
Team BLOOD Senior Thesis 
 

ABSTRACT 
 

Title of Document: IDENTIFICATION AND QUANTIFICATION OF 
SECRETED PROTEINS DRIVING 
HEMATOPOIESIS IN AN INDUCED 
PLURIPOTENT STEM CELL COCULTURE 
SYSTEM  

 
Michael Amedeo, Prableen K Chowdhary, Aria Jalalian, Wei Chen Lai,  Amil Sahai, 
George Thomas,  Akhil Uppalapati, Farah Vejzagic 
 
Directed by: Dr. Nam Sun Wang  

Department of Chemical and Biomolecular Engineering 
 

Acute myeloid leukemia (AML) results from a genetic alteration in 

hematopoietic stem cells (HSCs). Recent treatment techniques focused on the 

utilization of induced pluripotent stem cells (iPSC) as an avenue to introduce HSCs in 

patients with AML. In this study, we analyze whether OP9 cells assist in HSC 

differentiation through direct cell signaling or indirect cell signaling of iPSCs. We 

measured the expression levels of relevant cytokines known to play a role in 

hematopoiesis. Our data showed a significant upregulation of all the proteins we 

analyzed in the iPSC/OP9 direct coculture and significant downregulation in the 

iPSC/OP9 indirect coculture. Our results indicate that direct cell to cell contact with 

OP9 cells may be necessary to induce differentiation of iPSCs.  
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Introduction 
 
Purpose of Study and Research Question 

Acute myeloid leukemia (AML), is the most aggressive form of leukemia, 

affecting approximately 3.6 out of 100,000 people per year (Arpinati et al., 2014; 

Tawana et al., 2013).  In AML, a genetic alteration in the hematopoietic stem cells 

(HSCs) in the blood and bone marrow (BM) leads to a build-up of immature myeloid 

blasts which are unable to undergo normal hematopoiesis (Arpinati et al., 2014). 

AML can cause bleeding and infection, retinal hemorrhages, sternal tenderness, and 

enlarged organs and lymph nodes (Jabbour et al., 2006). 

Currently, the goal of AML treatment is to reduce the amount of immature 

blasts in the BM to five percent or less through chemotherapy, and then to reduce the 

risk of relapse through allogeneic hematopoietic cell transplantation (HCT) 

(Kurosawa et al., 2011; Lowenberg et al., 1999). HCT often fails due to graft-vs-host 

disease (GVHD), a complication in which the recipient cannot eliminate the donor’s 

T-cells, leading to the donor’s T-cells attacking the recipient’s body because of 

immunological mismatch – this feature of the human immune system has proven to be 

a significant barrier to improving the health care outcomes of those who are 

diagnosed with AML (Ferrara et al., 2009). Despite improvements in current 

prevention and treatments, GVHD continues to be a vexing issue in the battle against 

AML. 

Another problem with HCT is that sources of HSCs are often limited. Owing 

to a lack of donor population and therefore a lack of potential harvesting sources such 

as bone marrow, cord blood, and peripheral blood, HCT is often difficult and costly to 

acquire. Expansion techniques for producing robust amounts of HSCs ​in vitro​ have 
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also not been optimized. The growth of these HSCs often involves usage of viral 

vectors or immunoreactions, which further impedes the usability of HCT in patients 

with cancers such as AML or other blood-related disorders such as thalassemia (Lim, 

2013).  

A solution to this problem may be the utilization of induced pluripotent stem 

cells (iPSCs). In 2006, researchers found that introducing four transcription factors – 

Sox2, Klf4, c-Myc, and Oct3/4 – reverted adult mouse fibroblasts into a pluripotent 

state (Takahashi and Yamanaka, 2006). Once somatic cells such as these fibroblasts 

are induced into a pluripotent state, the resultant iPSCs may be differentiated into a 

cell type different from its origin. With regards to AML and the problem of GVHD, 

iPSCs offer an avenue to introduce hematopoietic stem cells (HSCs) to a patient 

without the risk of an immune response. If one were to take a somatic cell from a 

patient, induce it into pluripotency, differentiate the iPSC into an HSC, and introduce 

it back to the patient, GVHD could be avoided.  

A problem with using this iPSC model is that it has still proven difficult to 

produce a high yield of HSC long-term progenitors ​in vitro​. A significant finding by 

Choi et al. presented a novel solution to the problem of low efficiency of inducing 

hematopoietic progenitors; coculturing iPSC cells with OP9 cells produced 

sustainable hematopoietic progenitors with a very high efficiency. Although this 

technique was initially used to induce hematopoiesis in human embryonic stem cell 

lineages, the hematopoietic support capacity was shown to hold its utility when used 

on iPSCs (Choi et al., 2011). However, it is currently unknown by what mechanism 

these OP9 cells are able to generate a full lineage of hematopoietic progenitors from 

iPSC culture.  
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The aim of our project is to optimize iPSC differentiation into HSCs, as 

currently iPSC reprogramming efficiency remains extremely low. One of the most 

useful current methods of driving this differentiation is to coculture iPSCs with OP9 

mouse stromal cells – our project aims to determine if the presence of OP9 cells 

within a coculture system is necessary for differentiation. If the protein excretions of 

OP9 cells, rather than the cells themselves, are sufficient, then identifying and 

quantifying the proteins that are responsible for differentiation would allow for a more 

efficient methodology for differentiating iPSCs into HSCs.  

 

Methodology Framework 

After extensive literature review and analysis, our team selected the 

interleukin family of cytokines to investigate their potential to induce hematopoiesis 

in an iPSC/OP9 coculture system. In order to investigate whether or not cell-to-cell 

contact is necessary for this process, our team cultured and expanded OP9 mouse 

stromal cells in concert with iPSC cells that were obtained from the National 

Institutes of Health. After expansion and subculture methodology was completed and 

the cells appeared healthy, we then began a sample of coculture. As a result of our 

limitations both in resources and in experience, the OP9 cells were not growth 

arrested during the coculture. We also started samples of iPSC cells that received the 

conditioned media from culturing OP9 cells, as well as an OP9 monoculture and iPSC 

monoculture as controls. These cells were allowed to incubate for 7 – 10 days.  

After the incubation period, we then analyzed the concentration of cytokines 

that was present in the culture medium through the usage of an ELISA-based assay. 

The Quantibody ELISA assay allowed us to measure an array of interleukin proteins 
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(refer to Table 1 for specific proteins and their functions) by using a fluorescence 

detection system. Fluorescence levels were then analyzed and compared to a known 

standard curve. After comparison, the level of each cytokine that was present in each 

culture sample was quantified. We then analyzed this data in an attempt to determine 

whether it was cell-to-cell contact or the cytokines that were secreted into the 

conditioned media that caused the induction of hematopoiesis within the iPSC/OP9 

coculture system. The induction of hematopoiesis was assessed morphologically. 

Table 1: Relevant cytokines that were analyzed in Quantibody ELISA assay, the 
source from which they originate, the major effects that these cytokines have in these 

cells, and the expectation for expression in iPSC/OP9 conditioned media sample.  
 
Significance of Findings 

After analysis of the expression levels of each cytokine within our samples, 

our data showed a very significant upregulation of the proteins from within the 

iPSC/OP9 coculturing system, which resulted in morphological differentiation, as 

compared to our iPSC/OP9 conditioned media sample. There was also a significant 

downregulation of these proteins within the iPSC/OP9 indirect coculture, in which the 
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media from an OP9 monoculture was used in order to determine whether the secreted 

cytokines from OP9 cells was sufficient in order to induce differentiation of iPSCs 

into HSCs. Our results indicate that direct cell-to-cell contact with OP9 cells may be 

necessary to induce differentiation of iPSCs.  

As the protocol for hematopoietic induction continues to be optimized and the 

cellular mechanisms by which differentiation occurs is further investigated, it may 

one day be possible to treat patients with diseases like leukemia using iPSCs. This 

will revolutionize the field of medicine, as it will circumvent many of the current 

limitations of treatment and improve upon the quality of life of patients we seek to 

treat. Our research may be applied in future clinical applications upon further 

research.  

Limitations of Study 

As an undergraduate research team beginning with limited knowledge of our 

subject of study, we encountered multiple hurdles which narrowed the scope of our 

experimental design over the past 4 years.  

For one, funding was a major limitation throughout our experimentation. As 

an undergraduate research team, it was difficult to find grants that would support our 

research over other more established lab teams. Due to the limited amount of funding 

that was available to our research group, we were not able to fund a flow cytometry 

analysis on our cells to see whether they expressed a CD34+ marker, which is a 

marker for hematopoietic differentiation. We therefore were unable to definitively 

determine if differentiation occurred. We were also only able to perform one run of 

our Quantibody ELISA experiment. If we had more funding for future studies, we 
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would be sure to run flow cytometry as well as collect multiple ELISA readings in 

order to ensure that our data remains consistent across samples.  

Lastly, another limitation that was very defining in our research methodology 

was finding space to conduct our research. Finding a lab on campus to conduct our 

research proved very difficult, as it is very hard to integrate a Gemstone team of 

around 4 lab members into any cell culture facility that we have available at the 

University of Maryland. Thanks to the Universities at Shady Grove, we were able to 

finally acquire a space where we could conduct our methodology. This brought with 

us the limitation of having to commute back and forth from the lab, which proved 

cumbersome and restricted parts of our cell culture methodology.  
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Literature Review 
 
iPSC Differentiation Techniques and Hematopoiesis 

Hematopoiesis is the process by which the cellular components of blood are 

formed – usually during development (Jagannathan-Bogdan, 2013). In vertebrates, 

there are two documented waves of hematopoiesis; the primitive wave and the 

definitive wave. The first wave, the primitive wave, occurs during early embryonic 

development and gives rise to the erythrocytes and macrophages. This wave is 

integral to development, as it provides the red blood cells necessary for tissue 

oxygenation throughout the rest of development. This stage is transient, and later 

gives rise to the definitive wave of hematopoiesis. Within the definitive wave, which 

continues much throughout adulthood, the entire lineage of blood cells are able to be 

formed. Among the various types of cells, multipotent HSCs are generated and are 

harbored mostly within the bone marrow (Jagannathan-Bogdan, 2013).  

HSCs are integral throughout life as a means for preserving and generating a 

blood supply within the body, as well as supplying the necessary immunohistologic 

means to maintain homeostasis. Elucidating the mechanisms behind how HSCs are 

formed can be very useful for scientists to understand how to better combat 

pathological changes such as blood cancers and other blood-related disorders. HSCs 

can also be used a model system for understanding the processes of ageing, stem cell 

differentiation, and oncogenesis within the body. Generally, people with a cancer such 

as Acute Myeloid Leukemia receive blood transfusions with HSCs to allow proper 

and appropriate replacement of their blood supply.  

In 2006, researchers at Kyoto University in Japan identified a specialized 

protocol that would allow fully differentiated adult cells to be “reprogrammed” into 
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cells that were pluripotent and could be re-differentiated into many cell types (NIH 

Stem Cell Differentiation, 2016). Called induced pluripotent stem cells (iPSCs), this 

discovery opened a new field in regenerative medicine with the potential to provide 

personalized medical therapy and circumvent previous issues with bone marrow 

transplantation such as GVHD. These cells also managed to circumvent some of the 

ethical issues that belie embryonic stem cells, as they were received from a 

consensual patient. This reprogramming, however, presents many challenges as the 

protocol remains complex and often requires the usage of retrovirus, which would 

often produce unpredictable results. Furthermore, differentiation of iPSCs into 

different cell types remains an even bigger challenge, as yields of viable HSCs that 

could potentially be transplanted is often extremely low. Before iPSCs can be 

considered a clinical tool, the efficiency for reprogramming as well as 

redifferentiation must be greatly improved.  

In a 2011 study by Salvagiotto and group, it was shown that a single matrix 

protein in concert with hypoxic conditions were sufficient to efficiently generate 

pluripotent hematopoietic stem cell progenitors ​in vitro​. Nine lines of iPSC cells were 

tested to examine which condition would provide the most robust amount of clinical 

grade progenitors that were induced from pluripotent cells. Hypoxic conditions were 

used to mimic an early embryonic environment in which HSC progenitor production 

is often robust. After initiating the protocol and co-culturing iPSCs with the growth 

factor BMP4-VEGF-bFGF, a 5% oxygen tension was added in order to mimic 

hypoxic conditions in the embryo. Hematopoietic progenitors were then identified 

using flow cytometry to count the CD34+ cells, which is a marker that is used to 

characterize progenitor cells. The study concluded that, although the clinical 
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introduction of this protocol would be relatively easy due to a plausible switchover in 

xenophobic conditions, the protocol must be investigated in further detail to see 

whether higher yields of hematopoietic progenitors could be achieved (Salvagiotto et. 

al, 2011). 

Another efficient method that has been shown to generate even higher yields 

of hematopoietic progenitors from iPSCs is through simple co-culturing with OP9 

mouse BM stromal cells. This methodology, although typically used to differentiate 

human embryonic stem cells (hESCs), has proven to be effective with iPSCs and can 

be done with or without exogenous growth factors (Choi, Vodyanik, & Slukvin, 

2011). The Choi group identified and described two slightly varied methods, both of 

which use iPSC/OP9 coculture to induce hematopoiesis. The first protocol for 

differentiation as described by Choi and colleagues consists of three steps: generation 

of differentiation through the co-culture of the OP9 BM stromal cells and iPSCs, 

expansion of multipotent common myeloid progenitors (CMPs), and differentiation of 

the CMPs. After six days of coculture with OP9 feeders, iPSCs begin to show 

properties of myeloid progenitors capable of differentiation. Expansion was achieved 

by dissociating the OP9/iPSC coculture and then placing the cells in non-adherent 

conditions in which they spontaneously reaggregated (Choi et al., 2011). Cells that 

expressed the phenotype lin−CD34+CD43+CD45+ were determined to be multipotent 

HSCs with differentiation potential as opposed to other similar phenotypic cell 

markers representing endothelial and mesenchymal stem cells (Choi et al., 2011).  

OP9 coculture creates a wide spectrum of myeloid progenitors, necessitating 

isolation of the lin−CD34+CD43+CD45+ cells from the other forms of progenitors 

produced (erythroid and megakaryocytic). Choi et al. (2011) accomplished this 
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through magnet-activated cell sorting, using anti-human antibodies specific to the 

erythroid and megakaryocytic progenitors. Differentiation of the obtained CMPs were 

then achieved through the application of cytokine combinations. Choi et al. (2011) 

asserted that the optimal combinations for the generation of dendritic cells were 

granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL) 4 and 

tumor necrosis factor-α (TNF-α), whereas GM-CSF, transforming growth factor-β1 

and TNF-α were optimal for the generation of Langerhans cells. For macrophages, the 

optimal combination was M-CSF and IL-1β, while G-CSF was best for neutrophils. 

Finally, IL-3 and IL-5 were optimal for eosinophils. The different types of 

differentiated cells obtained in this study were established by analyzing their cell 

morphology via cytospins and their phenotype using flow cytometry. Cell markers 

allow for characterization and identification of the obtained eosinophils, neutrophils, 

dendritic cells, Langerhans cells, macrophages and osteoclasts. The success of this 

method of differentiation yields sac-like structures, and in exceptionally efficient 

cases, undifferentiated colonies (Choi et al., 2011).  

In another study conducted by the same group, Choi et al. (2009) utilized a 

similar methodology using the OP9 coculture, examining iPSCs obtained from human 

fetal, neonatal, and adult fibroblast tissues in comparison to different forms of hESCs. 

In this study, the iPSCs and OP9 were cocultured, and cytokines were not used. This 

study also used magnet-activated cell sorting to isolate three subsets of HPCs: (1) 

CD235a/CD41a+CD43+ CD45−, (2) CD235a/CD41a−CD43+CD45−, and (3) 

CD235a/CD41a−CD43+CD45+ cells. The colonies of erythroid, granulocyte, 

erythrocyte, macrophage, megakaryocyte, and macrophage cells were assayed and 

scored after incubation. This method of using OP9 to induce hematopoiesis has 
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proven successful while requiring relatively little time and resources (Choi et al., 

2009). As iPSC coculture with OP9 bone mouse stromal cells is simple and efficient, 

this methodology for achieving hematopoiesis is consistent in optimizing 

differentiation for all mentioned iPSCs. 

 

Methods of identifying expression levels of relevant proteins 

Cells are able to synthesize endogenous and exogenous proteins in both 

iPSC/OP9 coculture systems as well as iPSC cultures systems that contain only 

conditioned media from OP9 cells. It is necessary to distinguish between expression 

levels of proteins in the two cultures in order to determine the significance and role of 

specific proteins in hematopoietic induction. Antibody based assays may be used in 

order to attach, or bind, a protein to a plate. In doing so, specific antibodies could be 

used to detect and quantify proteins of interest. Other methods involve the use of 

probes to detect and quantify specific nucleic acid sequences known to code for 

proteins of interest. In transcriptomics, a DNA microarray is one method of 

examining RNA expression levels through probing for nucleic acid sequences 

(Schena et al, 1995).  

A DNA microarray involves generation of cDNA from RNA using reverse 

transcription PCR (RT-PCR). PCR technology utilizes a short DNA primer sequence, 

which provides the start site to DNA synthesis, in addition to a DNA polymerase 

enzyme that must withstand high temperatures. Therefore, Thermus aquaticus (Taq) 

polymerase is used for nucleotide addition and elongation in the replication cycle in 

PCR. Additionally, spare nucleotides are needed in order to amplify the preexisting 

DNA. Subsequently in the microarray, cDNA samples are immobilized on top of a 
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matrix. Next, the samples on the matrix are hybridized with anti-sense RNA targets, 

or cDNA sequences. Hybridization of the biochip is quantized and qualified through 

the detection of chemiluminescent fluorophores. Each culture has a unique 

fluorophore, with common cDNA labeling techniques utilizing the orange-fluorescent 

Cy3 and and the far-red-fluorescent Cy5 to show regulation of gene expression. Data 

analysis and processing then involves visualization and determination of the intensity 

in each spot. 

Enzyme Linked ImmunoSorbent Assay (ELISA) is an antibody based assay 

that is used in diagnostic tests for various proteins. ELISA uses antibodies attached to 

a 96 well plate, or conversely a protein attached to the plate that the antibody to which 

it can bind (Lee and Wang, 2003). The antibodies, as mentioned above, are able to 

bind specifically to an antigen, and thus detect and quantify proteins of interest. 

ELISA is considered an enzyme-linked assay since the secondary antibody that binds 

to the primary antibody is conjugated with an enzyme that can convert a substrate to a 

detectable and quantifiable color. The color can be measured by a simple machine 

called a plate reader and used to make a plot in order to quantify the amount of 

protein.  An ELISA assay works very well for detecting a singular protein. For 

multiple proteins, however, the overall procedure can become time consuming and 

requires an extremely high amount of sample.  

Recently, technology has been developed that can use ELISA-like methods to 

detect multiple different proteins at once. One such technology is a RayBiotech’s 

Quantibody array, which is a multiplexed sandwich ELISA-based quantitative assay 

that enables the accurate detection of the concentration of multiple proteins. Unlike 

the traditional ELISA, Quantibody products use an array format. By arraying multiple 
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cytokine specific capture antibodies onto a glass support, quantitative, multiplex 

detection of cytokines in one experiment is made possible.​ ​A capturing antibody is 

bound to a glass surface, after which it is incubated with a sample. The target protein 

will then become trapped on the solid surface, as it attaches to the antibody that has 

already been anchored. A second detection antibody is then added, and the 

conglomerated complex can then be visualized through a laser following the addition 

of a streptavidin-conjugated Cy3 dye (Quantibody, 2016). For the purpose of our 

experiment, this methodology was beneficial as it enabled us to detect and quantify 

multiple different cytokines in one sample. Multiple other analysis techniques were 

investigated (see Appendix A), however RayBiotech’s Quantibody array was 

concluded to be the most fitting analysis method for the data that our team wished to 

acquire.  

 

Methods of Quantifying Cell Markers  

In order to confirm that the cells we obtained are indeed the cells that we 

desired, methods of identifying and quantifying cells are required. One such method is 

the use of flow cytometry. Flow cytometry is a method used to analyze cell 

characteristics such as cell size, DNA content, and relevant cell-surface or 

intracellular proteins. Cells are labeled with fluorescent dyes or antibodies conjugated 

with fluorescent dyes that bind to specific proteins inside cells or on their surfaces 

(Brown, 2000). When these labeled cells stream individually through a laser, the 

fluorescent molecules in the dye are excited to a higher energy state by a laser; upon 

their return to the ground state, the fluorophores emit light at certain wavelengths 

(Brown, 2000). The property that is being measured in the cell is thus proportional to 
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the number of cells that emit that certain wavelength. A the flow cytometer is also 

able to sort cells based on whether or not they emit the light from the dye. If several 

fluorophores are used that emit light at different wavelengths and therefore fluoresce 

different colors, multiple properties in the cell can be measured simultaneously 

(Brown, 2000). Data is usually represented in a dot plot that shows cell density based 

on the intensity of the light emitted.  

The usage of flow-cytometry would have allowed us to obtain the relative 

number of marker positive cells (in this case CD34+ cells) as a function of marker 

intensity (Stewart, 2005). Once the frequency of specific marker positive cells is 

determined by flow cytometry, we would multiply the number by the cell 

concentration in order to determine the total marker positive cells (Stewart, 2005). 

The total marker positive cells in our experiment would have indicated the cell 

viability and yield of hematopoietic differentiation in our study.  In our experiment, if 

resources were to permit, we would ideally sort cells in order to identify the CD34+ 

cell population and study a set of genes and their protein products that are unique to 

HSCs.  

 

Proteins that may be Investigated within an OP9 Co-Culturing System 

Interleukins 

While investigating the roles and functions of many proteins that are involved 

in hematopoiesis through coculturing with OP9 stromal cells, the interleukin family 

protein stands out the most in terms of recognition, effectiveness, and commonality. 

Interleukins, according to the National Cancer Institute at the NIH, are defined as “a 

group of related proteins made by leukocytes and other cells that regulate immune 
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responses. Interleukins made in the laboratory are used as biological response 

modifiers to boost the immune system in cancer therapy” (NCI). More specifically, an 

interleukin is a type of cytokine which is produced during the hematopoiesis process 

to aid in cell differentiation and proliferation. A 2006 study that analyzed the 

distinctive roles of an interleukin, IL-7, found that “IL-7 provided both 

survival/proliferation and differentiation signals in a dose-dependent manner” (Wang, 

2006). 

Interleukins, as examples of cytokines, are mediators of communication 

between cells. They regulate cell growth and differentiation, and are even named after 

leukocytes, since they were believed to be made from leukocytes. The interleukin 

family encompasses many different types of proteins involved in various types of cell 

development and signaling processes. In a 2011 journal article that compiles all the 

functions and roles of all the known interleukins into one table, IL-1 is known to aid 

in differentiation into T cells and fibroblasts, IL-2 for differentiation into CD4+ and 

CD8+ T cells, IL-4 for T and B cells, and IL-6 into hematopoietic cells, etc. (Akdis, 

2011). Therefore, interleukins are regulatory proteins that act as cytokines to aid in 

the process of hematopoietic cell differentiation. Since interleukins come from 

different types of cells, particularly in OP9 stromal cells, we can then investigate if 

interleukins are the essential proteins that aid in cell differentiation. We hypothesized 

that the conditioned media that we are extracting from OP9 cell secretions contains 

interleukins secreted by the OP9, and it is also possible that it is due to these secreted 

interleukins that OP9 cells are able to promote hematopoiesis of iPSCs. Identification 

of proteins such as interleukins may allow the use of a defined medium to induce 

hematopoietic differentiation. As we are investigating the effects of cell culture via 
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direct and indirect coculture with OP9 cells, interleukins may play a role in juxtacrine 

vs. paracrine signaling which allows for hematopoietic differentiation. Therefore, the 

interleukin family of proteins will be further investigated in our study. The relevant 

proteins we analyzed are individually discussed below. 

 

 
G-CSF 
 

Granulocyte-colony stimulating factor (G-CSF) is a protein induced by the 

presence of inflammatory stress. Studies have shown that certain inflammatory 

response molecules can regulate hematopoiesis at the stem cell level (Schuettpelz, 

2014). G-CSF is one such factor, playing a key role in stress granulopoiesis response 

as part of inflammatory signaling. Once induced, G-CSF stimulates neutrophil 

production and releases them into circulation (Schuettpelz, 2014). G-CSF is cited to 

be widely used in clinical settings to mobilize HSCs from the bone marrow to the 

blood in order to harvest HSCs for stem cell transplantation (Schuettpelz, 2014). 

Thus, G-CSF treatment is associated with changes in the process of hematopoiesis in 

the bone marrow. Expression of G-CSF has shown to affect HSCs by inducing 

toll-like receptor (TLR) signaling in HSCs. More specifically, a close study 

demonstrated that G-CSF negatively regulates HSCs by enhancing TLR signaling 

(Schuettpelz, 2014). TLR signaling contributes significantly to the regulation and 

maintenance of HSCs, and thus by inducing TLR signaling, G-CSF may indirectly or 

directly affect HSC maintenance and mobilization.  

 
GM-CSF 
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Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a 

hematopoietic growth factor involved in generating granulocytes, macrophages, and 

other immune cells from hematopoietic progenitor cells (Kruger, 2007). GM-CSF has 

also been identified as a neuronal growth factor in the brain to counteract apoptosis, 

serving as a key hematopoietic factor that has neuronal functions. GM-CSF is similar 

to G-CSF in function and patterns of expression, and both have similar roles in 

differentiation of stem cells. GM-CSF induces the generation and maturation of 

granulocytes and macrophages from HSCs (Kruger, 2007). Both GM-CSF and G-CSF 

serve cellular functions in proper differentiation and anti-apoptosis. Furthermore, 

GM-CSF has been shown to work closely with growth factor Interleukin-3 (IL-3) in 

development of hematopoiesis. Results from a study analyzing the relationship 

between the two factors suggest that IL-3 expands HSCs early on and subsequently 

requires a later acting factor GM-CSF to complete development, and that optimal 

stimulation of hematopoiesis is achieved with combinations of these growth factors. 

Thus, GM-CSF interacts closely with other growth factors, and as suggested by the 

timing of development, GM-CSF acts at a later stage in cell development (Donahue, 

1988).  

 
IFN-𝛾 
 

Interferon-𝛾 is a proinflammatory cytokine interferon that serves an important 

role in both innate and adaptive immunity against infections and/or tumors. IFN-𝛾 

also affects most hematopoietic progenitor cells and subsequently affects bone 

marrow output during inflammation. IFN-𝛾 has been proposed to upregulate certain 

cytokine signaling molecules’ suppressors, impairing cytokine receptors. As a result, 
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IFN-𝛾 has been widely known as a suppressor of hematopoiesis. Many studies have 

been done to show how treatment of IFN-𝛾 impairs the functions of HSCs: treatment 

with IFN-𝛾 has demonstrated a decrease in the number of self-renewing cell divisions 

in HSCs, as well as the loss of functional multipotent HSCs (Bruin, 2014). Thus, 

IFN-𝛾’s negative effects on HSC function and maintenance are clear.  

 
IL-1𝛂 ​ ​&​ ​IL-2𝜷  
 

Interleukin-1 is part of the large Interleukin family that serves as a mediator of 

inflammatory stress response at the onset of infection. IL-1 has been widely 

recognized as a polypeptide molecule that is important in regulating hematopoiesis as 

well as a wide variety of biological activities. IL-1 primarily serves to induce the 

production of many different hematopoietic growth factors including macrophages, 

Interleukin-6, granulocytes, and other colony-stimulating factors (G-CSF and 

GM-CSF), as working closely with these factors help proliferate hematopoietic stem 

cells (Fibbe, 1991). Although Interleukin-1 does not affect HSCs directly, IL-1’s 

major effect on hematopoiesis is to regulate the expression of hematopoietic growth 

factors which in turn affects most hematopoietic activities ranging from growth and 

development to maintenance. Thus, interleukin-1 can be thought of as a vital master 

switch for many cellular responses including hematopoiesis (Bagby, 1989).  

There are two similar forms: IL-1 alpha and IL-1 beta. Both molecules are 

similar, binding to the same set of receptors with similar affinities (Arranz, 2017). A 

study done by Hestdal et. al demonstrated that administering IL-1 alpha to mice 

induced the upregulation of both the GM-CSF growth factor as well as IL-3 receptors, 

which directly correlated with upregulation of colonies containing macrophages, 

 
26 



Team BLOOD Senior Thesis 
 

granulocytes, and erythroid cells; results demonstrated the ability of IL-1 alpha to 

stimulate hematopoiesis in vivo (Hestdal, 1992). IL-1 beta as noted before, is similar 

to the alpha subunit, and it is mainly produced by myeloid cells. Once secreted, IL-1 

beta binds to its receptor and triggers a signaling cascade that controls gene 

expression of multiple transcription factors, growth factors, and other interleukins 

involved in the immune response. It also stimulates T cell maturation and B cell 

proliferation. (Arranz, 2017).  

Importantly, IL-1 beta regulates HSC function by promoting HSC 

differentiation by activation of its signaling. The beta subunit’s regulatory role is 

finely tuned, as dysregulation such as excessive exposure can lead to uncontrolled 

HSC division and other hematological diseases (Arranz, 2017). Although the IL-1 

alpha and beta subunits are similar, there are a few significant differences besides just 

structurally. A study conducted by Rider et. al demonstrated that the alpha subunit 

initiates sterile inflammation by inducing neutrophil recruitment, whereas the beta 

subunit promotes macrophages recruitment (Rider, 2011).  

 

IL-2 

Interleukin 2 (IL-2) is a cytokine that has a broad array of functions and is 

largely associated with the regulation of white blood cells. It has been shown to play a 

role in polyclonal T cell activation, and when IL-2 is suppressed, T cell activity is 

decreased (Thornton and Sevach, 1998). IL-2 also augments the cytolytic activity of 

natural killer cells, mediates activation-induced cell death, and induces the 

differentiation of T cells. IL-2 cytokines are themselves activated when CD4+ T cells 

are activated by an antigen. Though literature has not shown a clear link between IL-2 
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and hematopoietic stem cell differentiation, the cytokine’s integral role in the 

activation and proliferation of T cells could indicate that IL-2 can play a part in the 

differentiation of HSCs if it is present. The three receptors that are present on IL-2 are 

critical in binding to various lymphocytes; since there are low affinity, medium 

affinity, and high affinity receptors, these receptors may be used during hematopoietic 

stem cell differentiation (Liao, Lin, and Leonard, 2011). 

 

IL-3 

IL-3 has been shown to work in conjunction with GM-CSF in inducing 

hematopoiesis in primates. When infused intravenously into primates continuously, 

IL-3 elicited a delayed and modest leukocytosis. When GM-CSF was introduced to 

the primates later, there was a much larger leukocytosis. This indicates that IL-3 is an 

early acting cytokine, and may require a later acting factor, such as GM-CSF, in order 

to induce optimal levels of hematopoiesis (Donahue et al., 1988). IL-3 has also been 

shown to increase the number of hematopoietic progenitors in mice. 

In one experiment, IL-3 was injected into mouse models and the number of 

hematopoietic progenitors more than doubled. Mice whose progenitor cell levels were 

reduced by radiation saw a 10-fold increase back to near normal level when they 

underwent a 7-day treatment of IL-3 (Kindler et al., 1986). In another study 

investigating the roles of interleukins in hematopoietic cell development, researchers 

found that hemangioblasts, cells with the capacity to differentiate into hematopoietic 

cells, were regulated and promoted by IL-3 “with regards to both the number and 

capacity of the dual-potential hemangioblast” (He, 2009).  
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Ultimately, it is clear that IL-3 plays a critical role in inducing hematopoiesis. 

This cytokine is worth investigating in iPSC-OP9 coculture, as it may play a similar 

role of hematopoietic induction. Past studies have shown that IL-3 can induce 

differentiation in vivo; if it can also induce differentiation in iPSC-OP9 coculture ​in 

vitro​, the cytokine likely can do so in vivo as well. 

 

IL-4 

IL-4 is closely related to IL-13, another cytokine. Both are found on 

chromosome 5, and both have many of the same biological and immunoregulatory 

functions on monocytes, dendritic cells, fibroblasts, and B lymphocytes. Both also 

have a restricted activation pattern to activated T cells and mast cells and share a 

common chain called IL-4R alpha. One difference between the two cytokines is that 

IL-4’s expression is restricted to type 2 helper T lymphocytes and IL-13 is unable to 

regulate T-cell differentiation. If it is found that IL-4 concentration is related to HSC 

differentiation from iPSCs, it is worth investigating if IL-13 is as well since they are 

so closely linked (Chomarat, 1998). 

IL-4 has also been identified as having a role in proliferating primitive 

hematopoietic progenitors in mice. When IL-4 was combined with IL-11, major 

enhancement of colony formation was seen in mice. Notably, neither IL-4 nor IL-11 

had an effect on colony formation when they were introduced individually to the 

mice. This combination could be vital for stimulating dormant HSCs. It is worth 

investigating if IL-4 is capable of inducing HSC formation in vitro from iPSCs 

(Musashi et al., 1991).  
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IL-5 

Interleukin 5 (IL-5) is an interleukin that is involved in the growth and 

maturation, as well as the release of eosinophils in the human bone marrow (IL5 

interleukin 5, n.d.). This cytokine is generated by helper T-cells and mast cells, but is 

molecularly different in humans and mice. In humans, this protein is 115 amino acids 

in length, but is 133 amino acids in length in mice. In addition to being responsible for 

eosinophilpoiesis, IL-5 can cause the increase in the production of B cells and is 

therefore acts as a growth and differentiation factor for B cells as well as eosinophils 

(Takagi, et al., 1995). IL-5 generation is regulated by GATA3 and various other 

transcription factors, with uncontrolled production leading to eosinophil-dependent 

inflammatory diseases. Unlike some interleukins, the active form of IL-5 is a 

heterodimer rather than a homodimer (Takagi, et al., 1995).  

The IL-5 receptor contains an alpha and and a beta subunit, with the alpha 

subunit being highly specific for IL-5 and the beta subunit being capable of binding 

IL-3 in addition (Greenfeder et al., 2001). The commonality between the signaling 

methods of these two interleukins proposes a potential relationship between the IL-5 

signaling pathway and hematopoiesis. If an overlap exists between the role of these 

cytokines in regulating and influencing the induction of hematopoiesis, the pathway 

can be studied and utilized to induce the proliferation of HSCs. The restricted effects 

of IL-5, studied to be effectively solely on eosinophils rather than hematopoietic cells, 

may stem from the specificity that the alpha subunit binds IL-5. The restricted 

expression of the alpha subunit of the IL-5 receptor may hinder the development of 

progenitors when subject to IL-5 solely, but has been shown to cause differentiation 

when treated with a combination of IL-5 and IL-3 (Greenfeder et al., 2001). 
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IL-6 

Interleukin 6 (IL-6) is an interleukin that is involved in pro-inflammatory 

process in humans, and is typically released by immune cells such as T-cells and 

macrophages in response to a perceived infection (IL6 interleukin 6, n.d.). 

Additionally, IL-6 functions in the growth and maturation of B cells. Therefore, this 

interleukin is commonly found in locations where there is an acute or chronic 

inflammation (Gabay, 2006). This interleukin binds to its IL-6 alpha receptor, 

inducing various inflammation related states that serve to fight an infection. IL-6 

plays an important role as a protein that can cross the blood-brain barrier, thus capable 

of inducing the production of prostaglandin in the hypothalamus and the regulation of 

body temperature (Gabay, 2006). IL-6 is therefore involved in fever mediation and 

altering the body’s core temperature. 

IL-6’s role in the acute phase response is described best by stimulating T cells 

and B cells, therefore transitioning from an acute to a chronic immune response 

through inflammation (Bernad et al., 1994). Several pro-inflammatory diseases such 

as rheumatoid arthritis can be treated through the regulation of interleukin 6 and its 

signaling pathway.  In addition to the acute phase response, IL-6 is involved in the 

hematopoietic process through an unknown process. However, studies have shown 

that the absence of IL-6 decreases the number of colony-forming units significantly, 

indicating a potential role of interleukin 6 in the survival or proliferation of 

progenitors (Bernad et al., 1994).  Given that IL-6 is involved in the cellular immune 

response, a deficiency may cause hematopoietic stem cells and early progenitors to 

fail in sustaining themselves against pathogens and toxicity. Therefore, the role of 
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IL-6 and whether this protein is involved in the induction, or conversely the 

sustainability, of hematopoietic stem cells should be studied further in order to 

determine the role of this interleukin in hematopoiesis.  

 

IL-7 

Interleukin 7 (IL-7) is a hematopoietic growth factor that forms a heterodimer 

and is secreted by stromal cells in the human bone marrow as well as the thymus (IL7 

interleukin 7, n.d.). This interleukin binds to its respective receptor, IL-7R which 

consists of a gamma and an alpha chain. Since this cytokine is crucial in B cell and T 

cell development, disruption of the alpha receptor can result in arresting the 

generation of T cells but maintaining elevated B cell counts (Peschon et al., 1994). 

IL-7 engages with both the alpha and the gamma chains of the receptor in order to 

result in early development of B cells. Deficiency of IL-7 or its receptors can block 

the development of B cells at the early progenitor stage (Noguchi et al., 1994). 

Whereas IL-7 acts to produce B cells in the bone marrow, it leads to the development 

of T cells within the thymus. 

The purpose and significance that IL-7 serves in transducing signals 

responsible for the development of T cells and B cells lead to its prominent role 

within hematopoiesis. This is because IL-7 and its receptor function concurrently in 

the pathway that leads the transition of hematopoietic stem cells to lymphoid 

precursor cells, and ultimately to T cells, B cells, and natural killer cells (von 

Freeden-Jeffry et al., 1995). Not only is this interleukin important for the development 

of these crucial cell types, but additionally for their survival and proliferation as well. 

Signaling between IL-7 and hematopoietic stem cells positively regulates the survival 
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of B cells, thus allowing progenitors to differentiate continuously and increase the 

level of B and T cells. Therefore, investigating the link between IL-7 and 

hematopoietic stem cells within the induction process can elucidate the level of 

expression of this protein during the process, and whether the increase in signaling 

occurs during the hematopoietic process in a joint pathway or after induction of 

hematopoiesis has already occurred. 

 

IL-9  

Interleukin 9 (IL-9) is a cytokine that functions to increase cell proliferation 

and prevent apoptotic cell death from occurring. IL-9 is secreted by CD4+ cells and 

regulates various hematopoietic cells (IL7 interleukin 7, n.d.). T lymphocytes are the 

major cells that secrete IL-9, possibly due to its role in the immune response and 

regulating the inflammatory process (Goswami & Kaplan, 2011). IL-9 functions by 

binding to the IL-9 receptor, IL-9R, and activating another protein called a signal 

transducer as well as the STAT activator protein (Goswami & Kaplan, 2011).. This in 

effect activates GATA3, which is required for development of interleukin 9 secreting 

cells such as T lymphocytes.  

IL-4 is an influential cytokine in the promotion of IL-9 secreting cells, 

increasing the IL-9 expression with upregulation (Goswami & Kaplan, 2011). 

Therefore, the dependency of these cytokines on one another is a topic that may be 

explored further through joint expression tests, determining whether there is a 

correlation between expression of one interleukin with others in the interleukin 

family. Furthermore, the expression pathway of these interleukin may be related and 

affecting in ways that are unknown as of now. 
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IL-9 is a factor that has been shown to be involved in the regulation of 

hematopoiesis. This is because IL-9 and IL-3 work concurrently to promote the 

growth of progenitors that are dependent on IL-3 on development (Perumal & Kaplan, 

2011). Therefore, these two interleukins function to increase the generation of 

burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E), as 

well as multi-lineage colony formation over an extended period of time (Perumal & 

Kaplan, 2011). Moreover, IL-9 plays a role as a potentiator of megakaryocyte 

progenitor cells in humans. However, this cytokine’s role in the inflammation process 

also enhances a pro-inflammatory process through acting on hematopoietic cells, 

often the cause of asthma in a human airway (Steenwinckel et al., 2007). 

 

TNF alpha 

Tumor necrosis factor alpha (TNF alpha) is a cytokine that is similar to 

interleukin 6 in that it is involved in the proinflammatory process as well as the acute 

phase process. Thus, TNF alpha is activated by macrophages and can be secreted by 

various cells that are involved in the immune response, such as natural killer cells, 

mast cells, eosinophils, and CD4+ lymphocytes (TNF tumor necrosis factor, n.d.). 

TNF alpha binds to and is activated by its receptors, TNFRSF1A/TNFR1 and 

TNFRSF1B/TNFBR. TNF alpha functions in its proinflammatory role by activating 

other cytokines, such as interleukin 8, reactive oxygen species (ROS), and 

prostaglandins (TNF tumor necrosis factor, n.d.). Furthermore, TNF alpha’s role in 

the acute phase response means that it can mediate fevers, and upregulate interleukin 

1 and interleukin 6 in order to inhibit tumorigenesis (Komeev et al., 2017). 
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In addition to providing an anti-tumoral response, TNF alpha is involved in 

restricting hematopoietic activity. This is due to the fact that uncontrolled 

differentiation of hematopoietic stem cells can increase the risk of tumorigenesis and 

leukemic transformation (Pronk et al., 2011).  However, TNF alpha has a pleiotropic 

effect on cells, including HSCs, meaning that their regulation of hematopoiesis may 

not necessarily be dependent on cellular contact and rather incorporates an indirect 

effect on target cells. TNF alpha’s repressive effects on the regulation of HSC 

proliferation is dependent on the presence and binding of both receptors, meaning that 

a deficiency or inhibition in either receptor can disrupt HSC homeostasis (Pronk et al., 

2011). 

 

IL-10 

 Interleukin 10 (IL-10) is a cytokine that is produced mostly by monocytes. It is 

also secondarily produced by other lymphocytes. The cytokine is most known for its 

pleiotropic effects on both the processes of immunoregulation and inflammation. 

Dysregulation of the IL-10 cytokine system has been shown to increase susceptibility 

to many immunopathological conditions such as autoimmune disease. It has been 

shown that IL-10 downregulates the expression of Th1 cytokines which produce 

interferon (IFN)-gamma, IL-2, and tumor necrosis factor (TNF)-beta (Romagnani, 

2000). IL-10 has also been found to enhance B-cell survival, proliferation, and 

antibody production (IL10 Interleukin 10, n.d.). A fundamental understanding of this 

interleukin is extremely crucial to our comprehension of pathological disease 

progression, as well as autoimmunological regulation within our bodies. 
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 Interestingly, IL-10 has also been shown to play a distinctive role in the 

self-renewal processes of HSCs. According to a 2007 study, IL-10 disrupted mice 

showed a statistically significant decrease in the amount of primitive hematopoietic 

cell populations that were present within the bone marrow. In contrast to this, HSCs 

that were cultured on IL-10 secreting stroma proved to show enhanced repopulating 

capacity compared with cells that were grown in the control stroma. Importantly, 

HSCs that showed enhanced repopulating capacity were found to have IL-10 surface 

receptors and microenvironmental IL-10 production. Overall, these results show that 

IL-10 may be a potential ligand that can stimulate enhanced self-renewal of HSC 

populations within the bone marrow (Kang et al, 2007). Due to the role that IL-10 has 

been shown to have in hematopoietic cell renewal, it would be very interesting to see 

whether there is increased expression of this cytokine in an iPSC-OP9 coculture 

system. 

  

IL-12p70 

The interleukin 12 (IL-12) family of cytokines has been shown to be play a 

key role in the regulation of the T-cell response. This group of cytokines is produced 

by a variety of immunological cell such as, monocytes, macrophages, and dendritic 

cells in response to infection. IL-12 is composed of two separate subunits; p40 and 

p35. Together, these two subunits form the bioactive form of IL-12 called IL-12p70. 

In concert with IL-23 and IL-27, these three cytokines act on the JAK-STAT pathway 

as a result of the homology in receptor components. By activating this pathway, the 

body begins the process of activation and differentiation of T-cells. In particular, 

IL-12 has been shown to be requisite for IFN-gamma production and hence the 
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induction of Th1 cells. By activating these different pathways and molecules, IL-12 is 

yet another component that is responsible for cytokine’s role in infection, 

inflammation, and autoimmune disease (Gee et al, 2009). 

In patients that have used heavy chemotherapy, such as those in AML, battling 

acute myelosuppression is often the largest hurdle to recovery. The lack of ability to 

full reconstitute a full blood cell lineage presents many difficulties that researchers 

have been attempting to mitigate for many years now. In a 2007 study, it was shown 

that IL-12 also has a role in the recovery of hematopoiesis after engraftment into 

sublethally irradiated animals. In the study, a low dosage of IL-12 was administered 

and 91.4% of lethally irradiated animals were able to survive long term without any 

adverse side effects. After observing the blood of these animals, it was concluded that 

IL-12 stimulated a full hematopoietic recovery and led to the production of white 

blood cells, red blood cells, and platelets (Chen et al, 2007). Because IL-12 has such 

massive implications in hematopoiesis, it is a worthwhile avenue of investigation 

within an iPSC-OP9 coculturing system. 

 

IL-13 

 Interleukin 13 (IL-13) is an immunoregulatory cytokine primarily produced by 

activated Th2 cells. This cytokine is involved in several downstream stages of B-cell 

maturation and differentiation, which is one of the body’s primary defenses against 

infection. It has also been shown to upregulate MHC Class II expression, as well as 

promote IgE isotype switching within B cells. Its role in downregulating macrophage 

activity allows it to play an inhibitory role in production of pro-inflammatory 

cytokines. Due to this, IL-13 has been largely implicated in the pathogenesis of 

 
37 



Team BLOOD Senior Thesis 
 

allergen-induced asthma. IL-13 has also been implicated in the inhibition of tumor 

immunosurveillance within the body. Inhibitors of IL-13 may prove to be effective as 

immunotherapy for cancers by increasing the body’s anti-tumor defense system 

(IL-13 Interleukin 13, n.d.). 

IL-13 has also been implicated in the regulation of growth of hematopoietic 

progenitor cells in a 1994 study. After inoculation into a culture, it was noted that 

IL-13 was able to enhance the stem cell factor (SCF)-induced proliferation of bone 

marrow progenitor cells in synergy with IL-4. When inoculated into a culture without 

IL-4 there was no further enhancement of growth of colonies. Additionally, the 

addition of IL-13 led to the exclusive production of macrophages, which shows that 

IL-13 has a very specific role in hematopoietic differentiation. Collectively, these 

findings indicate that the synergistic presence of IL-13 is needed in order to properly 

and fully generate hematopoietic differentiation (Jacobsen et al, 1994). Understanding 

whether IL-13 is necessary for driving hematopoietic differentiation of iPSCs in an 

iPSC-OP9 coculturing system could prove useful in elucidating further mechanisms 

of hematopoiesis. 

  

IL-15 

 Interleukin 15 (IL-15) is a cytokine that is heavily implicated in the regulation 

of T-cells and the activation/proliferation of natural killer cells within the body. This 

cytokine has been found to bind to the hematopoietin receptor, which is a receptor 

family that contains homologous amino acid sequences for many different types of 

cytokines. Further studies in the mouse counterpart of this cytokine show that IL-15 is 

responsible for inhibiting the apoptosis pathway by activating the STAT6 signal 
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transduction cascade. Due to this cytokine activity, there is some evidence which 

indicates that overexpression of this cytokine could lead to potential cancers of the 

immune system (IL15 Interleukin 15, n.d.). 

 IL-15 also has an interesting role in hematopoiesis as it relates to 

transcriptional regulation. In a 2013 article by the Colpitts group, it was shown that 

the IL-15 promoter activity was differentially regulated in a subset of hematopoietic 

myeloid lineages. Mature lineages were found to have almost no IL-15. After 

analyzing the hematopoietic stem cells themselves, the group found that in fact the 

HSCs themselves were expressing a high level of IL-15. This result suggests that 

IL-15 expression may have been extinguished during later lymphoid development 

(Colpitts et al, 2013). These results seem to elucidate that IL-15 may have a role in the 

timing of hematopoiesis. Expression levels in an iPSC-OP9 coculture system would 

be informative to analyze, as perhaps high levels of IL-15 may be necessary to initiate 

and drive early hematopoiesis. 

 

IL-17A 

 Interleukin 17A (IL-17A) has been known to be a pro-inflammatory cytokine 

that is produced and activated by T-cells. High levels of this cytokine have been 

associated with several chronic conditions such as multiple sclerosis, rheumatoid 

arthritis, psoriasis, and other chronically inflammatory diseases. IL-17A is associated 

with a large family of other IL-17’s, but the biological function of 11-17A is best 

understood. IL-17A has been known to stimulate the release of other cytokines, such 

as IL-6, as well as other regulatory molecules such as cyclooxygenase-2 (COX2) 

(IL17A Interleukin 17A, n.d.). The IL-17 family is known to exact it’s biological 
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functions via receptors on the cell surface. Out of the many receptors for the IL-17 

family, the receptor type for IL-17A is most commonly found (Jin & Dong, 2013). 

 IL-17A has been shown to have significant implications on hematopoiesis. A 

2012 article shows that IL-17 cytokines secreting Th17 link T-cell function and 

hematopoiesis through stimulation of events such as granulopoiesis. IL-17A also 

affects many other cells during the process of hematopoiesis, such as mesenchymal 

cells and erythroid progenitors. ​In vitro ​ data upon inoculation of IL-17A into a 

culture system showed significantly greater recruitment of mesenchymal cells and 

erythroid progenitors than the control sample (Kristc, 2012). With these widespread 

implications of IL-17A, investigation of levels of IL-17A within a iPSC-OP9 

coculture system is worthwhile. 

 

IL-21 

Interleukin 21 (IL-21) has been shown to increase the generation of T cell 

inflammatory cells. In fact, the IL-21 cytokine is necessary for the differentiation of 

Human T​H​17 cells. These cells have been implicated in the pathogenesis of 

autoimmune diseases, such as rheumatoid arthritis, irritable bowel syndrome, and 

psoriasis. Thus, it may be the case that IL-21 is an important component of such 

pathologies (Yang et al., 2008). IL-21 is itself secreted from T​H​17 cells and also helps 

regulate another cytokine: IL-17. Thus, IL-21 is in an intimate relationship with T​H​17 

cells in which they are necessary for the maintenance and differentiation of  T​H​17 

cells and are also secreted by the very same cells. This positive feedback loop 

suggests that IL-21 is an important factor in the immune response and is vital for T 
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cell maintenance (Wei. et al., 2007). This cytokine’s role in blood cell differentiation 

indicates that it may play a role in hematopoietic stem cell differentiation as well. 

 

IL-23, p19 

Interleukin 23 (IL-23), p19 is a sequence that is distantly related to the p35 

subunit of IL-25, called p19, combined with the p40 subunit of IL-12 in order to form 

a novel, composite cytokine that is biologically active called IL-23. IL-23 has been 

shown to induce a strong proliferation of mouse memory T cells. This is unique to 

IL-23 as IL-12 does not affect mouse memory T cells. The combination of the p40 

subunit and p19 leads to this induction of strong proliferation. IL-23 is not completely 

dissimilar from IL-12 in its function, however. Human IL-23 stimulates the 

production and proliferation of IFN-𝛾 in certain T cells (Oppmann et al., 2000). 

IL-23, p19 can also have deleterious effects. It has been found that inducing 

the p19 subunit into mice tissue can cause systemic inflammation, runting, infertility 

and death before mice are able to reach the age of 3 months. Mice that were implanted 

with this subunit had lymphocyte and macrophage infiltrates in the skin, liver, lungs, 

and the pancreas. Furthermore, implanted mice had anemic digestive tracts. In this 

same study, it was found that the p19 subunit was being expressed by hematopoietic 

cells, indicating that the subunit has shared biological properties with IL-6, IL-2, and 

G-CSF- other cytokines that are also produced by hematopoietic cells. IL-23, p19’s 

close relation to these cytokines, as well as the fact that it is a relatively recently 

discovered cytokine, makes it an exciting subunit to study; much is still unknown 

about IL-23, p19 (Wiekowski et al., 2001).  
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Lhx2 

The transduction of ​Lhx2 ​into mesodermal cells derived from embryonic stem 

cells (ESCs) was found to result in c-Kit+/Sca-1+/Lineage (KSL) cells in vitro. KSL 

cells represent an early form of HSCs. Furthermore, transduction of ​Lhx2​ into iPSCs 

was also found to be effective in generating KSL cells in vitro. Significantly, 

researchers found no difference in the behavior between iPSC derived HSCs and ESC 

derived HSCs in vivo. Investigating the Lhx2 protein could be a fruitful avenue of 

investigation in further experimentation, as it may be used in OP9-iPSC interactions 

in order to induce differentiation into HSCs. If there are no Lhx2 proteins present, this 

too would be a significant discovery, as it shows that the OP9-iPSC coculture’s 

differentiation into HSC is not dependent on this protein (Kitajima et al., 2011). 

 

Hoxb4 

Traditionally, there has been a problem inducing HSCs to proliferate rather 

than differentiating. The ​Hoxb4​ transcription factor has been found to be able to cause 

high levels of HSC expansion ex vivo. Researchers compared GFP transduced murine 

bone marrow cells to cultures of ​Hoxb​4-transduced cells and found that the cells that 

were transduced with ​Hoxb4​ resulted in 40-fold net HSC increase. These HSCs have 

shown significantly enhanced regenerative potential in vivo. This transcription factor 

may be critical to stopping HSCs from differentiating and may play a role in the 

differentiation of iPSCs to HSCs. Thus, this is an interesting protein to investigate in 

further experimentation within the frame of OP9-iPSC interactions; should the 

presence of this protein be detected, it may imply that the OP9-iPSC coculture helps 

maintain HSCs in addition to generating them (Antonchuk et al., 2002). 
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Bmi-1 

HSC formation should occur throughout the lifespan of an organism in order 

to maintain its viability. One protein that has been shown to be critical to this 

maintenance of hematopoiesis is Bmi-1, a protein encoded for by the proto-oncogene 

Bmi-1​. Researchers looked at the number of HSCs in prenatal and postnatal mice who 

were ​Bmi-1 ​deficient and found that the mice that were deficient for the gene had a 

decreased number of HSCs as compared to the control mice in adulthood but not in 

the prenatal condition. The researchers concluded that Bmi-1 is requisite for the 

creation of self-renewing adult HSCs. This may be relevant in further studies as it 

may be seen that Bmi-1 is present in the coculture in order to help sustain HSC 

formation from the OP9-iPSC coculture (Park et al., 2003). 

 

Murine Blood Cell to HSC Transcription Factors 

While we are investigating the creation of HSCs from an OP9-iPSC coculture, 

HSCs can also be generated by transient expression of six transcription factors on 

committed myeloid effector cells and myeloid and lymphoid progenitors. These 

transcription factors (Run1t1, Hlf, Lmo2, Prdm5, Pbx1, and Zfp37) essentially help 

reverse committed cell lineages to a more pluripotent state. Nevertheless, since they 

are intimately involved in generating HSCs, these transcription factors may be worth 

further investigation (Riddell et al., 2014). 
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Methodology 

OP9 cell culture  

Cell Thawing 

OP9 mouse stromal cells were purchased from ATCC and frozen in a liquid 

nitrogen freezing chamber until ready to be used. In order to thaw the cells, they were 

placed in a warm water bath at 37 ℃. Cells were added to OP9 growth media 

(Appendix C) to total 5 mL and were centrifuged at 400g for 5–7 minutes to pellet the 

cells and to remove any unwanted chemicals from freezing media. The supernatant 

was removed, and cell pellets were resuspended in growth media. 10–12 mL of 

growth media was added for suspension in a 75 cm​2​ flask or 5 mL of growth media 

was added for suspension in a 25 cm​2​ flask. Cells were then placed in a 37 ℃ 

incubator with 5% CO​2​ to grow. Quality checks were completed on the growing cell 

line and media was changed every 2 days. When 70–90% confluency (~8 x 10​6​ cells) 

was reached, the cells were then passaged and expanded. 

 

 

 

 

 

 

 

 

Figure 1: Image of confluent OP9 cell culture at approximately 70-80% confluency. 
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Passaging  

In order to passage OP9 cells, growth media was first aspirated from the flask. 

OP9 cells were trypsinized with room temperature 0.1% Trypsin-0.5mM EDTA using 

half the working volume of the flask (i.e, 2.5 mL trypsin for a 5 mL 25 cm​2​ flask, 5 

mL trypsin for a 10-mL 75 cm​2​ flask), and incubated for 5 minutes at 37 ℃. Cells 

were verified to be detached under the microscope (Figure 2). OP9 growth media was 

added to cells to the working volume in order to deactivate the trypsin, and cells were 

centrifuged at 400g for 5–7 minutes to form a pellet. Supernatant was discarded and 

fresh growth media was added to reseed cells at a lower density (anywhere from 1:2 

to 1:4 split ratios).  

 

Figure 2. Example of adherent cells vs. detached cells. Detached cells are round and 
will move with movement of the flask. 

 

Freezing 

In order to freeze OP9 cells to create a bank for further use in later phases of 

the study, the OP9 cell passage protocol was followed once cells reached 70–90% 

confluency – growth media was aspirated from the cells, and cells were trypsinized, 
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centrifuged, and pelleted. However, once the supernatant is discarded from the pellet, 

cells were resuspended in freezing media containing growth media + 10% DMSO. 

Cells were placed in a cryogenic freezing container (freezing at a rate of -1°C/minute) 

and placed in a -80 ℃ freezer for 24 hours, and then moved to liquid nitrogen for long 

term storage. One confluent T-75 flask was used to make three 1-mL freezes, each 

containing ~2.5 x 10​6​ cells. 

 

iPSC Culture 

iPSC cells were cultured and passaged using 6-well plates. iPSCs used for 

differentiation underwent 20​ ​passages at the beginning in order to ensure that the 

vectors used in reprogramming were eliminated. Freezes were made every 2–3 

passages in order to ensure that freezes from lower passages could be utilized if future 

passages were abnormal and had to be discarded. Cells were passaged after 4–5 days, 

or at 80% confluency, with 1:2 or 1:3 split ratios. Established cultures are able to be 

split up to a 1:12 ratio. Wells with dense and large individual colonies were passaged 

in order to prevent the cells from becoming over-confluent. Undifferentiated colonies 

were determined by their physical appearance which includes their concrete edges, 

tightly packed nature, and high nucleus to cytoplasm ratio. This indicates that these 

undifferentiated cells have relatively large nucleuses compared with cytoplasm. 

Spontaneous differentiation can be identified by the smooth and altered morphology 

of the cell edges. A healthy, confluent well of iPSCs is shown below in Figure 3. 
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Figure 3. Healthy, confluent iPSC colonies showing concrete edges and high 

nucleus:cytoplasm  
ratio. 

 
Cell Thawing 

iPSCs were donated from the iPSC Core at the National Institutes of Health 

and were stored in a liquid nitrogen freezing chamber until needed. For thawing and 

culturing cells, 6-well Matrigel-coated plates (Appendix C) and complete Essential 8 

Flex Medium (E8 complete media/iPSC media) were allowed to come to room 

temperature. ROCK inhibitor was added to iPSC media with a final concentration of 

10 µM to create iPSC thawing media. Matrigel was aspirated from the well, and 1–2 

mL thawing media media was added to the well. A vial of frozen iPSCS cells were 

thawed quickly and added to a well containing iPSC thawing media. The plate was 

incubated at 37 °C with 5% CO​2​ for 30 minutes to allow cells to attach. Media was 

changed with fresh iPSC thawing media, and the plate was returned to the incubator.  

Passaging 

Cells were passaged at a minimum of every 4–5 days regardless of 

confluency. Cells were also split when the colonies became too dense or large, and/or 
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if the colonies showed increased differentiation. To start, E8 complete media and 

EDTA dissociation solution (Appendix C) were warmed to room temperature. Wells 

were rinsed 4x with 1 mL EDTA dissociation solution. 1 mL of EDTA was added to 

the well and  incubated at room temp for 5–8 minutes. During the incubation, 

Matrigel was removed from the wells that were being passaged into, and replaced 

with fresh E8 media. After checking for detachment under the microscope, indicated 

by smoothed edges and “holes” in the colonies (Figure 4), EDTA dissociation 

solution was carefully aspirated from the cells in the well. Fresh E8 media was 

pipetted with force to wash the colonies off the plate, carefully preventing excessive 

pipetting, and cells were passaged and split into new wells. Plates were placed plate in 

the 37 ℃ incubator with 5% CO​2​. 

 
Figure 4. Detachment of iPSCs after EDTA incubation showing smoothed colony 

edges and “holes” appearing in colonies. 
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Freezing 

E8 complete media and EDTA dissociation solution were warmed to room 

temperature. Freezing media consisting of E8 complete media + 10% DMSO + 10 

µM ROCK inhibitor was created. Freezing began by aspirating the media from the 

well, without allowing the well to dry out. Wells were then rinsed 4X with 1 mL 

EDTA dissociation solution. 1 mL of EDTA was added to the well and  incubated at 

room temp for 5–8 minutes.  EDTA solution was then carefully aspirated from the 

wells. Freezing media was added to the cells using the force of pipetting to wash the 

colonies off of the plate, and cells were aliquoted into cryovials. Vials were placed in 

a cryogenic freezing container and placed in a -80°C freezer for at least 24 hours. 

Cells were transferred to liquid nitrogen for long-term storage. 

 

iPSC + OP9 Cocultures  

iPSC + OP9 cell coculture 

OP9 cells were subcultured 3 days before beginning the coculture, and extra 

cells were subcultured/expanded for days 5 and 8/9.​ Media was removed from OP9 

cells and fresh coculture media (50% E8 media, 50% OP9 media) was added. ​In 

initially seeding the iPSCs, iPSCs were passaged following the iPSC passage 

protocol, however, c​oculture media was added to iPSCs in lieu of E8 media, and 

detached iPCS were plated at ~10​3​ iPSC/cm​2​ to a flask of OP9 cells. Cell counts were 

estimated based on percent confluency of a given surface area of flasks or well plates. 

Cells were incubated at 37° C, 5% CO​2​. OP9 cells were continually being subcultured 

and expanded, and were not growth arrested prior to coculture with iPSCs​. On Day 3, 

the media on the coculture was replaced with fresh coculture media. To 
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subculture/expand cells, media was removed from the cells and cells were trypsinized 

with ​0.1% Trypsin-0.5mM EDTA and incubated for 5 minutes at 37℃. Coculture 

media was added to cells, and cells were centrifuged at 400g for 5–7 minutes. The 

supernatant from the pellet was discarded, and fresh growth media was added to cells 

to resuspended and reseed ​6.5x10​4​/cm​2​ – 7.75x10​4​/cm​2​ co-culture cells onto a new 

layer of confluent OP9 cells. After days 8/9, cells theoretically began to differentiate 

and could be further expanded or used for analysis. 

 

IPSC + OP9 conditioned media culture 

iPSCs were grown to confluency following the 6-well plate method. OP9 cells 

were subcultured three days prior to beginning the IPSC + OP9 conditioned media 

culture. When beginning the conditioned media culture, IPSC media was removed 

from confluent cells, and was replaced with media from growing OP9 cells (OP9 

conditioned media). Cells were further grown in OP9 conditioned media instead of 

iPSC media.  

 

Interleukin Quantibody ELISA Protocol 

Standard cytokine dilutions were prepared using serial dilution as specified by 

the RayBiotech ​Quantibody Mouse Interleukin Array 1 ​manual. A negative control 

was established with only 100 µL of sample diluent and no added standard cytokines. 

100 µL of sample diluent was added into each well and incubated at room temperature 

for 30 minutes. The diluent solution was decanted and 100 µL of sample was added to 

each well, after which the wells were allowed to incubate for 1–2 hours. After 

incubation, the wells were washed 5 times with 1X wash buffer at room temperature 
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and under gentle rocking. Subsequently, 80 µL of detection antibody was added to 

each well. The detection antibody was allowed to incubate in the wells at room 

temperature for 1–2 hours. After detection antibody incubation, the detection antibody 

solution was decanted and the wells were washed 7 times with 1X washing buffer. 1.4 

mL of sample diluent was then added to the Cy3 equivalent dye-conjugated 

streptavidin tube and mixed gently. 80 µL of Cy3 solution was added to each well. 

The array was subsequently covered with aluminum foil and allowed to incubate in 

the dark for 1 hour. After incubation, the Cy3 solution was decanted and the array was 

washed 5 times with 1X washing buffer. The array was then sent to RayBiotech for 

analysis under a fluorescence detection system (Quantibody, 2016). After analysis, 

fluorescence of each well was compared to an established standardization curve to 

determine the concentration of each cytokine within the well. Cytokine concentrations 

were then analyzed and compared to each other, as well as with the existing literature.  

 

 

Figure 5: Visual representation of our experimental conditions. Our research looks to 
determine if iPSC/OP9 signaling involves juxtacrine or local signaling, as seen in this 

diagram. These are our two different experimental sample designs. 
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Figure 6: Example of standard curve for IL-3 protein after assembly of 
fluorescence data.  

 

For additional information on preparation and justification of the reagents used in 
this study, please refer to Appendices B & C.  
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Results 

Coculture Systems 

Through a qualitative and morphological analysis of the cells, we determined 

that the OP9/iPSC coculture resulted in iPSCs differentiating into HSCs while the 

OP9 conditioned media coculture did not result in differentiation. This qualitative 

assessment was based on known appearance of differentiated iPSCs, which show a 

lack of iPSCs colonies and instead a homogenous appearance of uniform, 

individualized cells. In our control iPSC + OP9 cell culture system, there was a lack 

of colonies and a new presence of individualized cells. In our experimental iPSC + 

OP9 conditioned media culture system, the iPSC colonies still remained and did not 

turn into individualized cells. These morphological differences can be visualized in 

Figure 7 below. 

 

Figure 7. Morphological differences in two coculture systems. Our control system 
shows morphological differentiation, while our experimental system does not. 
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Protein Identification 

In all cell culture systems, thirteen cytokines were analyzed. All were 

upregulated in the OP9/iPSC coculture as compared to the OP9 monoculture and the 

iPSC with OP9 conditioned media coculture. The following figures display the 

concentrations of each cytokine found in each culture. The results are discussed 

further detail for each cytokine in the Discussion section. 

 

Figure 8: Expression analysis of 13 interleukins across samples of OP9 monoculture, 
iPSC/OP9 conditioned media coculture, iPSC/OP9 coculture, and iPSC monoculture. 

Results show significant upregulation of protein levels when iPSCs and OP9s 
maintain cell-to-cell contact. A negative trend is shown when compared to the 

iPSC/OP9 conditioned media coculture. The OP9 monoculture and iPSC monoculture 
show endogenous expression of secretions of some interleukins, however the 

expression levels are still moderately attenuated as compared to the iPSC/OP9 
coculture system.  

 

After expression analysis of the 13 cytokines tested, a clear negative trend was 

observed in the data. As shown in Figure 8, a holistic upregulation of protein levels 

was observed in the iPSC/OP9 coculture. In this sample, cell-to-cell contact between 

iPSCs and OP9 cells were maintained throughout the 9 day experimentation period. A 
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negative trend was observed when comparing the iPSC/OP9 conditioned media 

coculturing system. We also found a moderate level of expression for 9 of the 13 

cytokines that were tested in the OP9 and iPSC monocultures.  

 

 
Figure 9: Expression analysis of G-CSF levels in OP9 monoculture, iPSC/OP9 

conditioned media coculture, iPSC/OP9 coculture, and iPSC monoculture. Graph 
shows significant upregulation of G-CSF in the iPSC/OP9 coculture, but significant 
downregulation in the iPSC/OP9 conditioned media coculture, iPSC monoculture, 

and OP9 monoculture.  
 

In Figure 9, the expression level of G-CSF was shown across samples, and the 

data reveals that there is a significant upregulation of the cytokine level in the 

iPSC/OP9 coculture. According to the data, there was 102.5 pg/mL within this 

sample. The iPSC/OP9 conditioned media coculture showed significant 

downregulation, showing very little expression of 34.0 pg/mL in this sample. In the 

OP9 monoculture, an expression level of 42.0 pg/mL was shown.  In the iPSC 

monoculture, an expression level of 44.9 pg/mL was shown 
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Figure 10: Expression analysis of GM-CSF levels in OP9 monoculture, iPSC/OP9 
conditioned media coculture, iPSC/OP9 coculture, and iPSC monoculture. Graph 
shows significant upregulation of GM-CSF in iPSC/OP9 coculture, but significant 

downregulation in iPSC/OP9 conditioned media coculture sample.  
 

 
In Figure 10, the expression level of GM-CSF was shown across samples, and 

the data reveals that there is a significant upregulation of the cytokine level in the 

iPSC/OP9 coculture. According to the data, there was 2692.6 pg/mL within this 

sample. The iPSC/OP9 conditioned media coculture showed significant 

downregulation, showing very little expression of 208.5 pg/mL in this sample. In the 

OP9 monoculture, an expression level of 978.8 pg/mL was shown. In the iPSC 

monoculture, an expression level of 985.0 pg/mL was shown. 
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Figure 11: Expression analysis of IL-10, IFN-𝛾, and IL-2 concentrations in OP9 

monoculture, iPSC/OP9 conditioned media coculture, iPSC/OP9 coculture and iPSC 
monoculture. Graph shows significant upregulation of IFN-𝛾 and IL-2 in iPSC/OP9 

coculture even within the presence of IL-10, but significant downregulation in 
iPSC/OP9 conditioned media coculture sample.  

 
In Figure 11, the expression level of IL-2, IL-10, and IFN-𝛾 is observed across 

our three samples. We observe that there was a significant amount of upregulation of 

all three cytokines in the iPSC/OP9 coculture. A downward trend is also observed as 

we compare the iPSC/OP9 coculture to the iPSC/OP9 conditioned media coculture 

and the OP9 monoculture. It is notable that a small level of expression of IL-10 was 

still observed in the iPSC/OP9 conditioned media coculture, whereas there seems to 

be no expression of both IL-10 and IFN-𝛾 within this sample.  There was significant 

upregulation of IFN-𝛾 in the iPSC monoculture. 
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Figure 12: Expression analysis of IL-3 levels in OP9 monoculture, iPSC/OP9 

conditioned media coculture, iPSC/OP9 coculture, and iPSC monoculture. Graph 
shows significant upregulation of IL-3 in iPSC/OP9 coculture, but significant 

downregulation in iPSC/OP9 conditioned media coculture sample. 
 

In Figure 12, the expression level of IL-3 was shown across samples, and the 

data reveals that there is a significant upregulation of the cytokine level in the 

iPSC/OP9 coculture. According to the data, there was 8.1 pg/mL within this sample. 

The iPSC/OP9 conditioned media coculture showed significant downregulation, 

showing no expression of the cytokine within this sample. In the OP9 monoculture, a 

small expression level of 0.8 pg/mL was shown. In the iPSC monoculture, a small 

expression level of 0.7 pg/mL was shown. 
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Figure 13: Expression analysis of IL-4 levels in OP9 monoculture, iPSC/OP9 

conditioned media coculture, iPSC/OP9 coculture, and iPSC monoculture. Graph 
shows significant upregulation of IL-4 in iPSC/OP9 coculture, but significant 

downregulation in iPSC/OP9 conditioned media coculture sample. 
 

In Figure 13, the expression level of IL-4 was shown across samples, and the 

data reveals that there is a significant upregulation of the cytokine level in the 

iPSC/OP9 coculture. According to the data, there was 146.4 pg/mL within this 

sample. The iPSC/OP9 conditioned media coculture showed significant 

downregulation, showing no expression of the cytokine within this sample. In the OP9 

monoculture, a small expression level of 86.3 pg/mL was shown. In the iPSC 

monoculture, there was no expression. 
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Figure 14: Expression analysis of IL-5 levels in OP9 monoculture, iPSC/OP9 
conditioned media coculture, iPSC/OP9 coculture, and iPSC monoculture. Graph 

shows significant upregulation of IL-5 in iPSC/OP9 coculture, but significant 
downregulation in iPSC/OP9 conditioned media coculture sample.  

 
In Figure 14, as compared to OP9 secretion, iPSC/OP9 coculture shows 

upregulation of IL-5 whereas iPSC/OP9 conditioned media coculture shows 

downregulation of this cytokine. iPSC/OP9 conditioned media coculture showed 0 

pg/mL of IL-5. OP9 monoculture had IL-5 concentration of 328.4 pg/mL while 

iPSC/OP9 coculture has concentration of 840.6 pg/mL.  The iPSC monoculture 

showed no expression. 
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Figure 15: Expression analysis of IL-6 levels in OP9 monoculture, iPSC/OP9 
conditioned media coculture, iPSC/OP9 coculture, and iPSC monoculture. Graph 

shows significant upregulation of IL-6 in iPSC/OP9 coculture, but significant 
downregulation in iPSC/OP9 conditioned media coculture sample.  There is also 

moderate levels of expression in both the OP9 monoculture and iPSC monoculture. 
 

In Figure 15, the results reveal that compared to OP9 secretion, iPSC/OP9 

coculture shows upregulation of IL-6 whereas iPSC/OP9 conditioned media coculture 

shows downregulation of this cytokine. The OP9 monoculture showed IL-6 

concentration of 165 pg/mL while iPSC/conditioned media coculture had no 

concentrations measured for IL-6. iPSC/OP9 coculture had IL-6 concentration of 

575.1 pg/mL.  The iPSC monoculture had a IL-6 concentration of 86.0 pg/mL. 
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Figure 16: Expression analysis of IL-7 levels in OP9 monoculture, iPSC/OP9 
conditioned media coculture, iPSC/OP9 coculture, and iPSC monoculture. Only the 

iPSC/OP9 coculture showed significant levels of IL-7 expression. 
 

Data in Figure 16 reveals that the OP9 monoculture, iPSC monoculture, and 

iPSC/OP9 conditioned media coculture showed no levels of IL-7 secretion. 

Conversely, iPSC/OP9 coculture shows secretion of IL-7. The OP9 monoculture, 

iPSC monoculture, and iPSC/OP9 conditioned media coculture had measured IL-7 

concentrations of 0 pg/mL. The iPSC/OP9 coculture had a measured IL-7 

concentration of 5226 pg/mL. 
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Figure 17: Expression analysis of TNF-ɑ in OP9 monoculture, iPSC/OP9 conditioned 

media coculture, iPSC/OP9 coculture, and iPSC monoculture. Only the iPSC/OP9 
coculture showed significant levels of TNF-ɑ expression. 

 
 

Data in Figure 17 reveals that compared to OP9 secretion, iPSC/OP9 coculture 

shows significant upregulation of TNF-alpha. The iPSC monoculture, OP9 

monoculture, and iPSC/OP9 conditioned media coculture showed no secretion of 

TNF alpha, with all three cultures having measured concentrations of 0 pg/mL. The 

iPSC/OP9 coculture showed a TNF alpha expression level of 36.2 pg/mL. 
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Figure 18: Expression analysis of IL-12p70 in OP9 monoculture, iPSC/OP9 
conditioned media coculture, iPSC/OP9 coculture, and iPSC monoculture. Only the 

iPSC/OP9 coculture showed any levels of IL-12p70 expression.  
 

Expression analysis of the cytokine IL-12p70 in Figure 18 shows upregulation 

of the cytokine within the iPSC/OP9 coculture. The concentration of IL-12p70 within 

this coculture sample was measured to be 12/7 pg/mL, which is significantly less than 

other cytokines that were measured. This cytokine shows no expression in the 

iPSC/OP9 conditioned media coculture, the iPSC monoculture, or the OP9 

monoculture. It seems that this protein is only upregulated in samples that retained 

cell-to-cell contact within the 9 day experimentation period.  

 
64 



Team BLOOD Senior Thesis 
 

 
Figure 19: Expression analysis of IL-15 in OP9 monoculture, iPSC/OP9 conditioned 

media coculture, iPSC/OP9 coculture, and iPSC monoculture. Only the iPSC/OP9 
coculture showed any levels of IL-15 expression.  

 
 

An expression analysis of IL-15 in Figure 19 shows a significant upregulation 

of cytokine concentration in the iPSC/OP9 coculturing system. In this sample, the 

cytokine concentration was measured to be 5260 pg/mL. This concentration is very 

high as compared to other cytokine concentrations that were found in this study. IL-15 

was found to be significantly downregulated in the iPSC/OP9 conditioned media 

coculture, iPSC monoculture, and the OP9 monoculture, with 0 pg/mL of cytokine 

being measured in each sample.  
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Figure 20: Expression analysis of IL-17A in OP9 monoculture, iPSC/OP9 

conditioned media coculture, iPSC/OP9 coculture, and iPSC monoculture. The 
results reveal that, compared to OP9 monoculture secretions, the iPSC/OP9 coculture 

shows significant upregulation.  
 

In Figure 20, the expression level of IL-17A was shown across samples, and 

the data reveals that there is a significant upregulation of the cytokine level in the 

iPSC/OP9 coculture. According to the data, there was 134.1 pg/mL within this 

sample. The iPSC/OP9 conditioned media coculture showed significant 

downregulation, showing no expression of the cytokine within this sample. In the OP9 

monoculture, a small expression level of 16.5 pg/mL was shown. In the iPSC 

monoculture, a small expression level of 6.2 pg/mL was shown. 
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Figure 21: Expression analysis of IL-21 in OP9 monoculture, iPSC/OP9 conditioned 

media coculture, iPSC/OP9 coculture, and iPSC monoculture. Data reveals that 
compared to OP9 secretion, iPSC/OP9 coculture and iPSC monoculture shows 

significant upregulation of IL-21. iPSC/OP9 conditioned media coculture shows little 
secretion of IL-21 

 
In Figure 21, the expression level of IL-21 was shown across samples, and the 

data reveals that there is a significant upregulation of the cytokine level in the 

iPSC/OP9 coculture and iPSC monoculture. According to the data, there was 472.8 

pg/mL within the iPSC/OP9 coculture and 469.9 pg/mL within the iPSC monoculture. 

In the iPSC/OP9 conditioned media monoculture, a smaller expression level of 157.3 

pg/mL was shown. The OP9 monoculture showed significant downregulation, 

showing no expression of the cytokine within this sample.  
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Figure 22: Expression analysis of IL-23, p19 in OP9 monoculture, iPSC/OP9 
conditioned media coculture, iPSC/OP9 coculture, and iPSC monoculture. Data 
reveals that compared to OP9 secretion, iPSC/OP9 coculture shows significant 

upregulation of IL-23, p19. iPSC/OP9 conditioned media coculture show no secretion 
of IL-23, p19. iPSC monoculture shows little secretion of IL-23, p19. 

 
In Figure 22, the results reveal that compared to OP9 secretion, iPSC/OP9 

coculture shows upregulation of IL-23, p19 whereas iPSC/OP9 conditioned media 

coculture shows downregulation of this cytokine. The OP9 monoculture showed 

IL-23, p19 concentration of 349.1 pg/mL, while iPSC/OP9 conditioned media 

coculture had no concentrations measured for IL-23, p19. iPSC/OP9 coculture had 

IL-23, p19 concentration of 862.2 pg/mL. The iPSC monoculture had a measured 

IL-23, p19 concentration of 53.0 pg/mL. 

 
 

IL-1a, IL-1b, IL-9 and IL-13 have been excluded from our data set. This is due to 
errors in the established standard curves, which, if used, may have skewed our data. 

Thus analysis of these cytokines will not be discussed. To view these excluded 
standard curves, please see Appendix D.  
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Discussion 

Analysis of Relevant Proteins 

G-CSF 

Granulocyte-colony stimulating factor (G-CSF) is a protein induced by 

inflammatory stress, regulating hematopoiesis at the stem cell level (Schuettpelz, 

2014). G-CSF helps mobilize HSCs from the bone marrow to the blood in order to 

harvest HSCs for stem cell transplantation (Schuettpelz, 2014). Expression of G-CSF 

has shown to affect HSCs by inducing toll-like receptor (TLR) signaling in HSCs 

(Schuettpelz, 2014). In Figure 8, we see that the expression of this cytokine is 

significantly upregulated in the iPSC/OP9 coculture. We also observed a significant 

decrease in expression of the protein in the iPSC/OP9 conditioned media coculture 

and in the control OP9 monoculture.  

In the conditioned media coculture where only indirect cell signaling is 

occurring, our data shows a significant decrease in expression levels, even lower or 

comparable to the expression level of the control OP9 monoculture. In the iPSC/OP9 

coculture where direct cell signaling is occurring however, upregulation suggests that 

cell to cell contact is necessary for expression of G-CSF. Investigations of the 

mechanism behind the direct cell to cell signaling in the upregulated role of G-CSF 

may help further explain the process of hematopoiesis.  

 

GM-CSF 

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a 

hematopoietic growth factor involved in the generation and maturation of 

granulocytes and macrophages from HSCs (Kruger, 2007). Both GM-CSF and G-CSF 
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serve cellular functions in proper differentiation and anti-apoptosis. Furthermore, 

GM-CSF has been shown to work closely with growth factor Interleukin-3 (IL-3) in 

development of hematopoiesis. GM-CSF interacts closely with other growth factors, 

and as suggested by the timing of development, GM-CSF acts at a later stage in cell 

development (Donahue, 1988).  In Figure 9, we see that the expression of this 

cytokine is significantly upregulated in the iPSC/OP9 coculture. We also observed 

significantly little expression level of the protein in the iPSC/OP9 conditioned media 

coculture and decreased expression level in the control OP9 monoculture.  

In the conditioned media coculture where only indirect cell signaling is 

occurring, our data shows a significant decrease in expression level. Comparatively, 

in the iPSC/OP9 coculture where direct cell signaling is occurring, upregulation 

suggests that cell to cell contact is necessary for expression of GM-CSF. This also 

matches the results of IL-3, the cytokine that GM-CSF interacts closely with. Similar 

results between the two proteins indicate that they both need cell to cell contact, 

further suggesting that they interact via direct cell signaling as opposed to indirect cell 

signaling. Investigations of the mechanism behind the direct cell to cell signaling in 

the upregulated role of GM-CSF may help further explain the process of 

hematopoiesis.  

 

IL-2, IL-10, and IFN-​𝛾 

IL-10 has been shown to downregulate the expression of Th1 cytokines, which 

are responsible for producing IFN-​𝛾 ​ and IL-2 (Romagnani, 2000). Hence, an increase 

in the concentration of IL-10 would lead to a decrease in the concentration of IL-2 and 

IFN-​𝛾​ within sample.  Furthermore, IL-10 has been found to play a significant role in 
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the self-renewal processes of HSCs (Kang et al., 2007). In Figure 10, we see that 

increased production of IL-10 did not lead to a reduced production of IFN-​𝛾 ​ in all 

cases. In fact, within the iPSC/OP9 coculture sample, we found that an increased 

expression of IL-10 actually led to a comparatively increased level of IFN-​𝛾 ​ and IL-2. 

In the iPSC/OP9 conditioned media coculture, we found that there was no expression 

of IFN-​𝛾 ​ and IL-2, and less expression of IL-10 compared to the iPSC/OP9 

conditioned media coculture. In our control OP9 Monoculture, we find that there is 

still moderate levels of expression of IFN-​𝛾 ​ and IL-2, while there is an even lower 

level of IL-10 from the iPSC/OP9 conditioned media coculture.  

This is an interesting, seemingly contradictory, result to what exists within the 

literature. Within an iPSC/OP9 coculture system, the upregulation of IFN-​𝛾 ​ and IL-2 

could indicate that IL-10 is interacting in a novel way with Th1 cytokines to 

upregulate them and promote hematopoiesis in the presence of iPSCs. It is also 

possible that due to cell-to-cell interactions between iPSCs and OP9s, the endogenous 

levels of Th1 are so high that IL-10 is not able to successfully downregulate the 

production of the Th1. This theory is qualified by understanding that there is no 

expression of IFN-​𝛾 ​ and IL-2 when there is no cell-to-cell contact between iPSCs and 

OP9s, such as in the iPSC/OP9 conditioned media coculture. It is interesting to note, 

though, that in a control sample of OP9 monoculture, there is still a moderate level of 

expression of IFN-​𝛾 ​ and IL-2. This result shows that OP9 cells are responsible for the 

endogenous production IFN-​𝛾 ​ and IL-2, as when only OP9 conditioned media was 

used, there was no expression. As a whole, this result shows us that cell-to-cell 

interaction between iPSCs and OP9s are necessary in order to upregulate the 

expression of IFN-​𝛾 ​, IL-2, and IL-10. Absence of this cell-to-cell contact leads to 
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overall downregulation of the levels of all three of these cytokines. The exact 

mechanism of the interaction in between these proteins in an iPSC and OP9 coculture 

is an avenue of further investigation.  

 

IL-3 

IL-3 was another cytokine that was upregulated in the OP9/iPSC coculture but 

downregulated in the iPSC/OP9 conditioned media coculture, according to Figure 11. 

IL-3 is intimately involved in hematopoiesis and is an early acting cytokine. The fact 

that the OP9/iPSC coculture showed qualitative signs of differentiation through 

analysis of morphology, and the iPSC/OP9 conditioned media did not result in 

differentiation, indicates that IL-3 may be involved in the differentiation pathway 

between OP9 cells and iPSCs. The method by which IL-3 is upregulated or 

downregulated is still unclear, however. Our results seem to indicate that cell to cell 

contact between iPSCs and HSCs is necessary for this upregulation.  

Other explanations are possible as well. It could be that the upregulation of 

another cytokine results in the upregulation of IL-3. This is less likely, as IL-3 has 

been shown to be an early acting cytokine. It is more plausible that IL-3 is upstream 

of other cytokines, such as GM-CSF, in a signalling pathway. Ultimately. the 

reasoning for our findings regarding IL-3’s concentration in the differentiation of 

iPSCs is unclear and further research is needed.  

 

IL-4 

After analysis of Figure 12, we found that IL-4 was upregulated in the 

OP9/iPSC coculture and downregulated in the iPSC/OP9 conditioned media coculture 
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as compared to the OP9 monoculture. Il-4 has been identified as having a role in 

proliferating primitive hematopoietic progenitors in mice, which is consistent with our 

finding that it was upregulated in the culture that resulted in differentiation. In the 

literature, it has been shown that when IL-4 is combined with IL-11, major 

enhancement of colony formation was seen in mice.  

We were not able to analyze IL-11 expression levels in this experiment, but if 

we had more time and resources, we would have. The expression levels of IL-4 and 

IL-11 could be compared in order to see how the two cytokines interacted with one 

another. Since IL-4 has shown to to be ineffective in the absence of IL-11, it would be 

interesting to knockout IL-11 and see if IL-4 was still secreted. If IL-4 was still 

secreted, we would determine if differentiation was still achieved.  

 

IL-5 

Results for interleukin 5 indicate cytokine release within OP9 monoculture 

due to elevated expression levels. Therefore, this interleukin is secreted by OP9 cells 

independent of the presence of other cells. However, iPSC/OP9 conditioned media 

coculture displayed no expression of interleukin 5, with a measured concentration of 0 

pg/mL. This indicates that an activated IL-5 is absent in the conditioned media, 

potentially due to denaturation of the protein or the need for activators secreted by 

OP9 cell. After analysis of Figure 13, iPSC/OP9 coculture showed upregulation of 

IL-5 with approximately three times as much of the cytokine present in the iPSC/OP9 

coculture than the OP9 monoculture. Since IL-5 is involved in the growth and 

maturation of hematopoietic stem cells, its upregulation shows correspondence with 

the growing culture that was observed in the lab. 
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These findings express the idea that IL-5 requires direct cell contact with the 

presence of OP9 cells in coculture in order for the cytokine to be actively present. 

Therefore, IL-5 is not secreted pleiotropically in effecting iPSC cells, but rather with 

the presence of both iPSC and OP9 cells in the culture. This is further proven by the 

decrease in concentration of IL-5 in the conditioned media coculture compared with 

the OP9 monoculture, where the difference was the lack of OP9 cells within the 

culture. Another explanation for this finding could be that the OP9 cells are solely 

responsible for the secretion of the cytokine and thus, no proteins are found in the 

broth coculture. Ultimately, the conditioned media itself was not sufficient in 

providing this cytokine. This implies that the conditioned media coculture, lacking 

IL-5, may affect hematopoietic stem cells through a failure to regulate the 

development of progenitors. With the presence of OP9 in the iPSC coculture, release 

of IL-5 can provide an upregulated expression level of this cytokine and enhance the 

development of progenitors. 

 

IL-6 

The results of the experiment for interleukin 6 after analysis of Figure 14 

indicate a specific level of cytokine release within OP9 monoculture, without any 

other cells present. Therefore, this interleukin is independently secreted by OP9 cells 

normally in culture and through regular processes. Conversely, iPSC/OP9 conditioned 

media coculture showed no expression of interleukin 6. The measured concentration 

of IL-6 within the conditioned media coculture was 0 pg/mL. The absence of IL-6 in 

the conditioned media could be due to denaturation of the protein within the solution, 

possibly because of a lack of secondary proteins secreted by OP9 that are necessary 
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for activation or proper functioning of the cytokine. The iPSC/OP9 coculture showed 

an upregulation of IL-6, similar to IL-5 in that approximately three times as much of 

the cytokine was present in the iPSC/OP9 coculture than the OP9 monoculture. The 

role of IL-6 is relatively uncertain within the hematopoietic process, but it is 

hypothesized that the survival and proliferation of progenitors depends on the 

presence of this cytokine. 

Given that IL-6 is involved in the pro-inflammatory response and moreover in 

cellular processes that allow cells to defend themselves against toxicity and 

pathogens, the survival and proliferation of HSC’s in the experimental culture is 

supported by the upregulation of IL-6 within iPSC/OP9 coculture. The lack of IL-6 in 

conditioned media coculture indicates that the conditioned media itself is not 

sufficient in providing IL-6 for developing HSC’s, and therefore can cause these 

progenitors to fail in surviving through an inability to activate an immune response 

and sustain viability. Elevated levels of IL-6 within iPSC/OP9 coculture compared to 

OP9 monoculture indicate a positive feedback loop that regulates the secretion of IL-6 

when iPSC are present. The presence of cellular contact is necessary, however, shown 

by a failure for pleiotropic secretion of functional IL-6 into conditioned media. 

Therefore, direct contact between OP9 cells and iPSC is necessary for IL-6 expression 

and binding to occur. 

 

IL-7 

According to the analysis of Figure 15, No endogenous expression of IL-7 was 

observed in OP9 monoculture, with a measured concentration of 0 pg/mL. 

Furthermore, IL-7 was not measured at any concentration within the conditioned 
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media coculture either. Conversely, IL-7 expression levels within iPSC/OP9 coculture 

reached 5226 pg/mL, among the highest between all of the measured cytokines. Lack 

of IL-7 expression within OP9 monoculture indicates that the presence of iPSC are 

necessary in order to initiate the pathway involved in secreting the cytokine. 

Furthermore, the absence of iPSC/OP9 conditioned media coculture indicates that 

regardless of the presence of iPSC, the fact that OP9 were absent indicates a required 

direct contact between the iPSC and OP9 in order for secretion to occur. Since 

deficiency of IL-7 can cause failure for HSCs to survive and proliferate in early 

stages, conditioned media coculture is expectedly due to lead to failure for induction 

and proliferation of HSC to occur. 

The extreme amount of upregulation in the expression of IL-7, from no 

secretion to greater than 5000 pg/mL in OP9 monoculture and iPSC/OP9 coculture 

respectively indicates the importance of this cytokine in the development and survival 

of HSCs. This hematopoietic growth factor was measured to be secreted by OP9 cells 

only in the direct presence and contact of iPSC, during which the cytokine levels rose 

to an intense degree of expression. Direct cell signaling during the iPSC/OP9 

coculture led to IL-7 secretion, which in turn allowed for this growth factor to further 

develop HSC.  Since continued signaling between IL-7 and HSCs positively regulates 

the continued development of progenitors and differentiation into various cell types, 

significantly elevated expression levels of IL-7 can be due to the continuation of the 

hematopoietic process in which the progenitor is looking to further differentiation into 

a more specialized cell type such as a B lymphocyte or T lymphocyte. 
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TNF-𝛼 

Tumor necrosis factor alpha (TNF-𝛼) is a cytokine involved in the 

proinflammatory process as well as the acute phase process. In addition to providing 

an anti-tumoral response, TNF alpha is involved in restricting hematopoietic activity. 

Uncontrolled differentiation of hematopoietic stem cells can increase the risk of 

tumorigenesis and leukemic transformation (Pronk et al., 2011), so TNF alpha helps 

control the differentiation process of HSCs. TNF alpha’s repressive effects on the 

regulation of HSC proliferation is dependent on the presence and binding of both 

receptors, meaning that a deficiency or inhibition in either receptor can disrupt HSC 

homeostasis (Pronk et al., 2011).  

In Figure 16, our results show the iPSC/OP9 coculture shows significant 

upregulation of TNF alpha. Comparatively, the OP9 secretion and iPSC/OP9 

conditioned media coculture showed no secretion of TNF alpha. Our finding then, 

suggests that TNF alpha expression levels are significantly upregulated via direct cell 

to cell contact, and significantly downregulated to nonexistent levels via indirect cell 

to cell contact. This is contrary to what we expect given different findings in our 

literature review, so further investigation regarding the exact mechanism of TNF 

alpha in regulating hematopoiesis is needed.  

 

IL-12p70 

IL-12p70 is a cytokine that has mainly been implicated in the JAK-STAT 

pathway, which is used for T-cell differentiation, along with IL-23 and IL-27 (Gee et 

al., 2009). It has also been shown to play a very crucial role in the full reconstitution 

of blood cell lineages in subjects that have endured severe myelosuppression through 
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the usage of treatments such as chemotherapies (Chen et al., 2007). In Figure 17, we 

see that the expression of this cytokine is significantly upregulated in the iPSC/OP9 

coculture. We also observed almost no expression of the protein in the iPSC/OP9 

conditioned media coculture and in the control OP9 monoculture. Compared to the 

expression levels of the rest of the cytokines, IL-12p70 has a very low amount of 

expression in the iPSC/OP9 coculture system.  

This finding is extremely relevant as it suggests that cell-to-cell contact is 

necessary for upregulation of the expression of this important hematopoietic agent. 

This is further alluded to by the fact that the iPSC/OP9 conditioned media coculture, 

which was absent of OP9 cells, showed no expression of the cytokine. In the control 

sample, OP9 cells showed no endogenous expression of the protein, which suggests 

that the iPSCs are necessary in order to begin the hematopoietic cascade and induce 

differentiation of a full lineage of blood cells. Examining the cellular mechanism by 

which this interleukin is upregulated in coculture is of great interest, as it will further 

elucidate which factors drive the process of hematopoietic differentiation.  

 

IL-15 

 IL-15 is cytokine that has been heavily implicated in the regulation of T-cells, 

as well as in the early induction of hematopoiesis (Colpitts et al., 2013). In past 

experimentation, this cytokine’s expression was shown to be extinguished during late 

lymphoid development but upregulated in the primitive HSCs themselves. Therefore, 

we would expect to see a high expression level of IL-15 in cells that are displaying the 

early characteristics of HSCs. In Figure 18, we see that the expression level of IL-15 

is upregulated in the iPSC/OP9 coculture. Furthermore, it is shown to have no 
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expression in the iPSC/OP9 conditioned media coculture or the control OP9 

monoculture. 

 The implications of these findings are significant, as they suggest not only that 

the iPSCs in the culture showed signs of differentiation into primitive HSCs, but that 

cell-to-cell contact between the iPSCs and OP9s is necessary in order to upregulate 

the expression of this cytokine. This implication is further proved by the fact that the 

iPSC/OP9 conditioned media coculture system displayed no upregulation, signaling 

that it is not the secreted proteins in the OP9 culture conditioned media that are 

driving hematopoiesis but rather some inter-cellular mechanisms that are playing a 

key role. The OP9 monoculture control sample also shows no endogenous level of 

IL-15 expression, which shows that it is the iPSCs that are necessary in order to begin 

the upregulation process. Further investigation into the inter-cellular interactions of 

this cytokine in the iPSC/OP9 coculture are needed to elucidate which factors are 

responsible for inducing differentiation of iPSCs into HSCs. 

 

IL-17A 

IL-17A is a proinflammatory cytokine that has been shown to activate T-cells 

within the immune system of humans. The chronic upregulation of this cytokine is 

known to have a role in multiple disease pathologies, such as rheumatoid arthritis and 

multiple sclerosis. As a member of several other IL-17 proteins, the functioning of 

IL-17A is most well understood (Jin & Dong, 2013). Significantly, this cytokine is 

known to have a role in some steps of hematopoiesis, such as granulopoiesis. After 

inoculation of IL-17A into a culture system, a significantly greater amount of 
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erythroid progenitors and mesenchymal cells were recruited as compared to control 

cells (Kristc, 2012).  

According to our results from Figure 19, there was a significant upregulation 

of IL-17A within the iPSC/OP9 coculture. This indicates that cell-to-cell contact may 

be necessary for the recruitment of this cytokine. Expression levels from the 

iPSC/OP9 conditioned media coculture sample and the OP9 monoculture sample 

seem to qualify this conclusion, as they showed significantly less expression when 

both types of cells were physically not present in the cells. Because these results are 

only correlational, we cannot assess whether this cytokine is a probably cause of 

hematopoietic differentiation. Further research must be done to investigate the 

protein-protein interaction of this cytokine within a coculturing system such as an 

iPSC/OP9 coculture.  

 

IL-21 

In Figure 20, we found that IL-21 was not found in the OP9 monoculture but 

expressed in the iPSC/OP9 coculture. This indicates that cell-to-cell contact may be 

necessary to secrete IL-21 since it was not found in the OP9 monoculture or 

conditioned media but was seen once iPSCs were introduced. Furthermore, there was 

a higher concentration of IL-21 found in the iPSC/OP9 coculture than there was in the 

iPSC/OP9 conditioned media coculture. This indicates that cell-to-cell contact 

upregulates the production of IL-21 in iPSCs. 

It is already known that IL-21 plays a critical role in the generation of T cell 

inflammatory cells. Our results indicate that it may also play a role in iPSC 

differentiation into HSCs. Since our study was correlational in design, we cannot 
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determine if this cytokine is necessary for differentiation. IL-21 may be downstream 

of another cytokine that is responsible for the differentiation, and thus, may play no 

tangible role in the differentiation itself. Further research is needed to determine 

IL-21’s overall importance in iPSC differentiation. 

 

IL-23, p19 

IL-23, p19 is another cytokine that had a higher concentration in the 

OP9/iPSC coculture than the OP9 monoculture and no concentration at all in the 

iPSC/OP9 conditioned media coculture. This cytokine is involved with the 

proliferation of mouse T cells, and so its importance in iPSC differentiation is not 

very clear. The concentrations that we found in our experiments after analysis of 

Figure 21 may simply be coincidental, due to error, or because IL-23 may have a 

downstream relationship with other cytokines that were found in the cultures. 

Further research is needed to elucidate IL-23, p19’s importance in the iPSC 

differentiation to HSCs. As with the other cytokines in the culture that have similar 

graphs, it is unclear as to whether IL-23, p19 is critical to the differentiation of iPSCs 

or if the increased concentration in the OP9/iPSC coculture is merely a byproduct of 

other cytokines which are responsible for the differentiation. 
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Conclusion 

In our work, we observed the iPSC/OP9 coculture resulting in morphological 

differentiation of iPSCs while the iPSC/OP9 conditioned media not resulting in 

morphological differentiation. This suggests that cell to cell contact could be 

necessary in order to induce differentiation. Furthermore, all of the cytokines that we 

analyzed except for IL-10 and IL-21 had a concentration of 0 in the iPSC/OP9 

conditioned media coculture. This could indicate that the iPSCs took up the proteins 

that were in the conditioned media; with no OP9 cells in the culture to replenish the 

concentration of these cytokines, the concentration that we found was 0. In other 

words, the cytokines could have been continuously secreted by only the OP9 cells. 

Another explanation for this could be that the cell to cell contact of the OP9 and iPSC 

cells was necessary for the production or upregulation of the cytokines.  

Our results are mostly consistent with the literature. We are the first group to 

directly test how cell to cell contact may affect the expression of these cytokines 

together, though some studies have been done on a few of the cytokines that were 

analyzed in our project. One finding of ours that was not entirely consistent with the 

literature was the fact that TNF-α and IFN-𝛾 were upregulated in the iPSC/OP9 

coculture. While the literature indicates that cell to cell contact may be unnecessary 

for TNF-α, we found that such contact resulted in significant upregulation of the 

cytokine. This finding could be because cell to cell contact may be unnecessary for 

TNF-α but still cause its upregulation. Such a finding would suggest that cell to cell 

contact can expedite TNF-α production even if such contact is unnecessary to merely 

yield a concentration of TNF-α. 
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Our research ultimately consisted of two different parts: the study may be 

causational when it came to the question of whether cell to cell contact was necessary 

for differentiation and it was correlational when it came to the question of which 

cytokines affect iPSC differentiation into HSCs. Thus, two different conclusions were 

yielded from this investigation. We conclude by suggesting that that cell to cell 

contact may be necessary for the observed morphological differentiation of iPSCs, 

while the upregulation of the cytokines that we studied was correlated with iPSC 

differentiation. However, more research on this topic should be done in the future to 

confirm our results as we only had one trial for our experiment. Furthermore, we 

determined that differentiation occured through a morphological assessment; if we 

had more resources, we could have investigated if the HSCs truly did exhibit the 

CD34+ marker that is characteristic of blood cells. Further investigations must be 

done in order to determine if upregulation of certain cytokines directly causes iPSC 

differentiation.  

 

Future Directions 

If we had more time, we would have taken the cytokines that were upregulated 

in the OP9/iPSC coculture as compared to the OP9 monoculture or the iPSC/OP9 

conditioned media coculture and seen if they were the cause of differentiation by 

creating cytokine knockout cultures. For example, we would have knocked out IL-21, 

a cytokine that was expressed at much higher levels in the OP9/iPSC coculture than in 

the other cocultures and seen if differentiation still occurs when OP9 cells and iPSCs 

are cultured together. This would move the experiment away from a correlational 
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study into a causational one and such a study would be more helpful in understanding 

the pathway of differentiation from iPSCs to HSCs. 

After investigating knockout cultures, one could then introduce various 

cytokines to the culture to see if the rate of differentiation changes. If it is found, for 

example, that IL-21 is indeed necessary for differentiation, researchers can then 

investigate if it IL-21 is sufficient for differentiation, if adding IL-21 to the culture 

causes differentiation to happen at a faster rate, and if there is an optimal 

concentration of IL-21 for inducing differentiation. This type of analysis can be done 

for any cytokine that is found to be involved in the differentiation pathway. One could 

also simply add the human recombinant protein to the media to see if differentiation 

occurs.  

Ultimately, this research could be applied clinically. If the protocol for 

inducing hematopoietic differentiation continues to become optimized, researchers 

could see if adding certain cytokines in vivo along with iPSCs would be medically 

viable for those who are looking for blood donations (such as leukemia patients or 

even gunshot wound victims). The implications of this research are immense – blood 

donations could become a thing of the past, deaths could be prevented – however, 

there is still a great amount of research that stands in the way. After our study, it is 

still unclear as to what cytokines exactly are responsible for differentiation. Through 

our work, however, we have a clearer picture of how the differentiation process may 

work and a better framework for understanding this cellular process. 
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Appendices 

Appendix A – Additional Protein Expression Analysis Methods 

Protein mass spectrometry is another method that may be used to determine the 

identity of a protein through analysis of the unique properties. There are two major 

types of protein mass spectrometry: electrospray ionization (ESI) and matrix-assisted 

laser desorption/ionization (MALDI).  Mass spectrometry involves ionization of the 

solid protein particles in an isolated chamber followed by subsequent injection into an 

accelerated electric or magnetic field for detailed inspection. ESI involves formation 

of an aerosol from a liquid solution using high voltage energy, thus creating ions from 

larger macromolecules. MALDI, on the other hand, involves the embedding of 

proteins into a solid matrix followed by formation of ions using laser pulsar light 

(Tanaka et al, 1988). The final result of these experiments is a spectra that can be 

analyzed for fractionation patterns and specific mass analysis ratios, which is 

quantified as mass divided by the charge number of ions (m/z).  Peptide mass 

sequencing is a method in which the fragmented peptides are analyzed for molecular 

composition and then entered into a database in order to determine the identity of the 

original unknown protein.  

A successful protein analysis is defined as one in which you may observe at 

least 70% of the protein sequence. Possible reasons why a protein may not reveal 

completely are as follows: inability to completely digest with proteinase, protein is 

too large to fragment properly, or partial fragmentation of the protein which may lead 

to data that cannot be interpreted. In general, mass spectrometry is able to 

characterize, identify, and quantify the properties of unknown proteins through 

 
85 



Team BLOOD Senior Thesis 
 

ionization and fragmentation.  However, due to the fact that cell culturing samples 

generally contain large quantities of a variety of proteins, it is difficult to use mass 

spectrometry because obtaining a spectra for just one individual protein that can be 

fragmented and interpreted is cumbersome. 

Western blots, also called immunoblotting, are often used in scientific research 

to detect the presence of proteins given a specific antibody. In this process, the cells 

are lysed and proteins are then separated by SDS-PAGE. The proteins are then 

transferred to a nitrocellulose sheet, a solid membrane, and then immuno-stained with 

labeled antibodies.  These antibodies are specific for a certain protein, and therefore 

used to probe for their presence.  Finally, antigen bands are visualized through 

autoradiography (Centers for Disease Control, 1989).  The antibodies used may be 

either primary or secondary antibodies. Research often uses a combination of primary 

and secondary antibodies, with the primary antibodies binding to the protein of 

interest and the secondary antibodies specific to the host type of the primary antibody. 

There are two methods of detection: direct and indirect. In a direct antibody based 

Western Blot, the enzyme-conjugated primary antibody binds directly to the antigen 

of interest.  On the other hand, in an indirect antibody based Western blot, the primary 

antibody is unlabeled and binds to the antigen, and is then in turn bound by the 

secondary antibody The secondary antibody in this situation is labeled with an 

enzyme that generates a detectable signal, such as fluorescence, that can be quantified 

through flow cytometry or another functional type machine. For the purpose of our 

experimentation, utilization on this method will only allow us to detect the presence 

of proteins and not the quantity.  
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A mechanism of detecting proteins related to DNA microarrays is the 

high-throughput mechanism shown by proteins microarrays, which track large 

numbers of proteins in parallel on a chip (Reymond et al., 2013). This assay involves 

immobilizing an array of proteins on a solid matrix and then capturing with labeled 

antibodies. This method is extremely useful for detecting protein-protein interactions. 

For the purpose of our experimentation, analysis of the interactions of the proteins 

that are secreted by OP9 coculture would not be useful in determining which proteins 

are up-regulated or down-regulated within the culture. In other words, there would be 

no way to actually quantify how many of each type of protein are within the culturing 

system. Hence, a protein microarray would be very useful in further study to test the 

protein-protein interactions of those proteins that are found to be most heavily 

involved in induction of hematopoiesis within the iPSC-OP9 coculture system.  

 

Appendix B – Justification for Methods & Reagents Used in Methodology 

There are many options that were considered when determining the best 

methodology for growing iPSCs. These various methods include, but are not limited 

to, growing cells in a flask or growing cells in multiple-well dishes. Compared to 

growing iPSCs within a flask, growth within 6 well plates proved more accessible and 

easy to use. Distribution of the stem cells among multiple wells, as opposed to 

collectively growing them in a single flask, decreases the risk of total contamination 

of entire cell populations since the contamination of a single well does not affect other 

healthy wells on the plate (Sanadi, 1996). Moreover, if one colony in a well within the 

plate displays abnormal differentiation, the affected colony may be removed and 

allow for continued use of the otherwise healthy well.  Single-cell culture passages 
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grown in flasks requires trypsinization, which can lead to abnormal karyotypes and 

therefore harm healthy cells during the differentiation process (Beers et al., 2012). 

This process also involves copious amounts of pipetting, leading to further agitation 

to cells and potentially disruption of colonies (Lerou et al., 2008).  

During regular cell culture practices with iPSCs, cells are often individualized 

during passaging to achieve an even distribution. However, a challenge that iPSCs 

face is the fact that these cells survive poorly after individualization, since they are 

more sensitive to treatments and are prone to cell death (Beers et al., 2012). iPSCs 

need to be individualized, however abnormal karyotypes often leads to poor survival 

rates (Ellerstrom et al., 2007).  Cell survival is therefore a priority and in most 

experiments, and so dissociation methods are chosen based on either cell survival or 

sensitivity.  iPSCs have been experimented and passaged as aggregates with 

enzymatic dissociation, and many reagents are used in this general cell culture 

practice to achieve maximal viability. One of these reagents involves the 

Rho-associated protein kinase (ROCK) inhibitors, which are used to boost cell 

survival during this process. ROCK inhibitor has been used in other studies to 

demonstrate decrease in dissociation-induced apoptosis, increase in cloning 

efficiency, and protection from apoptosis (Watanabe et al., 2007). ROCK inhibitor is 

therefore essential in our methodology to ensure iPSC survivability, and has been 

included in all experimentation. 

For dissociation of cells from the well plate in which they reside, trypsin is 

commonly used. This is generally done when cells have reached confluency and it 

becomes necessary to expand to another culture. Trypsin has been closely studied to 

detach cell range from 0.05% to 0.5% with incubation times ranging from 5 to 10 
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minutes at room or physiological temperature, as well as to serve a critical role in cell 

attachment and spreading (Brown, 2007).  Usage of trypsin for cell detachment has 

thus been the standard practice for many years. In our experimentation, trypsinization 

protocol was used while working with OP9 cells alone or while working with the 

iPSC-OP9 coculture.  

While trypsinization is useful for completely dissociating cells from a well 

plate, it is very non-selective in the cells that it removes. The repeated usage of 

trypsin has also been shown shorten the life of cells such as iPSCs (Beers et al., 

2012). For our iPSC culture in particular, we found it more appropriate to use EDTA 

dissociation solution. EDTA, or edetic acid, is a chelating agent that is capable of 

sequestering polyvalent cations such as calcium (Beers et al., 2012). In terms of our 

iPSCs, using EDTA dissociation instead of trypsin-based dissociation allows us to 

selectively detach any cell from the culture that is not an iPSC. Thus, incubation of 

EDTA in the cell culture and subsequent aspiration allows for the removal of any 

non-iPSCs from the culture (Beers et al., 2012). It was shown that the iPSC cells 

themselves only partially detach after treatment, and can be fully removed after 

addition of fresh media (Beers et al., 2012).  

Another component that must be controlled during experimentation is the 

media that is used for cellular growth and proliferation of the induced pluripotent 

stem cells. The normal media that is used to grow pluripotent stem cells is known as 

culture medium, and contains many exogenous factors composed of a slew of 

proteins. Because our protocol to quantifies the presence and expression of 

interleukins, we aim to minimize the amount of exogenous proteins that are detected 

in our conditioned media.  
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To circumvent this limitation, we will be using a specialized pluripotent cell 

growth media for our iPSCs known as Essential 8 (E8) Flex Medium. There are two 

major benefits of using this media during experimentation; 1) E8 Flex Medium does 

not contain bovine serum albumin (BSA) and human serum albumin (HSA) which 

helps to reduce the amount of variability in batches and improve upon the long-term 

proliferative health of stem cells and 2) E8 Flex Medium eliminates the need to 

change media on a daily basis which is crucial to our lab work as we are required to 

commute to our lab from campus (Essential, 2017). After investigating into the 

current literature of iPSC culture protocols, we have confirmed the benefits and 

requirement of these essential reagents that will be used in our methodology. 

 

Appendix C – Additional Preparation Protocol in Methodology 

Preparation of OP9 Growth Media 

OP9 growth media was prepared according to the follow table below. Media was 

stored at 4 ℃ for up to 1 month. 

Product Stock Volume (mL) Final 

Concentration 

aMEM  195 mL 78% 

FBS (OP9-Tested) 100% 50 mL 20% 

L-glutamine 100X (200mM) 2.5 mL 1X (2mM) 

Pen-strep 

antibiotic 

100X (10,000 

U/mL) 

2.5 mL 1X (100 U/mL) 
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Total  250 mL  

 

Preparation of Matrigel-Coated Plates for iPSC Culture 

For preparation, pipettes, tubes and plates were precooled at 4°C.  1 mL of 50% 

Matrigel, diluted with DMEM/F-12, was aliquoted into the pre-prepared conical 

tubes. Tubes were stored at -20 °C. A 50% Matrigel aliquot was mixed with 

DMEM/F-12 to create a final Matrigel concentration of 1.25%. ~1.25 ml was 

dispensed to each well of 6-well plates. Well plates were incubated overnight at 4°C. 

Matrigel was aspirated from the well prior to plating the iPSC colonies or cells. Media 

was added quickly to prevent the cells from drying out and the colony or cell 

suspension was plated in appropriate medium. 

 

Preparation of Complete Essential 8 Medium  

Essential 8 Supplement (50X) was thawed at room temperature for ~1 hour. 500 ml of 

complete Essential 8 Medium was prepared by mixing 490 ml Essential 8 Basal 

Medium and 10 ml Essential 8 Supplement (50X).  Before use, medium required for 

that day was warmed at room temperature until it was no longer cool to the touch. E8 

media is not warmed in a water bath to prevent denaturation of the essential proteins 

in the media. 

 

Preparation of EDTA Solution 

EDTA is utilized to dissociate the iPSCs in order to transfer them to other flasks. 500 

µl of 0.5 M EDTA (pH 8.0) was added to to 500 ml of calcium/magnesium-free PBS, 

pH 8.0 and the solution was filtered and stored at 4°C for up to 6 months. During 

 
91 



Team BLOOD Senior Thesis 
 

passaging of iPSCs, EDTA solution is used to rinse the well plate and to detach the 

iPSCS. The final concentration was .5 mM EDTA in calcium/magnesium-free PBS, 

pH 8.0. 

 

 

 

Preparation of ROCK Inhibitor  

A 10 mM stock solution of ROCK inhibitor was prepared by dissolving ROCK 

inhibitor in DMSO. This stock was aliquoted and stored at -80°C for up to a year. 

ROCK inhibitor was added to E8 media both in the use of thawing and freezing 

iPSCs. 1 µl of ROCK inhibitor stock is added to each 1 ml media used for a final 

concentration of 10 µM.  

 

Appendix D: Standard Curves for Cytokines
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Appendix E 

Sample Cytokine Concentration (pg/mL) Based on Linear Regression Standard 

Curves 

(pg/ml) iPSC/OP9 Coculture 
iPSC/OP9 conditioned 
media Coculture OP9 

G-CSF 102.5 34.0 42.0 
GM-CSF 2692.6 208.5 978.8 

IL-1a 304.6 169.6 133.0 
IL-1b 66.8 0.0 43.6 
IL-2 686.9 0.0 375.8 
IL-3 8.1 0.0 0.8 
IL-4 146.4 0.0 86.3 
IL-5 840.6 0.0 328.4 
IL-6 575.1 0.0 165.0 
IL-7 5226.0 0.0 0.0 
IL-9 34498.8 3252.5 14148.0 
IL-10 304.6 77.0 40.3 

IL-12p70 12.4 0.0 0.0 
IL-13 5410.6 1696.2 2775.0 
IL-15 5260.6 0.0 0.0 
IL-17 134.1 0.0 16.5 
IL-21 472.8 157.3 0.0 
IL-23 862.2 0.0 349.1 
IFNg 1697.8 0.0 387.7 
TNFa 36.2 0.0 0.0 
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