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2 � T. G. Kolda and D. P. O'Leary1. INTRODUCTIONA semidiscrete decomposition (SDD) approximates a matrix as a weighted sum ofouter products formed by vectors with entries constrained to be in the set S =f�1; 0; 1g. O'Leary and Peleg [1983] introduced the SDD in the context of imagecompression, and Kolda and O'Leary [1998, 1999] used the SDD for latent semanticindexing (LSI) in information retrieval; these applications are discussed in x5.The primary advantage of the SDD over other types of matrix approximationssuch as the truncated singular value decomposition (SVD) is that, as we will demon-strate with numerical examples in x7, it typically provides a more accurate approx-imation for far less storage.We describe the SDD, how to calculate it, and its properties in x2. The weightedand tensor SDDs are presented in x3 and x4, respectively.A storage-e�cient implementation for the SDD is presented in x6. Numericalresults with our software are presented in x7.2. THE SDDAn SDD of an m � n matrix A is a decomposition of the formAk = �x1 x2 � � � xk � 26664d1 0 � � � 00 d2 � � � 0... ... . . . ...0 0 � � � dk37775 26664 yT1yT2...yTk 37775 = kXi=1 dixiyTi :| {z }Xk | {z }Dk | {z }Y TkHere each xi is an m-vector with entries from the set S = f�1; 0; 1g, each yi is ann-vector with entries from the set S, and each di is a positive scalar. We call thisa k-term SDD.Although every matrix can be expressed as an mn-term SDDA = mXi=1 nXj=1 aijeieTj ;where ek is the k-th unit vector, the usefulness of the SDD is in developing approx-imations that have far fewer terms.Since the storage requirement for a k-term SDD is k 
oating point numbers plusk(m+n) entries from S, it is inexpensive to store quite a large number of terms. Forexample, for a dense, single precision matrix of size 10; 000�10; 000, almost 80; 000SDD terms can be stored in the space of the original data, and almost 160; 000terms can be stored for a double precision matrix of the same size.2.1 Computing an SDDAn SDD approximation can be formed iteratively via a greedy algorithm. Let Akdenote the k-term approximation (A0 � 0). Let Rk be the residual at the kth step;that is, Rk = A �Ak�1. Then the optimal choice of the next triplet (dk; xk; yk) isthe solution to the subproblemmin Fk(d; x; y) � kRk � dxyT k2F s.t. x 2 Sm; y 2 Sn; d > 0: (1)



Semidiscrete Matrix Decomposition � 3This is a mixed integer programming problem. Note that if the integer constraintswere replaced by kxk = 1 and kyk = 1, the solution would be the rank-1 SVDapproximation to Rk.We can simplify the optimization problem slightly as follows.Theorem 1. [O'Leary and Peleg 1983] Solving the mixed integer program (1) isequivalent to solving the integer programmax ~Fk(x; y) � max (xTRky)2kxk22kyk22 s.t. x 2 Sm; y 2 Sn: (2)Proof. We can eliminate d as follows. First rewrite Fk(d; x; y) asFk(d; x; y) = kRkk2F � 2dxTRky + d2kxk22kyk22: (3)At the optimal solution, @Fk=@d = 0, so the optimal value of d is given byd� = xTRkykxk22kyk22 :Substituting d� in (3) yieldsFk(d�; x; y) = kRkk2F � (xTRky)2kxk22kyk22 : (4)Thus solving (1) is equivalent to solving (2).The integer program (2) has 3(m+n) feasible points, so the cost of an exhaustivesearch for the optimal solution grows exponentially with m and n. Rather thandoing this, we use an alternating algorithm to generate an approximate solution tothe subproblem. First y is �xed and (2) is solved for x, then that x is �xed and (2)is solved for y. The process is iterated.Solving (2) can be done exactly when either x or y is �xed. If y is �xed, then (2)becomes max (xT s)2kxk22 s.t. x 2 Sm; (5)where s = Rky=kyk22. The solution to this problem can be easily computed asfollows.Theorem 2. [O'Leary and Peleg 1983] If the solution to the integer program (5)has exactly J nonzeros, then the solution isxij = � sign(sij ) if 1 � j � J0 if J + 1 � j � m ;where the elements of s in sorted order arejsi1 j � jsi2 j � � � � � jsim j:Proof. See O'Leary and Peleg [1983]. This result is also a special case of The-orem 8.Thus there are only m possible x-vectors to check to determine the optimalsolution for (5).



4 � T. G. Kolda and D. P. O'LearyTwo types of stopping criteria can be used in the alternating algorithm for thesolution of (2). Since from (4)kRk+1k2F = kRkk2F � (xTkRkyk)2kxkk22kykk22 ; (6)the inner iteration can be stopped when� � (xTRky)2kxk22kyk22 ;becomes nearly constant. Alternatively, a maximumnumber of inner iterations canbe speci�ed. These two stopping criteria can be used in conjunction.As long as the inner iterations are terminated whenever a �xed point is encoun-tered, the inner loop is guaranteed to be �nite since no iteration makes the residuallarger and there are only a �nite number of possible vectors x and y.Figure 1 shows the algorithm to generate an SDD approximation. The methodwill generate an approximation Ak for which k = kmax or kA � Akk < �min. Thework of each inner iteration is controlled by the parameters lmax, the maximumnumber of allowed inner iterations, and �min, the relative improvement threshold.The approximation Ak in Step (2e) is usually not formed explicitly; rather, theindividual elements (dk, xk, yk) are stored. Similarly, Rk+1 in Step (2f) can beapplied in Steps (2(b)i), (2(b)ii), (2(b)iii), and (2d) without explicitly forming it.2.2 Convergence of the SDDWe show that the norm of the residual generated by the SDD algorithm is strictlydecreasing and that under certain circumstances, the approximation generated bythe SDD algorithm converges linearly to the original matrix.Lemma [O'Leary and Peleg 1983]. The residual matrices generated by theSDD algorithm satisfykRk+1kF < kRkkF for all k such that Rk 6= 0:Proof. At the end of the inner iterations, we are guaranteed to have found xkand yk such that xTkRkyk > 0. The result follows from (6).Several strategies can be used to initialize y in Step (2a) in the SDD algorithm(Figure 1):(1) Maximum element (MAX) initialization initializes yk = ej , where j is the col-umn containing the largest magnitude entry in Rk. The MAX initializationscheme leads to a linearly convergent algorithm (Theorem 3) but is computa-tionally expensive if Rk is stored implicitly as A� Ak.(2) Cycling (CYC) initialization sets yk = ei where i = (k mod n) + 1. Unfortu-nately, the rate of convergence can be as slow as n-step linear [Kolda 1997].(3) Threshold (THR) initialization also cycles through the unit vectors, but it doesnot accept a given vector unless it satis�es kRkejk22 � kRkk2F=n. We areguaranteed that at least one unit vector will satisfy this inequality by de�nitionof the F-norm. Even though Rk is stored implicitly, this threshold test is easyto perform because we only need to multiply Rk by a vector. Furthermore, if



Semidiscrete Matrix Decomposition � 5(1) Let Rk denote the residual, and initialize R1  A.Let �k = kRkk2F be the norm of the residual, and initialize �1  kR1k2F .Let Ak denote the k-term approximation, and initialize A0  0.Choose kmax, the maximum number of terms in the approximation.Choose �min, the desired accuracy of the approximation.Choose lmax, the maximum allowable inner iterations.Choose �min, the minimum relative improvement, and set � > 2�min.(2) For k = 1;2; : : : ; kmax, while �k > �min, do(a) Choose y so that Rky 6= 0.(b) For l = 1;2; : : : ; lmax, while � > �min, doi. Set s  Rkykyk22 .Solve max (xT s)2kxk22 s.t. x 2 Sm:ii. Set s  RTk xkxk22 .Solve max (yT s)2kyk22 s.t. y 2 Sn :iii. �  (xTRky)2kxk22kyk22 .iv. If l > 1: � � � ���� .v. ��  �.End l-loop.(c) xk  x, yk  y.(d) dk  xTkRkykkxkk22kykk22 .(e) Ak  Ak�1 + dkxkyTk .(f) Rk+1  Rk � dkxkyTk .(g) �k+1  �k � �.End k-loop. Fig. 1. Computing an SDD



6 � T. G. Kolda and D. P. O'Learythe �rst vector tried is accepted, no extra computational expense is incurredbecause the computed vector s = Rky is used in the inner iteration. Thisscheme is shown to be linearly convergent (Theorem 4).(4) SVD initialization uses a discrete version of the left singular vector v of Rk,corresponding to the largest singular value, to initialize the iteration. If theinteger restriction on our problem (1) is removed, then the singular vector isoptimal, and we can form a discrete approximation to it by �nding y 2 Sn thatis a discrete approximation to v; that is, �nd a y that solvesmin kŷ � vk2 s.t. y 2 Sn; ŷ � y=kyk2: (7)This also yields a linearly convergent algorithm (Theorem 6).We conclude this section with the proof of these convergence results.Theorem 3. [Kolda 1997] The sequence fAkg generated by the SDD algorithmwith MAX initialization converges to A in the Frobenius norm. Furthermore, therate of convergence is at least linear.Proof. Without loss of generality, assume that Rk 6= 0 for all k; otherwise, thealgorithm terminates at the exact solution. Consider a �xed index k, and let (i; j)be the index of the largest magnitude element in Rk. Then the MAX initializationscheme chooses y = ej . Since the �rst part of the inner iteration picks the optimalx, it must be as least as good as choosing x = ei, so(xTkRkyk)2kxkk22kykk22 � (eTi Rkej)2keik22kejk22 � r2ij � kRkk2Fmn : (8)ThuskRk+1k2F = kRkk2F � (xTkRkyk)2kxkk22kykk22 � �1� 1mn� kRkk2F � �1� 1mn�k kR0k2F :Hence kRkkF ! 0, and the rate of convergence is at least linear.Theorem 4. [Kolda 1997] The sequence fAkg generated by the SDD algorithmwith THR initialization converges to A in the Frobenius norm. Furthermore, therate of convergence is at least linear.Proof. The proof is similar to that for Theorem 3 and so is omitted.Using arguments similar to those in Theorem 2, we can see that the discretizationof the singular vector for SVD initialization can be computed easily.Theorem 5. [Kolda 1997] For the integer program (7), if it is known that y hasexactly J nonzeros, then the closest y 2 Sn to v is given byyij = � sign(vij ) if 1 � j � J0 if J + 1 � j � n ;where the elements of v have been sorted so thatjvi1j � jvi2 j � � � � � jvim j:Therefore, there are only n possible y-vectors to check to determine the optimalsolution for (7).



Semidiscrete Matrix Decomposition � 7Theorem 6. [Kolda 1997] The sequence fAkg generated by the SDD algorithmwith SVD initialization converges to A in the Frobenius norm. Furthermore, therate of convergence is at least linear.Proof. Let (�; u; v) be the �rst singular triplet of Rk. Denote the (i; j) entry ofRk by rij. Choose an initial y that solves (7). Without loss of generality, assumethat the elements of v are ordered so thatjv1j � jv2j � : : : � jvnj:Let J be the number of nonzeros in y. Then� = uTRv = JXj=1 vj mXi=1 rijui + nXj=J+1 vj mXi=1 rijui;and the largest magnitude elements of v must correspond to the largest magnitudeelements of Ru (since v = �Ru), soJXj=1 vj mXi=1 rijui � Jn�:Each vi is less than or equal to one in magnitude, so substituting y in place of vyields JXj=1 yj mXi=1 rijui = mXi=1 ui JXj=1 rijyj � J�n :(Note that this guarantees that Ry 6= 0.) Thus there exists {̂ such thatu{̂ nXj=1 r{̂jyj � J�mn:Therefore, setting x = e{̂ gives(xTkRkyk)2kxkk22kykk22 � J2�2J2m2n2 � �2m2n2 = kRkk2Fminfm;ng �m2n2 : (9)The proof concludes using the same arguments as in Theorem 3.An implementation discussion is given in x6, and numerical comparisons of thedi�erent initialization strategies are presented in x7.3. THE WEIGHTED SDDLet A 2 <m�n be a given matrix, and let W 2 <m�n be a given matrix of nonneg-ative weights. The weighted approximation problem is to �nd a matrix B 2 <m�nthat solves min kA� Bk2W ;subject to some constraints on B. Here the weighted norm k � kW is de�ned askAk2W = mXi=1 nXj=1 a2ijwij:



8 � T. G. Kolda and D. P. O'LearyThe case where B is a low rank matrix has been considered by Gabriel and Zamir[1979] and others, and they obtain a solution with some similarities to the truncatedsingular value decomposition, although computation is much more expensive. Weshow how to generate a weighted approximation of the form dxyT . As with theregular SDD, we form the 1-term approximations iteratively and add these approx-imations together to build up a k-term approximation. At each step, then, we solvethe problemmin Fk(d; x; y) � kRk � dxyT k2W s.t. x 2 Sm; y 2 Sn; d > 0: (10)Here Rk � A �Pk�1i=1 dixiyTi is the residual matrix. As with the regular SDD,this is a mixed integer programming problem that can be rewritten as an integerprogram. First, recall the de�nition of the Hadamard or elementwise product ofmatrices; that is, (A �B)ij = aijbij.Theorem 7. Solving the mixed integer program (10) is equivalent to solving theinteger programmax ~Fk(x; y) � �xT (Rk �W ) y�2(x � x)T W (y � y) s.t. x 2 Sm; y 2 Sn: (11)Proof. The proof is analogous to that of Theorem 1 except thatd� = xT (Rk �W ) y(x � x)T W (y � y) :As with the regular SDD, an alternating method will be used to generate anapproximate solution to (11). Assuming that y is �xed, ~Fk can be written as~Fk(x; y) = �xT s�2(x � x)Tv ; (12)where s � (Rk � W ) y and v � W (y � y). To determine the maximum, 2m �1 possibilities must be checked. Again, this can be reduced to just checking mpossibilities, although the proof is more di�cult than that for Theorem 2.Theorem 8. For the integer program (12), if it is known that x has exactly Jnonzeros, then the solution is given byxij = � sign(sij ) if 1 � j � J0 if J + 1 � j � m ;where the pairs of (si; vi) have been sorted so thatjsi1 jvi1 � jsi2 jvi2 � � � � � jsim jvim :Proof. First note that if si is zero, then a nonzero value of xi cannot a�ect thenumerator of ~F , and xi = 0 minimizes the denominator, so xi = 0 is optimal. Ifvi = 0, then si = 0, so choose xi = 0. Therefore, we need only consider indices forwhich si and vi are nonzero, and without loss of generality, we will assume that thesi are all positive and ordered so that ij = j, j = 1; : : : ;m.



Semidiscrete Matrix Decomposition � 9(1) Let Rk denote the residual, and initialize R1  A.Let �k = kRkk2W be the norm of the residual, and initialize �1  kR1k2W .Let Ak denote the k-term approximation, and initialize A0  0.Choose kmax, the maximum number of terms in the approximation.Choose �min, the desired accuracy of the approximation.Choose lmax, the maximum allowable inner iterations.Choose �min, the minimum relative improvement, and set � > 2�min.(2) For k = 1;2; : : : ; kmax, while �k > �min, do(a) Choose y so that (Rk �W )y 6= 0..(b) For l = 1;2; : : : ; lmax,while � > �min, doi. Set s  (Rk �W ) y, v  W (y � y).Solve max (xT s)2(x � x)T v s.t. x 2 Sm:ii. Set s  (Rk �W )T x, v  WT (x � x).Solve max (yT s)2kyk22 s.t. y 2 Sn :iii. �  �xT (Rk �W ) y�2(x � x)TW (y � y) .iv. If l > 1: � � � ���� .v. ��  �.End l-loop.(c) xk  x, yk  y.(d) dk  xTk (Rk �W ) yk(x � x)TW (y � y) .(e) Ak  Ak�1 + dkxkyTk .(f) Rk+1  Rk � dkxkyTk .(g) �k+1  �k � �.End k-loop. Fig. 2. Weighted SDD Algorithm



10 � T. G. Kolda and D. P. O'LearyWe complete the proof by showing that if the optimal solution has nonzeroeswith indices in some set I, and if q 2 I and p < q, then p 2 I.Assume to the contrary, and partition I into I1 [ I2, where indices in I1 are lessthan p and those in I2 are greater than p. The case p = 1 is left to the reader; herewe assume p > 1.For ease of notation, let S1 = Xi2I1 si; V1 = Xi2I1 vi;and de�ne S2 and V2 analogously.By the ordering of the ratios s=v, we know that sivp < spvi for all i 2 I2;therefore, S2vp < spV2 : (13)Since I is optimal, we know thatS21V1 � (S1 + S2)2V1 + V2 ;therefore, by cross-multiplying and canceling terms, we obtainS21V2 � S22V1 + 2S1S2V1 : (14)Similarly, (S1 + S2 + sp)2V1 + V2 + vp � (S1 + S2)2V1 + V2 ;so s2p(V1 + V2) + 2S1sp(V1 + V2) + 2S2sp(V1 + V2)� S21vp + S22vp + 2S1S2vp� S21vp + S2spV2 + 2S1spV2 by (13)� (S22V1 + 2S1S2V1) vpV2 + S2spV2 + 2S1spV2 by (14)� (S2spV1 + 2S1spV1) + S2spV2 + 2S1spV2 by (13)Canceling terms in this inequality we obtains2p(V1 + V2) + S2sp(V1 + V2) � 0 ;a contradiction.The algorithm for the weighted SDD, shown in Figure 2, is nearly the same asthe algorithm for the regular SDD, shown in Figure 1.3.1 Convergence of the Weighted SDDAs with the regular SDD, we show that the weighted norm of the residual generatedby the weighted SDD algorithm is strictly decreasing and, furthermore, the weightedSDD approximation converges linearly to the original matrix.



Semidiscrete Matrix Decomposition � 11Lemma 2. The residual matrices generated by the weighted SDD algorithm sat-isfy kRk+1kW < kRkkW for all k such that Rk 6= 0:Proof. The proof is similar to Lemma 1 and is therefore omitted.As with the SDD, several di�erent strategies can be used to initialize y inStep (2a) in the weighted SDD algorithm (Figure 2). Here, we only present thedi�erences between these schemes and those for the SDD. The same convergenceresults hold, and the proofs are similar to those given for the SDD.(1) MAX: Choose ej such that j is the index of the column containing the largestmagnitude entry in Rk �Rk �W .(2) CYC: No di�erence.(3) THR: Accept a given unit vector only if it satis�es kRkejk2W � kRkk2W =n.Note that there is no SVD starting strategy since there is no simple analog tothe SVD in the weighted case.4. THE TENSOR SDDLet A be an m1�m2�� � ��mn tensor over <. The order of A is n. The dimensionof A is m �Qnj=1mj , and mj is the jth subdimension. An element of A is speci�edas Ai1i2���in ;where ij 2 f1; 2; : : :;mjg for j = 1; : : : ; n. A matrix is a tensor of order two.As with matrices, we may be interested in a storage-e�cient approximation of agiven tensor. We extend the notion of the SDD to a tensor SDD. First we de�nesome notation for tensors, consistent with [Kolda 1999].4.1 NotationIf A and B are two tensors of the same size (that is, the order n and all subdimen-sions mj are equal), then the inner product of A and B is de�ned asA �B � m1Xi1=1 m2Xi2=1 � � � mnXin=1Ai1i2���inBi1i2���in :We de�ne the norm of A, kAk, to bekAk2 � A �A = m1Xi1=1 m2Xi2=1 � � � mnXin=1A2i1i2���in :Suppose B is an m1� � � ��mj�1�mj+1� � � ��mn tensor of order n� 1. Thenthe ijth (1 � ij � mj) element of the contracted product of A and B is de�ned as(A �B)ij � m1Xi1=1 � � � mj�1Xij�1=1 mj+1Xij+1=1 � � � mnXin=1Ai1���ij�1ijij+1 ���inBi1 ���ij�1ij+1���in :A decomposed tensor is a tensor that can be written asx = x(1) 
 x(2) 
 � � � 
 x(n);



12 � T. G. Kolda and D. P. O'Learywhere x(j) 2 <mj for j = 1; : : : ; n. The vectors x(j) are called the components of x.In this case, xi1i2���in = x(1)i1 x(2)i2 � � �x(n)in :Lowercase letters denote decomposed tensors.Lemma [Kolda 1999]. Let A be a tensor of order n and x a decomposed tensorof order p. Then A � x = (A � x(�j)) � x(j);where the notation x(�j) indicates x with the jth component removed, that is,x(�j) � x(1) 
 � � � 
 x(j�1)
 x(j+1) 
 � � � 
 x(p):The notion of rank for tensors of order greater than two is a nontrivial matter(see, e.g., Kolda [1999]), but a single decomposed tensor is always a tensor of rankone.4.2 De�nition of the Tensor SDDSuppose we wish to approximate an n-dimensional tensor A as follows,A � Ak � kXi=1 dixi;where di > 0 and xi is a decomposed tensor whose components are restricted tox(j)i 2 Smj , with S = f�1; 0; 1g. This is called a k-term tensor SDD.The SDD representation is e�cient in terms of storage. If the tensor A is dense,the total storage required for A is 
 nYj=1mj ;where 
 is the amount of storage required for each element of A. For example, ifthe elements of A are integer values between 0 and 255, then 
 is one byte (8 bits).The storage required for the approximation Ak isk0@�+ � nXj=1mj1A ;where � is the storage required for each dk and is usually chosen to be equal to 
and � is the amount of storage required to store each element of S, that is, log2 3bits. Since k � Qnj=1mj , the approximation generally requires signi�cantly lessstorage than the original tensor.4.3 Computing a Tensor SDDAs with the regular and weighted SDDs, a tensor SDD can be constructed via agreedy algorithm. Each iteration, a new d and x are computed that are the solutionto the following subproblem:min Fk(d; x) � kRk � dxk2 s.t. d > 0; x(j) 2 Smj for j = 1; : : : ; n; (15)



Semidiscrete Matrix Decomposition � 13where Rk � A �Pk�1i=1 dixi denotes the kth residual matrix. This is a mixedinteger programming problem, but it can be simpli�ed to an integer program asdemonstrated by the following theorem, a generalization of Theorem 1.Theorem 9. Solving the mixed integer program (15) is equivalent to solving theinteger programmax ~F (x) = (R � x)2kxk2 s.t. x(j) 2 Smj for j = 1; : : : ; n: (16)Proof. The proof follows the same progression as the proof for Theorem 1except that d� = R � xkxk2 :Solving (16) is an integer programming problem that has 3m1+m2+���+mn possiblesolutions. To solve this problem approximately, an alternating algorithm will beused. The idea is the same as for the regular and weighed SDDs. Fix all the com-ponents of x except one, say x(j), and �nd the optimal x(j) under those conditions.Repeat this process for another value of j, continuing until improvement in thevalue of ~F (x) stagnates.Assume that all components of x are �xed except x(j). Then (16) reduces tomax (s � x(j))2kx(j)k22 s.t. x(j) 2 Smj ;where s � (Rk � x(�j))=kx(�j)k2. This is same as problem (5), so we know how tosolve it.The tensor SDD algorithm is given in Figure 3. In Step (2a), x should be chosenso that Rk � x 6= 0. Unless Rk is zero itself (in which case Ak�1 = A), it isalways possible to pick such an x. The for-loop in Step (2(b)i) does not need togo through the components of x in order. That loop could be replaced by \Forj = �(1); �(2); : : : ; �(n) do," where � is an n-permutation. Note that in each stepof (2(b)i), the value of x may change and that the objective function is guaranteedto be at least as good as it was with the previous x.4.4 Convergence of the Tensor SDDLike the SDD, the tensor SDD algorithm has the property that the norm of theresidual decreases each outer iteration. Furthermore, we can prove convergenceresults similar to those for the SDD (proofs are omitted but are similar to those forthe SDD) using each of the following starting strategies in Step (2a) of the tensorSDD algorithm:(1) MAX: Initialize x = e(1)j1 
 e(2)j2 
 � � � 
 e(n)jn , where rj1j2:::jn is the largest mag-nitude element of R.(2) CYC: Same idea as for the SDD, but now the cycle is nQj=2mj long.



14 � T. G. Kolda and D. P. O'Leary
(1) Let Rk denote the residual, and initialize R1  A.Let �k = kRkk2 be the norm of the residual, and initialize �1  kR1k2.Let Ak denote the k-term approximation, and initialize A0  0.Choose kmax, the maximum number of terms in the approximation.Choose �min, the desired accuracy of the approximation.Choose lmax, the maximum allowable inner iterations.Choose �min, the minimum relative improvement, and set � > 2�min.(2) For k = 1;2; : : : ; kmax, while �k > �min, do(a) Initialize x = x(1) 
 x(2) 
 � � � 
 x(n).(b) For l = 1;2; : : : ; lmax, while � > �min, doi. For j = 1; 2; : : : ; n doSet s  Rk � x(�j).Solve max (sT x(j))2kx(j)k22 s.t. x(j) 2 Smj :End j-loop.ii. �  (Rk � x)2kxk2 .iii. If l > 1: � � � ���� .iv. ��  �.End l-loop.(c) xk  x.(d) dk  Rk � xkkxkk2 .(e) Ak  Ak�1 + dkxk .(f) Rk+1  Rk � dkxk .(g) �k+1  �k � �.End k-loop. Fig. 3. Computing a Tensor SDD



Semidiscrete Matrix Decomposition � 15(3) THR: Choose x(�1) = e(2)j2 
� � �
e(n)jn (i.e., x with the �rst component removed)such that k(R � x(�1))k22 � kRk2= nYj=2mj :Although an appropriate choice of e(2)j2 
 � � � 
 e(n)jn is guaranteed to exist, itmay be di�cult to �nd because of the large search space of elements to searchthrough.5. APPLICATIONSThe SDD is useful in applications involving storage compression, data �ltering,and feature extraction. As examples, we discuss in this section the use of the SDDin image compression, chromosome classi�cation, and latent semantic indexing ofdocuments.5.1 Data Compression via the SDDIf a matrix consumes too much storage space, then the SDD is one way to reducethe storage burden. For example, the SDD can be used for image compression. TheSDD was originally developed by O'Leary and Peleg [1983] for this application. Ifeach pixel value (e.g., gray level) is stored as a matrix entry, then a k-term SDD ofthe resulting matrix can be stored as an approximation to the original image.Other matrix approximation techniques have been used for image compression.The SVD [Golub and Van Loan 1989] provides a set of basis vectors that gives theoptimal low-rank approximation in the sense of minimizing the sum squared errors(Frobenius norm). But these vectors are expensive to generate and take quite a bitof storage space (n+m+1 
oating point elements per term, although it is possibleto use lower precision). At the other extreme, predetermined basis vectors can beused (e.g., Haar basis or other wavelet bases). In this case, the basis vectors donot need to be explicitly stored, but the number of terms is generally much largerthan for the SVD. Although the SDD chooses the basis vectors to �t the particularproblem (like the SVD), it chooses them with restricted entries (like the waveletbases), making the storage per term only log2 3(n+m) bits plus one 
oating pointnumber.Experiments using the SDD for images achieved 10 to 1 compression (using theSDD with run-length encoding) without visual degradation of the image [O'Learyand Peleg 1983].5.2 Data Filtering via the SDDThe k-term approximations produced by the SDD algorithm can be thought ofas �ltered approximations, �nding relations between the columns (or rows) of thematrix that are hidden by local variations. Thus, if we have many observationsof the same vector-valued phenomenon, then an SDD of the data can reveal theessential unchanging characteristics.This fact has been used in chromosome classi�cation. Given a \training set"consisting of many observations of a given type of chromosome (e.g., a human Xchromosome), an SDD of this data extracts common characteristics, similar to a



16 � T. G. Kolda and D. P. O'Learyprincipal component analysis, but typically requiring less storage space. Then theidealized representation of this chromosome can be used to identify other chromo-somes of the same type (chromosome karyotyping). For more information on thistechnique, see [Conroy et al. 1999].5.3 Feature Extraction via the SDDThe low rank approximations produced by the SDD extract features that are com-mon among the columns (or rows) of the matrix. This task is addressed by latentsemantic indexing (LSI) of documents. A database of documents can be representedby a term-document matrix, in which each matrix entry represents the importanceof some term in a particular document. Documents can be clustered for retrievalbased on common features. Standard algorithms use the SVD to extract thesefeature vectors, but the storage involved is often greater than that for the originalmatrix. In contrast, the SDD has been used by Kolda and O'Leary [1998, 1999] toachieve similar retrieval performance at a much lower storage cost.6. IMPLEMENTATION DETAILSWe focus on the regular SDD; the details for the weighted and tensor SDDs aresimilar. The primary advantage of the SDD over matrix decompositions such asthe SVD is that the SDD requires very little memory. In this section, we illus-trate the data structures and implementation details of the C code in our package,SDDPACK, that achieve the storage savings.6.1 Data StructuresAn entry from the discrete set S, referred to as an S-value, can be stored usingonly log2 3 bits. We actually use two bits of storage per S-value because it isadvantageous in computations involving the S-values (see x6.2) and requires only26% more memory. The �rst bit is the value bit and is on if the S-value is nonzeroand o� otherwise; the second bit is the sign bit and is on for an S-value of -1, o�for 1, and unde�ned for 0 (Table 1). The unde�ned bits would not be stored if wewere storing using only log2 3 bits per S-value.Table 1. Bit representation of S-values.S-Value Value Bit Sign Bit0 0 undef.1 1 0-1 1 1Each iteration, a new (d; x; y) triplet is computed. The x and y vectors of lengthm and n, respectively, are referred to as S-vectors. In SDDPACK, we store eachS-vector's value and sign arrays packed into unsigned long integer arrays.Suppose that we are working on a p-bit architecture (i.e., the length of a singleword of memory is p bits). Then the memory allocated to the value array to holdm bits is dm=pe words. Storage for the sign array is the same. An example of anS-vector and its representation on an 8-bit architecture is given in Figure 4. Noticethat extra bits in the last word of the array and sign bits associated with zero S-values are unde�ned. Extra bits are ignored (i.e., masked to an appropriate value)
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�1011�100011�10�100
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The S-vector x shown at left has 15 entries. Let x be a pointerto its representation on an 8-bit architecture. In order tostore 15 bits, the value and sign arrays are each allocatedtwo words of memory. The values of all elements of the datastructure are given below. The binary values of the 8-bitwords are shown for the value and sign arrays; the questionmarks (?) represent bits that are unde�ned. Note that thelow order bits are used �rst, so the representationat the wordlevel is right-to-left.x->length = 15x->value[1] = 00011101 x->value[2] = ?0010111x->sign[1] = ???100?1 x->sign[2] = ???1?100Fig. 4. Illustration of svector data structure.in any calculations. We used an 8-bit example for simplicity; current architecturesare generally 32- or 64-bit (Table 2).Table 2. Current architectures.32-bit 64-bitSun Sparc SGI OctaneIntel Pentium Dec AlphaIBM RS60006.2 Computations with Objects Using Packed StorageGiven an S-vector in packed storage, we can look up the value in a particular entryas follows. If i is the desired entry, then the index into the packed array is i div p,and the bit we want inside that word is i mod p, and the desired bit can be maskedo�. We �rst do a mask on the appropriate word in the value array. If the result iszero, then entry i is zero, and we need do no further work. Otherwise, the entry iseither +1 or -1, and we need to determine the sign. We mask o� the appropriateword in the sign array. If that is zero, the entry is +1; otherwise, it is -1.For example, Figure 5 shows how to look up entry 10 in the example in Figure 4.Here i is the desired entry. To compute index, the index into the packed array,divide by p, the number of bits per word. Since p is always a power of two, this canbe accomplished by a right shift. In this example, we right shift 3 since log2 8 = 3.Given the correct index into the packed arrays, the correct bit inside the word isdetermined by a mod by p. Again, since p is always a power of two, we can use ashortcut by doing a logical AND with p � 1, in this example, 7. Then mask theappropriate word in the value array. In this example, it is nonzero, so the entry iseither +1 or -1. Then mask the appropriate word in the sign array and determinethat the entry is +1.



18 � T. G. Kolda and D. P. O'Learyi = 10index = i >> 3mask = 1 << (i AND 7)x->value[index] AND mask = 00000010x->sign[index] AND mask = 00000000Fig. 5. Looking up a value in a packed array.Note that the alignment of the value and sign arrays makes it easy to do individuallookups of values. If we did not store the `�ller' bits in the sign array for the zeroentries, the sign array would be much shorter, but we would have a di�cult timeknowing where in the sign array to look for the appropriate bit.In the previous example, we saw how to look up a random entry in a packedarray. Often we walk through an S-vector in sequence. In that case, computationscan be performed even more quickly by copying the current value and sign wordsinto the register to be used p times and quickly updating the mask with just asingle left shift. Every p entries, we reset the mask to one and swap the next valueand sign words into the register.The inner product between two S-vectors, something that we require, can becomputed as follows. The result is the number of nonzeros in common minus twicethe number of common nonzeros with opposite signs. Pseudo-code is given inFigure 6 for the inner product of two S-vectors a and b. In practice, the logicalANDs and ORs are done on a word-by-word basis and the popcount (sum) isdetermined using a lookup table on a byte-by-byte basis. So, for computing theinner product of two m-long S-vectors, the work required is 3dm=pe+ 4dm=8e andrequires no multiplication.common = a->value AND b->valueoppsign = (a-> sign XOR b->sign) AND commonip = popcount(common) - 2 popcount(oppsign)Fig. 6. Inner product of two S-vectors.Each iteration of the SDD calculation, the most expensive operations are thecomputations of Rky or RTk x (Steps (2(b)i) and (2(b)ii) of the SDD Algorithm ofFigure 1). We focus on the computation of Rky and explain the di�erences forthe transpose at the conclusion. The residual breaks into two parts: the originalmatrix, A, and the (k � 1)-term SDD approximation that we denote by XDY T .The computation v = Ay is a sparse matrix times an S-vector. The sparse matrixis stored in compressed sparse column (CSC) format. We loop through the matrixcolumnwise, which means that we walk through the y-vector in sequence. If yjis zero, then nothing is done with column j. Otherwise, we either add (yj = 1)or subtract (yj = �1) the entries in column j from the appropriate entries in thesolution vector v.The computation of w = XDY Ty breaks down into three parts: Y Ty, D(Y Ty),and X(DY Ty). The �rst part is an S-matrix times an S-vector, which reduces toan inner product between two S-vectors for each entry in the solution. The resultof Y T y is an integer vector. The D(Y T y) is just a simple scaling operation, andthe result is a real vector. The �nal product is X(DY T y), and in this case we walk



Semidiscrete Matrix Decomposition � 19through each bit in the X matrix column by column and take appropriate action.Again, only additions and subtractions are required, no multiplications.In the case of the transpose computation, the main di�erence is in the compu-tation of ATx. Here, we are forced to use random access into x since A is storedin CSC format. The method for computing (XDY T )Tx is nearly identical to thatdescribed previously for XDY T y, except that the roles of X and Y are swapped.So, the only multiplications required in our computations are the diagonal scal-ings; everything else is additions and subtractions. Further, the pieces of the SDDare small and �t well into cache.7. NUMERICAL RESULTSThe computational experiments presented here are done in Matlab, with the Matlabcode and examples provided in SDDPACK. In general, the C SDDPACK codeshould be used when speed and storage e�ciency are concerns. No results arepresented here for the weighted or tensor SDDs although MATLAB code for thesedecompositions are included. No C code is provided for these in SDDPACK.We discuss previous research and present new results on the SDD and startingcriteria as well as comparisons between the SDD and the SVD.In [Kolda 1997], comparisons of the various starting criteria on small, dense matri-ces are presented. To summarize, the MAX, CYC, and THR techniques are nearlyidentical in performance. The SVD initialization typically results in fewer inneriterations per outer iteration, but the gain is o�set by the expense of computingthe starting vector.In [Kolda and O'Leary 1998], the SDD and SVD are compared for latent semanticindexing for information retrieval. At equal levels of retrieval performance, the SDDmodel required approximately 20 times less storage and performed queries abouttwice as fast. On the negative side, the SVD can be computed about four timesfaster than the SDD for equal performance levels. The SDD computations usedoption PER, as described subsequently | we may be able to improve the speedand performance by using option THR instead.We compare various initialization strategies for the SDD on several sparse matri-ces from MatrixMarket; the test set is described in Table 3. We test four di�erentinitialization strategies as listed below.THR: Cycle through the unit vectors (starting where it left o� at the previousiteration) until kRkejk22 � kRkk2F=n, and set y = ej . (Threshold)CYC: Initialize y = ei, where i = ((k � 1) mod n) + 1. (Cycling)ONE: Initialize y to the all ones vector. (Ones)PER: Initialize y to a vector such that elements 1; 101; 201; : : : are one and theremaining elements are zero. (Periodic ones)We do not test the MAX strategy because these matrices are sparse, so the residualis stored implicitly. The other parameters of the SDD are set as follows: kmax isset to the rank of the matrix, �min = 0:01, lmax = 100, and �min = 0.The performance of these four strategies on our four test matrices is shown inTable 4. The table compares the relative reduction in the residual (as a percent-age), the average number of inner iterations (which includes the extra work for



20 � T. G. Kolda and D. P. O'Learyinitialization in THR), and the density of the �nal factors (as a percentage). Theinitialization can have a dramatic a�ect on the residual after k terms. In theimpcol c and watson2 matrices, THR and CYC are drastically better than ONEand PER. The number of inner iterations is lowest overall for CYC, with THRbeing a close second. In terms of density, THR and CYC are drastically better inevery case, perhaps because the initial vector is sparse. It seems that the density ofthe factors may be somewhat related to the density of the original matrix. Overall,THR is best, with CYC a close second.Table 3. Test matrices.Matrix Rows Cols NNZ Rank Density(%)bfw62a 62 62 450 62 11.7impcol c 137 137 411 137 2.2west0132 132 132 414 132 2.4watson2 66 67 409 66 9.2Table 4. Comparison of initialization techniques.bfw62aInit. % Resid. In. Its. % DensityTHR 28.19 3.69 9.33CYC 25.54 3.73 9.55ONE 22.86 6.81 41.13PER 25.48 6.79 21.48 impcol cInit. % Resid. In. Its. % DensityTHR 3.53 2.58 1.79CYC 7.86 3.47 6.47ONE 36.93 5.95 24.32PER 31.09 6.39 21.24west0132Init. % Resid. In. Its. % DensityTHR 0.00 5.62 1.95CYC 0.01 3.25 1.68ONE 0.01 5.64 11.97PER 0.30 8.46 3.54 watson2Init. % Resid. In. Its. % DensityTHR 16.99 3.02 3.87CYC 20.51 2.76 4.17ONE 78.74 5.42 18.94PER 75.99 4.82 10.69In Figures 7{10, the SVD, SDD-THR, and SDD-CYC are compared. The resultson bfw62a are given in Figure 7. The upper left plot shows a comparison of therelative residual (kRkk=kR0k) versus the number of terms. The SVD is the optimaldecomposition for a �xed number of terms, so the SDD curves will lie above it.However, the SDD still gives good reduction in the residual, requiring only abouttwice as many terms as the SVD for the same level of reduction. SDD-THR gives abetter residual than SDD-CYC until the last few terms, where SDD-CYC `catchesup'. In the upper right, a plot of the residual versus the storage is shown; forthe same level of reduction in the residual, the storage requirement for the SDD isabout one to two orders of magnitude less than for the SVD. In the bottom plot,the singular values and SDD values are shown, where the ith SDD value is de�nedas d̂i = dikxik2kyik2. Initially, the SDD values are smaller than the singular valuesbecause they cannot capture as much information; later, they are larger becausethey are capturing the information missed initially.The impcol c matrix has an interesting singular value pattern (see Figure 8):there is one isolated singular value at 11, a cluster of singular values at 3, andanother cluster at 2. SDD-THR mimics the SVD closely because SDD-THR also



Semidiscrete Matrix Decomposition � 21�nds one isolated singular SDD value, as many SDD values at 3, and almost asmany SDD values at 2. SDD-CYC, on the other hand, has trouble mimickingsingular values because it does not pick out the isolated value at �rst. Still, bothSDD variants are superior to the SVD in terms of storage vs. residual norm.On west0132 (see Figure 9), we see phenomena similar to that for impcol c.SDD-THR �nds isolated SDD values and quickly reduces the residual | almost asquickly as the SVD itself in terms of number of terms. SDD-CYC has more troubleisolating SDD values but eventually gets them as well. Here, SDD-THR is superiorto the SVD in terms of storage, but SDD-CYC is not.The last matrix, watson2 (see Figure 10), most closely resembles bfw62a in thestructure of its singular values, although watson2 has three eigenvalues that areslightly isolated, and we can see that both SDD methods eventually pick out suchvalues which results in the steeper drops in the residual curves. Again, SDD-THRdoes better than the SDD-CYC in all respects. SDD-THR requires about twice asmany terms to get the same reduction in storage as the SVD, while using an orderof magnitude less storage.8. CONCLUSIONSBy presenting the code for computing a SDD, we hope to stimulate more uses ofthis storage-e�cient matrix approximation method.SDDPACK, containing Matlab and C code for the SDD, as well as Matlab codefor the weighted and tensor SDDs is available athttp://www.cs.umd.edu/users/oleary/.ACKNOWLEDGMENTSWe are grateful to Professor Walter Gander and Professor Martin Gutknecht fortheir hospitality at ETH.REFERENCESConroy, J., Kolda, T. G., and O'Leary, D. P. 1999. Chromosome identi�cation. Inpreparation.Gabriel, K. R. and Zamir, S. November 1979. Lower rank approximation of matrices byleast squares with any choice of weights. Technometrics 21, 489{498.Golub, G. H. and Van Loan, C. F. 1989. Matrix Computations (2nd ed.). Johns HopkinsPress.Kolda, T. G. 1997. Limited-Memory Matrix Methods with Applications. Ph. D. thesis,University of Maryland Applied Mathematics Program. Also available as Department ofComputer Science Technical Report CS-TR-3806.Kolda, T. G. 1999. Orthogonal rank decompositions for tensors. In preparation.Kolda, T. G. and O'Leary, D. P. 1998. A semidiscrete matrix decomposition for latentsemantic indexing in information retrieval. ACM Trans. Inf. Syst. 16, 322{346.Kolda, T. G. and O'Leary, D. P. 1999. Latent semantic indexing via a semi-discretematrix decomposition. In The Mathematics of Information Coding, Extraction and Dis-tribution , Volume 107 of IMA Volumes in Mathematics and Its Applications, pp. 73{80.Springer-Verlag.O'Leary, D. P. and Peleg, S. 1983. Digital image compression by outer product expan-sion. IEEE Transactions on Communications 31, 441{444.
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Fig. 7. Comparison of the SVD (solid line, x marks), SDD-THR (dashed line, o marks), andSDD-CYC (dotted line, triangle marks) on bfw62a.
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Fig. 8. Comparison of the SVD (solid line, x marks), SDD-THR (dashed line, o marks), andSDD-CYC (dotted line, triangle marks) on impcol c.
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Fig. 9. Comparison of the SVD (solid line, x marks), SDD-THR (dashed line, o marks), andSDD-CYC (dotted line, triangle marks) on west0132.
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Fig. 10. Comparison of the SVD (solid line, x marks), SDD-THR (dashed line, o marks), andSDD-CYC (dotted line, triangle marks) on watson2.


