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Let F be p−adic field of characteristic zero. Consider a dual pair (S̃p(2n),

SO(2n+1)+), where S̃p(2n) is the metaplectic cover of the symplectic group Sp(2n)

and SO(2n + 1)+ is the split orthogonal group over F . We show that there is a

matching of Cartan subgroups between SO(2n+1)+ and S̃p(2n) via stabilized orbit

correspondence. We say two representations of SO(2n+1)+ and S̃p(2n) correspond,

if their characters on matching Cartan subgroups differ by a transfer factor, which

is essentially character of the difference of the two halves of the oscillator represen-

tation. We show that this correspondence is compatible with parabolic induction:

if two representations of Levi factors correspond, then after parabolic induction the

two resulting representations also correspond. These results were motivated by the

paper Lifting of characters on orthogonal and metaplectic groups by J. Adams who

considered the case F = R.
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Chapter 1

Introduction

Investigating transfer and lifting of representations is a very important part

of the theory of representations and automorphic forms. For example, the local

Langlands conjecture states that representations of a linear algebraic group G are

parameterized by data related to the “dual” group LG. Assuming this, a map be-

tween dual groups φ : LH → LG should be related to a “transfer” of representations

between G and H. Conversely a transfer of representations between H and G should

be explained in terms of such a homomorphism φ.

Another approach to this problem is the Howe Theta correspondence. This

correspondence matches representations of G and G′, for any dual pair of subgroups

(G,G′) of the metaplectic cover S̃p(2N) of the symplectic group Sp(2N). It is

important, that in this case the groups G and G′ need not be linear.

A particulary interesting example of a dual pair is (SO(2n + 1)+, S̃p(2n)) ⊂

S̃p(2N), where N = 2n(2n+1) and SO(2n+1)+ denotes the split orthogonal group.

The properties of such pairs in the real case were investigated by Adams and Bar-

basch in [A-B]. Their main result is that there is a natural bijection between genuine

irreducible representations of the metaplectic group S̃p(2n) and the irreducible rep-

resentations of the groups SO(p, q) where p+q = 2n+1. (A representation of S̃p(2n)

is called genuine if it does not factor to a representation of Sp(2n).)
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A natural question is if the dual pair correspondence can be interpreted on the

level of characters. In the real case this problem was solved by Adams in [A1]. He

defined a lifting of stable characters between orthogonal and metaplectic groups. A

character of G(F ) is stable, roughly speaking, if it is invariant by conjugation by

G(F ), where F denotes the algebraic closure of F . Stable characters arise naturally

in the study of characters for linear groups, see Section 7.2 for a discussion of

stability. For tempered representations the lifting of stable characters agrees with

the stabilized dual pair correspondence. Moreover, this lifting has several other nice

properties: it takes discrete series to discrete series and “small” representations to

“small” representations (for example the trivial representation of SO(n+ 1, n) lifts

to the difference of the two halves of the oscillator representation of S̃p(2n).

The purpose of this thesis is to study lifting of characters in the case of p−adic

fields of characteristic zero. The case when n = 1 was solved by Schultz in [Sch]. He

established a bijection between stable virtual characters of S̃L(2) and irreducible

representations of SO(3)+ via the character theory.

We are considering admissible representations of SO(2n + 1)+ and genuine

admissible representations of S̃p(2n). For a linear reductive group G over a local or

real field it is well known (see for example the work of Harish-Chandra, [HC]) that

a character of an admissible representation π defined as a distribution

f 7→ tr

∫
f(x)π(x)dx, f ∈ C∞

c (G)

is given by a locally integrable function. We assume the same holds for the meta-

2



plectic group S̃p(2n)1.

First (Chapter 2) we investigate the orbit correspondence between strongly

regular semisimple elements of SO(2n+1)+ and Sp(2n) and the resulting matching

of Cartan subgroups. We also study the “stabilized” version of this correspondence.

One can define the stable orbit correspondence in the following way: two strongly

regular semisimple elements g ∈ Sp(2n) and g′ ∈ SO(2n + 1)+ stably correspond,

if they have the same nontrivial eigenvalues. The result is that every strongly

regular semisimple element of SO(2n+1)+ stably corresponds to a strongly regular

semisimple element of Sp(2n). The converse (which is nontrivial because of the

requirement on the orthogonal group to be split) is also true and it is proved in

Chapter 3 by the methods of Galois cohomology. Alternatively, we obtain the result

that every Cartan subgroup in the symplectic group can be embedded into the split

orthogonal group, and vice versa.

Because of such correspondence we can define the matching of representations

directly on the character level. We say that a character θρ′ of SO(2n + 1)+ lifts to

a character θρ of S̃p(2n) if they satisfy the condition

θρ(g̃) = Φ(g̃)θρ′(g
′), (1.1)

for any pair of strongly regular semisimple elements g̃ and g′ such that p(g̃) and g′

stably correspond. Here p : S̃p(2n) −→ Sp(2n) is the projection and Φ is a certain

“transfer factor” which is necessary for technical reasons (i.e. to take care of Weyl

1Kazdhan and Patterson showed this fact for the metaplectic cover of GL(n), see [K-P] Theorem

I.5.1
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denominators). It is also worth mentioning that characters matched by the above

condition are necessarily stable (see Lemma 7.2.5). We discuss the details below.

We would like to show that if θρ′ is a stable virtual character of SO(2n+ 1)+

then θρ defined by (1.1) is a genuine stable virtual character of S̃p(2n) and vice

versa. (For the definition of stability for S̃p(2n) see section 7.2.) In the real case,

Adams used knowledge of discrete series characters to prove this first for discrete

series. He then showed that the formula “commutes” with parabolic induction. In

the p–adic case much less is known about characters of discrete series (in particular

supercuspidal) representations.

The main result of this thesis is that lifting of characters commute with par-

abolic induction. It is stated in Theorem 8.0.8. We repeat it here.

Let A ⊂ Sp(2n) and A′ ⊂ SO(2n + 1)+ be isomorphic split tori. Let M =

CentSp(2n)A,M
′ = CentSO(2n+1)+A

′ and M̃ = p−1(M) ⊂ S̃p(2n).

Theorem 1.0.1 Let ρ be a genuine admissible virtual representation of M̃ and let

ρ′ be an admissible virtual representation of M ′. Assume that their characters satisfy

the condition

θρ(x̃) = Φ
fM(x̃)θρ′(x

′),

for any pair of strongly regular semisimple elements x̃ ∈ M̃ and x′ ∈ M ′ such that

p(x̃) and x′ stably correspond. Let π = Ind
fSp(2n)
eP

ρ and π′ = Ind
SO(2n+1)+
P ′ ρ′ and

denote by θπand θπ′ the characters of these representations. Then

θπ(x̃) = Φ
fSp(2n)(x̃)θπ′(x

′),

for any regular semisimple elements x̃ ∈ S̃p(2n) and x′ ∈ SO(2n + 1)+ such that
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p(x̃) and x′ stably correspond.

This theorem reduces the problem of lifting characters to the supercuspidal

case, meaning that the results of this thesis together with proving the result for

supercuspidal representations would solve the general problem of lifting of characters

in the case of p− adic fields of characteristic zero.

Just as in the real case, the transfer factor is essentially the character of the

difference of the two halves of the oscillator representation on S̃p(2n). For the

orthogonal group we use the formula for a character of an induced representation

given by van Dijk in [D]:

θπ′(x
′) =

∑
sy∈W (A′,T ′)

θρ′(y
−1x′y)

|DM(y−1x′y)| 12
|DSO(2n+1)+(x′)| 12

, x′ ∈ T ′ ∩ SO(2n+ 1)reg,

where T ′ ⊂ M ′ is a Cartan subgroup with a split component AT ′ and W (A′, T ′) is

the set of all injections s : A′ → AT ′ for which there exists y ∈ SO(2n + 1)+ such

that s(a) = yay−1 for all a ∈ A′. There is no known reference how to adapt this

formula for S̃p(2n). However, it looks like a very similar proof would hold in the

metaplectic group. We will assume that the result holds and that the formula for

the character of the representation π on S̃p(2n) is

θπ(x̃) =
∑

sy∈W (A,T )

θρ(y
−1x̃y)

|DM(y−1xy)| 12
|DSp(2n)(x)|

1
2

, x̃ ∈ T̃ ∩ S̃p(2n)reg.

We compare the two formulas term by term, when A′ and A are isomorphic split

tori, T ′ and p(T̃ ) are isomorphic Cartan subgroups and x = p(x̃) ∈ p(M̃) stably

corresponds to x′ ∈ M ′. The main challenge is to show that the indexing sets

W (A, T ) and W (A′, T ′) are in bijection and that the bijection has “nice” properties,

i.e. preserves stable correspondence.
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For example, in the case of minimal parabolic induction the transfer factor

defined on Ã = p−1(A) is given by the formula

Φ((x, ε)) = γ(
∏

i=1,...,n

xi, η)ε,

where x = diag(x1, . . . , xn, 1/x1, . . . , 1/xn) ∈ Sp(2n) . Therefore if χ′ is a character

on a split Cartan subgroup in SO(2n+ 1)+, its lift to a character on Ã ⊂ S̃p(2n) is

defined by

χ̃((x, ε)) = χ(x′)γ(
∏

i=1,...,n

xi, η)ε,

where x′ = diag(x1, . . . , xn, 1/x1, . . . , 1/xn, 1) ∈ SO(2n + 1)+. Also van Dijk’s for-

mula is much simpler in this case since the indexing sets are just isomorphic Weyl

groups of type Bn and Cn. Hence if π = Ind
SO(2n+1)+
P χ and π̃ = Ind

fSp(2n)
eP

χ̃ and θπ

and θ
eπ denote their characters we have that

θπ(x
′) =

∑
w∈W (Bn)

χ(w · x′)
|DSO(2n+1)+(x′)| 12

,

θ
eπ((x, ε)) = γ(

∏
i

xi, η)ε
∑

w∈W (Cn)

χ(w · x′)
|DSp(2n)(x)|

1
2

.

We also showed that the transfer factor Φ on S̃p(2n) is precisely equal to

γ(
∏
i

xi, η)ε
|DSO(2n+1)+(x′)| 12
|DSp(2n)(x)|

1
2

=
γ(

∏
i xi, η)ε

| det(1 + x)| 12
.

Therefore indeed

θ
eπ(x, ε) = Φ((x, ε))θπ(x

′).

In the general case we had to describe the sets W (A, T ) and W (A′, T ′), in a

different way, namely:

W (A, T ) ∼=
⋃

{H⊂M :H∼Sp(2n)T}/∼M

W (Sp(2n), H)

W (M,H)
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and

W (A′, T ′) ∼=
⋃

{H′⊂M ′:H′∼SO(2n+1)+
T ′}/∼M′

W (SO(2n+ 1)+, H
′)

W (M ′, H ′)
.

Then we show that one can choose the representatives of the sets {H ⊂ M : H ∼

T}/ ∼M and {H ′ ⊂ M ′ : H ′ ∼ T ′}/ ∼M ′ to be isomorphic Cartan subgroups.

Finally we replace the quotients W (G,H)/W (M,H) with their stable versions, i.e.

Wst(G,H)/Wst(M,H). We define Wst(G,H) to be the subgroup of W (G,H) con-

sisting of those elements that act on H = H(F ). This replacement is valid, since

we already proved that the characters θρ and θρ′ are stable (see section 7.2). The

advantage is that for any pair of isomorphic Cartan subgroups H ⊂ Sp(2n) and

H ′ ⊂ SO(2n+1)+ the stable Weyl groups Wst(Sp(2n), H) and Wst(SO(2n+1)+, H)

are isomorphic (while in general W (Sp(2n), H) and W (SO(2n + 1)+, H) are not).

Therefore, the bijection between the stable quotients of the Weyl groups descends

from the group isomorphism, and we obtain all the required properties.
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Chapter 2

Preliminaries

In this chapter we introduce some basic notions and constructions that we will

use in this thesis. We start by defining the Hilbert symbol and we review some of

its properties. We also recall the classification of nondegenerate quadratic forms in

the case of p − adic fields via rank, discriminant and Hasse invariant. We use it

to classify orthogonal groups of odd rank. In section 3 we state the definition and

properties of the Weil index. We end this chapter with introducing the notion of

orbit correspondence together with its stabilized version. We summarize its basic

properties which we will need later on.

Throughout the thesis we will keep the following notations. Let F a p-adic

field of characteristic zero. We will denote its algebraic closure by F and by Γ the

Galois group of F/F. Let G be a connected split semisimple algebraic group defined

over F. We will identify G with G(F ), and we will also denote its F–points G(F )

by G.

2.1 Hilbert symbol

For a, b ∈ F ∗ we define the Hilbert symbol as follows (compare Serre, [Se1]):

(a, b) =


1 if z2 − ax2 − by2 = 0 has a nonzero solution in F 3,

−1 otherwise.
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Proposition 2.1.1 The Hilbert symbol satisfies the formulas:

(1) (aa′, b) = (a, b)(a′, b),

(2) (a, b2) = 1,

(3) (a, b) = (b, a),

(4) (a,−a) = 1 = (a, 1− a),

(5) If (a, b) = 1 for all a ∈ F ∗, then b is a square.

Proof. See [Se1], chapter III. �

2.2 Quadratic forms over F

In this section we classify odd orthogonal groups over F. A nice account of

this material can be found in Serre, [Se1].

Let (V,Q) be a nondegenerate quadratic form of rank n over F. Choose an

orthogonal basis for V and suppose that in this basis

Q(x1, . . . , xn) = a1x
2
1 + · · ·+ anx

2
n.

We define the following two invariants:

Definition 2.2.1 The discriminant δ(Q) = a1 · · · an ∈ F ∗/F ∗2.

Definition 2.2.2 The Hasse invariant ε(Q) =
∏

i<j(ai, aj) = ±1.

Proposition 2.2.3 The number ε(Q) does not depend on the choice of an orthog-

onal basis.
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Proof. See [Se1], Thmeorem 5, chapter IV. �

Proposition 2.2.4 Two nondegenerate quadratic forms over F of rank n ≥ 3 are

equivalent if and only if they have the same rank, discriminant and the same Hasse

invariant.

Proof. See [Se1], Theorem 7, chapter IV. �

We will study quadratic spaces of odd rank.

Proposition 2.2.5 For a form Q of odd rank n to represent zero it is necessary

and sufficient that:

(1) n = 3 and (−1,−δ) = ε,

(2) n ≥ 5.

Proof. See [Se1], Theorem 6, chapter IV. �

Corollary 2.2.6 For p odd there are two orthogonal groups of rank 2n+ 1, n > 1.

Proof. There are eight classes of quadratic forms, one for each pair (δ, ε) (see also

[Se1], Proposition 6, chapter IV). By Proposition 2.2.5 every nondegenerate form

of rank 2n + 1 can be written as (1,−1)n−1 ⊕ (a, b, c). Scaling it to a new form

(x,−x)n−1 ⊕ (xa, xb, xc) will change its discriminant by x and its Hasse invariant

by (x,−1)n, but it will not change the orthogonal group. Therefore there are at

most two orthogonal groups. There are exactly two: the one preserving the form

(1,−1)n−1 ⊕ (1,−1, 1) (this one contains the split Cartan subgroup F ∗n) and the

other one which does not contain F ∗n, i.e. the one preserving the form (1,−1)n−1⊕

(1,−∆, x∆), where ∆ is a non square in F and (x,∆) = −1. �
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Notation 2.2.7 We will denote by SO(2n+ 1)+ the split orthogonal group and by

SO(2n+ 1)− the nonsplit one.

2.3 Weil index

Let η be a nontrivial additive character of F. If a ∈ F ∗ then aη denotes a

character given by aη(x) = η(ax). We define after Ranga Rao (see [R], Appendix):

γ(η) = Weil index of x→ η(x2),

γ(a, η) = γ(aη)/γ(η), a ∈ F×.

We will write γη(a) = γ(aη).

Proposition 2.3.1 (1) γ(ab, η) = (a, b)γ(a, η)γ(b, η),

(2) γ(ac2, η) = γ(a, η),

(3) γ(a, cη) = (a, c)γ(a, η),

(4) γ(a, η)2 = (−1, a),

(5) γ(−1, η) = γη(1)−1.

Proof. See [R], appendix, Theorem A.4. and Corollary A.5. �

For the quadratic form Qa(x) = ax2 we define γη(Qa) = γη(a). If Q = 0, then

γη(Q) = 1. If Q = Q1 ⊕Q2, then γη(Q) = γη(Q1)γη(Q2).

Corollary 2.3.2 (1) γη(ab)γη(1) = (a, b)γη(a)γη(b),

(2) γη(a)γη(−a) = 1,
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(3) γη(1)4 = (−1,−1),

(4) γη(Q) = γη(1)rkQ−1γη(δ(Q))ε(Q), where δ is the discriminant and ε is the

Hasse invariant,

(5) If Q is hyperbolic, then γη(Q) = 1.

2.4 Orbit correspondence and stability

In this section we define the orbit correspondence, the stabilized orbit corre-

spondence and we investigate some of their properties. See Adams ([A1]) for more

details.

Let W be 2n+ 1–dimensional vector space over F with a nondegenerate sym-

metric bilinear form ( , ). Let V be a 2n–dimensional vector space with a nondegen-

erate symplectic form 〈 , 〉. Let G = SO(W ) and G′ = Sp(V ). Their Lie algebras

will be denoted by g and g′ respectively. Let’s recall that g consists of elements

X ∈ Hom(W,W ) such that

(Xw,w′) + (w,Xw′) = 0, w, w′ ∈ W,

and g′ consists of elements Y ∈ Hom(V, V ) such that

〈Y v, v′〉+ 〈v, Y v′〉 = 0 v, v′ ∈ V.

For T ∈ Hom(W,V ) define T ∗ ∈ Hom(V,W ) by:

〈Tw, v〉 = (w, T ∗v), w ∈ W, v ∈ V.

Let α : T 7→ T ∗T ∈ g and α′ : T 7→ TT ∗ ∈ g′.

12



Definition 2.4.1 For X ∈ G (resp. G′) or g (resp. g′) such that 1+X is invertible

we define the Cayley transform C(X) as follows:

C(X) = (1−X)(1 +X)−1.

The Cayley transform has the following properties:

Lemma 2.4.2 (1) C : G→ g and C : g→ G,

(2) C2 = Id,

(3) X is semisimple if and only if C(X) is semisimple,

(4) C is equivariant for the adjoint action of G on g and for the conjugation

action on G.

The same statement holds for G′ and g′.

Definition 2.4.3 We say that a semisimple element g of G or G′ is strongly regular

if its centralizer is a Cartan subgroup. We say that g is regular if the identity

component of its centralizer is a Cartan subgroup.

Proposition 2.4.4 The strongly regular elements form a dense open subset in G.

Proof. See [St2], 2.15. �

Definition 2.4.5 We say that X ∈ g corresponds to X ′ ∈ g′ if there exists T ∈

Hom(W,V ) such that α(T ) = X and α′(T ) = X ′. We will write X
orbit←→ X ′ This

extends to a correspondence of orbits, i.e. if O = G · X and O′ = G′ · X ′ then

O
orbit←→ O′. We say that a strongly regular element g ∈ G corresponds to a strongly

regular element g′ ∈ G′ if C(g)
orbit←→ C(g′). We write g

orbit←→ g′.
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Proposition 2.4.6 Fix discriminant δ ∈ F ∗/F ∗2. Let W+ be a 2n+ 1–dimensional

vector space over F with a nondegenerate split symmetric bilinear form with discrim-

inant δ. Let W− be a 2n+ 1–dimensional vector space over F with a nondegenerate

nonsplit symmetric bilinear form with discriminant δ.

The orbit correspondence is a bijection between strongly regular semisimple

adjoint orbits of Sp(2n) and SO(W+) ∪ SO(W−).

Proof. The proof of this proposition is the same as the proof in [A1] (Proposition

2.5) of the analogous proposition in the case of real numbers. �

Example 2.4.7 Elliptic elements in SL(2) and SO(3)+, p 6= 2.

Let E/F be a field extension of degree 2, say E = F (
√

∆). Denote by E1 the

elements in E whose norm is 1. Choose the following embedding E1 into SL(2) :

a+ b
√

∆ 7→

 a b∆

b a

 .

Fix a discriminant δ. Following the construction from [A1] (Proposition 2.5) we get

 a b∆

b a

 orbit←→


a b∆ 0

b a 0

0 0 1

 ,

where the latter preserves the quadratic form
b

1+a
0 0

0 − b∆
(1+a)

0

0 0 −∆δ

 .

14



Its discriminant is equal to δ and its Hasse invariant is equal to (δ,−1)(∆, bδ
1+a

) =

(δ,−1)(∆, 2b). (The equality follows from the fact that (1 + a)2 − b2∆ = 2(1 + a).)

The form is split if and only if the Hasse invariant is equal to (δ,−1), i.e. if and

only if (∆, 2b) = 1. This result coincides with Adams result in the case of the field

of real numbers (see [A1], Example 2.13).

Definition 2.4.8 Let G = Sp(2n) or SO(2n + 1)+ and let g, h ∈ G be strongly

regular semisimple elements. We say that g and h are stably conjugate, if they are

conjugate in G(F ). We will write g ∼st h.

Lemma 2.4.9 Let G = Sp(2n) or SO(2n+1)+ and let g, h ∈ G be strongly regular

semisimple elements. Then g and h are stably conjugate if and only if they have the

same eigenvalues.

Proof. Assume that g and h have the same eigenvalues. Choose elements x, y ∈

G(F ) such that xgx−1 and yhy−1 are diagonal. Without loss of generality we can

assume that xgx−1 = yhy−1 (if xgx−1 6= yhy−1 then we can apply an action of an

appropriate element of the Weyl group of the split Cartan subgroup). Therefore we

have that g = (x−1y)h(x−1y)−1. �

Definition 2.4.10 Let g ∈ Sp(2n), g′ ∈ SO(2n+1)+ be strongly regular semisimple

elements. We say that g and g′ stably correspond, if there exist elements h ∈ Sp(2n)

and h′ ∈ SO(2n + 1)+ such that g ∼st h, g′ ∼st h′ and h
orbit←→ h′. We will write

g
stable←→ g′.
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Proposition 2.4.11 Let g ∈ Sp(2n), g′ ∈ SO(2n + 1)+ be strongly regular semi-

simple elements. Then g and g′ stably correspond if and only if g and g′ have the

same nontrivial (i.e. 6= 1) eigenvalues.

Proof. This follows directly from the definition of stable correspondence and from

Lemma 2.4.9. �

We have the following proposition, which proof we will defer until the next

chapter:

Proposition 2.4.12 The stable correspondence is a bijection between strongly reg-

ular semisimple stable conjugacy classes of Sp(2n) and SO(2n+ 1)+.

Example 2.4.13 Stable correspondence between elliptic elements in SO(3)+ and

SL(2) for p 6= 2.

We keep the notations from the Example 2.4.7. Suppose that

 a b∆

b a

 orbit←→


a b∆ 0

b a 0

0 0 1

 ∈ SO(3)−,

where SO(3)− is the nonsplit orthogonal group. In such case the Hasse invariant of

the corresponding quadratic form is equal to (δ,−1) (see Example 2.4.7). We pick

any element y ∈ F such that (y,∆) = −1. We have that

 a b∆

b a

 ∼st
 a by(∆y−2)

by a

 orbit←→


a b∆

y
0

by a 0

0 0 1

 .
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The latter preserves the quadratic form diag( yb
1+a

,− yb∆
(1+a)

,−∆δ). It’s Hasse invariant

is equal to −(δ,−1)(y,∆) = (δ,−1). By Proposition 2.2.5 the form is split. Hence

we showed that

 a b∆

b a

 stable←→


a b∆

y
0

by a 0

0 0 1

 ∈ SO(2n+ 1)+.

Now we will study Cartan isomorphic subgroups in the symplectic and orthog-

onal groups.

Lemma 2.4.14 Any Cartan subgroup in an orthogonal group SO(2n + 1)± can be

embedded into Sp(2n). Similarly, any Cartan subgroup in Sp(2n) can be embedded

into one of the orthogonal groups SO(2n+ 1)±.

Proof. Let ( , ) be nondegenerate bilinear form on 2n + 1–dimensional vector space

W. Let T be a Cartan subgroup in SO(W ) and x ∈ T be a strongly regular element.

We follow the construction of [A1] (Proposition 2.5) and we define a symplectic form

on W/ker(C(x)) as follows:

〈w,w′〉 = (C(x)w,w′).

This form is nondegenerate and is preserved by all t ∈ T :

〈tw, tw′〉 = (C(x)tw, tw′) = (t−1C(x)tw, w′) = (C(x)w,w′) = 〈w,w′〉.

Let V = W/ker(C(x)). Since x was strongly regular dimV = n, and by the above

calculation T ⊂ Sp(V ).
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The proof in the other direction is analogous. We start with a Cartan subgroup

T ⊂ Sp(V ) and a strongly regular element x ∈ T. We define a bilinear form on V :

(v, v′) = 〈C(x)v, v′〉.

This form is nondegenerate. We extend ( , ) to a nondegenerate form on W = V ⊕V0,

where V0 is a one dimensional space. We can choose a quadratic form on V0 in such

a way, that ( , ) has a desired discriminant. However, there is no obvious way of

modifying this form in order to obtain a split one. Finally note that, by similar

argument as in the previous case, T ⊂ SO(W ). �

It is possible to embed every Cartan subgroup in Sp(2n) into SO(2n + 1)+.

Proving this requires more sophisticated tools, i.e. Galois cohomology and it is done

in the next section.

18



Chapter 3

Galois Cohomology

In this chapter we use Galois cohomology to study stable conjugacy classes

of Cartan subgroups in the symplectic and split orthogonal groups. As a corollary

we obtain that Sp(2n) and SO(2n + 1)+ have isomorphic Cartan subgroups and

that the stable correspondence is a bijection between strongly regular semisimple

conjugacy classes in those two groups.

3.1 Definitions

Here we review Galois cohomology; we refer the reader to Serre [Se2] for addi-

tional details. Let us recall that F denotes the algebraic closure of F and Γ is the Ga-

lois group of F/F. Let G be a connected split semisimple algebraic group defined over

F. We identify G with G(F ) and when there is no confusion we will denote G(F )

by G. The Galois group Γ acts on G and we define H0(Γ,G) to be the set of fixed

elements GΓ. A 1−cocycle of Γ in G is a continuous map σ 7→ aσ(σ ∈ Γ, aσ ∈ G),

such that for all σ, τ ∈ Γ :

aστ = aσσ(aτ ).

The set of 1−cocycles of Γ in G is denoted by Z1(Γ,G). Two cocycles a and a′ are

cohomologous if there exists g ∈ G such that a′σ = g−1aσσ(g), σ ∈ Γ. This is an

equivalence relation and the set of equivalence classes is denoted by H1(Γ,G). In
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general H1(Γ,G) is a pointed set and its distinguished element is the equivalence

class of the unit cocycle. It is a group provided that G is abelian. We say that a

sequence of pointed sets is exact if the fiber of the distinguished point of each map

is the image of its predecessor. Let T be a Cartan subgroup defined over F and let

N(T) be its normalizer in G. If n ∈ N(T), then we will denote its image in the

Weyl group by n. If w ∈ W = W (G,T) then w · t denotes the standard action of

the Weyl group element w on the element t ∈ T.

Proposition 3.1.1 The short exact sequence 1→ T→ N(T)→ W → 1 yields an

exact sequence of pointed sets:

1→ TΓ → N(T)Γ → W Γ δ−→ H1(Γ,T)
α−→ H1(Γ, N(T))→ H1(Γ,W ).

If n ∈ W Γ, then δ(n) is the class of the cocycle {n−1σ(n)}σ∈Γ.

Proof. See [Se2], I.5.4, Proposition 36. �

3.2 Stable conjugacy of Cartan subgroups

In this section G denotes Sp(2n) or SO(2n+ 1)+.

Definition 3.2.1 Let T and T′ be two Cartan subgroups in G that are defined over

F. We say that T(F ) and T′(F ) are stably conjugate, if there exists g ∈ G such that

gT(F )g−1 = T′(F ).

Lemma 3.2.2 If x, y ∈ G are strongly regular semisimple elements that are stably

conjugate, then the Cartan subgroups CentG(x) and CentG(y) are stably conjugate.
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Proof. Let T = CentSp(2n)(x) and T′ = CentSp(2n)(y). Let g ∈ G be such that

gxg−1 = y. Clearly gTg−1 = T′. We need to show that gT(F )g−1 = T′(F ). For

t ∈ T(F ) and σ ∈ Γ we have

σ(gtg−1) = σ(g)tσ(g)−1 = (σ(g)−1g)σ(g)tσ(g)−1(σ(g)−1g)−1 = gtg−1.

In the second equality we used the fact that gσ(g)−1 ∈ T′ since

σ(g)−1yσ(g) = σ(g−1yg) = σ(x) = x = g−1yg. �

Note that for a given Cartan subgroup T the group G acts on the set {T ′ |

T ′ is a Cartan subgroup stably conjugate to T} by conjugation. We introduce the

following notations:

Cst(G, T ) =
{
T ′ | T ′ is a Cartan subgroup stably conjugate to T

}/
G,

Cst(G) =
{
T | T is a Cartan subgroup in G

}/
stable conjugacy.

Lemma 3.2.3

Cst(G, T )
1−1←→ α(ker[H1(Γ,T)→ H1(Γ,G)]).

Proof. Let T and T′ be two Cartan subgroups in G that are defined over F. If

gT(F )g−1 = T′(F ) then for all x ∈ T(F ) and all σ ∈ Γ we have that gxg−1 =

σ(gxg−1) = σ(g)xσ(g)−1. Therefore g−1σ(g) centralizes T(F ), hence it belongs to

T. The map σ 7→ g−1σ(g) is a 1−cocycle whose cohomology class lies in the kernel

of the map H1(Γ,T) → H1(Γ,G). If h ∈ G is another element with the property

hT(F )h−1 = T′(F ), then g−1h belongs to N(T) and the cocycles (g−1σ(g))σ∈Γ and

(h−1σ(h))σ∈Γ are cohomologous in Z1(Γ, N(T)).
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Conversely, each element of ker[H1(Γ,T) → H1(Γ,G)] is the class of a co-

cycle of the form (g−1σ(g))σ∈Γ for some g ∈ G. Since g−1σ(g) ∈ T we have that

gT(F )g−1 ⊂ G(F ). Suppose now that the classes of the cocycles (g−1σ(g))σ∈Γ and

(h−1σ(h))σ∈Γ are in the ker[H1(Γ,T) → H1(Γ,G)], and that they are cohomolo-

gous in Z1(Γ, N(T)). Choose n ∈ N(T) such that h−1σ(h) = n−1g−1σ(g)σ(n). It

follows that x = gnh−1 belongs to G(F ) and gT(F )g−1 = xhn−1T(F )nh−1x−1 =

xhT(F )h−1x−1, i.e. gT(F )g−1 and hT(F )h−1 are conjugate in G(F ). Note that the

cocycle (n−1σ(n))σ∈Γ belongs to Z1(Γ,T), therefore n−1T(F )n ⊂ G(F ). Therefore

we proved the assertion. �

Proposition 3.2.4 In the case of G = GL(n), stable conjugacy coincides with

conjugacy by the elements of G(F ).

Proof. This follows from the previous lemma, the fact that every torus in GL(n) is

quasi split, and that for a quasi split tori T we have H1(Γ,T) = 1 (see [Pl-Rap],

Chapter 2, Lemma 2.4). �

Proposition 3.2.5 The map H1(Γ, N(T)) → H1(Γ,W ) induced by the canonical

map N(T) → W is surjective. Moreover, given a ∈ H1(Γ,W ) there exists a lift

ã ∈ H1(Γ, N(T)) of a, which maps to the trivial class in H1(Γ,G).

Proof. See [Rag], Theorem 1.1. �

Lemma 3.2.6 Let T be a Cartan subgroup defined over F. Let W = W (G,T).

Then

Cst(G)
1−1←→ H1(Γ,W ).
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Proof. Let T be a Cartan subgroup that is defined over F. If T′ is another Car-

tan subgroup that is defined over F, then gTg−1 = T′ for some g ∈ G . Since

σ(T) = T for all σ ∈ Γ, we have that g−1σ(g) normalizes T, hence (g−1σ(g))σ∈Γ is

a cocycle in Z1(Γ, N(T)). If h is another element that conjugates T into T′ then

h−1g belongs to N(T) and the cocycles (g−1σ(g))σ∈Γ and (h−1σ(h))σ∈Γ are coho-

mologous in Z1(Γ, N(T)) and thus also their images (g−1σ(g))σ∈Γ and (h−1σ(h))σ∈Γ

are cohomologous in Z1(Γ,W ). On the other hand, if the cocycles (g−1σ(g))σ∈Γ

and (h−1σ(h))σ∈Γ are cohomologous in Z1(Γ,W ) then gTg−1 and hTh−1 are stably

conjugate (the proof of this fact is similar to the proof of analoguous statement in

the proof of the previous lemma). Also, it follows from Proposition 3.2.5 that for

each element of H1(Γ,W ) there is a corresponding conjugacy class of T. �

Proposition 3.2.7 (1) There is a cannonical bijection between the sets Cst(Sp(2n))

and Cst(SO(2n+ 1)+).

(2) This bijection matches isomorphic Cartan subgroups in SO(2n + 1)+ and

Sp(2n).

Proof. (1) Choose split Cartan subgroups T′
s(F ) ⊂ SO(2n + 1)+ and Ts(F ) ⊂

Sp(2n). The Galois group Γ acts trivially on W (Sp (2n),Ts) ∼= W (Cn) and also

on W (SO(2n+1),T′
s)
∼= W (Bn), therefore the isomorphism between W (Cn) and

W (Bn) induces an isomorphism between H1(Γ,W (Cn)) and H1(Γ,W (Bn)). By

Lemma 3.2.6
H1(Γ,W (Cn))

∼−−−→ H1(Γ,W (Bn))

1−1

y 1−1

y
Cst(Sp(2n)) Cst(SO(2n+ 1)+).

23



Now we will show that the construction of the vertical bijection does not

depend on the choice of the split Cartan subgroups Ts and T′
s. It is enough to

show this in the symplectic case. Assume then that T′′
s ⊂ Sp(2n) is another split

Cartan subgroup defined over F. We have that Ts(F ) and T′′
s(F ) are conjugate,

say T′′
s(F ) = xTs(F )x−1 for some x ∈ Sp(2n)(F ). (Note that this implies that

x = σ(x) !) We identify H1(Γ,W (Sp(2n),Ts)) with H1(Γ,W (Sp(2n),T′′
s)) via

the isomorphism of the Weyl groups W (Sp(2n),Ts) → W (Sp(2n),T′′
s) given by

n 7→ xnx−1, n ∈ N(Sp(2n),Ts). Now, let T′ ⊂ Sp(2n) be an arbitrary Cartan

subgroup defined over F. We pick g ∈ Sp(2n) such that T′ = gTsg
−1 and that

gives us a cocycle (g−1σ(g))σ∈Γ ∈ Z1(Γ,W (Sp(2n),Ts)). We also have that T′ =

gx−1T′′
s(gx

−1)−1 and therefore we have another cocycle ((gx−1)−1σ(gx−1))σ∈Γ ∈

Z1(Γ,W (Sp(2n),T′′
s)). However, these cocycles are identified via our isomorphism,

since g−1σ(g) 7→ xg−1σ(g)x−1 = (gx−1)−1σ(gx−1) .

Now we will prove (2). We want to show that the F−points of the Cartan

subgroups associated to isomorphic cocyles in H1(Γ,W (Bn)) and H1(Γ,W (Cn)) are

also isomorphic. First we choose an isomorphism ψs : Ts → T′
s that commutes with

the Galois action, i.e.

ψs(σ(t)) = σ(ψs(t)) σ ∈ Γ, t ∈ Ts.

Let

φs : W (Sp(2n),Ts)→ W (SO(2n+1),T′
s)

be an isomorphism such that

ψs(w · t) = φs(w) · ψs(t) w ∈ W (Sp(2n),Ts), t ∈ Ts.
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The isomorphism φs induces an isomorphism between H1(Γ,W (Sp(2n),Ts)) and

H1(Γ,W (SO(2n+1),T′
s)). Let a be an arbitrary element ofH1(Γ,W (Sp(2n),Ts)).

We will denote its image in H1(Γ,W (SO(2n+1),T′
s)) by a′. By Propositon 3.2.5

there exist g ∈ Sp(2n) and h ∈ SO(2n+1) such that for all σ ∈ Γ we have

g−1σ(g) ∈ N(Sp(2n),Ts), h
−1σ(h) ∈ N(SO(2n+1),T′

s), aσ = g−1σ(g) and a′σ =

h−1σ(h). Let T = gTsg
−1 and T′ = hT′h−1. Denote by ψ the isomorphism between

T and T′ that makes the diagram below commute

Ts
ψs−−−→ T′

s

int(g−1)

x yint(h)

T
ψ−−−→ T′.

We will show that ψ(T(F )) = T′(F ). Let t ∈ T(F ) and σ ∈ Γ. By the construction

of ψ we have

ψ(t) = h(ψs(g
−1tg))h−1.

Therefore

σ(ψ(t)) = σ(h(ψs(g
−1tg))h−1) = σ(h)ψs(σ(g−1)tσ(g))σ(h−1).

Hence σ(ψ(t)) = ψ(t) if and only if

ψs(g
−1hg) = (h−1σ(h))ψs(σ(g−1)tσ(g))(h−1σ(h))−1.

The above equality is true, since h−1σ(h) = φs(g−1σ(g)) ∈ W (SO(2n+1),T′
s) and

by the choice of the isomorphisms ψs and φs we have that

φs(g−1σ(g)) · ψs(σ(g−1)tσ(g)) = ψs(g−1σ(g) · σ(g−1)tσ(g)) = ψs(g
−1tg). �

Corollary 3.2.8 Any Cartan subgroup in Sp(2n) can be embedded in SO(2n+1)+.

25



Proof. This follows directly from Proposition 3.2.7. For an alternate proof, see

[Pl-Rap], p. 340. �

Corollary 3.2.9 The stable correspondence is a bijection between strongly regular,

semisimple stable conjugacy classes of Sp(2n) and SO(2n+ 1)+.

Proof. The statement follows from the Corollaries 2.4.14 and 3.2.8, and the fact

that every stable strongly regular semisimple conjugacy class is determined by the

set of the eigenvalues of its elements (see Lemma 2.4.9). �

Corollary 3.2.10 Let x ∈ Sp(2n) and x′ ∈ SO(2n + 1)+ be a pair of strongly

regular semisimple elements such that x
stably←→ x′. Let T = CentSp(2n)x and T ′ =

CentSO(2n+1)+(x′). There exists an isomorphism ψ : T −→ T ′ such that ψ(x) = x′.

Proof. The proof is basically reversing the steps of the proof of Proposition 3.2.7.

The one difference is that we will have an additional condition on the isomorphism

ψs between the split Cartan subgroups Ts and T′
s, namely

t
stably←→ ψs(t)

for all strongly regular semisimple elements t ∈ Ts. Here are the remaining details:

Let g ∈ Sp (2n) be such that T = gTsg
−1. As before we find an element h ∈

SO(2n+1) such that the classes of cocycles (g−1σ(g))σ∈Γ ∈ H1(Γ,W (Sp(2n),Ts))

and (h−1σ(h))σ∈Γ ∈ H1(Γ,W (SO(2n+1),T′
s)) are isomorphic. Then we show (as in

the proof of Proposition 3.2.7 ) that ψs induces an isomorphism ψ′ : T → hT′
sh

−1(F ).

The Cartan subgroup T ′ is stably conjugate to hT′
sh

−1(F ), so we compose the map

ψ′ with conjugation by an appropriate element to get the isomorphism ψ′′ : T → T ′.
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We also have that x
stable←→ ψ′′(x) ∼st x′, hence we conjugate one more time to obtain

the required condition ψ(x) = x′.
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Chapter 4

Metaplectic group

In this chapter we define the metaplectic double cover of the symplectic group

Sp(2n). We introduce the formula for the character of the difference of the two

halves of the oscillator representation, which is the main ingredient for defining the

transfer factor. We also classify all genuine Weyl group action invariant characters

of a split Cartan subgroup in the metaplectic group. This result we will use in the

discussion about the uniqueness of the transfer factor later on.

4.1 Construction of the metaplectic group

The basic references for this section are Maktouf ([Mat]) and Lion and Vergne

(see [L-V]).

We fix an additive character η. Let V be a 2n–dimensional space equipped

with a symplectic form 〈 , 〉. An orientation of V is a nonzero element e of
∧2n V.

We will write V e for an oriented vector space. For any two lagrangian subspaces l1,

l2 we define a map gl1,l2 : l1 → (l2)
∗

gl1,l2(v)(w) = 〈v, w〉, v ∈ l1, w ∈ l2.

The map gl1,l2 induces an isomorphism between l1/l1 ∩ l2 and (l2/l1 ∩ l2)∗. If l1 and

l2 are oriented we will denote this isomorphism by gle11 ,l
e2
2

. We choose an orientation

on l1 ∩ l2 and we can consider det gle11 ,l
e2
2

mod F ∗2. It does not depend on the choice
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of orientation on l1 ∩ l2. We define:

m(le11 , l
e2
2 ) = γη(1)

2(1−(n−dim(l1∩l2))γη(det gle11 ,l
e2
2

)−2.

Example 4.1.1 Split Cartan subgroup

Let V be a 2n–dimensional vector space equipped with a symplectic form 0 In

−In 0

 .

Let x = diag(x1, . . . , xn, 1/x1, . . . , 1/xn) ∈ Sp(V ). Let le be the lagrangian spanned

by e1, . . . , en with orientation e = e1∧· · ·∧en. Then xle is also spanned by e1, . . . , en,

but has an orientation x1e1∧· · ·∧xnen = (x1 · · ·xn)e. We also choose the orientation

e on l ∩ xl, so the induced orientations on 0–dimensional spaces l/(l ∩ xl) and

(xl/(l ∩ xl))∗ are 1 and x1 · · ·xn respectively. It follows that det(gle,xle) = x1 · · ·xn

and m(le, xle) = γη(1)2γη(x1 · · ·xn)−2.

For any triple of lagrangians l1, l2, l3 denote by Q123 a quadratic form defined

on l1 × l2 × l3 as follows:

Q(x, y, z) = 〈x, y〉+ 〈y, z〉+ 〈z, x〉.

Let c(l1, l2, l3) = γη(Q123). The following lemma will be useful:

Lemma 4.1.2 Let l1 and l2 be two lagrangian subspaces. Suppose that l = (l∩ l1)+

(l ∩ l2). Then c(l1, l, l2) = 1.

Proof. See [L-V], Lemma 1.5.11., page 44. �
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We define S̃p(2n) to be the set of pairs (x, ψ), where x ∈ Sp(2n) and ψ is a

function on the set of lagrangians of the space V satisfying conditions:

ψ(l′) = ψ(l)c(l′, l, xl)c(l′, l, x−1l′)−1,

ψ2(l) = m(le, xle)−1.

The value of m(le, xle) is independent of the choice of an orientation e. The multi-

plication is defined as follows:

(x, ψ)(x′, ψ′) = (xx′, ψ′′),

ψ′′(l) = ψ(l)ψ′(l)c(l, xl, xx′l).

Remark. Note that this definition of the metaplectic group S̃p(2n) depends on the

fixed additive character η.

4.2 The character of the oscillator representation

Let ω(η) = ω+(η) + ω−(η) be the oscillator representation of S̃p(2n) attached

to the fixed additive character η. Since we work with a fixed η, for simplicity we

will drop η from the notation. In this section we introduce explicit formulas for the

characters of ω+ and ω−. See Maktouf ([Mak]) for the details.

Let (x, ψ) ∈ S̃p(2n) where x is a regular semisimple element. We decompose

V into a direct sum of subspaces W1 and W2 such that W1 has an x invariant

lagrangian l1, and W2 has a lagrangian l2 such that l2 ∩ (xl2) = 0. On (1− x−1)−1l2

we define the quadratic form Qx,l2 :

Qx,l2(v) = 〈(x−1 − 1)v, v〉.
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Proposition 4.2.1 Let Θω± denote the character of ω±. Let (x, ψ) ∈ S̃p(2n) be

such that x is regular semisimple element. Then

Θω±(x, ψ) =
1

2
ψ(l1 + l2)(γη(Qx,l2)| det(1− x)|−

1
2 ± γη(Q−x,l2)| det(1 + x)|−

1
2 ).

Proof. See [Mak], section 31, page 296. �

Corollary 4.2.2 Let (x, ψ) ∈ S̃p(2n) and assume that x is a regular semisimple

element. The character of the sum (difference) of the two halves of the oscillator

representation is given by the formula:

Θω+ ± ω−((x, ψ)) = ψ(l1 + l2)γη(Q±x,l2)| det(1∓ x)|−1/2.

Corollary 4.2.3 Let (x, ψ) and (−I, ψ′) ∈ S̃p(2n), where x is a regular semisimple

element. There exists a constant λ (depending only on the choice of ψ′) such that

Θω+ + ω−((x, ψ)(−I, ψ′)) = λΘω+ − ω−((x, ψ)).

Proof. First note that (x, ψ)(−I, ψ′) = (−x, ψψ′). Indeed, for any lagrangian l, the

value of the cocycle c(l, xl,−xl) is 1, by Lemma 4.1.2. Therefore

Θω+ + ω−((−x, ψψ′)) = ψ′(l1 + l2)ψ(l1 + l2)γη(Q−x,l2)| det(1 + x)|−1/2

= ψ′(l1 + l2)Θω+ − ω−((x, ψ)).

Now we claim that the function ψ′ is constant. Recall that for any pair of lagrangians

l and l′ the following identity holds:

ψ(l′) = ψ(l)c(l′, l,−l)c(l′, l,−l′)−1.
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By Lemma 4.1.2 we get that c(l′, l,−l) = 1. Consider now the form Ql′,l,−l′ (see sec-

tion 4.1 for the description). Note thatQl′,l,−l′ = −Ql,l′,−l′ and therefore c(l′, l,−l′) =

γη(Ql′,l,−l′) = γη(−Ql,l′,−l′) = γη(Ql,l′,−l′)
−1 = c(l, l′,−l′)−1 = 1 (the middle equality

follows from Corollary 2.3.2 and the last one follows again from Lemma 4.1.2). Now

we define λ = ψ(l′) = ψ(l). �

Example 4.2.4 Split Cartan subgroup

We use the notations of Example 4.1.1. Let x = diag(x1, . . . , xn, 1/x1, . . . , 1/xn).

Assume further that all xi 6= 1. In this case V = W1,W2 = 0, l2 = 0, Qx,l2 = 0

and one can take l1 to be the lagrangian l spanned by e1, . . . , en with orientation

e = e1 ∧ · · · ∧ en. Since ψ2(l) = m(le, xle)−1 = γη(x1 · · ·xn)2γη(1)
−2 we have two

choices for the value of the function ψ on l :

ψε(l) = εγη(x1 · · ·xn)γη(1)−1 = εγ(x1 · · ·xn, η),

where ε = ±1. Therefore

Θω+±ω−((x, ψε)) =
εγ(x1 · · ·xn, η)
| det(1∓ x)|1/2

.

4.3 Characters of a split Cartan subgroup in S̃p(2n)

Here we introduce an alternate definition of S̃p(2n) due to Steinberg [St] and

Matsumoto [Mat]. A nice summary of these results is also given by Savin in [Sa].

In this section we assume p 6= 2. Let R be the set of roots of type Cn. Choose

set of simple roots ∆ = {α1, . . . , αn}. Let κ( , ) be a Killing form normalized so that
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κ(α, α) = 2 for α ∈ R. We define a bilinear form on the root lattice:

B(αi, αj) =


0 if i < j,

1/2κ(αi, αi) if i = j,

κ(αi, αj) if i > j.

The following theorem is due to Steinberg, [St], see also Savin, [Sa], Theorem 2.1.

Proposition 4.3.1 Let n > 1. The universal two fold central extension S̃p(2n)

of the symplectic group Sp(2n) has a presentation with formal set of generators

{eα(t), α ∈ R, t ∈ F} subject to relations:

eα(t+ s) = eα(t)eα(s),

[eα(x), eα(y)] =


eα+β((−1)B(α,β)xy) if α+ β is a root,

1 if not and α+ β 6= 0.

We define now certain elements which will play an important role in this

section:

wα(t) = eα(t)e−α(−t−1)eα(t),

hα(t) = wα(t)wα(−1), t ∈ F ∗.

In the case of n = 1 we have the following:

Proposition 4.3.2 The two fold cover S̃L(2) of the group SL(2) is generated by

the set {eα(t), α ∈ R, t ∈ F} subject to relations:

eα(t)eα(s) = eα(t+ s), t, s ∈ F, α ∈ R

wα(t)eα(u)wα(t)
−1 = e−α(−t−2u), t ∈ F ∗, u ∈ F, α ∈ R

hα(s)hα(t) = (s, t)hα(st), t, s ∈ F ∗, α ∈ R.
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Proof. [St], Theorem 3.3 �

Let

cα(s, t) =


1 if α is a short root,

(s, t) otherwise.

(see [Mat], p. 30). The split Cartan subgroup T̃ ⊂ S̃p(2n) is generated by hα(t) for

all simple roots α and t ∈ F ∗. The generators satisfy following relations (see [Mat],

p. 38):

hα(t)hβ(s) = hβ(s)hα(t),

hα(s)hα(t) = cα(s, t)hα(st).

The Weyl group W̃ of T̃ is generated by the set {wα(−1), α ∈ ∆}. The Weyl group

W of T is a quotient of W̃ by a subgroup generated by {wα(−1)2, α ∈ ∆} (compare

[Sa], p. 116).

Corollary 4.3.3 The action of W̃ coincides with the action of W.

Proof. Note that wα(−1)2 = hα(−1). Since T̃ is abelian, hα(−1) acts trivially on T̃ .

�

Define now a character χη : T̃ → {±1,±i} as follows: Let

χη(−1) = −1,

χη(hα(t)) =


1 if α is a short root,

γ(t, η) otherwise.

Hence χη is defined on the generators of T̃ ; the following proposition shows that χη

extends (uniquely) to a character of T̃ .
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Proposition 4.3.4 The map χη extends uniquely to a genuine, W– action invariant

character of the Cartan subgroup T̃ .

Proof. First we need to check that χη is well defined. The only interesting case

is when α is long. We have: χη(hα(s)hα(t)) = χη((s, t)hα(st)) = (s, t)γ(st, η) =

γ(s, η)γ(t, η) = χη(hα(s))χη(hα(t)). To check that χη is W– invariant it is enough

to show that for all t ∈ F ∗ and all simple roots α, β :

χη(wα(1)hβ(t)wα(−1)) = χη(hβ(t)).

By [Mat] wα(1)hβ(t)wα(−1) = hβ(t)hα(t
−d), where d = 〈α, β∨〉, therefore we need

to check that χη(hα(t
−d)) = 1. This is obviously true when α is short or α = 2en

and β ∈ {e1 − e2, . . . , en−2 − en−1}. If α = 2en and β = en−1 − en or β = 2en then

d = ∓2 and χη(hα(t
±2)) = γ(t±2, η) = 1. �

As a corollary we get that for every coset xF ∗2 ∈ F ∗/F ∗2 there exists a different

genuine W– invariant characters of T̃ , namely χxη.

Proposition 4.3.5 Every genuine W– invariant character of T̃ is of the form χxη,

where xF ∗2 is a coset in F ∗/F ∗2.

Proof.Let χ be a genuine W– invariant character of T̃ . By the definition of genuine

character we have that χ(−1) = −1. W– invariance implies

∀α,β∈R′ χ(hα(t
−〈α,β∨〉)) = 1, t ∈ F ∗.

For a short root α let β be such that 〈α, β∨〉 = −1 to get χ(hα(t)) = 1. For a long

root α let β be such that 〈α, β∨〉 = −2, then χ(hα(t
2)) = 1. In any case

χ(hα(t))
2 = χ((t,−1)hα(t

2)) = (t,−1) = ±1,
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and therefore χ has values in the set {±1,±i}. Now let χ and χ′ be two genuine W–

invariant characters of T̃ . Their product µ = χχ′ factors to T. Since µ is also W–

invariant, it is uniquely determined by its values on hα(t) for a fixed long root α and

t ∈ F ∗. Therefore without lost of generality we can treat it as a character of F ∗. We

have µ(t2) = µ(t)2 = χ(t)2χ′(t)2 = 1, hence µ factors to a character of the quotient

F ∗/F ∗2 with values ±1. Therefore the number of genuine W– invariant characters

of T̃ is equal to the number of such characters, which is the cardinality of F ∗/F ∗2.

�
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Chapter 5

Transfer factor

In this chapter we define a transfer factor and we study some of its properties.

We will use the transfer factor later on, to define a lifting of characters between

SO(2n+ 1)+ and S̃p(2n).

Let G = Sp(2n) or SO(2n+ 1)+. For x ∈ G we define DG(x) by

det(t+ 1− Ad(x)) = DG(x)tk + · · ·+ terms of higher degree,

where k is the rank of G.

Lemma 5.0.6 Let T be a Cartan subgroup in G and let x ∈ T. Then DG(x) =∏
α∈R(1− α(x)), where R is the set of roots of T in G.

We denote the set of regular elements of G (i.e. elements x ∈ G such that

DG(x) 6= 0) by Greg.

Lemma 5.0.7 Let x ∈ Sp(2n) be a regular semisimple element and let x
stable←→ x′ ∈

SO(2n+ 1)+. Then

DSp(2n)(x)

DSO(2n+1)+(x′)
= det(1 + x).

Proof. Assume that x has eigenvalues x1, . . . , x2n. Therefore x′ has the same eigen-

values together with 1. By the previous lemma we have that

DSp(2n)(x)

DSO(2n+1)+(x′)
=

∏
(1− x2

i )
∏

(1− xi/xj)∏
(1− xi)

∏
(1− xi/xj)

=
∏

(1 + xi) = det(1 + x). �
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Definition 5.0.8 The transfer factor on S̃p(2n) is equal to the difference of the two

halves of the oscillator representation, i.e.

Φ
fSp(2n) = Θω+−ω− .

Now we will define the transfer factor on Levi subgroups of the metaplectic

group. Let A be a split torus in Sp(2n) and M be its centralizer in Sp(2n). Assume

that M is of the form GL(n1) × . . . × GL(nk) × Sp(2m). Let Ã = p−1(A), where

p : S̃p(2n) → Sp(2n). Let further A′ =

 A 0

0 1

 ⊂ SO(2n + 1)+ and M ′ =

CentSO(2n+1)+A
′ ∼= GL(n1)× . . .×GL(nk)× SO(2m+ 1)+.

Definition 5.0.9 Let g = (g1, . . . gk, gk+1) ∈ M and g′ = (g′1, . . . g
′
k, g

′
k+1) ∈ M ′ be

strongly regular semisimple elements. We say that g Levi-stably corresponds to g′

if gi ∈ GL(ni) is conjugate to g′i ∈ GL(ni) for i ∈ {1, . . . , k} and if gk+1 stably

corresponds to g′k+1 in the sense of definition 2.4.10. We will write g
L−stable←→ g′.

Definition 5.0.10 We define the transfer factor on M̃ = p−1(M) as follows:

Φ
fM(g̃) =

|DSp(2n)(g)|
1
2

|DM(g)| 12
|DM ′(g′)| 12

|DSO(2n+1)+(g′)| 12
Θω+−ω−(g̃),

where p(g̃) = g
L−stable←→ g′.

Note that this definition agrees with the earlier definition of the transfer factor

defined on S̃p(2n). Indeed, when M = Sp(2n) and M ′ = SO(2n+ 1)+ we get

Φ
fSp(2n) = Θω+−ω− .

In particular we have that

Φ
fM(g̃) =

|DSp(2n)(g)|
1
2

|DM(g)| 12
|DM ′(g′)| 12

|DSO(2n+1)+(g′)| 12
Φ
fSp(2n)(g̃). (5.1)
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Note also that in the special case when M = A ∼= F ∗n we have that

Φ
eA(g̃) = Θω+−ω−(g̃)| det(1 + g)|

1
2 ,

since by Lemma 5.0.7

|DSp(2n)(g)|
1
2

|DSO(2n+1)+(g′)| 12
= | det(1 + g)|

1
2 .

Lemma 5.0.11 (1) Φ
fM restricted to S̃p(2m) is equal to the character of the differ-

ence of the two halves of the oscillator representation of S̃p(2m) ( i.e. it is equal to

Φ
fSp(2m) ),

(2) Φ
fM restricted to each G̃L(ni) is equal to a character χ, where χ(g, ε) =

γ(det(g), η)ε.

Proof. Let V be a 2n–dimensional vector space with a symplectic form 〈 , 〉. Choose

a symplectic basis e1, . . . en, f1, . . . fn. Let N = n1 + · · · + nk. Embed GL(N) and

Sp(2m) into Sp(2n) as follows:

x 7−→



x 0 0 0

0 Im 0 0

0 0 tx−1

0 0 0 Im


,

y =

 A B

C D

 7−→



IN 0 0 0

0 A 0 B

0 0 IN 0

0 C 0 D


.
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We will identify x and y with their images in Sp(2n). Now decompose V into direct

sum of subspaces V1 and V2, where V1 is spanned by {e1, . . . eN , f1, . . . fN} and V2

is spanned by {eN+1, . . . en, fN+1, . . . , fn}. Note that x ∈ GL(N) acts on V1 and

fixes V2, similarly y ∈ Sp(2m) fixes V1 and acts on V2. Consider now (g, ψg) =

(x, ψx)(y, ψy) ∈ S̃p(2n), where x and y are as above and g = xy is strongly regular.

First we decompose y further as follows

y =



y′ 0 0 0

0 A′ 0 B′

0 0 ty′−1 0

0 C ′ 0 D′


,

where y′ ∈ GL(s) for some integer 0 ≤ s ≤ m and A′ B′

C ′ D′


belongs to the part of the Cartan subgroup CentSp(2m)(y) that is a product of norm

one tori. We proceed now as in section 4.2 and we choose l1 be the subspace gen-

erated by e1, . . . , eN , . . . , eN+s and l2 be the subspace generated by eN+s+1, . . . , en.

Their sum l1 + l2 is a lagrangian and we will denote it by l. It follows that xl = l,

hence by Lemma 4.1.2

ψxy(l) = ψx(l)ψy(l)c(l, xl, xyl) = ψx(l)ψy(l).

If (x, ψx) = (x1, ψ1) . . . (xnk
, ψnk

) where each xni
∈ GL(ni) then (again by Lemma

4.1.2) ψx(l) = ψxn1
(l) . . . ψxnk

(l). We have that ψxni
(l) = ±γ(det(xni

), η) is a char-

acter on G̃L(ni).
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Note now that (1+ g−1)−1l2 = (1+ y−1)−1l2 ⊂ V2 and for v ∈ (1+ y−1)−1l2 we

have

Q−g,l2(v) = 〈(−g−1 − 1)v, v〉 = 〈(−y−1 − 1)v, v〉 = Q−y,l2(v).

Therefore γη(Q−g,l2) = γη(Q−y,l2). Combining all of this together we get that

Θω+−ω−((g, ψg)) = ψx1(l) · · ·ψxnk
(l)ψy(l)γη(Q−y,l2)| det(1 + g)|−1/2.

Note also that by Lemma 5.0.7

|DSp(2n)(g)|
1
2

|DSp(2m)(y)|
1
2

|DSO(2m+1)+(y′)| 12
|DSO(2n+1)+(g′)| 12

=
| det(1 + g)| 12
| det(1 + y)| 12

,

hence we can rewrite the formula for the transfer factor as follows:

Φ
fM((g, ψg)) = ψx1(l) · · ·ψxnk

(l)ψy(l)γη(Q−y,l2)| det(1 + y)|−1/2

= ψx1(l) · · ·ψxnk
(l)Θω+−ω−((y, ψy)). �
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Chapter 6

Inducing

Here we recall van Dijk’s formula for the character of an induced representa-

tion. Furthermore we show in the case of a minimal parabolic induction that if two

representations correspond then after parabolic induction the two resulting repre-

sentations still correspond. We also discuss the uniqueness of the transfer factor in

that case. At the end we study some quotients of the Weyl groups that appear in

van Dijk’s formula.

6.1 Induced character formula

We state here van Dijk’s result concerning the formula for the character of an

induced representation. See [D] for more details.

Let G = Sp(2n) or SO(2n + 1)+. Let A be a split torus in G and M its cen-

tralizer in G. For any Cartan subgroup T of G we denote by AT the split component

of T and by W (A, T ) the set of all injections s : A → AT for which there exists

y ∈ G such that s(a) = yay−1 for all a ∈ A.

For s = sy ∈ W (A, T ) and any representation ρ of M, let sρ be the represen-

tation of M s = yMy−1 defined by sρ(m) = ρ(y−1my). The following theorem is due

to Van Dijk ([D], Theorem 3, page 238):

Proposition 6.1.1 Consider the parabolic subgroup P = MN. Let ρ be any admis-
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sible representation of M with a character θρ. We extend ρ to a representation of

P by putting ρ(mn) = ρ(m),m ∈ M,n ∈ N. Let T be any Cartan subgroup of G

that is conjugate to a Cartan subgroup in M. The character θπ of the representation

π = IndGP (ρ) has the formula:

θπ(x) =
∑

s∈W (A,T )

θsρ(x)
|DMs(x)| 12
|DG(x)| 12

, x ∈ T ∩Greg.

If T is a Cartan subgroup that is not conjugate to a Cartan subgroup in M, then θπ

vanishes on T ∩Greg.

Van Dijk’s theorem does not apply directly to S̃p(2n). It seems that an argu-

ment similar to van Dijk’s proof would hold for the metaplectic group. However,

there is no known reference for this fact. Writing down the details of such proof is one

more possible research project after completing this thesis. For the purpose of this

work, we will assume that van Dijk’s result holds. Let ρ be an admissible representa-

tion of a parabolic subgroup P̃ = p−1(P ) where P = MN and M = CentSp(2n)(A).

Denote its character by θρ and let T̃ = p−1(T ) be any Cartan subgroup of S̃p(2n)

that is conjugate to a Cartan subgroup in M̃ = p−1(M). We will assume that the

character θπ of the representation π = Ind
fSp(2n)
eP

(ρ) is given by the formula:

θπ(x̃) =
∑

s∈W ( eA,eT )

θsρ(x̃)
|DMs(x)| 12
|DSp(2n)(x)|

1
2

, x̃ ∈ T̃ ∩ S̃p(2n)reg.

If T̃ is not conjugate to a Cartan subgroup in M̃ = p−1(M), then θ(x̃) = 0 for

x̃ ∈ T̃ ∩ S̃p(2n)reg. The set W (Ã, T̃ ) is defined similarly as for the linear case,

i.e. if Ã = p−1(A) and A
eT is the split component of the Cartan subgroup T̃ , then

we denote by W (Ã, T̃ ) the set of all injections s : Ã → A
eT for which there exists

ỹ ∈ S̃p(2n) such that s(ã) = ỹãỹ−1 for all ã ∈ Ã.
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Lemma 6.1.2 W (Ã, T̃ ) ∼= W (A, T ).

Proof. Consider s = sy ∈ W (A, T ) and choose any ỹ ∈ S̃p(2n) such that p(ỹ) =

y. Then for all ã ∈ Ã we have that ỹãỹ−1 ⊂ A
eT . Hence s

ey ∈ W (Ã, T̃ ). This is

independent of the choice of the element ỹ. Indeed, let ỹ′ ∈ S̃p(2n) be another

element that maps to y. Since they differ by a central element in S̃p(2n) we have

that ỹãỹ−1 = ỹ′ãỹ′−1 for all ã ∈ Ã. Therefore s
ey = s

ey′ .

On the other hand, if s = s
ey ∈ W (Ã, T̃ ), then clearly s = sy, where y = p(ỹ)

belongs to W (A, T ). �

Example 6.1.3 Minimal parabolic induction for G = SO(2n+ 1)+.

Let A ∼= F ∗n ⊂ SO(2n+1)+. Then M = CentSO(2n+1)+A = A. Let χ be a character

of A. We extend it to a character of P by χ(mn) = χ(m), and then we induce it to

a representation π on SO(2n+1)+. We consider its character θπ. If T is any Cartan

subgroup with the split part AT ∼= F ∗k where k < n, then W (A, T ) = ∅, hence

θπ ≡ 0 on Treg. If T ∼= A, then W (A,A) = W (Bn) is the Weyl group of type Bn.

Let x ∈ T. We have that DM(x) = 1. We conclude:

θπ(x) =
∑

w∈W (Bn)

χ(w · x)
|DSO(2n+1)+(x)| 12

.

Example 6.1.4 Minimal parabolic induction for G = S̃p(2n).

Let A ∼= F ∗n ⊂ Sp(2n), Ã = p−1(A), where p : S̃p(2n) → Sp(2n) is the projection

map. Define a character χ̃ on Ã as follows:

χ̃((x, ε)) = χ(x)γ(
∏

i=1,...,n

xi, η)ε,
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where x = diag(x1, . . . , xn, 1/x1, . . . , 1/xn) ∈ Sp(2n), and χ is a character of F ∗n.

We extend it to a character on P̃ and we consider the character θ
eπ of the induced rep-

resentation π̃. As before it is enough to find its value on the split Cartan subgroup Ã.

In this case M̃ = Cent
fSp(2n)Ã = Ã, DM(x) = 1, and W (Ã, Ã) ∼= W (A,A) = W (Cn)

is the Weyl group of type Cn. Note also, that the character (x, ε) 7→ γ(
∏

i=1,...,n xi, η)ε

is W– action invariant (see Proposition 4.3.4 for the proof), therefore

(wχ̃)((x, ε)) = χ(w · x)γ(
∏
i

xi, η)ε, w ∈ W (Cn), (x, ε) ∈ Ã.

Combining all of these together we get that

θ
eπ((x, ε)) =

∑
w∈W (Cn)

χ(w · x)γ(
∏

i xi, η)ε

|DSp(2n)(x)|
1
2

.

6.2 Minimal parabolic induction

Here we state and prove the main theorem of this thesis in the special case of

the minimal parabolic induction. This section is intended as an example and it is

not needed for the purpose of the proof in the general case.

Consider split Cartan subgroups A ∼= F ∗n ⊂ Sp(2n), Ã = p−1(A) ⊂ S̃p(2n)

and A′ ∼= F ∗n ⊂ SO(2n+ 1)+. Recall that the transfer factor defined on Ã is equal

to:

Φ
eA(x̃) = Θω+−ω−(x̃)| det(1 + p(x̃))|

1
2 . (6.1)

Let χ be a character on A′ and χ̃ be a character of Ã′. Assume that they satisfy the

matching condition:

χ̃(x̃) = Φ
eA(x̃)χ(x′), (6.2)
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for all elements x̃ and x′ such that p(x̃) = x = diag(x1, . . . , xn, 1/x1, . . . , 1/xn) ∈ A,

and x′ = diag(x1, . . . , xn, 1/x1, . . . , 1/xn, 1) ∈ A′ are strongly regular. We extend χ

and χ̃ to characters defined on P and P̃ respectively. We will show the following:

Theorem 6.2.1 Let the characters χ, χ̃ be as above. Denote the characters of the

induced representations π = Ind
SO(2n+1)+
P χ and π̃ = Ind

fSp(2n)
eP

χ̃ by θπ and θ
eπ respec-

tively. Then

θ
eπ(g̃) = Φ

fSp(2n)(g̃)θπ(g
′),

whenever p(g̃)
stable←→ g′.

Remark 1. Note that we work with a fixed additive character η. The construction

of the metaplectic group S̃p(2n), and the oscillator representation ω+ + ω− both

depend on η. Therefore also the transfer factor and the matching of the characters

χ and χ̃ depend on η.

Proof. It is enough to show the equality of the characters on the diagonal elements

x̃ and x′, where p(x̃)
stable←→ x′. By the definition of stable correspondence, they have

the same nontrivial eigenvalues. Since we will average over the Weyl group, we

can assume without loss of generality that x′ = diag(x1, . . . , xn, 1/x1, . . . , 1/xn, 1) ∈

SO(2n+ 1)+ and x̃ = (x, ε) ∈ S̃p(2n), where x = diag(x1, . . . , xn, 1/x1, . . . , 1/xn) ∈

Sp(2n). Recall that in Example 4.2.4 we evaluated the character Θω+−ω− on an

element (x, ε) :

Θω+−ω−((x, ε)) =
γ(

∏
i=1,...,n xi, η)ε

| det(1 + x)|1/2
.
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Combining this with the equation (6.1) we get the formula for the transfer factor

Φ
eA((x, ε)) = γ(

∏
i=1,...,n

xi, η)ε.

Therefore, given a character χ, the matching character χ̃ must satisfy

χ̃((x, ε)) = χ(x′)γ(
∏

i=1,...,n

xi, η)ε.

In Examples 6.1.3 and 6.1.4 we calculated the formulas of the characters of the

induced representations π and π̃ :

θπ(x
′) =

∑
w∈W (Bn)

χ(w · x′)
|DSO(2n+1)+(x′)| 12

,

θ
eπ((x, ε)) = γ(

∏
i

xi, η)ε
∑

w∈W (Bn)

χ(w · x′)
|DSp(2n)(x)|

1
2

.

Since (compare Lemma 5.0.7)

|DSO(2n+1)+(x′)| 12
|DSp(2n)(x)|

1
2

=
1

| det(1 + x)| 12

we get

θ
eπ(x, ε) =

γ(
∏

i xi, η)ε

| det(1 + x)| 12
θπ(x

′) = Φ
fSp(2n)((x, ε))θπ(x

′). �

Remark 2. (Uniqueness of the transfer factor) Take χ to be a trivial character on

A′ ⊂ SO(2n+ 1)+. Then the matching character χ̃ on Ã is of the form

χ̃((x, ε)) = Φ
eA((x, ε)) = γ(

∏
i=1,...,n

xi, η)ε.

By Proposition 4.3.4 χ̃ is a genuine W–action invariant character of the split Car-

tan subgroup Ã. However, by Proposition 4.3.5 every genuine W–action invariant

character χ̃′ of Ã is of the form

χ̃′((x, ε)) = γ(
∏

i=1,...,n

xi, η
′)ε

for some additive character η′.
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6.3 Weyl groups

We keep the notations from the previous sections. The goal of this section

is to show that there exists a bijection between the sets W (A, T ) and W (A′, T ′),

where A ⊂ Sp(2n) and A′ ⊂ SO(2n+ 1)+ are isomorphic split tori and T ⊂ Sp(2n)

and T ′ ⊂ SO(2n + 1)+ are isomorphic Cartan subgroups. Recall also that M =

CentSp(2n)(A) and M ′ = CentSO(2n+1)+(A′).

First we show that in any case, the set W (A, T ) can be identified with a subset

of the Weyl group of the split Cartan subgroup. This is a generalization of the case of

minimal parabolic induction, when W (A, T ) was isomorphic to W (Cn). Analogous

statement holds for W (A′, T ′). We denote by AT the split component of T and by

As a split Cartan subgroup of Sp(2n). We assume without loss of generality that

A,AT ⊂ As.

Lemma 6.3.1 Let s ∈ W (A, T ). There exists ws ∈ W (Sp(2n), As) such that s(a) =

ws · a for all a ∈ A.

Proof. Let s = int(g) : A → AT . Consider int(g)(As) = gAsg
−1. We have that

gAg−1 ⊂ AT ⊂ As and gAg−1 ⊂ gAsg
−1, therefore As, gAsg

−1 ⊂ CentSp(2n)(gAg
−1).

Since As and gAsg
−1 are split Cartan subgroups in CentSp(2n)(gAg

−1) they must be

conjugate by h ∈ CentSp(2n)(gAg
−1). Then int(hg)(As) = As and int(hg)(A) =

int(g)(A). We take ws to be the image of hg in the Weyl group of As.

As
int(g)−−−→ gAsg

−1 int(h)−−−→ Asx x x
A

int(g)−−−→ gAg−1 gAg−1

�
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Lemma 6.3.2 (1) W (A, T ) ∼=
⋃
{H⊂M :H∼Sp(2n)T}/∼M

W (Sp(2n), H)/W (M,H),

(2) W (A′, T ′) ∼=
⋃
{H′⊂M ′:H′∼SO(2n+1)+

T ′}/∼M′ W (SO(2n+ 1)+, H
′)/W (M ′, H ′).

Proof. It is enough to prove the symplectic case only, since the prove of (2) is

analogous. Let T1, . . . , Tk be the representatives of the set {H ⊂ M : H ∼Sp(2n)

T}/ ∼M . For each i = 1, . . . , k choose ti ∈ Sp(2n) such that T = tiTit
−1
i . Note

that we have AT = tiATi
t−1
i and also note that A ⊂ ATi

(since every Ti is a Cartan

subgroup in M = CentSp(2n)(A)). Consider now int(g) ∈ W (A, T ). We have A 7→

gAg−1 ⊂ AT ⊂ T. It follows that A ⊂ g−1Tg. The Cartan subgroup g−1Tg is

contained in M :

(g−1tg)a(g−1tg)−1 = a ∀a ∈ A, t ∈ T ⇐⇒ t(gag−1)t−1 = gag−1 ∀a ∈ A, t ∈ T,

and that is true since t ∈ T and gag−1 ∈ AT ⊂ A. Therefore g−1Tg = mgTim
−1
g ,

for some mg ∈ M and i = 1, . . . , k. Since gmgTi(gmg)
−1 = T = tiTit

−1
i we get that

t−1
i gmg ∈ N(Sp(2n), Ti). Now define a map

Ψ : W (A, T ) −→
⋃
Ti

W (Sp(2n), Ti)/W (M,Ti),

Ψ(int(g)) = [t−1
i gmg] ∈ W (Sp(2n), Ti)/W (M,Ti).

It is well defined. Indeed, suppose int(g)|A = int(h)|A, i.e. gag−1 = hah−1 for all

a ∈ A. It follows that g−1h ∈ M. If h−1Th = mhTjm
−1
h , then hmhTj(hmh)

−1 =

T = gmgTi(gmg)
−1, hence Ti and Tj are conjugate in M, therefore i = j and

m−1
g g−1hmh ∈ N(M,Ti). Therefore Ψ(int(h)) = [t−1

i hmh] = [t−1
i gmg] = Ψ(int(g)).

Let now g ∈ W (Sp(2n), Ti)/W (M,Ti), where g ∈ N(Sp(2n), Ti). Since A ⊂

49



ATi
we get that A

int(g)−→ ATi

int(ti)−→ AT . Define now a map

Φ :
⋃
Ti

W (Sp(2n), Ti)/W (M,Ti) −→ W (A, T ),

Φ(g) = int(tig).

It is well defined since M (and hence Ti) act trivially on A. Note finally that

Ψ(Φ(g)) = Ψ(int(tig)) = [gmtig] = g and Φ(Ψ(intg)) = Φ([t−1
i gmg]) = int(gmg) =

int(g). �

Consider now a parabolic subgroup P = MN ⊂ Sp(2n), M = CentSp(2n)A.

Let T be a Cartan subgroup in M.

Proposition 6.3.3 Any Cartan subgroup in Sp(2n) can be decomposed into a direct

product (F ∗)a ×K∗
1 × · · · ×K∗

l × E1
1 × · · · × E1

k , where each Ki is some nontrivial

field extension of F and each E1
j is the group of norm units of Ej over Lj for some

tower of field extensions Ej
2
− Lj − F .

Proof. See [Ho], Lemma p. 296. �

Write

T ∼= TF × TK × TN ⊂ Sp(2a)× Sp(2b)× Sp(2c), (6.3)

where a + b + c = n, and TF is the split torus, TK is a product of nontrivial field

extensions, and TN is a product of norm one tori.

Now we want to show that there exists a a bijection between the quotients

W (Sp(2n), H)/W (M,H) and W (SO(2n + 1)+, H
′)/W (M ′, H ′) for any pair of iso-

morphic Cartan subgroups H ⊂ M ⊂ Sp(2n) and H ′ ⊂ M ′ ⊂ SO(2n + 1)+.

First we will describe the group W (Sp(2b), TK). Note that we do not need to
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calculate the Weyl group W (Sp(2c), TN), since it will not appear in the quotient

W (Sp(2n), T )/W (M,T ) (see Lemma 6.3.10).

Assume first that TK is a Cartan subgroup in Sp(2b) coming from a single

field extension, i.e. TK = K∗ for some field extension K
b
−F of degree b. We choose

a symplectic basis and we consider the following embedding of K∗ into Sp(2b):

ι(z) =

 Mz 0

0 tMz−1

 ,

where Mz ∈ GL(b) denotes the matrix of multiplication by z ∈ K∗. Let Z = ZK ∈

GL(b) be such that ZMzZ
−1 = tMz, for all z ∈ K∗. Such Z exists, since the Cartan

subgroups {Mz, z ∈ K∗} ⊂ GL(b) and {tMz, z ∈ K∗} ⊂ GL(b) are stably conjugate

in GL(b), and therefore they are conjugate in GL(b) (see Proposition 3.2.4). Let

δK =

 0 tZ−1

−Z 0

 ∈ Sp(2b).
The element δK acts on the Cartan subgroup K∗ ⊂ Sp(2b) as follows

δK

 Mz 0

0 tMz−1

 δ−1
K =

 Mz−1 0

0 tMz

 .

Lemma 6.3.4

W (Sp(2b), K∗) ∼= W (GL(b), K∗)× Z2.

Proof. Let TK be a Cartan subgroup defined over the algebraic closure of F, such

that its F−points TK(F ) = K∗. Then W (Sp(2b), K∗) is a subgroup of the Weyl

group of TK defined over F . The latter is of type Cb and consists of permutations

and “sign changes”. From these the only operations that preserve TK(F ) ⊂ Sp(2b)

51



are those coming from the action of GL(b) on K∗ and the action of the element

δK , i.e. the simultaneous sign change of all the eigenvalues. Finally, note that δK

commutes with the subgroup W (GL(b), K∗). �

We generalize the above lemma. We consider

TK ∼= K∗
1 × . . .×K∗

l ,

where each Ki is a nontrivial field extensions of F.

Lemma 6.3.5

W (Sp(2b), TK) ∼= W (GL(b), TK) n (Z2)
l.

Proof. The subgroup (Z2)
l is generated by the elements {δKi

, i = 1, . . . , l}. Each

δKi
acts on K∗

i as described earlier, i.e. it replaces ι(z) with ι(z−1) for z ∈ K∗
i and

leaves all the other K∗
j fixed. The subgroup (Z2)

l is normal in W (Sp(2b), TK). The

rest of the proof is analogous to the proof of the previous lemma. �

Lemma 6.3.6

NSp(2n)(T ) ∼= NSp(2a)(TF )×NSp(2b)(TK)×NSp(2c)(TN).

Proof. If n ∈ NSp(2n)(T ) then n has to also normalize every individual component

of T , i.e TF , TK and TN . That is because the eigenvalues of elements of each of these

components are of different nature: every element of TF is diagonalizable over F,

while the eigenvalues of an element in TK belong to some nontrivial field extension

Ki−F. Furthermore, the eigenvalues of an element in TN are norm one elements in

some nontrivial field extension Ei − Li − F.
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We claim that n ∈ Sp(2a) × Sp(2b) × Sp(2c). Indeed, there exist elements

nF ∈ NSp(2a)(TF ) and nK ∈ NSp(2b)(TK) whose actions on TF and TK coincide with

the action of n. That is because n normalizes TF and TK and the fact that all

operations allowed on TF and TK are realized by W (Sp(2a), TF ) and W (Sp(2b), TK)

(see the proof of Lemma 6.3.5). Therefore the element nn−1
F n−1

K fixes TF ×TK , hence

it belongs to the centralizer of TF × TK ; in particular it is contained in Sp(2a) ×

Sp(2b)× Sp(2c). �

Lemma 6.3.7

W (Sp(2n), T ) ∼= W (Sp(2a), TF )×W (Sp(2b), TK)×W (Sp(2c), TN).

Now we will study the Weyl group of T in M, where

M ∼= Sp(2m)×GL(n1)× . . .×GL(nk)

for some m+ n1 + · · ·+ nk = n. Let us recall that

T ∼= TF × TK × TN ⊂ Sp(2a)× Sp(2b)× Sp(2c).

Accordingly we write

a = a0 + a1 + · · ·+ ak,

b = b0 + b1 + · · ·+ bk,

c = c0 + 0 + · · ·+ 0.

We decompose the Cartan subgroup T as follows:

T ∼= (F ∗a0 × TK0 × TN)× (F ∗a1 × TK1)× · · · × (F ∗ak × TKk
),
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where F ∗a0 × TK0 × TN is a Cartan subgroup in Sp(2m), F ∗ai × TKi
is a Cartan

subgroup in GL(ni) for i = 1, . . . , k, and each Cartan subgroup TKi
⊂ GL(bi) for

i = 0, . . . , k is a product of nontrivial field extensions.

Lemma 6.3.8

W (M,T ) ∼= W (Sp(2a0), F
∗a0)×W (Sp(2b0), TK0)×W (Sp(2c), TN)

×
k∏
i=1

(W (GL(ai), F
∗ai)×W (GL(bi), TKi

).

Proof. The statement about the factor of T that is contained in Sp(2m) follows

from Lemma 6.3.7; the proof about factors contained in GL(ni)’s is analogous to

the proof of Lemma 6.3.6. �

Lemma 6.3.9 The quotient W (Sp(2n), T )/W (M,T ) is isomorphic to

W (Ca)

W (Ca0)×
∏k

i=1 Sai

× W (Sp(2b), TK)

W (Sp(2b0), TK0)×
∏k

i=1W (GL(bi), TKi
)
.

We simplify the above formula further. Assume that TK0 is a product of

l0 nontrivial field extensions. By Lemma 6.3.5 we have that W (Sp(2b0), TK0)
∼=

W (GL(b0), TK) n (Z2)
l0 and W (Sp(2b), TK) ∼= W (GL(b), TK) n (Z2)

l. Hence we

have the following lemma:

Lemma 6.3.10

W (Sp(2n), T )

W (M,T )
∼=

W (Ca)

W (Ca0)×
∏k

i=1 Sai

× W (GL(b), TK) n (Z2)
l

(
∏k

i=0W (GL(bi), TKi
)) n (Z2)l0

.

Consider now A′ =

 A 0

0 1

 ⊂ SO(2n + 1)+. Let M ′ be the centralizer of

A′ in SO(2n + 1)+. Let T ′N ∈ SO(2m + 1)+ be a torus that is isomorphic to the
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torus TN ∈ Sp(2m) described earlier in the section. Let

T ′ ∼= TF × TK × T ′N ⊂ SO(2a)× SO(2b)× SO(2c+ 1). (6.4)

As before, we calculate the Weyl group of T ′ in SO(2n+ 1)+ and in M ′.

Lemma 6.3.11

W (SO(2n+ 1)+, T
′) ∼= W (Ba)× (W (GL(b), TK) n (Z2)

l)×W (SO(2c+ 1)+, TN).

Proof. Assume that SO(2n+1)+ preserves the bilinear form


0 I 0

I 0 0

0 0 1

 . Consider

first TF×I×I. Note that we have an action of the Weyl group of typeDa on the torus

TF . Let e1 be an element of O(2a) that acts on diag(x1, . . . , xa, 1/x1, . . . , 1/xa) by

interchanging x1 and x−1
1 . Let e1 = e1×−I ×−I ∈ SO(2n+1)+. Now, det(e1) = 1,

e1 commutes with TK and TN and together with W (Da) it generates W (Ba).

The proof of the statement concerning the torus TK ∼= K∗
1 × . . .×K∗

l is similar

to the proof of Lemma 6.3.5. The only difference is that we replace the elements

δKi
with δ′Ki

, where

δ′Ki
=


0 tZ−1

i 0

Zi 0 0

0 0 −1


and the matrices Zi are the same ones that were used to construct δ′Ki

s. �

In order to calculate the Weyl group of T ′ in M ′ we need to refine the decom-

position of T ′. We have

M ′ ∼= SO(2m+ 1)+ ×GL(n1)× . . .×GL(nk),
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T ′ ∼= (F ∗a0 × TK0 × T ′N)× (F ∗a1 × TK1)× · · · × (F ∗ak × TKk
),

where F ∗ai and TKi
are as before, i.e. F ∗a0 × TK0 × T ′N is a Cartan subgroup in

SO(2m + 1), F ∗ai × TKi
is a Cartan subgroup in GL(ni) for i = 1, . . . , k, and each

Cartan subgroup TKi
⊂ GL(bi) for i = 0, . . . , k is a product of nontrivial field

extensions.

Lemma 6.3.12 W (M ′, T ′) is isomorphic to

W (SO(2a0 + 1), F ∗a0)× (W (GL(b0), TK0) n (Z2)
l0)×W (SO(2c+ 1), T ′N)

×
k∏
i=1

(W (GL(ai), F
∗ai)×W (GL(bi), TKi

).

Proof. The proof is analogous to the proof of the previous proposition. �

Lemma 6.3.13

W (SO(2n+ 1)+, T
′)

W (M ′, T ′)
∼=

W (Ba)

W (Ba0)×
∏k

i=1 Sai

× W (GL(b), TK) n (Z2)
l

(
∏k

i=0W (GL(bi), TKi
)) n (Z2)l0

.

Lemma 6.3.14

W (Sp(2n), T )/W (M,T ) ∼= W (SO(2n+ 1)+, T
′)/W (M ′, T ′).

To show the final result, we will need two more lemmas.

Lemma 6.3.15 Suppose that T ∼= T1 × TN is a Cartan subgroup in GL(a + b) ×

Sp(2c) ⊂ Sp(2n), where T1 is a Cartan subgroup in GL(a+ b) and TN is a product

of norm one tori of various field extensions E
2
−L−F (see Lemma 6.3.3). Suppose

also that T is conjugate in Sp(2n) to a Cartan subgroup H ⊂ GL(a + b)× Sp(2c).

Then:
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(1) H ∼= H1 ×HN where H1 is conjugate in GL(a+ b) to T1 and HN is stably

conjugate to TN in Sp(2c),

(2) If x ∈ Sp(2n) is such that xTx−1 = H, then x ∈ Sp(2(a+ b))× Sp(2c),

(3) H is conjugate to H1 × TN in I × Sp(2c) ⊂M.

Proof. (1) follows from the fact that conjugate elements of TN and HN (and hence

of T1 and H1) have the same eigenvalues.

To show (2) consider a 2n−dimensional vector space V with a nondegenerate

symplectic form 〈 , 〉 that is preserved by Sp(2n). Let g = (d1, e1) ∈ T1 × TN be

a regular element. Decompose V into a direct product of subspaces W1 and W2,

where d1 ∈ Sp(W1) and e1 ∈ Sp(W2). By (1) x(d1, 1)x−1 = (d2, 1). Let w2 ∈ W2.

Since (d1, 1)w2 = w2 we have that (x(d1, 1)x−1)xw2 = xw2. Since d2 is regular (i.e.

has no trivial eigenvalues) and since (d2, 1) fixes W2 we get that xw2 ∈ W2. Note

also that x takes W1 into W1, since 0 = 〈W1,W2〉 = 〈xW1, xW2〉 = 〈xW1,W2〉 and

preserves 〈 , 〉|Wi
, hence the assertion follows.

To show (3) write x = (x1, x2) ∈ Sp(2(a+b))×Sp(2c). Then (1, x−1
2 )H(1, x2) =

H1 × TN , and (1, x−1
2 ) ∈ I × Sp(2c). �

Below is the “SO(2n+ 1)” version:

Lemma 6.3.16 Suppose that T ′ ∼= T1 × T ′N is a Cartan subgroup in GL(a + b) ×

SO(2c + 1)+ ⊂ SO(2n + 1)+, where T1 is a Cartan subgroup in GL(a + b) and T ′N

is the Cartan subgroup in SO(2c + 1)+ coming from the groups of norm units of

various field extensions E
2
−L−F . Suppose also that T is conjugate in SO(2n+1)+

to a Cartan subgroup H ⊂ GL(a+ b)× SO(2c+ 1)+. Then:
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(1) H ∼= H1 ×H ′
N where H1 is conjugate in GL(a+ b) to T1 and H ′

N is stably

conjugate to T ′N in SO(2c+ 1)+,

(2) If x ∈ SO(2n+1) is such that xTx−1 = H, then x ∈ O(2(a+b))×O(2c+1),

(3) H is conjugate to H1 × T ′N in I × SO(2c+ 1)+ ⊂M ′.

Proof. The proof of (1) and (2) is similar to the proof of the previous lemma. The

only significant difference might happen in (3). Namely, if x = (x1, x2) ∈ O(2(a +

b))×O(2c+1), and detx2 = −1 then we replace (1, x2) with (1,−x2) ∈ SO(2c+1)+,

and the rest follows. �

Lemma 6.3.17 W (A, T ) ∼= W (A′, T ′).

Proof. Recall that T ∼= T1× TN and T ′ ∼= T1× T ′N , where T1
∼= TF × TK is a Cartan

subgroup in GL(a + b) and TN ⊂ Sp(2c) and T ′N ⊂ SO(2c + 1)+ are isomorphic

Cartan subgroups. By Lemma 6.3.2 and Lemma 6.3.14 it is enough to show that we

can choose the representatives of the indexing sets in the formula of Lemma 6.3.2

to be isomorphic Cartan subgroups. Let T1, . . . , Tk be the representatives of the set

{H ⊂ M : H ∼G T}/ ∼M in Sp(2n). By Lemma 6.3.15 we can decompose each

Ti into a product Ti1 × TiN , where Ti1 is a Cartan subgroup in GL(a + b) that is

conjugate to T1 in GL(a+ b) and TiN is a Cartan subgroup in Sp(2c), that is stably

conjugate in Sp(2c) to TN . Also by Lemma 6.3.15, each Ti is conjugate in M to

Ti1 × TN . Without loss of generality we will assume then that TiN = TN for all i.

Therefore T11×TN , . . . , Tk1×TN is a complete list of representatives of the indexing

set on the “Sp(2n) side”.
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We form a list T ′1 . . . , T
′
k on the “SO(2n + 1) side” as follows. Define T ′i

∼=

Ti1 × T ′N ⊂ SO(2n+ 1)+. We need to show the following: (1) T ′i ∼SO(2n+1)+ T
′, (2)

T ′i �M ′ T ′j , (3) the list is complete.

Assertion (1) follows from the fact that Ti1 and T1 are conjugate in GL(a+ b),

hence also Ti1×T ′N and T ′ ∼= T1×T ′N are conjugate in SO(2n+1)+. Part (2) is true

because Ti �M Ti for i 6= j..

Finally, note that T ′1, . . . , T
′
k exhaust the list of the representatives of the quo-

tient {H ′ ⊂ M ′ : H ′ ∼SO(2n+1)+ T ′}/ ∼M ′ in SO(2n + 1)+. If H ′ ∼SO(2n+1)+ T ′ ∼=

T ′1 × T ′N , then H ′ ∼= H1 ×H ′′
N , where H1 is conjugate to T ′1 in GL(a+ b) and H ′′

N is

stably conjugate in SO(2c+ 1)+ to T ′N . Without loss of generality we can therefore

assume that H1 = Tj1 , for some j. Hence H ′ ∼= Tj1 × H ′′
N ∼SO(2n+1)+ Tji × T ′N . By

part (3) of Lemma 6.3.16 we get that H ′ ∼M ′ Tj1 × T ′N . That completes the proof.

�
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Chapter 7

Stability

In this chapter we again study quotients of the Weyl groups that appear in

van Dijk’s formula and we show that we can replace them with their stable versions.

We define stable conjugacy for the metaplectic group S̃p(2n). We also define a

matching correspondence between the representations of S̃p(2n) and SO(2n+1)+ as

follows: two representations correspond if their characters are identified by the stable

orbit correspondence, up to a transfer factor. Further we show that corresponding

representations are necessarily stable and that the representation obtained from

inducing a stable representation is also stable.

7.1 Stabilized Weyl groups

The bijection between the setsW (A, T ) andW (A′, T ′) obtained in the previous

chapter does not have sufficiently nice properties. The reason is, that it is just

a bijection between sets, it does not come from a Weyl group isomorphism (in

general the groups W (Sp(2n), T ) and W (SO(2n + 1)+, T
′) are not isomorphic, see

the example below). In order to obtain the required properties, we need to consider

the stable Weyl group, i.e. Wst(G, T ) = {w ∈ W (G ,T) | w acts on T(F )}. The

same technique was also used by Adams in [A1].

Example 7.1.1 Weyl group of the elliptic Cartan subgroup in SL(2) and SO(3)+,
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for p odd.

Let ∆ be a non-square in F ∗. We consider the elliptic Cartan subgroup of norm one

elements in the field extension F (
√

∆)/F :

a+ b∆ 7→


a b∆ 0

b a 0

0 0 1

 ∈ SO(2n+ 1)+.

The Weyl group of this Cartan subgroup in SO(2n+1)+ is Z2; the nontrivial conju-

gation that takes a+b∆ to a−b∆ is realized by a diagonal matrix diag(1,−1,−1) ∈

SO(2n+ 1)+. In this case Wst(SO(3)+, T
′
N) = W (SO(3)+, T

′
N).

However, the Weyl group of the same Cartan subgroup in SL(2), i.e.

a+ b∆ 7→

 a b∆

b a

 ,

depends on the sign of (∆,−1). (Note that the matrix diag(1,−1) does not belong

to SL(2)). For example, if −1 is a square in F, then then the conjugation operation

can be realized by diag(
√
−1,−

√
−1). More generally, it can be shown by a direct

computation that the most general form of the matrix that conjugates a + b∆ to

a− b∆ is  x −y∆

y −x

 , x, y ∈ F, x2 −∆y2 6= 0.

Its determinant is equal to −x2 + ∆y, hence this matrix can be realized in SL(2) if

and only if we can find x and y such that x2 −∆y = −1, i.e. if and only if −1 is a

norm, i.e. if and only if (∆,−1) = 1. Therefore W (SL(2), TN) ∼= Z2, if (∆,−1) = 1,

and W (SL(2), TN) ∼= {1} otherwise.
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Note now, that the element diag(
√
−1,−

√
−1) ∈ W (SL(2),TN) acts on

TN = TN(F ). Therefore the stabilized Weyl group Wst(SL(2), TN) ∼= Z2 and it

is isomorphic to Wst(SO(2n+ 1)+, T
′
N).

Let T = T(F ) ⊂ Sp(2n) and T ′ = T′(F ) ⊂ SO(2n+1)+ be isomorphic Cartan

subgroups. Let’s recall that in Chapter 3 we constructed a commutative diagram

Ts = g−1Tg
ψs−−−→ T′

s = h−1T′h

int(g−1)

x yint(h)

T
ψ−−−→ T′

and an isomorphism between the Weyl groups

φs : W (Sp(2n),Ts) −→ W (SO(2n+1),T′
s),

with the following properties:

• ψ(T(F )) = T′(F ),

• x stably←→ ψ(x) for all strongly regular semisimple elements x ∈ T,

• ψs(w · t) = φs(w) · ψs(t), for all t ∈ Ts w ∈ W (Sp(2n),Ts).

Denote by φ the isomorphism between the Weyl groups W (Sp(2n),T) and

W (SO(2n+1),T′
s) induced by the commutative diagram:

W (Sp(2n),Ts)
φs−−−→ W (SO(2n+1),T′

s)

int(g−1)

x yint(h)

W (Sp(2n),T)
φ−−−→ W (SO(2n+1),T′).
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Lemma 7.1.2 The isomorphism φ : W (Sp(2n),T) −→ W (SO(2n+1),T′) sat-

isfies the property ψ(w · t) = φ(w) · ψ(t), for all t ∈ T and all w ∈ W (Sp(2n),T).

Proof. This follows from the fact that ψs(w · t) = φs(w) · ψs(t), for all t ∈ Ts and

all w ∈ W (Sp(2n),Ts) and from the form of vertical isomorphisms (intertwining

action of the same elements g−1 and h) in the diagrams above. �

Recall that F denotes the algebraic closure of F and Γ = Γ(F/F ) is the Galois

group F over F. Let G = Sp(2n) or SO(2n+1) and let H ⊂ G denote a Cartan

subgroup that is defined over F. We denote by W (G,H)Γ the subgroup of W (G,H)

that is fixed by the action of Γ.

Lemma 7.1.3 W (G,H)Γ = {w ∈ W (G ,H) | w acts on H(F )}

Proof. First note that W (G,H)Γ acts on H(F ). Indeed, if w ∈ W (G,H)Γ and

t ∈ H(F ) then σ(w · t) = σ(w) · σ(t) = w · t, for all σ ∈ Γ. On the other hand,

assume that w ∈ W (G,H) acts on H(F ). Let t ∈ H(F ) be a regular element. We

have that σ(w · t) = w · t, i.e. w−1σ(w) commutes with t. Therefore w−1σ(w) ∈ H,

hence σ(w) = w. �

Definition 7.1.4 Let G = Sp(2n) or SO(2n + 1)+. Let H = H(F ) be a Cartan

subgroup in G. We define the stable Weyl group Wst(G,H) to be W (G,H)Γ.

Lemma 7.1.5 φ(Wst(Sp(2n), T )) = Wst(SO(2n+ 1)+, T
′).

Proof. Let w ∈ Wst(Sp(2n), T ) and t′ ∈ T ′. Note that ψ(T ) = T ′, hence t′ = ψ(t),

for some t ∈ T. Since w · t ∈ T we get that φ(w) · t′ = φ(w) · ψ(t) = ψ(w · t) ∈ T ′.

By the above lemma, φ(w) ∈ Wst(SO(2n+ 1)+, T
′). �
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Let us recall the decompositions of tori T and T ′ :

T ∼= TF × TK × TN ⊂ Sp(2a)× Sp(2b)× Sp(2c) (see (6.3)),

T ′ ∼= TF × TK × T ′N ⊂ SO(2a)× SO(2b)× SO(2c+ 1)+ (see (6.4)).

In Lemmas 6.3.7, 6.3.5 and 6.3.11 we calculated the Weyl groups of these tori:

W (Sp(2n), T ) ∼= W (Ca)× (W (GL(b), TK) n Zl
2)×W (Sp(2c), TN),

W (SO(2n+ 1)+, T
′) ∼= W (Ba)× (W (GL(b), TK) n Zl

2)×W (SO(2c+ 1)+, T
′
N).

Note that Wst(SO(2a + 1)+, TF ) = W (SO(2a + 1)+, TF ) and Wst(Sp(2a), TF ) =

W (Sp(2a), TF ). Also it follows from the proof of Lemmas 6.3.5 and 6.3.11 that

Wst(Sp(2b), TK) = W (Sp(2b), TK) = W (GL(b), TK)nZl
2 andWst(SO(2b+1)+, TK) =

W (GL(b), TK) n Zl
2. Therefore

Wst(Sp(2n), T ) ∼= W (Ca)× (W (GL(b), TK) n Zl
2)×Wst(Sp(2c), TN),

Wst(SO(2n+ 1)+, T
′) ∼= W (Ba)× (W (GL(b), TK) n Zl

2)×Wst(SO(2c+ 1)+, T
′
N).

Analogous statements hold for the stable Weyl groups Wst(M,T ) and Wst(M
′, T ′)

(compare Lemma 6.3.8 and Lemma 6.3.12 for the description of W (M,T ) and

W (M ′, T ′)):

Wst(M,T ) ∼= W (Sp(2a0), F
∗a0)× (W (GL(b0), TK0) n (Z2)

l0)

×
k∏
i=1

Sai
×

k∏
i=1

W (GL(bi), TKi
)×Wst(Sp(2c), TN),

Wst(M
′, T ′) ∼= W (SO(2a0 + 1), F ∗a0)× (W (GL(b0), TK0) n (Z2)

l0)
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×
k∏
i=1

Sai
×

k∏
i=1

W (GL(bi), TKi
)×Wst(SO(2c+ 1)+, T

′
N).

Lemma 7.1.6 (1) Wst(Sp(2n), T ) ∼= Wst(SO(2n+ 1)+, T
′),

(2) Wst(M,T ) ∼= Wst(M
′, T ′),

(3) Wst(Sp(2n),T )
Wst(M,T )

∼= W (Sp(2n),T )
W (M,T )

∼= W (SO(2n+1)+,T ′)
W (M ′,T ′)

∼= Wst(SO(2n+1)+,T ′)
Wst(M ′,T ′)

.

Proof. The statements follow from Lemma 7.1.5 applied to Wst(Sp(2c), TN) and

Wst(SO(2n+ 1)+, T
′
N) and from the preceding remarks. �

We summarize this section in the following lemma:

Lemma 7.1.7 Let T ⊂ Sp(2n) and T ′ ⊂ SO(2n + 1)+ be isomorphic Cartan

subgroups. Then there exist an isomorphism ψ : T → T ′ and an isomorphism

φ : Wst(Sp(2n), T )→ Wst(SO(2n+ 1)+, T
′) such that

(1) ψ(t)
stable←→ t, for all strongly regular semisimple elements t ∈ T,

(2) φ : Wst(Sp(2n), TN)→ Wst(SO(2c+ 1)+, T
′
N),

(3) ψ(w · g) = φ(w) · ψ(g), w ∈ Wst(Sp(2n), T ), g ∈ T.

7.2 Stability in S̃p(2n)

We start with the following lemma which is crucial in defining stability for the

metaplectic group.

Lemma 7.2.1 Let g̃, h̃ ∈ S̃p(2n) be such that p(g̃) is stably conjugate to p(h̃) in

Sp(2n). Then Θω+−ω−(g̃) = ±Θω+−ω−(h̃).
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Proof. Let g̃ and h̃ be as in the statement of the lemma. The character of the

oscillator representation is given by

Θω++ω−(g̃) = ±γ(1)
2n−1γ(det(g − 1))

| det(g − 1)|1/2

(see [T], Theorem 1C). Therefore the lemma holds with Θω++ω− in place of Θω+−ω+ ,

i.e.

Θω++ω−(g̃) = ±Θω++ω−(h̃).

Let x ∈ S̃p(2n) be such that p(x) = −I ∈ Sp(2n). In Corollary 4.2.3 we showed

that Θω++ω−(xg̃) = λ Θω+−ω+(g̃), where λ is a constant independent of g̃. Now we

have that

Θω+−ω+(g̃) = λ−1 Θω++ω−(xg̃) = ±λ−1 Θω++ω−(xh̃) = ±Θω+−ω+(h̃). �

Definition 7.2.2 Let g̃, h̃ ∈ S̃p(2n). We say that g̃ is stably conjugate to h̃ if p(g̃)

is stably conjugate to p(h̃) in Sp(2n) and Θω+−ω−(g̃) = Θω+−ω−(h̃).

This definition is nonstandard and one could for example use the character of

the sum of the two halves of the oscillator representation instead of the difference.

However, this definition matches our choice of the transfer factor and hence makes

the results hold. It also agrees with the definition in the real case (see Adams [A1]

work for details).

Now we will define stably conjugacy in the Levi factor M̃ = p−1(M). Let

M ∼= Sp(2m)×GL(n1)× . . .×GL(nk). We consider the following cover of M̃ :˜̃
M ∼= S̃p(2m)× G̃L(n1)× . . .× G̃L(nk)

p′

y
M̃ ∼= p−1(Sp(2m)×GL(n1)× . . .×GL(nk)).
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Here the cocycle on each G̃L(ni) is given by the Hilbert symbol of the appropriate

determinants, i.e. c(x, y) = (det(x), det(y)).

Definition 7.2.3 Let g̃, h̃ ∈ M̃. We say that g̃ is stably conjugate to h̃ in M̃ if there

exist elements (g̃0, g̃1, . . . , g̃k), (h̃0, h̃1, . . . , h̃k) ∈ S̃p(2m)×G̃L(n1)×. . .×G̃L(nk) such

that

• p′((g̃0, g̃1, . . . , g̃k)) = g̃,

• p′((h̃0, h̃1, . . . , h̃k)) = h̃,

• g̃i is conjugate to h̃i in G̃L(ni) for i = 1, . . . , k,

• g̃0 is stably conjugate to h̃0 in S̃p(2m).

Lemma 7.2.4 Let g̃, h̃ ∈ M̃. The following conditions are equivalent:

(1) g̃ is stably conjugate to h̃ in M̃,

(2) p(g̃) is stably conjugate to p(h̃) in M and Φ
fM(g̃) = Φ

fM(h̃),

(3) p(g̃) is stably conjugate to p(h̃) in M and Θω+−ω−(g̃) = Θω+−ω−(h̃).

Proof. (1) =⇒ (2) Clearly p(g̃) is stably conjugate to p(h̃) in M. Choose elements

(g̃0, g̃1, . . . , g̃k) and (h̃0, h̃1, . . . , h̃k) ∈
˜̃
M that satisfy the conditions of the definition

above. By the definition of stable conjugacy in S̃p(2m) we have that Θω+−ω−(g̃0) =

Θω+−ω−(h̃0). Since each g̃i ∈ G̃L(ni) is conjugate to h̃i ∈ G̃L(ni) we also have that

χi(g̃i) = χi(h̃i), where χi is a character of G̃L(ni) described in Lemma 5.0.11. Again

by Lemma 5.0.11 we get that the values of the transfer factor on the elements g̃ and

67



h̃ are equal:

Φ
fM(g̃) = Θω+−ω−(g̃0)

k∏
i=1

χi(g̃i) = Θω+−ω−(h̃0)
k∏
i=1

χi(h̃i) = Φ
fM(h̃).

(2)⇐⇒ (3) Recall the definition of the transfer factor on M̃ :

Φ
fM(g̃) =

|DSp(2n)(g)|
1
2

|DM(g)| 12
|DM ′(g′)| 12

|DSO(2n+1)+(g′)| 12
Θω+−ω−(g̃),

where g = p(g̃) and g′ ∈ M ′ is chosen in such a way that g′
L−stable←→ g. Since g and

h = p(h̃) are stably conjugate in M , we have g′
L−stable←→ h, DM(g) = DM(h) and

DSp(2n)(g) = DSp(2n)(h). Therefore

Φ
fM(h̃) =

|DSp(2n)(g)|
1
2

|DM(g)| 12
|DM ′(g′)| 12

|DSO(2n+1)+(g′)| 12
Θω+−ω−(h̃),

and the assertion follows.

(3) =⇒ (1) Let p(g̃) = (g0, . . . , gk) ∈ M and p(h̃) = (h0, . . . , hk) ∈ M. For

i = 1, . . . , k we fix εi and we let g̃i = (gi, εi), h̃i = (hi, εi) ∈ G̃L(ni). Then g̃i is

conjugate to h̃i in G̃L(ni). Indeed, since gi and hi are conjugate in GL(ni), there

exists yi ∈ GL(ni) such that yigiy
−1
i = hi. We lift yi to an element ỹi = (yi, εi) ∈

G̃L(ni) and we get that

ỹig̃iỹ
−1
i = (yi, εi)(gi, εi)(y

−1
i , εi) = (yigiy

−1
i , εi) = (hi, εi) = h̃i.

Now we choose lifts of the elements g0 and h0 ∈ Sp(2m) to elements g̃0 = (g0, ε) and

h̃0 = (h0, ε
′) ∈ S̃p(2m) in such a way that Θω+−ω−(g̃0) = Θω+−ω−(h̃0) (it is possible

by Lemma 7.2.1). By our construction we get that p′((g̃0, g̃1, . . . , g̃k)) is stably con-

jugate to p′((h̃0, h̃1, . . . , h̃k)) in M̃. We still need to show that p′((g̃0, g̃1, . . . , g̃k)) =

g̃ and p′((h̃0, h̃1, . . . , h̃k)) = h̃. Note that p′((g̃0, g̃1, . . . , g̃k)) = g̃ if and only if
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Θω+−ω−(p′((g̃0, g̃1, . . . , g̃k))) = Θω+−ω−(g̃) and p′((g̃0, g̃1, . . . , g̃k)) 6= g̃ if and only

if Θω+−ω−(p′((g̃0, g̃1, . . . , g̃k))) = −Θω+−ω−(g̃). By our assumption Θω+−ω−(g̃) =

Θω+−ω−(h̃). Therefore we have only two possibilities: either p′((g̃0, g̃1, . . . , g̃k)) = g̃

and p′((h̃0, h̃1, . . . , h̃k)) = h̃ (in which case we are done) or p′((g̃0, g̃1, . . . , g̃k)) 6= g̃

and p′((h̃0, h̃1, . . . , h̃k)) 6= h̃. In the second case we simultaneously change the choice

of ε to −ε and ε′ to −ε′. �

Let T̃ be a Cartan subgroup in S̃p(2n). Let T = p(T̃ ) and let Wst(Sp(2n), T )

be the stable Weyl group of T in Sp(2n). We define the action of w ∈ Wst(Sp(2n), T )

on t̃ ∈ T̃ as follows:

w · t̃ = h̃, where p(t̃) = w · p(h̃) and t̃ ∼st h̃,

or equivalently

w · t̃ = h̃, where p(t̃) = w · p(h̃) and Θω+−ω−(t̃) = Θω+−ω−(h̃).

To check that this is a group action, we need to show that for any elements w1, w2 ∈

Wst(Sp(2n), T ) and any element x̃ ∈ S̃p(2n) we have that

Θω+−ω−((w1w2) · x̃) = Θω+−ω−(w1 · (w2 · x̃)).

But that is true, since by the definition of the action of the stable Weyl group

and by the definition of stable conjugacy Θω+−ω−(x̃) = Θω+−ω−((w1w2) · x̃) and

Θω+−ω−(x̃) = Θω+−ω−(w2 · x̃) = Θω+−ω−(w1 · (w2 · x̃)).

We will be considering representations ρ′ of M ′ and ρ of M̃ that satisfy the

following matching condition:

θρ(g̃) = Φ
fM(g̃)θρ′(g

′), (7.1)
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for all strongly regular semisimple elements g̃ ∈ M̃, g′ ∈M ′ such that p(g̃)
L−stable←→ g′.

Lemma 7.2.5 Let ρ be a representation on M̃ and ρ′ be a representation on M ′.

Assume that their characters satisfy (7.1). Then the characters θρ and θρ′ are stable

on M̃ and M ′ respectively.

Proof. Let g′, h′ ∈ M ′ be strongly regular semisimple elements that are stably

conjugate in M ′. Choose any element g̃ ∈ S̃p(2n) such that p(g̃)
L−stable←→ g′. We also

have that p(g̃)
L−stable←→ h′, hence we can apply (7.1) twice to get

Φ
fM(g̃)θρ′(g

′) = θρ(g̃) = Φ
fM(g̃)θρ′(h

′).

That implies θρ′(g
′) = θρ′(h

′).

Let now g̃ and h̃ be stably conjugate in M̃. By Lemma 7.2.4 that this implies

that the values of the transfer factor at g̃ and h̃ are equal. Let g′ ∈ SO(2n+ 1)+ be

any element such that p(g̃)
L−stable←→ g′. We also have that p(h̃)

L−stable←→ g′. Hence

θρ(g̃) = Φ
fM(g̃)θρ′(g

′) = Φ
fM(h̃)θρ′(g

′) = θρ(h̃). �

Remark. Let G = Sp(2n) or SO(2n+ 1)+. Recall van Dijk’s formula (Proposition

6.1.1) for the character of an induced representation:

θπ(x) =
∑

w∈W (G,T )/W (M,T )

θρ(w
−1 · x) |DM(w−1 · x)| 12

|DG(x)| 12
, x ∈ T ∩Greg.

In Lemma 7.1.6 we showed that the Weyl group quotients that appear in this formula

are isomorphic to the quotients of the stable Weyl groups. Since the character θρ

that we are considering is stable (see Lemma 7.2.5), we have that

θρ(w
−1 · x) = θρ(w

−1
st · x),
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where w ∈ W (G,T )
W (M,T )

and wst ∈ Wst(G,T )
Wst(M,T )

are matched by the isomorphism. Therefore

we can replace those quotients in van Dijk’s formula without further referring to

this isomorphism.

The following fact is well known for the linear case. However, since the proofs

for linear and non-linear case are similar, we present them both.

Proposition 7.2.6 If the character of a representation ρ′ is stable on M ′, then

the character of the induced representation π′ = IndGPρ
′ is stable on SO(2n + 1)+.

Analogous statement holds for Sp(2n) and S̃p(2n).

Proof. Let x and x′ be two strongly regular semisimple elements that are stably

conjugate in SO(2n + 1)+. Assume that x, x′ ∈ M ′. First we will show, that there

exists g ∈ SO(2n+ 1)+ such that gxg−1 is stably conjugate in M ′ to x′. We decom-

pose x = (x1, xN), where x1 belongs to GL(k), for some integer k and xN belongs to

TN which is a product of norm one tori. Similarly, we decompose x′ = (x′1, x
′
N), with

x′1 ∈ GL(k) and x′N ∈ T ′N . Since x and x′ are stably conjugate, we have that x1 and

x′1 are stably conjugate in GL(k), hence they are conjugate by some g1 ∈ GL(k).

Let g = g1 × I. Since xN ∈ TN ⊂ M ′ and x′N ∈ T ′N ⊂ M ′ are stably conjugate and

we have that gxg−1 = (x′1, xN) is stably conjugate in M to x′ = (x′1, x
′
N).

Now we use van Dijk’s formula (see Proposition 6.1.1) to evaluate the character

θπ at x and x′. Let T = CentSO(2n+1)+(x′1, xN) and T ′ = CentSO(2n+1)+(x′1, x
′
N). We

have that

θπ(x) = θπ(gxg
−1) =

∑
s∈W (A,T )

θsρ′(x
′
1, xN)

|DM ′s(x′1, xN)| 12
|DSO(2n+1)+(x′1, xN)| 12

,
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θπ(x
′) =

∑
s∈W (A,T ′)

θsρ′(x
′
1, x

′
N)

|DM ′s(x′1, x
′
N)| 12

|DSO(2n+1)+(x′1, x
′
N)| 12

.

Note that the Cartan subgroups T and T ′ have the same split parts, therefore

W (A, T ) = W (A, T ′). Since (x′1, xN) is stably conjugate in M ′ to (x′1, x
′
N), we have

that the values of DM ′s and DSO(2n+1)+ at those two points are equal. Finally θρ

is stable on M, hence θsρ′(x
′
1, xN) = θsρ′(x

′
1, x

′
N). That completes the proof in the

linear case.

The proof of the S̃p(2n) case is similar. Let x̃ and x̃′ be two elements that

are stably conjugate in S̃p(2n), i.e. p(x̃) is stably conjugate to p(x̃′) in Sp(2n)

and Θω+−ω−(x̃) = Θω+−ω−(x̃′). We find an element g ∈ Sp(2n) such that gp(x̃)g−1

is stably conjugate in M to p(x̃′) (such g exists by similar argument as in the

SO(2n + 1)+ case). We choose an element g̃ ∈ S̃p(2n) such that p(g̃) = g. We

have that Θω+−ω−(g̃x̃g̃−1) = Θω+−ω−(x̃) = Θω+−ω−(x̃′), hence by Lemma 7.2.4 the

elements g̃x̃g̃−1 and x̃′ are stably conjugate in M̃. The rest of the proof is similar to

the linear case. �
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Chapter 8

Parabolic induction

This chapter contains the proof of the main results of the thesis, which is that

the lifting of representations is compatible with parabolic induction. This result

reduces the problem of lifting of representations to the supercuspidal case.

We keep the notations from the previous chapters. Recall that M ′ ∼= SO(2m+

1)+×GL(n1)×. . .×GL(nk),M ∼= Sp(2m)×GL(n1)×. . .×GL(nk) and M̃ = p−1(M).

We also consider the following cover of M̃ :

˜̃
M ∼= S̃p(2m)× G̃L(n1)× . . .× G̃L(nk)y

M̃ ∼= p−1(Sp(2m)×GL(n1)× . . .×GL(nk)).

Here the cocycle on each G̃L(ni) is given by the Hilbert symbol of the appropriate

determinants, i.e. c(x, y) = (det(x), det(y)). If ρ is a representation on M̃, we will

denote its lift to
˜̃
M by ρ̃.

Theorem 8.0.7 (Reduction to the Sp(2m) and SO(2m + 1)+ factors) Let ρ be a

genuine representation on M̃ and let ρ′ be a representation on M ′. Assume that

their characters satisfy the matching condition (7.1):

θρ(x̃) = Φ
fM(x̃)θρ′(x

′), p(x̃)
L−stable←→ x′.

Decompose ρ̃ = ρ̃0⊗ . . .⊗ ρ̃k and ρ′ = ρ′0⊗ . . .⊗ ρ′k accordingly to the decomposition

of
˜̃
M and M ′. Then
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(1) θ
eρ0(x̃) = Θω+−ω−(x̃)θρ′0(x

′), where Θω+−ω− is the character of the difference

of the two halves of the oscillator representation on S̃p(2m), x̃ ∈ S̃p(2m), x′ ∈

SO(2m+ 1)+ and p(x̃)
stable←→ x′,

(2) For i = 1, . . . , k we have that θ
eρi
(x̃) = χη(x̃)θρ′i(x

′), where χη is a character

of G̃L(ni) defined by χη(g, ε) = γ(det(g), η)ε.

Proof. This is an immediate consequence of Lemma 5.0.11, where we showed that

the transfer factor restricted to S̃p(2m) is equal to the character of the difference of

two halves of the oscillator representation on S̃p(2m) and that the transfer factor

restricted to each G̃L(ni) is equal to a character χη, where χη(g, ε) = γ(det(g), η)ε.

�

The following theorem is the main result of this thesis. It reduces the problem

of lifting characters to the supercuspidal case.

Theorem 8.0.8 Let ρ be a genuine admissible virtual representation of M̃ and ρ′

be an admissible virtual representation of M ′. Assume that their characters satisfy

the matching condition (7.1), i.e.

θρ(x̃) = Φ
fM(x̃)θρ′(x

′), p(x̃)
L−stable←→ x′.

(Recall that this implies that the characters θρ and θρ′ are stable). Let π = Ind
fSp(2n)
fM

ρ

and π′ = Ind
SO(2n+1)+
M ′ ρ′ and denote by θπand θπ′ the characters of these represen-

tations. Then

θπ(g̃) = Φ
fSp(2n)(g̃)θπ′(g

′) for p(g̃)
stable←→ g′.
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Remark 1. (Connections to the case of the minimal parabolic induction) Assume

that A ∼= F ∗n is a split Cartan subgroup. We have A ∼= M hence by the definition

of the transfer factor and by Lemma 5.0.7 we have that

Φ
eA(g̃) =

|DSp(2n)(g)|
1
2

|DSO(2n+1)+(g′)| 12
Θω+−ω−(g̃) = | det(1 + g)|

1
2 Θω+−ω−(g̃),

for p(g̃) = g
L−stable←→ g′. This coincides with the transfer factor Φ defined by the

equation (6.1) in the case of the minimal parabolic induction. Therefore the pair

of characters χ and χ̃ described in Theorem 6.2.1 satisfies the matching condition

(7.1). Hence indeed Theorem 6.2.1 is a special case of the theorem above.

Remark 2. As in the case of the minimal parabolic induction, note that the

matching correspondence depends on the fixed additive character η. See the remark

after Theorem 6.2.1 for an explanation.

Proof. Assume that the characters of the representations ρ and ρ′ satisfy (7.1), i.e.

θρ(x̃) = Φ
fM(x̃)θρ′(x

′), p(x̃)
L−stable←→ x′.

Let g̃ ∈ S̃p(2n) and g′ ∈ SO(2n + 1)+ be such that g = p(g̃) ∈ Sp(2n) and g′ are

strongly regular semisimple and g
stable←→ g′. Let T̃ be the centralizer of g̃ in S̃p(2n).

Let T ′ be the centralizer of g′ in SO(2n + 1)+. If T̃ (resp. T ′) is not conjugate

to a Cartan subgroup in M̃ (resp. M ′), then the value of the character θπ (resp.

θπ′) is zero. Therefore without loss of generality we can assume that T̃ is a Cartan

subgroup in M̃ and T ′ is a Cartan subgroup in M ′. Then T ′ is isomorphic to the

Cartan subgroup p(T̃ ) in Sp(2n). By Proposition 6.1.1 we have:

θπ(g̃) =
∑

s∈W (A,T )

θsρ(g̃)
|DMs(g)| 12
|DSp(2n)(g)|

1
2

,

75



and

θπ′(g
′) =

∑
s′∈W (A′,T ′)

θs′ρ′(g
′)
|DM ′s′ (g′)|

1
2

|DSO(2n+1)+(g′)| 12
.

We use Lemma 6.3.2 to rewrite the indexing sets as follows

W (A, T ) ∼=
⋃

{H⊂M :H∼GT}/∼M

W (Sp(2n), H)/W (M,H),

W (A′, T ′) ∼=
⋃

{H′⊂M ′:H′∼GT ′}/∼M′

W (SO(2n+ 1)+, H
′)/W (M ′, H ′).

Now we use the methods of the proof of Lemma 6.3.17 to choose the representatives

T1, . . . , Tk of the set {H ⊂M : H ∼G T}/ ∼M and the representatives T ′1, . . . , T
′
k of

the set {H ′ ⊂ M : H ′ ∼G T ′}/ ∼M ′ to be isomorphic Cartan subgroups. Therefore

we have

W (A, T ) ∼=
⋃

i=1,...,k

W (Sp(2n), Ti)/W (M,Ti),

W (A′, T ′) ∼=
⋃

i=1,...,k

W (SO(2n+ 1)+, T
′
i )/W (M ′, T ′i ),

where Ti and T ′i are isomorphic Cartan subgroups for i = 1, . . . , k. By Lemma 7.2.5,

the characters θρ and θρ′ are stable, therefore we can use Lemma 7.1.6 to replace

the Weyl group quotients with their stabilized versions:

W (A, T ) ∼=
⋃

i=1,...,k

Wst(Sp(2n), Ti)/Wst(M,Ti),

W (A′, T ′) ∼=
⋃

i=1,...,k

Wst(SO(2n+ 1)+, T
′
i )/Wst(M

′, T ′i ).

For each i choose isomorphisms ψi : Ti → T ′i and

φi : Wst(Sp(2n), Ti)/Wst(M,Ti)→ Wst(SO(2n+ 1)+, T
′
i )/Wst(M

′, T ′i )

such that ψi(w · t) = φi(w) · ψi(t), for w ∈ Wst(Sp(2n), Ti)/Wst(M,Ti) and t ∈ Ti

(see Lemma 7.1.7). If w ∈ Wst(Sp(2n), Ti)/Wst(M,Ti) then we will denote its image
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via the isomorphism φi by w′. We rewrite the character formula as follows:

θπ(g̃) =
∑
i

∑
w

θwρ(g̃)
|DMw(g)| 12
|DSp(2n)(g)|

1
2

,

θπ′(g
′) =

∑
i

∑
w′

θw′ρ′(g
′)
|DM ′w′ (g′)|

1
2

|DSO(2n+1)+(g′)| 12
.

We will compare these formulas term by term. We fix i, and for simplicity of

the rest of the proof we assume that Ti = T , T ′i = T ′, ψi = ψ, etc. Recall that

g = p(g̃)
stable←→ g′. We can find w′′ ∈ Wst(SO(2n+ 1)+, T

′) such that g
L−stable←→ w′′ · g′.

Since we average over the quotient Wst(SO(2n+ 1)+, T
′)/Wst(M

′, T ′) and since the

action of Wst(M
′, T ′) does not affect the L−stable conjugacy classes, we can assume

without loss of generality that g
L−stable←→ g′. Note that

θwρ(g̃)
|DMw(g)| 12
|DSp(2n)(g)|

1
2

= θρ(w
−1 · g̃) |DM(w−1 · g)| 12

|DSp(2n)(g)|
1
2

and that

p(w−1 · g̃) L−stable←→ w′−1 · g′.

Now we can apply our assumption to get

Φ
fM(w−1 · g̃)θρ′(w′−1 · g′) |DM(w−1 · g)| 12

|DSp(2n)(g)|
1
2

,

which can be rewritten as

Φ
fM(w−1 · g̃) |DM(w−1 · g)| 12

|DSp(2n)(g)|
1
2

|DSO(2n+1)+(g′)| 12
|DM ′(w′−1 · g′)| 12

θρ′(w
′−1 · g′) |DM ′(w′−1 · g′)| 12

|DSO(2n+1)+(g′)| 12
.

By the equation (5.1) it can be shortened to

Φ
fSp(2n)(w

−1 · g̃)θρ′(w′−1 · g′) |DM ′(w′−1 · g′)| 12
|DSO(2n+1)+(g′)| 12

,
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which is equal to

Φ
fSp(2n)(g̃)θw′ρ′(g

′)
|DM ′w′ (g′)|

1
2

|DSO(2n+1)+(g′)| 12
,

since

Φ
fSp(2n)(w

−1 · g̃) = Θω+−ω−(w−1 · g̃) = Θω+−ω−(g̃) = Φ
fSp(2n)(g̃).

That proves the assertion. �

We reduced the problem of lifting of representations to the supercuspidal case.

It remains to prove this for supercuspidal representations. The first step will be to

try to prove it for depth zero supercuspidal representations. Depth is an invariant

of an admissible representation and it is a nonnegative rational number. It does not

change after parabolic induction and the depths of two irreducible admissible rep-

resentations that are paired by the local theta correspondence are equal. Moreover,

depth zero characters are used to construct other supercuspidal representations of

positive depths. It may be possible to make some progress on this using L-packets

of stable depth zero supercuspidal representations constructed by DeBacker and

Reeder in [DB-R].
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1995, 721-731.

[A-B] J. Adams and D. Barbasch Genuine representations of the metaplectic group,

Compositio Mathematica 113, 1998, 23-66.

[DB-R] S. DeBacker and M. Reeder Depth-zero super-

cuspidal L-packets and their stability, preprint 2004,

http://www.math.lsa.umich.edu/∼smdbackr/MATH/lpacket.pdf

[D] G. van Dijk Computation of Certain Induced Characters of p-Adic Groups,

Math. Ann., 199, 1972, 229-240.

[HC] Harish-Chandra Admissible invariant distributions on reductive p-adic groups,

Lie Theor. Appl., Proc. Ann Semin. Can. Math. Congr., Kingston 1997, 281-

347.

[Ho] R. E. Howe On the character of Weil’s Representation, Transactions of the

AMS, Vol. 177, 1973, 287-298.

[K-P] D. A. Kazdhan and S. J. Patterson Metaplectic forms, Publicatins

mathématiques de l’I.H.É.S., 59 , 1984, 35-142.

79



[Ko] R. E. Kotwitz Rational Conjugacy Classes in Reductive Groups, Duke Mathe-

matical Journal 49 no.4, 1982, 785-806.

[Lan] R. P. Langlands Stable conjugacy: definitions and lemmas, Can. J. Math.,

Vol. XXXI, no. 4, 1979, 700-725.

[L-V] G. Lion and M. Vergne The Weil Representation, Maslov Index and Theta

Series, Progress in Math., Vol. 6, Birkhäuser, Boston, 1980.
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sur un corps p-adique, Journal of Functional Analysis 164, 1999, 249-339.

[Mat] P. H. Matsumoto Sur les sous groupes arithmeétiques des groupes semi-
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