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CNS controls multi-directional toe-tap motion using similar neural control strategy.
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Chapter 1: INTRODUCTION

This chapter lays out the motivations of the research by asking the question,

How does the central nervous system (CNS) control mobility as a neuro-musculo-

skeletal system? Specifically, the problem statement is localized to the study of

forward, backward and lateral toe-tapping, and highlights the necessity for under-

standing the neural motor control structure as a function of tapping direction and

age. The chapter concludes by, broadly, outlining the structure of the thesis.

Neural motor control, in the context of this thesis, refers to the question:

Does the CNS control individual joints or does it control task-related performance

parameters? We call these parameters task or control variables. Intuitively, it is

logical to assume that the CNS controls a multitude of different parameters during

any movement; however, it is impossible to evaluate all these parameters. Thus, in

this thesis we test only a subset of the parameters to see if they are being controlled

or not; leading us to the idea of an approximation. Finally, we seek to relatively rank

these variables according to their contribution to the motor task, thus systematically

approximating the neural motor control of multi-directional toe-tapping task.
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1.1 MOTIVATION

Tapping a fixed body-spatial position (anterior-posterior or medial-lateral)

with the toe requires asymmetrical motor skills. The entire body weight is placed

on the stance leg, while the other leg simultaneously swings toward the target in the

specific direction. Thus, while tapping is similar to stepping, it is unique because

there is no transfer of body weight onto the tapping leg. Toe-tapping or directional

toe-tapping, however, has rarely been studied. Therefore to have a better under-

standing of this task, we used the locomotion literature as a guide – noting always

the critical differences as well as the similarities.

Locomotion, i.e., walking and running, is the most fundamental of human

movements. It requires frequent adaptations depending on the environmental con-

ditions and various behavioral goals, e.g., backward walking, running, or jogging.

However, from the perspective of movement neuroscience the underlying neural mo-

tor control structure of locomotion is not well understood. For generations, locomo-

tion has been analyzed through the nonlinear inverted pendulum model (Dickinson

et al., 2000; Full & Koditschek, 1999; Kuo, 2007; Winter, 1995). This mechanistic

model, however, does not answer the fundamental question, how is locomotion con-

trolled by the CNS as a neuro-musculo-skeletal system (Dickinson et al., 2000; Full

& Koditschek, 1999)? Or, locally thinking, what is the approximate neural motor

control structure in the joint space?

Stepping forward is an important part of locomotion. During this phase the

center of mass (COM) of the body moves outside the base of support; which dras-

2



tically alters the criteria of balance and increases the possibility of falling. This

is primarily because of the inverted pendulum like weight distribution within the

human body: two-thirds of the total body weight is centered in the upper body

(head-arm-trunk) (Woollacott & Tang, 1997). The generated potential energy is

converted into kinetic energy during the stepping phase. While this conversion can

assist us in walking or running, it can also be the reason for falling due to the

creation of a destabilizing moment because of the inverted pendulum-like upper

body structure (Woollacott & Tang, 1997). David Winter and other researchers

have studied the kinetics, kinematics and electromyography (EMG) to explain the

biomechanical dynamics of falling and have also explored the internal fall prevention

mechanism during the forward stride. These studies describe the contributions of

the hip, knee and ankle kinetics in stabilizing the COM and the center of pressure

(COP) (Winter, 1995; Woollacott & Tang, 1997).

Backward walking (BW) is a fundamental capability of human locomotion,

although little information on BW is available when compared to the volume of

information available on forward walking (FW) (Lee, Kim, Son, & Kim, 2013; van

Deursen, Flynn, McCrory, & Morag, 1998). Recent studies have suggested that the

kinematics of FW and BW are time-reversed; however, some joints do not generate

propulsion power as they would in FW (Lee et al., 2013). Moreover, other studies

highlighted that gait variability increases with BW; and this increase in variability

is correlated with destabilized balance (Freitas & Duarte, 2012; Hackney & Earhart,

2009; Hausdorff et al., 1997). Despite such dissimilarities, it is believed that FW and

BW share common elements within the neural circuitry (van Deursen et al., 1998)
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based on kinematic and electromyographic evidence (Earhart et al., 2001; Lamb &

Yang, 2000; van Deursen et al., 1998; Yang, Stephens, & Vishram, 1998).

Lateral walking and stepping have not been extensively studied; however there

are some studies conducted with infants. It was found that, if supported, infants

(aged 2-11 months) can walk in all directions (forward, backward, and sideways),

at different speeds. In all the conditions, the walking pattern defined by (1) limb

motion: stance and swing phase duration, and cycle duration; and (2) electromyo-

graphic patterns had no significant differences; indicating single neural control mech-

anism for multi-directional stepping (Lamb & Yang, 2000; Yang et al., 1998).

Control of posture or balance involves the integration of multiple sensory sys-

tems: visual, vestibular and proprioception. Therefore the position of the trunk,

head-neck, COM, and the foot plays a vital part in balancing. A study involving

the steering of locomotion showed the control of the body’s COM in the direction of

travel is initiated first through appropriate foot placement, i.e., toe position control,

and later through the trunk roll motion (Patla, Adkin, & Ballard, 1999); while visual

information based compensation was embedded in the head movements (Hirasaki,

Moore, Raphan, & Cohen, 1999). Moreover, kinetic and kinematic studies compar-

ing the displacement of the COM among children and adults during walking revealed

that improvement in locomotion is achieved gradually through the development of

neural control process (Cavagna, Franzetti, & Fuchimoto, 1983; Dierick, Lefebvre,

van den Hecke, & Detrembleur, 2004; Hausdorff, Zemany, Peng, & Goldberger, 1999;

Preis, Klemms, & Müller, 1997); and evolves until the age of 7 (Dierick et al., 2004).

Most of the studies discussed so far have highlighted the kinematics or kinetics
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of individual controlled parameters, such as COM and COP, involved in the step-

ping phase of multi-directional locomotion. However to our knowledge there is no

evidence of toe-tapping study in the literature.

Kinematically, stepping and toe tapping are quite similar; they both have a

single leg stance, followed by a leg swing and toe touch-down. However, their kinetics

are quite different because during the reaching out tapping phase the weight is not

transferred onto the tapping leg, as it does during stepping. During the swing phase

of both these movements, the COM tends to move out of the base of support thus

balancing in both is a challenge. This is a major problem in forward and backward

movement, as opposed to the lateral one. Because in the former, the COM tends to

move out of the base of support, while the base narrows simultaneously. In the latter,

the COM tends to move out of the base; however the base follows the movement in

the same dimension. Moreover, consistently tapping an approximate spatial location

in a specific body spatial dimension requires the control of the toe position. Based on

extant literature, it can be understood that multi-directional toe-tapping requires

feedback from the proprioceptive system, additional visual feedback is available,

predominantly, for forward and lateral toe-tapping depending on the orientation

of the HEAD. Nonetheless, the head with the visual and vestibular system will

help stabilize the body regardless of the toe-tapping direction. Furthermore, based

on the stepping literature a question can be extrapolated: Does tapping with the

toe differ based on the direction of tapping? Finally, based on the developmental

literature, it can be speculated that if walking improves with age, maybe similar

improvement and development would occur during the forward, backward or lateral
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toe-tapping. Therefore, we need to comparatively study: (1) the various task or

control parameters: the COM, head and toe position and (2) the complex interaction

of these variables with tapping direction and age.

1.2 THESIS CONTRIBUTIONS

The purpose of this thesis is to study the forward, backward and lateral toe-

tapping by studying the three most involved task-specific control variables: the

center of mass (COM), TOE (Patla et al., 1999) and HEAD position (Barberini

& Macpherson, 1998). This is accomplished by studying their overall relevant joint

motion related variations using the Uncontrolled Manifold (UCM) Technique (Scholz

& Schöner, 1999). By overall relevant joint motion we mean the joints that are linked

geometrically to mathematically define the task or control variables.

Furthermore, UCM allows us to approximate the neural motor control struc-

ture in the joint space by ranking the influence of the various task or control variables

related to toe-tapping based on a unique stability measure considering the overall

relevant joint structural variability. This comparative framework would allow us to

better understand how the CNS stabilizes the multi-segment coordinated forward,

backward and lateral toe-tapping. Finally the study compares the neural motor

control structure of toe-tapping based on the (1) three tapping directions: forward,

backward and lateral; and (2) three typically developing age groups: six-year-old

children, ten-year-old children, and adults. The three major contributions of the

thesis are enumerated as follows.
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1. Systematically approximate the organization of the adult neural motor control

of multi-directional toe tapping task: forward, backward, and lateral; it asks,

does the CNS control individuals joints, or control of some task-related param-

eters (i.e., task or control variables: COM, HEAD and the TOE position) are

prioritized? And how are these parameters ranked in terms of their control?

Here, control means that the overall joint motion variability is organized in

a way to utilize the redundancy of the motor task while ensuring stability of

the control variables, while lack of control refers to reduced stability (Scholz &

Schöner, 1999). Finally to our knowledge, toe position as task-related control

variable is being introduced for the first time in the literature.

2. A comparative analysis of the adult neural motor control structure involved

in forward, backward and lateral toe-tapping.

3. A developmental study to understand the differences in the neural motor con-

trol structure by analyzing the three typically developing age groups: (a)

6-year-old children, (b) 10-year-old children, and (c) young adults.

These analyses are based on the overall structure of the variance in the joint space

using the UCM technique (Scholz & Schöner, 1999).

To summarize, what is the neural motor control structure during reaching

out and tapping with the toe, and how does this structure differ with the tapping

direction and age? Based on the literature, it is reasonable to hypothesize that a

combination of multiple task-related control parameters are working together during

toe-tapping. Moreover, despite the strategy there would be a gradual improvement
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in the neural motor control structure with age (Cavagna et al., 1983; Dierick et al.,

2004; Hausdorff et al., 1999; Preis et al., 1997).

1.3 READERS’ GUIDE

Chapter 2 will provide a brief description of the notion of variability, stability,

synergy and the motor abundance principle; and finally introduce the concept of

the Uncontrolled Manifold (UCM) Technique. At the end of that chapter a more

extensive summary of the research questions and associated hypotheses related to

this thesis will be presented and throughly discussed by setting these up in the

UCM framework. Chapter 3 will introduce the multi-directional toe-tapping task,

the motion data (kinematic) collection and associated data analysis methods, the

results and discuss our findings based on existing literature. Finally, chapter 4

concludes the study by providing an overall summary.
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Chapter 2: REVIEW OF LITERATURE

This chapter starts by trying to answer the fundamental question of movement

neuroscience: how do we (humans) move the way we move; and quickly get stuck

in the web of motor redundancy. To help us find an answer, this chapter reviews

the notion of variability, stability, synergy and the motor abundance principle; and

introduces the concept of the Uncontrolled Manifold (UCM) Technique.

The remaining part of the chapter discusses the concept of UCM: (1) the ab-

stract idea behind the conception, (2) how it relates to variability, stability, synergy,

and the motor abundance principle, (3) provides the required mathematical back-

ground to understand the conception, (4) emphasizes the strengths of the method

to quantify motor learning and development, and finally provides (5) a summary of

the thesis with respect to the previous work, while framing the research questions

and associated hypotheses in terms of the UCM vocabulary.

2.1 HOW DO WE MOVE THE WAY WE DO?

How do humans move? The most intuitive realization is there are infinite

possible combinations of sensory inputs and motion commands that can lead to the

same motion output – the motor redundancy problem; also known as the curse of
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dimensionality (Shadmehr & Krakauer, 2008; Todorov, 2004; Wolpert & Ghahra-

mani, 2000). Researchers understood that the brain runs some kind of optimization

scheme to generate motion; but the question remains, what is being optimized and

controlled: Is it the individual joints or task-related control parameters?

Therefore, the fundamental question of movement neuroscience is: given the

large number of neuro-musculo-skeletal degrees of freedom (DOF), how does the

central nervous system (CNS) generate, organize or simplify the control of context-

specific multi-joint actuated actions with the human body, while coordinating with

the external environment? Another reformulated version asks, in which coordinate

or reference frame does the CNS represent and plan multi-joint movements: joint

space or the task space (defined by task or control variables)? (Scholz & Kelso,

1989; Scholz & Schöner, 1999). A concrete answer is not yet established; however,

a well established explanation is based on the framework of action variability.

2.2 ACTION VARIABILITY, ABUNDANCE, AND SYNERGIES

The most unique attribute of human movement is its variability: No two

actions are the same. This phenomenon was initially documented, following the

famous studies of Bernstein where professional blacksmiths struck an anvil with a

hammer (Fig. 2.1). Bernstein observed that consistent motor performance, defined

by similar topologies of repeated trajectories, occurred despite noticeable variations

across the fundamental elements (e.g., joint angles, or muscular forces) during the

repeated action trials. Bernstein realized, variability is partly related to the redun-
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Figure 2.1: Bernstein observed that variability at the arm joints were more than the
variability of the hammer tip trajectory. Adapted from (Müller & Sternad, 2009).

dancy of the task (Bernstein, 1967; Müller & Sternad, 2009). The redundancy is

related with the multiple available DOF associated with the task.

According to Bernstein, the CNS has a redundant architecture; it allows the

existence of infinite solutions which can lead to a similar hammer tip trajectory.

Such redundancy of the biological motor system allows variability, which leads to

movement flexibility and adaptability. However, the initial question still holds: How

does the CNS select from its infinite possible solution sets, a particular solution set

to perform a particular voluntary movement? This is well known as the problem

of motor redundancy or the DOF problem. Bernstein speculated that the CNS did

not control the limb by utilizing the available neuro-mechanical redundancy; rather

it tries to reduce and subsequently simplify the redundancy; and concluded that,

during any functional movement task the CNS controls the spatial aspects of the

performance variable (e.g., the hammer tip position), and not the specific joints

(Bernstein, 1967; Gelfand, M, & Latash, 1998; Müller & Sternad, 2009).
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An alternative perspective to the problem of motor redundancy is the principle

of motor abundance (Gelfand et al., 1998; Latash, 2012). It advocates that the

CNS uses all the DOF and organizes them in flexible task-specific structural units

(Gelfand, M, Gurfinkel, Fomin, & Tsetlin, 1971; Gelfand et al., 1998; Latash, 2012;

Latash, Scholz, & Schöner, 2007). Thus, the principle does not search for a unique

solution, but utilizes the multiple available solutions to stabilize specific task-related

performance variables (Black, Smith, Wu, & Ulrich, 2007; Latash, 2010; Wu &

Latash, 2014). To summarize, the principle of abundance suggests the organization

of the DOF into synergies, or task-specific structural units.

Stability is a fundamental property; and an absolute prerequisite in realizing a

reliable task-specific motor action. A successful realization requires that the action

is designed in terms of its stable DOF (Scholz & Kelso, 1989; Scholz & Schöner,

1999). In the control-theoretic sense, stability is the ability of the system to always

return to its stable state, or stay within safe limits of the stable state. According to

Schöner and Scholz, the fluctuation of the DOF from its time matched stable versions

during a movement task across its multiple trials, i.e., movement variability across

multiple trials; can be used to experimentally bring out significant features that can

classify the primary task-relevant performance variables; this concept is known as

differential stability of variables, and has been used to assess the stability of postural

states (Scholz & Kelso, 1989; Scholz & Schöner, 1999).

Synergies can be defined as task or context-specific neural organizations, de-

fined by the combinations of joint angles or muscle forces, that ensure co-variation

among elemental variables to stabilize certain performance characteristics of multi-
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elemental biological motor system (Freitas, Duarte, & Latash, 2006; Latash, Scholz,

& Schöner, 2002; Latash et al., 2007). The elemental variables are joint or segmental

angles for kinematic multi-joint movements, muscle forces for joint torque analysis,

and motor units for muscle activity pattern analysis (Latash, 2010). Structural units

or synergies are task-specific, and they are united by a common goal (Latash, 2012).

It is hypothesized that these elemental variables are independent; if one element

introduces an error, the others reorganize to compensate by adjusting the covari-

ance among the elemental variables (Freitas et al., 2006). For example, to maintain

posture while kicking, a soccer player needs to combine and coordinate many joints

of the trunk, and the extremities that are involved in the postural balance (Wu &

Latash, 2014). This inter-coordination and coupling of the joints which stabilizes

the posture to maintain balance while kicking the ball is called a synergy – a struc-

tural unit (Wu & Latash, 2014). The creation of a synergy allows large amounts of

variability in the muscle or joint activation space, while preserving the important

task-specific performance parameters (Wu & Latash, 2014).

2.3 THE UNCONTROLLED MANIFOLD (UCM) AND SYNERGY

The uncontrolled manifold (UCM) analysis is a computational framework

which examines the aforementioned motor redundancy while remaining compati-

ble with the principle of abundance. Moreover, it provides a firm conceptual and

methodological sneak-peek into the overall structure of variability (Scholz & Schöner,

1999). The method, at first, establishes a mathematical relationship between the
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task-relevant fundamental motor elements (e.g., joint angles, or muscle forces) and

the task level control variable (e.g., center of mass (COM), HEAD or the TOE posi-

tion). This relationship allows the UCM technique to generate a complete solution

manifold, or a subspace corresponding to all the infinite combinations of the motor

elements which conserves the task-specific control variable.

A linearized approximation of the relationship can be found using the Jacobian

matrix. This matrix indicates how much variance in the motor elements relate to

how much variance in the task level control variable. It is consistent with the

manifold idea; different combinations of elemental variable changes lead to different

amounts of variance at the task variable level. Most importantly, it implies that

a unique solution is not required to stabilize or control the value of a task-related

control variable. Moreover, the Jacobian allows the variability to be projected on the

solution space. Variability projected onto the UCM solution manifold (σ‖) does not

affect the motor task performance. Therefore, the control of the elemental variables

in this manifold is unnecessary, hence the term uncontrolled manifold (Scholz &

Schöner, 1999; Schöner, 1995). However, variance orthogonal to the UCM subspace

(σ⊥) affects the motor performance (Scholz & Schöner, 1999; Schöner, 1995).

The most attractive features of the UCM technique are as follows: (1) UCM

provides a comparative framework which allows systematic ranking of the different

task-level control variables based on their variability score, thereby approximating

the neural motor control structure used in the completion of the motor task, and

(2) it provides a quantitative definition of synergy. If the ratio between (σ‖) to (σ⊥)

is greater than one; it means the CNS is stabilizing or controlling the task-related
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variables more than the individual joints. Meaning, if one component introduces an

error the others would reorient so that the motor performance is not compromised:

a synergy has developed. In contrast a ratio less than one means it has not. This

conceptualization is also known as the synergistic control of multi-body systems

(Freitas et al., 2006; Latash et al., 2002, 2007).

The UCM technique has been utilized to identify the task-related control vari-

ables and the associated neural motor control structures (i.e., synergies or structural

units) used in several motor tasks. For example maintaining quiet stance (Freitas

& Duarte, 2012), multi-finger force production (Kang, Shinohara, Zatsiorsky, &

Latash, 2004; Latash, Scholz, Danion, & Schöner, 2001; Scholz, Kang, Patterson, &

Latash, 2003), pointing (Domkin, Laczko, Djupsjöbacka, Jaric, & Latash, 2005; Kim

et al., 2012; Verrel, Lövdén, & Lindenberger, 2012), sit-to-stand (Scholz & Schöner,

1999), pistol shooting (Scholz, Schöner, & Latash, 2000), walking (Black et al.,

2007; Robert, Bennett, Russell, Zirker, & Abel, 2009), reach to grasp (Jacquier-

Bret, Rezzoug, & Gorce, 2009), balance recovery (Hsu, Chou, & Woollacott, 2013),

gait analysis (Qu, 2012), and hopping (Auyang, Yen, & Chang, 2009). It was found

that, in general, these motor tasks are performed by controlling task-specific control

variables through the development of synergies.

Moreover, UCM has been utilized to comparatively investigate the age-related

differences in neural motor control structure in young and old adults during quiet

stance (Freitas & Duarte, 2012), balance recovery (Hsu et al., 2013) and manual

pointing (Verrel et al., 2012). Furthermore, the literature also shows a wide array

of studies examining the variance structure of the joints (σ‖ and σ⊥) involved in
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Figure 2.2: The dart throwing task can be defined by the angular position of the
release angle θ and the dart release velocity θ̇ in the direction of the target. Image
adapted from (Müller & Sternad, 2009).

the motor task to analyze various neurological disorders, mainly C6-C7 quadriplegic

injury (Jacquier-Bret, Rezzoug, & Gorce, 2008) through reach and grasp task; Down

syndrome (Black et al., 2007; Latash & Anson, 2006; Scholz et al., 2003) by studying

multi-finger force production and walking. These studies suggest that age or disease-

related changes in the neural motor control structure can be quantified using the

UCM conception; and revealed that the strength of the developed synergies affiliated

with the task-specific control variables deteriorates with age and disease.

Finally, UCM has also helped in quantifying the effects of practice on motor

coordination and learning; allowing physical therapists to quantify changes in the

neural structure following a particular physical therapy program by analyzing the

σ‖ and σ⊥ (Kang et al., 2004; Latash, 2010; Müller & Sternad, 2009; Wu & Latash,

2014). These studies showed that with practice the synergies become stronger. A

more detailed explanation is provided in section 2.5.
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2.4 THE MATHEMATICAL FOUNDATION OF UCM

To understand the mathematical basis of UCM let us analyze the simplified

task of dart throwing. This example is adapted from (Müller & Sternad, 2009). For

simplicity, the action is confined in the sagittal plane, the throwing arm is fixed in

space and modeled as a single-joint lever arm, much like a trebuchet, as shown in

Fig 2.2. During dart throwing, the most critical part is the moment of release; it can

be completely characterized by the angular position of the release angle θ and the

dart release velocity θ̇ in the direction of the target. The outcome of the throw, the

performance, can be defined as the distance between the contact point and the center

of the target, d. To summarize, the task can, sufficiently, be described by a two

dimensional vector, e = [θ, θ̇], here n = 2; whereas the outcome or the performance

is one-dimensional, r = 1. Therefore, the task is redundant in the minimal sense,

hence satisfying the required criteria of the UCM analysis.

The second requirement is a mathematical relationship between d and e. Let

us assume that the relationship is known; it is d = f(e). In the third step let us

collect information from a series of throws defined by i trials, where i = 1, 2, 3, . . . ,

N . These trials generate the E and D sets, where E={e1, e2, . . . , eN} and D={d1,

d2, . . . , dN}. Intuitively these repeated throws would not be identical; variability

would be present in both the e and the d space, denoted by V(e) and V(d) respec-

tively. UCM provides the mathematical framework to relate the outcome variance

of V(e) to V(d); it can thereby figure out the structure of variability which utilizes

the redundancy of the elemental variables involved in the task.
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Figure 2.3: The different colored strips define the different unique solution manifolds
considering the different outcome values, d. Every throw with its two elemental
variables [θ, θ̇] constitute a data point highlighted by the × symbol. Each cluster of
data points, with the Roman numerals, represents the 10 throws performed by four
distinct performers. Image adapted from (Müller & Sternad, 2009).

Using the functional relationship: d = f(e), we can generate a solution man-

ifold, or subspace that corresponds to all the infinite possible combinations of e

which conserves the task-specific control variable d, as illustrated in Fig. 2.3. The

dark line defines all the infinite possible combinations of e which leads to the per-

fect throw (d = 0). The grey-shaded error-isobars highlight the solution manifolds

related to other position outcomes. Every throw with its two elemental variables

[θ, θ̇] constitute a single data point, highlighted by the × symbol. Data points on

the white part indicate that the throws have missed the dart board. Furthermore,

the figure highlights four distinct scenarios of data point distribution; where two

datasets may apparently seem to have similar variability, but they are significantly

different depending on their average and dispersion, e.g., case I and IV. Technically,

the performer should try to be in case IV, as it would allow the performer to hit the

target more often, whereas in case I the performer would miss a lot.
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In an actual experimental setting, the mean value (EM) from all the trials is

considered to be the solution manifold. Assuming that outcome d is the accuracy

and related to e by d = f(e). The function, f is linearized at EM through the

Jacobian matrix, J(EM). The relationship is:

d− dM = J(EM).(E− EM) (2.1)

The dimension of J (EM) is r × n. The UCM is computed as the null space,

J(EM).ε = 0; i.e., the subspace within which the output (performance variable)

remains unchanged. The basis vectors ε span the linearized UCM. There are n− r

basis vectors having the dimension of n − r; these basis vectors are numerically

computed at each time slice by considering the Moore-pseudo inverse of the Jacobian

matrix (Jacquier-Bret et al., 2009).

J+ = JT (JJT )−1 (2.2)

The deviations (E- EM) were resolved into their projection onto the null space

(Jacquier-Bret et al., 2009):

E‖ = (1− J+J).(E− EM) (2.3)

where 1 is the identity matrix. The component perpendicular to the null space was

computed as follows (Jacquier-Bret et al., 2009):

E⊥ = (E− EM)− E‖ (2.4)
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Figure 2.4: The difference between stronger and weaker synergy. Image adapted
from (Latash et al., 2002).

The amount of variability per DOF within the UCM is estimated as

σ2
‖ = (n− r)−1N−1ΣE2

‖ (2.5)

where E2
‖ is the squared length of the deviation vector lying within the linearized

UCM. The amount of variability per DOF perpendicular to the UCM is estimated

as

σ2
⊥ = r−1N−1ΣE2

⊥ (2.6)

UCMRatio =
σ‖
σ⊥

(2.7)

If UCM Ratio > 1, it is a synergy; and if the UCM Ratio < 1 then it is not.

For example, Figs. 2.3, 2.4, and 2.5 show the quantitative definition of synergy, and

pictorially compares a stronger synergy to a weaker one. In case IV of Fig. 2.3, the

CNS limits the variability of the elemental variables in directions orthogonal to the

UCM more than that which lies within the UCM (Fig. 2.5).
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Figure 2.5: Case IV in Fig. 2.3 has developed a synergy, because the distribution
of the data points are more spread along the UCM as compared to its orthogonal.
Image adapted from (Latash, 2010).

2.5 UCM AND AGE-RELATED CHANGES

Growing up, from the perspective of movement neuroscience, involves getting

better at moving. Intuitively, the sufficient condition is that the less variant we

are; the better or more accurate we will be. However, what if, we get better at

doing the wrong things? UCM provides the necessary conditions, a more robust

framework to analyze the effect of aging by studying the structure of variability. It

suggests, that improvement or getting better means developing stronger synergies,

i.e., higher UCM ratio, or the variance along the orthogonal to the UCM should be

reduced, while variance should increase along the UCM (Latash & Anson, 2006).

This is motivated from recent studies (Kang et al., 2004; Latash, 2010; Müller &

Sternad, 2009) involving the redefinition of learning and its relation to practice by

developing stronger motor synergies through practice. This notion of practice and

motor learning can easily be translated to development. As we grow, develop and
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Figure 2.6: As humans grow, their neural control architecture relating to movement
develops due to extensive practice. This change can be quantified using the UCM
framework. Adapted from (Wu & Latash, 2014).
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mature we get to have more practice; according to UCM framework, with practice

the UCM ratio gets higher, meaning stronger synergies are developed (Latash &

Anson, 2006). The idea is illustrated in Fig. 2.6.

2.6 SUMMARY OF THE THESIS

Approximate neural motor control structure, in the context of this thesis, as-

sumes that the CNS controls the various toe-tapping behavior by controlling the

task-related functional parameters like COM, TOE or the HEAD position, irre-

spective of the variations introduced by the redundant neuro-musculo-skeletal ar-

chitecture of the human body. Moreover, it is assumed that these parameters are

differently controlled, meaning, some of them are more controlled than others – a

ranking based on a relative stability measure, defined by the UCM ratio. Here, con-

trol means that the redundant architecture is organized in a way which stabilizes

the control parameters, irrespective of their overall joint motion variability; lack of

control means this stability is reduced (Scholz & Schöner, 1999).

This thesis is concerned with understanding the neural motor control struc-

ture involved in forward, backward and lateral toe-tapping motion by systematically

analyzing the overall structure of the joint variability related to the three most im-

portant task-related control variables: COM (Winter, 1995; Woollacott & Tang,

1997), TOE (Patla et al., 1999) and HEAD (Barberini & Macpherson, 1998) posi-

tion; and how the control (i.e., stability) of these variables changes with the tapping

direction? Moreover, the study is extended to a motor developmental framework
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by comparing three different age groups: typically developing adults (18-23 years),

six-year-old children and 10-year-old children. These analyses will be performed

using the uncontrolled manifold technique (Scholz & Schöner, 1999; Schöner, 1995).

The research questions and the hypotheses are enumerated below.

2.6.1 Multiple task-related performance variables contribute to the
neural motor control of multi-directional toe-tapping in adults.

Research Question 1: What is the neural motor control structure – ranking of

the task-related control variables (defined by the UCM ratio): COM, HEAD and the

TOE, as adults perform the (a) forward, (b) backward, and (c) lateral toe-tapping?

Hypothesis 1: The adult CNS controls toe-tapping by controlling or stabilizing

all the task-related functional parameters (task or control variables): COM (Winter,

1995; Woollacott & Tang, 1997), TOE (Patla et al., 1999) and HEAD (Barberini

& Macpherson, 1998) position more than the individual joint motions, regardless of

the tapping direction. This is indicated by the UCM ratio of more than unity for

all these task-related performance or control variables.

The CNS prioritizes the control (i.e., stability) of these performance variables

based on the task requirements; the ranking of the variables is achieved by using

the UCM ratio as the measure. The hypothesized ranking of the variables would

be COM, TOE and the HEAD position, because the literature suggests: (1) the

control of the COM is initiated first by appropriate changes in the foot position

(Patla et al., 1999); and (2) the hip, knee and ankle kinetics, i.e., TOE position

control, contributes to the stabilization of the COM and center of pressure (COP)
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Figure 2.7: UCM ratio for COM is significantly higher in forward toe-tapping when
compared to its backward counterpart. Similar pattern resides with the HEAD, and
the TOE position. Image adapted from (Latash & Anson, 2006).

(Winter, 1995; Woollacott & Tang, 1997). Consistently tapping a spatial position

in space, in the forward and lateral direction, requires continuous feedback from the

visual system for dynamic error correction. In general, studying the head position

would be important as the vestibular and visual system are installed in the head

(Barberini & Macpherson, 1998; Hirasaki et al., 1999).

2.6.2 In adults, the overall neural motor control of toe-tapping is
dependent on the tapping direction.

Research Question 2: Is there a difference in the neural motor control based

on the direction of tapping, as adults perform the forward, backward and lateral

toe-tapping movements?

Hypothesis 2: Adult forward toe-tapping will have a significantly higher UCM

ratio; meaning the control variables are more stable in forward toe-tapping than

backward or lateral toe-tapping. From the literature on walking, toe-tapping maybe

similar to findings on locomotion. For example, compared to forward walking, back-

ward walking does not generate enough propulsive power (Lee et al., 2013), gait
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Figure 2.8: The UCM ratio, i.e., strength of the developed synergy for the COM is
greater than unity and significantly higher in 10-year olds and young adults when
compared to 6-year olds. However, in between them they are not significantly dif-
ferent. Adapted from (Latash & Anson, 2006).

variability is increased which causes destabilized balance (Freitas & Duarte, 2012;

Hackney & Earhart, 2009; Hausdorff et al., 1997). Moreover, the kinematic motion

pattern at the hip, and the knee, although time-reversed, is simpler than forward

walking (Lee et al., 2013); according to Schöner leads to a lower UCM ratio (Scholz

& Schöner, 1999). Fig. 2.7 illustrates the idea with an example.

2.6.3 Age-related changes in multi-directional toe-tapping.

Research Question 3: Is there a difference in the neural motor control structure

of (a) forward, (b) backward, and (c) lateral toe-tapping based on the age, as six-

year-old children, ten-year-old children, and adults perform the tapping movements?

Hypothesis 3: From age-related walking literature we can extrapolate that the

overall neural motor control of multi-directional toe-tapping would improve with

age (Cavagna et al., 1983; Dierick et al., 2004; Hausdorff et al., 1999; Preis et al.,

1997); however the improvement ceases around the age of 7 (Dierick et al., 2004);

meaning, there would be no significant differences in the overall control structure for

10-year-old children and young adults. Fig. 2.8 illustrates the idea with an example.
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Chapter 3: A SYSTEMATIC APPROXIMATION TO THE NEU-

RAL MOTOR CONTROL OF FORWARD, BACKWARD

AND LATERAL TOE-TAPPING IN CHILDREN AND

ADULTS

The main objective of this study is to systematically approximate the neural

motor control structure of multi-directional unilateral toe-tapping task, and how

the structure changes with the tapping direction and age, using the uncontrolled

manifold (UCM) conception (Scholz & Schöner, 1999)? By neural motor control we

ask the question: Does the central nervous system (CNS) control individual joint

motions or does it prioritize task-specific performance variables? Intuitively, there

can be several parameters that the CNS can control, however, this study is limited

to the testing of center of mass (COM), TOE and the HEAD position; therefore

it is an approximation. Finally, based on a relative ranking defined by a unique,

unit-less, stability measure (derived from the UCM conception) which considers the

multi-joint structural variability, we can systematically rank these variables.
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3.1 INTRODUCTION

Reaching out and unilaterally tapping with the toe, i.e., toe-tapping requires

asymmetrical motor skills; the body weight is placed on one leg – the stance leg,

while simultaneously moving the other leg towards a desired spatial location in a

particular body-spatial dimension. The process is kinematically similar to aspects

of stepping or reaching with the foot; however, they differ in important ways.

Kinematically stepping and toe-tapping are quite similar. Both involves the

periodic combination of double leg stance followed by single leg stance with a leg

swing motion and toe touch-down. Among the three, the single leg stance and swing

are the most unstable phases. During these phases or in any lower limb movement

involving the lifting of the leg, an instability is generated in the lateral direction as

the base of support is narrowed causing the COM to generate a lateral destabilizing

moment (McIlroy & Maki, 1999), and if it is not appropriately regulated it can

result in a stumble or fall.

In the case of voluntary movements, anticipatory postural adjustments (APAs)

are initiated to anticipate the destabilizing momentum and maintain overall postural

stability – balance in response to the leg swing and tap (L. A. King & Horak,

2008; Maki & McIlroy, 1996, 1997; Mcllroy & Maki, 1995; Patla et al., 1999). The

procedure is initiated prior to the lifting of the swing leg by shifting the COM

medially towards the stance leg (McIlroy & Maki, 1999).

During volitional leg swing, the swing generated by the leg creates a natural

destabilizing momentum, in the direction of the movement, by shifting (or tend-
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ing to shift) the COM to move outside the base of support (Han, Betker, Szturm,

& Moussavi, 2006). For forward or backward movement (Brenière, Cuong Do, &

Bouisset, 1987; Brun et al., 1991) this instability occurs in the anterior-posterior di-

rection (horizontal sagittal dimension), while occurring medial-laterally (horizontal

frontal plane) for lateral movements. In the former case, the instability is increased

because the base of support narrows laterally, while in the latter the instability is

reduced because the base follows the COM shift in the direction of the movement.

Nonetheless, to neutralize such instability, the most natural reaction is to shift to-

wards a double leg stance in an optimized way to reinstall overall stability, thereby

avoiding a fall (Maki & McIlroy, 1997; Mcllroy & Maki, 1995). However during the

toe-tapping task the swing leg does not step down (i.e., no transfer of weight onto

the swing foot).

Instability in the medial-lateral dimension is vital for balance. Recently, ex-

tensive studies have associated impaired balance in the elderly with lateral insta-

bility (L. A. King & Horak, 2008; Lord, Rogers, Howland, & Fitzpatrick, 1999).

Such findings have inspired a significant amount of research work; leading to the

documentation of the various compensatory strategies generated by different age

groups (young and older adults) as they are exposed to multi-directional external

perturbation (Maki, McIlroy, & Perry, 1996; Mcllroy & Maki, 1995; Mille, Johnson,

Martinez, & Rogers, 2005; Rogers, Hedman, Johnson, Martinez, & Mille, 2003). It

was found that depending on the direction of the external perturbation the strategy

was different (Maki et al., 1996). King and colleagues documented a short summary

of these studies while explaining the effect of step length in stabilizing forward fall
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(G. W. King, Luchies, Stylianou, Schiffman, & Thelen, 2005). Based on the afore-

mentioned studies, the single leg stance and the swing phase of multi-directional

unilateral toe-tapping can cause self-perturbed multi-directional destabilizing mo-

mentum, which may impact balance.

Kinetically toe-tapping is quite different from stepping since the tapping phase

does not result in the weight transfer onto the tapping leg, like it would in the double

leg stance of the stepping process. Thus, maintaining postural balance during toe-

tapping can be quite difficult as well. However, to our knowledge toe-tapping has

not been, explicitly, studied in literature.

Based on aforementioned literature studies, it can be understood that the

phase of the toe-tapping movement is crucial due to different balance-related re-

quirements. The mid air phase defined by the combination of single leg stance and

leg swing generates self-perturbed multi-directional destabilizing momentum. These

destabilizations occur due to APA-caused lateral instability, and movement inflicted

instability due to the shift of the COM in the direction of the toe-tapping move-

ment. In addition, during forward and backward movement the base of support is

narrowed laterally, while the base widens along the movement direction in lateral

tapping movement. The forward and backward are the most difficult in terms of

balancing. Furthermore, during the toe-tapping phase the weight is not transfered

onto the tapping leg, thus balancing while tapping can be difficult. Therefore, the

mid-air and toe tap phase are both important phases of the movement to look at.

Control of posture or balance during the potentially destabilizing toe-tapping

task involves the integration of multiple sensory systems: vestibular, proprioception
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and visual. Therefore, the position of the COM, HEAD, and the TOE play an

important role. Studies involving the forward swing phase of walking reported that

the control of the COM is initiated by the appropriate changes in foot position

(Patla et al., 1999); such stabilization of the COM is linked with the hip, knee

and ankle kinetics; which indicates that the toe position control would be vital

during toe-tapping (Winter, 1995, 1995). Moreover, consistently tapping a spatial

position in space requires continuous feedback from the visual system for dynamic

error correction (for forward and lateral). Therefore, in general, studying the head

position would be important as the vestibular and visual system are installed in the

head (Barberini & Macpherson, 1998; Hirasaki et al., 1999).

Moreover, multi-directional toe-tapping can be quite tricky. Based on extant

literature it can be conjectured that (1) kinematic variability increases during back-

ward toe-tapping; and it can be correlated with destabilizing balance (Freitas &

Duarte, 2012; Hackney & Earhart, 2009; Hausdorff et al., 1997); however, (2) stud-

ies involving infant (aged 2-11 months) supported multi-directional stepping indicate

that the stance, and swing phase duration in multi-directional toe-tapping would

not be significantly different (Lamb & Yang, 2000; Yang et al., 1998).

Furthermore, age-related studies involving the multiple balance related control

parameters: COM, HEAD and the TOE position, suggest that these sensors are

centrally integrated and gradually attenuate with age (Barberini & Macpherson,

1998). Studies involving the age-related improvements in walking suggested that

locomotion can gradually improve with age (Cavagna et al., 1983; Dierick et al.,

2004; Hausdorff et al., 1999; Preis et al., 1997) through the development of the
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neural control process, and evolves until the age of 7 (Dierick et al., 2004). Based

on such studies we can speculate that similar trends might develop due to age in

the step-like toe-tapping task.

3.1.1 THE UNCONTROLLED MANIFOLD (UCM)

The Uncontrolled Manifold (UCM) conception hypothesizes that the CNS per-

forms movement by developing flexible task-specific structural units by utilizing all

the elemental variables (e.g., joint angles, segmental angles or muscular forces) which

defines the design of the redundant biological motor system. Most importantly, it

provides a computational framework to analyze the control-theoretic stability of the

various task-specific performance parameters by appropriately controlling the vari-

ability of the overall elemental variables associated with these parameters (Scholz

& Schöner, 1999; Schöner, 1995).

The UCM technique assumes that the CNS controls task-specific performance

parameters more than the involved individual elemental variables. Mathematically

the UCM conception suggests that the CNS acts in the state space defined by these

elemental variables to create a manifold, i.e., a subspace that represents the infinite

sets of elemental variable configurations that corresponds to a particular value of

a performance parameter that needs to be controlled for the successful completion

of the motor task. The CNS does this by limiting the variability of the elemental

variables in direction orthogonal to this manifold (σ⊥), while relaxing the variability

along the manifold (σ‖). Variability of the elemental variables projected onto the
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UCM solution manifold (σ‖) does not affect the motor task performance. Therefore,

the control of the elemental variables in this manifold is unnecessary, hence the

term uncontrolled manifold (Scholz & Schöner, 1999; Schöner, 1995). However,

variance orthogonal to the UCM subspace (σ⊥) affects the motor task performance

(Scholz & Schöner, 1999; Schöner, 1995). By motor task performance we mean the

consistency in achieving the goal of the motor task, despite variations in the overall

joint motions.

The ratio of σ‖ to σ⊥ is called the UCM ratio. The UCM ratio being unit less

provides a measure to relatively differentiate the more stable or controlled variables

from the less stable ones (Scholz & Schöner, 1999). A specific UCM ratio can occur

in multiple combinations of σ‖ and σ⊥. Despite the combination, a UCM ratio

greater than unity means that σ‖ > σ⊥; it suggests that the fluctuations in the

elemental variables does not affect the task or control variables, indicating that the

CNS prioritizes the task or control variables more than the individual elemental

variables. For more information the reader is requested to read the seminal paper

(Scholz & Schöner, 1999) introducing the UCM conception.

3.1.2 RESEARCH QUESTIONS

In this study, multi-directional (forward, backward, and lateral) repetitive uni-

lateral toe-tapping at self-preferred-comfortable speed was performed to investigate

the neural motor control structure of toe-tapping using the Uncontrolled Manifold

(UCM) Technique (Scholz & Schöner, 1999; Schöner, 1995). Moreover, we studied
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the changes in the control structure due to the tapping direction and age .

Neural motor control structure is mathematically defined using the UCM ratio,

where UCM ratio > 1 suggests that task-related performance variable is controlled

more than individual elemental variables. Moreover it provides a measure to rela-

tively rank the multiple control variables considering the overall variability of the

relevant elemental variable configuration structure. The task-related performance

variables (defined as task or control variables) under consideration are the COM,

HEAD and the TOE position; and the elemental variables are the segmental angles.

Specifically, we addressed the following questions: (1) Neural motor control

structure: What is the neural motor control – ranking of the task or control vari-

ables: COM, HEAD and the TOE position, as adults perform the (a) forward, (b)

backward, and (c) lateral toe-tapping? (2) Directional effect: Is there a difference

in the neural motor control based on the direction of tapping, as adults perform

forward, backward and lateral toe-tapping? and (3) Age effect: Is there a difference

in the neural motor control of (a) forward, (b) backward, and (c) lateral tapping

based on the performer’s age, as six-year-old children, ten-year-old children, and

adults perform the toe-tapping?

3.2 MATERIALS AND METHODS

3.2.1 PARTICIPANTS

The participants in this study were ten healthy adults (ADULT) (age: 21 ±

2.6 years old, height: 170 ± 6.0 cm, weight: 75.2 ± 18.1 kg); six healthy six-year-old

34



children (Yr 6) (height: 114 ± 3.62 cm, weight: 21.2 ± 1.94 kg); and ten healthy

ten-year-old children (Yr 10) (height: 140.5 ± 7.79 cm, weight: 36.8 ± 9.1 kg). No

participant had a history of musculo-skeletal injuries or neurological disorders. All

the subjects were given a detailed explanation about the experiment and they all

signed an informed consent form, which was approved by the Institutional Review

Board (IRB) at the University of Maryland, College Park.

3.2.2 EQUIPMENT, SETUP AND THE EXPERIMENTAL PRO-

CEDURE

During the experiment, each participant was asked to change into a tank

top and shorts; and their height and weight were measured. Thirty-five spherical

reflective markers, 0.5 cm diameter each, were placed on the skin at significant bony

landmarks (De Leva, 1996a, 1996b) using double sided, hypo-allergenic adhesive

tape and pre-wrapping band (Fig. 3.1).

The markers were placed on the: (1) highest points on the top of the head,

(2) superior palpable point of the spine - the seventh cervical vertebra (C7), (3)

midpoint of the two collar bones, (4) lateral point of the scapulas acromial process,

(5) proximal point on the lateral edge of the radius, (6) humeral medial epicondyle,

(7) styloid processes of the radius (lateral and medial), (8) top of the third knuckle,

(9) anterior superior iliac spine, (10) posterior superior iliac spine, (11) proximal

point on the medial margin of the tibia head, (12) proximal point on the lateral

point of the tibia head, (13) lateral point of the lateral malleous, (14) medial point
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Figure 3.1: Marker Setup. The image was developed for marker display purpose
only; in the actual experiment the participant was dressed in tank top and shorts.
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Figure 3.2: The Task Diagram.

of the lateral malleous, (15) posterior point of the heel, and (16) tip of the big toe.

Participants were asked to stand on the home position (Fig. 3.2), located at

the center of the experimental space, with their feet, shoulders width apart while

holding their arm at 90 degrees elbow flexion, exactly according to Fig. 3.1. The

home position was marked with tape to keep the same position consistent across all

the trials. Each participant was instructed to perform fifteen continuous repetitions

of toe-tapping movement at their comfortable self-paced frequency and comfortable

distance in forward, backward and lateral positions with each leg. They were asked

to tap the floor with their toe; however, they were explicitly requested not to put

their weight on the tapping foot while standing with one leg. A practice session was

performed by asking the participants to tap at each direction, three times, before the

actual experimental data acquisition started. Participants were given 90 seconds of

rest between tapping conditions to avoid fatigue. The order of the foot and direction

was randomized and balanced across subjects.
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3.2.3 DATA COLLECTION AND REDUCTION

Eight-camera motion capture system (Vicon, Oxford, UK) was used to collect

the positions of the reflective markers in three dimensions at a sampling rate of 200

Hz. Participants started their task after auditory signal: Go! The data acquisition

was stopped after 15 repetitive toe tapping movements. However, in the data anal-

ysis only the twelve most consistent foot tapping data were utilized; the selection

process was based on the consistency in the tapping distance, and tapping position.

Raw kinematic data were processed and interpolated via the Nexus program (Vi-

con, Oxford, UK). The data were filtered with a fourth order Butterworth filter at a

cutoff frequency of 5 Hz and analyzed using custom-written program using Matlab

(Mathworks, Natick, MA). The marker coordinates were used to calculate the seg-

mental angle and the segmental length along the sagittal and the frontal plane. The

location of the whole-body center of mass (COM), HEAD, and the TOE position

at each time point was calculated based on geometric models developed using the

segmental lengths and associated segmental joint angles.

3.2.4 GEOMETRIC MODEL RELATING CONTROL VARIABLES

TO SEGMENTAL ANGLES

The geometric model for the COM trajectory is composed of twelve segmental

angles (angle and segmental length definition of the: head1: vertex to C7; right

side: foot2: heel to toe, shank3: knee joint center to ankle joint center, thigh4: hip
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joint center to knee joint center, upper arm5: shoulder joint center to elbow joint

center, lower arm6: elbow joint center to wrist joint center, mid section: trunk7:

C7 to mid hip, left side: upper arm8: shoulder joint center to elbow joint center,

lower arm9: elbow joint center to wrist joint center, thigh10: hip joint center to

knee joint center, shank11: knee joint center to ankle joint center, and foot12: heel

to toe), according to (De Leva, 1996a, 1996b). We applied the geometric model to

the sagittal or anterior-posterior (A-P) and frontal or medial-lateral (M-L) planes

as shown in Fig. 3.3. The geometric model for COM delimited on the A-P direction

i.e., in the horizontal sagittal plane and the M-L direction i.e., horizontal frontal

plane are as follows:

COMAP =
12∑
n=1

Cn × ln ×mn × cos(θn) (3.1)

COMML =
12∑
n=1

Cn × ln ×mn × cos(θn) (3.2)

Here, C is the estimated location of the COM on the respective segmental

length, m refers to proportion of total body mass of each body segment defined by

the segmental length, θ represents the segmental angle (Fig. 3.3), l is the length of

the joint segment, and n is the total number of segmental angles as shown in Fig.

3.3 (Black et al., 2007; De Leva, 1996a, 1996b). The segmental length varied within

each toe-tapping cycle due to projection related errors (predominantly in the frontal

plane) however, previous relevant studies suggested that the standard deviation (SD)

of the segmental length at any particular instance of time was extremely small (Black

et al., 2007). Therefore we computed a grand mean of individual segmental length

39



Figure 3.3: Sagittal (A-P) and frontal (M-L) planar view : Geometric model for the
COM position is composed of 12 segmental angles.
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Figure 3.4: Sagittal and frontal view: Geometric model for the HEAD position is
composed of 7 segmental angles; and defined with respect to the stance leg.

based on all the repetitive toe-tapping cycles data to be the representative of that

specific segmental length (Black et al., 2007).

We were interested in comparing the COM position with the HEAD and the

TOE positions. Figs. 3.4 and 3.5 show the geometric link defining the position of

the HEAD and the TOE with respect to the fixed stance leg during the toe-tapping

task. Example: During the left leg forward toe-tapping the HEAD and the TOE

trajectory were modeled with respect to the right stance leg (Figs. 3.4 and 3.5).

For left leg forward toe-tapping, the HEAD trajectory based on the right stance
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Figure 3.5: Sagittal and frontal view: Geometric model for the TOE position is
composed of 12 segmental angles; and defined with respect to the stance leg.
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leg is composed of seven segmental angles (angle and segmental length definition of

the: head1: vertex to C7; right-side: shoulder-neck2: shoulder to C7, trunk3: mid

superior iliac spine to shoulder, pelvic4: mid superior iliac spine to hip joint center,

thigh5: hip joint center to knee joint center, shank6: knee joint center to ankle joint

center and foot7: ankle joint center to toe), as shown in Fig. 3.4. The geometric

model for the HEAD delimited on the A-P direction i.e., in the horizontal sagittal

plane and the M-L direction i.e., horizontal frontal plane are as follows:

HEADAP = p+
7∑

n=1

ln × cos(θn) (3.3)

HEADML = p+
7∑

n=1

ln × cos(θn) (3.4)

here p is the spatial position of the right toe in the VICON coordinate system,

along appropriate body spatial dimensions: A-P or M-L; θ represents the segmental

angles, l is the length of the joint segment and n is the total number of segmental

angles as shown in Fig. 3.4.

For left leg forward toe-tapping, the TOE position based on the right stance

leg is composed of twelve segmental angles (angle and segmental length definition of

the: right-side: shoulder-neck1: shoulder to C7, trunk2: mid superior iliac spine to

shoulder, pelvic3: mid superior iliac spine to hip joint center, thigh4: hip joint center

to knee joint center, shank5: knee joint center to ankle joint center, foot6: ankle joint

center to toe; left-side: shoulder-neck7: shoulder to C7, trunk8: mid superior iliac

spine to shoulder, pelvic9: mid superior iliac spine to hip joint center, thigh10: hip

joint center to knee joint center, shank11: knee joint center to ankle joint center,

and foot12: ankle joint center to toe) as shown in Fig. 3.5. The geometric model
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for the TOE delimited on the A-P direction i.e., in the horizontal sagittal plane and

the M-L direction i.e., horizontal frontal plane are as follows:

TOEAP = p+
6∑

n=1

ln × cos(θn)−
12∑
n=7

ln × cos(θn) (3.5)

TOEML = p+
6∑

n=1

ln × cos(θn)−
12∑
n=7

ln × cos(θn) (3.6)

here p is the spatial position of the right toe in the VICON coordinate system,

along appropriate body spatial dimensions: A-P or M-L; θ represents the segmental

angles, l is the length of the joint segment and n is the total number of segmental

angles as shown in Fig. 3.5.

3.2.5 THE UCM COMPUTATIONAL FRAMEWORK

To setup the geometry inspired mathematical models in the UCM computa-

tional framework, we then computed the mean of each segmental angle at each,

100% normalized, integer time instance across all the repetitions (i.e., toe-tapping

related gait cycles). Our geometrical models are inspired from forward kinematic

model thus they are nonlinear. Therefore, the Jacobian matrix was computed to

estimate a linear approximation of these models. The Jacobian was computed based

on the grand mean of the segmental angles. This matrix of partial derivatives cor-

responds to changes in the task-level control variable with respect to the changes in

the individual segmental angles. The null space of the Jacobian, ε, was computed

to determine the basis vectors spanning the linearized UCM. There were n− r ba-

sis vectors, where n represents the number of dimensions in the joint configuration

space defined by segmental angles and r represents the number of dimensions of the
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individual task variable. For the COM, HEAD and TOE position, the number of

dimensions in the joint configuration space defined by n were 12, 7 and 12 respec-

tively as shown in Figs 3.3, 3.4 and 3.5; while dimension of the task-level variable

is r = 1.

At each integer percent time instance event, the deviation from the grand

mean for each segmental angle was computed to obtain a deviation matrix, θ − θ̄.

The deviations (θ − θ̄) which were projected onto the null space (Jacquier-Bret et

al., 2009) represent the joint-level deviations which occur without altering the value

of the task-level control variables were computed as follows:

θ‖ = ε.(θ − θ̄) (3.7)

The deviation matrix component perpendicular to the null space represents

the joint-level deviations which alters the value of the task-level control variables

were computed as follows (Jacquier-Bret et al., 2009):

θ⊥ = (θ − θ̄)− θ‖ (3.8)

The amount of variability per DOF within the UCM is estimated as:

σ2
‖ = (n− r)−1N−1Σθ2‖ (3.9)

where σ2
‖ is the squared length of the deviation vector lying in the linearized UCM.

The amount of variability per DOF perpendicular to the UCM was estimated as:

σ2
⊥ = r−1N−1Σθ2⊥ (3.10)
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UCMRatio =
σ‖
σ⊥

(3.11)

The UCM hypothesis states that the CNS specifies the stable state in the task

space, and not in joint space; meaning, the CNS controls the task-level variables,

more than the individual joints. As a result, the overall variability of the configura-

tion parallel to the UCM is predicted to be much bigger than that perpendicular to

the UCM; leading to a UCM ratio higher than unity. If the UCM ratio for a task

variable is greater than unity, it means that the control variable is given priority

over the segmental angles by the CNS.

3.2.6 DEPENDENT VARIABLES

The primary dependent variables used in subsequent analyses for each hypoth-

esized control variables are σ‖ and σ⊥. These variables are not directly comparable

across hypotheses about different task variables (i.e., COM, HEAD, or TOE) be-

cause of the differences in the DOFs comprising the joint configuration space for

each. Therefore, the variable UCM ratio was derived to compare the different con-

trol variables statistically. Moreover, task variable variability was also considered

a dependent variable. These dependent variables, each, have two components, one

for each dimension: horizontal sagittal or anterior-posterior (A-P), and horizontal

frontal or medial-lateral (M-L).

The dependent variables were calculated for each participant at 25% and 50%

of the normalized task period of the trajectory, for each condition. Here, the 25%
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represents the mid air phase – when the COM is shifted towards the stance leg (Han

et al., 2006; McIlroy & Maki, 1999; Patla et al., 1999), and 50% occurred during the

toe tapping or during the foot placement phase. Thus we present and statistically

analyze, only, the mid-air – 25% and toe-tap – 50% phases of the task period.

3.2.7 INDEPENDENT VARIABLES

The independent variables that were directly manipulated for the repeated

measures ANOVA were: (1) the age groups (6-year-old children, 10-year-old children

and adults); (2) the movement direction (forward, backward, and lateral); (3) the

movement phase (mid-air – 25% and toe-tap – 50%); and (4) the task or control

variable (COM, HEAD, and TOE position).

3.2.8 HYPOTHESIS AND STATISTICAL ANALYSIS

We hypothesized: (1) Neural motor control structure: In adults, all the task or

control variables (COM, HEAD and the TOE) would always be controlled more than

the individual joint motions; i.e., the UCM ratio would be more than unity regardless

of the movement direction (forward, backward, and lateral) or phase (mid-air – 25%

and toe-tap – 50%) (Barberini & Macpherson, 1998; Hirasaki et al., 1999; Patla

et al., 1999; Winter, 1995; Woollacott & Tang, 1997); (2) Direction effect: Adult

forward toe-tapping, during both the mid-air – 25% and toe-tap – 50% phase, is

more controlled than the backward or lateral toe-tapping (Freitas & Duarte, 2012;

Hackney & Earhart, 2009; Hausdorff et al., 1997; Lee et al., 2013); and (3) Age
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effect: Based on walking literature, we hypothesize the overall control structure of

step-like toe-tapping would improve with age (Cavagna et al., 1983; Dierick et al.,

2004; Hausdorff et al., 1999; Preis et al., 1997); however the improvement occurs

until the age of 7 (Dierick et al., 2004); meaning, there is no significant differences

in the overall control structure for 10-year-old children and young adults.

For statistical analysis, repeated measures analysis of variance (ANOVA) was

conducted using the SAS statistical software and the level of significance for all

statistical tests was set at p < 0.05. The independent variables in the ANOVA model

depended on the hypothesis; detailed explanation of the ANOVA model associated

with the individual hypothesis is provided in their respective result section. When

particular interaction effects, related to our hypotheses, were found to be significant,

further post-hoc analysis was performed using the Bonferroni correction. The graphs

were generated using SPSS statistical software.

3.3 ASSUMPTIONS

DIRECTION SPECIFIC MODELING

In section 3.4 and 3.6, the analyses for the forward and backward toe-tapping

were performed in the horizontal sagittal dimension; while the lateral tapping was

studied in the horizontal frontal dimension. This specific constraint in the analysis

was set because the experimental protocol required the participants to consistently

tap a self-selected spatial spot (approximately fixed position) with their toe, in

these body-spatial dimensions; this is evident from Figs. 3.6, 3.7, and 3.8. Moreover,
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Figure 3.6: Exemplar data (CT102) shows that during forward toe-tapping, the
most consistent tapping occurs in the sagittal horizontal body-spatial dimension.

Figure 3.7: Exemplar data (CT102) shows that during backward toe-tapping, the
most consistent tapping occurs in the sagittal horizontal body-spatial dimension.

during the toe-tapping phase – 50%, as the toe touches the ground there is no change

or very minimal change in the vertical toe position. Therefore, to keep consistency

and compatibility with other analyses the vertical direction was ignored.

RESULTANT HORIZONTAL DIMENSION

The forward, backward and lateral toe-tapping were studied in different di-

mensions. Therefore running the repeated measures variance analysis (ANOVA),

independently, on separate dimensions to test how the toe-tapping differs based on
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Figure 3.8: Exemplar data (CT102) shows that during lateral toe-tapping, the most
consistent tapping occurs in the frontal horizontal body-spatial dimension.

movement direction, would not be logical. To get around the issue, the statistical

analysis was, instead, performed by considering a resultant horizontal dimension by

combining the two dimensions: horizontal frontal and horizontal sagittal. It is on

this resultant dimension that the analyses testing the directional effect in section 3.5

were conducted. For complete discloser we have also presented the results obtained

along the decomposed component dimension, as well.

COMBINED LEG DATA

None of the statistical analyses considered the leg as an independent variable

because it was assumed that the forward, backward and lateral toe tapping move-

ments were similar for both legs. To test this assumption we have performed all

our analyses, separately, on the right and the left leg data as well; and found no

significant differences between the legs. Therefore data from the two legs were not

studied separately but were combined.
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3.4 RESULTS: NEURAL MOTOR CONTROL STRUCTURE

3.4.1 TASK OR CONTROL VARIABLE VARIABILITY

Figs. 3.9, 3.10 and 3.11 represent the mean (±SEM: Standard Error of Mean)

movement variability of all the task variables: COM, HEAD, and the TOE position;

at two phases of the leg movement: mid air, toward the tap – 25% and toe tap –

50%, while adults performed the forward (Fig. 3.9), backward (Fig. 3.10) and

lateral (Fig. 3.11) toe-tapping respectively; with both the right and left leg.

In the following sections 3.4.1.1, 3.4.1.2, and 3.4.1.3, the results of the 3 (con-

trol variable) × 2 (phase of the toe-tapping movement) repeated measures ANOVA

for the three directions of tapping (forward, backward, and lateral) using task vari-

ability, as the dependent variable, are presented. Overall, note that across all three

directions COM varied the least and TOE varied the most.

3.4.1.1 FORWARD TOE-TAPPING

Significant effects were observed for the main effect of the control variable (p

= 0.0004), and interaction between the control variable and the phase (p = 0.0158).

Further post-hoc analysis using the Bonferonni correction showed that, during mid

air phase – 25%, the TOE was significantly more variable than the COM (p =

0.0005) and the HEAD (p = 0.0144); the results are summarized in Fig. 3.9.
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Figure 3.9: Mean (±SEM) variability of the control variables, along the horizontal
sagittal dimension, at two phases: mid air – 25% and toe tap – 50%; for adults
performing the forward toe-tapping movement.

3.4.1.2 BACKWARD TOE-TAPPING

During backward toe-tapping, significant effects were revealed for the control

variable (p < 0.0001) and the phase (p = 0.0129). Post-hoc analysis showed that the

toe tap (50%) phase was significantly more variable than the mid air (25%) phase

(p � 0.05). Similar to the forward analysis: the HEAD (p = 0.006) and the TOE

(p < 0.0001) were significantly more variable than the COM; in addition, the TOE

was significantly more variable than the HEAD (p = 0.0022) across the two phases.

The result suggests, in terms of variability (worst to best) the ranking of these task

variables is: TOE > HEAD > COM.
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Figure 3.10: Mean (±SEM) variability of the control variables, along the horizontal
sagittal dimension, at two phases: mid air – 25% and toe tap – 50%; for adults
performing the backward toe-tapping movement.

3.4.1.3 LATERAL TOE-TAPPING

During lateral toe-tapping, a significant main effect was found, only, for the

control variable (p = 0.001). Fig. 3.11 summarizes the result, it illustrates that the

HEAD (p = 0.0247) and the TOE (p = 0.0009) were more variable than the COM.

3.4.1.4 SUMMARY OF THE VARIABILITY MEASURE

The aforementioned results indicate that during the toe-tapping movement

the most consistent task variable is the COM, followed by the HEAD and the TOE:

COM > HEAD > TOE, irrespective of the phase. These results, however do not,

necessarily, conclude that (1) the task variable consistency is a consequence of the

precise consistent control of the individual joint motions, or, (2) that consistency
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Figure 3.11: Mean (±SEM) variability of the control variables, along the horizontal
frontal dimension, at two phases: mid air – 25% and toe tap – 50%; for adults
performing the lateral toe-tapping movement.

is occurring regardless of larger joint trajectory variability. This question can be

addressed by setting up a similar analysis using the Uncontrolled Manifold (UCM)

technique. The UCM conception provides a systematic framework for analyzing

the joint variability structure of the task variables: parallel and orthogonal to the

multi-dimensional UCM engraved in the segmental angle based state space. A rela-

tive comparison between these two joint variability structures may provide a better

answer to how the task or control variables are stabilized and controlled.

UCM ANALYSIS: JOINT CONFIGURATION VARIABILITY

Figs. 3.12, 3.13 and 3.14, each, illustrates the mean (±SEM) joint configura-

tion variance parallel to (σ‖) and perpendicular (σ⊥) to the linearized uncontrolled

manifold (UCM) while adults perform forward (Fig. 3.12), backward (Fig. 3.13)

and lateral (Fig. 3.14) toe-tapping respectively. The figures show the distribution
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Figure 3.12: Mean (±SEM) joint configuration variance parallel to (‖) and perpen-
dicular (⊥) to the linearized uncontrolled manifold (UCM) associated with the task
variables at mid air – 25% and toe tap – 50% as adults perform forward toe-tapping.

of these two measures for the task or control variables, at the two phases: mid air

and toe tap.

In general, it can be observed in Figs. 3.12, 3.13 and 3.14 that the component

of the joint variable arranged parallel to the uncontrolled manifold is greater than

the perpendicular component. This is true for all the conditions, and at all phases

of the movement. It suggests that the overall fluctuations in the joint configura-

tion describing and subsequently affecting the COM, HEAD and TOE position are

reduced, in contrast to the joint configuration that does not affect these variables;
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Figure 3.13: Mean (±SEM) joint configuration variance parallel to (‖) and perpen-
dicular (⊥) to the linearized uncontrolled manifold (UCM) associated with the task
variables at mid air – 25% and toe tap – 50% as adults perform backward tapping.
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Figure 3.14: Mean (±SEM) joint configuration variance parallel to (‖) and perpen-
dicular (⊥) to the linearized uncontrolled manifold (UCM) associated with the task
variables at mid air – 25% and toe tap – 50% as adults perform lateral toe-tapping.
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indicating that the control of these task variables are greater than the individual

joint trajectory control. Based on the relative variability between the perpendicular

and orthogonal component (Figs. 3.12, 3.13 and 3.14), it can be well understood

that the COM is the most controlled, closely followed by the TOE and the HEAD.

3.4.2 UCM ANALYSIS: COMPARISON OF TASK VARIABLES

Figs. 3.15, 3.16, and 3.17 show the mean UCM ratio (±SEM) associated with

all the task variables at the two phases, while adults perform the forward (Fig. 3.15),

backward (Fig. 3.16) and lateral (Fig. 3.17) toe-tapping respectively. These figures

show the distribution of the UCM ratio under all conditions, at all the phases. It

can be observed that, in all the conditions, the UCM ratio associated with the COM

is the highest, followed by the TOE and then the HEAD; these speculations were

supported by the 3 (control variable) × 2 (phase) repeated measures ANOVA using

the UCM ratio as the dependent variable.

3.4.2.1 FORWARD TOE-TAPPING

The 3 (control variable) × 2 (phase) repeated measures ANOVA for the for-

ward tapping revealed significant main effect of the control variable (p < 0.0001)

and interaction of the control variable and phase (p < 0.0438). Post-hoc Bonferonni

correction revealed that UCM ratio for the COM was significantly larger than that

for the TOE (p < 0.0005). Moreover, it was significantly larger in comparison to

the HEAD at all the phases: mid air (p = 0.0004) and toe tap (p = 0.0085). The
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Figure 3.15: Mean (±SEM) UCM ratio for the task or control variables at two
phases: mid air – 25% and toe tap – 50%, while adults perform forward toe-tapping.

results are summarized in Fig. 3.15.

3.4.2.2 BACKWARD TOE-TAPPING

Fig. 3.16 suggests that the UCM ratio structure in backward tapping is similar

to its forward counterpart: COM > TOE > HEAD. The 3 (control variable) × 2

(phase) repeated measures ANOVA analysis revealed a significant main effect of the

control variables (p = 0.0003). Post-hoc analysis revealed that the UCM ratio for

the COM was significantly larger than that for the HEAD (p = 0.0002). Moreover,

the ratio for the COM was larger than that for the TOE (p = 0.0505); while the

value for the TOE was larger than that for the HEAD (p = 0.06), although it did

not reach statistical significance.
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Figure 3.16: Mean (±SEM) UCM ratio for the task or control variables at two
phases: mid air – 25% and toe tap – 50%, while adults perform backward toe-
tapping.

3.4.2.3 LATERAL TOE-TAPPING

Fig. 3.17 shows that, during lateral tapping the UCM ratio for the COM is

significantly more than that for the other task variables. The 3 (control variable) ×

2 (phase) repeated measures ANOVA supports these differences with a significant

main effect of the task variable (p < 0.0001). Post-hoc analysis revealed that the

UCM ratio for the COM was significantly larger than that of the HEAD (p < 0.0001)

and the TOE (p = 0.0001).

3.4.2.4 SUMMARY: JUSTIFYING THE UCM ANALYSIS

According to section 3.4.1.4, we can understand that the relative variability

between the perpendicular (σ‖) and orthogonal (σ⊥) component of the uncontrolled
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Figure 3.17: Mean (±SEM) UCM ratio for the task variables at two phases: mid
air – 25% and toe tap – 50%, while adults perform lateral toe-tapping.

manifold (UCM) can help in identifying, and subsequently differentiate the more

controlled variables from the less controlled ones. However, the UCM mathematical

framework does not allow us to directly compare the different control variables

based on these measures, unless the control variables are modeled using the same

joint configuration. Meanwhile, the UCM ratio, defined by the ratio of (σ‖) to (σ⊥),

allows a relative comparison of the degree of control-theoretic stability among the

various task variables. UCM ratio of more than unity signifies that the individual

joint configuration variance is organized in a manner that reduces the variation of

the control variables. Thus, based on the UCM ratio a relative ranking of the task

variables can be made, which provides the basis for the approximation of the neural

motor control structure.

Based on the control-theoretic stability measure (UCM ratio) distribution as

shown in Figs. 3.15, 3.16, and 3.17, we can suggest that the neural motor control
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structure (the relative ranking of the task or control variables) for toe-tapping is:

(1) COM, followed by (2) HEAD and the (3) TOE. However, before making a final

comment about this structure of the control variables during the forward, backward

or lateral toe-tapping; we analyzed the data, further, to investigate if there is any

direction or age effect. These analyses were done separately using the same analysis

framework used in section 3.4, meaning, each analysis was conducted first on the

task variable variability measure, and later using the UCM analysis.

3.5 RESULTS: DIRECTIONAL EFFECT

3.5.1 DIRECTIONAL VARIABILITY

Figs. 3.18 and 3.19 represent the mean (±SEM) variability associated with the

task variables while adults perform the forward, backward and lateral toe-tapping

movement at mid air – 25% (Fig. 3.18) and toe tap – 50% (Fig. 3.19) phase re-

spectively. Moreover, the figures highlight the statistical significances that were

observed during the 3 (control variable) × 3 (toe-tapping direction) repeated mea-

sures ANOVA with the task variable variability as the dependent variable.

3.5.1.1 MID AIR PHASE – 25%

Fig. 3.18 summarizes the results obtained from the 3 (control variable) × 3

(toe-tapping direction) repeated measures ANOVA for testing the directional effect,

considering the mid air phase – 25%. The analysis revealed significant main effect for

the task or control variable (p < 0.0001). The post hoc significance was consistent
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Figure 3.18: Mean (±SEM) variability of the task variables at mid air (25%) phase as
adults perform the forward, backward and lateral tapping in the resultant dimension.

with the Fig. 3.18: the HEAD (p = 0.0004) and the TOE (p = 0.0001) were

significantly more variable than the COM.

3.5.1.2 TOE TAP PHASE – 50%

Fig. 3.19 reveals similar variability structure at the toe tap phase – 50%.

Significant main effect of the control variable (p = 0.0002) was observed. Post-hoc

analysis revealed that the HEAD (p = 0.0026) and the TOE (p = 0.0002), both,

were more variable than the COM.

Surprisingly, none of the analyses revealed significant main effect of the di-

rection; however, similar analyses using the UCM ratio as the dependent variable

provided a different view.
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Figure 3.19: Mean (±SEM) variability of the task variables at toe tap (50%) phase as
adults perform the forward, backward and lateral tapping in the resultant dimension.

3.5.2 UCM ANALYSIS: COMPARISON OF DIRECTION

Figs. 3.20 and 3.22 display the mean (±SEM) UCM ratio for the task variables

as adults perform forward, backward and lateral toe-tapping movement at mid air

(25%) (Fig. 3.20) and toe tap (50%) (Fig. 3.22) phase respectively. The figures are

similar to Fig. 3.18 and 3.19 respectively; however, these figures display the UCM

ratio as the dependent variable instead of the task variable variability.

At the mid-air phase considering the resultant horizontal dimension (Fig.

3.20), significant main effects were observed for the control variable (p < 0.0001)

and direction (p = 0.0079). Post-hoc analysis revealed that the UCM ratio for the

forward tapping was significantly larger than that for the backward (p = 0.0233)

and the lateral (p = 0.0149). If the analysis was, further, decomposed based on

the constituent horizontal dimensions, it can be seen that similar pattern in the
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Figure 3.20: Mean (±SEM) UCM ratio for the control variables at mid air phase –
25% as adults perform the forward, backward and the lateral toe-tapping.

Figure 3.21: Mean (±SEM) UCM ratio for the control variables at mid air phase –
25% as adults perform the forward, backward and the lateral toe-tapping, consider-
ing the (A) frontal and the (B) sagittal horizontal dimension.
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Figure 3.22: Mean (±SEM) UCM ratio for the control variables at toe tap phase –
50% as adults perform the forward, backward and the lateral toe-tapping.

Figure 3.23: Mean (±SEM) UCM ratio for the control variables at toe tap phase –
50% as adults perform the forward, backward and the lateral toe-tapping, consider-
ing the (A) frontal and the (B) sagittal horizontal dimension.
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distribution of the UCM ratio existed in both the M-L and the A-P dimensions

(Fig: 3.21); M-L being the predominant one (Fig: 3.21 (A)). In both cases A (M-L

dimension) and B (A-P dimension): significant main effects were observed for the

control variable (p � 0.05) and direction (p � 0.05). The respective associated

post-hoc results are summarized in Fig. 3.21.

Similar results were observed in the toe-tapping phase (50%) considering the

resultant horizontal dimension (Fig. 3.22): a significant main effect for the control

variable (p < 0.0001), however, the directional effect (p = 0.0512) did not quite

reach the statistical significance. Post-hoc analysis revealed that the UCM ratio for

the forward tapping was larger than that for the lateral (p = 0.0681), however it

did not reach statistical significance. Furthermore, if the analysis was decomposed

based on the constituent horizontal dimensions, it can be seen that similar pattern in

the distribution of the UCM ratio existed in both the M-L and the A-P dimensions

(Fig: 3.23); M-L being the predominant one (Fig: 3.23(A)). In both cases A and B:

significant main effect was observed for the control variable (p � 0.05). In addition,

in the M-L dimension there was effect of direction (p = 0.0104); while in the A-P

dimension, this effect did not quite reach statistical significance level (p = 0.0540).

The respective post-hoc results are summarized in Fig. 3.23. Furthermore, in all

the aforementioned analyses (mid-air and toe tap), the UCM ratio for the COM was

significantly larger than that for the HEAD (p � 0.05) or the TOE (p � 0.05).

The distribution of the mean (±SEM) joint configuration variance parallel to

(σ‖) and perpendicular (σ⊥) to the linearized uncontrolled manifold (UCM) associ-

ated with the UCM ratios shown in Fig. 3.20 and Fig 3.22, are displayed in Figs.
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Figure 3.24: Mean (±SEM) joint configuration variance parallel (‖) to and perpen-
dicular (⊥) to the linearized UCM associated with the task variables at the mid air
– 25% phase; as adults perform the forward, backward and lateral toe-tapping.

3.24 and 3.25 respectively. These figures reinforce the aforementioned findings; it

can be observed that in both the cases: mid air phase (Fig. 3.24) and toe tap

phase (Fig. 3.25); the component of the joint variable arranged parallel (σ‖) to the

uncontrolled manifold is much greater than the component perpendicular (σ⊥) to

it.
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Figure 3.25: Mean (±SEM) joint configuration variance parallel (‖) to and perpen-
dicular (⊥) to the linearized UCM associated with the task variables at the toe tap
– 50% phase; as adults perform the forward, backward and lateral toe-tapping.
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3.6 RESULTS: AGE EFFECT

3.6.1 AGE-RELATED VARIABILITY

3.6.1.1 FORWARD TOE-TAPPING

Figs. 3.26 and 3.27 represent the mean (±SEM) variability of the task variables

as adults, 6- and 10-year-old children perform the forward toe-tapping at mid air –

25% (Fig. 3.26) and toe tap – 50% (Fig. 3.27) phase respectively. These figures also

display the results of the 3 (age) × 3 (control variable) repeated measures ANOVA

performed, separately, on the two phases during forward toe-tapping.

During the mid air phase – 25%, significant main effect of the control variable

(p < 0.0001) and interaction of age and control variable (p = 0.0042) were found.

Post hoc analysis showed that the adult TOE was significantly more variable than

its COM (p < 0.0001) or HEAD (p = 0.0029). Moreover, both the 6- and 10-year-

old children displayed significantly more variability with their HEAD (p � 0.05)

and the TOE (p � 0.05) movements compared to their COM.

During the toe tap phase (50%), there were significant main effect for the age

(p = 0.0298), task variable (p < 0.0001) and the interaction of age and task variable

(p = 0.0225). Post hoc analysis showed that the 6-year-olds were significantly more

variable than 10-year-olds (p = 0.0269); and displayed significant variability in the

HEAD (p = 0.0017) and the TOE (p < 0.0001) movements compared to the COM.

The results from, both, the aforementioned analyses are summarized in Figs. 3.26

and Fig. 3.27 respectively.
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Figure 3.26: Mean (±SEM) variability of the task variables at mid air phase – 25%,
as adults, 6- and 10-year-olds perform the forward toe-tapping.
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Figure 3.27: Mean (±SEM) variability of the task variables at toe tap phase – 50%,
as adults, 6- and 10-year-olds perform the forward toe-tapping.

3.6.1.2 BACKWARD TOE-TAPPING

Figs. 3.28 and 3.29 represent the mean (±SEM) variability of the task variables

while adults, 6- and 10-year-old children perform the backward toe-tapping at mid

air – 25% (Fig. 3.28) and toe tap – 50% (Fig. 3.29) respectively. These figures also

display the results of the 3 (age) × 3 (control variable) repeated measures ANOVA

performed, separately, on the two phases during backward toe-tapping.

During the mid air phase – 25%, the main effect of the control variable (p <

0.0001) and interaction of age and control variable (p = 0.0413) were significant.

Post hoc analysis showed that the adult TOE was significantly more variable than

its COM (p < 0.0001) or HEAD (p = 0.0181). Moreover, both the 6- and 10-year-

old groups displayed significantly more variability with their HEAD (p � 0.05) and
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Figure 3.28: Mean (±SEM) variability of the task variables at mid air phase – 25%,
as adults, 6- and 10-year-olds perform the backward toe-tapping.

TOE (p � 0.05) movements compared to their COM.

During the toe tap phase – 50%, the main effect of the control variable (p <

0.0001) was significant. Post hoc analysis revealed that the HEAD (p < 0.0001)

and the TOE (p < 0.0001) were, both, significantly more variable compared to the

COM; while the TOE was more variable compared to the HEAD (p = 0.0004).

The results of the aforementioned analyses are summarized in Figs. 3.28 and 3.29

respectively.
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Figure 3.29: Mean (±SEM) variability of the task variables at toe tap phase – 50%,
as adults, 6- and 10-year-olds perform the backward toe-tapping.

3.6.1.3 LATERAL TOE-TAPPING

Figs. 3.30 and 3.31 represent the mean (±SEM) variability of the task variables

while adults, 6- and 10-year-old children perform the lateral toe-tapping at mid air

– 25% (Fig. 3.30) and toe tap – 50% (Fig. 3.31) respectively. These figures also

display the results of the 3 (age) × 3 (control variable) repeated measures ANOVA

performed, separately, on the two phases during lateral toe-tapping.

During the mid air phase – 25%, the main effect of the control variable (p <

0.0001) and interaction of age and control variable (p = 0.0141) were significant.

Post hoc analysis revealed that the adult TOE was significantly more variable than

its COM (p = 0.011). The 6-year-olds showed significantly more variability with

their HEAD (p = 0.0003) and TOE (p = 0.0381) movements when compared to
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Figure 3.30: Mean (±SEM) variability of the task variables at mid air phase – 25%,
as adults, 6- and 10-year-olds perform the lateral toe-tapping.

their COM and HEAD movements respectively. The 10-year-olds, also, showed

significantly more variability with their HEAD (p = 0.0173) and TOE (p = 0.0183)

compared to their COM.

During the toe tap phase – 50%, a significant main effect of the age (p =

0.0004), the control variable (p < 0.0001) and the interaction of age and control

variable (p < 0.0001) were observed. Post hoc results showed that the COM and

the HEAD were, both, significantly more variable in the 6-year-olds compared to

the adults (p � 0.05) and 10-year-olds (p � 0.05). Moreover, in the 6-year-olds the

HEAD was significantly more variable compared to the COM (p = 0.0332) and the

TOE (p < 0.0001). The results of these two analyses were summarized in the Figs.

3.30 and 3.31 respectively.
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Figure 3.31: Mean (±SEM) variability of the task variables at toe tap phase – 50%,
as adults, 6- and 10-year-olds perform the lateral toe-tapping.

3.6.2 UCM ANALYSIS: COMPARISON OF AGE

3.6.2.1 FORWARD TOE-TAPPING

Figs. 3.32 and 3.33, each, displays the mean (±SEM) UCM ratio for the control

variables as adults, 6- and 10-year-old children perform the forward toe-tapping at

mid air – 25% (Fig. 3.32) and toe tap – 50% (Fig. 3.33) phase respectively. The

figures summarize the results obtained from running two, independent, repeated

measures ANOVA considering the UCM ratio as the dependent variable, while the

(3) age and (3) control variable served as the independent variables.

In the mid air phase, significant main effects were observed regarding the

control variable (p < 0.0001) and age (p = 0.0049). Post-hoc analysis revealed
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Figure 3.32: Mean (±SEM) UCM ratio for the task or control variables at mid air
phase – 25% as adults, 6- and 10-year-olds perform the forward toe-tapping.

Figure 3.33: Mean (±SEM) UCM ratio for the task or control variables at toe tap
phase – 50% as adults, 6- and 10-year-olds perform the forward toe-tapping.
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that during forward toe-tapping, the UCM ratio for the 6- (p = 0.0152) and 10-

year-olds (p = 0.0144) were significantly larger than that observed for the adults.

Furthermore, the UCM ratio for the COM was significantly more than that for the

HEAD (p < 0.0001) or TOE (p = 0.0009). Meanwhile, the UCM ratio for the TOE

was more than that for the HEAD (p = 0.074), however, it did not reach statistical

significance.

The results for the tapping (50%) phase: significant main effects of the con-

trol variable (p < 0.0001), age (p = 0.0205); and interaction of age and control

variable (p = 0.04) were found. Post-hoc analysis showed that, both, the 6- (p =

0.0165) and the 10-year-olds (p = 0.0236) had significantly larger UCM ratios for

their COM compared to that for the adults’ COM. Moreover, both these groups

displayed significantly large UCM ratios for their COM, compared to that for the

HEAD (p < 0.05) or the TOE (p < 0.05). However for the 6-year-olds, the UCM

ratio for the COM, although, larger compared to that for the HEAD, did not quite

reach the desired significance level (p = 0.0879). Figs. 3.34 and 3.35 reinforce the

aforementioned findings; it can be observed that in both the cases: mid air (Fig.

3.34) and toe tap (Fig. 3.35) phase ; the component of the joint variance arranged

parallel (σ‖) to the UCM is much greater than its perpendicular (σ⊥) component.

3.6.2.2 BACKWARD TOE-TAPPING

Figs. 3.36 and 3.37 show the mean (±SEM) UCM ratio for the control variable

as adults, 6- and 10-year-old children perform the backward toe-tapping, at two
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Figure 3.34: Mean (±SEM) joint configuration variance parallel (‖) to and perpen-
dicular (⊥) to the linearized UCM associated with the task variables at the mid air
phase – 25% as adults, 6- and 10-year-olds perform the forward toe-tapping.
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Figure 3.35: Mean (±SEM) joint configuration variance parallel (‖) to and perpen-
dicular (⊥) to the linearized UCM associated with the task variables at the toe tap
phase – 50% as adults, 6- and 10-year-olds perform the forward toe-tapping.
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Figure 3.36: Mean (±SEM) UCM ratio for the task or control variables at mid air
phase – 25% as adults, 6- and 10-year-olds perform the backward toe-tapping.

phases: mid air – 25% (Fig. 3.36) and toe tap – 50% (Fig. 3.37) respectively.

In the mid air phase (25%), significant effects for the main effect of the age (p <

0.0001), control variable (p < 0.0001) and interaction of age and control variable (p

= 0.0334) were observed. The UCM ratio for the 6- (p < 0.0001) and 10-year-olds (p

= 0.0107) were significantly larger than that for the adults; however in between them

6-year olds (p = 0.0586) was larger, but did not quite reach significance. Moreover,

both children groups showed significantly larger UCM ratios for the COM compared

to that for the HEAD (p < 0.05). In addition, the UCM ratio for the 6-year-olds’

COM was larger than that for the TOE, but it did not reach significance (p =

0.0765).

During the tapping (50%) phase: a significant main effect of the control vari-

able (p < 0.0001), and the age (p = 0.0166) were observed. Post-hoc analysis
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Figure 3.37: Mean (±SEM) UCM ratio for the task or control variables at toe tap
phase – 50% as adults, 6- and 10-year-olds perform the backward toe-tapping.

revealed that the UCM ratio for the COM was significantly larger than that for the

HEAD (p < 0.0001) or the TOE (p = 0.0079); while the value for the TOE was

significantly more than that for the HEAD (p = 0.0274). Furthermore, the UCM

ratio for the 6-year-olds was significantly more than that for the adults (p < 0.05).

Figs. 3.38 and 3.39 reinforce these findings; as it can be observed that in both the

cases: mid air phase (Fig. 3.38) and toe tap phase (Fig. 3.39); the component of the

joint variable arranged parallel (σ‖) to the uncontrolled manifold is much greater

than the perpendicular (σ⊥) component.

3.6.2.3 LATERAL TOE-TAPPING

Figs. 3.40 and 3.41, each, shows the mean (±SEM) UCM ratio associated

with the control variable as adults, 6- and 10-year-old children perform the lateral
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Figure 3.38: Mean (±SEM) joint configuration variance parallel (‖) to and perpen-
dicular (⊥) to the linearized UCM associated with the task variables at the mid air
phase – 25% as adults, 6- and 10-year-olds perform the backward toe-tapping.
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Figure 3.39: Mean (±SEM) joint configuration variance parallel (‖) to and perpen-
dicular (⊥) to the linearized UCM associated with the task variables at the toe tap
phase – 50% as adults, 6- and 10-year-olds perform the backward toe-tapping.
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Figure 3.40: Mean (±SEM) UCM ratio for the task variables at mid air phase –
25% as adults, 6- and 10-year-olds perform the lateral toe-tapping.

Figure 3.41: Mean (±SEM) UCM ratio for the task variables at toe tap phase –
50% as adults, 6- and 10-year-olds perform the lateral toe-tapping.
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Figure 3.42: Mean (±SEM) joint configuration variance parallel (‖) to and perpen-
dicular (⊥) to the linearized UCM associated with the task variables at the mid air
phase – 25% as adults, 6- and 10-year-olds perform the lateral toe-tapping.
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Figure 3.43: Mean (±SEM) joint configuration variance parallel (‖) to and perpen-
dicular (⊥) to the linearized UCM associated with the task variables at the toe tap
phase – 50% as adults, 6- and 10-year-olds perform the lateral toe-tapping.
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toe-tapping, at two phases: mid air – 25% (Fig. 3.40) and toe tap – 50% (Fig. 3.41)

respectively; and summarizes the results obtained from running two, independent,

repeated measures variance analysis (ANOVA), similar to the ones described in Fig.

3.30 and 3.31; however considering the UCM ratio as the dependent variable. These

figures show that in both the two phases there was a significant main effect of the

control variable; however, there was no significant main effect for age.

3.7 DISCUSSION

This study presents the results of an experiment designed to investigate the

nature of neural motor control involved in the kinematics of forward, backward and

lateral toe-tapping movement using the Uncontrolled Manifold (UCM) conception.

This analysis provides an approximation to the neural motor control structure - the

relative ranking of the task or control variables based on the UCM ratio: center of

mass (COM), HEAD and the TOE position, involved in the toe-tapping – forward,

backward and lateral – movements. Moreover, the study analyzes the difference in

the tapping mechanism based on the direction of the tapping, in adults. Finally,

the motor developmental study, comparatively analyzes the neural motor control

utilized by the three age groups: (a) 6-year-old children, (b) 10-year-old children

and (c) young adults; during the multi-directional unilateral toe-tapping movement.
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3.7.1 Adult CNS predominantly controls balance and foot placement.

As hypothesized, it was found that during any kind of multi-directional adult

toe-tapping movement: forward, backward or lateral: the control of the COM,

HEAD and the TOE position received more priority over the joint motions. This

is indicated by the high contrast between σ‖ and σ⊥ (σ‖ > σ⊥) for all the control

variables, at all the phases of the different directional tapping movements (Figs.

3.12, 3.13, and 3.14). It was found that the COM is more controlled than the

HEAD or the TOE position. In between the TOE and HEAD, the TOE is more

controlled than the HEAD position (Figs. 3.15, 3.16 and 3.17). To summarize,

in adults the neural motor control structure – the relative ranking of the task or

control variables based on their control-theoretic stability is: (1) COM, followed by

(2) TOE, and (3) HEAD position.

These results are supported by extant literature, which suggests that balance

control is the primary concern of the CNS, for the generation of any successful

movement (Winter, 1995; Woollacott & Tang, 1997). Moreover, the position control

of the TOE – foot placement – is also important in any kind of stepping, and

therefore would presumably be so for a step-like movement such as toe-tapping

(McIlroy & Maki, 1999; Patla et al., 1999). Furthermore, since the experiments

only involved the movement of the foot for the completion of consistent toe-tapping

tasks; we suggest that the stability of the COM maybe partly related to the precise

control of the TOE position. This statement is reinforced by the fact that during

the toe-tapping motion the predominant changes in the COM occurs because of
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the moving leg. Most importantly, according to literature: (1) the control of the

COM is initiated first by appropriate changes in the foot position (McIlroy & Maki,

1999; Patla et al., 1999), and (2) the hip, knee and ankle kinetics, suggesting TOE

position control, contributes to the stabilization of the COM and the COP (Winter,

1995; Woollacott & Tang, 1997).

The UCM ratio of more than unity for the HEAD suggests that the HEAD

position is more controlled than the joint motions. This is understandable since (1)

during forward and lateral toe-tapping visual feedback is required to compensate for

the errors in consistent toe-tapping motion, and most importantly (2) the vestibular

system is physically located in the HEAD. Therefore, the HEAD position and orien-

tation is important for controlling the TOE position during toe-tapping movements

(Hirasaki et al., 1999; Patla et al., 1999).

3.7.2 Adult CNS is efficient in controlling forward toe-tapping.

MID-AIR PHASE: STANCE AND LEG SWING

In adults, the forward toe-tapping is the most controlled of all the tapping

movements; this is evident from the findings comparing the three directional tapping

movements at the mid-air – 25% phase based on the UCM ratio (Figs. 3.20 and

3.21). The result is intuitive because among the three tapping motions; swing phase

of forward tapping, kinematically being much like stepping, is the most practiced;

it is the primitive building block of forward walking, running, or jogging. Thus the

neural motor control structure involved in forward swing phase of toe-tapping can be
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assumed to be highly developed and practiced, leading to a significantly larger UCM

ratio. The conclusion is consistent with the literature relating the improvement in

the UCM ratio based on practice (Kang et al., 2004; Latash, 2010; Müller & Sternad,

2009; Wu & Latash, 2014). Furthermore, to reinforce the validity of this finding,

the complexity in the control of forward toe-tapping movement at the mid-air –25%

phase should be considered. During forward toe-tapping movement, mid-air –25%

phase is the most unstable phase because (1) the COM is outside the base of support

causing instability in the anterior direction; and (2) there is lateral instability in the

medial lateral dimension (McIlroy & Maki, 1999; Patla et al., 1999), this is evident

from the distribution of the UCM ratio for the COM in the M-L dimension (Fig.

3.21 (A)). According to Schöner, the UCM ratio is increased to accommodate to the

difficulty of the task (Kim et al., 2012; Scholz & Schöner, 1999).

As expected the UCM ratio for backward toe-tapping was significantly lower

than its forward counterpart during the mid-air –25% phase (Figs. 3.20 and 3.21).

This is mainly expected due to lack of practice, but we did not expect such lowering

of the UCM ratio because the backward mid-air phase, too, is very unstable. A

logical explanation for such lowering of the UCM ratio can be related to (1) the

different distances transversed during forward, backward and lateral toe-tapping,

(2) the different trajectory of the toe-tapping foot: high elevation hyperbolic or

low elevation sliding trajectory, or (3) both. The explanation is consistent with the

backward walking (BW) literature, which suggests that (1) BW involves shorter

absolute swing and support (Vilensky JA, 1987), (2) it does not generate much

propulsion power (Lee et al., 2013), (3) the kinematics of the knee and the hip joint,
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is reversed but simpler than forward walking (Lee et al., 2013), leading to a lower

UCM ratio (Scholz & Schöner, 1999), and (4) backward gait variability is increased

which might affect the orthogonal component to the UCM to rise and subsequently

lower the UCM ratio, as shown in Fig. 3.24 (Freitas & Duarte, 2012; Hackney &

Earhart, 2009; Hausdorff et al., 1997). However, the experimental verification is

beyond the scope of this study.

TOE-TAP – 50% PHASE

Surprisingly, there was no difference between the forward and backward toe-

tapping movement in the actual toe tap – 50% phase. Unlike forward and backward

stepping which is quite stable due to the the weight transfer onto the stepping leg

during the actual step phase; repeated toe-tapping in similar directions might be

relatively more difficult. During the toe-tapping task the weight is not shifted onto

the tapping leg, thus the instability in the medial lateral or anterior posterior direc-

tion is not reduced; the high UCM ratios for the COM in Figs. 3.22 and 3.23 provide

evidence to this idea. Moreover, repetitive consistent toe-tapping task would require

constant balance control against repetitive-self-perturbed multi-directional instabil-

ity. Such unique dynamic balance control issue might make the toe-tapping motor

task novel, for the CNS, equally in both these directions due to the lack of sufficient

practice unlike the stepping phase; leading to similar UCM ratio distribution in the

forward and backward direction.

Finally, during both the phases (mid air – 25% and toe-tap – 50%) lateral
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toe-tapping is significantly less controlled than forward toe-tapping (Figs. 3.20, and

3.22). This makes sense because the tapping direction and the mechanical design

of the human foot, reduces the effect of lateral, anterior or posterior destabilization.

Most importantly (1) the tapping trajectory constraints the COM to remain within

the base of support, and (2) the movement is the least practiced of all the movements.

3.7.3 Children have more control over forward and backward toe-

tapping than the adults.

Contrary to our hypothesis, we observed that during the forward (Figs. 3.32

and 3.33) and backward (Figs. 3.36 and 3.37) toe-tapping, both the 6- and 10-year-

old children have more control on the task or control variables than the adults, at

all the phases. This is not intuitive, as we expected that (1) the control structure

would develop with age (Cavagna et al., 1983; Dierick et al., 2004; Hausdorff et

al., 1999; Preis et al., 1997), leading to a higher UCM ratio; and (2) development

would cease around the age of 7 (Dierick et al., 2004), meaning, there would be

no significant difference in the toe-tapping pattern, described by similar UCM ratio

for the 10-year-old children and young adults, but the 6-year-olds would differ from

both the age groups.

However, an extended look into the literature has helped us in realizing the

validity of our findings. The study of the multi-directional supported walking of

infants concluded that infants (aged 2-11 months), those who can walk forward,

can also walk backward and sideways, irrespective of the movement speed (Lamb
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& Yang, 2000). Moreover, a recent study involving young infants reaching for toys

(with the hands or the feet), found that infants more often used their feet to reach for

objects; and suggested that early leg movements can be precisely controlled and not

require extensive lengthy practice (Galloway & Thelen, 2004). Moreover, a pencil-

tapping study with young children suggested that children are very careful and

slow while making consistent tapping movement; as the speed increases, consistency

gradually decreases with increasing age (Connolly, Brown, & Bassett, 1968).

Regarding the adults, the reduced UCM ratio implies that the relative differ-

ence between the σ‖ and σ⊥ is not big enough. This implies three possible scenarios:

(1) the σ‖ defining the flexibility of the redundant system while ensuring motor

performance has reduced; suggesting that maybe with age-related development the

adult CNS has developed motor consistency but became rigid or less flexible in their

usage of the available redundancy; (2) the σ⊥ has increased, meaning the increased

joint flexibility is effecting the motor performance; or (3) both. According to Figs.

3.34, 3.35, 3.38, 3.39, 3.42, and 3.43 it seems to be the first case; compared to the

children the adults have very low σ‖ for all the control variables – the adults are

very rigid in their toe-tapping movements.

However, during lateral toe-tapping there is no significance difference in the

control structure based on the age (Figs. 3.40 and 3.41), meaning, the different age

groups acted similarly. This makes sense because lateral toe-tapping is probably the

least practiced and therefore by extension lateral tapping, thus it is equally difficult

across all the ages, leading to a similar UCM ratio distribution pattern (Kang et al.,

2004; Latash, 2010; Müller & Sternad, 2009; Wu & Latash, 2014).
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3.7.4 CNS controls multi-directional toe-tapping using similar neural

control strategy.

Based on our study, it was found that the approximate control structure (i.e.,

ranking of the task or control variables) of multi-joint coordinated toe-tapping (for-

ward, backward, and lateral) is: (1) COM, followed by (2) TOE and the (3) HEAD

position. The identified neural motor control structure is invariant across movement

phase, tapping direction and age. Our results, based on such invariance, reinforces

the idea that the CNS controls multi-directional toe-tapping using a single neural

control strategy.

This conclusion is logical because there are infinite tapping directions, thus

having customized control strategy for each would be very difficult for the CNS

(Lamb & Yang, 2000; Robert et al., 2009; Yang et al., 1998). Moreover, supported

multi-directional stepping (forward, backward, and sideways) study involving in-

fants (aged 2-11 months) showed that stepping pattern defined by the (1) limb mo-

tion kinematics: the stance and swing phase duration, and cycle duration, and (2)

electromyographic patterns, had no significant differences across a range of speeds;

indicating a single neural control strategy for step-like toe-tapping (Lamb & Yang,

2000; Yang et al., 1998).
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3.7.5 UCM provides deeper insight than standard variability analy-

sis.

All our repeated measures statistical analyses of variance (ANOVA) were per-

formed considering the (1) UCM ratio and (2) task variable variability as dependent

variables, separately; the results were strikingly different. It was found that the most

variable control variable using the standard approach was the TOE, followed by the

HEAD and the COM position, in all conditions for all the phases, across all the

ages. These results are somewhat different – misleading to be precise; because the

analysis based on the task or control variable variability measure does not consider

the structure of the variance of the joint motions that are involved in the generation

of the trajectory variability.

This is evident from the analysis which tested the directional effect. Standard

analysis using the task variable variability measure could not find significant differ-

ence in the structure of the different toe-tapping tasks (for example, please compare

Fig. 3.18 to 3.20 and 3.21), meanwhile UCM analysis provided a deeper insight and

revealed that the adult CNS is efficient in controlling forward toe-tapping compared

to backward or lateral tapping.
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Chapter 4: CONCLUSION

This study summarizes the results obtained after analyzing the kinematic mo-

tion data of multi-directional unilateral toe-tapping (forward, backward and lateral)

using the Uncontrolled Manifold Technique. Our results suggest that the central ner-

vous system controls the various task-related functional control variables more than

the individual joints involved in the toe-tapping motion. The control of the various

task-related functional important parameters is organized by controlling the over-

all structure of the joint variance in a manner which stabilizes the control variables

while ensuring consistent performance. Our results indicate that children have more

controlled forward and backward toe-tapping than adults; however they all follow

similar toe-tapping movement strategy in the lateral direction. Moreover, in adults,

forward toe-tapping is more controlled than backward or lateral tapping. In all our

studies, it was found that the central nervous system predominantly controls balance

and foot placement during the potentially destabilizing reach out and toe-tapping

movement; this is evident from the identified control structure. The relative ranking

defining the approximate neural motor control structure for tapping is: (a) center

of mass (COM), (b) TOE and (c) HEAD position. We found this structure to be

invariant of phase, tap direction and age. Such findings reinforce the idea that the
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central nervous system controls multi-directional toe-tapping motion using a single

neural control mechanism.
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Schöner, G. (1995). Recent developments and problems in human movement science
and their conceptual implications. Ecological Psychology , 7 (4), 291–314.

Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor
control. Experimental Brain Research, 185 (3), 359–381.

Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuro-
science, 7 (9), 907–915.

van Deursen, R. W., Flynn, T. W., McCrory, J. L., & Morag, E. (1998). Does a
single control mechanism exist for both forward and backward walking? Gait
& Posture, 7 (3), 214–224.
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