC441 provides five field-selectable temperature thresholds, ranging 

from 57C to 79C. As the conditions were expected to exceed all of the thresholds, the 

temperature threshold chosen for the experiments was the highest of 79C. A CO 
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alarm response time is dependent on the CO concentration (parts per million, ppm). 

An advance warning can be issued when 30 ppm CO is exceeded, and a pre-alarm 

when 50 ppm CO is exceed. A full CO alarm will activate at 70 ppm CO within 60 to 

240 minutes, 150 ppm CO within 10 to 50 minutes, and 400 ppm CO within 4 to 15 

minutes. It is also noted in the product specifications that at temperatures greater that 

79 C the CO sensor may not function reliably. Since these conditions are expected, 

this limitation will be taken into account when analyzing the results.  

Load Cell Limitation: 

The expected heat release rate of the pallet fire is too extreme and could possibly 

damage the load cell during the experiment. In order to gather as much information 

about the mass loss as possible, the mass of the fuel is weighed before and a photo of 

the leftover fuel is taken at the end of an experiment. This information is provided in 

the Appendix. It is recommended in future tests to measure the left over fuel to obtain 

the entire mass loss during the fire evolution.  

Fuel Package Location: 

The larger fire compartments on the first floor (300 square feet) as compared to the 

third and fourth floor smaller burn rooms about the size of 115 square feet are better 

for this project’s goals. The larger fire room provides more ventilation for the fire and 

limits the possibility of extreme conditions within the fire room. In a larger burn 

compartment the temperatures will not reach as high as a smaller room with similar 

ventilation doors. In a larger fire compartment the fire is further away from the walls 

limiting the heat exposure from the flames as well. The newly replaced Padgenite fire 
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resistant panels on the first floor will be able to better handle the heat than the older 

panels on the third and fourth floors. This project is unique in that the conditions 

throughout the entire building will be observed, rather than past experiments where 

one or two compartments are observed.  

Wood Crib Fuel Description: 

The wood cribs are made of furring strip board. The length, size, and number of 

individual wood members and their arrangement in the crib are specified as follows 

for a classification and rating of 1-A; 72 wood members, each 38 mm by 38 mm by 

500 mm in twelve layers of six members.   The layers of the wood crib consist of 

specified sizes and lengths of furring strip board placed at right angles to one another. 

The UL Standard also prescribes the amount of and the heptane pan size. The amount 

of heptane required is 1.1 liters within a 400 mm by 400 mm by 100 mm pan.  

After determining the fuel set up, it was realized that tests within the MFRI structural 

fire fighting building are not allowed to use petroleum based products. Excelsior is a 

commonly used fuel source for training purposes in the structure.  It is then 

considered to replace the heptane pool fire with excelsior to ignite the crib. Tests are 

conducted within the fire lab at the University of Maryland to determine if excelsior 

alone can ignite the wood crib and how much excelsior is needed. It is determined 

that about three kg of excelsior underneath the wood crib is enough to ignite the crib 

in about one minute. This is a similar time as it took the heptane pool fire to ignite the 

crib.   
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Pallet Fuel Description: 

The typical larger triangle package of three full sized pallets and excelsior was also 

considered in this study.  The heat release rate of the previous crib fuel package could 

be determined using the properties of wood, and information from past studies. 

The mass of the pallets for the large triangle package was about 70 kg, and the 

smaller package was about 35 kg with the pallets weighing about 27.5 kg and the 

excelsior weighing about 7.5 kg. Flat and upright fuel arrangements were also tested 

by NIST but were not used for this study as they were not as representative of the 

typical fuel package used in normal training exercises. It was also considered to use 

only excelsior for the fuel, but it was concluded that the resulting fire environment 

would provide a fast growing fire that would result in high temperatures inside the 

burn room without enough time for the smoke to travel throughout the building.  

The various fuel packages were tested by NIST and their heat release rates were 

determined. The fuel packages were arranged in a room corner composed of 2.44 m x 

2.44 m (8’ x 8’) walls covered with two layers of 13 mm (0.5’) gypsum board with a 

partial ceiling over the corner also made of gypsum board as seen in Figure 2.14. The 

experiments were conducted under the oxygen consumption calorimeter at NIST to 

collect heat release data. One heat flux gauge at a height of 1 m (3’-3’’) was directed 

at the fuel package. The heat flux gauge was located 1 m (3’-3’’) from the right wall 

and 2.44 m (8’) from the left wall.  
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Figure A.6: Oxygen Cone-Calorimeter test of the MFRI Fuel Package by NIST Test  

 

The moisture content each fuel is also measured directly before each test to ensure 

that the exact moisture content is known for the experiment. The cribs are kept in a 

climate-controlled area from the time they are assembled to the time they are used for 

testing. The moisture content of the cribs is mostly uniform and ranged from 5.2% to 

5.6%. The pallets are not kept in a controlled environment, and are just stored outside 

of the MFRI structural fire fighting building. During the experiments there was still 

snow on the ground and some of the pallets had snow residue. A photo of the pallets 

used is shown in the Appendix. The moisture content of the pallets varies and at least 

four measurements are taken for each pallet.  
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Figure A.7: Various Pallets Used For Testing  

 

In order to have the same fuel load as the chosen NIST test, the pallets are cut in half, 

the cut pallets are shown in in the Appendix. For the NIST test, the combined weight 

of the pallets was 27 kg, and the excelsior was 7.5 kg.  For each test, the three pallets 

are chosen that provide the closest combined weight of 27 kg. The 7.5 kg of excelsior 

is also measured for each test. The weights of the three pallet fuel load are noted in 

the Appendix. 
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Figure A.8: Cut Pallets Used For Testing  

 

Fire Scenario Descriptions: 

For each scenario, both detectors A and B go into smoke, temperature, and CO alarm. 

In each case, B goes into alarm just before A does. This makes sense as the door in 

front of detector A is closed and the door in front of detector B is open and is exposed 

to the elements of the fire first. The first time that the system is able to report 

temperature and smoke obscuration readings is displayed within the second blue 

square of Figures 3.1 and 3.2. During the first few minutes of each test, the system is 

overloaded with sending alarm signals that the temperature and smoke obscuration 
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measurements are not conveyed.  This is important limitation of the system that was 

not expected.  

The results of the crib fuel source were more in line with expectations than the results 

of the pallet fuel source. During the crib test, detectors A and B initiated alarms as 

well as some of the third and fourth floor smoke alarms. The events shown in purple 

for the crib test are the third and fourth floor detectors that go into a smoke alarm 

state. The locations of the K, M, I, and L detectors of the third and fourth floors are 

provided in the approach and their coordinates are in the Appendix. During the crib 

test, the contact sensors reported an open state after ventilation was initiated. The 

only sensor that didn’t operate as planned is the occupancy sensor, which never 

signaled an activated state.  

The pallet test shown in Figure 3.2 and 3.4 produced different results than what was 

expected.  The first alarm for the pallet test is temperature, and the second is the 

smoke. This could be due to the fast growth rate of the larger amount of excelsior that 

resulted in high temperatures within a short amount of time. Smoke alarms on the 

third and fourth floors are not activated during this test, which is surprising because 

the smoke obscuration measurements did reach the 3% threshold. Also the contact 

sensors reported open at an early stage of the fire before ventilation was initiated.  

For both the large and small experiment the first floor is the first to exceed the 3% 

threshold, and the second floor is the last. This is because the stairway is an open 

grated stairwell that acts like a shaft and allows the smoke to travel upward from the 

first floor into the fourth and third floors first. Comparing these results with the 
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timeline, it can be seen that more detectors reach the 3% threshold than the number of 

detectors that reported a smoke alarm. For the large experiment most of the detectors 

exceed the 3% threshold within the first five minutes of the experiment, and yet none 

of the detectors on the third or fourth floors reported a smoke alarm.  

Temperatures recorded by detector B are higher than the temperature recorded by 

detector A. This makes sense as the door in front of the A detector is closed and the 

door in front of the B detector is open and is closer to the fire.  The temperatures for 

detectors A and B for the crib fire stay elevated for a much longer time than for the 

pallet fire. The crib fire has a longer steady heat release rate that cause the 

temperatures to stay elevated, whereas the pallet fire grew very large quickly but also 

decayed quickly. The temperatures on the upper floors were slightly elevated during 

the tests. The third and fourth floors exhibit the most temperature rise of the upper 

floors. The open stair behaving like a shaft explains this trend. 
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Figure A.9: Temperature and Smoke Obscuration Data Request 

 

 
Figure A.10: Temperature Data Output From Siemens System 
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Figure A.11: Smoke Obscuration Data Output From Siemens System 

 

 
Figure A.12: Security Switch Data Output From Siemens System 
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Figure A.13: Siemens Smoke Detector File  
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Table A.1: Sensor Coordinates 
Sensor X (m) Y (m) Z (m) 

A 3.10 9.73 2.72 
B 6.30 9.83 2.72 
C 2.18 6.30 2.72 
D 5.72 6.50 2.72 
E 2.39 3.96 2.72 
F 4.17 8.66 5.90 
G 4.50 4.09 5.90 
H 5.44 1.01 5.90 
I 7.32 8.53 8.80 
J 3.48 8.64 8.80 
K 5.72 3.00 8.80 
L 6.63 4.34 11.90 
M 5.31 1.37 11.90 

Thermocouple  X (m) Y (m) Z (m) 
A 3.10 9.73 2.72 
B 6.30 9.83 2.72 
C 2.18 6.30 2.72 
D 5.72 6.50 2.72 
E 2.39 3.96 2.72 
F 4.17 8.66 5.90 
G 4.50 4.09 5.90 
H 5.44 1.01 5.90 
I 7.32 8.53 8.80 
J 3.48 8.64 8.80 
K 5.72 3.00 8.80 
L 6.63 4.34 11.90 
M 5.31 1.37 11.90 
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Table A.2: NIST Oxygen Cone-Calorimeter Tests Fuel Properties 

Fuel Package 
Properties 

Small Triangle 
Pallet 

Large Triangle 
Pallet (1) 

Large Triangle 
Pallet (2) 

Mass of Excelsior 7.4 kg (16.3 lb)  14.8 kg (32.6 lb)  14.8 kg (32.6 lb)  

Mass of Three 
Pallets 27.6 kg (60.9 lb) 

55.9 kg (123.2 
lb) 53.9 kg (118.8 lb) 

Total Mass of Fuel 
Package 35 kg (77.2 lb) 

70.7 kg (155.9 
lb) 68.7 kg (151.4 lb) 

Moisture Content 5 - 24% 6 - 11% 7 - 12% 

Pallet Dimensions 

.94 m x .94 m x 
0.089 m (3.0 ft x 

3.0 ft x 0.3 ft)  

1.22 m x 1.02 m 
x .13 m (4 ft x 3 

ft 4 in x 5 in) 

1.22 m x 1.02 m 
x .13 m (4 ft x 3 

ft 4 in x 5 in) 
 

Table A.3: Initial Conditions for Fire Tests 

Test # 

Fire  Configuration 

Crib/P
allet 
Mass 
(g) 

Excelsi
or 

Mass 
(g) 

Moist
ure 

Conte
nt (%) 

Amb 
Temp 
(C ) 

Smal
l 

(Woo
d 

Crib)  

Larg
e 

(Pall
et) 

Door 
2 

Open 

Door 
2 

Close
d 

1 X   X   21275 3977 5.4 1  
1(repe

at) X   X   21630 3885 5.4 0  
1(repe

at) X   X   21184 3769 5.2 0  
2 X     X 20637 3905 5.3 1  

2(repe
at) X     X 19869 3723 5.6 1  

3 Fail   X X   27098 3700 13-18 1  
3   X X   26540 7703 13-18 1  

3(repe
at)   X X   21441 7546 12-19 1  
4   X   X 27650 7463 13-17 1  

4(repe
at)   X   X 27226 7556 10-18 1  
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Table A.4: Event Times for Fire Tests 

Test # 
Test Start Time 

Free Burn 
Time 

Occ 
Sensor Crib Collapse Ventilation  

1 Wed, 1:20 pm 1:20 2:30 13:00 23 

1(repeat) Thurs, 9:30 am 1:30 
2:15, 
8:30 14:30 20 

1(repeat) 
Thurs, 12:55 

pm 1:20 3:40 13:10 20 
2 Wed, 2:45 pm 1:25 2:30 13:00 23 

2(repeat) 
Thurs, 10:45 

am 1:15 
2:30, 
12:30 14:00 20 

3 Fail Thurs, 2:10 pm NA 2:30 NA 11 
3 Thurs, 2:35 pm 1:15 2:30 8:20 21 

3(repeat) Friday, 8:00 am 1:20 3:40 10:15 20 

4 Friday, 8:45 am 1:10 

4:30, 
6:30-2nd 

3rd 8:30 20 

4(repeat) Friday 9:30 am 1:10 
8:11, 1st 
2nd 3rd 8:10 20 
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