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The mechanical failure of optical fibers must be avoided to ensure reliability of

fiber-based systems. Thefirst stress event in afiber’ slifetime is the proof test. The
proof test will alter the fiber’s strength distribution for al subsequent processing and
applications. Thusit iscritical to know the fiber strength distribution after proof test
(post-proof strength distribution). It is generally assumed that the proof test truncates
the strength distribution at the proof test stress level. But, many users are concerned
because they know that theoretically it has been shown that after proof test the strength
of fiber may be much less than the proof test stresslevel, and that the minimum post-
proof strength is determined only by the unloading rate during the proof test. But this
theoretical result is not consistent with historical field data. Historically no one has
documented failures stresses bel ow the proof stress level. This dissertation resolves this

apparent contradiction by reviewing the theory and conducting a probabilistic



assessment.

Asoptical fibers are used more and more in computer and switching gear
backplanes, a new potential mechanical reliability problem arises due to the necessary
bends introduced in optical fibers. Previous researchers were concerned with the
uniform stress optical fibers saw in long haul underground applications, but bending
places a non-uniform stress along the fiber surface. So it isinaccurate to borrow fiber
usage mechanical guidelines from long-haul application. This dissertation reviews
existing theories and then develops a new ana ytic approach to assess the mechanical
reliability of optical fibers under bending loads and static fatigue conditions. This new
analytic approach is verified through a ssmple static two-point bend experiment. Finally
the newly devel oped reliability assessment method is used to develop new guidelines
for bending application and examples are presented to show how the approach can be

used to attack some very common mechanical reliability problems with optical fibers.
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Chapter 1

INTRODUCTION

1.1 Problem Statement

Currently, optical fiber based telecommunication networks are major information
transmission systems. Optical fiber encirclesthe globe, in both terrestria and marine
installations. Mechanical failure of optical fiber must be avoided to ensure reliability of
fiber-based system.

Before installation thereis aflaw size distribution along the fiber surface. During
the component’ sfield lifetime, these flaws will grow over time under stress. If the stress
issufficiently high, aflaw will grow large enough to cause catastrophic failure. This
classic flaw growth behavior and the models used to estimate failure have been studied
for severa decades. The power law iswidely used to predict fiber lifetime. However,
there are some subtle but important issues needing clarification. The proof test is one of
them.

The proof test isthe first stress event in afiber’ slifetime. It will ater the fiber
strength distribution for all subsequent process and application events. Knowing the
fiber strength distribution after proof test (post-proof strength distribution) isimportant.
The assumption has been made that the proof test truncates the strength distribution at

the proof test stresslevel. But, theoretically it has been shown that after proof test the



strength of fiber may be much less than the proof test stress value, and the minimum
post-proof strength is determined only by the unloading rate during the proof test [Fuller
Jr.,1980, Hanson,1997, Bubnov,1998]. Thistheoretica conclusion is not consistent with
historical field data. According to Glaesemann [Glaesemann, 19914, ‘no failures below
proof stresswere recorded’ . Why is the theoretical analysis not consistent with practical
experience? Isthe proof test useful for eliminating weak fibers out or isit harmful
because it degrades the fiber strength too much? This study aims to answer these
guestions.

Another problem drawing attention currently is the mechanical reliability of fibers
in bending. With the trend of using optica fibersin backplanes, optical fiber often finds
itself in the situation where it is coiled in atight space, routed through a package or bent
asit connects devices together. Furthermore, the trend in the industry isto make
components smaller and smaller. Tight bends can place high levels of stress on the fiber,
posing a possible reiability risk; different from the long-haul application, bending
places a non-uniform stress along the fiber surface. So it isinaccurate to borrow
guidelines from long-haul application. Bending is arelatively new topic in the subject of
optica fiber reliability. Some basic theories have been derived, such asthe
instantaneous reliability assessment for fibersin bending (without fatigue), but
improvement is needed to give solutions for more meaningful and complicated
situations, such asfibersin bending with static fatigue, and guidelines for industrial

applications.



1.2 Research Contribution

After understanding theoretical analysis from various researchers, the emphasis of
this research will be placed on the following topics:
» Reiability assessment for optical fibers after proof testing
* Rediability assessment for optical fibersin bending with static fatigue
For the proof testing problem, there is a contradiction between theory and practice
which needs to be clarified. Based on the analysis method for pure bending without
strength degradation presented by M ethewson and Glaesemann, a method for reliability
assessment after strength degradation will be established.
Besides the theory clarification and development, what is more important isto
give more physical meaning to theoretical anaysis, and assembly them into a thorough
guideline for optical fiber reliability assessment, which could be used in industria

application.



Chapter 2

BACKGROUND

2.1 Fiber Defects

The fiber surface can be damaged before the coating is applied during the
drawing process. The most common form of surface damage is through the fiber coating
during post processing or handling steps. Ritter et d. [Ritter, 1998] claimed that for
large abrasion flaws in bulk silicaglass, theradia crack would aways control failure. It
isnot known if the smaller abrasion type flaws in optical fiber can be generated in this
fashion. A deeper understanding of flaw morphologies related to specific handling
events is needed.

The other basic flaw type for optical fiber is embedded particles [K. Y oshida,
1996]. Particulates can be entirely contained within the fiber preform or exist partialy
embedded on the fiber surface. The frequency of these flaws has decreased over the
years as manufacturing processes have improved.

The distinction between interna and externa flaw isimportant in that internal
flaws will not grow subcritically over time due to the absence of molecular water
[ Glaesemann, 1999]. For the fiber strength degradation issues, what concerns usisthe

surface flaws caused by previous mechanica handling.



2.2 Stress Intensity Factor

A well-defined sharp surface crack locally amplifies the applied stress at the crack
tip. When a piece of fiber with a surface crack of length a is subjected to an applied
stress o, the actua stressfield ahead of the crack tip is given by Eq.(2-1), and
schematically shown in Figure 2.1,

K

7" 4/27'rr (1)

wherer is the distance from the crack tip, and K| is the stress-intensity factor. The stress

will not reach infinity because it islimited by the material yield strength.

Ga
frets

v

crack Fiber cross
section

Figure 2.1 Stress field ahead of a crack tip



In Fracture Mechanics, the stress-intensity factor, K|, instead of stressis used to
anayze the stress field ahead of a sharp crack. The critical value of stress-intensity
factor isK|, called the critical stressintensity factor. When the crack length grows, K
increases accordingly. If K reaches K, the intrinsic strength of the material is exceeded
and catastrophic failure occurs.

K, isdetermined by the applied stress, the crack size, and shape.
K, =c,Ya (2-2)

where Y isthe geometry factor which describes the crack shape, and the typica vaue of
1.294 [W. Griffioen, 1992] is used in the dissertation. a is the crack length. o is the
applied stress.

The value of K| is determined by the materia property, fracture toughness; for
silicaglassfiber, the typical valueis 0.8 MPam? [W. Griffioen, 1992]. Thereisno
evidence indicates the degradation of K, which has been observed in some ceramics.

So it isassumed in this dissertation that K¢ is constant.

When afiber with a crack of length ais subjected to astress S which satisfies
S-Y+/a =K, thefiber will break immediately without crack growth. This stress Sis

caled theinert strength of the fiber. For simplification purposes, the word “ strength”

instead of “inert strength” is used in following discussions.



2.3 Subcritical Crack Growth (Strength Degradation)

The combined influence of stress at the crack tip, and reactive speciesin the
environment, particularly water, cause subcritical crack growth of fiber. There are
severd dternative kinetics models proposed in the literature [Matthewson, 1999, Bubel,
1991, Armstrong, 2000]. Because of its good fitness to fatigue life data and anal ytical
simpleness, the one-region modd is mainly used for crack growth model for subcritical

crack growth.
2.3.1 One- Region Model

The subcritical crack growth rate is normally assumed to follow a one-region

power law model (Figure 2.2)
a=AK," (2-3)

where A and n are stress corrosion constants. For glass fiber, nis 20~25 [Bubnov, 1998].

Therefore, according to Eq.(2-2) and (2-3) the applied stress causes the crack to
extend, in turnincreasing K, leading to an increase in the growth rate, so the crack will
grow faster. This eventually causes K| to reach the critical value K| and failure ensues.
The strength of thefiber, S=K,, /(Y\/E) , Will degrade because of increasing crack
length, a. Fiber strength degradation under a sustained stressis called static fatigue;

otherwise dynamic fatigue. Static fatigue happens during the service life of fibers, and

dynamic fatigue happens during fiber strength measurement test and proof test.



log(dalct) log(daldt)

Slope=n

»
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Figure 2.2 Schematic drawing of theone-  Figure 2.3 Schematic drawing of the two-
region crack growth model region crack growth model

Combining Eq.(2-2) and (2-3), for any load cycle, an expression between the
initid strength, §, and the degraded strength at any time during the load cycle, Jt) , can
be derived, provided the applied stressis known as afunction of time[E.R. Fuller Jr.,

et.dl., 1980].

SO =8 g o (2-4)

where 1/B = (n—2)AY?K "?/2 .
For static fatigue problems, during service life, where the applied stressisa
constant, o, it is easy to get the commonly used life prediction equation which employs

the one-region crack growth mode!:

t, =BS"%0,”" (2-5)

a

2.3.2 Two-Region Model

In recent years, it has become increasingly apparent that a single region of crack



growth was insufficient to explain crack growth during both high-speed and long-term
low-stress events. Hanson and Glasesemann argued by experiment that the
incorporation of the well known Region Il (Figure 2.3) into the crack growth modédl is
helpful. Their experiment showed contradictions surrounding the B value aswell as
previoudly observed non-linear dynamic fatigue behavior [Hanson and Glaesemann,
1997]. They argued for high-speed events, such as the proof test, and Region Il crack
growth plays asignificant role in establishing the post-proof strength distribution. The
proof test problem will be discussed in Chapter 3.

In the two-region model the crack growth mode is

a=AK,™, For Ko

Ic
(2-6)
5 — Ny KI
a=AK, "7, ForK—>r

Ic

where rK|c isthe K, value in the da/dt-K curve where Region | and Il intersect. A and n;
are stress corrosion constants in region |, and A, and n, are stress corrosion constants in
region Il. The integration in Eq.(2-4) would be applicable within each region of crack
growth, with appropriate values of A and n being used. Thus, if the crack goes from

region | to region Il, then Eq.(2-4) needsto be evauated in two steps.



2.4 Optical Fiber Strength Distribution

Thefiber strength distribution is akey element for mechanical reliability models
attempting to predict optical fiber lifetime. The fiber strength distribution curve gives
the probability of breaking afiber under a specific loading stress. This probability is
equal to the probability of finding a crack whose strength isless than the loading stress.
Fiber strength isnot amateria property, but rather a statistical parameter reflecting the

distribution of crack sizes along the fiber surface.

2.4.1 The Weakest Link Theory for Fiber Reliability

Thefailure of apiece of fiber isactualy acumulative result of al unit areas aong
its surface. For aunit area surface, AA, itsfailure probability can be described by the

Weibull modd [Matthewson, 1986, Glaesemann, 1991b].

(o]

_ Tan |
FAAL =1- eXp(_( P J ) (2-7)

Where o, is the actua applied stress on area A4A;. According to the weakest link

theory, the failure probability of the whole surface areais

& (2-8)

(2-9)
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F(0) =1-exp(-| ﬂ@j dA)

0

(2-10)

Thetotal failure probability of apiece of fiber under anomina stress, o, isthe
integration result of the actua stress over the whole surface of fiber, shown by Eq.(2-

10). In EQ.(2-10), Ao isa constant to keep dimensional consistency.
2.4.2  Fiber Length Influence on Strength Distribution

For astraight fiber of length L;, under auniform tensile stress ¢, it iseasy to get a
analytica solution of strength distribution, i.e. the failure probability vs. stress, from
Eq.(2-10)

_ 2rrL, | o, "
F(o,) =1- -——| —
(00) =1—exp( A ( j )

(o]

(2-12)

Herer istheradius of fiber cladding.

Conceptually, the length of the fiber plays an important role in the strength
distribution of fibers. For a piece of fiber with alonger length, thereis a higher
probability of finding a crack whose strength islessthan at, thus, there will be a
corresponding shift of the strength distribution curve. This relationship can be seen from
Eq.(2-11). Mathematically, it can be proven that at alow failure probability level, the

failure probability is directly proportional to the fiber length. Because from mathematics

For 1-e?,if p<<1,then1-e® =
P P (2-12)

11



When 1-e "= 0.1, the exact value of pis0.105. So when pislessthan 0.1, Eq.(2-12)
isagood approximation. So for F(at) < 0.1, then
271 (o, )
F =——|—| -L
(O-t) A} ( . J t (2_13)
For fibers of the same quality, constants Ao and op will not change, then the
failure probability will only be proportiona to fiber length L. Figure 2.4 shows a picture

from Coring. Corning did the tensile strength distribution test for 20 m long fiber, then

they can shift the curve to get the distribution of fibers of different lengths.

Sirength (WPa) )
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20 0 S0 100 200 400 @00 100D
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Figure 2.4 Length influence plot by Corning [Glaesemann, 1991b]
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2.4.3 Corning’s 20 m Optical Fiber Strength Distribution

Figure 2.5 isastrength distribution of optical fiber proof tested to 50 ks
(350MPa) tested by Corning in 1986, using 20 m gauge length [Glaesemann, 1991b].
The test was performed under ambient conditions, and atotal of 17 km of fiber were
tested.

The distribution is not unimodal and generally can be described by two regions.
The two regions that are observed are: a high strength mode, which is very narrow, and
amuch broader low strength tail. The high strength or “intrinsc” region extendsto the
5% failure probability level and a strength of approximately 500 ksi (3450 MPa). The
low strength region extends from some point above the proof test stress level to 500 ks
gradually. Therefore, the fiber has essentially a very high strength, except for occasional
weak defects, which have a broad range of possible strengths. Thereisaregion Il in
Figure 2.5 that is plotted by the dashed line. It is the predicted truncation of the proof
testing at 50 ksi, because no failures were observed below 75 ksi (520 MPa). Whether
this predicted truncation is correct or not will be discussed in detail in Chapter 3. Region
[11 isimposed on the strength distribution by proof test, whereas the first two regions
reflect the distribution of flaws induced by manufacturing and handling prior to proof

test.
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Figure 2.5 Strength distribution of standard silica-clad fiber under ambient conditions
[Glaesemann, 1991b]

Normally people will fit the tensile strength datainto a two-parameter Weibull
distribution curve like

M
F(o,) =1- —3J
(ov) exp((ﬁ )

t

(2-14)

Here m and £ are the Weibull parameters, referred to as the shape parameter and the
scale parameter, respectively.
Comparing Eq.(2-11) and (2-14) it is easy to get
m=m

" " (2-15)
Ao, =2k B,

Based on the tensile test data of fibers, of length L, it is easy to get the fiber
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quality constants, like Ao, op, and m. Then calculate the probability of fibers of different
lengths and/or under different loading situations, like bending, which will be discussed
in Chapter 4.

In 1991, Corning Inc. tested 386 kilometers of titania-doped silica-clad fiber
proofed to 50 ksi (350 MPa) to amaximum stress level of 350 ksi (2450 MPa). The
number of recorded failures below 350 ksi was 106 out of atotal 19,300 individual 20
meter tests [Glaesemann, 1991b]. Corning did their newest test in 2000. This time 3800

kilometers of 100 ks proofed single-mode fiber was tested [ Castilone, 2000].

Corning' s 1986
grength distribution
data

m=18
Corning' s 1991strength

— distribution data

Fai lure Probability

\Corni ng' s 2000 strength
digtribution deta

v

Srength

Figure 2.6 Optical fiber tensile test result from Corning
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2.5 Summary

Subcritical crack growth isthe behavior of discrete cracks. The strength
distribution of failure probability, of apiece of fiber, is an integration result of al the
crack strength or degraded strength distributed aong the fiber surface using the weakest
link theory. The idea of using the weakest link theory in fiber strength distribution is so
important that one cannot fully understand the fiber strength distribution without
understanding the theory and thisisthe basis for solving the bending problem. Thisis
the first time the proportional relationship between the failure probability and the fiber

length is being explicitly proposed and mathematically proven.
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Chapter 3

RELIABILITY ASSESSMENT FOR FIBERS AFTER PROOF
TEST

3.1 Optical Fibers Proof Test

Theideaof the proof test isto load the fibersto a pre-selected tensile stress level
for ameasured time period to limit flaw size, by breaking the fibers with unacceptably
large flaws. For atypical proof test, afiber isloaded at a constant |oading rate,

6, =0, /1, held a the proof load, o, for atime t , and then unloaded at a constant
rate, o, = o, /t,. Figure 3.1 shows atypica proof test profile. A schematic diagram of

the proof tester used by the optical fiber manufacture Corning Inc. is given in Hanson's

paper [Hanson, 1994]. The typical proof test stresslevel in industry now is 100 ks (0.69

GPa).

Prooftest Stress
A

Figure 3.1 Typical proof test stress profile
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It has been assumed that the fibers that survive the proof test have a minimum
tensile strength of the proof test stress level. Then the minimum lifetime after the proof
test under an applied static loading, o, isgiven by Eq.(3-1) according to the one-region

crack growth model.

(3-1)
timin 1S the minimum life time guaranteed after the proof test without worrying

about afailure. Does the proof test really guarantee the minimum lifetime? Or, does the

proof test really guarantee a post-proof strength not lower than the proof test stress

value? One can contend conceptually, an actua brittle material will experience strength

degradation during the proof test, as shown in Figure 3.2. Asthe stressis removed

during unloading, the flaw still has the opportunity to continue growing as stress till

exists. Thus, the post-proof strength, S, might be less than the proof stress, o, .

8 ided brittle
n material
A 4]
g
=) x
& : Actual brittle material with
1] | strength degradation
S |
D‘ —_—— — [E—
5 ! 7 Prooftest Stress
l
X
' >
Pre-proof strength

Figure 3.2 Schematic plot of post-proof strength vs. pre-proof strength of an actual
brittle material
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Is the post-proof fiber strength distribution just truncated at the proof stress level
from the pre-proof strength distribution? Do those high strength fibers that pass the
proof test aso undergo strength degradation to some extent? How does thisinfluence
the post-proof strength distribution? Also, the devel opment of adequate proof test
procedures for optical fiber requires the strength distribution after proof test to be well
characterized, especidly in the low strength regime.

These questions will be answered in this chapter.

3.2 Fiber Strength Degradation Behavior during Proof Test

During the proof test, the loading stress as afunction of time, o (t) , isknown if

given the proof test parameters, o, t ), t,, t,. For agiven pre-proof strength S, fiber

strength degradation behavior through the whole proof test process can be traced.

L, 1 o) tm
load, S"2(t)=S"?-=.—2 .
a) =S B 1 N+l

, When t <t,

n-2 — nfz_l' n. t' _l. "ot —
b) dwell, S™2(t) = S, 5% i1 g O (t-t),

whent <t<t +t, (3-2)

1

t +t +t —t n+l
c) unload, S”Z(t)=3n_2—§0p"-(tp+t' oy, 1 G4 D)

u)+—'O'p
n+l” B (n+1-t,"

whent, +t, <t <t +t, +t,
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and the post-proof strength is given by

n— n— n t +t
S, Z:SI 2_%'O-p -(tp+g)

n+1 (3-3)

175~

(ksi)

T(9

Figure 3.3 A computer simulation result of strength degradation behavior during proof
test

Figure 3.3 shows an actual strength degradation behavior during proof test by
computer simulation. The proof test parameters used in thissimulation are: o, = 100 ks,
t, = 1 sec, t) = 0.1 sec, t, = 0.2 sec. The one-region model crack growth constants are: n
=25, B =107 GPa’-s. And theinitial strength is S = 235.13943573054 ksi. In this

simulation, to display the strength degradation during the unloading period, the

20



unloading timeis elongated to 0.2 seconds; normally it is much shorter than this vaue.

Equation (3-2) and (3-3) are from the one-region crack growth model. Simulation,
based on the two-region crack growth model, will result in the similar strength
degradation curve like Figure 3.3. But, no simple analytica expressions like Eq.(3-2)
could be found for the two-region model; anumeric method has to be employed. Given
aninitial strength, S, which correspondsto an initial crack length, a, for atime
increment, dt, the change in crack length, da, during this period of timeis determined
from the crack velocity da/dt. The new crack length, a+da, is used to calculate a new
strength. Then the new crack length is used in the next cycle, dt, astheinitial crack
length. By repesating this calculation cycle many times, one can get the degraded
strength at every time increment, dt. At the end of each cycle, acomparison is madeto
determine the correct crack growth region, so the corresponding constants can be used.
Finadly if the condition S= oisreached, then fracture is assumed to occur. A Mathcad
program to demonstrate this two-region mode calculationis givenin Appendix A, as
well as a strength degradation curve from this simulation.

It is helpful to look at the time derivative of St), dS/dt, to understand where

those bends (the drop off and the level up) in Figure 3.3 comefrom. dS/dt givesthe

dope of the strength degradation curve at any point. Beginning with S = Kie , thetime

Yya

derivative caculation yields
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ds _ 1 3 ,O\n
& Bog > @ 4

The detailed derivation procedureis given in Appendix B.

110
osrdt| . | i
(ksi/s)
0100 120 140 160 180 200

S (ks)

Figure 3.4 Time derivative of strength during proof test

Figure 3.4 shows the calculation result of dS/dt. The constants used in the
calculation are: n= 25, B = 1x107 GPa-s = 2.1x10° ksi>s, o, = 100 ksi. From Figure
3.4, at strength of approximately 160 ksi strength, the absolute value of the time
derivative of strength beginsto increase dramatically, which explains the rapid strength
drop off in Figure 3.3. During the unloading period, due to the high speed of unloading,
the speed of strength degradation drops greatly, leading to the second bend (the level up)

of the curve.
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From the computer proof test simulation four cases could happen during a proof
test, shown schematically in Figure 3.5. Fiber ‘a passes the proof test with little strength
degradation because of its high pre-proof strength; fiber ‘d’ fails the proof test because
of itslower pre-proof strength. ‘b’ and ‘¢’ aretwo critical casesin the middle. Fiber ‘b’
passes the proof test, and with a post-proof strength equa to the proof stress, i.e.

Sy, =0, Fiber ‘¢ just survivesthe proof test, but with a post-proof strength much less
than the proof test stresslevel. Thus, S, is the minimum pre-proof strength that can pass

the proof test and S,, is the minimum post-proof strength.

strength
wn

Tine (s)

Figure 3.5 Schematic strength degradation behaviors during proof test
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Actualy these four strength degradation behaviors have been shown in literature
[Bubnov, 1998]. But there are still many questions that need to be asked.

From Figure 3.5, it can be seen that for strong fiberslike ‘a, they will not
experience noticeabl e strength degradation during the proof test. But, how strong do the
fibers need to be to have negligible strength degradation? And how many fibers pass the
proof test but with a substantial strength degradation like fiber ‘b’ does?

Redrawing Figure 3.2 but with an actua curve for an optical fiber from a
computer smulation gives a curve shown in Figure 3.6. The constants used in the
calculation are: n =20, B = 1x107 GPa’-s = 2.1x10° ksi*s, o, = 100 ks, tj = 0.1 sec, t,

=0.3 sec, t, = 0.001 sec.

Post- vs. Pre-proof Strength

250

225 f-mmm e

. . : S =225
200 | Theideal brittle material a\\ '
Post-proof S = pre-proof S S =211.757

175 A

150 A

125 A

Post-proof Strength (ksi)

100 A

For optical fiber, from |

75 - ; ;
computer simulation
b

S, =219.94705472
§ =59.3754361

|

50

50 75 100 125 150 175 200 225 250
Pre-proof Strength (ksi)

Figure 3.6 Practical strength plot after proof test simulation
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At high S leve (>250 ksi), from Figure 3.6, the curve overlaps with the straight
line of theided brittle material, whose S = §. With the decrease of S, the actual S
degradesfrom S, first dowly but below approximately 225 ks this degradation
becomes dramatic. From point ‘a to ‘b’, § only drops by 5 ks, but it causes & to drop
from 211.757 ks to 59.3754361 ksi. It isimportant to specify the many significant
figuresof § of point ‘b’ (219.94705472). Because if § = 219.94705471, the fiber will
break during the proof test. Theoretically, one can get aminimum &, which ismuch less
than the proof test stress 100 ks, from a S, which is between 219.94705471 and
219.94705472. But, actualy it islimited by the capacity of the computer. There are

analytical methods that can be used to find this minimum post-proof strength, Sy

3.3 The Theoretical Minimum Post-proof Strength (S..)

Fuller, et. d., analytically calculated the minimum post-proof strength, S; .,

based on the one-region mode [Fuller Jr.,1980]. The basic ideafrom Fuller’s method is

to determine the strength of the tangent point, S, of the‘just survive' case, then

determine S, ,, from S. ;. His procedure is given here.

f min

According to Eq.(3-4) the time derivative of strength aong the proof test profile
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dS 1 2 n-2 (o2 3
— =_ZAYK . "*(2)"S 35
i 2 e (S) (3-5
Pre-proof Post-proof
strength strength
A A
' p S*min
Sf min
t, t, t,
Time

Figure 3.7 The *just survive' situation

For the ‘just survival’ situation shown in Figure 3.7, there is a point where the S(t)

curve istangent to the unloading stress profile named S.

min

as_ .
E — Oy (3'6)
S(t) = O-(t) = S"min (3'7)

Substituting Eq.(3-6) and (3-7)into Eq.(3-5) yields
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S, =3/(n-2)Bg, (3-8)

Then, determining S, from S.;,, . According to Eq.(2-4)

Se
2 > 1 mlnd .
Sf minn - Sminn _EJO /u (Smin — Oy t)ndt (3-9)
Fuller’ sfinal result is given by
Sy =[B-(N-2)-6, ] (o) (3-10
f min u n+1
According to Fuller, the higher the unloading rate, the greater S; ;,, will be. But,

there is one scenario missed in his analysis: what if the tangent point cal culated from

Eq.(3-8) is higher than the proof stress, i.e., S.,, > o, ascurve“a’ in Figure 3.8?

Pre-proof
strength Post-proof
A strength
T a A
_— -— ~
Si min b 1
\ S
AN *mi
‘\\ - min
. AN ———
P \
'Sf min
t, t, t,
Time

Figure 3.8 The situation that the calculated S.,,, is higher than the proof stress
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Obvioudly for thissituation, 3/(n—2)Bo, doesnot give the correct value of

S..in » because when Fuller calculated it, he assumed S(t) = o(t) = S, , for thiscase

min ?

the assumption is not true. One can certainly lower the pre-proof strength to get alower

bend point, until the bend point reaches the proof test stresslevel o, . The curve cannot

be lowered further, because the unloading rate is so high that there is no tangent point

from Eq.(3-8), which islower than the proof test stresslevel o, So curve ‘b’ isthe

correct solution for this situation, where S, = o ,.

So the determination of S.,,,, depends on a parameter o, defined as

3

o)
a=—>"—
B(n-2)5, (3-11)
if >1,then S, =3/(n-2)Bg,
if a<l,then S, =0,

Then derive Snin from Sin by Eq.(3-9), the modified final result is

- [B . (n_ 2) . O-_u]l/3 . (i)l/(n—z)

if a>1,then S
n+1

f min

3 Y(n-2)
) o
if @<1,then S, =o,[1-— 2
B-(n+1)-5,

Using the same idea as Fuller, Hanson and Glaesemann analyzed S, . for the

f min
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two-region moddl. In their analysis, the high speed unloading rate scenario is aso
missed. The same modification as presented for Fuller’ sanaysisis aso needed. The
modified result for the two-region model will follow. The complete mathematical
derivation procedure is given in Appendix C.

Also the determination of S, ;,, depends on a parameter o, defined as

3

— O-P
B,(n, - 2)5, (312)
if « >1,then S, ;, =3/B,(n,—2)J,
if a<l,then S, =0,
Then derive Spin from S in by two steps
g m2(q_ Sin’ =™ 1o S 3t
min . .
B,(n, +1)o, B,(n,+Yao,
n+l 3-13
Sf minnf2 = Sr n? _L). ( )
B,(n,+D)3,
. K, 2
Where S is the strength when —=r = — and
ch (ni _Z)AYZKIci

E:rnl—nz—nz_z
B, n -2

According to Hanson and Glaesmann’s high speed tensile test experiment, the
two-region model is more suitable for tensile strength experiment and proof test than the

one-region model [Hanson & Glaesemann, 1997, Glaesemann, 1998]. Using the result
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shown above, the dependence of Sy, on the unloading rate has been studied. Fitted

fatigue parameters from Hanson and Glaesemann (Table 3-1) are used in the calculation,

and the proof test stressis 100 ksi. The result isgiven in Figure 3.9. Table 3-2 lists some

data from the calculation.

Table 3-1 Fitted fatigue parameters for the two-region power-law model [Glaesemann,

1998]
ny 28
Ny 2.25
r 0.81
B, 1.86x10" GPa’s
B> 4.39x10° GPa’-s

The influence of unloading rate on the minimum

post-proof strength
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Figure 3.9 The dependence of Smin 0N G,
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Table 3-2 Calculated minimum post-proof strength for different unloading rates

) . The Mini Post-
Unloading time Unloading Rate Unloading Rate ¢ Minimum Fost
) _ ) proof strength
t.(s) o, (ksi/s) o, (GPals) _
Simin (kSi)

0.1 1000 6.9 22.06543
0.01 10000 69 47.53855
0.001 100000 690 91.45632
0.0001 1000000 6900 99.25126
0.00001 10000000 69000 99.92617

From Figure 3.9, at alow unloading rate a higher unloading rate does lead to a

higher Srin, but &fter the unloading rate is high enough to make §/B,(n,~2)6, > o,

the change of unloading rate does not cause much change in Syin. From Table 3-2 it can

be seen that once the unloading rate reaches 1 000 000 ksi/s, Siin isjust dightly less

than the proof test stresslevel, 100 ksi. The difference can be neglected in redlity. It is

practically true to say that the proof test does guarantee a minimum strength of the proof

testing stress level if ahigh enough unloading rate is used.

The minimum pre-proof inert strength that can pass the proof test, S ., can be

derived analytically from S

min

f min

n-2 __ n-2
- Sf min +

'O'pn'(tp

for the casewhen o <1,

+tl +tU)
n+1
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3.4 Strength Distribution after Proof Test

Theinitia strength will degrade during the proof test and weak fibers will be
removed from the assembly. Thus, it is not accurate to get the strength distribution after
proof test by just drawing avertical line at the proof stresslevel in theinitial strength
distribution, although it is practically correct that the proof test truncates the initial

strength distribution at the proof stress level.

Pre-proof Post-proof
strength strength
A A

S, s,
imin

*

p
Sf min
t | t p tU
Time

Figure 3.10 The *just survive' situation

Through the two-region model proof test simulation, the corresponding post-proof
strength, S, for agiven pre-proof strength, S, could be found, as shown in Figure 3.10.

The probability of post-proof strength falling in the region between S, and S isequa
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to the probability of pre-proof strength falling in the region between Sy, and S. But, the
total assembly number change need to be taken into consideration. Thus,

P{pre— proof srrengthe (S,,,.S)}

ost — proofstrength< S, =
P{p p g f} 1- P{pre- proof strength<sS,, } (3-15)

Finaly

I:pre(S| ) - Fpre(sl min )
1- Fpre(Sl min) (3-16)

Fpost (S¢) =

Conceptualy, it is known how many fibersfall in the region between Sy and S,
provide theinitia strength distribution is given. Because the distance between Sy, and
S isvery short according to Figure 3.6, the probability of finding afiber which passes
the proof test, but with a substantial strength degradation, isvery low.

Corning's 2000 tensile test result is used as the pre-proof strength distribution,

shown in Figure 3.11. The strength data isfitted into a two-parameter Weibull mode,

S

F(S)=1- e_[S"] . For the low strength region, m= 2.26 and S = 6825 ks. For the
region truncated by proof test, m= 6.8 and = 774 ksi. Thefirst region istaken asthe
pre-proof strength distribution in the ssimulation, and the calculated post-proof strength
distribution, using the two-region model, is shown in Figure 3.12. And Figure 3.13
shows the post- vs. pre-proof strength after proof test smulation.

It is seen from Figure 3.12 that for this 100 ks proof test, the post-proof strength

could belessthan 50 ks — theoreticaly it is possible that the post-proof strength is
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much less than the proof test stress level, but the possibility is less than 10° — it is

practically impossible to find a fiber that passes the proof test but with a post-proof

strength less than the proof test stress value.

Post- vs. Pre-proof Strength
250

Theideal brittle material
Post-proof S = pre-proof S

150 f-----mmmmm oo \ ——————————————— S =170

S = 160.02

200 -

1004 -

S =168.4875124397
S =45.01

Post-proof Strength (ksi)

0 50 100 150 200 250
Pre-proof Strength (ksi)

Figure 3.13 Post- vs. Pre-proof strength after proof test simulation from Corning’'s
2000 data using the two-region model

From Figure 3.13, for point ‘&, the strength degraded from 170 ksi to 160 ks (6%
strength degradation). Fibers with pre-proof strength lessthan 170 ks will experience a
6% or greater strength degradation (segment ‘ab’). But from the post-proof strength
distribution curve (Figure 3.12), there are about 1 out of amillion fibers (F = 10°) that

has a post-proof strength less than 160 ksi. So the probability of finding afiber that
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passes the proof test but with a 6% or greater strength degradation is 10°. So practically

speaking, most fibers that pass the proof test experience negligible strength degradation.

3.5 Proof Test Parameters’ Influence on Post-proof Strength

Distribution

Through computer simulation, evaluation of the effect of proof test parameters
(0,51, 4 (0), t, (5,)) onthe post-proof strength distribution has been done, using

Corning' s newest tensile test data from 2000 (Figure 2.6) as the pre-proof strength

distribution (the initial strength distribution), for whichm=2.26 and S = 6825 ksi.
3.5.1 Influence of Proof Stress Level

Historically, optical fiber was typically proof tested at 50 ksi, but currently the
normal proof test stressis 100 ksi, where for some special cases 200 ksi proof test stress
isused. Thus, 50 ksi, 100ks and 200 ksi proof stresses are used in the simulated proof

test. Other proof test parametersused are: t; = 0.1 sec (6, = 1000 ksi/s=6.9 GPals), t |
=0.3secand t, = 0.01 sec (o, = 10 000 ksi/s = 69 GPa/s).

Figure 3.14 shows the post- vs. pre-proof curves from theoretical calculation. The
proof test stress substantially affects the pre-proof strength truncation value (fibers with
initial strength or pre-proof strength less than this value will be eliminated). 50 ks proof

stresswill eliminate fibers whose initia strength is less than approximately 80 ks (the
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accurate value would be 79.86 ks); for a100 ks proof test, this truncation value is 168

ksi; for a200 ksl proof stress, the truncation value increases to 355 ksi. The
discrepancy between the proof stress and the corresponding truncation value on pre-
proof strength enlarges with the increase of proof stress.

Also, proof stress greatly influences the post-proof strength distribution. In Figure
3.15, with the proof stressincreasing, the post-proof strength distribution curve shiftsto
the right, correspondingly. With 99.999% reliability, the post-proof strength is higher
than 90 ksl for 50 ks proof stress, it is higher than 150 ks for 100 ksi proof stress, and it

is higher than 310 ksi for 200 ks proof stress.

Post- vs. Pre-proof Strength
500

400 +

’ proof stress = 50 ksi
300 = = =proof stress =100 ksi
/ . — = proof stress = 200 ksi
200 —x— ideal brittle material
/ Proof stress
100 - /( : >
1

0 T T T T
0 100 200 300 400 500
Pre-proof Strength (ksi)

Post-proof Strength (ksi)

Figure 3.14 Post- vs. Pre-proof test strength under different unloading rates
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Figure 3.15 Strength distribution after proof test for different proof test stresses

High proof test stress efficiently shifts the post-proof strength distribution curve

in the high strength direction at the expense of failing more fibers.

3.5.2 Influence of Dwell Time
Inindustry to avoid crack growth in the proof-test, it is common to decrease the

dwell time, evento 0, i.e. to load the stress to o, and unload it immediately. Figure 3.16

compares the strength degradation curve for three different dwell times, 0 sec, 0.3 sec,

0.01 sec. Other proof-test parameters used hereare: o, = 100ks, t; = 0.1 sec (g,
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1000 ksi/s= 6.9 GPals), and t, = 0.01 sec (&, = 10 000 ksi/s = 69 GPa/s).

Elongating the proof test dwell time from zero to one second led to the increase of
pre-proof truncation strength from 142 ksi, to 168 ks, to 176 ksi. The shift is not huge
but still substantial. Thistrend is easy to understand. Holding longer at the proof stress
will fail more fibers and let less pass— longer proof-test dwell time truncates the pre-
proof strength at a higher value.

Consequently, elongating dwell time causes aright shift of the post-proof strength
distribution curve (Figure 3.17). Although the shift is not as substantial as that caused by

proof test stress change, it is still noticeable.
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Figure 3.16 Post- vs. Pre-proof test strength under different dwell times
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Post-proof strength distribution for different dwell time
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Figure 3.17 Strength distribution after proof test for different dwell times

3.5.3 Influence of Unloading Rate

Figure 3.18 showsthe fina strength (S) versetheinitial strength (S) curves under
different unloading times, 0.1 sec, 0.01 sec, 0.001 sec, corresponding to three different
unloading rates, 1 000 ksi/s (6.9 GPals), 10 000 ksi/s (69 GPals), 100 000 ksi/s (690

GPals), respectively. Other parametersare: o ;= 100 ksi (0.69 GPa), t ;= 0.3 sec and
t, =0.1 sec (6, = 1 000 ksi/s).

The three post-proof strength verse pre-proof strength curvesin Figure 3.18 pile

up to each other, it is not easy to see any differences among them, but they are not



exactly the same. If zoomed in on the pre-proof strength axis (Figure 3.19), the three
curves are then visualy distinguishable. From Figure 3.19, elongating the unloading
time, lowering the unloading rate, will shift the curve to the right — longer unloading
time (lower unloading rate) will truncate the pre-proof strength at a higher value.
Another observation is that the distance between 0.01 sec and 0.001 sec is much smaller
than the distance between 0.1 sec and 0.01 sec. The shift caused by the unloading rate
becomes much less at a high unloading rate level.

Practically, the unloading time (unloading rate) will not cause noticeable change
on the post-proof strength verse pre-proof strength curve, especially when the unloading

timeisaready short (0.01 sec), i.e., the unloading rate is already high enough.
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Figure 3.18 Post- vs. Pre-proof test strength under different unloading rates (1)
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Post- vs. Pre-proof Strength
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Figure 3.19 Post- vs. Pre-proof test strength under different unloading rates (2)

Post-proof strength distribution for different unloading times
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Figure 3.20 Strength distribution after proof test for different unloading rates
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In the post-proof strength distribution plot (Figure 3.20), when F>10°% the
curves for three different unloading rates are undistinguishable. At lower F values
(F<10° %), the three curves begin to separate. This is consistent with the theoretical
analysisin Section 3.3, that the unloading rate will influence the minimum post-proof
strength (Sin), faster unloading rate guarantees a higher Smin. Smin for each unloading
rate is not apparently shown in Figure 3.20 because of limitation of numerical method,

but thetrend is till visible. t, = 0.001 sec curve stops at a post-proof strength of 100 ks,
and t,=0.01 sec and t,= 0.1 sec curves will reach much lower post-proof strengths.

Clearly the unloading rate does determine the theoretical minimum post-proof
strength, but practically it haslittle influence on the post-proof strength distribution.

Thus, it isnot helpful to increase the unloading rate at high expense.
3.5.4 Influence of Loading Rate

Keeping other proof test parametersfixed (o ,=100ksi, t,= 0.3 sec, t,= 0.0l
sec), and trying different loading rates (t, =1 sec, 0.1 sec, 0.01 sec, 0.001 sec), leadsto

the smilar results as unloading rate. One must zoom in pre-proof strength to see the
shift of post verse pre-proof strength curve caused by different unloading rate (Figure
3.21 and Figure 3.22). Longer loading time (lower loading rate), dightly higher pre-
proof truncation strength. With loading rate increasing, the difference diminishes. The

loading time (loading rate) will not cause noticeable change on the post-proof strength



vs. pre-proof strength curve, and loading rate has little influence on post-proof strength

distribution (Figure 3.23).
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Figure 3.21 Practical post- vs. pre-proof strength for different loading times (1)
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Figure 3.23 Strength distribution after proof test for different loading rates

Therefore, practically loading rate has negligible influence on the pre-proof

strength truncation value and the post-proof strength distribution.

3.6 Summary

The goal of this chapter is to resolve some basic misconceptions involved with
proof testing from a probability point of view. Correction and improvement on existing
theories have been done, and anumerical proof test simulation has been proposed here

to get the post-proof strength distribution.



According to the theoretica analysis, the post-proof strength could be much lower
than the proof test stress, but practically the probability is very low (from the proof test
simulation in Figure 3.12, this probability islessthan 10, and thisis especially true
when the unloading rate is high enough (690 GPa/s). For those fibers that pass the proof
test, it istheoretically true that the proof test cause a strength degradation on all of them,
but practically only 1 out of amillion fiber that pass the proof test will experience 6% or
greater strength degradation (Figure 3.12). Most fibers that pass the proof test
experience negligible strength degradation.

Among the parameters of the proof test, proof stress has the most powerful
influence on both pre- and post-proof strength; then dwell time; unloading rate and
loading rate has little influence on them practically, athough theoretically the minimum
post-proof strength is determined by the unloading rate.

Strict proof test conditions, such as long dwell time or high proof stress, leads to
high pre-proof strength truncation values, and correspondingly guarantees high strength
after proof test. High post-proof strength is desired, but high pre-proof strength
truncation is not because it will fail more products. Therefore, it is atradeoff that needs
to be considered carefully according to the specific situation.

Once again, it istheoretically true that optical fibers which pass the proof test may
have post-proof strengths less than the proof stress, but practically this possibility isvery
low (less than 10°%), and most fibers pass the proof test with practicaly negligible

strength degradation.
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Chapter 4

RELIABILITY ASSESSMENT FOR OPTICAL FIBERS IN
BENDING

4.1 Introduction

Compared with the optical fiber reliability problem in long-haul applications,
reliability assessment for optica fiber in bending isarelatively new subject. The trend
of optical fiber moving from long-haul applications to backplanesis predictable.
Currently, optical connection between individual computersis commercialy available,
and experts predict that in 2-5 years, optica interconnections will enter the computer,
connecting circuit boards. The mechanical reliability assessment of fibersin bending
correspondingly becomes desirable. Also the pigtails of optical devices are often bent in
circleswhen they are stored, and to save space they are always bent very tight. People
want to know how tight they can bend the fiber without degrading its strength too much.
This subject will be discussed in full detail in this chapter.

The non-uniform stress situation caused by bending is much more complicated
than the uniform tensile stress situation assumed in the long-haul application. Bending
places a considerably smaller area under stress compared to uniaxia tension, dueto the

fact that only half of the fiber surfaceis under tensile loading. However, large stresses
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along the fiber surface are easily generated due to the non-uniform stress caused by

bending. But, it can be solved.

4.2 Extrapolate Instantaneous Bending Reliability From Tensile Test

For the bending situation, the actual applied stress on the fiber surfaceis not

uniform, it isafunction of position as shown in Figure 4.1.

_E-'r
O' — e
R

0-0 O-max -sml9

Figure 4.1 Cross section of a bent fiber

From the Weakest Link Theory discussed in Chapter 2, the failure probability

under stress o, (or the strength distribution) of aunit areasurface, AA; is

Fo, =1- exp(—( (;AA‘ j ) (4-1)

(o]

Then the failure probability of a piece of fiber under any arbitrary stress configuration

along its surface is the integration result of the actual stress over the whole surface of



fiber as EQ.(4-2) shows,

F(o) =1-exp(-| %(@J dA) 42)

(o]

For astraight fiber of length L; under auniform tensile stress, o(A) = o, , itis

easy to get an anaytical solution of strength distribution, i.e. the failure probability verse

stress, from EQ.(4-3)

A,

(o]

2rr o )
F(o)=1- exp(——"‘(—‘j ) (4-3)
Herer istheradius of fiber cladding.
For a piece of fiber in bending, substitute the non-uniform stress caused by

bending

o -SING (4-4)

into Eq.(4-2) and integrate. The failure probability of a piece of fiber of length Ly, with

uniform bending whose maximum bending stress is o, can be solved analyticaly, a

result which has been presented by Matthewson and Glaesemann [Matthewson, 1986;
Glaesemann, 1991b].

m+

r\/;-Lb_F( 21).

A -o," m+2
re-)

F (O-max ) =1- eXp(— O max m) (4'5)

Inwhich T'(x) isthe gammafunction or factorial function defined by
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re)=[ ¢ e ds (4-6)

Which isreadily calculated using polynomial approximations [Abramowitz, 1965].

The constants appear in Eq.(4-3) and Eq.(4-5), A,, o,, and m, are determined by
the optical fiber quality. If the fiber in bending and the fiber under tensile stress have the
same strength quality, then those constants are the same for both situations. Those
constants can be obtained through the tensile strength test.

Normally, through the tensile test, the strength distribution of fiber of gauge

length L; is measured and fitted into a two parameter Weibull form, as
_ Ut )
F(o,) =1-exp(- 5 ) (4-7)

Comparing Eq.(4-7) and Eq.(4-3), it iseasy to get
Ao, = B2zl (4-8)
Then substituting into the equation of bending, yields
m+
Lo T

_ L o™
A2zp" L r(m;-Z)

F(0me) =1—exp(-

(4-9)

Here, L; is the gauge length of tensile test, and m and S are the two parameters of the
Weibull distribution curve, which the tensile test data is fitted. The tensile test data can
be used to calculate the instantaneous failure probability of a piece of fiber of any

arbitrary length, Ly, under uniform bending, which causes a maximum bending stress,
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O e - E0.(4-9) can aso be transformed to a form which is a function of the uniform

bend radius, R,

m+1
e L U ) 1
20z pm L r(M™2 R
2

F(R) =1-exp(- (4-10)

4.3 Calculation Result and Discussion of Instantaneous Reliability

For a360° uniform bend ng, Ly, is dependent on bend radius, R, so isthe

maximum bending stress, o, . Then, Eq.(4-10) can be written as an function only

dependent on R

m+1
\/;Emrm_r( 2 ). 1
mL m+2 RrTFl

P ™9

F(R) =1-exp(-

) (4-11)

If constants, L;, m, and £ are known from tensile test data, it is easy to use Eq.(4-

11) to calculate the instantaneous failure probability of a piece of fiber under 360"
uniform bending of any bend radius, R.

Again, the datafrom Corning’'s 2000 tensile test is borrowed as the initia strength
distribution. In Corning’ stest, the tensile stress stopped at 350 ks, so the high strength
region was not measured. It is necessary to borrow the high strength region from

Corning's 1986 tensile test. The overall tensile test data used in the calculation is shown
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in Figure4.2.

Failure Probability

The high strength
m=16 region borrowed
p =602 from Corning’'s 1986
strength distribution
data
m=2.26
B = 6825
m=8.6
B =582
Strength (ksi)

Figure 4.2 Theinitia strength distribution from Corning’s 2000 tensile test data

Then the extrapol ated instantaneous failure probability of auniform 360 ° bend ng

isshown in Figure 4.3. There are three regionsin Figure 4.3, a high probability region,

calculated from the high strength region of theinitia strength distribution shownin

Figure 4.2 (the maximum bending stress caused by abend radiusin thisregionisin the

initial high strength region), alow probability region calculated from the low strength

region of theinitia strength distribution, and athird region cal culated from the proof

test truncation region.
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Figure 4.3 360 bend instantaneous failure probability extrapolated from

Corning’s 2000 tensile test data (F vs. R)

For a360° bend, the high probability region, which is calculated from the initial

high strength region, spreads from F = 1 to about 10”'(which corresponds to a bend

radius about 1.3 mm). It istheinitial high strength region that mattersin the reliability

assessment of bending fibers. Aslong as the bend radius stays above 1.5 mm, the failure

probability of a 360° circle will stay very low.

In Figure 4.3, at approximately 0.5 mm bend radius, the failure probability is

amost 1, which is consistent with peopl€e’ s practical experience of breaking a piece of

fiber by bending it asacircle.
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Equation (4-11) can also be transformed into afunction of o, (EQ.(4-12)).

Correspondingly plot of F verse o, can be drawn (Figure 4.4).

1ﬂ(m+1)
1 Nrm-E-r 2 7 m1 ]
F(O-max)_l eXp( ,Bml—t r(m+ 2) O max ) (4 12)
2
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Figure4.4 360 bend instantaneous failure probability extrapolated
from Corning’s 2000 tensile test data (F vs. o, )

Figure 4.4 hasasimilar shape as Figure 4.2, theinitia strength distribution curve,

but not exactly the same. In Figure 4.2, the initia strength distribution curve, whichis



also the failure probability of a straight 20 m optical fiber verse the uniform tensile

stress curve, shows three strength regions with the Y-axis scalesin In(-In(1-F)). But in

Figure 4.4, the failure probability of a 360 circle vs. the maximum bendi ng stress, the
Y-axisisplotted in log scale. If Figure 4.4 was drawn on the same axis scale as Figure
4.2, the plots of the three regions would not be straight anymore.

It isclearly seen that theinitia high strength region is the important region for
reliability assessment where optical fibers are bent. Only when the maximum bending
stress gets into the high strength region should peopl e begin to worry about breaking the
fiber instantaneoudly. In terms of the bend radius, aslong as the bend radius is bigger

than 1.3 mm, thereisavery low possibility of breaking fibers.

4.4 Reliability Assessment of Bending with Strength Degradation

Instantaneous bending failure is the failure without fatigue of strength
degradation, according to the calculation done in the previous section. Generally, people
do not bend fiber so tight that an instantaneous failure is a problem. Thus, the reliability
assessment of fibers bent under a much more loose radius for some period of timeis of
more interest. Thisisatotaly new subject, never having been discussed anywhere el se.
A theoretica method is developed here to solve this problem. The basicideais smilar
to the method used for instantaneous failure, but now the strength degradation over time

needs to be taken into consideration.
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Before strength degradation caused by bending happens, thereis auniform
strength distribution all aong the fiber surface. During bending, the fiber surfaceis
experiencing a non-uniform stress, that leads to a non-uniform strength degradation over
the fiber surface. So after some time in bending, the strength distribution aong the fiber
surface is no longer uniform, as well as the current applied stress. The two non-uniform
items makes the reliability with fatigue issue much more complicated than the
instantaneous reliability problem discussed previoudly. It cannot be solved by analytical
methods, a numerical method has to be employed.

At aunit surface area, AA;, the applied stress under bending is constant, o, the
strength at timet =0 is &. According to the Two-Region crack growth model, under
applied stress o3, the strength after timet is given by

n— n — 1 t n
SHREERY Z—Ejoaa ' dt (4-13)

Here, i =1 or 2, depending on which regionitisin.
At timet, the condition for failure to happen at area AA; isthat the degraded

strength is less than the actual applied stress, i.e., S (AA) <o, (AA),i.e
Fu =P{S(4A) <0, (aA)} (4-14)

Using the two-region crack growth model, it is easy to caculate the minimum strength
at time 0, Symin, Which corresponds to the minimum strength at time t, Spin = o (Figure

4.5)
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Figure 4.5 The two-region strength degradation

According to the two-region mode,

Inregion I: sm?=g"? —Eaa”l 1, (4-15)
1

In region I1: §¥?=8"" _Biaa”z 1, (4-16)
2

And, t, +t, =t,,S =0, /1

Solving Eq.(4-15) and Eq.(4-16), yields

1
n-2 n-2
S . = (Lj i long B e (Lz_ 1) (4-17)
r B, B, r

Then, the failure probability at area AA; at timet is equal to the probability that

theinitial strength islessthan Sin, i.€,
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Fu = P{S(AA) <o, (AA)} = P{S,(AA) < Sy} (4-18)

which isknown

Fag =1- exp(—SOL"‘:AAl) (4-19)
Ao

0o

Then, the tota failure probability Fi 1S the cumulative result of every discrete

areaon fiber surface

Ftotal = 1_ Rtotal = 1_ ﬁ R(AA) = 1_ ﬁ F(AA) (4-20)

4.5 Calculation Result and Discussion of Degraded Reliability

4.5.1 Long-Term Reliability

Corning defines long-term as 20 or 40 years. An extrapolation calculation from

Corning’s 2000 tensile test data (Figure 4.2) to 360 bend long-term reliability has been
done. The result is shown in the following figures.

Figure 4.6 shows the curves of failure probability changing with time for different
bend radii. From Figure 4.6, it can be seen that for long-term reliability issues, longer
bending time does not cause much higher failure probability, 20 years and 40 years
almost have the same probability. Thisis especialy true for alarger bend radius, such as

10mm in the figure. What does have a substantial influence on the reliability is the bend
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radius, R. Thus, redraw the changing of F with respect to R, but just for 40 years

lifetime.

Failure Probability After Bending Fatigue
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Figure 4.6 Long-term reliability of fiber in 360" bend for different bend radii
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Figure 4.7 Long-term reliability of a360° bend for 40 years
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40 Years Failure Probability vs. Bending Stress
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Figure 4.8 Long-term reliability of a 360 bend for 40 years

Figure 4.7 and Figure 4.8 shows the curves of 40 year failure probability,
changing with bend radius and the maximum bending stress, respectively. Similar to the
situation of bending reliability without fatigue (Figure 4.3 and Figure 4.4), the curves
have three regions, a high probability region, which is calculated from the high strength
region of theinitia strength distribution, alow probability region from the low strength
region, and a proof test truncation region. The failure probability beginsto increase
rapidly with decreasing radius, if the radius is tighter than some critical bend radius
value. Thiscritical radius value, from Figure 4.7, is around 6mm; below thisvalue a

small bend radius drop will lead to abig failure probability increase. Thus, it is better to
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keep the bend radius larger than 6 mm.

For 100 ks proof tested fiber, Corning suggested that the maximum tensile stress
be 20 ksi for along-term life [Hanson, 1997]. But for a 360° pure bending situation,
according to the calculation, a 100 ksi maximum bending stress can guarantee afailure
probability less than 10° for a40 year lifetime. Obviously it is too conservative to use

the guideline from long-haul application for bending situation.
4.5.2 Short-Term Reliability

Short-term reliability is something happens during handling and installation.
Short-term defined by Corning is Iminute [Castilone, 2001], which is adopted here.
Figure 4.9 and Figure 4.10 shows the curves of short-term failure probability changing

with bend radius and the maximum bending stress, respectively.

Short-Term Reliability vs. Bend Radius
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Figure 4.9 Short-term reliability of a 360 bend
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Short-Term Reliability \s. Bending Stress
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Figure 4.10 Short-term reliability of a360° bend

Similarly, curvesin Figure 4.9 and Figure 4.10 have three regions, calculated
from the high strength region, the low strength region and the proof test truncation
region from theinitia strength distribution curve, respectively. The critical value of the
bend radius for short-term reliability is 3 mm, which guarantees a short-term failure

probability of less than 10°.

4.6 Summary

After reviewing existing theories about the instantaneous reliability assessment of
optical fiber in bending, anew analytic approach is developed to assess the mechanical

reliability of optical fibers under bending loads, but take into consideration the effect of
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static fatigue. The basic idea of this gpproach is to degrade the fiber surface strength
piece by piece because of the non-uniform strength degradation caused by the non-
uniform bending stress, and then use the weakest link theory to integrate aong the
whole surface of the fiber to get the total failure probability.

Long-term and short-term reliability calculations using the newly proposed
approach have been done in this Chapter. The calculations help to understand the
implications behind the mathematics. From the calculation results, the bend radius has a
much stronger influence on failure probability than the factor time. There are three
regionsinthe F verse R or F verse oma curves, caculated from the high strength region,
low strength region, and the proof test truncation region of theinitia strength
distribution curve, respectively.

An experiment will be carried in Chapter 5 to verify the analysis approach

proposed. Based on the approach, industrial guidelineswill be established in Chapter 6.
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Chapter 5

TWO POINTS BEND EXPERIMENT

5.1 Bending Test Techniques Introduction [M. J. Matthewson,
1999(b)]

It isdesirable to do an experiment to verify the reliability assessment theory for
bending. From literature there are several bending test methods, a brief introduction to

them is given here.
5.1.1 Mandrel Bending Test

Mandrel or uniform bending involves wrapping the fiber around the outside of a
precision diameter rod or mandrel (Figure 5.1). The fiber is then subjected to uniform
curvature. Different stresses are achieved by using mandrels of different diameters. A
second rod could be used to effectively isolate each turn (Figure 5.1b). The main
advantages of mandrel bending are its compactness and ease of use, the principa
disadvantage is the difficulty with adequately gripping the ends of the specimen. And
uniform tension can be superimposed upon the bending stressesif the winding tensionis
too high or if the fiber coating swells due to absorption of certain species from the

environment; such tensile stresses should be minimized since they are not measurable



and so cannot be compensated for.
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Figure 5.1 Schematic of the mandrel Figure 5.2 Schematic of (@) the fiber loop
bending test (after Matthewson) and (b) the fiber knot tests
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5.1.2 Loop or Knot Test

Sinclair [Sinclair, 1950] describes a bending method in which the fiber istwisted
into aloop (Figure 5.2 @). The ends of the fiber are pulled until the fiber breaks by
bending in the loop. Sinclair showed that the breaking stress isinversely proportional to
the width of the loop, D. Substantial torsion must to applied to avoid the loop
untwisting. Eitel and Oberlies[Eitel and Oberlies, 1937] tie the fiber into aknot (Figure
5.2 b) which restrains the loop from unwinding. The stress distribution is then
approximately uniform bending. These two techniques are crude and not particularly
accurate, but they are very ssmple and require little in the way of an apparatus, except

for aruler in front of which to perform the experiment.
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5.1.3 Two-point Bend Test

The two-point bend technique, first described by Cowap and Brown [ Cowap and
Brown, 1987], involves bending a short length of fiber double and inserting it into a
precision-bore glass tube (Figure 5.3a). Many specimens may be inserted into one tube
and the stress applied to them is determined by the tube internal diameter. Severa
specimens may be inserted at once using the insertion tool shown in Figure 5.3b.
Usually the fiber is accurately located between the faceplates by grooves. In its dynamic
form (Figure 5.4), the two facepl ates are brought together by a computer-controlled
steer motor, which is halted when the fiber fracture is sensed by an acoustic detector.
There are no gripping problems with two-point bend, no tensile stress, and it has high

accuracy, as well as other advantages, fully discussed by Matthewson [Matthewson,

1986 and 1987].
; : faceplates

3) g g g g c e N
L 1\
FIBERS TUBE

m transducer
fiber
) =
- INSERT FIBE e - B
Figure 5.3 Schematic of (a) two-point Figure 5.4 Schematic of the two-point
bend by tube and (b) fiber insertion tool bend test (after Matthewson)
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5.1.4 Four-point Bend Test

Figure 5.5 isaschematic of the four-point bend apparatus for strength
measurement, in which the specimen is supported by two outer pins and then pushed in
bending by the two inner loading pins. The technique has been widely used to measure
the strength of glasses and ceramics by the determining the force applied to the loading
pinsthat produces failure. It has also been successfully applied to testing optical
fibers.[Nelson, 1996; Matthewson, 1996]

Griffioen describes aversion of four-point bend in which the support and load

pins are mounted on two meshed gears (Figure 5.6)[ Griffioen, 1993].

Lgh

Figure 5.5 Schematic of the four-point Figure 5.6 Alternative method of loading
bend apparatus (after Matthewson) fiber in four-point bend (after Griffioen)
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5.2 Static Micrometer Two-point Bend Experiment

The static two-point bend experiment is used to verify the newly devel oped
theory. Instead of using acommercialy available apparatus, a ssmplified apparatus
shownin Figure 5.7 isused. A piece of fiber is bent between fixed plates and amoving
plate. The micrometer is then twisted to move the moving plate back and forth. The
bend diameter of the neutral axisis easy to measure using the micrometer. After the
desirable bend diameter is reached, the micrometer islocked and the fiber is subjected to
a dtatic bending stress (no tensile stress) until it breaks. The lifetimes for samples under
certain bend diameters are recorded. Knowing the bend diameter and the lifetime,
according to the theory devel oped previoudly, the initial strength of the fiber can be
calculated. If thefiber is bent at different diameters, the lifetimes measured will be
different, but theinitia strength calculated from the different diameters and lifetimes
should be the same. Or one set of bend diameter and lifetime could be used to predict
the lifetimes for other bend diameters.

The bend diameter is chosen so that the lifetime of the fiber under such diameter
is much longer than the time that is needed to twist the micrometer to this diameter,
which is severa seconds. Three bend diameters are used, 2.3 mm (104 samples), 2.5
mm (97 samples) and 2.7 mm (30 samples). The lifetime of fibers for those bend

diameters are on the order of 1 minute, 10 minutes and 2 hours, respectively.
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fixed plates fiber moving plate micrometer

\n
Al

Figure 5.7 Schematic of the micrometer two-point bend apparatus

5.3 Experiment Result Analysis (Half-circle Approximation)

The stress situation of a two-point bend can be approximated by a half-circle
bend. A half-circle bend causes uniform bending aong the fiber length. The degraded
strength, when the fiber is broken, is equa to the known bending stress, combined with
the time under bending, theinitial strength before bending can be calculated based on
the two-region crack growth model. Theinitia strength distribution calculated from the
three different bend diameter experiment is shown in Figure 5.8. The three initial
strength distribution curves, calculated from three bend diameters, are on top of each

other as expected.
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Calculated initial strength from 3 bend diameters

99.90

Weibull
2.3 mm
-
90.00 F=104
2.5 mm
A
50.00 - F=97
2.7 mm
-
F=29
)
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n
L 5.00 4'
:
1.00 T
n
[
0.50 [‘
|
0.10 ’
1000.00 10000.00

Strength (ksi)

B1=68.9150, 1=1171.4475, p=0.9943

B2=66.3328, 12=1177.0627, p=0.9548
B3=72.2043, 13=1170.2013, p=0.9873

Figure 5.8 Theinitial strength distribution calculated from the two-point bend test
result using half circle uniform stress approximation

The experiment datawill be analyzed from another perspective. The lifetime data
of the 104 samples of 2.3 mm diameter, and the assumed half-circle uniform bending,
can givetheinitial strength distribution of the fiber, i.e. the quality of the fiber. Then the
lifetime of 2.5 mm and 2.7 mm diameter bends can be predicted based on this calcul ated

initial strength distribution using the method developed in Section 4.4. The processis
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shown as follows.

Recall from Chapter 2, for aunit area surface, AA,,

Fo, =1- exp(—( ?’* j ) (5-1)

[o]

thetotal failure probability for the surface area A is

() =1-exp(-] %(“;A)] dA) (5-2)

(o]

If surface A is small enough that it can be said that the stress on surface A is uniform,

then

o™ ( A?n " 53

Fa(o) =1-exp(-

.GO

Glaesemann’s analytical result of the failure probability for fibers under uniform

bending is [Glaesemann, 1991b]

m+
r\/;-Lb_r( 21)

F(O-max) zl_exp(_ Ab 'O'Om r(m+ 2) " O max ) (5'4)
2
Here, Ly isthe length of thefiber, for ahaf-circle,
m+
r(™H
.E-r? e
F(O'max) =1- exp(— 7[\/; mr . 2 Yo 1) (5_5)
A, -o, r(m+ 2)
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Calculated initial strength from the 2.3 mm diameter experiment

99.90
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B=68.9150, n=1171.4475, p=0.9943

Figure 5.9 Theinitial strength calculated from the 2.3 mm experiment using half-circle
uniform stress approximation

The Weibull parameters of the strength cal culated from the 2.3 mm bend diameter
experiment are (Figure 5.9): the shape parameter (B) is 68.9150, the scale parameter (n)

is1171.4475. Compared with Eq.(5-5) yields
m-1=68.9150 (5-6)
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1ﬂ(m+2

A 'O-om 2 ) m-1
. =1171.4475 5-7
am-E-r? F(m;-l) &7)

Then

m = 69.9150 (5-8)
Ao, =9.363x10%® (5-9)

These are two parameters that are determined by the quality of the fiber. Knowing
them, the reliability assessment for any arbitrary stress configuration can be done, using
Eq.(5-2) or Eq.(5-3). Here, r isthe radius of fiber cladding, which is57 umin the
experiment.

Then, thelifetime of 2.5 mm and 2.7 mm diameter bends will be predicted using
the method developed in Section 4.4, which is briefly repeated here.

Thefailure probability at area AA;, at timet is equal to the probability that the

initial strength islessthan Syin, i.€.

Foy =1-exp(—omn_ A (5.10)
Ao

(o]

Here Syninis determined by lifetime, t;, and the applied stress, ..

n-2 n-2
Somn =|| 22 +i0'anl -t —i-aanl_nz ( 1 j (5-11)
r B, B, r?

Then
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Ftotal =1- R[otal =1- ﬁ R(AA) =1- ﬁ F(AA) (5-12)

So the predicted data are arbitrary lifetimes and the corresponding failure probabilities.
With this data, it is easy to draw the Welbull distribution curve of lifetime in the
Weibull software. Figure 5.10 and Figure 5.11 compare the predicted lifetime

distribution with the measured lifetime distribution of 2.5 mm and 2.7 mm bends,

respectively.
Measured and Predicted Lifetime for 2.5 mm Diameter Bends
100.00 ' .
Z{@” Weibull
/ predected lifetime
g / =
/ / (approximate stress)
/““ measured lifetime
90.00 ‘ e
4 F=97 / S=0
50.00
T EaY ;
> i
Z 10.00 Vi ;"
ko s
@ 5.00 s
c VAR
) .
A
1.00
0.50
0.10
100.00 1000.00 10000.00

Time (second)
1=2.6892, n1=405.9823, p=1.0000
B2=2.5512, n2=640.6444, p=0.9548

Figure 5.10 Measured and predicted lifetime for 2.5 mm bend
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Measured and Predicted Lifetime for 2.7mm Diameter Bends
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B1=2.6890, 1=3403.6420, p=1.0000
B2=2.7770, n2=4747.4589, p=0.9873

Figure 5.11 Measured and predicted lifetime for 2.7 mm bend

Table 5-1 Weibull distribution parameters from measured and predicted lifetime for
2.5 mm and 2.7 mm bends

2.5 mm bend diameter 2.7 mm bend diameter
shape parameter, | scale parameter, | shape parameter, | scale parameter,
p n p n
Measured 25512 640.6444 27770 4747.4589
Predicted 2.6892 405.9823 2.6890 3403.6420
Error 0.137 (5%) 245 (38%) 0.088 (3%) 1344 (28%)
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From Figure 5.10 and Figure 5.11, the predicted curves have amost the exact
dope as the measured curves, but are shifted left somehow. It is seen from Table 5-1,
the predicted shape parameters, which influence the slope of the curve in the Weibull
plot, are at most 5% away from the measured curves. But the scale parameters could be
38% less than the measured parameters.

This assessment method gives avery conservative lifetime prediction. An
accurate stress analysis, instead of the approximate haf-circle bend, is used next to see

if more accurate predictions can be obtai ned.

5.4 Experiment Result Analysis (Accurate Stress Analysis)

Theoretically, the two-point bend causes non-uniform bending along fiber length
(Figure5.12). Gulati [Gulati, 1981] and France et al. [France, 1980] independently

presented an analysis of the bending caused by two-point bend, with agreeabl e results.

\6/ face plate

neutral axis

v

Figure 5.12 The accurate stress configuration of atwo-point bend
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According to Gulati and France' s analysis

o) = rw/ZEFl—W (5-13)
R= 0.847\/g (5-14)

Eq.(5-13) and (5-14) gives
o () = 1.198%,/sin¢ (5-15)

The maximum stress, o, , occursat ¢ =z /2 andis

o = 1.198% (5-16)

Compared to the half-circle bend approximation, inwhich o, = % , the

accurate stress situation is more severe in the middle of the bend, but less at the ends.
From Figure 5.13, the accurate stress analysi s causes a shift of the calculated
strength curve of the 2.3 mm bend to theright, i.e. high strength direction. The two new

Weibull parameters are: 3 = 68.8380, n = 1423.0446
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Calculated Initial Strength from 2.3 mm Experiment

99.90
Weibull
accurate
e
90.00 F=104
From the half-circle approximate
50.00 stress approximation F=104
$
S 10.00 From the accurate
D stress analysis
T 5.00 R 3
Lot
1.00 ,T T
—
A ®
0.50 / ,’
o
0.10 / ‘
1000.00 10000.00

Strength (ksi)

B1=68.8380, 1=1423.0446, p=0.9941
B2=68.9150, 12=1171.4475, p=0.9943

Figure 5.13 Theinitia strength calculated from the 2.3 mm experiment using the
accurate and approximate stress anaysis

Based on Eq.(5-2), and using the accurate bending stress (Eq.(5-15)), thefailure

probability of the two-point bend can be derived. The result from Matthewson’s analysis

is[Matthewson, 1986]

F(O-max) zl_exp -

4Er? m

Ao,
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Here y/(X) isgiven as

X+1
Jr T
w(X) :TX—+22 (5-18)
=)
2
Comparing the Weibull parameters from experiment data (Figure 5.13) with
Eq.(5-17), yields
m-1=68.8380 (5-19)
A0y 1 =1423.0446™*
AEr? m-1 (5-20)
y(— ) w(m)
2
Then
m = 69.8380 (5-21)
Aoc," =4.812x10*" (5-22)

Findly, lifetimes of the 2.5 mm and 2.7 mm diameter bends can be predicted
using the method described in Section 5.3. Theresult isgiven in Figure 5.14 and Figure
5.15, in which solid triangles show the measured lifetime, and opened circles show the
predicted lifetime.

The accurate stress analysis does shift the curve of the approximate stress
analysis, to theright, but it is il left of the measured curve. Thus, the predicted
lifetime from the accurate stress analysisis still conservative. Table 5-2 compares the

three curves quantitatively. The two stress analysis methods get similarly shape
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parameters, with acceptable error, but the accurate stress analysis decreases error of the

scale parameter by 10%.

Measured and Predicted lifetime for 2.5mm Bends
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B1=2.6833, 111=464.0295, p=1.0000
B2=2.5512, 12=640.6444, p=0.9548

Figure 5.14 Measured and predicted lifetime for 2.5 mm bend using the accurate stress
anaysis
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Measured and Predicted Lifetime for 2.7mm Bend
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Figure 5.15 Measured and predicted lifetime for 2.7 mm bend using the accurate stress
anaysis
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Table 5-2 Weibull distribution parameters from measured and predicted lifetime for

2.5 mm and 2.7 mm bends

2.5 mm bend diameter 2.7 mm bend diameter
shape parameter, | scale parameter, | shape parameter, | scale parameter,
B n B n
Measured 2.5512 640.6444 2.7770 4747.4589
Predicted 2.6892 405,9823 2.6890 3403.6420
(approximate
anj}fs) Err: 0.137 (5%) 245 (38%) 0.088 (3%) 1344 (28%)
Predicted 2.6833 464.0295 2.6861 3904.6873
(accurate
anjﬁ 9 Err: 0.1321(5%) 176.6(28%) 0.0909(3%) 843(18%)

Notice that the measured lifetime data of 2.5 mm bends does not fit in the straight

2 parameter Weibull distribution quite well. The line from the actual data shows curves

at high strength and low strength. But the curve cannot be explained by experimental

uncertainty (the error caused by the measurement of R is+ 0.01 mm, the error caused by

the measurement of lifetimeis * 2 sec).

The curve indicates that the measured lifetime data might be fitted by a 3-

parameter Weibull distribution better than a 2-parameter Weibull distribution. Then to
compare the predicted lifetime distribution with the measured lifetime distribution, the
predicted lifetime data has to be fitted in a 3-parameter Weibull plot aswell, which in

turn requires a 3-parameter Weibull distribution of the initia strength distribution. But
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generaly theinitia strength dataisfitted in a 2-parameter Weibull distribution. So 2-
parameter Weibull distribution is the lifetime distribution used in this dissertatioin.

If a3-parameter Weibull initial strength distribution hasto be used, one must redo
all the theoretic work from the beginning— assume a 3-parameter Weibull initial
strength distribution of a unit area aong the fiber surface, and do the integration
according to Eq.(2-10).

The main purpose of the two-point bend experiment isto verify the reliability
assessment method devel oped in Chapter 4. Using the accurate stress analysis,
reasonabl e lifetime prediction can be achieved. The experiment results supported the
newly developed reliability assessment approach of bending with fatigue problem and

the stress analysis by Gulati and France of two-point bend.

5.5 Summary

The static micrometer two-point bend experiment is used in this chapter to verify
the reliability assessment approach of the bending fiber with static fatigue problem
developed in Chapter 4. From the lifetime data of the 2.3 mm diameter samples, the
initial strength distribution of the fiber can be calculated. Then the lifetime of 2.5 mm
and 2.7 mm diameter bends can be predicted based on this calculated initia strength
distribution using the method devel oped in Section 4. Compared with measured lifetime

of 2.5 mm and 2.7 mm bends, the approach gives a conservative but good enough
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prediction. So the result of the static two-point bend experiment verifies the reliability
assessment approach of the bending fiber with static fatigue problem developed in
Chapter 4.

Both approximate uniform bending stress analysis and accurate stress analysis are
used in the calculation. The accurate stress analysis leads to a better lifetime prediction.

This chapter is aso ademonstration of how the bending test data can be used to
do reiability assessment, but not like other workers who use the bending strength
directly astheinitia breaking strength, some appropriate extrapolation must be utilized
to get theredl initia strength distribution. Also this chapter demonstrates that not al the
timeisatensletest needed to get theinitia strength distribution, for some applications,
asimple bending test could be used. But it must be remembered that bending test data

can only giveasmall part of theinitia strength distribution.



Chapter 6

APPLICATION EXAMPLES

6.1 Industrial Guidelines for Bending

With the bending fiber reliability assessment method devel oped, guidelines for

industrial application can be established.

6.1.1 Long-Term Reliability Guidelines

Based on Corning’s 2000 tensile test the guideline for long-term application

reliability has been calculated. Theresultsare given in Table 6-1.

Table 6-1 Minimum allowed bend radius for long-term reliability (40 years)

Fiber Length F=1e4(100ppm) | F=1e-5(10ppm) F = 1e-6 (1ppm)
Im 5.4 mm 7.7 mm 11.4 mm
10m 7.7 mm 11.4 mm 14.6 mm
100 m 11.4 mm 14.6 mm 18.8 mm

From thetable, for afiber that is 1 meter long, coiled at a5.4 mm radius, its

probability of breaking after 40 yearsis 100 ppm.

There are some subtleties from the guideline table that need to be pointed out. If




Table 6-1islooked at diagondly, it is easy to seethat if coil thefiber is coiled at the

same R, but with alength of 1 order of magnitude longer, then the failure probability

will be 1 order of magnitude higher. Thisis consistent with the previous mathematical

analysisthat at alow F level the failure probability is proportiona to fiber length.

In Corning’ s newest publication White Paper 3690 [ Glaesemann, 2002] the

allowable bend radius for arange of fiber lengths and failure probability levels are

given. Table 6-1 is Corning guidelines for long-term application of fiber proof tested at

100 ksi.

Table 6-2 Allowable bend radius values for 20-40 year lifetime from Corning

Fiber Length F=1e-4 (100 ppm) | F=1e-5 (10 ppm) F=1e-6 (1 ppm)
1m 6 mm 10 mm 16 mm
10 m 10 mm 17 mm 26 mm
100 m 17 mm 27 mm 29 mm

Comparing Table 6-1 and Table 6-2, it is seen that Corning’ s guideline is more

conservative than ours. If onelook at Table 6-2 diagonally, asimilar trend found in

Table 6-1 can aso be found— if the fiber is coiled at the same R, but with alength of 1

order of magnitude longer, then the failure probability will be 1 order of magnitude

higher. Notice that the numbersin Corning’ s guideline table are rounded, this may




explain why diagonally the numbers are not exactly equal. Also notice, the number ‘29

mm’ (F = 1e-6, L = 100 m) does not fit into Table 6-2 quite well. According to the trend

of the numbersin Table 6-2, there should be a number greater than ‘29 mm'’ here.

Because it has not been said how Corning come up with their guidelines, it is not

possible to check what went wrong here.

6.1.2 Short-Term Reliability Guidelines

Short-term reliability guidelines has also been calculated. Again 1 minuteis used

here as short-term. The results are given in Table 6-3. Also Corning's guideline for

short-term reliability is given in Table 6-4. Once again, Corning’ s guideline is more

conservative than ours.

Table 6-3 Minimum allowed bend radius for short-term reliability

Fiber Length F=1e-4 (100 ppm) | F=1e5 (10 ppm) F=1e-6 (1 ppm)
1m 3.0mm 4.3 mm 6.3 mm
10m 4.3 mm 6.3 mm 8.0 mm
100 m 6.3 mm 8.0 mm 10.3 mm

Table 6-4 Allowable bend radius values for short-term reliability from Corning

Fiber Length F = 1e-4 (100 ppm)
1m 3 mm
10 m 5mm
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100 m 8 mm

6.1.3 Reliability Assessment Curves

Thereliability assessment approach developed in this dissertation can give more
than just guiddines. In the bending reliability problem, there are four parameters, fiber
length (L), bend radius (R), lifetime (t), and failure probability (F). Specifying any three
of them, the fourth can be calculated. This provides more flexibility than the discrete
datain the guidelines.

If L isfixed, there are three independent parameters, F, Rand t. Plots of F verset
for different R (Figure 6.1) can be drawn, aswell as F verse R plots for different t
(Figure 6.4) for aparticular L value. Then, because of the proportiona relationship
between F and L, which is proved in Section 2.4.2, F for other L values can be easily
obtained. Figure 6.1 and Figure 6.4 showsthe curves L = 1 m. For afiber of length 100
m, the F value would be 100 times the val ue obtained from the curves.

Consistent with the previous conclusion, F is changing with t but not
substantially. Thetime axis of Figure 6.1 spreads from 10 days (0.6 seconds) to 10°
days (2740 years), but the plot still cannot fully display the three regions of the curves.
The curve of R= 3 mmjust shows the region that was cal culated from the high strength
region from theinitia strength distribution curve. The curve of R= 10 mmjust shows
the region that was calculated from the low strength region from the initia strength

distribution curve. Only the curve of R= 5 mmshows al of the three regions. It is seen
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from Figure 6.1 that the curve shiftsto the right with increasing radius.

With the time axis on the order of year or minute, the failure probability curve for
long-term reliability (Figure 6.2) and short-term reliability (Figure 6.3) can be easily
obtained. In both pictures the curves are amost flat. Compared to the influence of time,

the bend radius has a great influence on fiber reliability.

Failure Probability vs. Time for Uniform Bending (L = 1 m)
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Figure 6.1 Failure probability of 1 m fiber under different bend radii
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Long-term Failure Probability Curve (L =1 m)
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Figure 6.2 Long-term failure probability of 1 m fiber under different bend radii
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Figure 6.3 Short-term failure probability of 1 m fiber under different bend radii
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Failure Probability vs. Bending Radius for Uniform Bending (L=1m)
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Figure 6.4 Failure probability vs. bend radius of 1 m fiber for different lifetimes

Failure Probability vs. Bending Stress for Uniform Bending (L=1m)
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Figure 6.5 Failure probability vs. maximum bending stress of 1 m fiber for different
lifetimes
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Figure 6.4 shows the failure probability change with bend radius for different
lifetimes, on the order of minute to year. Figure 6.5 shows the failure probability change

with the maximum bending stress.

6.2 Side-Pull Test

The side-pull test isakind of proof test applied in industry to minimize the
number of fiber breaks during the optoel ectronic component manufacturing process. It is
discuss here to show how the new reliability assessment method can be used to solve a
practical problem.

In afiber optic component, the root of the fiber pigtail isvulnerable to stress
during handling. High fallout due to fiber breaks at the fiber roots has been reported
during optical circuit package manufacturing processes. These fiber breaks are the result
of momentary and accidental side-pull events. A ssimple 500 g side-pull test is employed
inindustry. But, it has been found that simply passing a 500 g side pull test is not
sufficient to assure that there will be no fiber breaks at the strain relief boot in the
manufacturing environment.

Generadly, rubber strain relief boots of various designs are empl oyed to provide
some protection to the fiber roots. C.C. Chang, et.d., from CIENA Corporation, contend
that the side-pull test should not only put a direct requirement on the strength of tested

fiber, but aso require aminimum bend radius limited by the relief boot. They contend
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the boot isa*bend limiter” rather than a“strain relief” [C.C.Chang, 2002].

In Chang' s paper, an approach is proposed to evaluate the strain relief boot. First,
they calculate the minimum bend radius corresponding to a side-pull load based on
Corning’ s guideline, then they use a specific experiment procedure and agorithm to
measure the minimum bend radius obtained by a specific relief boot. Figure 6.6 shows
the minimum bend radius verse side-pull load obtained by Chang, et.dl., for afailure
probability roughly equal to 1 ppm for side-pull eventstotaling lessthan 1 minutein

duration.

Fiber Bend Radius (mm)

Unsafe Bend Radius

075 1 125
Fiber Side Pull Load (kg)

Figure 6.6 Criterion of fiber bend radius vs. side-pull load (after Chang)

What concerns us hereis the minimum bend radius. It is easy to find that the way
Chang calculated the minimum bend radius in side-pull test istheoretically incorrect or

at least not accurate. Chang’s method is briefly described in the following paragraph.
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From Corning' s guideline [Castilone, 2001], a3 mm radius bend of 1/2 turn

(1800) maintained for 1 minute has afailure probability of less than 0.5 ppm (1 ppm =
10°®). The bending stress of a3 mm radius bend is approximately 223 ksi. Considering a
500 g side-pull event, the applied tensile stress on the fiber is57.8 ksi. The side pull
event is actually a combination of tensile stress and bending stress event. So to ensure
the failure probability less than 0.5 ppm in 1 minute, the bending induced stress should
be less than 223 - 57.8 = 165.2 ks, which corresponds to a bend radius of about 4 mm.
Similarly, they got the minimum allowable bend radii for 1 ppm failure probability
under 1000 g, 750 g, and 250 g side-pull loads as 6.2 mm, 4.9 mm, and 3.4 mm,
respectively. And these data are shown in the criterion curvature in Figure 6.6.
Obvioudy they didn’t take into consideration the influence of fiber length.

According to the previous discussion, at alow F level, the failure probability is

proportiona to the fiber length. Thus, if the failure probability of a 1/2 turn (1800) a3

mm bend radiusis 0.5 ppm, then for aside-pull event, which can be approximated by a

/4 turn (90 0), at 3 mm bend radius, the failure probability will be 0.25 ppm. And the
stress analysis needs to be improved too. From Corning's guidelines, a 3 mm bend
radius (223 ks bending stress) is designated as a stress situation like Figure 6.7(a)
shows, where only the upper haf circle (arc APB) is subjected to tensile stress caused
by bending. But the stress situation caused by a side-pull event (57.8 ksl tensile stress +

165.3 ks bending stress) is actually like what Figure 6.7(b) shows, where part of the



lower circleis subjected to tensile stresstoo— arc A’PB’ is subjected to tensile stress.

Therefore, ssimply using the guideline as Chang did will bring inaccuracy.

(b) —— —

AN

Figure 6.7 () Fiber cross section stress situation for pure bending with 3 mm radius
(223 ksi)

(b) Fiber cross section stress situation for a 500 g side-pull and 3 mm bend radius
(165+58=223 ksi)
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Table 6-5 Allowable bend radius values for side-pull test

Side-pull load minimum all_owable bend | mini mum allowable bend
radius radius from Chang
© (mm) (mm)
0 2.1 3
250 2.4 3.4
500 2.7 4
750 3.1 4.9
1000 3.7 6.2
1250 4.7 8.4 (guessed from plot)

Fiber bend radius (mm)

—— Minimum bend
radius from Chang

IS Minimum bend radius
from corrected
calculation

0 250

500 750 1000 12

Side-pull load (g)

50

Figure 6.8 Criterion of fiber bend radius vs. side-pull load

The minimum bend radius for afailure probability roughly equal to 1 ppm of 1

minute side-pull event was cal culated based on the method developed in Chapter 5,
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using the accurate stress analysis shown in Figure 6.7(b). The result is shown in Figure
6.8, compared with Chang' s result. From Figure 6.8, Chang' s result is much more

conservative than the accurate result.

6.3 Summary

With the bending fiber reliability assessment approach devel oped, guidelines for
industrial application are established in this chapter. Furthermore, with the reliability
assessment curves, one can get more than just the guidelines. Among the four
parameters, fiber length (L), bend radius (R), lifetime (t), and failure probability (F), any
one can be calculated given the other three.

The side-pull test is another example, showing how the reliability assessment
method devel oped in thisthesis can be used to solve apractical problem in industry. The

result could be used to manufacture or evauate relief boots more accurately.

97



Chapter 7

CONCLUSIONS AND FUTURE WORK

Optical fiber reliability issues have been researched for decades. There are
‘fragmented’ theories scattered in the literature. This dissertation is believed to be the
first to systematically put together, expand, and correct all the relevant optical fiber
mechanical failure theories. It presents an exact approach for optical fiber reliability
assessment due to mechanical breakage.

The mechanicd failure, or breakage, of optical fibers must be avoided to ensure
reliability of fiber-based systems. Thefirst stressevent in afiber’slifetimeis the proof
test. It is generally assumed that the proof test truncates the strength distribution at the
proof test stresslevel, and historically no one has documented failures stresses below the
proof stresslevel. But, thisis not consistent with theoretical analysis result that after
proof test the strength of fiber may be much less than the proof test stresslevel. This
dissertation resolves this apparent contradiction by reviewing the theory and conducting
a probabilistic assessment.

With the trend of using optical fiber in computer and switching gear backplanes, a
new potential mechanical reliability problem arises due to the necessary bends
introduced in the optical fibers. Theories about instantaneous failure assessment for

optica fiber in bending has been devel oped, without taking into consideration of static
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fatigue, but practically static fatigue plays an non-neglected rolein fiber reliability. The
bending with fatigue problem is anew subject. This dissertation isthefirst in the
literature that fully discusses this subject. The dissertation reviews existing theories and
then devel ops a new analytic approach to assess the mechanical reliability of optical
fibers under bending loads and static fatigue conditions. This new anaytic approach is

verified through a simple static two-point bend experiment.

7.1 Conclusions

After the correction and improvement of existing post-proof test strength theories,
presented in Chapter 3, some basic misconceptions involved with proof testing are
resolved from a probabilistic point of view. The analysis concludes that for Corning
SMF-28 fiber theoretically only one optical fiber out of abillion, F=10"°, which passes
the proof test, may have a post-proof strength less than the proof stress value. More
precisely, only onefiber in amillion will experience any post-proof stress strength
degradation of more than 6%. Thus practically speaking from a probabilistic standpoint,
the proof test basically has negligible strength degradation influence.

Through proof test smulation, this dissertation examines the parameters of the
proof test. The proof stress level has the strongest influence on both the pre- and post-
proof strengths. The proof test dwell time is the second most important parameter. From

apractical probabilistic standpoint, the proof-test unloading rate and loading rate has
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very little influence on the post-proof strength distribution, even though theoreticaly it
is shown that the absol ute minimum possible post-proof strength is determined by the
unloading rate.

It is mathematically shown in this dissertation that the fiber strength distribution is
greatly influenced by fiber length, and at alow F (failure probability) level, F isdirectly
proportional to fiber length, L. This relationship between F and L clearly indicates that
the readily available strength distribution data from Corning for 20 m fiber gauge
lengths must be used with caution for assessing the strength of short length fibers.

After reviewing existing theories about the instantaneous reliability assessment of
optical fibersin bending, anew analytic approach is developed to assess the mechanical
reliability of optical fibers under bending loads, taking into consideration the effect of
static fatigue. Static fatigue is the phenomenain glass where sub-critical crack lengths
can grow under aload level less than that which would instantaneous failure. The basic
idea of this new approach isto non-uniformly degrade the fiber surface strength dueto
the non-uniform bending stress, and then use the weakest link theory to integrate over
the entire surface of the fiber to get the total failure probability.

Long-term and short-term reliability calculations using the new proposed
approach are discussed in Chapter 4. A discussion of the practical implications of the
calculations helps to explain the underlying mathematics. From the calculation results,
the bend radius has a much stronger influence on the failure probability than time, the

length of time the fiber isheld at a particular bend radius. There are three regionsin the
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failure probability, F, verses bend radius, R, or F verses maximum Stress, orpx, CUrVesS.
These three regions correspond respectively to the high-strength region, low-strength
region, and the proof test truncation region from the initia strength distribution curve.

A reatively simple static two-point bend experiment was conducted to verify the
new reliability assessment approach of fiber bending including the effect of static
fatigue. The approach is used to perform alifetime prediction for 2.5 mm and 2.7 mm
diameter fiber bends in the two-point bend fixture. The prediction results are a good
match with the measured lifetimes. The predictions are conducted with an approximate
uniform bending stress analysis as well as with a more accurate non-uniform bend
radius stress analysis. Not surprisingly the more accurate stress anaysis leads to a better
lifetime prediction.

The two-point bend experiments a so used to demonstrate that an initial tensile
test strength distribution is not needed. For some applications, asimple bending test can
be used along with some corresponding extrapolation to get the fiber’ sinitial strength
distribution. Using this procedure it must be remembered that the bending test data can
only giveasmall part of theinitia strength distribution, because the procedure only tests
very short lengths of fiber.

Using the bent fiber reliability assessment approach developed, guidelines for
industrial application are established in chapter 6. Furthermore, the reliability
assessment curves provide more flexibility. Among the four parameters, fiber length (L),

bend radius (R), lifetime (t), and failure probability (F), any one can be calculated given
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the other three.

The optical component fiber pig tail side-pull test is another example discussed in
the dissertation that shows how the newly developed reliability assessment method can
be used to solve apractica problem that is currently anissuein industry. The results can
be used to help manufacture optical component bend limiting boots or assess current

boots more accurately.

7.2 Future Work and Directions

There are still many issues related to optical fiber reliability assessment worth
further research. Some of them are briefly indicated here.

To make an accurate reliability assessment of a specific fiber, theinitia strength
distribution of this kind of fiber must be known. It isimportant to note that the strength
distribution is most strongly influenced by the manufacturing process. Thus the strength
distribution of the fiber in question needs to be known not in a generic manner, but from
a particular manufacturing lot or at |least site and date. In this dissertation, calculations
are based on theinitial strength distribution of single mode fiber manufactured by
Corning, and tested in year 2000. To get the initial strength distribution, Corning did
arduous tensile testing using many kilometers of fiber. For the reliability assessment of
another kind of optical fiber, maybe just with adifferent dimension, or a new generation

optica fiber with improved quality, the tedious tensile test has to be done again.
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Keeping track of theinitia strength distributions and making it readily available for
reliability assessment is critical. There are many issues associated with the tensile test
itsalf.

B and n are two important crack growth constants, or stress corrosion parameters,
indicating the crack growth behavior. In the calculation of this dissertation, B and n
values used are predicted from Glaesemann’s experiment of high speed testing of
abraded optical fiber in ambient environment. There are some uncertainties surrounding
the values of B and n. It is contended that B and n are temperature and humidity
dependent, and the values from high-speed tests are different from that of the long-term
low-stress fatigue.

The failure discussed in this dissertation is caused by pure mechanica breakage,
no other factor has been taken into consideration, such as heat, optical power. It has
been recently reported that the combination of moderate optical powers (500 mwW) and
tight bends (13 mm) can prove catastrophic for optical fibers[Sikora, 2003], according
to research carried out by BT Exact in the UK. Researchersin BT proposed that the
damage is caused by an increase in temperature that occurs when the power leaks out of
the fiber at abend and is absorbed by its coating. This either causes the fiber coating to
burn off leaving the silica beneath exposed or if the temperature is high enough (around
1100°C) the fiber itself deforms giving rise to alarge permanent optical loss. Thefailure
occurs more rapidly as the power level rises and the fiber diameter shrinks. So bringing

in more factorsin the fiber reliability problem and making more accurate assessment is
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onedirection of future work.

It has been found that in anuclear reactor severe embrittlement of optica
protective jacket will leads to premature mechanical failure of fiber itself [Berghmans,
et.d., 1996], westher or not the radiation will cause embrittlement of optical fiber itself

need further research.
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Appendix A

STRENGTH DEGRADATION CURVE DURING PROOF
TEST BASED ON THE TWO-REGION MODEL
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Input:

Initial Strength before proof test is:

S 168.5534267808781 kpsi

S
— 0.69 1.163 GPa
3 100 3

Result:

X strength § 100

T XO Xl GPa S X2 GPa
—— 100 kpsi S .
S —— 100 kpsi
0.69 0.69
S S S 44.042 kpsi

200

150

100

%0 0 0.1 0.2 0.3 0.4 0.5

Figure A.1 An actual strength degradation behavior during proof test from simulation
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Appendix B

THE TIME DERIVATIVE OF STRENGTH DURING PROOF

TEST

From the definition of fiber strength,

K
S= Ic
Yva

Taketime derivative at both sides,

dS_ K, _-; da

P2 g 2.X9
dt 2Y dt
From Eq.(B-1) yields
ag:s-\(
K Ic
From the crack growth model
da_ AK "
dt

Substituting Eq.(B-3) and (B-4) into Eq.(B-2) yields

ds_ s’.y?
dt 2K 2

Ic

AK,"

From the definition of stressintensity factor,
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K, =Y-o-+a o
=K, ==K, B-6
K,C:Y-S-\/E} =g K (B-6)
Substituting Eq.(B-6) into (B-5) yields
E:_E.A.YZ K, S? .(gj (B-7)
dt 2 S
Define
= L B-8
(n-2)-A-Y2.K, "2 (B-8)
So findly,
ds 1 o
——=_ .83. —\n _
dt B(n-2) (S) (B-9)

It is easy to plot the dS/dt curve in MathCAD. Following is the worksheet from

MathCAD.
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Constants:

n 20
B 10’ GPa? s B .4 3 -
B ——10 B 21 10 kpsi¢ S
0.69
p 100 kpsi
1 n
d(S) s 2
B(n 2 S
110°
d(x) 5104 — =
0100 120 140 160 180 200

Figure B.1 The actual strength time derivative during the proof test from simulation
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Appendix C

THE MINIMUM POST-PROOF STRENGTH FROM TWO-
REGION CRACK GROWTH MODLE

Based on Fuller’s method, Glaesemann solved the minimum post-proof strength
problem for the two-region model. But hisresult is not complete, thereisasmall but

important scenario he didn’t address explicitly. The complete solution will be given

here.
According to Appendix B, the time derivative of strength aong the proof test
profileis
ds 1 2 n-2,0\n <3
—=—=AYK, " (=)'S C-1
- AR (€

For the situation of that the fiber just survive the proof test, there is a point where the

S(t) curveistangent to the unloading stress profile (Figure C.1) named S,

ds_ _
E -—0y (C 2)
S(t) =o(t) = Sin (C-3)

Substituting Eq.(C-2) and (C-3) into Eq.(C-1) yields

3 2

= .0 -
AYZchni72 u (C 4)

min
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Pre-proof Post-proof
strength strength

A A

i mir

*min

f min

t t

| p u

Time

Figure C.1 The situation that just survives the proof test

Another crack growth constant B is defined as

2
(n —2)AY?K, "

(C-5)

Substituting B into Eq.(C-4) yieds

Swn = (0 ~2)B3, (C-6)

It is certainly in crack growth region Il when St) curve touches oft) curve, so the
subscript for nand B is“2” in Eq.(C-6), which would be
S’ = (N, ~2)B,0, (C-7)

But thereis a specia case that needs to be taken into account: for avery high

unloading rate, the tangent point calculated from Eq.(C-4) could be higher than the
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proof stress, i.e,, S, >0, ascurve“a’ in Figure C.2. Thisisthe scenario missed in

Glaesemann’ s solution. This situation could be solved conceptually.
Obvioudly, curve“a’ isnot a‘just survive' case, because it actually doesn’t touch
the proof test stress profile. One certainly can lower the pre-proof strength to get alower

knee point, until the knee point reaches the proof test stresslevel o, . The curve cannot

be lowered further, because the unloading rate is so high that it not possibleto find a

tangent point, which islower than the proof test stresslevel o , to satisfy Eq.(C-4). So

mathematically curve“a’ isthe solution for high unloading rate case but physically

curve “b” isthe correct solution, whose S.;, =0,
Pre-proof
strength Post-proof
A strength
L A
e - \
Si min| b
S*min
. = - —
p
'Sf min
L t p tU

Time

Figure C.2 The situation where the calculated S.,;,, is higher than the proof stress
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So the calculation of S, depends on parameter

o 3
a=—" (C-8)
B,(n, - 2)c

if @ >1,then S, =3/B,(n,—2)5,

if «<1,thenS,, =o

u

p
Then Sy isreduced through dynamic fatigue at a constant stressing rate to Siin,
by two steps, 1) Inregion ll, Sin 2 S; 2) Inregion |, S 2 Spin Here, S isthefiber

inert strength at the cross point of region | and region 11, where

r=—" (C_g)

where o, isthe applied proof stress and at that time.

Pr e- proof

strength P‘g’fi éﬁr ;’ﬁf
A A 9
I
Gp

S* mn
S
= S,
g—r\ mn

a a

Figure C.3 The situation where the calculated S.,;,, is higher than the proof stress
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1D Inregionll, Spin, & 2 S, &

da ;
& AK,™ = AJY (S —6,t)Val™ (C-10)
a ™ 208 = Ay e, (Smn (c11)
O-U
i 2 5 (C-12
2 a. = ar 1 S t = Skmin
1-n,/2 _ n, - n min n,+1 5
RIS _ v A S(=Emin 4y O _
n2_2 ) A2 o, n2 +1 ( U,u ) u (C 13)
a=a. t=0
ch 2
a =( ) C-14
YSmin ( )
— ch 2
a = (YSr) (C-15)

Subtituting Eq.(C-14) and (C-15) into (C-13) and simplifying the equation yields,

2 .

—1 .
G, (n, +1)

[sminnz’z -s, ”2’2] = AK "2y 2 [3min”2+l —(Srr)”2+l] (C-16)

Substituting B2 into Eq.(C-16) and smplifying it yields

3 3.n,+1
S*minnzz|:]- S*¢:|:Srn22|:l Srr—:| (C-17)

 B,(n, +1)5,  B,(n,*+1)5,
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2)Inregionl, S, & 2 Smin, &

& = AK," = AlY(o, - 6,0Val"

a " 2da=AY"5," (- 1) dt
(o2

u

J'af a™/2da = AiYnldu”l'[ar/du (i_t)nl dt
a 0 GU

r

a=a t =90
L.al—"dz =AY"s," 1 .(ﬂ_t)nﬁl o,
a=a, t=0
K
a; =(1)°
YSf min

Subtituting Eq.(C-22) into (C-21) and ssimplifying the equation yields,

2 _ _ _ 1 o
2. Srnl 2_Sfminnl ? =A.1K|crll 2Y2 . : r.
n — Oy (nl +1) Oy
d_m- 2 Alchnl_zYz
B, 2

Finally the minimum post-proof strength is derived

St mi h=2 - g "2 _—(Srr)nlﬂ
" r B,(n,+D)g,

So the minimum post-proof strength is calculated as follows. First find out S-yi
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(C-19)

(C-20)

(C-21)

(C-22)

(C-23)

(C-24)
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3

%p

B,(n, -2)c

if @ >1,then S, =3/B,(n,—2)5,

if «<1,thenS,, =o

(C-26)

p

Then derive Syin from Sin by two steps
S*minnfz ]__L”?" = Sr”fz ]anZﬂ'
B,(n, +1)a, B,(n,+Da,

St mi h-2 - g "2 _—(Srr)nl+l
" r B,(n,+D)g,

(C-27)
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