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Rail networks are real-life examples of complex networks and critical logistic and economic 

contributors to the wellbeing of society. Natural or human-caused hazards leading to the 

disruptions of rail network’s components can cause severe consequences including significant 

economic impacts. Therefore, analyzing rail networks and further reducing the impacts of 

potential disruptions are critical in order to manage risks to the performance of rail networks. 

Based on existing research on rail networks, this thesis proposes a methodology to analyze the 

rail networks with a large number of nodes, links, and complex connectivity from topological 

perspectives. Additionally, topology enhancement prior to failures and recovery strategies post to 

failures are used to reduce the impacts of potential failures based on vulnerability and resilience 

assessments. The analysis results of two case studies, the Amtrak and Class I rail networks, 

indicate that the proposed methodology is well suited to analyze and enhance the topology, 

vulnerability, and resilience of complex rail networks effectively and efficiently. 
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Chapter 1: Introduction 

Railroads serve as an effective and reliable transportation mode that is a critical logistic, social, 

and economic contributor to the wellbeing of society. Natural and human-caused hazards can 

seriously affect every component of a railroad, especially if it leads to the failure of rails and 

stations. This thesis mainly focuses on the analysis of rail networks composed of rails and 

stations to measure vulnerability and resilience from network topological perspectives. Such an 

analysis informs decisions on rail network enhancement and recovery strategies in order to 

reduce the impacts of disruptions on rail networks consisting of rails and stations, and more 

broadly on railroad systems. This chapter starts by highlighting the significance and criticality of 

railroads, and then defines the work breakdown structure of a typical railroad system. A rail 

network, a real-life example of complex networks consisting of two infrastructures component 

types of rails and stations, is also introduced. Finally, the needs in studying the rail network are 

identified as a basis for the research performed in this thesis.  

 

1.1 Significance and Criticality of Railroads 

1.1.1 Significance of Railroads 

A key mode of transporting passengers and freight is by trains on rails. The railroad in the United 

States (U.S.)  is recognized as one of the most complete and dynamic worldwide. In the 1990s, 

the ridership of U.S. railroad passenger transportation was more than 20 million people a year 

(Morrison 1990), while the ridership had increased more than 1.5 times by 2016, exceeding 30 

million (Amtrak 2016). Increasingly Americans choose to travel by trains, and the annual 
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ridership is still growing. The transportation of goods relies more on freight railroads than other 

transportation modes. For example, in 2019, U.S. freight railroads transported more than 4 

million carloads of coal, which exceeded 70 percent of U.S. coal to its destination. This coal 

transported by freight railroads was used to power 78 percent of the electricity in American 

homes (Association of American Railroads 2019). Hence, railroads, which have undertaken the 

majority of passenger and freight transportation, are an important economic and social 

contributor to the wellbeing of a society. In 2019, the U.S. railroad supported more than 1 

million jobs, earned more than $91 billion in revenue, nearly $71 billion wages, and paid almost 

$26 billion in taxes (Association of American Railroads 2019). 

 

1.1.2 Criticality of Railroads in Case of Disruptions 

Railroads are vulnerable to natural and human-caused hazards. For example, hurricane Alicia in 

1983 caused $3 billion in damage in southeastern Texas. The greatest impact of this hurricane 

was the inability of the railroad to perform its normal functions, i.e., the failure of the railroads. 

The storm surge caused the failure of 6km freight railroads in the area between Texas City 

Junction and Virginia Point. Additionally, railroads in other parts of Texas were out of service 

for four days (Byers 2011). Railroads are vulnerable to disruptions caused by natural hazards, 

such as hurricanes and earthquakes. These natural events can easily lead to the failure of rails, 

stations, power supply, trains, and operation systems. Once railroad components fail at a 

location, all railroad operations connected to this location are affected. As a consequence, a large 

area of railroad passenger transportation and the flow of cargo are delayed or even stopped. 

Chinowsky et al. (2019) indicated that in the U.S., increased temperatures due to climate change 

could cause rail deformation, causing delay-minute costs between $35 and $60 billion (in 2019 
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values) accumulated through 2100 under a high greenhouse gas emission. In China, the 2008 ice 

storm caused severe disruptions of railroads in southern China. The railroad passenger 

transportation throughout China almost shut down. Over 5 million travelers were delayed; the 

direct economic losses totaled $22.3 million in the fiscal year 2008 (Chen and Wang 2019). Janić 

(2018) reported that the 2011 Tohoku Earthquake caused the failure of Japan Shinkansen 

railroads in the northeast region. The entire transportation service of Japan Shinkansen railroad 

was delayed, causing a total cumulative cost for 92 days (from 11/04/2011 to 08/07/2011) of 

nearly $12.2 million (estimated values in June 2012). 

 

1.2 Railroads in the United States  

1.2.1 Passenger Railroads: Amtrak 

The National Railroad Passenger Corporation, usually called Amtrak, is a for-profit, quasi-public 

corporation founded in 1971. Amtrak railroads contain three types of rails: long-distance, state-

supported, and the northeast corridor, which cumulatively serve more than 510 stations in North 

America, including 46 U.S. states, Washington D.C and three Canadian provinces. The entire 

Amtrak route is more than 21,400 miles in length. As an important transportation mode for the 

American people, customers made more than 87,000 trips on an average day in 2018. Over 300 

trains were on the rail every day (Amtrak 2018). Increasingly people are choosing to travel by 

train. According to data from Amtrak, the ridership had a straight five-year increase from 2015 

to 2019.  
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Railroad passenger transportation plays a critical role in the U.S. economy by promoting 

economic activities in regions, especially between big cities. For example, more than two-thirds 

of the trip occurs between Boston-New York-Washington D.C., the most important political and 

economic regions in the U.S. (Morrison 1990). Additionally, the Amtrak enterprise employs 

more than 20,000 workers, with additional jobs are being created as railroads develop and 

expand (Amtrak 2018). Depending on the GAAP (Generally Accepted Accounting Principles), 

Amtrak generated $3.4 billion in revenue in the fiscal year 2018, an increase of 4.5 percent over 

the fiscal year 2016 (Amtrak 2018). Figure 1.2 shows the revenue of Amtrak in the last five 

years. In 2012, the federal government invested $1.42 billion dollars on Amtrak (Peterman 

2017), representing 0.4 percent of all federal nondefense investments. In short, the Amtrak 

railroad is vital for public services, economic development, and government operations. 

Amtrak, as a railroad covering the entire United States, is vulnerable to natural and human-

caused hazards. For example, the 2005 Hurricane Katrina caused the failure of the Amtrak 

railroad in New Orleans. Important Amtrak operations through New Orleans were forced to stop, 

such as the operation of routes from New Orleans to Chicago, from New Orleans to New York, 

and from Orlando to Los Angeles. These nationwide operations were recovered after completing 

repairs to rails, bridges, and other infrastructures necessary for travel (DesRoches 2006). In 

addition, over 60 railroad failures happened in the Seattle-Vancouver’s Amtrak operation 

between 2009 and 2013. The Amtrak operation from the northwestern United States to Canada 

was canceled or delayed more than 15 times a year (Azad et al. 2016). Amtrak disruptions cost 

over $41 million (in 2019 values) losses per year.   
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Figure 1.1 The Amtrak ridership from 2015 to 2019. 

 

 

Figure 1.2 The Amtrak revenue from 2015 to 2019. 

 

1.2.2 Freight Railroads: Class I 

The entire freight railroad system in the U.S. consists of 136,898 rail miles, including more than 

500 local railroads and 21 regional railroads. The freight railroad can be divided into three 
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categories as Class I, II, and III, depending on the annual gross revenue of the entity to which the 

freight railroads belong. In 1991, the Surface Transportation Board (STB) described the Class I 

railroad as "having the annual carrier operating revenue of $250 million or more in 1991 

dollars." However, STB published in 2011 (Federal Register 2011) the annual inflation-adjusted 

index factors to update the annual gross revenue for classification resulting in increasing the 

$250 million threshold to $467.1 million by 2013 (Lawrence 2015). Currently, seven railroad 

entities in the U.S. are designated as Class I: (1) CSX Transportation, (2) Grand Trunk 

Corporation (held by Canadian National Railroad), (3) Kansas City Southern Railroad, (4) 

Norfolk Southern Railroad, (5) BNSF Railroad, (6) Soo Line Railroad (held by Canadian Pacific 

Railroad), and (7) Union Pacific Railroad. Figure 1.3 shows the annual revenue of Class I 

railroads. The entire industry created over $90 billion in revenue in the fiscal year 2018, which is 

close to 30 times that of the Amtrak railroad. 

 

 

Figure 1.3 The annual revenue of Class I freight railroads from 2014 to 2018. 
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The significance of the Class I railroad is not only reflected by its revenue but more importantly, 

it is the primary transportation mode for freights. Five principal modes are used to transport 

freights in the United States: Class I railroads, trucking, pipelines, waterways, and airfreight. 

According to the National Rail Plan Progress Report (Federal Railroad Administration 2010), in 

2010, Class I railroads carried nearly 40 percent of the United States freight by ton-miles. Figure 

1.4 shows that Class I railroads can be considered the most crucial transportation mode. Class I 

railroads transport some of the most needed daily commodities, and the necessities of industrial 

manufacturing. For example, in 2019, U.S. Class I railroads moved 1.6 million carloads of 

agricultural and food products, 4 million carloads of coal and 2.4 million carloads of chemicals 

(Association of American Railroads 2019).  

 

 

Figure 1.4 Percent ton-miles of each transportation mode in 2010. 

Data Resource: National Rail Plan Progress Report (Federal Railroad Administration 2010). 
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The Class I railroad contributes the majority of the total railroad revenue and is one of the most 

critical transportation modes, with great economic and fiscal impacts on the United States. In the 

fiscal year 2017, Class I railroads generated almost $26 billion in tax (Irani et al. 2018). 

According to a report from Towson University (Irani et al. 2018), the economic impact can be 

measured in three types:  

• The direct economic impact of generated jobs. In 2017, Class I railroad employed 90 

percent of 1.1 million U.S. railroad workers and supported $71 billion in wages 

(Association of American Railroads 2017); 

• The indirect economic impact of generated production and related services that can be 

purchased from other companies; 

• The increased employment and increased income levels for households, which results in 

an increase in household purchases from local businesses. 

 
Class I railroads, as a complex railroad system covering the entire United States, are also 

vulnerable to natural and human-caused hazards. In addition to the damage to Amtrak’s rails in 

New Orleans, Hurricane Katrina in 2015 also caused the failure of Class I railroads. As a 

consequence, the Norfolk Southern railroad operations from Slidell, Louisiana to Shrewsbury, 

Massachusetts, from New Orleans to the Port Nickel and other Norfolk Southern railroad 

operations connected to New Orleans were forced to stop and switch to other railroads 

(DesRoches 2006). Class I railroad operations in the entire eastern region were greatly affected 

and delayed. The flooding of the Mississippi and Missouri rivers in 1993 caused Class I railroads 

to fail. The estimated losses of Class I freight railroad due to this flooding were more than $182 

million (estimated values in 2014) (Gedik et al. 2014).  

 



 9 

1.3 Railroad Systems and Rail Networks 

1.3.1 Railroad Systems 

Every component of railroads can be affected by natural and human-caused hazards (Batarlienė 

2008). Therefore, the composition of the entire railroad must be understood first. A system can 

be described as an interdependent group of components building a unified whole (Ayyub 2014). 

The main components of a railroad system are trains, entities, infrastructures, users and 

environment. The most basic level of the railroad system is the trains, which are a set of wheeled 

vehicles moving along the rail. The powered vehicle that pulls the train is called a locomotive. 

And other wheeled vehicles used for the hauling of freight or passengers are called railroad cars. 

The entire railroad is owned, operated, and maintained by entities. Therefore, the railroad entity 

is also an important part of a railroad system. The most important component in a railroad 

system is infrastructure. Infrastructures in a railroad consist of rails, stations, train inspection, 

signaling, and electrification equipment. The users of the railroad mainly include passengers and 

producers, such as agricultural and food, coal, construction-related, and chemical producers. 

Finally, the environment where a railroad is located is composed of topography, geological 

conditions, climate, and weather. The work breakdown structure of a typical railroad system is 

shown in Figure 1.5.  
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Figure 1.5 Work breakdown structure of a railroad system. 

 

1.3.2 Rail Networks 

The failure of rails and stations is a central and serious situation for a railroad system leading to 

disruptions. For example, the 2005 Hurricane Katrina destroyed most of Class I and Amtrak rails 

in New Orleans as well as the New Orleans Station. As a consequence, almost all railroad 

operations connected to New Orleans in the southeast U.S. were forced to stop for one week and 

were fully recovered after all damaged rails and stations were repaired (DesRoches 2006). In 

order to focus on the disruptions of rails and stations, the notion of a rail network is introduced.  

 

A network includes two basic components: vertices or nodes, and the connections between them, 

called edges or links. Figure 1.6 shows a simple network in which red dots represent nodes, and 

black lines represent links. Most networks are defined and mapped from physical connections 

between a set of items (Barabási and Pósfai 2016). For instance, the nervous system in 

mammalian brains, consisting of more than 100 billion neurons, is modeled by scientists as a 

complex network. The cell called neuron is modeled as nodes, such as red dots in Figure 1.6, 
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while the axon connecting neighboring cells are modeled as links, such as black lines in Figure 

1.6 (Barabási and Pósfai 2016). 

 

 

Figure 1.6 Graph of a network. 

 

A transportation network, especially the rail network, is a real-life example of complex networks. 

Stations are infrastructures where passengers board or alight from trains, and freights can be 

loaded or unloaded. Stations can be directly mapped as nodes, such as the red dots in Figure 1.6. 

Rails that physically connect stations, including two parallel bars of rolled steel, to form the 

whole rail network can be mapped as links, such as the black lines in Figure 1.6. Although the 

rail network can be highly complex, the arrangement of nodes and links and connectivity 

patterns can be clearly graphed, modeled and expressed mathematically as provided in 

subsequent chapters. 
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1.4 Needs in Studying Rail Networks 

In rail networks, any rail or station failure due to natural and human-caused hazards would lead 

to serious consequence, such as the performance loss of the entire or a portion of the rail 

network, which means that rail networks are vulnerable to disruptions of rails and stations. This 

network vulnerability is defined as the degree of susceptibility of a network due to the 

connectivity changes between nodes and links (Saadat et al. 2019). Higher network vulnerability 

means more susceptibility to disruptions. Therefore, connectivity and vulnerability of rail 

networks need to be analyzed and assessed to evaluate the consequence of disruptions in a risk 

analysis framework for managing risk and resilience. Resilience refers to the ability to prepare 

for and adapt to changing conditions, withstand hazards, and recover from disruptions (The 

White House Office of the Press Secretary 2013; Ayyub 2014). The resilience of rail networks 

also needs to be assessed and further strengthened to reduce the impact of disruptions on rails 

and stations. The following research needs of rail networks are summarized:  

1. Modeling and analyzing the connectivity among stations by rails in order to assess the 

rail network vulnerability. 

2. Assessing the rail network vulnerability due to the failure of rails and stations. 

3. Assessing the rail network resilience in order to measure the ability of networks to 

prepare for and adapter to changing conditions, withstand hazards, and recover from 

disruptions of rails and stations; and  

4. Enhancing rail networks and determining strategies for recovery based on network 

vulnerability and resilience assessment. 
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1.5 Organization of Thesis 

Chapter 1 serves as an introduction of this thesis, including the significance and criticality of 

railroads, a definition of railroad systems and rail networks, the need to study rail networks, and 

an outline of the organization of each chapter.  

 

Chapter 2 is the literature review of rail network topology, vulnerability and resilience. After 

which, the existing research on topology enhancement and recovery strategies are summarized. 

Based on the literature review, gaps are identified, and objectives are proposed in Chapter 2. 

 

Chapter 3 presents theories and processes with illustrative examples of a methodology to analyze 

the rail network topology, assess and reduce the vulnerability and strengthen the resilience.  

 

Chapter 4 shows how the methodology can be applied to specific case studies, such as Amtrak 

and Class I rail networks.  

 

Chapter 5 provides a summary, conclusions and contributions from this thesis. Additionally, this 

chapter provides suggestions for future work related to rail networks. 
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Chapter 2: Topological Analytics of Rail Networks: A Literature 

Review 

2.1 Rail Network Topology 

Network connectivity among stations by rails can be quantified by analyzing network topology. 

The network topology analysis starts by mapping a rail network in the form of a graph. Garrison 

and Marble (1962) first proposed how to graph the components of rail networks, such as nodes 

and links. Additionally, they defined the connection matrix, structural patterns, and the 

cyclomatic number to demonstrate the network topology mathematically. Musso and Vuchic 

(1988) defined indicators used to analyze the rail network topology, such as path length and 

network density. They also analyzed the passenger flow and the population expression of metro 

rail networks. The network topology was assumed to be either completely random or completely 

regular. Watts and Strogatz (1998) first proposed the "small-world" characteristics of network 

topology. The “small-world” network is highly clustered with relatively small characteristic path 

lengths due to the presence of long-range links. Barabási and Albert (1999) proposed another 

important characteristic of network topology called “scale-free”. The probability 𝑝(𝑘) that the 

node in a complex network connects with k other nodes is supposed to decay as a power law, 

which means the degree of network connectivity decreases as the number of nodes increases. 

Latora and Marchiori (2002) first proved that the topology of the Boston metro rail network had 

the “small-world” characteristic. Derrible and Kennedy (2010) proved that most metro rail 

networks are either scale-free or small-world networks. Braha (2017) summarized characteristics 

and indicators of network topology.  
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Measuring and analyzing network topology are based on the calculation of topology indicators. 

However, as the number of nodes and links of networks increases, the size of matrices and the 

number of iterations in the topology indicator calculations can become extremely large. For 

example, the real Class I freight rail network contains more than 40,000 nodes and links, which 

means that in the calculation of topology indicators, the number of rows and columns of matrices 

exceeds 40,000. Using these matrices to perform over 40,000 iterative calculations is extremely 

difficult and inefficient. Therefore, the current analysis of rail network topology has a limitation 

based on its use for analyzing metro rail networks with 100 to 350 nodes and associated links 

(Derrible and Kennedy 2010; Zhang et al. 2018; Saadat et al. 2019). 

 

2.2 Rail Network Vulnerability 

From network topological perspectives, Latora and Marchiori (2001) first defined a performance 

indicator, called network efficiency, for the Boston metro rail network. Derrible and Kennedy 

(2010) further investigated the efficiency of 33 metro rail networks in the world. Based on the 

network efficiency, the assessment of node and link vulnerability mainly follows the approach of 

complete enumeration to measure the loss of network efficiency due to the disruption of nodes 

and links (i.e. rails and stations) (Saadat et al. 2019; Bešinović 2020). Network vulnerability is 

the maximum value of node and link vulnerability (Zhang et al. 2011). Chang et al. (2006) 

calculated the efficiency of metro rail networks in Seoul, Tokyo, Boston, and Beijing. 

Additionally, Zhang et al. (2018) and Saadat et al. (2019) assessed the vulnerability of the 

Shanghai and Washington D.C. metro rail networks respectively. 
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The same limitation of network topology analysis also exists in the network vulnerability 

assessment. As the number of nodes and links of networks increases, the size of matrices and the 

number of iterations in the network efficiency and vulnerability calculations become large. 

Therefore, the network efficiency and vulnerability assessment focused on metro rail networks 

with a limited number of nodes and links, such as for metro networks (Derrible and Kennedy 

2010; Zhang et al. 2018;). 

 

2.3 Rail Network Resilience 

The increasing number of disruptions caused by natural and human-caused hazards seriously 

affects the performance of rail networks (Bešinović 2020). Resilience refers to the ability to 

prepare for and adapt to changing conditions, withstand hazards, and recover from disruptions 

(The White House Office of the Press Secretary 2013; Ayyub 2014). Therefore, the demand for 

assessing and enhancing network resilience has greatly increased in order to manage risks to the 

performance of rail networks. Two primary methods of assessing the rail network resilience are 

the data-driven method and the topological method (Bešinović 2020). 

 

2.3.1 Data-driven Methods 

Data-driven methods rely on the recorded historical data, such as ridership, the time of arrival, 

and the number of kilometers traveled by trains, to develop statistical models which can reflect 

the change of rail network performances when different events occur. Network resilience can be 

further assessed based on the statistical model. Additionally, data-driven methods are mostly 

used to assess the resilience of rail networks affected by disruptive events due to natural hazards. 
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Janić (2018) defined social-economic related performance indicators and developed statistical 

models to assess the resilience of Japan’s Shinkansen Rail network affected by the 2011 Tohoku 

Earthquake. Zhu et al. (2017) used the data-driven method to analyze the impact of storm surge 

caused by Hurricane Irene and Sandy on the New York City rail network and to assess the 

network resilience based on individual ridership data. Dawson et al. (2016) assessed the impact 

of sea-level rise on the England coastal rail network and to assess the network resilience in the 

event that the worst sea-level rise occurs. Other researchers use data-driven methods to assess the 

resilience of passenger or freight rail networks affected by different types of natural hazards, 

such as heat waves (Ferranti et al. 2016), snow and rainfalls (Chan and Schofer 2016). 

 

2.3.2 Topological Methods 

From network topological perspectives, the network resilience can be assessed based on 

topological performance indicators rather than the recorded historical data of rail networks. 

Adjetey-Bahun et al. (2016) proposed time-varying graphs and integrated operating conditions 

into topological performance indicators to assess rail network resilience. Additionally, they 

performed a case study of the Paris rail network, showing that some components of the Paris rail 

network are not related to topological performance indicators. However, when integrating 

operating conditions, these components become relevant to topological performance indicators. 

Chen and Miller-Hooks (2012) used a stochastic mixed-integer program to quantify network 

resilience based on topological indicators and also proved the significance of recovery strategies 

on the ability of networks to recover from disruptions. Saadat et al. (2020) used the resilience 

triangle proposed by Bruneau et al (2003) to demonstrate the loss and recovery of network 
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efficiency and to further assess the time-dependent network resilience. They also determined the 

best recovery sequence with respect to the value of a resilience index.  

 

 2.4 Topology Enhancement and Recovery Strategies 

2.4.1 Topology Enhancement  

From network topological perspectives, the network vulnerability assessment allows us to 

evaluate the impact of disruptions of nodes and links on rail networks (i.e. the loss of network 

efficiency), while network resilience can also be assessed based on topological performance 

indicators. After which, strategies to reduce the impact of disruptions by reducing the network 

vulnerability and strengthening network resilience can be determined.  

 

Saadat et al. (2020) proposed a pre-failure strategy called topology enhancement to reduce the 

network vulnerability by adding additional links into rail networks. They added three 

hypothetical loop lines consisting of several links into the Washington D.C. metro rail network, 

creating topological redundancy and reducing network vulnerability. With topological 

redundancy, when nodes or links fail, other alternative nodes or links can be used to reduce the 

loss of network efficiency. Therefore, the network vulnerability can be further reduced. It should 

be mentioned that adding hypothetical loop lines is only used to enhance the network at the 

theoretical level from the topological perspectives. Designing and adding loop lines into a real 

rail network will have many limitations because of the actual situations and policy restrictions. 

However, the results in this thesis can provide additional insights to decision-makers in 

managing risks. 
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The topology enhancement method first proposed by Saadat et al. (2020) was only researched on 

the Washington D.C. metro rail network. Additionally, the Washington D.C. metro only has 91 

nodes and 140 links, which means adding few links can create enough redundancy and reduce 

the network vulnerability effectively. This topology enhancement strategy needs to be verified in 

rail networks with more nodes and links than the Washington D.C. metro rail network. 

 

2.4.2 Recovery Strategies 

A recovery strategy focuses on strengthening the rail network resilience through identifying the 

best recovery sequence after the disruption of nodes and links (i.e. rails and stations). Henry and 

Ramirez-Marquez (2012) proposed five time-related transition states of network resilience and 

further measured the network resilience as a function of time. They used a road network as a case 

study, proving that designing a good recovery sequence is an effective way to increase the 

network resilience. Zhang et al. (2018) measured the network resilience using the resilience 

triangle proposed by Bruneau et al (2003). They assumed that only one component of rail 

networks can be repaired in a recovery stage and determined the best sequential recovery 

strategy for Shanghai metro network. Saadat et al. (2020) determined recovery strategies for four 

different hypothetical disruption cases in Washington D.C. metro: (1) one transfer station and its 

connected rails; (2) multiple stations with different node degrees; (3) multiple stations with the 

same node degrees; and (4) multiple rails.  

 

When station disruptions caused by natural or human-made hazards occur, the entrances and 

exits must be closed, and these disrupted stations cannot be used as departure or destination 

stations before they are repaired (Yin et al. 2018). Therefore, the repair of disrupted stations is 
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important for the recovery strategy. However, for the disruption case of one transfer station and 

its connected rails, the recovery strategy only considers the repair of rails (Zhang et al. 2018; 

Saadat et al. 2020), while the repair of the station itself is ignored in the recovery sequence.  

 

2.5 Gaps and Objectives 

The literature review highlights the significance and needs in studying rail networks. On this 

basis, the following gap from the literature review helps to focus the objectives of this thesis:  

• The network topology analysis is an effective tool to graph and analyze the arrangement 

and connectivity between nodes and links. However, as the number of nodes and links 

increases, the network topology analysis can become overly complicated. Therefore, how 

to graph and analyze the topology of more complex rail networks accurately and 

effectively requires further research; 

• The vulnerability of metro rail networks can be well reduced through the topology 

enhancement strategy (Saadat et al. 2020). However, as the network connectivity 

becomes more complex and developed, adding a small number of links is difficult to 

reduce the network vulnerability effectively. Whether the same topology enhancement 

strategy is applicable to rail networks with more complex connectivity than metro rail 

networks requires further research; and  

• For the disruption case of one transfer station and its connected rails, the repair of stations 

needs to be considered in the sequential recovery strategy.  

 

Based on the literature review and gaps, the main objectives of this research are to: 



 21 

1. Analyze the topology of rail networks containing more nodes and links than metro rail 

networks accurately and effectively; 

2. From network topological perspectives, assess the rail network vulnerability and 

resilience; and 

3. Determine the topology enhancement to reduce the network vulnerability and the 

sequential recovery strategy for the disruption of one station and its connected rails. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 22 

Chapter 3: Methodology and Illustrative Examples 

Using complex network theory, a network is treated mathematically and represented by a graph 

with two components: nodes and links for the connectivity among nodes and links. Based on the 

complex network theory, a methodology is proposed to analyze rail networks and to reduce the 

impact of potential failures by examining: (1) network topology; (2) network efficiency and 

vulnerability; (3) network resilience; and (4) the impact of potential failures. The methodology as 

shown in Figure 3.1 consists of the following steps: 

1. Defining nodes, links, and the connectivity pattern of rail networks, then, mapping rail 

networks in the form of a graph; 

2. Analyzing network topology by calculating topological indicators;  

3. Measuring network efficiency and further network vulnerability from network 

topological perspectives;  

4. Identifying the characteristics of vulnerable nodes and links, and the critical areas of 

networks; 

5. Evaluating the network resilience index based on the changes of topological performance 

indicators (i.e., network efficiency); and 

6. Enhancing the network topology by adding loop lines and determining the best sequential 

recovery strategy based on resilience assessments.  

 

Bollobás (1985) and West (1995) provides background information on complex network theory. 

Boccaletti et al. (2006) and Braha (2017) summarized methods on measuring the topological 

indicators and characteristics of general complex networks. Derrible and Kennedy (2010), Zhang 

et al. (2018), and Saadat et al. (2019) used the complex network theory to represent metro rail 
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networks as a graph and analyzed the rail network topology. Latora and Marchiori (2002) 

initially defined the network efficiency for the Boston metro rail network, which provided a basis 

to quantify the robustness and vulnerability (Zhang et al. 2018) of rail networks subjected to 

potential failures and attacks. Later, Saadat et al. (2020) proposed the topology enhancement 

strategy to reduce network vulnerability. Based on the resilience triangle proposed by Bruneau et 

al (2003), Zhang et al. (2018) and Saadat et al. (2020) provides methods on assessing the 

network resilience dynamically from the topological perspectives and determining the sequential 

recovery strategy regarding resilience restoration. 

 

 

Figure 3. 1 Proposed methodology for analyzing rail networks and mitigating the impact of 

disruptions. 
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3.1 Analyzing Network Topology  

Network topology is defined as the arrangement and connectivity among the components of a 

network. The analysis of rail network topology starts with defining and mapping stations and 

rails to nodes and links, respectively, in the form of a graph. Afterward, the topological 

indicators of rail networks are calculated to analyze network, which helps to quantify the 

connectivity of complex rail networks. Combined with an illustrative example, the analysis of 

network topology is introduced in detail in this section. 

 

3.1.1 Defining and Mapping Network  

In mapping rail networks as the form of a graph, the stations of a rail network can be mapped as 

nodes, such as the red dots in Figure 1.6, while links represent the rails of a rail network, such as 

the black lines in Figure 1.6. After numbering each node and link, the topology vector 𝐺 is 

specified as Equation (3.1):  

 

 𝐺 = {𝑆, 𝐸} (3.1) 

 

where, 

G: the topology vector of a network 

S: the collection of all nodes  

E: the collection of all links 

 

For example, the topology vector 𝐺 of the network as shown in Figure 1.6 is:  
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 𝐺 = {6,7} (3.2) 

 

Then, si denotes each node in the set S. For the network as shown in Figure 1.6: 

 

 𝑆 = {𝑠𝑖|𝑖 = 1,2,3,4,5,6} (3.3) 

Also, eij in the set E represents a link that connects node i and node j. Referring to the network as 

shown in Figure 1.6:  

 

 𝐸 = {𝑒𝑖𝑗|𝑖, 𝑗 = 1,2,3,4,5,6} (3.4) 

 

Each link 𝑒𝑖𝑗 can also be represented as (𝑖, 𝑗). Also, for an undirected network, the link from 

node i to node j is the same as the link from node j to node i.  

 

3.1.2 Calculating Topological Indicators 

A network’s connectivity can be expressed mathematically by a 𝑛 × 𝑛 symmetric adjacency 

matrix, where n is the number of nodes in a network. Elements in the adjacency matrix are 

denoted as 𝑎𝑖𝑗
:  

 

 𝑎𝑖𝑗 = {
1     𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑛𝑜𝑑𝑒 𝑗,
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                        

 (3.5) 

 

Three types of networks can affect the value of elements 𝑎𝑖𝑗
 in the adjacency matrix. First, 

networks can be distinguished into weighted and unweighted. In a weighted network, some links 
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are more important or stronger than other links. Therefore, 𝑎𝑖𝑗
 is not always equal to 0 or 1 but 

depends on the importance or strength of eij. Figure 3.2 shows a weighted and an unweighted 

network. 

 

  

Figure 3. 2 Weighted and unweighted networks: (a) weighted; (b) unweighted. 

 

For example, in the weighted network as shown in Figure 3.2 (a), dash lines indicate less 

important or weaker links, while the solid line indicates more important or stronger links. All 

links are considered equally important or strong in the unweighted network as shown in Figure 

3.2 (b). As a result, the adjacency matrix for weighted and unweighted networks in Figure 3.2 

can be represented as: 

 

 𝐴𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = [
0 𝑥 𝑥
𝑥 0 1
𝑥 1 0

] (3.6) 

 

 𝐴𝑢𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = [
0 1 1
1 0 1
1 1 0

] (3.7) 

 

where, 
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x: the value of 𝑎𝑖𝑗
 of less important or weaker links; 0 < 𝑥 < 1 

 

The second type of network is the directed and undirected network. A directed graph is called 

digraph in which the link pointing from node i to node j is in a particular direction. For a directed 

link eij, the value of 𝑎𝑖𝑗
 in the adjacency matrix is not equal to the value of 𝑎𝑗𝑖

. Therefore, the 

adjacency matrix of directed networks is asymmetric. Figure 3.3 shows a directed and an 

undirected network: 

 

 

Figure 3. 3 Directed and undirected networks: (a) directed; (b) undirected. 

 

The adjacency matrix for directed and undirected networks in Figure 3.3 can be represented as: 

 

 𝐴𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 = [
0 0 1
1 0 0
0 1 0

] (3.8) 

 

 𝐴𝑢𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = [
0 1 1
1 0 1
1 1 0

] (3.9) 
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Also, networks can have multiple links among node i to node j. Additionally, a self-edge means 

that a link connects a node to itself. For the node i with a self-edge, the value of 𝑎𝑖𝑖 is equal to 2. 

Figure 3.4 shows a multi-edges network: 

 

 

Figure 3. 4 Multi-edges network. 

 

The adjacency matrix for the multi-edges network as shown in Figure 3.4 is specified as: 

 

 𝐴𝑚𝑢𝑙𝑡𝑖 = [
0 2 1
2 0 1
1 1 2

] (3.10) 

 

In the network studied in this thesis, every link among each pair of nodes is undirected and 

unweighted. Additionally, multiple links and the self-edge are not considered. The adjacency 

matrix is the most critical mathematic expression of graphing a network. All the calculations of 

topological indicators are based on the adjacency matrix. A comprehensive definition of the 

adjacency matrix for rail networks was proposed by Zhang et al. (2018), which applies in both 

simple and non-simple (i.e., weighted, directed, and multi-edges) networks. For the adjacency 

matrix defined by Zhang et al. (2018), if node i and j are connected, the value of 𝑎𝑖𝑗 equals to 
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one. If node i and j are not connected, the value of 𝑎𝑖𝑗 is equal to infinity. Otherwise, the value of 

𝑎𝑖𝑗 equals to zero for the self-edge. Hence, for the illustrative example in Figure 1.6, a 6 × 6 

symmetric adjacency matrix is represented as follows:  

 

 𝐴𝑖𝑗 =

[
 
 
 
 
 
0 1 1 ∞ ∞ ∞
1 0 1 1 ∞ ∞
1 1 0 1 1 ∞
∞ 1 1 0 ∞ 1
∞ ∞ 1 ∞ 0 1
∞ ∞ ∞ 1 1 0 ]

 
 
 
 
 

 (3.11) 

 

Node degree is a topological indicator that can be used to demonstrate the centrality of networks. 

The node degree of node i is equal to the number of links connected to it. Based on the adjacency 

matrix, the node degree denoted as 𝐾𝑖 can be calculated as follows:  

 

 𝐾𝑖 = ∑𝑎𝑖𝑗

𝑛

𝑗=1

 (𝑎𝑖𝑗 ≠ ∞) (3.12) 

 

where, 

n: the number of nodes  

 

When using Equation (3.12) to calculate the node degree, infinity elements 𝑎𝑖𝑗 in the adjacency 

matrix Equation (3.11) need to be eliminated first. Table 3.1 shows the node degree of the 

network as shown in Figure 1.6: 
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Table 3. 1 Node degree of the network as shown in Figure 1.6. 

 

 

The average node degree denoted as 𝐾 can be calculated by Equation (3.13). The average node 

degree of the network as shown in Figure 1.6 is equal to 2.33. 

 

 𝐾 =
1

𝑛
∑𝐾𝑖

𝑛

𝑖=1

 (3.13) 

 

In order to describe the process of moving from one node to another node in rail networks,  

a path is defined as a node sequence that each consecutive pair of nodes in the path is connected 

by links. In an unweighted rail network, the path length is the number of links between all 

consecutive pairs of nodes. Another critical network topological indicator is the minimum 

number of links moving from node i to node j, called the shortest path length or geodesic path 

length 𝑑𝑖𝑗. For instance, the shortest path from node 1 to node 6 of the network as shown in 

Figure 1.6 is 𝑠1𝑠2𝑠4𝑠6, and the shortest path length is equal to 3.  

 

In a complex network, finding the shortest path length between each pair of nodes is a 

challenging problem. Several shortest path algorithms have been formulated to solve this 

problem (Cherkassky et al. 1996). One of the algorithms called Shortest Path Faster Algorithm 

Node Node Degree

1 2

2 2

3 3

4 3

5 2

6 2
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(SPFA) based on the Breadth-first search, is a refinement of the Bellman-Ford Algorithm. The 

main philosophy of this algorithm is to start the procedure with “root nodes,” then to improve the 

shortest path by examining all paths from this “root node” to its neighbors (Ding 1994). The 

neighbor of a node i are defined as the nodes that directly connect to node i by links. The 

procedure of Shortest Path Faster Algorithm is laid out as follows in Step1 through Step3:  

1. Given a network 𝐺 = {𝑛, 𝑒}. Defining a subset of “root nodes” r (𝑟 = {1,2,3…𝑛}). Set all 

the distance of root node as zeros (i.e. 𝐷𝑖𝑠𝑡(𝑟) = 0), while set all the distance of non-root 

node i as infinity (i.e. 𝐷𝑖𝑠𝑡(𝑖) = 𝑖𝑛𝑓). Continue Step 2; 

2. Among the “root node” subset, set a “root node” i as an “initial node.” Then, select a 

neighbor j of node i as the “marked” node. If no node is marked, the algorithm ends, 

otherwise, continue to Step 3; and  

3. For each length of links between node i and node j denoted as 𝐿(𝑖, 𝑗), compare the 

distance 𝐷𝑖𝑠𝑡(𝑗) with the sum of 𝐷𝑖𝑠𝑡(𝑖) and 𝐿(𝑖, 𝑗). Whenever the sum is less than the 

𝐷𝑖𝑠𝑡(𝑗), update 𝐷𝑖𝑠𝑡(𝑗) equals to the sum of 𝐷𝑖𝑠𝑡(𝑖) and 𝐿(𝑖, 𝑗). Also, set the node j as 

the next “initial node”. After all neighbors of initial node i have been analyzed, back to 

Step 2.  

 

For example, in the unweighted network as shown in Figure 1.6 (i.e. the length of all links equal 

to 1), node 1 is set as root node and the first “initial node.” Therefore, 

 

 𝐷𝑖𝑠𝑡(𝑖) = {
0                𝑖 = 1
∞     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (3.14) 
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Node 2 is one of node 1’s neighbors. Node 2 is the “marked” node that the distance 𝐷𝑖𝑠𝑡(2) is 

equal to infinity in this stage. Therefore:  

 

 𝐷𝑖𝑠𝑡(2) < 𝐷𝑖𝑠𝑡(1) + 𝐿(1,2) = 1 (3.15) 

 

The distance of node 2 is updated to one and set as the next “initial node.” By repeating the 

procedure of Shortest Path Faster Algorithm, the following results can be obtained:  

 

Table 3. 2 The shortest path length between node 1 and others. 

 

 

where 𝐷𝑖𝑠𝑡(𝑖) is the shortest path length 𝑑1𝑖 from node 1 to node i. The shortest path length 

between any pair of nodes can be obtained by changing the root node, which can be further used 

to calculate the diameter of a network denoted as D. The concept of network diameter is defined 

as the maximum value of shortest path lengths between all pairs of nodes.  

 

 𝐷 = 𝑀𝑎𝑥{𝑑𝑖𝑗} (3.16) 

 

Node Dist(i )

1 0

2 1

3 1

4 2

5 2

6 3
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For the network as shown in Figure 1.6, the network diameter is equal to 3. Additionally, average 

path length or characteristic path length denoted as L represents the mean of all shortest path 

lengths:  

 

 𝐿 =
1

𝑛(𝑛 − 1)
∑ 𝑑𝑖𝑗

𝑖≠𝑗
 (3.17) 

 

For the network as shown in Figure 1.6, 

 

 𝐿 =
1

6 × (6 − 1)
× 50 = 1.67 (3.18) 

 

Another topological indicator, called network density denoted as 𝜌 is the fraction of the number 

of links to all possible number of links between: 

 

 𝜌 =
𝐸

𝐸𝑚𝑎𝑥
 (3.19) 

 

where,  

E: the number of links  

𝐸𝑚𝑎𝑥: all possible number of links that can be calculated by Equation (3.20):  

 

 𝐸𝑚𝑎𝑥 = (
𝑛

2
) (3.20) 
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Using Equation (3.19) and Equation (3.20), the density of the network as shown in Figure 1.6 

can be obtained:  

 

 𝜌 =
𝐸

𝐸𝑚𝑎𝑥
=

7

(7
2
)

=
7

21
= 0.33 (3.21) 

 

Characteristic path length L is a topological indicator measuring the separation degree of nodes 

in networks, whereas the clustering coefficient C is an indicator representing the aggregation 

degree of nodes in network. The clustering coefficient can be divided into two levels: local and 

global. The global clustering coefficient denoted as 𝐶𝐺  is used to measure the degree of node 

aggregation among the overall network, which can be calculated by the ratio of the number of 

closed triplets to the number of all closed and open triplets (Prokhorenkova et al. 2015). A closed 

triplet is a set of three nodes that any pair of nodes are connected with, whereas an open triplet 

means three nodes are connected only by two links. For instance, zero closed triplets and 18 open 

triplets are in the network as shown in Figure 1.6. Therefore, the global clustering coefficient is 

zero.  

 

The local clustering coefficient 𝐶𝑖 of node i can be measured by the ratio of the number of links 

between its neighbors to the number of all possible links between its neighbors. For a node i with 

𝐾𝑖 node degree, the number of all possible links between its neighbors is given as a binomial 

coefficient (𝐾𝑖
2
). Besides, denoting 𝑒𝑛𝑖 as the real number of links between the neighbors of node 

i, the local clustering coefficient can be obtained:  
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 𝐶𝑖 =
𝑒𝑛𝑖

(𝐾𝑖
2
)
 (3.22) 

 

Also, the average clustering coefficient 𝐶̅ of a network is depicted as Equation (3.23):  

 

 𝐶̅ =
1

𝑛
∑ 𝐶𝑖

𝑛

𝑖=1

=
1

𝑛
∑

𝑒𝑛𝑖

(𝐾𝑖
2
)

𝑛

𝑖=1

 (3.23) 

 

Using Equation (3.23) to calculate the average local clustering coefficient of the network as 

shown in Figure 1.6:  

 

 𝐶̅ =
1

6
× (0 + 0 + 0 + 0 + 0 + 0) = 0 (3.24) 

 

3.2 Assessing Network Efficiency and Vulnerability 

The network efficiency used to measure the efficiency of information exchange within a network 

was initially introduced by Latora and Marchiori (2001). The efficiency between node i and node 

j is inverse proportional to the shortest path length 𝑑𝑖𝑗, i.e., the smaller the shortest path length 

from node i to node j, the more efficient information exchange between them. Therefore, the 

network efficiency represented by 𝐸𝐺  can be calculated as follows: 

 

 𝐸𝐺 =
1

𝑛(𝑛 − 1)
∑

1

𝑑𝑖𝑗𝑖≠𝑗
 (3.25) 
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Using Equation (3.25), the efficiency of the network as shown in Figure 1.6 is calculated as: 

 

 𝐸𝐺 =
1

6 × (6 − 1)
× 21.33 = 0.711 (3.26) 

 

The potential failures of nodes and links might cause part of networks disrupted, affecting the 

shortest path length between each pair of nodes and further affecting the network efficiency. The 

vulnerability of nodes and links can be defined as the degree of the network efficiency loss after 

removing one node or link (i.e., disruptions of a node and link), which can be quantified as 

follows: 

 

 𝑉𝑖 =
𝐸𝐺 − 𝐸𝐺𝑖

𝐸𝐺
 (3.27) 

 

where, 

𝐸𝐺: initial network efficiency 

𝐸𝐺𝑖 : network efficiency after removing a node or link 

𝑉𝑖: the vulnerability of one network component 

 

The vulnerability of a network is the maximum value of node and link vulnerability as follows: 

 

 𝑉 = max𝑉𝑖 (3.28) 

 

where, 
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𝑉: network vulnerability 

 

For example, if node 4 in the network of Figure 1.6 is removed, the network is changed as Figure 

3.5:  

 

 

Figure 3. 5 Network graph after node 4 disrupted. 

 

The network efficiency 𝐸𝐺𝑖  can be obtained using Equation (3.25), and the vulnerability of node 

4 can be further calculated using Equation (3.27): 

 

 𝐸𝐺4 =
1

𝑛(𝑛 − 1)
∑

1

𝑑𝑖𝑗𝑖≠𝑗
=

1

5 × (5 − 1)
× 12.83 = 0.64 (3.29) 

 

 

𝑉4 =
𝐸𝐺 − 𝐸𝐺4

𝐸𝐺
=

0.711 − 0.64

0.711
= 0.1 (3.30) 
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3.3 Identifying Critical Components and Areas 

Following the approach of complete enumeration, the network vulnerability due to the failure of 

each component in a rail network can be measured. Then, the critical components of a network 

are those nodes or links whose failures lead to relatively high network vulnerability. 

Additionally, for rail networks covering a wide area and containing a large number of nodes and 

links, such as the Amtrak and Class I rail networks, some critical components will be 

concentrated in specific areas. The arrangement of critical components can be displayed on 

maps. Then, the critical area where critical components are concentrated can be identified. 

Enhancing network topology and resilience in the critical area provides a basis to reduce the 

impacts of potential failures.  

 

3.4 Evaluating Resilience Index 

Network resilience can be quantified and assessed by using the resilience triangle (Bruneau et al 

2003) as shown in Figure 3.6 to calculate the resilience index. In the resilience triangle, the 

network performance changes over time, including the performance loss stage at time t0 and the 

performance recovery stage during t0 to t0+th. The resilience index can be calculated as Equation 

(3.31): 

 

 𝑅𝑒 =
∫ 𝑄(𝑡)𝑑𝑡

𝑡0+𝑡ℎ
𝑡0

𝑡ℎ𝑄𝑜
 (3.31) 

 

where, 

𝑅𝑒: resilience index 
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𝑡0: the time when performance loses 

𝑡ℎ: the period when the network performance recovers to the initial condition 

𝑄(𝑡): time-dependent network performance function 

𝑄𝑜: initial network performance 

 

The resilience index of rail networks can be calculated based on the change of topological 

performance indicators, such as network efficiency 𝐸𝐺 . For example, if the disruptions of link e12 

and e34 of the network in Figure 1.6 occur and the recovery sequence is e12-e34 (i.e., repair link 

e12 first, then repair link e34), the resilience triangle is shown in Figure 3.7, where link e12 and e34 

disrupt at the recovery stage 1, then, link e12 is repaired at recovery stage 2 and link e34 is 

repaired at recovery stage 3. The resilience index can be calculated as Equation (3.32): 

 

 𝑅𝑒 =
∫ 𝐸𝐺(𝑡)𝑑𝑡

𝑡0+𝑡ℎ
𝑡0

𝑡ℎ𝐸𝐺𝑜
=

1.31225

1.4222
= 0.923 (3.32) 

 

where, 

𝐸𝐺(𝑡): time-dependent network efficiency function 

𝐸𝐺𝑜: initial network efficiency 
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Figure 3. 6 Resilience Triangle. 

 

 

Figure 3. 7 Resilience triangle of the recovery sequence e12-e34. 

 



 41 

3.5 Reducing the Impacts of Potential Failures 

3.5.1 Enhancing Network Topology 

Critical areas in which vulnerable nodes or links concentrate can be identified based on the 

vulnerability assessment of rail networks. Enhancing the network topology of these critical areas 

can significantly reduce the network vulnerability. In this study, the strategy of adding loop lines 

in critical areas is used to reduce the network vulnerability and further reduce the impacts of 

potential failures (Saadat et al. 2020). For example, a hypothetical loop line passing through 

nodes 1, 6, and 3 is added in the network as shown in Figure 1.6, then, a new network is created 

as Figure 3.8. This loop line decreases the characteristic path length of the network, increasing 

network efficiency. Additionally, the loop line creates topological redundancy, meaning when 

any node fails in the network, alternative nodes or links can be used to reduce the loss of network 

efficiency and the vulnerability. Figure 3.9 demonstrates the change of node 4 and network 

vulnerability after adding a hypothetical loop line, indicating that the vulnerability of node 4 and 

the network has been significantly reduced.  
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Figure 3. 8 Illustrative network after adding a loop line. 

 

 

Figure 3. 9 The change of node 4 and network vulnerability. 
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3.5.2 Sequential Recovery Strategies 

After the disruptions of nodes and links caused by potential failures, different recovery 

sequences lead to different network resilience, which can be measured and compared by the 

value of the resilience index. In order to reduce the impacts of potential failures, the best 

recovery sequence that can result in the largest value of resilience index needs to be determined 

to enhance the network resilience.  

 

For the network as shown in Figure 1.6, after node 4 and its connected links are disrupted, 1 

node and 3 links need to be repaired to recover the network fully. Assuming only one component 

can be repaired in a recovery stage, the number of all possible recovery sequences is equal to 24, 

i.e., the permutation of 4. In this study, the network efficiency is assumed not to be restored by 

the repair of links before the node repair. Because, in reality, sometimes even if rails are 

repaired, the route will not be re-operated until the disrupted station is repaired.  

 

The initial network efficiency is equal to 0.7111, and the network efficiency decreases to 0.6417 

after the disruption of node 4. The resilience index of different recovery sequences can be 

calculated using Equation (3.31). Table 3.3 shows the resilience index values of different 

recovery sequences. Figure 3.10 shows the comparison of recovery triangles. Recovery sequence 

e24- s4- e46- e34 is identified as the optimal one with the largest value of resilience index 0.9234, 

which means if node 4 is disrupted, link e24 should be repaired first, then node 4, followed by 

link e46, and finally link e34.  

 

 



 44 

Table 3. 3 Resilience index for the seven sequential recovery strategies of node 4. 

 

 

 

Figure 3. 10 (a) Node 4 repaired in the first order; (b) Node 4 repaired in the second order; (c) 

Node 4 repaired in the third order; (d) Node 4 repaired in the fourth order. 

Ranking Recovery sequence Re

1 e24 - s4 - e46 - e34 0.9234

2 e24 - s4 - e34 - e46 0.9175

3 s 4  repaired in the third order 0.9146

4 s 4 - e34 - e24 - e46 0.9048

5 s 4  repaired in the fourth order 0.9024

6 s 4 - e24 - e46 - e34 0.9017

7 s 4 - e24 - e34 - e46 0.8958
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Chapter 4 Case Studies: Amtrak and Class I Rail Networks 

Two critical rail networks in the United States are modeled and analyzed in this chapter. The first 

network is the Amtrak passenger rail network and the second is the Class I freight rail network. 

Both rail networks cover the entire United States, consisting of the greater number of nodes and 

links than metro networks. The methodology proposed in the Chapter 3 is used to analyze the 

topology of Amtrak and Class I rail networks to enhance the network vulnerability and assess the 

recovery strategies for the disruption case of one node and its connected links.  

 

4.1 Case Study 1: Amtrak Rail Network 

Most of the Amtrak’s rails belong to the Class I railroad entities. The Amtrak rail network can be 

regarded as a subset of Class I rail network for independent research, which serves 529 stations 

and more than 21,400 miles rails in North America, including 46 states, Washington D.C. in the 

United States and three Canadian provinces. Figure 4.1 displays the entire Amtrak rail network 

in North America, where red lines belong to the Amtrak corporation and the yellow lines are 

commuter rails.  
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Figure 4. 1 Map of the Amtrak passenger rail network.  

(Reproduced and edited from Federal Railroad Administration - Safety Map 2020.) 

 

4.1.1 Mapping the Amtrak Rail Network 

The first step of topology analysis is mapping the Amtrak rail network in the form of a graph, 

which can be divided into five areas depending on geographic locations: Northwest (NW), 

Southwest (SW), the Great Lakes area (GL), Southeast (SE), and Northeast (NE). Nodes 

represent the stations of the Amtrak rail network, while links represent the rails that directly 

connect stations. Additionally, the Amtrak rail network is modeled as an unweighted and 

undirected network. At the same time, each node or link is numbered for further analysis. Figure 

4.2 to 4.6 show the graph and numbering of the Amtrak rail network in each area. 
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Figure 4. 2 Northwest area. 

 

 

Figure 4. 3 Southwest area. 
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Figure 4. 4 The Great Lakes area. 

 

 

Figure 4. 5 Southeast area. 
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Figure 4. 6 Northeast area. 

 

In summary, the Amtrak rail network consists of 529 nodes and 552 links. Therefore, the network 

vector is specified as follows: 

 

 𝐺 = [529,552] (4.33) 
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4.1.2 Results and Analysis 

4.1.2.1 Topology Analysis of the Amtrak Rail Network  

The analysis of the Amtrak rail network is based on the adjacency matrix 𝐴𝑖𝑗. According to the 

definition of simple adjacency matrix as used by Zhang et al. (2018): 

 

 𝑎𝑖𝑗 = {

∞     𝑛𝑜𝑑𝑒 𝑖 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ  𝑗.        
1     𝑛𝑜𝑑𝑒 𝑖 𝑎𝑟𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑗                 
0     𝑠𝑒𝑙𝑓 − 𝑒𝑑𝑔𝑒                                                                  

 (4.34) 

 

For the Amtrak rail network, the size of adjacency matrix is 529 × 529. Afterward, topological 

indicators can be measured one by one, including the average node degree 𝐾 (using Equations 

(3.12) and (3.13)), network density 𝜌 (using Equations (3.20) and (3.21)), characteristic path 

length 𝐿 (using the shortest path faster algorithm (SPFA) and Equation (3.18)), diameter of the 

network 𝐷 (using Equation (3.17)), local clustering coefficient 𝐶̅ (using Equations (3.23) and 

(3.24)), and global network efficiency 𝐸𝐺  (using Equation (3.26)). Table 4.1 summarizes the 

results of the Amtrak rail network's topological indicators: 

 

Table 4. 1 Topological indicators of the Amtrak rail network. 

 

No. Topological Indicators Values Notes

1 Average node degree 2.087 /

2 Network density 0.004 /

3 Characteristic path length 35.404 /

4 Diameter of the network 91 /

5 Local clustering coefficient 0.0124 Ignore nodes with node degree 1

6 Global network efficiency 0.0463 /
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4.1.2.2 Vulnerability Assessment of the Amtrak Rail Network 

The vulnerability assessment includes 2 aspects: the network vulnerability due to node and link 

failures, and critical area identification. The network vulnerability due to the failure of a node is 

defined as the degree of network efficiency loss after removing this node and its connected links. 

However, when calculating the network vulnerability due to the failure of a link, only this link 

needs to be removed. Therefore, after removing a link, the size of the adjacency matrix remains 

unchanged. Using Equation (3.29) and (3.31), the network vulnerability due to the failure of each 

node and link can be obtained. Table 4.2 shows the top 40 most critical nodes and Table 4.3 

demonstrates the top 40 most critical links. As such, the vulnerability of the Amtrak rail network 

is equal to 0.161. 
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Table 4. 2 Top 40 critical nodes of the Amtrak rail network. 

 
aNW (northwest area), SW (Southwest area), GL (the Great Lakes are), SE (southeast area), and 

NE (northeast area). 

 

 

 
 
 
 
 
 

 

No. Name of Station Area
a Node Numbering Node Degree Vulnerability 

1 Chicago (Union Station), Illinois GL 64 7 16.10%

2 Hammond-Whiting, Indiana GL 450 4 12.78%

3 Cleveland, Ohio GL 356 3 7.28%

4 Schenectady, New York NE 372 3 6.04%

5 South Bend, Indiana GL 449 2 5.89%

6 Buffalo (Exchange St),  New York NE 358 3 5.81%

7 Elkhart, Indiana GL 448 2 5.73%

8 Waterloo, Indiana GL 447 2 5.61%

9 Bryan, Ohio GL 446 2 5.53%

10 Elyria, Ohio GL 443 2 5.50%

11 Toledo, Ohio GL 445 2 5.48%

12 Sandusky, Ohio GL 444 2 5.47%

13 Michigan City, Indiana GL 456 2 5.41%

14 Galesburg, Illinois GL 71 4 5.12%

15 Niles, Michigan GL 457 2 4.99%

16 Dowagiac, Michigan GL 458 2 4.61%

17 Erie, Pennsylvania NE 357 2 4.57%

18 Jacksonville, Florida SE 282 3 4.30%

19 Kalamazoo, Michigan GL 459 2 4.26%

20 Glenview, Illinois GL 63 2 4.22%

21 Springfield, Massachusetts NE 388 4 4.17%

22 Battle Creek, Michigan GL 460 3 4.05%

23 Sturtevant, Wisconsin GL 62 2 3.87%

24 Washington, DC NE 323 3 3.77%

25 San Bernardino, California NW 99 4 3.63%

26 Buffalo (Depew), New York NE 366 2 3.61%

27 Milwaukee (General Mitchell Intl Airport), Wisconsin GL 61 2 3.57%

28 New Orleans, Louisiana SE 217 4 3.56%

29 Alexandria, Virginia NE 320 3 3.54%

30 Rochester, New York NE 367 2 3.49%

31 Albany/Rensselaer, New York NE 386 3 3.44%

32 La Grange, Illinois GL 65 2 3.43%

33 Syracuse, New York NE 368 2 3.40%

34 Rome, New York NE 369 2 3.33%

35 Palatka, Florida SE 283 2 3.33%

36 Milwaukee, Wisconsin GL 60 2 3.31%

37 Utica, New York NE 370 2 3.30%

38 Amsterdam, New York NE 371 2 3.30%

39 Naperville, Illinois GL 66 2 3.21%

40 Saratoga Springs, New York NE 373 2 3.16%
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Table 4. 3 Top 40 critical links of the Amtrak rail network. 

 
a NW (northwest area), SW (Southwest area), GL (the Great Lakes are), SE (southeast area), and 

NE (northeast area). 

 

Figure 4.7 shows the arrangement of the top 40 critical nodes, where blue circles indicate the top 

20 critical nodes and green circles represent the remaining top 21-40 critical nodes. In this case, 

the majority of top 40 critical nodes are concentrated in the Great Lakes and the northeast areas. 

No. Starting Node Ending Node Area
a Vulnerability 

1 69 70 GL 7.97%

2 400 401 NE 5.97%

3 388 400 NE 5.80%

4 402 516 NE 5.71%

5 398 399 NE 5.67%

6 397 398 NE 5.58%

7 315 316 NE 5.53%

8 396 397 NE 5.52%

9 394 395 NE 5.50%

10 395 396 NE 5.49%

11 406 407 NE 5.29%

12 407 408 NE 4.90%

13 314 315 NE 4.67%

14 408 409 NE 4.55%

15 316 317 NE 4.53%

16 63 64 GL 4.43%

17 409 410 NE 4.23%

18 62 63 GL 4.08%

19 61 62 GL 3.78%

20 318 319 NE 3.72%

21 238 239 SE 3.64%

22 324 325 NE 3.59%

23 64 65 GL 3.52%

24 60 61 GL 3.51%

25 325 326 NE 3.49%

26 330 437 NE 3.47%

27 326 327 NE 3.42%

28 240 241 SE 3.37%

29 327 328 NE 3.37%

30 329 330 NE 3.35%

31 328 329 NE 3.35%

32 70 71 GL 3.29%

33 59 60 GL 3.27%

34 277 278 SE 3.25%

35 79 80 GL 3.23%

36 312 364 NE 3.15%

37 313 312 NE 3.13%

38 71 72 GL 3.12%

39 241 242 SE 3.12%

40 58 59 GL 3.05%
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For example, 22 nodes are located in the Great Lakes area, accounting for 55 percent, while 14 

nodes are located in the northeast area, accounting for 35 percent. Figure 4.8 demonstrates the 

arrangement of the top 40 critical links, with similar indicators of blue squares for the top 20 

critical links and green squares represent the remaining top 21-40 critical links. The top 40 

critical links are still concentrated in the Great Lakes and northeast areas. All top 20 critical 

links, and 90 percent of top 40 critical links are located in these two areas. As a result, the critical 

areas of the Amtrak rail network are the Great Lakes and northeast areas. Additionally, the 

network vulnerability due to the failure of node 64 (Chicago (Union Station), Illinois) and node 

450 (Hammond-Whiting, Indiana) are much higher than other components of the Amtrak rail 

network. The most critical link is also in the Great Lakes area. Therefore, we will focus on the 

Great Lakes as the most critical area.  

 

 

Figure 4. 7 Arrangement of the Amtrak rail network’s top 40 critical nodes.  

(Reproduced and edited from Federal Railroad Administration - Safety Map 2020.) 
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Figure 4. 8 Arrangement of the Amtrak rail network’s top 40 critical links.  

(Reproduced and edited from Federal Railroad Administration - Safety Map 2020.) 

 

The failure of node 64 and node 450 leads to greater network vulnerability than other nodes in 

the Amtrak rail network. The characteristics of these two nodes need to be analyzed with 

emphasis. This thesis will analyze the characteristics of critical nodes from the perspective of the 

area where they are located, the node degree, and the connectivity pattern.  

 

The top 40 critical nodes are mainly concentrated in the Great Lakes and the northeastern area. 

Table 4.4 demonstrates the comparison of the Amtrak network’s five areas. Node density is the 

number of nodes per unit area. Diameter of an area is defined as the maximum value of the 

shortest path length between all pairs of nodes in this area. In this table, the value in each column 

is the ratio between any two areas’ characteristics. The node density of Great Lakes and 

northeast are greater than that of other areas, while the difference of other characteristics 

between the Amtrak network’s five areas are relatively small.  
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Table 4. 4 Comparison of the Amtrak network’s five areas. 

 

 

Node 64 (Chicago (Union Station)) and node 450 (Hammond-Whiting Station) are more critical 

than all other nodes. The most typical feature of these two nodes is that their node degrees are 

relatively large. Figure 4.9 shows the correlation between network vulnerability due to node 

failures and the node degree of failed node. For the top 20 critical nodes, network vulnerability is 

positive linear correlated to the node degree. The correlation continues to decrease as the number 

of critical nodes increases. However, node degree and network vulnerability still maintain a 

positive linear correlation. Thus, it can be determined that the greater the node degree, the greater 

node vulnerability might be. Because, when a node is disrupted, all links connected to it are 

considered disrupted. A node with the higher node degree means that when this node is 

disrupted, more links will also be disrupted, which leads to more severe network efficiency loss.  

 

Area Node Density Average Node Degree Characteristic Path Length Diameter

Northwest 1.00 1.03 1.47 1.38

Southwest 1.99 1.04 1.82 2.00

Great Lakes 5.23 1.00 1.00 1.00

Southeast 2.10 1.04 1.09 1.16

Northeast 6.92 1.05 1.30 1.38
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Figure 4. 9 Correlation between network vulnerability due to node failures and the node degree 

of the failed node. 

 

The measurement of the vulnerability is based on the network efficiency loss that is related to the 

change in network connectivity. A connectivity pattern called the typical connectivity pattern 1 is 

defined and shown as Figure 4.10. In this connectivity pattern, a bridge link 𝑒12 connects two 

transfer nodes: 𝑠1 and 𝑠2, whose node degrees are equal to or more than 3. Also, several branch 

links connect the transfer nodes with their affiliated nodes. For example, the branch links 𝑒13 and 

𝑒14 connect the transfer node 1 with its affiliated nodes 3 and 4. Additionally, a small number of 

intermediate nodes might be on the bridge link.  

 

More than 90 percent of the top 40 critical nodes fall on the typical connectivity pattern 1, 

especially the transfer node and nodes falling on the bridge link. Because if these nodes disrupt, 
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the shortest path length between the nodes on two sides of the bridge link will greatly increase, 

which means the network efficiency will significantly decrease. In the typical connectivity 

pattern 1 of node 64 and 450 shown in Figure 4.11, over ten of the top 40 critical nodes fall on it, 

indicating that nodes on the typical connectivity pattern 1 are likely to produce larger node 

vulnerability than other nodes. In summary, for the typical connectivity pattern in high node 

density areas of the Amtrak rail network, the network vulnerability due to the failure of transfer 

nodes (i.e., large node degree) and nodes on the bridge link might be very large.  

 

 

Figure 4. 10 Typical connectivity pattern 1. 

 

 

Figure 4. 11 The typical connectivity pattern 1 of node 64 and 450.  
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Table 4.3 and Figure 4.8 show the values and arrangement of the top 40 critical links. Compared 

with the node 64 and 450 that are more critical than other nodes, no link is significantly critical 

than other links. The top 40 critical links are still concentrated in the Great Lakes and northeast 

areas. However, in addition to some nodes that are still concentrated around the Chicago Union 

Station, more nodes are concentrated in the northeast corner instead of the area between Chicago 

and New York. 

 

Links with high vulnerability concentrating around the Chicago Union Station and Washington 

D.C. are still in the typical connectivity pattern 1. However, more critical links are concentrated 

on the line that contains the “end-node” (i.e., a node with node degree of 1), for example, the line 

from node 388 to node 399 and node 402 to 411. The explanation of this phenomenon is that 

when a link in the line with “end-node” disrupts, several nodes on this line cannot be reached by 

other nodes in the network. Some shortest path length will be infinity, leading to the network 

efficiency significantly decreasing. For example, if link 𝑒398,399 disrupts, the shortest path length 

between other nodes and node 399 will become infinity. Therefore, the network efficiency will 

be severely lost, which means the vulnerability of link 𝑒398,399 is relatively high.  

 

In summary, critical links of the Amtrak rail network are still concentrated in the areas with high 

node density. Also, most of the top 40 critical links are in the typical connectivity pattern 1 or the 

line with the “end-node.”  
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4.1.2.3 Topology Enhancement of the Amtrak Rail Network 

Depending on the vulnerability assessment, the Great Lakes area is identified as the most critical 

area of the Amtrak rail network. Two hypothetical loop lines are added around the most critical 

node 64 and 450 to create redundancy for the Great Lakes area, enhancing the network topology 

and reducing the vulnerability. In this section, the network vulnerability changes due to the 

failure of 10 nodes (i.e., node 64, 450, 356, 449, 448, 447, 446, 443, 445, and 444) and 10 links 

(i.e., 𝑒69,70
, 𝑒63,64

, 𝑒62,63
, 𝑒61,62

, 𝑒64,65
, 𝑒60,61

, 𝑒70,71
, 𝑒59,60

, 𝑒79,80
, 𝑒71,72

) are examined to 

verify if the topology enhancement is applicable to the Amtrak rail network.  

 

The first hypothetical loop line connects existing nodes consisting of 7 added links: 𝑒60,70
, 

𝑒70,193
, 𝑒193,202

, 𝑒202,361
, 𝑒361,447

, 𝑒447,459
, and 𝑒459,455

, which is the yellow line shown in 

Figure 4.12 (a). The second hypothetical loop line consists of 5 added links 𝑒59,70
, 𝑒70,193

, 

𝑒193,202
, 𝑒202,266

, and 𝑒266,355
, again shown as the yellow line in Figure 4.12 (b).  

 

 

Figure 4. 12 Hypothetical loop lines added into the Amtrak rail network: (a) Loop Line 1; (b) 

Loop Line 2. 
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Table 4.5 and Figure 4.13 show the changes in the network vulnerability due to the failure of 10 

nodes in the Great Lakes area after adding two loop lines. After adding the loop line 1, the 

network vulnerability due to the failure of nodes 64 and 450 has been significantly reduced to 

almost zero. The same phenomenon occurs on the node 449 and 448. However, the network 

vulnerability due to the failure of node 356, 443, 444, 445, 446 and 447 increases. These nodes 

can be regarded as falling outside the circle where node 64 or 450 is the center and loop line 1 is 

the arc. Therefore, loop line 2 is designed to cover more critical nodes and links inside the circle. 

After adding the loop line 2, the vulnerability due to the failure of all ten selected nodes have 

been reduced significantly to almost 0. However, the reduction magnitude of node 450 and 356 

is smaller than other nodes, because the loop line 2 does not connect all the branch links of the 

transfer node 450 and 356 due to geographical reasons (i.e., the loop line is difficult to build 

across lakes). If the loop line 2 is extended to pass through node 355, 357, 370, 461, 455, the 

network vulnerability due to the failure of node 450 and 356 can be reduced significantly to 

0.006 and 0.007, respectively, which demonstrates that adding a loop line is effective to reduce 

the network vulnerability due to the failure of nodes (Saadat et al. 2020). 

 

Table 4. 5 Comparison of loop lines' impact on network vulnerability due to the failure of nodes. 

 
aThese node numberings are provided in Figures 4.4.  

Ranking Station Numbering
a Original network Loop line 1 Loop line 2

1 Chicago (Union Station), Illinois 64 16.10% 0.78% 1.83%

2 Hammond-Whiting, Indiana 450 12.78% 0.41% 7.15%

3 Cleveland, Ohio 356 7.28% 8.27% 6.51%

4 South Bend, Indiana 449 5.89% 0.10% 0.25%

5 Elkhart, Indiana 448 5.73% 0.17% 0.16%

6 Waterloo, Indiana 447 5.61% 8.62% 0.14%

7 Bryan, Ohio 446 5.53% 6.99% 0.16%

8 Elyria, Ohio 443 5.50% 6.63% 0.53%

9 Toledo, Ohio 445 5.48% 6.81% 0.23%

10 Sandusky, Ohio 444 5.47% 6.69% 0.35%

Vulnerability
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Figure 4. 13 Comparison of loop lines' impact on network vulnerability due to the failure of 

nodes. 

 

Table 4.6 and Figure 4.14 show the impact of adding two loop lines on the 10 critical links in the 

Great Lakes area. After adding the loop line 1, the network vulnerability due to the failures of 

any links except 𝑒59,60 has been greatly reduced, because the loop line 1 does not cover the link 

between node 59 and 60 inside the circle, which may cause negative impacts on this link. Adding 

the loop line 2 can enhance all selected critical links.  
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Table 4. 6 Comparison of loop lines' impact on network vulnerability due to the failure of links. 

 
aThese link numberings are automatically generated by Matlab program. 

 

 

Figure 4. 14 Comparison of loop lines' impact on network vulnerability due to the failure of 

links. 

 

Additionally, after adding hypothetical loop lines, the maximum network vulnerability of the 

Amtrak rail network needs to be assessed to examine the impact of loop lines on the entire 

network. Table 4.7 summarizes the change in the network efficiency, characteristic path length 

and vulnerability of the entire Amtrak network. As a result, adding the loop line 1, which 

Ranking Link Numbering
a Original network Loop line 1 Loop line 2

1 (69,70) 71 7.97% 0.01% 0.07%

2 (63,64) 65 4.43% 0.03% 0.06%

3 (62,63) 64 4.08% 0.04% 0.06%

4 (61,62) 63 3.78% 1.36% 0.12%

5 (64,65) 66 3.52% 0.09% 0.13%

6 (60,61) 62 3.51% 0.13% 1.93%

7 (70,71) 72 3.29% 0.22% 1.36%

8 (59,60) 61 3.27% 3.98% 0.25%

9 (79,80) 80 3.23% 0.77% 0.79%

10 (71,72) 73 3.12% 0.05% 0.02%

Vulnerability
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contains only 7, links improves the overall network efficiency by 9.1 percent and reduces the 

network vulnerability by 46.5 percent. Adding the loop line 2, which contains only 5 links, 

improves the overall network efficiency by 15.5 percent and reduces the network vulnerability 

by 46.6 percent. Therefore, adding a loop line can effectively enhance the topology of the 

Amtrak rail network.  

 

Table 4. 7 The impact of adding loop lines on the entire Amtrak rail network. 

 

 

4.1.2.4 Recovery Strategies for Node 64 

The most critical node 64 (i.e., Chicago (Union Station)) plays an essential role in the Amtrak 

rail network. Assuming a disruptive event of node 64 and its connected links, the optimal 

recovery sequence based on the resilience index needs to be determined. After node 64 and its 

connected links 𝑒63,64
, 𝑒64,65

, 𝑒362,64
, 𝑒64,363

, 𝑒64,271
, 𝑒64,450

 are disrupted, 1 node and 6 links 

need to be repaired to recover the network efficiency fully. Assuming only one component can 

be repaired in a recovery stage, the number of all possible recovery sequences is equal to 5,040, 

i.e., the permutation of 7. The resilience index can be calculated as Equation (3.31) by assuming 

that the time of each recovery stage is constant and that the network efficiency will not be 

recovered by the repair of links before the node is repaired.  

 

Network type Network efficiency Characteristic path length Network vulnerability

Original network 0.0463 35.40 16.10%

Network with loop line 1 0.0505 32.26 8.62%

Network with loop line 2 0.0535 30.12 8.60%
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The initial network efficiency is equal to 0.0464, and the network efficiency decreases to 0.0388 

after the disruption of node 64 and its connected links. Figure 4.15 through Figure 4.18 (a) show 

the comparison of recovery triangles. Table 4.8 and Figure 4.18 (b) show the top 10 resilience 

index values of different recovery sequences. Recovery sequence s64- (64,450)- (63,64)- (64,65)- 

(64,363)- (64,271)- (362,64) is identified as optimal, with the largest value of resilience index 

0.9275, which means if node 64 and its connected links are disrupted, node 64 should be repaired 

first, then link 𝑒64,450
, 𝑒63,64

, 𝑒64,65
, 𝑒64,363

, followed by link 𝑒64,271
, and finally link 𝑒362,64

. 

 

Table 4. 8 Top 10 Resilience index for the sequential recovery strategies of node 64. 

 

 

Ranking Recovery sequence Re

1 s 64 - (64,450)- (63,64)- (64,65)- (64,363)- (64,271)- (362,64) 0.9275

2 s 64 - (64,450)- (63,64)- (64,65)- (64,271)- (64,363)- (362,64) 0.9264

3 s 64 - (64,450)- (63,64)- (64,363)- (64,65)- (64,271)- (362,64) 0.9263

4 s 64 - (64,450)- (64,65)- (63,64)- (64,363)- (64,271)- (362,64) 0.9261

5 s 64 - (64,450)- (64,65)- (63,64)- (64,271)- (64,363)- (362,64) 0.9251

6 s 64 - (64,450)- (63,64)- (64,65)- (64,363)- (362,64)- (64,271) 0.9246

7 s 64 - (64,450)- (63,64)- (64,271)- (64,65)- (64,363)- (362,64) 0.9244

8 s 64 - (64,450)- (63,64)- (64,363)- (64,271)- (64,65)- (362,64) 0.9240

9 s 64 - (64,450)- (64,65)- (64,363)- (63,64)- (64,271)- (362,64) 0.9235

10 s 64 - (64,450)- (63,64)- (64,363)- (64,65)- (362,64)- (64,271) 0.9234
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Figure 4. 15 (a) Node 64 repaired in the first order; (b) Node 64 repaired in the second order. 

 

 

Figure 4. 16 (a) Node 64 repaired in the third order; (b) Node 64 repaired in the fourth order. 
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Figure 4. 17 (a) Node 64 repaired in the fifth order; (b) Node 64 repaired in the sixth order. 

 

 

Figure 4. 18 (a) Node 64 repaired in the seventh order; (b) Top 10 resilience index. 
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4.2 Case Study2: Class I Rail Network 

4.2.1 Mapping the Class I Rail Network 

Each Class I railroad entity owns and operates its own rail network. However, the Class I entities 

can also share their rails with each other. Therefore, in this thesis, the Class I rail network is 

regarded as a whole for analysis and research, which serves more than 40,000 stations and 

130,000 miles of rails in North America, including 46 states, Washington D.C. in the United 

States and several Canadian provinces. Compared to the metro and the Amtrak passenger rail 

networks, the Class I rail network has a larger number of nodes and links, and overly 

complicated connectivity patterns, which means the topology analysis and vulnerability 

assessment for the Class I rail network are very difficult. In order to improve efficiency while 

ensuring the accuracy of the analysis, the following method is proposed: selecting a part of nodes 

and links, then, reducing the size of the Class I rail network (i.e., reduce the number of nodes and 

links without changing the overall network connectivity):  

1. The analysis of the Amtrak rail network indicates that the node density of areas has a 

great impact on the arrangement of critical nodes and links. Therefore, according to the 

actual number of Class I rail network stations, the number of nodes is selected in each 

state proportionally to ensure that the ratio of node density of each area remains 

unchanged; 

2. All transfer nodes must be considered first during the process of reducing the network 

size, because they are the key components of network connectivity; and 

3. Selecting more nodes on the longer rails can minimize the impact of link lengths, 

building an unweighted rail network. 
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Based on these three principles, the Class I rail network with 638 nodes and 860 links is defined 

and mapped. The network vector is specified as follows: 

 

 𝐺 = [638,860] (4.2) 

 

The Class I rail network can be divided into six areas depending on geographic locations: 

northwest (NW), southwest (SW), Great Lakes (GL), central south (CS), southeast (SE), and 

northeast (NE) areas. Figure 4.19 to 4.24 show the graph and numbering of the Class I rail 

network in each area. 

 

 

Figure 4. 19 Graph of the northwest area including Washington, Oregon, Idaho, Montana, 

Wyoming, North Dakota, South Dakota, and Nebraska. 
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Figure 4. 20 Graph of the southwest area including California, Nevada, Utah, Arizona, Colorado, 

and New Mexico. 

 

 

Figure 4. 21 Graph of the Great Lakes area including Minnesota, Iowa, Wisconsin, Illinois, 

Indiana, Michigan, and Ohio. 
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Figure 4. 22 Graph of the central south area including Kansas, Missouri, Oklahoma, Arkansas, 

Louisiana, and Texas. 

 

 

Figure 4. 23 Graph of the southeast area including Tennessee, North Carolina, South Carolina, 

Georgia, Alabama, Mississippi, and Florida. 
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Figure 4. 24 Graph of the northeast area including Kentucky, West Virginia, Virginia, Maryland, 

Washington, D.C., Delaware, Pennsylvania, New Jersey, Connecticut, Rhode Island, New York, 

Massachusetts, Vermont, New Hampshire, and Maine. 

 

4.2.2 Results and Analysis 

4.2.2.1 Topology Analysis of the Class I Rail Network 

The size of the adjacency matrix for the Class I rail network is 638 × 638. Table 4.9 summarizes 

the results of the Class I rail network’s topological indicators. Compared with the Amtrak rail 

network, the characteristic path length and diameter of the Class I rail network have been 

lowered significantly, which means that the Class I rail network is more efficient and developed 

than the Amtrak rail network. Additionally, the local clustering coefficient indicates that the 

nodes of the Class I rail network are more clustered in local areas than the Amtrak rail network. 

The network topology characteristics reflected by topological indicators are consistent with the 
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Class I rail network as shown in Figure 4.25, indicating that the connectivity is accurately 

depicted after reducing the size of the Class I rail network.  

 

Table 4. 9 Topological indicators of the Class I rail network. 

 

 

4.2.2.2 Vulnerability Assessment of the Class I Rail Network 

Table 4.10 shows the top 40 most critical nodes and Table 4.11 demonstrates the top 40 most 

critical links. Therefore, the vulnerability of the Class I rail network is equal to 0.0295. 

Compared with the vulnerability of the Amtrak network, the network vulnerability due to the 

failure of nodes and links in the Class I rail network has been dropped dramatically. This 

demonstrates that the Class I rail network is more developed and robust than the Amtrak rail 

network, because when any component is disrupted, more alternative paths in the Class I rail 

network can be used to reduce the loss of overall network efficiency (i.e., reduce the network 

vulnerability).  

 

 

 

 

No. Topological Indicators Values Notes

1 Average node degree 2.696 /

2 Network density 0.004 /

3 Characteristic path length 16.726 /

4 Diameter of the network 46 /

5 Local clustering coefficient 0.033 Ignore nodes with node degree 1

6 Global network efficiency 0.085 /
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Table 4. 10 Top 40 critical nodes of the Class I rail network. 

 
aNW (northwest area), SW (southwest area), GL (the Great Lakes area), CS (central south area), 

SE (southeast area), and NE (northeast area). 

 

 

 

 

 

 

No. State Area
a Node Numbering Node Degree Vulnerability

1 New York NE 29 5 2.95%

2 Missouri CS 280 7 2.85%

3 lLLinois GL 341 6 2.01%

4 Alabama SE 222 5 1.80%

5 Florida SE 207 6 1.63%

6 Tennessee SE 235 5 1.51%

7 Minnesota GL 407 8 1.42%

8 Michigan GL 151 6 1.22%

9 lLLinois GL 363 7 1.20%

10 New York NE 31 3 1.19%

11 lLLinois GL 340 8 1.18%

12 Alabama SE 219 2 1.14%

13 Ohio GL 119 3 1.10%

14 Colorado SW 521 6 1.09%

15 Massachusetts NE 16 3 1.02%

16 Ohio GL 120 3 1.01%

17 Washington NW 576 3 1.00%

18 New York NE 34 4 0.98%

19 Virginia NE 127 3 0.98%

20 Texas CS 494 6 0.97%

21 New York NE 30 2 0.96%

22 Indiana GL 320 4 0.94%

23 Indiana GL 336 4 0.93%

24 Massachusetts NE 18 3 0.91%

25 Pennsylvania NE 51 3 0.86%

26 Indiana GL 338 4 0.82%

27 Virginia NE 129 4 0.78%

28 lLLinois GL 368 4 0.71%

29 New Hampshire NE 7 2 0.70%

30 lLLinois GL 356 6 0.67%

31 Michigan GL 142 3 0.66%

32 Kansas CS 443 3 0.66%

33 Kansas CS 444 3 0.65%

34 Massachusetts NE 13 2 0.64%

35 New York NE 32 2 0.63%

36 Alabama SE 223 4 0.58%

37 Virginia NE 128 2 0.57%

38 Pennsylvania NE 52 3 0.56%

39 Louisiana CS 255 6 0.56%

40 Ohio GL 114 4 0.55%
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Table 4. 11 Top 40 critical links of the Class I freight network. 

 
a NW (northwest area), SW (southwest area), GL (the Great Lakes area), CS (central south area), 

SE (southeast area), and NE (northeast area). 

 

Figure 4.25 shows the arrangement of the Class I rail network’s top 40 critical nodes, where blue 

circles indicate the top 20 critical nodes and green circles are the top 21-40 critical nodes. 

Compared with the Amtrak rail network, the top 40 critical nodes of the Class I rail network are 

scattered instead of being concentrated in any area. Figure 4.26 demonstrates the arrangement of 

No. Starting Node Ending Node Area
a Vulnerability 

1 181 244 SE 1.15%

2 170 242 SE 1.13%

3 31 32 NE 1.09%

4 7 18 NE 0.99%

5 35 37 NE 0.97%

6 13 16 NE 0.94%

7 124 125 NE 0.89%

8 282 363 GL 0.88%

9 6 7 NE 0.81%

10 37 38 NE 0.74%

11 12 13 NE 0.74%

12 33 35 NE 0.73%

13 53 54 NE 0.71%

14 38 40 NE 0.68%

15 126 127 NE 0.65%

16 582 583 NW 0.65%

17 4 6 NE 0.65%

18 129 135 NE 0.64%

19 143 145 GL 0.63%

20 131 136 NE 0.59%

21 446 448 CS 0.58%

22 11 12 NE 0.55%

23 379 380 GL 0.53%

24 34 14 NE 0.53%

25 32 34 NE 0.50%

26 307 236 NE 0.50%

27 553 555 NW 0.48%

28 624 625 SW 0.48%

29 576 577 NW 0.47%

30 309 236 NE 0.46%

31 216 238 SE 0.44%

32 606 607 SW 0.44%

33 581 582 NW 0.43%

34 125 131 NE 0.42%

35 412 534 NW 0.42%

36 507 509 CS 0.42%

37 123 129 NE 0.41%

38 48 49 NE 0.41%

39 87 134 NE 0.40%

40 248 249 SE 0.40%
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the Class I rail network’s top 40 critical links, where blue squares indicate the top 20 critical 

nodes and green squares are the top 21-40 critical links. More than 75 percent of the top 20 

critical links are concentrated in the northeast area. Additionally, the most critical node 29 is also 

located in this area. As a result, the northeast area of the Class I rail network is identified as the 

most critical area. 

 

 

Figure 4. 25 Arrangement of the Class I rail network’s top 40 critical nodes.  

(Purchased, permitted and edited from Mapsofworld.com. (2020). US Railroad Map, US 

Railway Map, USA Rail Map for Routes. <https://www.mapsofworld.com/usa/usa-rail-

map.html> (Accessed 31 May 2020).) 
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Figure 4. 26 Arrangement of the Class I rail network’s top 40 critical links.  

(Purchased, permitted and edited from Mapsofworld.com. (2020). US Railroad Map, US 

Railway Map, USA Rail Map for Routes. <https://www.mapsofworld.com/usa/usa-rail-

map.html> (Accessed 31 May 2020).) 

  

Based on the analysis of the Amtrak rail network, critical nodes are concentrated in the typical 

connectivity pattern 1 in areas with high node density. However, critical nodes of the Class I rail 

network are not concentrated in any areas but are scattered in almost all areas. Table 4.12 

demonstrates the comparison of the Class I rail network’s six areas. Node density is the number 

of nodes per unit area. Diameter of an area is defined as the maximum value of the shortest path 

length between all pairs of nodes in this area. In this table, the value in each column is also the 

ratio between any two areas’ characteristics. From Table 4.12, the differences in characteristics 

between the Class I rail network’s six areas are small with the exception of node density, which 
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is similar to the analysis result of the Amtrak rail network. Additionally, the differences in node 

density between the Class I rail network’s areas are smaller than the Amtrak rail network, which 

may explain why the top 40 critical nodes of the Class I rail network are scattered in each area 

rather than being concentrated on one or two areas. 

 

Table 4. 12 Comparison of the Class I rail network’s six areas. 

 

 

Figure 4.27 shows the correlation between network vulnerability due to node failures and the 

node degree of failed node for the Class I rail network. In this case, network vulnerability is not 

positively linear correlated with the node degree. Because in the Class I rail network, many loop 

lines are around the nodes with larger node degree, which greatly reduces the network 

vulnerability due to node failures, thereby reducing the correlation between node vulnerability 

and node degree. For example, nodes 340 in the Class I rail network has the same location and 

largest node degree as nodes 64 in the Amtrak rail network. However, the vulnerability due to 

the failure of node 340 in the Class I rail network has dropped significantly. From Figure 4.21, 

several loop lines are around nodes 340. One of the loop lines is 𝑒342,343, 𝑒343,345, 𝑒345,348, 

𝑒348,351, 𝑒351,356, 𝑒356,361, and 𝑒361,365. Another loop line is  𝑒343,344, 𝑒344,346, 𝑒346,349, 𝑒349,353, 

𝑒353,358, 𝑒358,360, and 𝑒360,364. These loop lines significantly reduce the criticality of nodes 340. 

Area Node Density Average Node Degree Characteristic Path Length Diameter

Northwest 1.25 1.12 1.32 1.40

Southwest 1.00 1.11 1.08 1.07

Great Lakes 3.52 1.31 1.27 1.40

Central South 2.02 1.30 1.00 1.00

Southeast 3.01 1.16 1.07 1.13

Northeast 4.26 1.00 1.67 1.87
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When node 340 and its connected links are disrupted, loop lines create redundancy and can be 

used as alternative routes leading to the reduction in network vulnerability. For example, if node 

340 is disrupted, the shortest path length from node 378 to node 352 is 9 with loop lines, while 

the shortest path length becomes 17 without loop lines. Figure 4.28 shows the changes in the 

network vulnerability due to the failure of nodes 340 and 407 after losing loop lines around 

them. Afterward, the correlation coefficient between network vulnerability due to node failures 

and node degree for the top 20 critical nodes increases to 0.6814. 

 

 

Figure 4. 27 Correlation between network vulnerability due to node failures and the node degree 

of the failed node. 
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Figure 4. 28 Changes in the network vulnerability due to the failure of nodes 340 and 407 after 

losing loop lines. 

 

Table 4.11and Figure 4.26 show the value and arrangement of the top 40 critical links. Compared 

with the Amtrak rail network, the network vulnerability due to the failure of links for the Class I 

rail network has dropped significantly, and 75 percent of the top 20 critical links are concentrated 

in the northeast area with the highest node density. Additionally, most of the top 40 critical links 

are located in the typical connectivity pattern 1 or the line with the “end-node,” which is the 

same as the conclusion of the Amtrak rail network.  

 

4.2.2.3 Topology Enhancement of the Class I Rail Network 

Depending on the vulnerability assessment, the northeast area is identified as the most critical 

area of the Class I rail network. A hypothetical loop line is added around the most critical node 
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29 to create redundancy for the northeast area, enhancing the network topology and reducing the 

vulnerability. In this section, the vulnerability changes in 6 nodes (i.e., nodes 29, 30, 31, 32, 34, 

and 16) and 9 links (i.e., 𝑒31,32, 𝑒35,37, 𝑒13,16, 𝑒37,38, 𝑒12,13, 𝑒33,35, 𝑒38,40, 𝑒34,14, and 𝑒32,34) in 

the northeast area are examined to verify if the topology enhancement is applicable to the Class I 

rail network.  

 

The hypothetical loop line for the Class I rail network connects existing nodes consisting of 7 

links: 𝑒25,26, 𝑒26,10, 𝑒10,17, 𝑒17,21, 𝑒21,39, 𝑒39,40, and 𝑒40,49, which is the yellow line as shown in 

Figure 4.29.  

 

 

Figure 4. 29 Hypothetical loop lines added into the Class I rail network.  

 

Table 4.13 and Figure 4.30 show the changes in network vulnerability due to the failure of nodes 

in the northeast area after adding the hypothetical loop line. All examined nodes fall inside the 
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circle where node 29 is the center, and the loop line is the arc. Therefore, the vulnerability due to 

the failure of nodes 31, 16, 34, 30, and 32 has been reduced significantly to almost zero. Also, the 

vulnerability due to the failure of node 29 has been reduced by half. As a result, adding loop lines 

in the Class I rail network effectively reduces the network vulnerability due to the failure of nodes. 

 

Table 4. 13 Changes in network vulnerability due to the failure of nodes after adding a loop line. 

 
aThese node numberings are provided in Figure 4.24.  

 

 

Figure 4. 30 Changes in network vulnerability due to the failure of nodes after adding a loop line. 

 

Ranking Numbering
a Area Original network Loop line

1 29 NE 2.95% 1.43%

2 31 NE 1.19% 0.087%

3 16 NE 1.02% 0.026%

4 34 NE 0.98% 0.092%

5 30 NE 0.96% 0.112%

6 32 NE 0.63% 0.036%

Vulnerability
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Table 4.14 and Figure 4.31 show the changes in network vulnerability due to the failure of links 

in the northeast area after adding the hypothetical loop line. All examined links are located inside 

the circle. Therefore, adding the hypothetical loop line causes the positive impacts on the 

examined links, reducing network vulnerability significantly.  

 

Table 4. 14 Changes in network vulnerability due to the failure of links after adding a loop line.  

 
aThese link numberings are automatically generated by Matlab program. 

 

 

Figure 4. 31 Changes in network vulnerability due to the failure of links after adding a loop line. 

Ranking Link Numbering
a Original network Loop line 1 

1 (31,32) 43 1.09% 0.10%

2 (35,37) 47 0.97% 0.32%

3 (13,16) 15 0.94% 0.024%

4 (37,38) 49 0.74% 0.099%

5 (12,13) 14 0.74% 0.009%

6 (33,35) 45 0.73% 0.390%

7 (38,40) 51 0.68% 0.091%

8 (34,14) 17 0.53% 0.055%

9 (32,34) 44 0.50% 0.083%

10 (71,72) 73 3.12% 0.05%

Vulnerability
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Additionally, after adding loop lines, the maximum network vulnerability of the Class I rail 

network needs to be assessed to examine the impact of the addition of loop lines on the entire Class 

I rail network. Table 4.15 summarizes the changes in the efficiency, characteristic path length, and 

the vulnerability of the entire Class I rail network. The entire network has been enhanced slightly, 

indicating that adding a loop line in the northeast area cannot effectively enhance the topology of 

the entire Class I rail network. As a result, for the Class I rail network with complex and developed 

connectivity among nodes and links, more hypothetical loop lines need to be designed and added 

in several areas rather than the most critical area to enhance the topology of the entire network.  

 

Table 4. 15 Impacts of adding the loop line on the entire Class I rail network. 

 

 

4.2.2.4 Recovery Strategies for Node 29 

The most critical node 29 plays a critical role in the Class I rail network. Assuming potential 

failures lead to the disruption of node 29 and its connected links, the optimal recovery sequence 

that generates the largest value of resilience index needs to be determined to enhance the 

network resilience. After node 29 and its connected links 𝑒29,30
, 𝑒29,33

, 𝑒29,51
, 𝑒29,144

, and 𝑒29,151
 

are disrupted, 1 node and 6 links need to be repaired to recover the network efficiency fully. 

Assuming only one component can be repaired in a recovery stage, the number of all possible 

recovery sequences is equal to 720, i.e., the permutation of 6. The resilience index can be 

Network type Network efficiency Characteristic path length Network vulnerability

Original network 0.085 16.73 2.95%

Network with the loop line 0.0863 16.54 2.84%
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calculated using Equation (3.31) by assuming that the time of each recovery stage is constant and 

that the network efficiency will not be recovered by the repair of links before the node repair.  

The initial network efficiency is equal to 0.085, and the network efficiency decreases to 0.0828 

after the disruption of node 29 and its connected links.  

 

Figure 4.32 to Figure 4.34 show the comparison of recovery triangles. In Figure 4.32, repairing a 

link has negative impacts on the recovery of network efficiency. The reason for the occurrence of 

this phenomenon is that after repairing a node, the number of nodes is also increased by one 

when calculating network efficiency. Depending on Equation 3.29, the network efficiency 

decreases when the denominator increases more than the numerator. Table 4.16 and Figure 4.35 

show the top 10 resilience index values of different recovery sequences. Therefore, if node 29 

and its connected links are disrupted, link 𝑒29,151
 should be repaired first, then node 29, link 

𝑒29,30
, 𝑒29,51

, followed by link 𝑒29,33
, and finally link 𝑒29,144

. 

 

Table 4. 16 Top 10 resilience index for the sequential recovery strategies of node 29.  

 

Ranking Recovery sequence Re

1 (29,151)- s 29 - (29,30)- (29,51)- (29,33)- (29,144) 0.9835

2 s 29 - (29,30)- (29,151)- (29,51)- (29,33)- (29,144) 0.9833

3 (29,151)- s 29 - (29,33)- (29,30)- (29,51)- (29,144) 0.9826

4 s 29 - (29,151)- (29,30)- (29,51)- (29,144)- (29,33) 0.9825

5 s 29 - (29,33)- (29,151)- (29,30)- (29,51)- (29,144) 0.9824

6 s 29 - (29,30)- (29,151)- (29,51)- (29,144)- (29,33) 0.9823

7 (29,151)- s 29 - (29,33)- (29,51)- (29,30)- (29,144) 0.9816

8 s 29 - (29,51)- (29,30)- (29,151)- (29,33)- (29,144) 0.9815

9 s 29 - (29,33)- (29,151)- (29,51)- (29,30)- (29,144) 0.9814

10 s 29 - (29,30)- (29,151)- (29,144)- (29,33)- (29,51) 0.9813
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Figure 4. 32 (a) Node 29 repaired in the first order; (b) Node 29 repaired in the second order. 

 

 

Figure 4. 33 (a) Node 29 repaired in the third order; (b) Node 29 repaired in the fourth order. 
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Figure 4. 34 (a) Node 29 repaired in the fifth order; (b) Node 29 repaired in the sixth order. 

 

 

Figure 4. 35 Top 10 resilience index. 
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4.3 Discussion of the Proposed Methodology Results 

The methodology proposed in Chapter 3 is applied to analyze the Amtrak and Class I rail 

networks from the topological perspectives, and to further reduce the impacts of potential 

failures. The calculation of topological indicators, such as average node degree, characteristic 

path length, and local clustering coefficient, can well describe the arrangement of and the 

connectivity among these two networks’ components. The topology enhancement and sequential 

recovery strategies succeed in reducing the vulnerability and enhancing the resilience of the 

Amtrak and Class I rail networks based on the vulnerability assessment to identify the critical 

components and area. 

 

4.3.1 Summaries of the Amtrak Rail Network  

The Amtrak rail network contains 529 nodes and 552 links and can be divided into five areas as 

shown in Figure 4.2 to Figure 4.6. The size of the Amtrak rail network’s adjacency matrix is 

529 × 529. Using the equations in Chapter 3 to calculate the indicators can effectively analyze 

the topology of the Amtrak rail network. Table 4.1 summarizes the results of the Amtrak rail 

network’s topological indicators.  

 

The size of matrices and the number of iterations in the vulnerability assessment of the Amtrak 

rail network is also not overly large. Table 4.2 shows the top 40 most critical nodes and Table 

4.3 demonstrates the top 40 most critical links. These critical nodes and links are identified as the 

critical components of the Amtrak rail network. Based on the arrangement of the critical 

components as shown in Figure 4.7 and 4.8, the Great Lakes area is identified as the critical area 

of the Amtrak rail network. Additionally, most of the critical nodes of the Amtrak rail network 
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are the nodes with a large node degree located in the typical connectivity pattern 1 of high node 

density areas. Most critical links of the Amtrak rail network are located in the typical 

connectivity pattern 1 or the line with the “end-node” of high node density areas. 

 

The topology enhancement and sequential recovery strategies are used to reduce the impacts of 

potential failures on the Amtrak rail network by reducing vulnerability and enhancing resilience. 

Table 4.5 to 4.7 and Figure 4.13 to 4.14 indicate that adding a proper loop line in the critical area 

of the Amtrak rail network can effectively reduce the network vulnerability and improve the 

network efficiency. Additionally, the resilience of the Amtrak rail network can be well measured 

based on the changes in network efficiency. After node 64 and its connected links are disrupted, 

recovery sequence s64- (64,450)- (63,64)- (64,65)- (64,363)- (64,271)- (362,64) is identified as 

the optimal one with the largest value of resilience index 0.9275.  

 

In summary, the proposed methodology can be used effectively to analyze the topology, 

vulnerability, and resilience of the Amtrak rail network. The topology enhancement and 

sequential recovery strategies are also applicable to the Amtrak network to reduce the impacts of 

potential failures.  

 

4.3.2 Summaries of the Class I Rail Network  

The real Class I rail network contains more than 40,000 nodes and links. The size of the Amtrak 

rail network’s adjacency matrix is beyond 40000 × 40000. In addition, when calculating the 

network vulnerability, the number of iterations exceeds 128 trillion. Therefore, measuring the 

topological indicators and vulnerability of the Class I rail network is extremely difficult and 
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inefficient. In this case, the size of the Class I rail network is reduced to 638 nodes and 860 links 

using the method described in section 4.2.1, while keeping the connectivity of the Class I rail 

network unchanged. Table 4.9 summarizes the results of the Class I rail network’s topological 

indicators, indicating that the Class I rail network is more efficient and developed than the 

Amtrak rail network.  

 

Table 4.10 shows the top 40 most critical nodes and Table 4.11 demonstrates the top 40 most 

critical links. These critical nodes and links are identified as the critical components of the Class 

I rail network. Based on the arrangement of the critical components as shown in Figure 4.25 and 

4.26, the northeast area is identified as the critical area of the Class I rail network. Compared 

with the Amtrak rail network, the critical nodes of the Class I rail network are more scattered 

instead of being concentrated in any area. Meanwhile, critical nodes with greater vulnerability 

may not have a larger node degree. Most of the critical links of the Class I rail network are still 

located in the typical connectivity pattern 1 or the line with the “end-node” of high node density 

areas. 

 

Table 4.13 to 4.15 and Figure 4.30 to 4.31 indicate that adding a proper loop line in the critical 

area of the Class I rail network can still effectively reduce the vulnerability due to the failure of 

nodes and links in the critical area. However, the network efficiency, characteristic path length, 

and the maximum network vulnerability of the Class I rail network has been enhanced slightly. 

Additionally, the optimal recovery sequence for node 29 can also be determined with respect to 

the largest resilience index.  

 



 91 

In summary, after reducing the size of the Class I rail network, the proposed methodology can be 

well used to analyze the network topology, vulnerability, and resilience accurately and 

effectively. Also, the topology enhancement and sequential recovery strategy is applicable to the 

Class I rail network to reduce the impacts of potential failures.  
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Chapter 5: Conclusions  

Rail networks are real-life examples of complex networks and critical logistic and economic 

contributors to the wellbeing of society. The potential failures of rail networks due to natural or 

human-caused hazards can cause disruptions, leading to severe consequences including 

significant economic impacts. This thesis proposes a methodology to analyze rail networks with 

a large number of nodes, links, and complex connectivity from the topological perspectives and 

further evaluate and reduce the impacts of potential failures on rail networks. Based on the 

analysis of two case studies: the Amtrak and Class I rail networks, it can be concluded that the 

proposed methodology is appropriate and well suited to analyze the topology, vulnerability, and 

resilience of complex rail networks effectively and efficiently. The results also indicate that 

topology enhancements and recovery strategies are applicable to rail networks in order to reduce 

vulnerability and enhance resilience. 

 

The network topology, defined as the arrangement and connectivity among components, can be 

clearly depicted, quantified, and assessed using complex network theory. Additionally, under the 

premise of ensuring network connectivity remains unchanged, the size of rail networks with an 

overly large number of components were reduced, successfully increasing the efficiency of 

analysis, and breaking through the current limitations on rail network analysis. In comparing the 

two analyzed networks in this thesis, the Class I rail network is more complicated, efficient, and 

developed than the Amtrak rail network.  

 

The vulnerability of rail networks is a critical factor in evaluating the impacts of node and link 

disruptions due to potential failures. The vulnerability of rail networks is measured to compare 
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the impact of all possible failures on the networks. The reduction in the size of the Class I rail 

network ensures the analysis of the network vulnerability is effective and efficient. The critical 

areas can be clearly depicted and identified depending on the arrangement of the most critical 

nodes and links.  

 

This thesis provides and examines a pre-failure topology enhancement strategy to reduce the 

impact of potential failures by adding hypothetical loop lines in critical areas to reduce network 

vulnerability. The vulnerability of most critical components can be reduced to almost zero, 

indicating that inserting a proper hypothetical loop line can significantly reduce the vulnerability 

of components in the critical areas. Furthermore, the results also reflect that in a network, such as 

the Amtrak rail network, adding loop lines in an area can effectively increase the entire network 

efficiency and reduce the network vulnerability. However, in some networks with overly 

complicated connectivity, such as the Class I rail network, adding loop lines in an area may not 

effectively enhance the entire network. Other hypothetical loop lines need to be examined in 

future work by adding them in several areas rather than the most critical area.  

 

Network efficiency assessment also provides a basis to measure the resilience index based on 

assumed recovery sequences. The resilience index is used to quantify the ability of rail networks 

to withstand and recover from the failure of components. In order to enhance network resilience 

due to the failure of the most critical node (i.e., station) and its connected links (i.e., rails), this 

thesis compares all possible recovery sequences and ranks them with respect to the 

corresponding resilience index values. The recovery sequence with the largest resilience index 

value represents the best recovery strategy. In this case, after a failure occurs, the overall loss of 
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network efficiency can be effectively minimized to reduce impacts. It should be emphasized that 

the repair of nodes (i.e., stations) is essential in the sequential recovery strategy, which may 

significantly affect the restoration of network efficiency.  

  

Future work can focus on combining several kinds of data sources to analyze the rail networks, 

such as travel time, passenger or freight flow, distance, and train routes. By inputting such data, 

the railroad blocking or traveling salesman problem can be solved to optimize the railroad’s 

operations. In addition, inputting the disruption-related historical data can help us to investigate 

the probability of disruption occurrences and to assess potential disruptions and their impacts on 

rail networks.  

 

Finally, the reduced Class I rail network is intended to select and analyze a subset of nodes in the 

network while keeping the network connectivity unchanged. For different analysis purposes, 

additional nodes need to be added to the subset and analyzed. The recovery strategy in this thesis 

is only for the disruption case of one node and links connected to it. The same recovery analysis 

process can be used to determine the recovery strategies for practical situations according to 

different disruption cases and assumptions involving several nodes concurrently. 
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