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Complex engineering systems (CESes), such as nuclear power plants or manu-

facturing plants, are critical to a wide range of industries and utilities; as such, it is

important to be able to monitor their system health and make informed decisions on

maintenance and risk management practices. However, currently available system-

level monitoring approaches either ignore complex dependencies in their probabilistic

risk assessments (PRA) or are prognostics and health management (PHM) tech-

niques intended for simpler systems. The gap in CES health management needs to

be closed through the development of techniques and models built from a systematic

integration of PHM and PRA (SIPPRA) approach that considers a system’s causal

factors and operational context when generating health assessments.

The following dissertation describes a concentrated study that addresses one

of the challenges facing SIPPRA: how to appropriately discretize a CES’s oper-



ational timeline derived from multiple data streams to create discrete time-series

data for use as model inputs over meaningful time periods. This research studies

how different time scales and discretization approaches impact the performance of

dynamic Bayesian Networks (DBNs), models that are increasingly used for causal-

based inferences and system-level assessments, specifically built for SIPPRA health

management. The impact of this research offers new insight into how to construct

such DBNs to better support system-level health management for CESes.
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Chapter 1: Introduction

1.1 Background and Motivation

1.1.1 Complex Engineering Systems (CESes)

Complex engineering systems (CESes) are comprised of interconnected and

interdependent human, hardware, and software components. Examples include nu-

clear power plants, chemical processing facilities, and transportation infrastructure.

CESes are distinct from other engineering systems in that they rely heavily on hu-

man involvement to maintain their functionality. As a result, the relational logic

structure behind CESes are usually quite intricate; between human operators, ma-

chinery, and software programming, deep interconnections within CESes make it

challenging to assess system health from a single component.

CESes have become ubiquitous and serve as key and firmly integrated aspects

of critical infrastructure [1]. There is an increasing reliance on these systems; for

many CESes, their prominence in critical industries and utilities makes the conse-

quences of system failure exorbitantly expensive and undesirable. Failure of these

services could lead to increased risks in the public safety, national security, and

economic sectors [2, 3].
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1.1.2 CES Health Management

Rather than allow a CES to operate until failure, engineers monitor such

systems and generate current health assessments based on operational data. By

tracking CES health, engineers can be more informed when making maintenance

decisions designed to maintain or extend the system’s lifespan. For CES operators,

the ability to assess its current health and forecast future health results in informed

operational decisions and contributes to responsive system maintenance and risk

management practices that improve the system’s safety, availability, and reliability.

When systems consist of highly interdependent components, as is the case for

CESes, the health and functionality of one component is dependent upon the health

and functionality of others in the system [4]. These relationships may lead system

components to degrade or operate differently than otherwise expected. Sensors

that monitor the health of strategic system components generate data about the

system’s current performance. These data have the potential to provide diagnostic

information about the current health of the overall system as well as a prognostic

assessment of future health states given its current health status. Understanding

the current and potential future health states of a system allows operators and

maintainers to make more informed decisions to prolong a system’s operating life

before it loses critical functionality. This is a priority for systems that are mission

critical, expensive to repair or replace from a failed state, or pose a safety risk

to humans and other associated systems if not fully operational. The process of

converting data and expert knowledge from CESes into informed diagnostic and
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Figure 1.1: Modeling complex engineering systems (CESes), such as power plants
and large maritime vessels, with causal-based models like Dynamic Bayesian Net-
works (DBNs), provides system operators and maintainers improved diagnostic and
prognostic awareness.

prognostic decisions is illustrated in Figure 1.1. Such knowledge about a CES’s

health is particularly important following an accident event where action is needed

to mitigate further system damage and loss of functionality.

1.1.3 Health Management through Modeling

A common way to manage system health is to represent system behavior and

functionality through the use of models and simulations. This allows operators to ex-

plore potentially catastrophic scenarios without having to subject the actual system

to those kinds of conditions. There are three forms of health management model-

ing and simulations; risk-based modeling, health-based modeling, and a systematic

integration between the two.
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1.1.3.1 Risk-based Modeling (PRA)

One approach for modeling system health is to represent it through system

risk, i.e., the likelihood of system failure under different operational scenarios and

their resulting consequences. Historically, however, the intricacies and dependencies

within CES components made it too difficult to capture specific operational char-

acteristics from available modeling tools and techniques. As a result, system health

and risk management practices for CESes have traditionally relied on logic-based

system representations that are greatly simplified and assume minimal or indepen-

dent relationships between components [5]. These system-level models, such as

fault trees (FTs) and event sequence diagrams (ESDs) depicting system accident se-

quences, are well integrated into probabilistic risk assessment (PRA) practices. For

CESes, however, operational assessments from these models are not easily updated

with new information made available from on-line sensors and health readings.

1.1.3.2 Health-based Modeling (PHM)

In addition to the logic-based representations found in risk-based models, mon-

itoring systems through sensors and regular data collection makes it possible to

derive health assessments from operational data. Using measured operational data

values and current or historical system and component health states [6], correlations

and associations inherent in a system can be identified using machine learning tech-

niques. These relationships may be determined to be causal in nature via causal

discovery methods [7]. When combined with an understanding of the system’s com-
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ponent structure and relevant physics-of-failure relationships, the resulting causal

models are powerful tools for providing insight into a system’s health [8]. Such tools

have led to the development of prognostics and health management (PHM) as a field

in its own right. PHM research, however, has primarily focused on simple systems

that follow physical failure and degradation processes outside of human involvement.

This raises potential questions as to whether PHM techniques can be scaled from a

simple system scenario to support CES health management.

1.1.3.3 Systematic Integration of PHM and PRA (SIPPRA)

PHM and PRA have both been demonstrated as valuable tools for under-

standing system health and safety, respectively. However, both fields are limited

in the scope of their abilities. This is particularly evident when applying either

approach to CESes, in which safety and operation are both critical. To address

these shortcomings, a greater effort has been placed on better modeling CES health

by performing a systematic integration of PHM and PRA (SIPPRA) methods. In

incorporating system safety and health into a modeling approach, SIPPRA model

designs better capture and represent CESes for improved management.

One SIPPRA approach is to use Bayesian networks (BNs), graphical repre-

sentations of the causal relationships within a system [9]. In this way, BNs and

their temporal counterparts, dynamic Bayesian Networks (DBNs), serve as poten-

tial model structures for connecting causal relationships with available operational

data. DBNs have been applied to a number of CESes and operational scenarios
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[10–12]. Due to their clear logic structure and inference capabilities, DBNs offer

valuable insight as health monitoring models.

As SIPPRA health management relies on available system data, different

model structures may emphasize certain system information over others. This

would result in many viable models generating distinct health assessments lead-

ing to different operational and maintenance decisions. It is important, therefore,

to understand the performance of available model alternatives and the impact that

modeling choices have on SIPPRA health assessments. This is certainly the case

for DBNs, which represents temporal relationships through conditional probabilities

and distributions over a defined time period.

1.2 Research Overview

1.2.1 Problem Statement

There is a need for model designers to develop effective CES health monitoring

models for improved system management. However, the current methods for sys-

tem health and safety management, PRA and PHM, are not sufficiently complex or

scalable enough to be effectively applied to these systems. Although there are many

approaches to systematically integrating the two techniques as SIPPRA, modeling

CESes using DBNs shows promise as the causal-based networks offer powerful in-

ference capabilities alongside a clear logic structure. The novelty of this approach

raises many questions surrounding effective DBN model designs for SIPPRA health

management. One area in particular is the effect that different approaches to dis-
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cretizing operational system data streams for DBN construction and updating has

on model performance.

1.2.2 Research Objectives

This research has four main objectives designed to address the current limi-

tations in understanding the impact different strategies for discretizing continuous

operational system data streams has on the performance of DBN models used in

SIPPRA health management:

1. Define metrics for comparing the performance of SIPPRA methods.

2. Identify and define methods that discretize continuous time-series data for use

in SIPPRA-focused DBNs.

3. Develop a real-world case study that demonstrates the feasibility of using

DBNs for assessing a CES’s operational health and facilitates the comparison

of multiple DBN data stream discretization methods.

4. Compare the performance of DBNs built with different data stream discretiza-

tion strategies.

These four objectives, presented in the visual in Figure 1.2, align to different

aspects of understanding how to develop SIPPRA models that respond to changes

in system operations and effectively capture system dependencies and relationships.

The framework presented shows how the research objectives are not independent

from one another; Objective 4 requires the discretization methods identified in Ob-
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Figure 1.2: The objectives of this research build off one another and allow greater
insight into the impact that different discretization methods have on the performance
of DBN models used for SIPPRA health management.

jective 2, the case study developed for Objective 3, and the comparison metrics

from Objective 1. The outcome of this research is a greater level of understanding

of how to develop models for SIPPRA health management that respond to changes

in system operations and effectively capture system dependencies and relationships.

1.3 Research Methodology and Data

The objectives described above outline a general process for the research pre-

sented in this dissertation; to meet these research objectives, four distinct research

activities were carried out.

1. The first activity was to define system-level metrics that could be used to

compare the performance of different models built for SIPPRA health man-

agement. First, a preliminary literature review on methods for evaluating PRA

and PHM model performance was performed. Next, a structured process was

developed to identify performance metrics as indicators of successfully com-
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pleting SIPPRA processes. The resulting set of metrics were then verified by

discussions with experts in the PRA and PHM communities.

2. The second activity was to identify and define the methods for data stream

discretization. This was done in two phases. First, an initial literature review

was performed to find previously defined methods and identify current gaps

in discretization strategies and applications. Specific attention was paid to

the discretization methods used to convert system data into usable model

time steps. Following the literature search, different discretization methods

were identified and categorized based on common traits. The second phase

involved developing a new discretization method for DBNs used in SIPPRA

health management that minimizes weaknesses identified in current practices

for discretizing operational data into model information found in the initial

literature review. After reviewing the literature on how to formulate DBN

time steps, a framework was developed for an adaptive DBN data stream

discretization method that provides responsive insight into a system’s health.

3. The third activity was to define a case study to effectively study the perfor-

mances of DBNs constructed using the different data stream discretization

methods. The case study used in this research consists of a simulated nuclear

reactor as an example of an operational CES with sensor and other system

parameter data collected over an extended period of time. A DBN structure

was developed for SIPPRA health management based on the causal relation-

ships within the case study system. This structure only contains the nodes
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and the arcs within the model; in order to develop the CPTs needed to enable

insight into the system’s health, code was developed to take operational data

and convert it into the conditional probabilities for different state transitions

within the system. The conditional probability table (CPT) quantification

code was then run and tested for validity.

A simulated operational data set from a sodium fast reactor (SFR) experienc-

ing an accident was used as the source material for the DBN models generated

and compared throughout this research [13]. This data set comes from San-

dia National Laboratories (SNL) and is similar to the data used by Groth

et al. in their work on dynamic risk-informed accident diagnosis procedures

[10]. The data provides information on the thermonuclear, thermodynamic,

and physical interactions occurring within the SFR as it faces varying degrees

of SCRAM failure following a transient overpower event (TOP).

Further information about the data set including the operational context and

the data structure is provided in Chapter 5.

4. The last activity was to perform the comparison and analysis of the different

data stream discretization strategies identified in the second activity. Using

metrics selected from the set generated in the first activity, metric values

associated with different DBNs built based on the case study in the third

activity are compared across models and discretization strategies. The results

from this comparison indicate the impact that different discretization methods

have on DBN model performance and provide insight into effective DBN model
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design for SIPPRA health management of CESes.

1.4 Summaries of Contributions and Key Results

Completion of the four research activities generated the following results and

contributions to the research objectives:

1. In studying the literature on model performance metrics, it was found that

the categories of metrics used to evaluate traditional PRA models and PHM-

based assessments for components and simple engineering systems do not pro-

vide a complete picture of model performance when applied to CES health

monitoring models. To bridge this gap, a new list of model performance met-

rics was built using a structured taxonomy for identifying metrics and metric

classes that should be considered when designing and selecting health moni-

toring models. An approach for identifying performance metrics was proposed

and implemented based on the output of each phase outlined in the SIPPRA

monitoring framework by Moradi and Groth [9]. The characterization, cross-

validation, and verification of the resulting list of performance metrics support

their use in comparing SIPPRA models.

The primary contribution for Objective 1 is a proposed set of thirty-five per-

formance metrics presented as part of an article accepted in Reliability En-

gineering and System Safety (RESS) for use to compare health-monitoring

models of complex engineering systems [14].

2. A survey of the reliability engineering literature indicated that researchers pri-
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marily select a time-based or a parameter state-based approach for generating

data stream time slices depending on the nature of the study; however, there

are other methods that have yet to be utilized that can take advantage of

the dynamic changes in system parameter states to provide a clearer picture

of system behavior. Combining both approaches in a model would generate

meaningful system accident data that could increase system health assess-

ment capabilities while also limiting the model’s computational burden. To

that end, a hybrid time-based approach that utilizes aspects from both time-

and state-based discretization methods was defined to fill the gap.

The primary contributions for Objective 2 are the detailed processes for uti-

lizing three techniques (time-based, state-based, and hybrid time-based) for

discretizing continuous-time data streams into discrete-time slices published

in conference papers for the 29th European Safety and Reliability Confer-

ence (ESREL)[15] and the 2021 Reliability and Maintainability Symposium

(RAMS) [16].

3. A case study was developed to analyze the performance of SIPPRA model

designs. Using simulated nuclear accident sequence data from a TOP event

within a SFR, the network for a joint diagnostic- and prognostic-focused DBN

model was constructed from the reactor’s operational data and accident sce-

nario conditions. The output of the model is a posterior estimate for the

overall health of the system, the nature of the accident, and potential reactor

outcomes. Simple model verification results and observations on the model
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construction process indicate how such a DBN model helps provide system

health prognostic and diagnostic capabilities for monitoring a CES’s health.

The primary contribution for Objective 3 is the formation of a real-world case

study published in an Algorithms article that can be used to further study the

impact that different modeling design choices have on CES health-monitoring

capabilities [17].

4. The results and analysis of comparing fifty-six DBN models built using the

three previously defined discretization approaches across three performance

metrics (assessment accuracy, model construction costs, and average informa-

tion content) provided further insight into the impact that model design has

on the performance of DBNs for SIPPRA health management. The range of

the values provided by these metrics indicate that there is no single perfor-

mance metric to use when considering the appropriate discretization approach.

The state-based models studied had the shortest construction time, but were

susceptible to missing accident sequences when collecting operational data.

Time-based models had the most similar results to the underlying safety as-

sessment, but were constrained by computational requirements to construct

them. The novel hybrid time-based models introduced in this study provided

comparable accuracy to the time-based models, while providing further infor-

mation content. These findings create opportunities for trade-offs based on

different risk model user preferences, needs, and requirements.

The primary contribution for Objective 4 is further understanding into how
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different modeling design choices have on CES health-monitoring capabilities

and will be partly submitted in a conference paper for the 2022 Probabilistic

Safety Assessment and Management Conference (PSAM 2022)[18] and as part

of an article to RESS on the discretization comparison study and results [14].

1.5 Dissertation Overview

• Chapter 2 provides the necessary background information required for con-

ducting the research in this dissertation. This chapter is a collection of short

explanations of topics relevant to developing models for enabling system-level

health management in CESes including: describing CESes and their charac-

teristics; the functions of PHM, PRA, and SIPPRA for health monitoring and

the challenges when applying those techniques to CES health management;

and DBNs and their role in studying the reliability and risk management of

CESes.

• Chapter 3 presents the results from the first research activity, defining system-

level metrics that will be used to compare different time segmentation strate-

gies. This chapter proposes a structured taxonomy for different model perfor-

mance metrics and metric classes that should be considered when designing

and selecting health monitoring models.

• Chapter 4 presents the results from the second research activity, identifying

and defining methods for data stream discretization. Following a discussion

of the preliminary literature review on discretization strategies, this chapter
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presents different model design alternatives from which model performance

comparisons can be made.

• Chapter 5 presents the results from the third research activity, developing a

case study to effectively study the performance of SIPPRA model designs.

• Chapter 6 presents the results and analysis from the fourth research activity,

performing the comparison and analysis of the different time discretization

strategies using the case study described in Chapter 5.

• Chapter 7 provides a summary of the dissertation, its contributions, suggested

work to further this line of study, and the potential impact of this research

on improving the understanding of model design choices on health monitoring

models for CESes.
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Chapter 2: Fundamental Background Information

This chapter provides necessary background information required for conduct-

ing the research outlined in Chapter 1. This includes a detailed description of CE-

Ses, different methods of CES health management, and DBN structures and their

applications in CES health management.

2.1 CESes

As represented in Figure 2.1, the defining feature of a CES is its composition

of interdependent human, hardware, and software components. Each component is

considered critical for maintaining system functionality. With such a broad defini-

tion, CESes include nuclear power plants, chemical processing facilities, and trans-

portation infrastructure. These systems primarily differ from simple (comprised of

only hardware components) or complicated (comprised of hardware and software

components) engineering systems in that they rely on human involvement to main-

tain their functionality; as a result, the logic structure behind CESes is usually more

intricate than either complicated or simple systems.
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Figure 2.1: CESes are comprised of interconnected human, hardware, and software
components. A failure of one of these components affects the performance and,
ultimately, the reliability of the system.

2.1.1 CES Characteristics

Table 2.1 summarizes characteristic differences between CESes and other me-

chanical systems [16]. Collectively, these make it challenging to provide a structured

approach for CES health management. One obstacle is evaluating CES system

health. The failure of a CES component does not necessarily mean complete system

failure; some of these new systems configurations may be considered operational,

while others may ultimately lead to a system failure quicker than expected. Addi-

tionally, the presence of more varied components means CESes face a wider range

of failure modes that could occur and degrade their functionality. Identifying ex-

pected failures can lead to improved measures for preventing or preparing against

those outcomes, but assessing system health as the product of a single component’s

health is often oversimplifying the problem or wholly inaccurate.
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Table 2.1: Differences between simple systems and CESes make it difficult to apply
current health management practices to CESes. Modified from Lewis and Groth
[16]

.

System Characteristics Components and CESes
Simple Systems

Data Sources Limited number of sources Multiple sources
Flow of System Regular data Varying data
Information Rate intervals intervals
Operational Environment Static Dynamic
Interdependencies None/Assumed Integrated

independent dependencies
System Failure Modes Limited Multiple
System Uniqueness Multiple versions Unique
System Failure System-level Wide-ranging/
Consequence Catastrophic
Downtime Cost Limited Expensive
System Behavior Usually low Usually high
Uncertainty

2.2 Different Methods for CES Health Management

2.2.1 PRA

Since a direct measurement of CES health is challenging to evaluate, a common

approach for system-level CES health management is through monitoring the risk

of system failure. The premise behind PRA as a form of health management is that

methodically evaluating different forms of risk that the system is exposed to provides

indirect insight into the health of a system by its ability to mitigate or prevent those

risks [2]. This process takes the form of well-defined logic models where the risks are

properly identified. Traditional PRA approaches to modeling complex engineering

systems rely on well-defined logic models, such as FTs and ETs, where the risks are

properly identified to evaluate the likelihood of accident scenarios, system failures

and their consequences. Although traditional risk management models present off-
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Figure 2.2: General process for PRA derived from Moradi and Groth [20]

line and static representations of system failures without considering the system’s

current operational state, the availability of operational data provides opportunities

to develop dynamic models that can adjust their assessment of system risk based on

system information [19]. Ultimately, this can provide more meaningful assessments

for decision-makers.

The general process for conducting PRA is shown in Figure 2.2 [9]. First,

system information is gathered following the definition of the boundaries for the risk

assessment. That information is then used to identify initiating events of interest,

develop scenarios to study, and then construct a logic model of the risk space. The

results of a consequence analysis based on the contents of the logic model are then

used to inform system health management decisions in the context of mitigating or

preventing different risks to the system.

2.2.1.1 PRA Limitations in CES Health Management

PRA provides an opportunity to capture potential failures of a system and

their likelihoods in a systematic and rigorous manner; however, its current structure

is not ideal for on-line health management. It is difficult to validate risk models as

they would be tested only on scenarios that have happened. An additional challenge

for PRA models is quantitatively measuring their performance; that is, providing
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an evaluation of models and their outputs. In their search for system safety research

validation, Rae et al. [21] found that risk assessment performance was absent in the

literature. Mosleh [22] acknowledged that they may not be verifiable with statisti-

cal evidence, PRA models can still provide credible numerical values. Furthermore,

most PRA models are limited in their ability make on-line adjustments to model

parameters based on new system data. FTs and ETs are constructed from a detailed

process of developing scenarios and constructing the logic model; a proper inclusion

of new data would require a renewed PRA effort for calculating the updated proba-

bility of system faults. Collectively, these problems pose a limitation in using PRA

as the primary form of CES health management.

2.2.2 PHM

The introduction of system health monitoring and the transition from “fix

when broken” prescriptive system management strategies to more “fix as needed”

condition-based approaches requires greater insight into the current health state of

the system [23]. PHM, closely aligned with the concepts of condition-based mainte-

nance (CBM) and failure detection, identification, and recovery (FDIR), emphasizes

health monitoring and system health evaluation through two kinds of analyses [8,

24]. Diagnostics evaluate the current health of the system. Assessments of this kind

answer the question, “Is the system healthy and how is it functioning?” If there is

a problem with the system, diagnostic practices can be used to identify root causes

and pinpoint the failed component. Prognostics, on the other hand, provide insight
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into future system health. Prognostic assessments answer the question, “Given a

system’s current operational state, what is its expected health in the future?” This

requires knowing the current health of the system as well as its expected use in

the future. Prognostics can help determine system degradation patterns and the

expected remaining useful life (RUL) of the system. Based on this information, sys-

tem owners can adjust system management policies to improve system availability,

reduce maintenance costs, and better plan for maintenance events [25]. As a result,

PHM is a popular approach for on-line assessments of manufacturing systems and

hardware components[26, 27].

In their review of diagnostic and prognostic capabilities of manufacturing sys-

tems, Vogl et al. developed a flowchart for a standard PHM system process [20].

The process, illustrated in Figure 2.3, contains four distinct phases:

• Online Data Collection: Operational data is collected from the system via

system sensors and monitors.

• Diagnostics: Collected system data is processed and critical data features are

extracted. These features are used to determine the current health of the

system.

• Prognostics: Extracted features are input into a model to estimate the RUL

of the system. The model is structured on specific operational conditions.

• Evaluate and Adjust System Management: Current and future health states

determined during the diagnostics and the prognostics phases are evaluated.

Changes are then made to how the system is managed to address these findings.

There are two notable observations from this flowchart. First, PHM allows
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Figure 2.3: General process for PHM derived from Vogl et al. [20]

for multiple approaches for identifying and monitoring system health. The diagnos-

tics phase is designed to determine whether a system is healthy based on available

operational data; however, “healthy systems” may be defined differently based on

the features extracted. A similar flexibility exists in the prognostics phase and the

prognostic model used to determine the future health of the system or its RUL [26].

The second observation is that each step in the PHM process is dependent upon

the previous steps. How operational data is processed impacts what features are

extracted; likewise, the inputs (i.e., extracted features) into the prognostic model

affects the RUL estimated for the system. This suggests that changes made to

the PHM process may result in different evaluations of the system’s health. Given

the importance of system’s health for updating and implementing maintenance and

risk management decisions, it is important to understand how changes to the PHM

process impact these assessments.

Advances in data collection and system sensors has led to implementing novel

health monitoring techniques in an effort to apply PHM principles on CESes [17,

28, 29]. Weber and Jouffe [30] modeled the reliability of complex systems with

an object-oriented approach by identifying relationships within the subsystems and

expanding them to the system level. PHM strategies have progressively incorporated
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more data from various sources. [31]. In 2020, Li, et al. [32] created a systematic

methodology for defining and designing PHM for aircraft maintenance. While some

methods rely on machine learning techniques to utilize available system data, others

rely primarily on expert knowledge. Zio and Di Maio [33] approach dynamic failure

scenarios with fuzzy on-line estimations of the RUL for nuclear plants. For these

lines of research, however, the goal was to identify the future state of the system,

rather than to diagnose the current system health.

2.2.2.1 PHM Limitations in CES Health Management

Previous PHM research has primarily focused on components and subsystems

as there is more life data available for these smaller systems and it is easier to assume

that their components behave independently. For these reasons, PHM techniques

often rely on data generated from either a single sensor or sensor type. As men-

tioned earlier, monitoring CES health is more difficult as these systems have multiple

integrated components functioning together and subsystems forming a complicated

network of dependencies and common-cause failures. Data from a single sensor is not

sufficient to provide an accurate depiction of system health; as a result, prognostic

techniques for complex systems require the fusion of various data types and sources.

Despite these challenges, the concept of PHM has promise for supporting CES op-

erations as many of these systems are critical to maintain, costly, and potentially

harmful if not functioning correctly. This is shown by Muller et al. [34] through

their their prognostics model designed to support large industrial maintenance.
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Different research efforts address the gap of rigorous system-level PHM for CE-

Ses by approaching the challenge from different perspectives. Moradi and Groth [9]

propose a framework for integrating PHM advances with the system-level perspec-

tive provided by PRA. This relies on understanding the system’s structure through

the use of fault trees and other logic models. In his depiction of PHM for complex

systems, Zio describes a “distributed intelligent dynamic maintenance management

system” for predictive maintenance [35]. Such a system would utilize available data

from sensors interacting and communicating through an Internet-of-Things. An-

other approach is the use of hyper-fidelity models to monitor system health. The

“Industry 4.0” mindset [36], which focuses on increased mechanization and automa-

tion of health monitoring systems, has led to the design and development of “digital

twins”: precise virtual representations of a system that can replicate the system’s

physics, behavior, and logic structure [37]. These models take advantage of physical

and virtual data and can be modified in real time to optimize system maintenance

strategies. In a review of the state-of-the-art of digital twin technology, Tao et al.

[37] found digital twin research was often applied to PHM for aircraft manufactur-

ing systems, and wind farm turbines. Collectively, these research studies attempt

to scale up PHM capabilities to meet CES health management needs.

2.2.3 SIPPRA

Another approach for addressing the current gap in CES health management

capabilities is to systematically integrate aspects of PHM and PRA into the health
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Figure 2.4: SIPPRA allows for PHM for more complicated systems and predictive
PRA that lie outside of current health management practices.

assessment. Interests in scaling up PHM for larger systems and the introduction of

dynamic and forecasting elements into PRA have led to the development of system-

level models placed in the top-right region of Figure 2.4. SIPPRA ties these two

fields together and provides a structured form for consistently utilizing available

techniques and practices for monitoring, measuring, and evaluating system health

across PHM and PRA. This has largely taken the form of PHM models providing

input information for PRA models [10, 38, 39] or a PHM model taking the logic

structure usually used in PRA models [40, 41]. Recognizing the need for a unified

approach to combine PHM and PRA, Moradi and Groth [9] outlined a structured

SIPPRA framework, shown in a simplified form in Figure 2.5, for monitoring com-

plex engineering systems. In their approach, a dynamic risk assessment framework

identifies the system-level faults before incorporating online system data to perform
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Figure 2.5: General process for SIPPRA derived from Moradi and Groth [9]

health evaluation. System health management decisions made using this structure

take a holistic view of the system while utilizing available and relevant data.

2.2.3.1 SIPPRA Limitations in CES Health Management

The biggest challenge facing SIPPRA health management is its novelty and

limited use. Although there are multiple research efforts underway to model CES

health using a mix of PHM and PRA techniques, it has yet to be widely applied

in industry settings to support system management. This means that there are

many questions left unanswered regarding effective means for representing CESes,

including how to appropriately incorporate system-level data into the health models.

Although there are many techniques for assessing CES health through SIPPRA, the

remainder of this research will focus on one potential modeling method: the Dynamic

Bayesian Network.

2.3 DBNs

DBNs are an extension of BNs, directed acyclic graphs that describe condi-

tional probability relationships between dependent nodes connected by arcs. BNs
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hold the Markov property in which only the direct parents of a node have an im-

pact on the state of that node [42]. In a literature review of BNs in fault diagnosis

research, Cai et al. [12] indicates that for a given BN with Xn variables, the un-

derlying probability that a certain scenario would occur, P , is based on Equation

2.1:

P (X1, X2, . . . , Xn) =
n∏
j=1

P (Xj|parents(Xj)) (2.1)

where parents(Xj) is the set of nodes with arcs into the variable Xj. This

allows BNs to model the probability of certain system conditions as a joint prob-

ability across the dependencies captured in the model. The type of BN dictates

whether the marginal probabilities used in the network are static and describe con-

stant relationships or dynamic, in which they vary over time. The latter models are

referred to as DBNs and provide a more accurate relationship for complex systems

with time-dependent attributes and parameters.

Like static BNs, DBNs share the same overall structural relationship between

nodes over time; however, time-dependent relationships are now included in the

model. DBNs are discrete-time models, meaning they work at specified points in

time rather than a continuous timeframe [42]. These models are further classified

by the number of time slices, also known as intra-slices or time steps, needed to fully

describe the model’s temporal relationship. The assumed DBN structure is a two-

time slice Bayesian Network (TTBN) in which two time slices are needed to express

the modeled system, although DBNs with more complex temporal relationships exist
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Figure 2.6: Rolled (left) and unrolled (right) two-time sliced DBN

[43]. Specific node relationships are more visible when the DBN is presented as an

unrolled BN, as shown in the right image in Figure 2.6.

2.3.1 DBN Inference Capabilities

DBNs are effective in calculating inferences on the node states that are not

otherwise easily observable. Using Bayes’ Theorem (Eq. 2.2),

P (A|B) =
P (B|A)P (A)

P (B)
(2.2)

the following inference techniques are possible with DBNs:

1. Prediction: Given information about the system’s past as well as current sys-

tem information, what is the expected state of a model node in the future?

2. Filtering : Given information about the system’s past, what is the expected

current state of a model node?

3. Smoothing : Given current system information and some information about
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Figure 2.7: The use and frequency of BNs and DBNs in engineering literature
has been steadily increasing. Source: Reliability Engineering and System Safety
Publication Database, Elsevier, Jan 19 2022.

the system’s past, what was the most likely state of a model node from an

earlier time step?

These different methods allow DBNs to be used for a wide range of system moni-

toring and health management applications [44].

2.3.2 DBNs in CES Health Management

DBNs are increasingly used in prognostics modeling and risk assessments for

CES health management for their graphical representations of complicated causal

relationships and powerful inference capabilities [12]. Lewis and Groth [15] found

in their literature search on the use of BNs in reliability research that the number

of articles related to DBNs published per year has been steadily growing since 2012,

as shown in the charts in Figure 2.7. These include studies related to structural

engineering (e.g., [45, 46]), mechanical engineering (e.g., [27, 47], and risk and system

safety (e.g., [11]). In these studies, the CPTs and initial value distribution used to
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parameterize the networks are calculated from available data or determined through

expert-based opinions. A DBN’s logic structure and inference capabilities makes it

a common alternative for causal-based system-level research. The growing interest

in using DBNs to solve reliability problems places additional motivation to create

models that are effective and efficient in their inference capabilities.

Risk-focused and reliability engineering studies have shown the versatility of

DBNs for capturing system reliability and monitoring system health. Early research

connected DBN formalisms to reliability block diagrams [48], dynamic fault trees

[49], and Markov Chain models [50]. As part of their extensive literature review

on the use of Bayesian networks for fault diagnostics, Cai et al. [12] found that

DBNs were used to support specific areas of reliability engineering research, includ-

ing process, structural, and manufacturing systems. Amin et al. [51] used DBNs

to determine a dynamic availability assessment of safety critical systems, Wu [52]

found that DBNs could be used to make safety decisions for tunnel constructions,

and Rebello et al. [53] relied on Hidden Markov Models to monitor system func-

tionality through DBNs. These researchers wanted to capture the dynamic qualities

that would otherwise not be accessible to static models. There has also been some

research into whether DBNs could be used for system health prognostics. Medjaher

et al. [54] represented a small industrial system through DBNs to determine the

expected prognostics of the system, and Zhao et al. [55] proposed the use of DBNs

to monitor fault diagnostics and loss-of-coolant accident progression prediction in a

High Temperature Gas Cooled Reactor Pebble-bed Module reactor. In each of these

instances, an emphasis was placed on providing either system health prognostics or
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diagnostics; there has been limited effort taken to combine this information into a

single model.

DBNs have also been implemented in risk management studies. Kohda and

Cui [11] proposed using DBNs to model and support a risk-based reconfiguration

of safety plant monitoring systems. Khakzad [56, 57] showed the applicability of

DBNs in capturing performance assessments of fire protection systems in chemical

plants. When connected with other risk analysis tools, like FT or ETs, DBNs can

provide meaningful and up-to-date system-level insight. This is evident from the

risk management research coming from the nuclear sector [55, 58]. Groth et al.

demonstrated this by showing how DBNs could be applied for risk management

of CESes as part of a process for providing risk-informed diagnosis procedures[10].

However, there has not been a significant push to merge risk-informed DBNs with

the system health of a CES to generate insight into the current health of the system.

Despite their usefulness in providing system-level assessments, DBNs face a

few obstacles when modelling CES health. One noticeable challenge DBNs face the

rapid growth in computational requirements as model size increases. Model growth

occurs with the addition of new nodes, temporal arcs, and time steps. Models

can expand to provide additional detail in describing a system, further predictive

capabilities, or increased precision within a contained time frame; however, this

requires additional resources for data storage and computational requirements. A

model with an excessive calculation cost is not a practical tool to use in preparation

for accident sequences, and DBNs can easily become too costly for operational use.

Another challenge of modelling a CES as a DBN is handling wide-ranging data
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streams generated from various sources over source-specific rates. Focusing primarily

on data sources with the slowest rates of information propagation results in the

loss of key information from sources that have quicker data turnover. Conversely,

creating a model that prioritizes rapidly generated information can potentially be

unwieldy and computationally expensive. This challenge was recognized by Dean

and Kanazawa [59]. In the first article on DBNs, they suggested that multiple

models might be the solution to address two or more distinct time rates. Recently,

other researchers have attempted to resolve this issue by creating hybrid continuous-

discrete-time models, such as Iamsumang et al. [60], or even rejecting discrete model

and pursuing a continuous approach, like Codetta-Raiteri and Portinale [61]; at this

time, however, discrete-time models remain attractive as they provide efficient ways

of assessing fault and probability issues outside of a continuous time-space.

2.4 Chapter Conclusion

DBNs represent complex time-dependent causal relationships through condi-

tional probabilities and directed acyclic graph models. These models enable the

forward and backward inference of system states, diagnosing current system health,

and forecasting future system prognosis within the same modeling framework. As

a result, there is interest in applying DBNs to model CES health, but there are

open questions on how the decisions about DBN structures and data stream dis-

cretization can impact CES health management. These systems’ tightly integrated

human, hardware, and software components and dynamic operational environments
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have previously been difficult to model using traditional PRA and PHM approaches,

and SIPPRA techniques have mostly been applied to experiments and test cases.

There is a need to further study DBN model designs of CESes for SIPPRA health

management.

This work advances the understanding of how different data stream discretiza-

tion techniques for selecting the data used to develop and update DBNs for SIPPRA

health management can affect model performance. However, this first requires a set

of clear metrics for evaluating system-level model performance.
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Chapter 3: Metrics to Evaluate System-level Model Performance for

SIPPRA Health Management

There is increasing interest in expanding the scope of PHM and PRA sys-

tem modeling to include CESes [9]. Scaling-up PHM for larger systems and the

introduction of dynamic and forecasting elements into PRA have led to research

efforts from both the PHM and PRA communities to experiment with the feasibil-

ity of health monitoring in this space through SIPPRA [9, 19, 62]. Since SIPPRA

research has been primarily exploratory, it is unclear how the performance and pre-

dictive capabilities of these models should be assessed and compared to other model

designs.

As part of the growing effort to better understand how to integrate PHM-type

techniques with traditional PRA practices to provide improved SIPPRA health mon-

itoring for CESes, a structured taxonomy is proposed for generating different model

performance metrics and metric classes to consider when designing and selecting

health monitoring models. Metrics identified in the taxonomy were systematically

developed based on the different steps of SIPPRA health management for CESes

and rigorously verified using multiple forms of metric verification. Comparisons be-

tween performance metrics measured from two model designs provide insight into
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which proposed model is more appropriate for use as a full-scale CES system health

monitoring model. The result of this research extends model design decisions be-

yond assessment-based performance metrics, like accuracy or precision, to include

other relevant information about CES health monitoring models, such as informa-

tion about model inputs or structure. Expanding the definition of performance for

health management models addresses a specific challenge to PHM identified by Zio

[63] in his summary of directions for PHM advancement.

This chapter, accepted as a paper to RESS, first describes the categories of

metrics used to evaluate traditional PRA models and prognostic and diagnostic

assessments for components and simple engineering systems, as well as the limita-

tions they face when monitoring CES health [64]. To reduce this gap, an approach

for identifying performance metrics is proposed based on the output of each phase

outlined in the SIPPRA framework by Moradi and Groth [9]. A proposed set of

performance metrics is then introduced for use to compare CES health-monitoring

models. This is then followed by an illustrative example of using selected metrics for

evaluating a simple model design decision. After presenting research implications

for using such a set, the chapter ends with a summary conclusion.

3.1 Characteristics of Model Performance Metrics

Model metrics are tools for converting model characteristics or parameters into

usable information for decision-making. These decisions can range from selecting

model designs to model implementation practices, and model revisions. Metrics
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are not only tied to the model’s objective (what the model is supposed to do), but

also to its performance in accomplishing tasks that meet that objective. As such,

they can provide useful insight into the model’s overall functional effectiveness and

efficiency.

Models designed for system-level health monitoring are structured to detect

degradation or anomalous behavior that might result in future system failures [65,

66]. By tracking system behavior and notifying system operators when these opera-

tional state thresholds are crossed, these models reduce the likelihood of unforeseen

system failure and, as a result, the risk of resulting consequences. The performance

of these models could, therefore, be identified as the extent to which they reduced

the risk of system failure. However, this is a particularly challenging value to assess,

and previous attempts to measure this have relied on other performance metrics as

a surrogate or an indicator of potential performance. Although there are multiple

model features that could be considered for use as metrics, it is important to prop-

erly identify those that provide meaningful information to the decision-maker who

must determine how a model should be designed, which version of a model should

be used, or even whether to use one at all.

3.2 Performance Metric Classes for PRA Models

As mentioned in Section 2.2.1.1, one challenge for PRA models is quantita-

tively measuring model performance and providing evaluations of models and their

outputs. It is clear from previous considerations of PRA performance [21, 22] that
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Figure 3.1: Metrics for evaluating static and off-line PRA model performance fall
into six metric classes. Green classes address design choices, while the blue ones
capture model output values. The white dashed categories should be considered if
information collection is included as part of the model-building process.

a model performance metric should not just be limited to defining the specific risk

value output, but could also help evaluate the design and data structures under-

lying the model used to perform the assessment. For that reason, comparative

performance metrics for traditional PRA models should fall into the following six

“C” evaluation classes represented in Figure 3.1.

• Coverage describes the scope of the PRA. This includes what system compo-

nents, failures and accident sequences are modeled in the assessment. In terms

of FTs and ETs, coverage captures the number of high-level system failures

and initiating events considered, respectively. A coverage metric, like “Num-

ber of components included” or “Level of system abstraction,” would help to

provide a comparison for which context the PRA model would be applicable.

• In part, PRA completeness expresses the granularity of the risk model [22]. It

may also provide insight into the depth of causality expressed in the model.

Completeness ties in the uncertainties expressed within the model and its
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parameters [67]. As such, metrics in this class include “Number of event

classes” as well as “Range of risk output’s confidence bounds.”

• Correctness for a PRA model is the alignment of its risk output value with the

result of the actual scenario occurring. Sometimes termed “conformability,”

this is approximately the accuracy of the model and is probably the first aspect

of performance considered when comparing model designs.

• Clarity in a PRA model is necessary for explaining not only the model itself

but also its results. Risk communication is a significant hurdle for PRA [2, 21],

and it is important to be able to evaluate and understand what the insights

given by the model are providing and why. Traceability is a significant factor

in model clarity and helps to validate a model as being relevant for assessing

system risk. Work by Johansen et al. [68] on the use of different risk metrics

illustrates the importance of choosing the appropriate values. One metric in

this class could include “Level of user training required.”

• There are two additional performance metric categories to consider when the

PRA model design includes system information collection. The currency of

system information will help determine the age of the information used to

inform the model design. Up-to-date information may provide more emphasis

on accident scenarios that provide more risk now than before. The overall cost

of this system data collection, in terms of time and resources, should also be

considered as well.

The evaluation classes address different aspects of PRA model performance.

While these categories may not equally contribute to a performance assessment,
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combined, they create a fuller picture of model performance than a solely model-

accuracy-based approach. Metrics that measure coverage and completeness classes

address the model design process. Correctness and clarity metrics provide insight

into the risk value output of the model, and, if applicable, the cost and currency

metrics address system data collection. As traditional PRA models are static, most

of the metric classes focus on designing the model rather than its implementation.

This limits the extent to which PRA performance metrics can be used to make up-

to-date decisions on previously developed risk models. It should also be noted that

although the nature of PRA tends to lead towards more qualitative rather than

quantitative performance metrics, these metrics can still provide valuable insight

into the model.

The introduction of dynamic PRA into risk management provides opportu-

nities for models to interact with operational data to provide up-to-date risk as-

sessments [19]. Other metrics from another area of health monitoring, PHM, can

provide some insight into what metrics may be useful in comparing these dynamic

PRA models.

3.3 Performance Metric Classes for PHM Models

Previous efforts to identify PHM performance metrics have largely focused

on evaluating a model’s diagnostic and prognostic capabilities. Diagnostics models

identify health by classifying processed operational data as indicative of either a

“healthy” or “not healthy” system. The primary approach for assessing the effec-
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tiveness of a diagnostic method is to compare the assigned classification value to the

actual state of the system. Metrics that evaluate a model’s performance of binary

diagnostic classifications include commonly used metrics like sensitivity, specificity,

and area under the receiver operating curve [8, 24, 69]. These measures of diagnostic

performance are based on the model’s ability to distinguish between and identify

healthy system states from unhealthy ones. Binary classifications are commonplace,

and these measures are used in a range of performance evaluations, including for

sensors and other monitoring equipment [8, 69].

Prognostic-focused models use features extracted from the diagnostic phase

as input to forecast the RUL of the system. Common evaluations on a model’s

prognostic performance focus on verifying and validating prognostic models based

on how similar the prediction is to the actual lifetime of the system [70]. In their

research on PHM metrics, Saxena et al. [24] grouped similar metrics, like accuracy,

robustness, precision, and convergence, as measurements of algorithm performance.

They found a number of different criteria, including the ease of algorithm certifi-

cation, computational performance, cost-benefit-risk, and algorithm performance,

that one could consider when comparing prognostics model performances.

In addition to prediction-accuracy driven metrics as the primary tool for evalu-

ating model performance, there is also another set of metrics based on implementing

the model itself. In their evaluation process for model-based prognostics tools, Ata-

muradov [71] classified criteria parameters into two overarching categories: general

model context (required expert knowledge, model structure, and data character-

istics) and tool efficiency (run time, accuracy, robustness, prediction horizon, and
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learning time). Zeng et al. [72] created a multi-layer decision-making framework for

assessing the prediction capability based on prognostics performance indicators that

fell under the quality of the RUL prediction and the trustworthiness of the method.

Zio [63] further argued that metrics like model output interpretability can be just

as powerful for evaluating model’s performance as the accuracy of the model itself.

The range of model performance categories identified in the literature high-

lights the multi-objective decision-making process required for selecting a specific

PHM approach. A certain level of performance is balanced with the physical and

computational restrictions of developing a PHM model. This process requires a

careful analysis of the costs and benefits for each alternative capability [28, 69].

Additional factors to cover when determining appropriate system monitoring per-

formance techniques include “time for problem mitigation,” the “cost of mitigation,”

the “cost of failure,” and the “uncertainty management capability” of the system

[24]; these are very similar to the risk factors identified in PRA procedures. Each

of these identified criteria are system-specific and require a baseline understand-

ing of the system, its failures, and available resources for system monitoring and

management.

3.4 Approach and Methodology

When comparing different methods for modeling system health, it is important

to have a set of metrics that can be used to determine whether some modeling

approaches provide the necessary system health information within the needed time
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Figure 3.2: Visual representation of the generation and verification of a comprehen-
sive list of SIPPRA model performance metrics for CESes.

period based on the right information. Although CESes can be extremely unique,

having a set of applicable metrics that could be used to make comparisons across

a range of modeling approaches would make selecting model design choices more

systematic and aligned with the health monitoring requirements for a given system.

Evaluating system-level health monitoring models for complex engineering sys-

tems cannot rely solely on metrics previously used to compare traditional PRA and

PHM models. A new set of performance metrics is needed to provide meaningful

values that can be measured and used to enable improved decision-making in health

model design and selection. To generate a comprehensive set of performance metrics

for models built for SIPPRA health management, this work followed the approach

outlined in Figure 3.2 and described in the remainder of this section.

3.4.1 Metric Formulation

The metrics identified in this research were generated using a modified version

of the goal-question-metric (GQM) method for generating metrics [73]. In this

approach, relevant metrics are determined by identifying a specific goal (in this
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Figure 3.3: SIPPRA process modified from Moradi and Groth [9]

case, the successful performance of a health monitoring model) and what can be

measured to indicate that the model is functional or as usable as expected. This

work considers the performance of a system-level health-monitoring model by its

ability to perform the different health-monitoring tasks identified in the SIPPRA

framework by Moradi and Groth [9] in Figure 3.3. This framework was selected

as the basis for metric formulation because it provides clear steps necessary for

integrating PHM and PRA methods. As the primary output of each task aligns

with an expected goal, metrics can be identified as characteristics from which insight

about the model’s performance in that particular task and overall performance can

be gleaned.

3.4.2 Metric Accumulation

Metrics that are generated from following the process outlined above are then

compiled to form an initial list of model performance metrics.
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3.4.3 Metric Verification

In order to confirm that the set of proposed metrics is comprehensive as well

as to verify the usefulness of the metrics themselves for capturing the performance

of SIPPRA health monitoring models, a three-pronged approach was used for list

verification.

3.4.3.1 Metric Alignment with Modified SMART Framework

A common framework for constructing metrics is the SMART framework

whereby metrics are defined to be “specific, measurable, achievable, relevant, and

time-based [74].” This research used a modified version of the SMART framework to

verify the proposed performance metrics associated with system-level health moni-

toring models have the following characteristics:

• Understandable: metrics should have a clear definition and process for identi-

fying and evaluating them

• Well-aligned : metrics should be an indicator of the model’s performance

• Achievable: metrics should cover a well-defined range of values that are all

possible to reach and measure

• Robust : metrics should be able to be evaluated in the same manner across

time and functionally similar models

• Timely : metrics should be available or determined within a sufficient time

period for the decision-maker

The changes made to the SMART framework emphasize the required information
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quality a decision-maker would need to make to determine model design, selection,

and usage decisions.

3.4.3.2 Functional Group Cross-check

Another method used to verify the process of identifying performance metrics

for system-level health monitoring models is a cross-tabulation of the metrics to

different performance classes. As SIPPRA assumes a systematic integration of PHM

and PRA for health monitoring, assessing how the different metrics align with a

particular metric class from either approach helps identify whether the proposed

metrics sufficiently cover areas identified in PRA and PHM.

3.4.3.3 Expert Elicitation

The final form of metric verification is through structured discussions with

seven experts from the PRA and PHM communities; in total, they possess over a

combined 175 years of experience in their respective fields. Each expert received

a preliminary list of proposed performance metrics that made it through the two

previous verification methods and provided his or her thoughts and insight on the

ones listed as well as other metrics to consider. The experts’ feedback was considered

when developing the final output of this process: a comprehensive list of verified

metrics for complex engineering system health monitoring models.
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3.5 Results: Metrics and their Definitions

This section presents the output of carrying out the process described in Sec-

tion 3.4: a series of meaningful performance metrics for system-level health monitor-

ing models. The model performance metrics are outlined for each SIPPRA phase;

a summary table of the findings from this process are also provided in Table 3.1.

3.5.1 Gather System Information

The first task of designing system-level health monitoring models is to gather

information about the system that will contribute to its proper representation. Data

collected during this phase may include historical data such as system-level diagrams

and maintenance reports. The product of this data collection is further insight

and information into the system’s failure modes and scenario accidents that may

ultimately affect the health of the system.

Four metrics have been identified as relevant measurements of performance

for this health monitoring phase. These metrics involve the nature of information

gathering and the confidence in the completeness of the system information.

• Age of system failure information: the time the system failure information

was last collected.

• Completeness of system failure information: the granularity of the system

data with respect to specific system failures.

• Cost-effectiveness of information gathering : the amount of money required to

improve one of the other metrics from this task.
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Table 3.1: System-level health monitoring phases, their outputs, and relevant met-
rics
Health Monitor-
ing Phase

Phase Output Relevant Metrics

Gather System
Failure Information

Informed understanding of
system failure modes and ac-
cident scenarios

Age of system failure information
Completeness of system failure information
Cost-effectiveness of information gathering
Coverage of system failure information

Construct Dynamic
Risk Assessment
Framework

Step-by-step guide for utiliz-
ing system-level health moni-
toring information

Ease of model modification for new failure
modes
Framework completeness
Framework coverage of known failure modes
Framework explainability
Framework traceability
Preliminary model construction costs

Collect System
Data

Raw current data Age of operational data
Availability of data collection sources
Data collection costs per sampling rate
Data collection equipment requirements
Data coverage
Information content per sampling rate
Number of inferred data sources
Number of operational data sources
Operational data redundancy
Required data storage capacity per sampling
rate
Sampling rate frequency

Pre-process Data Data prepared for subsystem-
level assessments

Pre-processing equipment requirements
Pre-processing explainability
Pre-processing time per sampling
Pre-processing traceability

Perform
(Sub)system-Level
Assessment

(Sub)system-level health as-
sessments

Assessment accuracy
Assessment algorithm sensitivity
Assessment interpretability
Assessment precision
Assessment forecast window
Response time to (sub)system-level anomalies
System state requirements for assessments
Time required for assessment

Evaluate and
Adjust System
Management

Informed system managers
and modified (if necessary)
system operations

Expertise required for model use
Model output interpretability
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• Coverage of system failure information: the scope of system failures for which

data is collected.

3.5.2 Construct Dynamic Risk Assessment Framework

Using the gathered information about the system and its failures, a dynamic

risk assessment framework can be developed that incorporates system-level assess-

ments into decision-level support. To that end, the six performance metrics relevant

to constructing the risk assessment framework emphasize the framework’s structure

and usability for decision-makers.

• Ease of model modification for new failure modes : the amount of resources

(time, effort, material) required to expand the model to respond to new failure

modes, either omitted from the previous model design or recently identified.

• Framework completeness : the granularity of the framework in classifying spe-

cific system failure outcomes.

• Framework coverage of known failure modes : the extent of the model’s appli-

cability to any known system failure, accident scenario, or degradation.

• Framework explainability : the extent of knowledge about the meaning behind

the model’s nodes and parameters.

• Framework traceability : the extent of knowledge behind the values applied to

model nodes and parameters.

48



• Preliminary model construction costs : the amount of resources (time, effort,

materials) required to construct the model that performs the risk assessments.

3.5.3 Collect Data

The previous two steps are carried out during the model design process. Once

the model is operational, the health monitoring model provides assessments based

on online data used in monitoring systems and off-line data collections, such as

human-based inspections.

There are a number of metrics to evaluate the quantity and quality of the data

collection process.

• Age of operational data: the time the operational data was collected.

• Availability of data collection equipment : the availability of the sensors and

other data sources used to measure and capture the raw operational data.

• Data collection costs per sampling rate: the cost (time, effort, resources) of

collecting data for a given sampling time.

• Data collection equipment requirements : the specific equipment and their re-

quirements needed for data collection.

• Data coverage: the extent to which system data corresponds to specific ele-

ments of the model.

• Information content per sampling rate: the expected information entropy for

the data collected at a given sampling time.

• Number of inferred data sources : how many data sources are based on infer-
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ences from other data sources.

• Number of operational data sources : how many data sources are used as input

into the model to provide information about the system.

• Operational data redundancy : how many data sources (sensors, etc) provide

the same operational information.

• Required data storage capacity per sampling rate: how much data storage is

required for the operational data collected at every sampling time.

• Sampling rate frequency : the rate data is collected to be used as input into

the health model.

3.5.4 Pre-process Data

In most instances, the raw data that is collected is pre-processed before use

in the subsystem-level health assessments. The metrics identified from this phase

relate to the efficiency in and clarity of the conversion from available operational

data to usable data.

• Processing equipment requirements : the needs (computational or otherwise)

of the equipment processing the raw data.

• Processing explainability : the extent of knowledge behind the processing pro-

cedure used for the health model.

• Processing time per sampling : the length of time required to convert the raw

data collected into usable information.

• Processing traceability : the extent of knowledge behind the data processing
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values applied to model nodes and parameters.

3.5.5 Subsystem-level Assessment

In this phase, processed data is used to evaluate the health of specific sub-

system levels. This is the level most similar to previous work on model performance

metrics and the prognostics performance metrics research by Saxena et al [24]; as

such, there are a significant number of applicable metrics to consider from this

SIPPRA phase.

• Assessment accuracy : how close the model’s assessment is to the ground truth.

• Assessment algorithm sensitivity : the extent to which the algorithm providing

the health assessment is impacted by changes in operational inputs.

• Assessment forecast window : the period in which the health assessment is

placed.

• Assessment interpretability : the complexity of the translation process between

assessment and subsystem health.

• Assessment precision: the similarity of model assessments when applying the

same operational data.

• Response time to subsystem-level anomalies : the time delay between accident

or health degradation event and and event identification from the model.

• System state requirements for assessments : the operational characteristics re-

quired for the health monitoring model to make an assessment.

• Time required for assessment : the time delay between data input and assess-
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ment.

3.5.6 System-level Assessment

This phase is similar to the process for the subsystem-level; as such it has

similar performance metrics, but at the system level. Because system-level uncer-

tainties are particularly important for complex system health management, those

performance metrics associated with capturing the output uncertainties, like “As-

sessment precision,” and “Assessment algorithm sensitivity” may be of particular

interest.

3.5.7 Evaluate and Adjust System Management

The final phase of the system health monitoring process is to evaluate the

assessments provided by the system and to adjust the system management. In some

ways, this is the most critical aspect of the model as it leads to system and behavioral

changes. Because the assessments from these models may come in different forms

(binary classification, point estimate, distribution), it is important to be able to

qualify the assessments received and their impact on future health decisions.

There are two metrics to consider for this phase:

• Expertise required for model use: the necessary level of user knowledge needed

to properly use the model for system management.

• Model output interpretability : the complexity of applying model results to

system management.
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3.6 Illustrative Example of Utilizing System Health Assessment Met-

rics to Decide Between Models of Different Sampling Rates

The performance metrics for health monitoring models presented in Section

3.5 provide designers with different indicators as to how well or how useful a model

is for capturing system-level health. This enables rigorous comparisons to be made

for determining the optimal model structure and characteristics.

To show how the performance metrics generated using the methodology pre-

sented above could be used, a representative design problem is present wherein

different model designs lead to varying values of performance depending on the

metric. This example provides insight into the implementation of these metrics to

make significant model design decisions.

3.6.1 Example background

For this hypothetical scenario, model designers are deciding what time sam-

pling structure should be included for a Bayesian Network-based health monitoring

model. The baseline design uses system data collected at a standard periodic sam-

pling rate r and is similar to the model design structure presented by Lewis and

Groth [15], but recent sensor additions have made it possible to utilize data collected

at twice the frequency.
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Figure 3.4: One possible decision performance metrics could support is whether to
replace a health monitoring model that has the sampling rate shown in (a), with
either one that has half the sampling rate (b), or one that has twice the sampling
rate (c). A hypothetical accident event is presented to indicate the length of time
to the next data sampling.

3.6.2 Illustrated example

A visualization of the different differing sampling rates for the baseline and

proposed model designs presented in Figure 3.4 suggests that the shorter sampling

frequency would be a better design choice given the shorter time period between

an accident event and new data; however, there are other metrics to consider. The

model designs are evaluated based on five metrics selected from the list provided in

this chapter: sampling rate frequency, required data storage capacity (represented

as the function f(x)), response time to anomalies, information content per sample

(represented as the function g(x)), and framework explainability. The values of the

proposed designs are compared relative to the values of the baseline model (i.e., a

periodic discretization of sampling rate r).
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Table 3.2: Example comparison process across three different models designs for
selecting a sampling rate. Using model design (a) as a baseline, metrics for the
proposed model designs (b) and (c) are first determined and then compare against
each other. A model is selected based on the priorities of the model user and the
resource limitations.

Baseline
Design (a)

Proposed
Design (b)

Proposed
Design (c)

Model
Comparison

Sampling rate frequency r (1/2)r 2r b < a < c
Required data storage f(r) f((1/2)r) f(2r) b < a < c
capacity
Response time to 1/r 2/r 1/(2r) b < a < c
anomalies
Information content g(r) g((1/2)r) g(2r) c < a < b
per sample
Framework Baseline Baseline Baseline a = b = c
Explainability

3.6.3 Illustrated example results

The results of the modeling comparison are shown in Table 3.2. In this ex-

ample, it is assumed that data storage capacity decreases with smaller sampling

frequency, and the information content per sample decreases with greater sampling

frequency.

In this simple comparison across models with different data sampling rates,

different metrics resulted in different relationships across the model designs. The

response time to system anomalies for the proposed model design (c) was shorter

than model design (b), but that model design required greater data storage ca-

pacity and provided less information content per sample. The baseline model (a)

fell consistently between the two proposed model designs. The metric “Framework

explainability” had a consistent value across all three designs
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3.7 Discussion

The results from Section 3.5 identify a list of performance metrics that may be

useful for evaluating system-level health monitoring. This section serves to provide

additional detail into how these metrics could be classified, quantified, compared,

and used to identify appropriate model designs for CES system-level health moni-

toring.

3.7.1 Discussion of the Illustrated Example

The illustrative example in Section 3.6 makes it clear that different model

designs would lead to distinct metric values. The values can then be used to identify

differences between model performance. With this information, model designers

can select the design that meets the need and priorities for monitoring the system.

Those interested in prioritizing minimizing the required data storage capacity may

pick a model with a smaller sampling rate frequency; i.e., more time between data

collection as in design (b). On the other hand, if the safety-critical nature of the

system would require a larger sampling rate frequency, then model design (c) may

be more suitable to implement.

The five metrics selected for this example do not necessarily need to be the only

metrics used to support this kind of model structure decision. In fact, for one of the

metrics, “Framework explainability,” the metric is not affected by the different model

design choices; changing how the data is sampled does not impact the framework’s

structure. Conceptually understanding how the model design decision impacts its
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function is a helpful first start in identifying what metrics should be considered for

evaluation and assessments.

The evaluations of these models can be done in different ways; in a paper

aimed for practitioners to identify proper prognostics tool selection, Atamuradov et

al. [71] proposed a metrics selection matrix provided. Given the large amount of

metrics available, that process is not recommended for an initial approach.

3.7.2 Classification of Metrics

The metric generation process used in Section 3.5 identified a group of perfor-

mance metrics based on successfully completing each of the different steps present in

the framework for constructing and using a system-level health monitoring model.

Sections 3.7.2.1-3.7.2.2 offer methods for classifying these metrics based on different

attributes.

3.7.2.1 Alignment with CES Metric Performance Classes

In addition to being categorized by different SIPPRA phases, the performance

metrics for system level-health monitoring models can also be classified based on

which metric class they provide information. Using the SIPPRA classes found in

Figure 3.5, Table 3.3 maps the metrics to distinct metric classes.The process of

constructing this table served as one of the verification methods used in building

the list of performance metrics.

Table 3.3 provides interesting insight into what type of metrics are prioritized
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Figure 3.5: SIPPRA models have two performance metric classes beyond PRA
models: “Algorithm” and “Computational Requirements.”

throughout the SIPPRA process. There appears to be two groups of metric classes:

those that are specific to a single or few health-monitoring tasks (cost, coverage,

completeness, health modeling algorithm, computational and equipment require-

ments, and correctness), and those that pertain to all or most of the tasks (currency

and clarity). As these tasks can broadly be aligned with traditional PHM and

PRA activities, the combination of groups suggests the importance of these metrics

in both scenarios. Currency of data and information is particularly important for

monitoring the health of the system, and clarity of how and why model designs are

structured as they are and the outputs of the model are necessary across the entirety

of the process of designing and using system-level health monitoring models. The

gaps in Table 3.3 do not mean that there are no performance metrics associated

with this space; rather, the table serves to highlight the metrics that are most useful

to consider.
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Figure 3.6: Performance metrics classified by model aspects.

3.7.2.2 Functional Classification

These metrics are not isolated measurements at different points along the

lifecycle of the health-monitoring model; there are commonalities between metrics

across the different phases. For instance, “framework explainability” and “pre-

processing explainability” metrics could be consolidated into a general “model ex-

plainability” metric. In that sense, it may be better to classify metrics by the

attributes to which they provide insight.

A proposed classification and taxonomic structure for CES system-level health
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monitoring model performance metrics is presented in Figure 3.6. Health monitoring

capabilities are distributed based on the following model attributes:

• Model input: What is the nature of the model inputs?

• Model output (assessments): What is the nature of the model outputs?

• Model structure: How is the model built relative to the system?

• Computational requirements: What computational requirements or limits are

there for the model?

• User Involvement: How does the model user interact with the model?

These categories help direct CES model designers to specific model attributes

that are relevant and should be prioritized. This is particularly relevant if computa-

tional or user limitations are the key inhibiting factors for modeling the operational

system. A similar functional comparison for PHM models was considered by Saxena

et al [24]; however, the groups identified in that research were based on performance

objectives rather than model characteristics.

The re-framing of metrics from a phase-centric approach to a more functional

one further blurs the lines between PRA and PHM metrics and solidifies the need

for this group of SIPPRA health monitoring metrics. Both communities provide

insight into the model input, output, structure and computational requirements.

On the one hand, metrics derived from PHM tasks may provide insight for system

health and monitoring, but this alone is not sufficient for this level of system health

monitoring; there is the need for the system scenario analysis carried out by the risk

side to provide further meaning to the health of the system. The objective of health

monitoring is to enable change or modification to be able to improve the system. In
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this case, they both provide necessary but incomplete functions.

Some metrics have multiple aspects to them. For example, data redundancy

can be expressed as the use of multiple system sensors to monitoring the systems.

However, it can also be used to refer to the data that is collected over the same time

value. It is important to clarify the metric value definitions based on the realities

of the the CES being monitored whenever possible.

3.7.3 Appraising Performance Metrics

An important feature of metrics is that they are measurable. Depending on the

metric, however, how that measurement or value looks like can vary dramatically.

Limited access to data traditionally leads PRA model metrics to be more qualitative

[21], whereas PHM relies on quantitative metrics to compare the performance of

different health-monitoring algorithms. Table 3.4 indicates which of the identified

metrics can be expressed either qualitatively or quantitatively. As there are some

metrics that can be expressed equally well with either quantitative or qualitative

values, it is up to the model designers to determine what form they would like the

metric to take. As there are multiple methods for evaluating these performance

metrics, this chapter does not provide specific examples; however, the citations

listed in Table 3.4 provide instances of relevant work in which this metrics have

been considered and evaluated for a particular problem space.
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Table 3.4: Quantitative and qualitative features for evaluating system-level perfor-
mance metrics
Metric Expressed Example Qualitative Ranges Select Literature on

Quantitatively Evaluating Metric
Quantitative Qualitative

Age of system failure information X Outdated–Up-to-date [75] [75]
Completeness of system X None–Complete N/A [76]
failure information
Cost-effectiveness of information X Inefficient–Economical [2] [2]
gathering
Coverage of system X None–Complete N/A [76]
failure information
Ease of model notification X Rigid–Fully adaptable N/A [77]
for new failure modes
Framework completeness X Binary assessment–Multiple outputs N/A [76]
Framework coverage of X Single failure–Comprehensive [2] [75]
known failure modes
Framework explainability X Black box–Fully explainable N/A [78]
Framework traceability X Black box–Fully explainable N/A [78]
Preliminary model X Prohibitive–None/Minimal [75] [2]
construction costs
Age of operational data X Old–New [75] [75]
Availability of data collection X Unavailable–Available [75] [2]
sources
Data collection costs X Expensive–None [75] [2]
per sampling rate
Data collection equipment X Significant burden–None [79] [79]
requirements
Data coverage X Limited–Full [2] [75]
Information content X Low–High [80] [69]
per sampling rate
Number of inferred data sources X None–Many [79] [79]
Number of operational data X None–Many [79] [79]
sources
Operational data redundancy X None/Unique–Duplicative [81] [79]
Required data storage capacity X Prohibitive–None/Minimal [79] [79]
per sampling rate
Sampling rate frequency X Very low –Very high [80] [79]
Pre-processing equipment X Significant burden–None [79] [69]
requirements
Pre-processing explainability X Black box–Fully explainable [78] [78]
Pre-processing time per sampling X Too slow–Instantaneous [79] [71]
Pre-processing traceability X Not traceable–Fully traceable N/A [82]
Assessment accuracy X Not Accurate–Highly accurate [24] [79]
Assessment algorithm sensitivity X Highly sensitive–Not sensitive [83] [79]
Assessment interpretability X Not meaningful–Meaningful [84] [85]
Assessment precision X Not precise–Very precise [24] [79]
Assessment forecast window X Immediate–Long-term [24] [86]
Response time to (sub)system- X Instantaneous–Too slow [24] [71]
level anomalies
System state requirements for X Significant burden–None [87] [79]
assessments
Time required for assessment X Slow–Fast [87] [71]
Expertise required for model use X None–Specific training [2] [2]
Model output interpretability X Not meaningful–Meaningful N/A [84]
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3.7.4 Metric Comparisons

The performance metrics described in this chapter are intended to be appli-

cable for use across health monitoring model types and structures. As such, these

metrics are not only beneficial for evaluating a model’s current performance but

also for comparing differences in health monitoring model designs. In developing a

model, the designer must consider a range of design and structural choices before

selecting the optimal alternative for use. Performance metrics provide a systematic

and clear approach for identifying better design choices for specific health monitoring

objectives.

There are two kinds of metric comparisons that should be considered when

ranking model designs. The first case occurs when the design change impacts a

limited number of model aspects. In that instance, the metrics that differ across

models can be compared to one another. One approach for this would be to use one

model as a baseline and to compare the “robustness” of the model; that is, how did

the design change cause the metric in question to change relative to the baseline.

This is a variation of the PHM metric “Sampling Rate Robustness” proposed by

Saxena et al. [24], which was defined as the estimated effect on metric M from a

change in the data set sampling frequency for a reference data set of length L. From

a baseline reference frequency, they argued that the impact of that particular design

choice, SRS, could be defined as Eq. 3.1:
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SRS(ωreference, ω) =
1

L

L∑
l=1

min(M(l, ωreference,M(l, ω))

max(M(l, ωreference,M(l, ω))
(3.1)

Depending on the metric in question, the proposed design may be more or less

preferable if the calculated SRS is greater than or less than 1, the value associated

with no change to the model’s performance. A generalized version of this equation,

Eq. 3.2, provides a clear method for comparing the same metric’s robustness across

different model design alternatives D :

R(Dreference, D) =
1

L

L∑
l=1

min(M(l, Dreference,M(l, D))

max(M(l, Dreference,M(l, D)
(3.2)

Comparisons across performance metrics to make design decisions, however,

require a greater understanding of the system operator’s priorities for system-level

health management. If the objective is to minimize health management costs, de-

signs that result in decreased cost-related performance metric (i.e., utilizing older

data, reducing amount of data collection) values will be prioritized; likewise, if health

accuracy is more critical, then system-level assessment performance metrics will be

more important to consider. The functional breakout of metrics described in Section

3.7.2.1 provides a good approach for identifying relevant metrics to prioritize for a

given model function.
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3.8 Future Improvements to Performance Metrics Set for SIPPRA

Models

Future research for identifying performance metrics for system-level health

monitoring models falls under expanding of the list of performance metrics, further

defining how to quantify the metrics, and the identification of specific groups of

metrics that can be used to answer design questions. Work on any of these areas

will help to provide model designers with improved insight for designing optimal

models for a specified performance level and operational requirements.

This work plants a stake in the ground for the different performance metrics

available for evaluating CES health models. Although the list in Table 3.1 provides a

comprehensive picture of system-level health monitoring model performance, the list

was derived using the SIPPRA framework outlined by Moradi and Groth [9]. A more

detailed study using different approaches for SIPPRA can look into the different

metrics and functional groups presented and determine whether other metrics should

be considered when selecting criteria for comparing model designs.

Another way to improve this work is to consider other ways for quantifying

these characteristics. One strength about the list of identified performance metrics

is that each metric has a wide range of possible methods for evaluating them; this

makes them applicable to a number of different model scenarios and system types.

However, some metrics, such as those associated with model interpretability and

explainability, are currently better described in qualitative terms rather than quan-
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titatively. Defining a new metric that is calculable may prove to supply further rigor

and objectivity to those metrics. One potential way to do this is through the use

of a belief triple that provides different values about an individuals belief, disbelief,

and uncertainty of a given design question.

A third step forward for future research would be to identify which groups

or metrics are useful for answering specific model design and structure questions.

Although this work has verified the list of proposed metrics, and the structured

example presented in this chapter illustrates how these metrics could be used to

make a design decision, the decision-making process has yet to be validated. That

would require the implementation of these metrics to make and justify a model

design decision. To do that though, certain metrics may be more useful for making

those comparisons than other metrics; future work to consider performing includes

further identifying those metric groups and classifications through a more detailed

case study featuring specific model designs or a particular CES.

3.9 Chapter Conclusion

The availability of different performance metrics for models built for SIPPRA

health management outlined in this chapter allow for risk and health models to be

selectively designed and developed to monitor complex engineering systems. Health

monitoring models can be time and resource-intensive to construct and maintain;

identifying what is important for building effective and efficient models to monitor

and approximate system prognostics and diagnostics is critical in maximizing their
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utility.

Ultimately, as shown in the structured example in Section 3.6, the type of

performance metrics used depends on the nature of the system and the operational

requirements of the model. Systems with a greater reliance on human features

may opt for faster response times for quicker human intervention, while hardware

and software-heavy systems might find reducing required data storage capacity more

desirable. Using different performance metrics identified and verified in this chapter,

as well as scenario-specific quantification strategies, will lead to different design

choices based on the balance between functional need and operational constraints.
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Chapter 4: Techniques for Discretizing Operational Data Streams in

Continuous-Time Accident Sequences

CES health models need to account for the large volume of available system

data produced from multiple sources. The flow of data, however, can range from

monthly or quarterly inspections to a near-constant stream of sensor information.

This is particularly relevant for SIPPRA models that incorporate failure mode and

risk analyses with live system data. DBNs simplify this requirement by segmenting

data streams into discrete time periods to minimize data collection and processing

requirements. However, there are multiple ways to discretize a continuous-time

event sequence, and, unlike the discretization of continuous parameters and variable

states, there is limited research on the definition and formulation of time steps in

discrete-time models [59]. This chapter presents a range of techniques that can be

used for discretizing continuous-time event sequences into discrete-time slices for use

as input information for DBNs. The results of this work were presented in conference

papers for the 29th European Safety and Reliability Conference (ESREL 2019)[15]

and the 2021 Reliability and Maintainability Symposium (RAMS 2021) [16].
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4.1 Operational Timeline for CESes

CES health evaluations are built upon the assessed health of system compo-

nents, which in turn is derived from the measurements of system parameters. As

such, CES health is not a single measurement, but the product of a complex inter-

action between multiple data streams. In the wake of an accident or operational

changes, the shifts found in CES data streams reflect failures or degradation beyond

baseline operational statuses that ultimately affect the system’s overall health.

The generic operational timeline presented in Figure 4.1 depicts a simplified

relationship of CES health with various types of CES data prior to and following an

accident event. The start of the timeline (t0) consists of baseline operational infor-

mation about the current system’s health and operator activities, O0. As readings

from sensors or other health monitoring activities come in, they provide information

about the system’s parameters. These readings can occur at different rates, thereby

providing new information with which to update the system’s health status. Over

the course of a CES’s lifetime, events can occur that fundamentally change certain

aspects of the system. The impact of these events may also generate a delayed re-

sponse from the parameter readings or operator activity. Immediate knowledge of

these events or degradation states can mitigate accident consequences or change how

the operator may respond to the accident scenario; however, discrete-time models

like DBNs require a structured approach for for modeling time-dependencies within

the system. If each parameter modeled has a distinct cycle for providing new in-

formation, then there is the potential for various approaches existing for defining

70



Figure 4.1: Simplified operational timeline for a generic complex system that vi-
sualizes the relationship between an event Ei, which impacts the system’s physical
parameters, and the system operator’s activity state Oi.

discrete-time slices for a continuous-time sequence.

4.2 Time Segmentation: Analogous Research in Data Mining

The primary objective of CES data stream discretization is to model the flow

of system data in such a way that the progression of system health due to changes in

system parameters is effectively captured. With this information, a system’s health

could be evaluated based on collecting operational data. This problem has analogs

in computer science data mining research. One common problem studied is the

successful representation of time series data by mining databases over the use of large

time segments. By utilizing segments rather than the full database, storage, use, and

transmission of the information can become more efficient. As such, efforts towards
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“time segmentation” are comparable to data stream discretization as both efforts

attempt to use less data points to create as complete an image as possible. Even

the description of the segmentation problem itself is similar: “Given a time series

T, produce the best representation using only K segments such that the maximum

error for any segment does not exceed some user-specified threshold.” [88]

In their review of time segmentation algorithms, Keogh et al. [88] identi-

fied three primary methods providing a clear way for segmenting time while also

maintaining the shape of the data:

• Sliding Windows: Using a starting point for the time segment, this approach

approximates the data to the right of the starting point with increasingly

longer segments until an error threshold is met.

• Top-Down: This approach partitions time series in a recursive manner until a

threshold is met.

• Bottom-up: In a similar move to the top-down approach, this method merges

data from the smallest approximation until a threshold is met.

Although a similar concept, there are a few differences between the time seg-

mentation and the data stream discretization problems that the computer science

and reliability engineering world are trying to face, respectively. First, time seg-

mentation problems focus on replicating available data segments and data sets.

This is different from CES health management, where the goal is to relate new op-

erational data with previously identified system health behavior. The data stream

discretization problem can be expressed as, “Given a time series T, produce the best

representation using only K data points such that the maximum error for any seg-

72



ment does not exceed some user-specified threshold.” Rather than trying to replicate

the existing operational data, CES health models try to determine current system

health. For that reason, “discretization” is a more appropriate term to be used in

this context as the method transforms a continuous stream rather than a fixed data

set. To that end, the top-down and bottom-up approaches by Keogh et al. are not

useful algorithms to consider as the operational data set considered is continually

expanding with new system data. The sliding windows algorithm, however, may be

a useful tool to apply when considering a range of discretization lengths.

4.3 Analyzing DBN Discretization Methods in Reliability Engineer-

ing Literature

To determine how the reliability engineering community has previously ad-

dressed continuous-time discretization of data streams when constructing DBNs,

reliability research publications were reviewed and categorized by the discretization

method used. Within the Reliability Engineering and System Safety (RESS) pub-

lication database on Elsevier, 135 publications from 1988-2021 were identified as

related to “dynamic Bayesian Networks.” Of the 135 publications, 44 used DBNs as

a primary components in their work and were considered “relevant” to this analysis,

30 were “loosely aligned” with DBNs but did not specifically used DBNs in the re-

search, and 61 were considered “not relevant” to DBNs. Those that were classified

as “not relevant” identified previous DBN research as fundamental to the published

work, but did not contribute any DBN-related research.
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4.3.1 DBN Discretization Methods Used in Reliability Research

4.3.1.1 Time-based Discretization

The primary discretization method for constructing DBNs use operational time

as the discretizing factor. The earliest depictions of DBNs describe a generalized

model with an unspecified time discretization; Dean and Kanazawa’s [59] formula-

tion of their model assumed that time was linear and that time steps were discrete

and separated from one another by a constant “little ∆.” This is similar to another

approach by Cooper et al. [89], who used the same concept to create a model that

predicted disease diagnoses based on temporal evidence. A generalized approach

was also used in the research carried out by Kohda and Cui [11]; in their work, a

time slice K was considered to be ∆t away from its preceding time slice.

The timeline in Figure 4.2 shows how the operational timeline presented in

Figure 4.1 would be partitioned using a generalized time discretization approach.

Over a total length of time T , n time slices could be drawn over evenly-spaced

intervals of length ∆t at ti, where i is the number of the time slice after t0, the

origin of the timeline. The location of these slices are independent of any events or

system parameter fluctuations.

The n slices divide the operational timeline into n+1 different regions that

theoretically represent the range from [ti, ti + 1). The values of the parameters and

other system states at the beginning of the time region become the inputs used in

the DBN to represent system operations until the next time slice. Using the system’s

74



Figure 4.2: A time-based discretization overlaying the system operational timeline
pictured in Figure 4.1. The time slices marked at ti are separated by a distance
∆t which reflects a regular data rate retrieval. This technique is independent of
system-specific events or parameter changes.

status at the beginning of the model timeline as the model’s initializing information,

each region Ri(X1, X2, . . . , Xn) can be determined from the following relationship

based on the model’s conditional probability tables that define the system:

Ri(X1, X2, . . . , Xn) = f(R(i−1)(X1, X2, . . . , Xn)) (4.1)

where f(R(X)) is the formulation of the different conditional probabilities of

that particular region. The space between intervals, ∆t, is left unspecified and

reflects the computational origin of this type of model. Often, it is indicative of the

described model’s granularity; i.e., for a TTBN, the fundamental time difference

between the anterior and posterior time slice.

As DBNs became a more frequently used method to approach reliability and
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PHM-related problems, it began to be appropriate to define the spacing interval

used in the model. There is not a significant difference between constructing a

generalized or periodic-based model; the difference is whether the ∆t is known. In

either case, the interval is repeated across the timeline.

Choosing a specific periodic time step for a DBN varies on the availability of

computational resources and uncertainty in the system. As previously mentioned,

generalized time steps reflect the granularity of the model; to that extent, the period

length can be based on the rate of information released about a specific parameter.

Typically, that time step is the lowest common rate of relevant information genera-

tion. Time steps can also be calculated to cover a pre-determined amount of time T .

In that case, the space between each time slice is ∆t = T/k , where k is the number

of intervals to be included in the model. This matches a parameter discretization

method referred to as the Equal Width Distribution, whose intervals are defined by

Yang and Webb [90] as:

t0 + ∆t, t0 + 2 ∗∆t, . . . t0 + (k − 1) ∗∆t (4.2)

4.3.1.2 State-based Discretization

The techniques described in Section 4.3.1.1 model a continuous operational

timeline with discrete, evenly-spaced time steps. While such a method is com-

monly used in constructing DBNs, there are other approaches to discretizing time.

These alternative methods identify significant parameter changes or threshold events
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within the system and use them to assign the time slices.

State-based discretization techniques partition a system’s operational timeline

based on the attributes of its parameters. In a dynamic system, it is expected

that nodes representing physical parameters may have a wide range of possible

state values; depending on the user’s needs, there is flexibility in defining when

an interval cut is made. Figure 4.3 illustrates how a status-based discretization

would partition the timeline; in this instance, the time slices would occur when

the change in parameter A reaches a certain threshold value. In other instances,

it may occur when the change in parameter values has been deemed significant. A

similar approach can also be applied to discretize the operational timeline by events

that impact the system. Since events have a distinct and irreversible impact on

the system’s state parameters, they provide useful information as markers in the

operational timeline.

Using a state- or event-based discretization technique provides a discrete-time

model with time slices that are closely aligned to time periods of shifting operational

information and priorities; however, they are significantly more complicated to con-

struct than their periodic counterparts. Instead of creating a timeline that has the

desired number of time slices with a specified time length, the state-based discrete

model are dependent on the current information provided by the system; as a result,

the time slices are determined in near-real time. This type of discretization requires

continuous access to system data to determine where the significant changes occur.

There are a few constraints that need to be met in order for DBNs constructed

with these discretization approaches to be functional. First, the system operations
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Figure 4.3: A state-based discretization method overlaying the system operational
timeline. Since the parameter is affected by events that impact the system, these
markers may be more useful in determining the health of the system at more tur-
bulent moments.

cannot be repeatable; i.e.,

Ri(X1, X2, X3, . . . Xn) 6= Rj(X1, X2, X3, . . . Xn) (4.3)

where Ri and Rj are different time regions. DBNs are required to be acyclic;

however, there may be times when the values of the nodes may repeat themselves.

It is understood that when this happens, the two configurations are not identical.

More often than not, the preceding time slices differ, resulting in a different set of

marginal probabilities. Additionally, the determination of the time slices must align

with the requirements specified by the model. Fortunately, events and state changes

would be identified during the regular pace of data generation for the system.

Although limited, there are a few papers that use non-time based methods to
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discretize their model. Zhou et al. [91] created DBNs based on components that

generated batches for aerospace pyromechanical device products. Bismut and Straub

[92] used fatigue cycles. In each case, the time steps between the models was not

consistent, but the implication is that the same loads were applied to the systems,

making it possible to apply a consistent causal relationship. Some researchers, such

as Zhao et al. [55] created simulated events that change the status of the studied

system; the manufactured changes align with the time-based discretization used in

the experiments but do not use the event itself as a means of breaking apart the

operational timeline.

4.3.2 Analysis of Current DBN Discretization Practices in Reliability

Research

Table 4.1 shows the distribution of the research by general topic area and

discretization technique. The research literature in this table only used two methods

to construct DBNs. For research in which accidents or events were planned to occur

at a given time during the experiment, those models were classified as “time-based”

because the event-related information was not used to create the time steps.

It is understandable why research has primarily used time-based discretization

techniques for constructing DBNs. The benefit to using a standard division of oper-

ational time is that DBNs are simpler to construct when their CPTs are quantified

using a pre-determined time interval. However, because they generate time steps

that are independent of the status of the system, models can become redundant and
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Table 4.1: Distribution of DBN discretization methods in Reliability Engineering
and System Safety articles, 2005-2021.

Topic
Discretization

Method
Number of Research Submissions

General
Engineering

Time-based
State-based

Other

17
1
0

Petrochemical
and Chemical

Time-based
State-based

Other

11
0
0

Manufacturing
Time-based
State-based

Other

2
0
0

Miscellaneous
Time-based
State-based

Other

12
1
0

Total
Time-based
State-based

Other

42
2
0

computationally expensive when the time steps create time periods in which the

system does not change significantly. Alternatively, depending on the granularity of

the model, events or state changes could be missed if the width of the times steps

are significant enough.

4.3.3 Gaps in the Current Literature

A main conclusion from the analysis performed by Lewis and Groth [15] was

that the discretization methods used in current reliability engineering studies face

unique challenges. The independent nature of time-based discretization means that

certain time intervals limit the amount of operational data considered for assessing

system health. On the other hand, a state-based discretization approach depends

entirely on a system’s current operational status; if a parameter threshold is not

reached, the model will not capture valuable system information. This prevents
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significant system health forecasting in the event of pending system degradation.

Previous efforts to model CES health using DBNs have relied on consistent

sensor information sampling rates across the system’s operational timeline. Since the

intervals were determined prior to their implementation, the models were indepen-

dent of the system’s operational context. As such, significant changes in a system’s

operating state resulting from accident events or dynamic operational environments

can render prior data collection rates ineffective. Overly frequent sampling may

result in redundant data collection and processing, while infrequent rates lose the

operator valuable response time and insight to address any system malfunctions. It

is desirable, therefore, to have a method of adjusting the model’s discrete updating

rate to respond to dynamic shifts in the complex engineering system’s operational

status.

4.4 Developing a Hybrid Time-based Discretization Model

The analysis on the discretization methods outlined in Sections 4.3.1.1 and

4.3.1.2 indicate that relying on either a solely system-independent or fully system-

dependent method to discretize an operational timeline has varying challenges with

respect to computational costs and redundancy of the model. A system-independent

time discretization method is easy to create and initialize; however, it does not re-

spond to the unique features of a specific system. Alternatively, a system-dependent

approach identifies critical events and parameter changes of interest; however, doing

so would be resource-intensive and require a significant amount of a priori data to
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Figure 4.4: Example of proposed hybrid time-based data measurements for a system
experiencing an accident. First, system events are identified; then, a periodic time
step is used to monitor the changes in the system until another event is identified.

understand system state fluctuations.

Integrating these two techniques in a hybrid discretization approach, would

produce a DBN that has the beneficial aspects from both discretization methods.

One method of hybrid discretization would be equivalent to non-uniform spacing

between events. Immediately following an event, new information provides more

insight into the system’s health; as such, there may be a need for a model to have

more time steps. Once the system’s parameters have stabilized to the event, fewer

time steps are needed to understand the system’s status. This approach was used

by Groth et al. [10], who partitioned the operational timeline of a nuclear plant

accident sequence over varying lengths based on how much time had elapsed since

the accident.

Another hybrid implementation of the two discretization approaches, shown
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in Figure 4.4, uses two different time scales. A primary time scale is used as a

baseline for system measurement until an event occurs. Following the specified

event, the model uses a secondary time scale for system measurement. The width

of the time step used following an event depends on the desired granularity; smaller

time intervals generate a greater amount of information to conduct prognostic and

system health-related inferences, while longer time intervals provide fewer updates.

The remainder of this chapter is the structured proposal and demonstration

of the approach mentioned above to sample data from a near-continuous stream of

system information at an appropriate rate during an accident scenario. The result

of this method will be to construct causal-based models, like DBNs, with CES

operational data that better reflects the current health status of the system.

4.4.1 Changes to a CES Operational Timeline During an Accident

Sequences

Assume that a CES C has an operational timeline OT , in which there exists

two time periods, as shown in Figure 4.5: a normal operational time period O0

and an accident operational time period O1. The transition from O0 to O1 occurs

following accident A, but the timing of the accident is unknown. It is also assumed

that following the accident, C maintains the same structure and rate of information

availability.

Within CES C, there exists a set S of system data sources that could be used to

measure, quantify, and monitor the system’s health. Elements within this set could
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Figure 4.5: Following an accident, a CES needs a new interval for appropriate system
health management

be sensors, health monitors, or even system performance evaluations. Each data

source D has an information input value i with a minimum updating interval of rate

R. The data sources, their values, and their information rates are inputs into a utility

function UO, that describes the model’s overall value. By understanding the model

utility function, one can optimize the function to maximize model performance

and minimize performance costs by adjusting data collection rates. The optimal

collection rate determined should then be used in a normal operational environment.

During an accident sequence, however, the value of system data shifts. The

causal relationships held during the O0 phase may no longer be valid, requiring new

system relationships to be identified. In order to reach a similar level of confidence

in the health assessments evaluated during the O1 phase, an increased sampling

rate is needed decreased amount of time may be needed to better understand the

progression of affected system operations and system health following the accident.

Following these steps results in the discretization structure in Figure 4.4.
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4.4.2 Hybrid Time-based Discretization Framework

The framework for the hybrid time-based approach for data stream discretiza-

tion, represented visually in Figure 4.6, contains five steps for developing a re-

sponsive data collection strategy that provides relevant system information to make

system health assessments.

In Step I, available system data sources and their rates for generating new

information are identified. Causal relationships that occur within the system are

identified in Step II. These two steps help construct a DBN causal model structure

that represents the system as well as prepares for Step III: determining the data

updating rate interval under normal operating conditions. The measurement interval

is conditional on the available data sources, the quality and age of information, and

the resources available to process the data into meaningful prognostics work. It is

assumed that the system is initially in a normal operational phase and predominantly

stays under those conditions. This is reasonable given the relatively low frequency

of accident occurrences for a standard system.

Steps IV and V reflect that CESes operate in dynamic operational environ-

ments. The fourth step of this procedure considers what accidents may occur to

the system, and the parameter thresholds that would indicate whether a system

has transitioned into abnormal operating conditions. Certain information may be

more indicative of system health after an accidents. The last step is to identify data

sampling rates that can better identify system health following specific accidents.

Depending on the accident, different values may be identified and considered.
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Figure 4.6: Proposed procedure for determining CES operational data interval rates
in dynamic environments

The result of this method is the formation of a DBN model that emphasizes

a better understanding of the system health for a degraded CES. Data collected

at these specified intervals will be input into the DBN as new evidence and will

propagate new system and component health estimates.

4.5 Applying the Hybrid Time-based Approach to a Simplified Ac-

cident Scenario

A simple toy problem is used to demonstrate how the hybrid time-based sam-

pling method proposed in Section 4.4.2 is applied to a CES operational timeline. The

structure of the problem is not based on an actual system but serves as an appro-

priately complex example for understanding the differences in using this technique

over a general time-based discretization.

Demonstration of Step I
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Figure 4.7: DBN for simplified toy problem

In this example scenario, there is a CES C with two suites of components, A

and B, that is at risk of an accident event E. Each component suite has distinct

failure modes and share a common failure mode as well. Operators to this system

are monitoring readings from the suites and make system adjustments accordingly.

Component Suite A provide suite info every second, while B provides new info

every five seconds. The variability of system information data suggests multiple data

processing rates are viable for constructing a DBN for SIPPRA health management.

Demonstration of Step II

The DBN structured in Figure 4.7 is based off the information outlined from

Step I and represents the causal relations between the health of CES C and its

system parameters and operator actions.

Demonstration of Step III

In this study, the normal operating time step would be five seconds, the rate of

data generation for Component Suite B. This was chosen because new data would
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be available for each relevant system parameters at each time step. This is not the

fastest possible rate; Suite A generates new data every second. However, the longer

interval reduces unnecessary data collection and storing and model requirements for

a system operating under standard conditions.

Demonstration of Step IV

As mentioned earlier, Event E may occur and provide degradation if the com-

ponents are not functioning as intended.

Demonstration of Step V

For the defined accident sequence, Event E, it is important to identify a data

interval that is as small as possible since unaddressed system degradation can rapidly

lead to further system and health risks. The smallest possible measurement rate is

one second, the rate of the generated data from the model. This is a rate that is five

times faster than the standard operating data measurement rate and would provide

more system information faster for the new operational state. Therefore, a DBN

constructed to model the system health of this reactor would begin with a time step

of five seconds; following event E, the time step would shorten to one second.

4.6 Analysis of the Hybrid Time-based Discretization Demonstration

4.6.1 Demonstration Results

Table 4.2 illustrates how the proposed hybrid-time sampling method improves

upon the data collection for a single-rate method. The table compares the amount

of time steps, i.e., data points, collected from the system for three different data
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collection strategies: two single-rate approaches with information intervals every one

or five seconds, or the hybrid method described in Section 4 (five second intervals

before accident; one second intervals afterwards).

The one second interval has the fastest data rate and records the largest

amount of system data. If a TOP accident occurred 150 seconds after beginning

system measurements, 150 time steps would have been recorded. This would provide

a significant amount of system data for improved system understanding; however,

the system is assumed to be under normal operating conditions, so much of that

information is unnecessary and requires a strategy for excessive data storage and

management. After the accident, however, it is more important to have access to

system data pertaining to the new operational environment. Twenty minutes follow-

ing the accident, the one second interval approach would have collected 1,200 new

points of system information; it only takes 100 seconds to acquire 100 new points.

This rapid data sampling is useful in new operational environments, but less so in

the baseline state.

On the other hand, a five second interval provides much less system informa-

tion over the same time period. While this is better under standard conditions (only

30 data pulls occurred, compared to 150 over the one second interval method), this

means that less information is also available after the accident. Where the faster

sampling method collected 1,200 measurements in the 20 minutes following the ac-

cident, this slower rate only had 240 opportunities for updating the model with

new information. Less operational data means a reduced ability to effectively model

system health in a changing environment.
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Table 4.2: Illustrative comparison of time-based method with hybrid time-based
method in simple example

Data Sampling Plan Single Interval Proposed
Approach Approach

Normal operational rate 1 5 5
Time steps before accident 150 30 30

Time steps 20 minutes following accident 1200 240 1200
Time required for 100 data points (s) 100 500 100

The single discretization approach prevents system prognostics from monitor-

ing system health effectively for both before and after accident events; the proposed

multi-rate approach addresses these challenges. The new hybrid time method utilizes

longer data intervals for standard conditions. This makes sense as that environment

space is more stable; a CES operating under specified conditions should behave in

a known way. On the other hand, new operational states require more information

for better understanding system health trajectories. As such, the new discretiza-

tion approach emphasizes more data propagation and shorter data intervals during

accident sequences.

4.6.2 Implications of Hybrid Time-based Discretization on CES Health

Management

In previous health management efforts, there has been a focus on systems

that face consistent degradation patterns in a singular operational environment.

These assumptions allow for the use of known rates and models to make accurate

health predictions. CESes operate in dynamic environments where they may face a

sudden degradation event that greatly weakens the system. The approach proposed

in this chapter allows for a more nuanced look at accidents, throwing out multiple
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Table 4.3: Qualitative comparison of data stream discretization techniques (H -
High, M - Medium, L - Low, N - None).

Discretization Technique
Time-based State-based Multi-Interval

Time Intervals Evenly-spaced Model-dependent Evenly-spaced Sets
Timeline Computational L H M
Requirements
Timeline Complexity L H M
Timeline System Information N H M
Requirements
Potential for Redundant H N M
Calculations

assumptions about the operational state of a CES.

Table 4.3 compares the hybrid time-based discretization approach against a

time- and state-based one. Discrete-time models rely on a brief window of infor-

mation to make their inference calculations. If there is an instance in which ev-

erything is relatively stable, then a DBN constructed using the hybrid time-based

discretization can have more regular and longer time intervals; when there is a lot

of variability in the system parameters as a result of external events, then the hy-

brid time-based discretization technique can provide the time steps and additional

information needed to make critical inferences right after an event.

The hybrid time-based method recognizes that CESes operate in different en-

vironments; acknowledging this elevates health monitoring to address multiple op-

erational states. Previous research efforts have addressed failures from a single op-

erating environment. By responding to changes in operational states, maintenance

plans are adjusted based on relevant system data, allowing for effective and efficient

CES health management.
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4.7 Chapter Conclusion

An analysis of DBN-based reliability engineering research found that although

there are multiple data stream discretization methods defined, reliability engineers

have predominantly followed a time-based approach when constructing DBN time

steps: defining the time step length, defining the number of time steps and the

period of model run-time, or leaving the time step undefined. It is unclear, however

whether these approaches are the most effective and efficient for CESes that produce

a wide volume of data at varying rates. Other approaches leverage system-specific

knowledge based on system parameters or distinct events that change the time frame

of system monitoring, data collection, or operator activity. Relying solely on a state-

based techniques can limit one’s understanding of a system as events can be random

and result in large increments of underutilized system data.

This chapter proposed a framework for developing a hybrid time-based data

stream discretization method that incorporates major status and event changes with

a periodic discretization. The results from the simplified CES example indicate that

its use would provide more flexibility in gathering relevant information. At the same

time, it would still obtain consistent system information while potentially reducing

computational time. This approach allows models to provide more flexibility to

address critical system variations while maintaining a simple method for defining

time steps.
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Chapter 5: Development of a Case Study for Comparing the Per-

formance of DBN-based SIPPRA Health Management

Models

Chapters 3 and 4 presented SIPPRA model performance metrics and data

stream discretization techniques as CES-agnostic; however, having a working case

study of an average CES helps to better understand the impact that such discretiza-

tions have on the performance of DBNs for SIPPRA health management. For this

case study, a DBN model was structured based on a real-world operational sce-

nario. By adjusting the data stream discretization strategy used to parameterize

the health monitoring model, the CPTs for that DBN would also change. This chap-

ter outlines the development and verification of the DBN node structure used for

the comparison studies presented in Chapter 6. Using simulated accident sequence

data from a model sodium fast nuclear reactor as a case study, a DBN structure

is designed, quantified, and verified based on evidence associated with a transient

overpower event. The results indicate that a joint prognostic and diagnostic model

that is responsive to new system evidence can be generated from operating data to

represent CES health. This underlying model structure, therefore, can serve as a

valid form of comparing the impact different data stream discretizations have on the
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performance of DBNs constructed for SIPPRA health management. This work was

presented by Lewis and Groth in a journal article published in a special edition of

Algorithms in March 2020 dedicated to applications of Bayesian Networks [17].

5.1 Case Study Development Methodology

Four key actions are taken to develop this case study:

1. Define the underlying scenario and context of the case study

2. Collect and analyze the data relevant to the case study

3. Build a SIPPRA DBN structure for the case study

4. Verify the constructed DBN structure captures expected scenario outcomes

This chapter will address the results of these actions in a fairly high overview;

further details regarding the accident dataset and the overall DBN construction

process are covered in Appendices A and B, respectively.

5.2 Case Study Scenario

The case study outlined in this chapter is a simplified version of the scenario

studied by Jankovsky et al. [93] that captures the modeling and monitoring of a SFR

in a transient overpower (TOP) event. SFRs can be considered a typical CES in that

they feature the primary characters inherent for CES outlined in Chapter 2; namely,

they are composed of human, hardware and software components and generate a

large amount of operational data from a number of data sources at varying rates.
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Figure 5.1: This case study models a SFR, consisting of the reactor, SCRAM,
a reactor protection system (RPS), and a direct reactor auxiliary cooling system
(DRACS), that experiences a transient overpower (TOP).

As SFRs rely on fast-neutron activity, the need for other equipment is minimized,

making them useful models for simplifying complicated nuclear processes. As shown

in Figure 5.1, in addition to a nuclear core which consists of four distinct channels,

the system in the case study has a balance of plant consisting of a SCRAM and

reactor protection system (RPS) and a direct auxiliary cooling system (DRACS);

however, for the purposes of this case study, the focus will be on the reactor core

itself. Although there are multiple components to a sodium fast reactor that pro-

vide a significant amount of system information through sensors and operational

reports, the case study focuses on a limited number of data sources; namely, the

main indicators of the automatic SCRAM process for shutting down the reactor.

The primary accident event described through the DBN model in this case

study is a TOP event. Previously studied by Jankovsky et al. [93], such an event
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Figure 5.2: General progression of SFR TOP accident event leading to a successful
scenario, fuel relocation failure, or clad thickness failure. Further discussion of the
event tree is presented in Appendix A

can be caused by external factors, e.g., an earthquake, that results in a sudden

surge of power generation in the reactor. When such an event occurs, the reactor’s

automatic SCRAM mechanism is expected to respond to operational changes by

inserting control rods into the reactor to greatly reduce power generation; common

indicators for the automatic SCRAM mechanism include changes to net reactivity,

cold pool temperature, and other fuel feedback values [93]. Depending on the cause

of the accident, however, SCRAM and RPS functions may be impacted, limiting

their ability to prevent core reactions from further escalating. If this were to occur,

the reactor would face a significant risk of fuel relocation and clad melting, resulting

in a partial or full nuclear meltdown. A visual representation of the simplified event

description is presented in Figure 5.2.
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5.3 Case Study Data

The accident data used in this case study is modified from the study by

Jankovsky et al. [93]. In their work, a dynamic event tree (DET) was used to

construct a series of accident event scenarios that addressed potential failure points

when responding to a TOP event. Based on the event scenario specifications de-

termined through the ADAPT software, simulation models focusing on different

aspects of the nuclear reactor were used to produce different parameters necessary

for monitoring overall system health. The models were run to simulate data read-

ings throughout the reactor and BOP for a full day after the TOP event (86,400

simulation seconds). The scenario was considered finished when either: the cladding

fraction of the core channels reached an average of 90% (representing a clad melting

failure), the temperature of the cold pool had reached a significantly high temper-

ature resulting in a fuel relocation, or the reactor had survived the simulated day

without reaching those other thresholds. In those instances, it is assumed that op-

erators would have had enough time to address any problems with the system’s

processes.

To simplify the accident scenario further for the case study presented in this

chapter, a TOP event has already occurred and the initial SCRAM and TRIP actions

have already been performed. This results in a modified event tree compared to the

one used by Jankovsky et al. [93], further explained in Appendix A.
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5.3.1 Case Study Datasets

The research by Jankovsky et al. [93] produced three datasets that contained

operational data different system parameters. They provided information about the

reactor channels, overall reaction values, and information about the balance of plant

and auxiliary systems. These datasets were created from the following two models:

• SAS4A/SASSYS-1: This simulation tool provides information about the

nuclear reactions occurring within the reactor channels. Data provided from

this model include inlet and outlet temperature, and inlet and outlet flow.

SAS4A also generates nuclear core activities including power generation and

reaction coefficient values. This data provides insight into the current power

generated from the reactor and other information about the physical nuclear

reactions taking place. SAS4A data generation rate varies, from providing

new information every 0.1s at the onset of the simulation, to increasing up to

every 100s further along the accident simulation run-time.

• PRIMAR4: This simulation tool generates values for the overall piping and

thermodynamics of the reactor, the BOP and other auxiliary systems. This

includes information about the temperature and pressures of compressible vol-

umes and pools around the reactor, measurements of the pumps and the differ-

ent elements of the balance of plant and cooling systems. The data collection

rate for this code is every 9.09s.

An operational timeline for the SFR can be comprised from these models of the
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different parameters necessary for monitoring overall system health.

5.3.2 ADAPT Tree Data

The ADAPT software provided the framework to generate the accident sce-

narios. Using a set of reactor coefficients, simulations would run until either a DET

branching condition was met or a failure threshold had been reached. At branch-

ing conditions, ADAPT generates different instances based on the possible branch

states. Those instances would then run until either the simulation stopped or a

new branching condition. Each branch segment contains the operational data for

that instance as well as general branch information including the branch’s starting

and ending times, initial branching conditions, and the probability of the branching

occurring.

5.3.3 Data Pre-processing

The original study carried by Jankovsky et al. consisted of 2,052 scenarios

separated into 2,920 branch segments. The following process, shown in a visual

representation in Figure 5.3, was used to construct the complete operation timeline

for each scenario identified through the DET and pre-process the scenario data:

1. Construct complete timelines by combining branch segments’ starting and

ending times

2. Separate scenarios DET outcome (Success, Clad Failure, Fuel Relocation)

3. Filter scenario set by removing scenarios from list that concluded before 9.09
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Figure 5.3: A rigorous data processing approach was used to combine the different
branch data snippets into full accident sequences reflected in the DET.

seconds (the first measurement of the PRIMAR4 data)

The last step ensures that data is available for each scenario to capture the dynamic

causal relationships within the system. This is a reasonable step to take as these

are scenarios within which there is limited time for action, making the scenario

outcome unavoidable. This left a total of 1,920 scenarios for use as data sources for

parameterizing DBN CPTs.

5.4 Building a DBN for SIPPRA Health Management

As previously mentioned in Chapter 2, a primary characteristic of DBNs is

that evidence concerning the state of one node can lead to an updated estimate of

the value of another node within the model through logical inferences. As DBN

nodes have the potential to represent a wide range of features within a system,

from individual sensors to entire subsystems, the ability to perform inferences on
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nodes across a DBN model makes it a powerful tool for understanding the current a

system’s current health condition. Information about the system can act as evidence

in one section of the model and propagate to other parts of the model. This allows

DBNs to provide more insight into the system than non-causal models with the

same amount of evidence.

DBN models designed to monitor and provide CES health information follow-

ing a major accident should incorporate operational system information as well as

the conditions of potential accidents. As shown in Figure 5.4, DBN models repre-

senting this type of CES scenario can be structured using six distinct data regions.

Each section of the model has its own node types, data availability, and purpose for

managing CES health. These six regions are:

• Accident State: The nodes within this region represent the different accident

events covered by the DBN that the CES might encounter. Typically, CESes

operate at normal or baseline conditions until one of these events occur; af-

ter an accident, the system operates under different circumstances. Accidents

covered by these models can be external to the system (i.e. an earthquake

or a power outage) or internal (sabotage). Depending on the potential acci-

dents that may impact the CES, different accident nodes are needed to reflect

different states that may not be mutually exclusive and occur at the same

time.

• System Component Health: This region of the model describes the current

operational states of CES components. Depending on the particular opera-

101



tional scenario represented in the model, these states may be dynamically

changing over the course of scenario or static. As such, this is the only infor-

mation region that includes both static and dynamic nodes. The state of the

dynamic component nodes are often affected by operator involvement during

the process of CES health management.

• System Information/Sensor Data: CESes generate a sizable amount of

data. This data can take the form of sensor readings, analytical measurements,

and status and maintenance reports, and as either continuous or discrete mea-

surements. Since data sources are frequently updated with new system in-

formation, these are the “dynamic” nodes of the DBN. The classification of

data into discrete bins is dependent upon the nature of the data; however, a

common bin distribution would be for “normal operating conditions”, “above

operating conditions”, and “below operating conditions.” This region is pre-

dominantly where additional model evidence is added to the DBN, as extra

information can be used to make informed decisions about the nodes in the

other regions.

• Human Involvement: This region contains information about the neces-

sary actions and interventions that the operator would take on the system.

CES operators receive system information and sensor data; with that knowl-

edge, they make decisions to adjust system component performance. This

creates a causal loop (since system component states affect the system data

they provide) that is not possible in a static BN, but is by using DBNs. For
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that reason, this region contains nodes that are temporally dependent on any

operator actions previously taken place.

• System Prognostics: This region of the model provides insight into potential

failure modes that a CES might fail from given a particular accident. These

are typically distinct from other prognostics techniques which might indicate

a remaining useful life of the system; rather than indicating whether a system

will be healthy or faulty at a given point in time, these nodes indicate what

will be the resulting failure of the system given the current system information

and data. Examples may include “metal cladding failure” or “short-circuit”

and are often expressed as a binary option (i.e., “Yes/True” and “No/False”).

Each failure event state should be considered as a separate node.

• System Health Diagnostics: Based on the system prognostics estimate

captured in the “System Prognostics” region, CES health can be assessed

by whether or not the system will fail from another failure mode other than

expected failures at the end of its life cycle. Unlike the other nodes, this region

can be fully captured in a single node with a number of mutually exclusive

states; depending on the CES’s structure, this approach can also be used on

the subsystem level as well. An easy way of expressing this is through a simple

OR gate-style node for overall system health. Example of states may include

“Healthy,” “Faulty,” or “Inoperable.”

A DBN constructed using the framework in Figure 5.4 uses information about

the accident state as well as system or sensor data to provide information about the
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Figure 5.4: DBN models for monitoring CES health following an accident event
can classify their nodes into six information regions. Arrows drawn between the
information regions reflect the directed relationships across information regions.

current system diagnostics. Understanding the current system health in conjunc-

tion with the system measurements can be used for system prognostics to identify

potential causes of system failure. Because of the relationship arcs connecting the

six different regions within a DBN, a model structured in this manner can be used

to provide both diagnostics and prognostics. From the information provided by

the sensor and knowledge about the accident sequences, insights can be gleaned

about the current health of the system. Through the time-dependent relationships

within the system, information can propagate backwards through the model. This

adjusts the current understanding of system health, particularly concerning human
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involvement and intervention into the system.

In addition to diagnostic capabilities, this framework introduces a predictive

end state for system health. The benefit of including this in a temporal network is

that the probability of certain prognostic updates can fluctuate, resulting in dynamic

prediction of system failures. As such, Information provided about the current

system can then be used to calculate the future outcomes that the system might

face.

Although this proposed framework is intended to provide diagnostic and prog-

nostic capabilities for CES health management, it can also serve as a structure for

an operator decision support tool. Supplying current evidence about the system into

the model would provide insight into future system health; varying potential opera-

tor actions would result in different model outcomes. An operator would be able to

see those potential outcomes and make a more informed decision about which oper-

ational action to take. In that instance, additional network nodes representing the

operator’s decisions would be placed within the “Human Involvement” information

region.

This structure of system data and model evidence into these distinct informa-

tion regions is scalable to address different accidents, data types, and prognostics

failure modes. It is also compressible; a purely prognostics-focused model can have

the accident or failure state nodes act as root nodes, while a solely diagnostics model

would have a singular failure mode in the system prognostics information region:

“System Failure.”
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5.4.1 Case Study Network Structure

Using the case study data described in Section 5.3, a DBN model was con-

structed to cover the primary elements of the SFR relevant to TOP-induced SCRAM

failures. Previous work by Groth et al. [10] found that the following parameters pro-

vided meaningful information for evaluating reactor health during a TOP event: net

reactivity, coolant reactivity feedback, radial expansion reactivity feedback, doppler

reactivity feedback, and cold pool temperature. Designing the DBN model shown

in Figure 5.5 to help operators identify current system health status and potential

failure modes following a TOP required nodes from the component state, system

and sensor information, human involvement, system diagnostics, and system prog-

nostics information regions. The temporal loops included in the model add temporal

causality to constrain outcomes to follow logical relationships (e.g., clad thickness

only deteriorates, the operator will not become undecided once he or she has made

a decision to intervene on the DRACS, and the state of the DRACS will not revert

back to nominal once it has been either enhanced or degraded). This is distinct

from the other nodes which have static conditional probabilities (i.e., a prediction

of the current SCRAM state is not dependent upon the SCRAM state prediction

from a previous measurement).

5.4.2 Case Study Conditional Probability Tables

This model’s CPTs are trained with operational data provided from scenarios

that resulted in three distinct outcomes: failure due to clad melting, failure due
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Figure 5.5: DBN node structure and relationship graph for the SFR TOP case
study. Dashed boxes represent the different node regions for a diagnostics and
prognostics model for CES. Node arcs capture causal relationships within the same
time step, with the exception of the dynamic arcs labeled with a boxed “1.” Those
indicate a relationship with the previous time step. Dark green represents observable
parameters, while light-green nodes are un-observable or inferred parameters.

to thermal relocation, and a successful model outcome. The model’s objective is

identifying the current health state of the reactor as well as the likelihood of a certain

outcome based on current data from the system’s sensors. Data received from the

system will be used as evidence for an improved determination of the state of the

reactor’s SCRAM and trip mechanism. The DBN model is constructed using the

GeNIE software [94]; CPT elements are calculated using the Python programming

language [95].

As CESes generate a multitude of data, there are large amounts of readily

available data that can be used to inform the model’s quantification of the con-

ditional probability tables. The information provided for this model was carried

out in multiple simulations over different time period measurements. As previously

mentioned, the nuclear reactor data from the SAS4A-SASSYS-1 code is collected
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Figure 5.6: Data derived from the simulations are generated at varying time frequen-
cies and are compiled into a single operational timeline. Given multiple accident
scenarios, there are many possible operational timelines to parameterize DBN CPTs.

more rapidly at the beginning of the accident simulation, at a rate of 0.1 simula-

tion seconds, and slows down to a collection frequency of 100 seconds, while new

information from the PRIMAR4 code is provided approximately every 9 seconds.

This is similar to real-world scenarios in which measurements and sensor readings

occur over different frequencies. As such, operators are dealing with information

with different levels of currency. In order to capture as much relevant information

as possible, an operational timeline was created to consolidate data generated from

the two simulation codes into one sequence of events. As illustrated in Figure 5.6,

relevant information was identified from both data sets. The available data was

then sorted based on the simulation time at which the data was received. When

new data was acquired from a sensor, that entry would replace the measurement

from the previous timing; however, the “current” information from other system

sensors would remain as new data had not yet been provided.

A sample set of CPTs reflecting the progression of reactor health was quan-

tified using the simulated data generated from SAS4A and PRIMAR4. The CPTs
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Table 5.1: Model parameters and discretized bin threshold values
Model Parameter Low Threshold High Threshold
Net Reactivity (%) -0.778 0.02

Coolant Reactivity Feedback (%) -0.007 0.06
Radial Expansion Reactivity Feedback (%) -0.077 -0.02

Doppler Feedback Reactivity (%) -0.18 -0.04
Cold Pool Temperature (K) 753

provide insight into the transformation of different nodes across the model over the

simulation time and describe the causal relationships within the nodes. For this

DBN structure, there are three types of CPT that are reflective of different struc-

tures in the nodes: static CPTs for the static nodes, and initialization and temporal

CPTs for the dynamic nodes. For these CPTs, the elements in the table can be

determined by a frequentist approach by counting the number of instances a child

node state occurred with the identified parent node states, or

P (ChildState|ParentState) =
ΣChildState

ΣParentState
. (5.1)

DBN nodes are designed to contain discrete states; for this model, the sim-

ulation data provided was separated into ranges based on reasonable expectations

for “Low,” “Medium,” or “High” values. This case study used on expert judgment

based on observed parameter values to determine the boundaries of the middle bin.

The ranges for the case study nodes are shown in Table 5.1.

Dynamic nodes within the DBN require a starting distribution to initiate tem-

poral relationships. This study assumed that at the beginning of the event, the initial

core clad thickness was at “100%,” the operator is “undecided” about intervening

on the DRACS, and the operational state of the DRACS is “nominal.”
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Based on the previous model and data received, the CPTs for the previously

described model were quantified using the 1,920 scenarios that reflected a TOP

event occurring. Where there was evidence, a frequentist approach of determining

probabilities was used; however, when data was not available, appropriate approx-

imations were used to complete the table that minimized influencing the posterior

estimates to a greater extent than the available information. Table 5.2 is a portion

of one of the quantified CPTs based on a time step of 9 seconds. In each instance,

most data was classified in the same bin as the previous measurement; any devia-

tion would therefore be considered a rare event and worth noting. Although certain

relationships might not occur in an actual accident scenario, those relationships are

still expressed in the CPTs.

5.5 Case Study DBN Structure Verification

To show that the proposed DBN is effective at assessing an SFR’s health

following an accident event and potential future failure outcomes, hypothetical cold

pool temperature data is input into the model that may be indicative of a SCRAM

failure following a TOP. This data serves as evidence that will impact the posterior

estimates for the system prognostics, diagnostics, and accident state. For this initial

evaluation, designed as a verification of the DBN node structure only, a time-based

Table 5.2: Portion of the “Radial” node CPT. Columns with round estimates are
instances of expert-based judgement.

SCRAM/Trip SCRAM Failure,Trip Success SCRAM, Trip Failure
RPS Pump Operational Not Operational Operational Not Operational
DRACS Enh. Nom Deg. Enh. Nom Deg. Enh. Nom Deg. Enh. Nom Deg.
Low 0 0 0 0 0 0 0.0537 0.0508 0.0530 0.0537 0.0508 0.0530
Medium 1.0 0.7891 1.0 1 0.0245 1 0.7946 0.7507 0.7825 0.7946 0.7507 0.7825
High 0 0.2109 0 0 0.9755 0 0.1517 0.1985 0.1644 0.1517 0.1985 0.1644
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Table 5.3: Prior and posterior probabilities of SCRAM, prognostics, and system
diagnostics with evidence of cold pool temperature below 753K
Model Parameter Prior Evidence Posterior
SCRAM,Trip Success 1− ΣP (fail.) ≈ 1 Cold Pool 1− ΣP (fail.) ≈ 1
SCRAM Success, Trip Failure 1.4 ∗ 10−9 Temperature (1) 1.40 ∗ 10−9
SCRAM Failure, Trip Success 1.4 ∗ 10−9 =Below 753K 1.36 ∗ 10−9
SCRAM,Trip Failure 2.9 ∗ 10−7 2.54 ∗ 10−7

discretization with a time-step of 1200 seconds (20 minutes) is used.

Table 5.3 shows the prior and posterior SCRAM state probabilities based on

evidence that the cold pool temperature was found to be below the threshold value.

As expected, the prior probabilities of the SCRAM state and the cold pool temper-

ature CPTs along with the limited amount of information provided little change to

the prior; this model is still predominantly assessing that the SCRAM process is

working as intended. Although minute, the posterior estimates for the state of the

SCRAM and trip mechanisms are changing based on the new information. However,

that information alone is not enough to convince the model that the SCRAM mech-

anism failed. There are many reasons that the cold pool temperature may be below

the threshold value before human intervention is required; given the significantly

low probability that the SCRAM and trip mechanism fails, the DBN is estimating

that there is something else that could explain the discrepancy. This is also seen in

the system prognostics at this particular point in time, as shown in Table 5.4. With

this information, the failure outcome is very likely due to fuel relocation rather than

clad failure.

This assessment of the reactor’s prognostics changes, however, when new in-

formation is received. Assume now that the following sensor readings indicate that
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the cold pool temperature of the reactor is now higher than the 753 threshold. This

combination of evidence, significantly alters the estimate of whether the SCRAM

mechanism worked, as seen in Table 5.5. The posterior estimates indicate that it is

now far more likely that the SCRAM and trip failed. The model responds to a small

amount of information to raise a concern that an accident has indeed occurred.

The addition of new data also changed the current prognostics outlook of the

system, as seen in Table 5.6. The previous prognostics seen in Table 5.4 showed a

negligible reactor failure from clad melting, and a nonexistent risk from fuel reloca-

tion; however, that assessment was based on the assumption that the SCRAM and

trip mechanism were successful. Since the new evidence introduced into the model

changed the posterior estimate of the SCRAM state to have failed in some manner,

there is a greater likelihood that the reactor will fail by one of those failure modes.

The updated prognostics now suggest that given the current data received from

the system sensors, there is a 6.19% chance that the system, if conditions remain

the same, would result in a failure by fuel relocation. In addition to changing the

assessment of the reactor’s prognostics, the influx of new system data and sensor

information should impact the estimate of the reactor’s health. Table 5.7 provides

point estimates on the reactor system’s diagnostics. At the beginning of the experi-

ment (Time 0), there is no indication that the system would be faulty as the initial

Table 5.4: Prognostics outcome for reactor with evidence of cold pool temperature
below 753K

Prognostic Outcome Failure: Fuel Relocation Failure: Clad Melting
Will Occur ≈ 1 4.48E0− 9

Will Not Occur 2.77E − 07 ≈ 1
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Table 5.5: Prior and posterior probabilities of SCRAM diagnostics based on cold
pool temperature measurement below 753K, followed by temperature measurement
above 753K, and then another reading below 753K

Model Parameter Prior Evidence Posterior
SCRAM, Trip Success 1− ΣP (failure) ≈ 1

Cold Pool
Temperature (1) =

Below 753K
Cold Pool

Temperature (2) =
Above 753K
Cold Pool

Temperature (3) =
Below 753K

0

SCRAM Success, Trip Failure 1.4 ∗ 10−9 0

SCRAM Failure, Trip Success 1.4 ∗ 10−9 0.0009

SCRAM, Trip Failure 2.9 ∗ 10−7 0.9991

Table 5.6: Prognostic outcome for reactor with cold pool temperature measurement
below 753K, followed by temperature measurement above 753K, and then another
reading below 753K
Prognostic Outcome Failure: Fuel Relocation Failure: Clad Melting

Will Occur 0.0510 0.0619
Will Not Occur 0.949 0.9381

state distribution is consistent with that of the operating baseline; as a result, it

is deemed a fully healthy system facing a severe overpower event. When the high

temperature reading in at Time 1, there is now a possibility that the SCRAM mech-

anism has failed; as a result, the reactor’s health is marginally diminished. When

the additional temperature reading is received at Time 2, and it becomes evident

to the model that a failure in the SCRAM mechanism has occurred, the system’s

health diagnostic assessment is further degraded. The collection of this result, as

well as the prognostic assessments and estimate in SCRAM failure would result in

a more educated process to find and address the issue, minimizing any potentially

harmful outcomes.
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Table 5.7: Progression of system health following example accident sequence
System Diagnostic Time 3 (Initial) Time 23 Time 43 Time 63

Healthy 0.9490 0.9482 0.9389 0.9111
Not Healthy 0.05104 0.0518 0.0611 0.0889

5.6 Discussion of Case Study Verification Results

The results from the verification process indicate that the proposed DBN struc-

ture provides a system-level diagnostic and prognostic capability for the reactor

accident sequences it was designed to monitor. Using available information from

multiple number of system sensors, a clearer image of current and future system

health was estimated for a complex system. The strength of the model lies in its

inference abilities, as it provides a responsive posterior probability for both specific

system outcomes and current health and accident states. This type of modeling

is important to consider when monitoring CES health as it provides a visually ap-

pealing method of presenting the causal relationships found in these systems and

subsystems. CESes are heavily integrated platforms that would otherwise not have

their time-dependent causal relationships as explicitly captured with other models.

One of the common challenges associated with applying DBNs to real systems

is the CPT quantification process. Depending on the number of state bins and the

amount of parents for each node, the size of the tables can vary greatly, increasing the

time and power required to process the probabilities. For this case study, most failure

scenarios led to the same parent/child node relationships and some parent/child

combinations were not met. Limiting the number of accident scenarios, minimizing

the amount of states per node, and relying on expert-based relationships may reduce
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the computational requirements; however, an increase in the number of scenarios

and state bins make the model applicable to a wider range of accidents and failure

modes and increases the granularity of the model, respectively. Further analysis is

needed to identify the proper amount of granularity and model coverage for each

specific CES.

This case study relied on simulated nuclear system and thermodynamics data

to model the different event sequences because of limited availability of real op-

erational data to academic institutions. However, this model structure can be a

platform for evaluating on-line observational data. Historical data can be used to

parameterize the DBN’s CPTs; then, that information can provide opportunities for

new insight into improving the future diagnostic and prognostic health management

of the system.

The current structure of the DBN model is designed for a continuously oper-

ating CES that can experience an accident at any given moment. Given the long

operational lifetime of these systems relative to start up and wind down time peri-

ods, this is a reasonable assumption; however, accidents can just as easily occur at

the onset of operation or operation build-up. To consider these time periods when

constructing a model, data or expert-based opinions of the system relationships are

needed. Such a model may end up entirely distinct from one of a similar CES in its

operational phase.
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5.7 Chapter Conclusion

This chapter described the development and verification of a DBN structure

defined for a joint diagnostic and prognostic model for monitoring complex engi-

neering system health. By breaking apart the model nodes into the six distinct

information regions, access to sensor data and system information allow for dif-

ferent assessments for accident scenarios, prognostics, and diagnostics for systems

and subsystems. Through the SFR TOP case study, expert-based judgment and

data-driven techniques were used to quantify the DBN’s CPTs and strengthen the

model. The model responded to the hypothetical accident data supplied as evidence

by indicating an increased chance of SCRAM and trip mechanism failure and overall

system failure, and a decrease in overall system health. Such an ability suggests that

this model can be used to prepare CES operators for rare-event accident scenarios.

Given its potential as a health monitoring model, the DBN structure can be applied

as a case study for comparisons across different model designs.
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Chapter 6: Comparison of DBN SIPPRA Health Models Parameter-

ized via Different Data Stream Discretization Methods

This chapter integrates results from the previous three chapters by implement-

ing performance metrics to better understand how different data stream discretiza-

tion strategies affect the performance of health monitoring models. Using the case

study scenario outlined in Chapter 5 as a specific example for a complex engineering

system, this study conducted a structured comparison of model alternatives. The

results indicate that different model design choices not only affect the health value

outputs, but also lead to significant variations in usability. Understanding these dif-

ferences will lead to different design selections under different operational conditions

and restrictions.

6.1 Model Design and Discretization Methods Compared

The work in the chapter compares the performance of different DBNs designed

to model the accident scenario described in Chapter 5; that is, an SFR experienc-

ing a TOP and subsequent system decay. A total of fifty-six different DBN models

are constructed using the different discretization strategies outlined in Chapter 4.

This includes time-based, state-based, and hybrid time-based discretization meth-
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Figure 6.1: The DBNs compared in this case study use the same network structure.

Table 6.1: Summary description of discretization values used in model comparison
Discretization Discretization Description Number

of Cases
Time-based Data collected every 9s 60s 120s 1200s 4
State-based Data collected when reactivity greater than -$0.1 $0 $0.02 $0.2 4
Hybrid Time-based Data collected every X sec until reactivity threshold; then, every Y sec 48

ods. These models all have the same node structure shown in Figure 6.1; however,

each discretization method generates different CPTs that describe the underlying

conditional probabilities of the system, as separate sets of data are considered when

constructing the tables. This produces distinct models to consider as viable al-

ternatives for monitoring system health. This section further describes how each

discretization process is applied in this study; Table 6.1 provides a summary de-

scription of the discretization approach used in the models compared in this study.
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Figure 6.2: The CPTs in the DBN compared in this study are generated from data
derived by a) time-based, b) state-based, and c) hybrid time-based data stream
discretizations.

6.1.1 Constructing DBNs with Time-based Discretization

DBNs constructed with a time-based discretization approach are built on data

collected over a specified period of time, as shown in Figure 6.2a. Four different data

collection frequencies are evaluated in this comparison: 9, 60, 120, and 1,200 seconds.

As this case study covers a period of 86,400 seconds, these rates translate to DBN

models with 9,500, 1,440, 720, and 72 time-steps, respectively. These values were

selected to provide a range of feasible monitoring time periods, with the 9 second rate

equivalent to the rate in which the PRIMAR4 simulation code generates temperature

data. These models were constructed using the process outlined in Chapter 5 and

Appendix B.

6.1.2 Constructing DBNs with State-based Discretization

DBNs constructed with a state-based discretization approach are structured

on data pertaining to a certain operational state; this is shown in Figure 6.2b.
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For this case study, the reactor’s net reactivity value was used as the trigger for

data collection. Data is collected only when the net reactivity is evaluated over a

specified threshold in a given accident scenario. Net reactivity was selected as the

triggering variable because that parameter indicates whether a nuclear reaction is

moving towards additional power increases.

Four net reactivity values were chosen to compare as thresholds for collecting

system data: -$0.1, $0, $0.02, and $0.2. These values relate to the binning used

to discretize the associated net reactivity node ($0.02), capture baseline operations

($0), or provide extreme bounding scopes (-$0.1,$0.2). To build the CPTs for these

models, data is evaluated over the smallest available interval for each accident sce-

nario. If the value of the net reactivity is evaluated as greater than the specified

threshold at a given measurement, then all of the system data associated with that

time is included in constructing the relevant CPTs.

6.1.3 Constructing DBNs with Hybrid Time-based Discretization

Similar to those built with a time-based discretization, the CPTs for DBNs

developed using a hybrid time discretization approach are built from data collected

over a specified interval; however, once a threshold state is reached on a triggering

variable, data is then collected at a different rate (as explained in Chapter 4.4.2).

This type of model is built as a hybrid of the previous two models, shown in Figure

6.2c.

For this study, different combinations of time-based discretization values are
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paired with a net reactivity threshold as the limit to switch from one data collection

rate to another. This results in a total of forty-eight distinct models (combinations

where the two rates are the same are not compared as they are equivalent to the

single time-based discretization described above). Two different situations were

considered when defining the threshold state: when the initial time steps are larger

than the subsequent ones, and when the initial time steps are smaller than the next

steps. The first describes an instance of increasing the data uptake from the system;

for those models, the second time steps begin when net reactivity is greater than the

specified threshold. The second situation relaxes data uptake. There, the second

time steps start when net reactivity is less than the specified threshold.

6.2 Performance Metrics Used to Compare Model Designs

For this study, relevant performance metrics were selected and then framed

based on the specifications of the case study. The metrics used to compare the

different model designs were selected from the list generated in Chapter 3. After

reducing the list to consider metrics relevant for inspection, the following metrics

were identified as providing different ranges of performance:

• Assessment Accuracy (Alignment of risk assessment)

• Preliminary Model Construction Costs (CPT development time)

• Information Content per Sampling Rate (Average information content)

As this work studies how different discretization methods impact model per-
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formance, these metrics are model characteristics that are affected by changes to

data quantity. The remainder of this section outlines how each metric is measured

in this study.

6.2.1 Assessment Accuracy: Alignment of Risk Assessment

The first metric used to compare the different discretization approaches is

assessment accuracy; in this study, that means how well the model’s prior estimate

of system health matches the underlying system safety of the accident scenario. This

is a common approach to evaluating model performance; if a monitoring model is

unable to provide an appropriately reflective health assessment, it is limited in its

ability to be used as a health management tool.

For this case study, “Assessment Accuracy” is related to the output values

of the “System Health” node. This alignment estimate is determined by calculat-

ing the joint prior probability for the “System Health Diagnostics” node derived

from the model’s CPTs. The prior measurements for the last model step (86,400s

or equivalent) are then compared in magnitude and by percent error to the DET

assessment, calculated by the summation of failure probabilities, for the health of

the system. The closer the assessment is to the baseline estimate (2.77 ∗ 10−7), the

more aligned the model is to the DET assessment. In terms of percent error, those

values should be as close to zero as possible.
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6.2.2 Model Construction Costs: CPT Development Time

The next metric studied is the model construction cost; in particular, the time

required to develop the CPTs for the DBN models. Understanding the length of time

required to develop a model prior to use is important when considering appropriate

model designs to pursue.

This metric is evaluated as the summation of time taken to construct network

CPTs that vary in response to the different discretization methods. These CPTs

describe the causal relationships for the four unobservable parameters (net reactivity,

coolant feedback, radial expansion, and doppler), observable parameter (cold pool

temperature), dynamic clad thickness, and fuel relocation failure. For this metric,

models that take a shorter amount of time to construct are preferable to those that

take longer to develop.

6.2.3 Information Content per Sampling Rate: Average Conditional

Entropy

The last metric compared in the study is the average information content of

each model. At the beginning of an accident scenario, there are many unknowns

beyond the probabilities of occurrence that are assigned to the potential accident

timelines. As new system information becomes available from different data sources

over time, there is greater certainty about the nature of the current accident sequence

as well as its outcome. This new knowledge can ultimately lead to better preparation

123



and risk management for expected outcomes.

For this case study, “Information Content” is related to the values measured

in the “Cold Pool Temperature” node and the associated values for the two failure

mode nodes (“Failure Mode: Fuel Relocation” and “Failure Mode: Clad Thick-

ness”). Information content for each measurement from the “Cold Pool Temper-

ature” node is quantified using information theory principles. Equation 6.1 shows

how the information content for a collection of scenario outcomes X based on the

previous knowledge about Y data measurements can be expressed as the sum of the

conditional entropies of potential operational sequences that would generate those

same measurements:

H(X|Y ) = −
∑
yεY

Pr(y)(
∑
xεX

Pr(x|y)log(
1

Pr(x|y)
))) (6.1)

The total information entropy is then averaged to better approximate the

information content for a given set of cold pool temperature measurements. As en-

tropy describes the amount of overall uncertainty or information required to identify

a current scenario from all possible events, lower values for this metric are preferable

(e.g., a value of 0 indicates complete certainty of the outcome) to larger values.

6.3 Comparison Results

This section presents the results from evaluating the performance metrics de-

scribed above for DBN models built using different data stream discretization strate-

gies. For a cleaner discussion and analysis, this section will feature either sample
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Table 6.2: Sample DBN model prior safety estimates (vs. DET baseline safety
estimate of 2.77 ∗ 10−7)

Time-based State-based Hybrid Time-based
120s 1200s Net Reac. Net Reac. 1200→120 120→1200

>= 0 >= 0.02 @ Net Reac. <= 0.02 @ Net Reac. >= 0.02
Prior Risk 2.59E-07 2.68E-07 5.16E-08 8.00E-08 8.65E-08 2.47E-07
% Difference -6.36% -3.21% -81.4% -71.1% -68.8% -10.73%

values or summarizing figures; the associated metrics for each model compared can

be found in Appendix D. The summary figure common across the performance met-

rics is a heat map of metrics values. Shown in Figure 6.3, these maps can be divided

into the four regions for the discretization approach used: the lower-left section

(hybrid time-based discretization where the first time step rate rate is less than the

secondary rate), the diagonal (standard time-based discretization), the upper right

part (hybrid time-based discretization where the first time step rate is greater than

the secondary rate), and the separate right-side column for state-based discretiza-

tion. Model designs with more preferable values appear closer to dark green, while

those with less desirable values are a darker shade of red.

6.3.1 Results of Risk Assessment Alignment Study

Table 6.2 shows a sample of estimated priors from example models for the

different discretization approaches and their similarity with the underlying DET’s

baseline estimate of 2.77∗10−7. The values lie roughly within an order of magnitude

to the baseline estimate. The models that collect more data (1200s time step vs.

120s time step, and reactivity threshold greater than 0.2 vs. greater than 0) appear

to produce more conservative safety estimates with greater percent error from the

baseline estimate. This trend is further expressed in Figure 6.4, which plots the
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Figure 6.3: Heat maps like this one summarize the results from the performance
metrics studies. Green indicates a preferable metric measurement, while red squares
indicates less preferable ones. The cells along the diagonal arrow represent models
built using a time-based approach, while the cells under the vertical arrow capture
the results of models constructed with the state-based discretization.
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Figure 6.4: Prior safety estimates for DBN models constructed using a time- and
state-based discretization approach compared to the baseline DET estimate. Time-
based values (dashed line) align with the lower axis, while state-based values (dotted
line) align with the upper axis.

calculated safety assessment for each state- and time-based values (the DET value

is included as reference). The exception to this is the model built with 9s time steps,

which has the value most similar to the baseline estimate. Even though both time-

and state-based discretization strategies have a similar trajectory, the state-based

discretization cover a wider range of values.

The percent errors for the hybrid discretization are compared alongside the

time- and state-based discretization results in the heat map in Figure 6.7. The

percent difference for the diagonal region is consistently better than the other two

regions, but gets progressively larger with smaller time step lengths. The upper-

right region is slightly worse than its diagonal counterparts, but improves with lower

threshold states. On the other hand, the models represented in the lower-left region

are significantly further off from the baseline DET estimate but worsen with lower

threshold states.
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Figure 6.5: Heat map comparison of percent error of safety estimates across models
and discretization strategies.

Table 6.3: Sample development time for CPTs. The remainder of the values can be
found in Appendix D.

Time-based State-based Hybrid Time-based
120s 1200s Net Reac. Net Reac. 1200→120 120→1200

>= 0 >= 0.02 @ Net Reac. <= 0.02 @ Net Reac. >= 0.02
Non-Observable 383.3 3,420.1 838.2 838.2 4,068.6 1,223.0
Parameters
Observable 2,035.6 19,590.1 9,958.6 9,958.6 2,610.3 2,229.9
Parameter
Fail: Fuel 58.7 28.7 15.1 15.1 16.4 17.1
Relocation
Dyn. Clad 1.0 10.2 21.8 21.8 31.9 338.4
Thickness
Total (s) 2,478.6 23,032.9 10,833.7 10,833.7 6,727.2 3,808.4

6.3.2 Results of CPT Development Time Study

Table 6.3 presents the amount of time it took to develop the CPTs for the

example models described previously in Table 6.2. Overall, the CPTs that required

the most amount of time to construct described the causal relationships for the

non-observable and observable parameters. This is in large part to these variables

changing over time, while the other nodes are constant over accident scenarios.

As expected, the models with CPTs constructed with more data, either by

shortening the time step length or lowering the threshold value, took longer to build

that those with longer time steps or higher threshold values. The construction
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Figure 6.6: Comparison of total CPT construction time based on the length of time
steps and threshold values.

times for the four time-based and state-based models are plotted in Figure 6.6 and

compare the increases in computational time requirements with the increases in

available data for either discretization strategy (either through shorter time-steps

or lower thresholds). CPT construction times associated with the DBNs built from

a time-based discretization follow a power curve. While the state-based models

also require more time to develop CPTs at lower thresholds, the increase in time

is not easily modeled through a curve. This can easily be seen by the sharp jump

in computational time between the model measuring data at $0.02 to $0 threshold.

The model construction time for these two discretization times appears to intersect

somewhere between $0-$0.02 reactivity threshold and, using the power curve to

determine boundaries similar to the time for the state-based discretization strategies,

somewhere between 240 to 3500 s.

CPT construction times for the hybrid time-based models presented in Table
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Figure 6.7: Heat map comparison of total CPT construction time across models and
discretization strategies.

6.3 lie between the construction values for the two discretization rates when used

in a time-based discretization. The remaining computational times for the hybrid

strategies are captured and compared to the times from the other models in the heat

map in Figure 6.7. For the most part, hybrid-time discretization construction times

lie between the values of the two time-based methods used, presented along the

diagonal of the heat map. That is not always the case, however; for some models,

like the one built with a primary time step length of 120 seconds that transitions

over into a new rate of 60 seconds following a reactivity measurement above $0.02,

the computational time required for developing the hybrid CPTs were longer than

that for the time-based model built with a time-based discretization of 60s time

steps (46,278.3 vs 46,053.5 seconds).

6.3.3 Results of Conditional Entropy Study

The charts in Figures 6.8 and 6.9 show the progression of average conditional

entropy, or information content, for the models built using the state- and time-based
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discretization strategies across the different model time steps. Each model begins

with an entropy of 4.32; this is derived from the failure probabilities from the DET

branches. The figures show that additional system information can affect the value

of information for the particular scenario.

Generally speaking, the average conditional entropy decreases over time across

all discretization methods studied, with greater decreases more likely to occur to-

wards the earlier time steps for each model. In instances where the time-steps

overlap (i.e., data would have been collected at the same time), the average condi-

tional entropy is greater for models with more time steps. The difference between

entropies at the same point in time however, appears to be reduced over smaller dis-

tances than larger ones. This is further seen, when at approximately 70,000 seconds

into the simulation for the time-based discretizations, differences in the conditional

entropy across the models eventually decrease, leading to roughly consistent entropy

values from then on.

The heat map presented in Figure 6.10 captures the averages of each model’s

average information content. In general, those values were larger for models with

larger time steps and more inclusive thresholds, validating the observations made

before. However the values for the hybrid time-based models were either comparable

to their time-based counterparts or were significantly lower than either value.
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Figure 6.8: Progression of information content in the form of conditional entropy
across simulated time for models built with time-based discretization.

Figure 6.9: Progression of information content in the form of conditional entropy
across time steps for models built with state-based discretization.
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Figure 6.10: Heat map comparison of mean values of average conditional entropy
across models and discretization strategies.

6.4 Analysis from the Metrics Comparison Studies

The structure of the metrics studies allowed for an initial evaluation of the

difference between modeled system safety and the “ground truth” system safety

captured by the DET. For the most part, the models provide roughly the same

level of performance with respect to prior assessment accuracy, with time-based

models providing slightly more similar results than either the state-based or hybrid

time-based models. From this metric alone, the discretization strategies appear com-

parable in model performance; however, the results from the other metrics studies

indicate that there are substantial differences in the performances of DBN SIPPRA

health monitoring models based on the discretization approach used to derive model

CPTs. The rest of this section expands upon more findings from this study with

respect to the different discretization strategies.
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6.4.1 Analysis of State-based Discretization Model Performance

The DBN literature search in Chapter 4 found that examples of time-based and

state-based discretization methods were being used to develop DBNs for research.

When applied to constructing DBNs for SIPPRA, both approaches seem to offer a

way to reduce the overwhelming amount of CES data to consider when developing

CPTs. Where the data is reduced, however, varies significantly. While adjusting

time-based discretizations changes how many measurements are taken across all

potential scenarios equally, a change in the threshold for state-based discretization

alters the number of scenarios considered for as usable system information. If the

measurement threshold would not be reached during a potential scenario, that sce-

nario is not considered in building out the underlying conditional probabilities of

that model.

The elimination of certain scenarios during model construction distinguishes

the metrics results for the models built with state-based discretization from those

built with the time-based discretizaton. First, the range of prior assessment values

is considerably larger for state-based models as only similar data are considered for

use in constructing the CPTs; adjusting the threshold value changes what data are

deemed “relevant.” With respect to computational time requirements, DBNs con-

structed with state-based discretization could not be plotted along a similar power

curve like the time-based discretization. Rather, it is the amount of system data

above the threshold value that indicates the time required for CPT construction;

for this accident space, there are far more instances across more scenarios where net
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reactivity was measured between $0 and $0.02 than $0.02 and $0.2. This explains

the large increase in computational time when the threshold was lowered from $0.02

to $0. Lastly, DBNs discretized with a state-based approach had the widest range

of average entropy values. Although lowering the number of time steps for these

models tended to lower average entropy, and therefore reduce the uncertainty, of the

accident scenario’s identity for any specific point in time, the information content

values associated with these models were greater than either time-based or hybrid-

based. One reason for this is that net reactivity can be associated with values of cold

pool temperature. As such, the threshold selected for the net reactivity also impacts

the range of different cold pool temperatures available for constructing model CPTs.

Another effect of eliminating any data from certain scenarios is the transfor-

mation of CPTs across models and discretization values. Table 6.4 shows the same

portion of a CPT across different time-steps and threshold values considered for this

studies. As the threshold and length of time steps get lower, the CPTs begin to

approach a similar value; this is to be expected as with the smallest possible steps

and no threshold for collecting data, both approaches would capture the same data.

Moving away from that point, however is when the CPTs vary drastically. With

a reactivity threshold value placed at $0.2, system data collected for that model

would suggest that a scenario in which DRACS could be enhanced or degraded is

not possible. With this albeit unrealistic threshold value, model designers are left

to figure out an appropriate uninformed relationship to place in the empty spaces of

the CPTs. As the threshold is lowered, however, evidence is made available about

those scenarios, and the CPT can be filled in using available system data. This
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Table 6.4: Portion of “Radial” node CPT over different state- (upper table) and
time-based (lower table) discretizations (“SCRAM” node: “SCRAM Failure, Trip
Success”; “RPS Pump” node: “Operational”)

React.
Thresh.

0.2 0.02 0 -0.1

DRACS Enh. Nom. Deg. Enh. Nom. Deg. Enh. Nom. Deg. Enh. Nom. Deg.

Low
No

Evid.
0.306

No
Evid.

0.209 0.079 0.208 0.068 0.018 0.095 0.084 0.002 0.083

Middle
No

Evid.
0.575

No
Evid.

0.791 0.371 0.792 0.932 0.184 0.905 0.916 0.061 0.917

High
No

Evid.
0.119

No
Evid.

0 0.550 0 0 0.797 0 0 0.937 0

Time
Step

1200s 120s 60s 9s

DRACS Enh. Nom. Deg. Enh. Nom. Deg. Enh. Nom. Deg. Enh. Nom. Deg.
Low 0 0 0 0.0004 4.3E-06 0.0004 0.001 6.2E-06 0.001 0.001 1.3E-05 0.001
Middle 1 0.011 1 0.9996 0.01 0.9996 0.999 0.010 0.999 0.999 0.010 0.999
High 0 0.989 0 0 0.990 0 0 0.990 0 0 0.990 0

contrasts from the time-based discretization models, where even at the largest time

step studied, the time-based discretization had access to available data for those

scenarios.

For these reasons, constructing a DBN health monitoring model using a state-

based discretization is not a recommended approach. Although they were often

faster to construct than their time-based counterparts, DBNs constructed with state-

based discretization have too much uncertainty and variability associated with the

amount of data above or below different threshold values to consistently predict

their performance across the different metrics studied. Eliminating scenarios that

do not meet a threshold also presents significant challenges in ensuring that the

health monitoring model has appropriate scenario coverage; that is, the model is

applicable for different scenarios of system operation. If the model is unusable in

certain situations, i.e. when there is a SCRAM failure but not high net reactivity,

then it will be not helpful in predicting the system’s progression of system health.

This problem is only exacerbated if sensors that are used to determine whether a

threshold has been reached are inaccurate or broken.
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6.4.2 Analysis of Time-based Discretization Model Performance

Although models built with the time-based discretization approach were shown

to have the most similar safety assessments relative to the baseline estimates, the

other results from the multi-dimensional performance study indicate that models

built with the time-based discretization also face limitations of their own. The

placement of CPT construction time on a power curve greatly restricts the ability

for the model to capture on-line time. For example, in some instances, the SAS4A

data set also used to develop this case study, provided data about the reactor sim-

ulation at a rate of 0.1 seconds. Using the modeled power curve as an estimate for

predicting computational time, the amount of time require to construct a 8,640,000

time step model would be approximately 24.5 million seconds, or about 284 days.

For modeling a CES with even more components and failure modes, this would be

an overwhelming amount of time and computational requirements. There were even

challenges in calculating CPTs for models with larger time steps; even building a

model with a realistic monitoring of every two minutes took a considerable amount

of time to construct. Time-based discretization models are also constrained by the

length of time that they cover; for instance, given the limited capability for GeNIE

to tackle models greater than 3,000 time steps, the models with the 9.5 second had

to be split up over subsequent models. This space requirement is a major concern

for time based models over long forecasting periods; reducing the time of interest to

focus on more upcoming events and scenarios may be beneficial for improving the

performance of these models.
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As shown in Table 6.4, the CPTs for time-based models quickly converge; this

is a product of the data from this study, as most of the accident scenarios have rela-

tively constant data over the length of the simulation time. This also helps to explain

the stabilizing average information content per model as the simulation progresses.

However, as these CPTs become relatively similar, the only noticeable difference

becomes the amount of time steps present to represent the 86,400s time period. As

the model CPTs reflect a degrading system, more time steps indicate a greater likeli-

hood of system failure. This explains why the time-based discretization models with

more time steps have lower safety assessments than those with fewer. Furthermore,

with fewer time steps, the beginning of the simulation time (where most of the data

volatility occurs), is weighted more heavily against the more constant data of the

success scenarios; this helps capture why, in this instance, the system safety assess-

ment of the models utilizing larger time steps are approaching the same estimate

as the time-based model that had a data rate measurement equivalent to the data

generation rate. It should be noted that in more volatile scenarios, larger time-step

values could overstep available information that indicated a SCRAM failure event

had occurred. Without that information, the model would provide an incorrect as-

sessment. Furthermore, increasing the number of time steps for time-based models

tended to lower average entropy for any specific point in time. With only a set

number of scenarios addressed in this case study, providing more information about

the branching from “High” to “Low” cold pool temperature restricts the range of

possibilities that could occur. This allows the user of these models to limit his or

her attention to the possible scenarios based on the available information. Smaller
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time steps capture more data variations and data trends earlier, which, when incor-

porated into a CPT, help to create DBNs that are better aligned with the scenario;

however, this results in increased computational requirements.

6.4.3 Analysis of Hybrid Time-based Discretization Model Perfor-

mance

The hybrid time-based discretization approach was introduced to address some

of the challenges faced by the previous two discretization strategies, The aim of

this approach is to reduce the computational costs of the time-based discretization

strategies by emphasizing scenarios relevant to the model user while minimizing,

but not eliminating the scenarios that do not meet the specified interests.

The metrics results from the hybrid models indicate a discretization approach

that provides comparable performance while reducing computational requirements.

Table 6.5 shows how the CPTs for a hybrid time-based discretization compare to

the same CPT for the two related time-based discretization scenarios. Depending

on the threshold, some columns of the table may align more to one time-step length

or another as the threshold value restricts data from certain scenarios. This is

similar to the state-based discretization approach, which is built from data of select

scenarios; however, unlike that discretization approach, all scenarios are considered

in building the CPTs. This is shown in the computational time required to build

a hybrid time-based model’s CPTs. In most instances studied, the computational

time for these models lie between the computational time for the two measurement
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Table 6.5: Comparison of “Radial” node CPTs for time-based discretization and
sample hybrid-time discretizations

Select Portion
of Radial CPT

Operational
Context

1 2 3 4 5 6 7

Low 0.0004 4.3E-06 0.0004 0.0004 0.006 0.0002 0.006
Medium 0.9996 0.010 0.9996 0.002 0.845 0.028 0.831

Time-Based Disc.:
120s time steps

High 0 0.990 0 0.998 0.149 0.971 0.162

Low 0.001 5.6E-06 0.001 0.0002 0.006 0.0002 0.006
Medium 0.999 0.010 0.999 0.002 0.845 0.028 0.831

Time-Based Disc.:
60s time steps

High 0 0.990 0 0.998 0.148 0.971 0.162

Low 0.001 9.3E-06 0.001 0.0002 0.006 0.0004 0.006
Medium 0.999 0.017 0.999 0.001 0.845 0.055 0.831

Hybrid Time-Based Disc.:
120s until net reactivity >0.02,
then 60s time steps High 0 0.983 0 0.999 0.148 0.945 0.162

Low 0.0005 5.6E-06 0.0005 0.0002 0.006 0.0002 0.006
Medium 0.9995 0.01 0.9995 0.001 0.845 0.028 0.831

Hybrid Time-Based Disc.:
120s until net reactivity >0s,
then 60s time steps High 0 0.990 0 0.999 0.148 0.971 0.162

Low 0.0004 4.3E-06 0.0004 0.0005 0.006 0.0002 0.006
Medium 0.9996 0.010 0.9996 0.003 0.845 0.028 0.831

Hybrid Time-Based Disc.:
60s until net reactivity <0,
then 120s time steps High 0 0.990 0 0.997 0.149 0.971 0.162

rates as they remove a number of excess measurements from scenarios that are of

lower interest. However, it should be noted that as the number of scenarios meet

the specified threshold, the additional time required to check scenario data causes

these models to become equivalent, or even become greater than, the time required

for a model constructed using single time-based discretization with the smaller time

steps.

The performance of the hybrid time-based models vary based on the time-

step lengths used as well as the threshold value assigned to switch from one rate

to another. This can be seen in the stark difference in the models’ system safety

estimates. Here is another instance in which the discretization of the operational

data is affecting model performance. For models whose primary time-step length is

smaller than the secondary rate, more emphasis is placed on data after the threshold

value has been met. In this situation, where an accident has already occurred, this

switch gives data further away from the accident more weight in the CPTs. On

the other hand, time step rates that are smaller immediately following an accident
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prioritize data closer to an accident that can offer a better picture of what is going

on. These rates can be relaxed once more normal values have been met. This is

also shown in the average conditional entropies for these models, in which the two

scenarios present different amounts of knowledge about the current situation.

The values generated during the information content study highlight the dis-

tinction of the hybrid time-based discretization approach from either the time-based

or state methods to further separate accident scenarios based on whether a thresh-

old state is met. Once a threshold is reached, those sequences are now using data

collected over a secondary rate that is specifically unlike the primary rate. This al-

lows more granularity and greater certainty in knowing which operational scenario

is currently experienced by the system. However, this split is greatly impacted by

the specific threshold chosen. A threshold in which either all systems respond to at

the same time or don’t respond to at all will leave the system with the same infor-

mation content as a time-based model built using either the secondary or primary

rate, respectively; this appears to have been the case for the models in the lower

left region. Structuring the threshold so as to provide a gradual spread of scenarios

over time may provide more scenario insight.

6.4.4 Comparison across Model Performances

Ultimately, the results from the study shows that in this scenario, models

built with a hybrid time-based discretization method provide a useful compromise

between the operationally dependent but often incomplete state-based models, and
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Table 6.6: Metric summary comparisons
Time-based State-based Hybrid Time-based

Risk Alignment with Comparable Comparable Comparable
Underlying DET Assessment (More Accurate) (Less Accurate) (In-Between)
Description of CPT Defined Disjointed Bounded between
Development Time power curve step function Time-based values
Information Content: Decreasing with Highest Either comparable to
Avg. Conditional Entropy more time steps time-based or lower

the all-inclusive but time-consuming time-based models. If model selection was

solely based on time or assessment accuracy, the time-based models constructed

with 1200s or 9s time steps would be the top choice, respectively. However, because

both are limited in providing meaningful knowledge about the accident scenario

currently experienced, the hybrid time-based model that starts at 120 second time

steps and transitions over to 60 following a reactivity threshold of $0 might also be

another choice to consider. These decisions require understanding the model user’s

needs and subsequent consequences for system failure.

6.5 Implications of Study Results and Analysis

6.5.1 Applying Discretization Strategies to Other CES Health Man-

agement Scenarios

Table 6.6 summarizes the broad findings of applying the three performance

metrics on DBN models constructed using each of the different data-stream dis-

cretization approaches. The differences in metric values across the three discretiza-

tion strategies highlight the variations in model performance that arise when DBN

CPTs are parameterized using data collected over different time windows and system

characteristics. These findings serve as an initial step towards better understanding

142



the impact of decisions made by dynamic risk model developers when determining

what time discretization to use for a particular operational scenario.

Ultimately, the range of values provided by these metrics indicate that the

performance of SIPPRA health monitoring models is multi-dimensional, and can-

not be narrowly constrained to a single metric. This is important when considering

an appropriate discretization approach for developing, as there exists opportunities

for trade-offs based on different risk model user preferences, needs, and require-

ments. For example, in the SFR case study, larger time steps may result in shorter

computational time to develop the CPT, but this comes at a loss of information

per model step. Likewise, smaller time steps and more relaxed thresholds provide

more information about the current scenario, but require significantly more time

to construct the model. A hybrid time-based model may address reduce some of

these limitations while providing more certainty about the trajectory of the current

accident sequence, but it is still often bounded in performance between time-based

models constructed using either rate. Considering these trade-offs, as well as ad-

ditional ones from other performance metrics mentioned in Chapter 3, will provide

better understanding on how DBN discretization strategies impact SIPPRA model

performance and allow risk model developers clearer insight for designing improved

system health assessment models.

It should be noted that although these results are valid for this particular

scenario and CES, inherently, conclusions cannot be separated from the purpose

behind building a model and the assumptions that went into constructing it. This

SFR TOP scenario has a number of unique features that may have contributed to
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these results. First, the scenario outlined in this case study is the aftermath of a

external disaster that has damaged the system; as a result, the focus of this scenario

is not the prevention of a disaster (that has already happened), but rather a better

understanding of whether the system will be able to return to normal operations.

To that end, the time period covered for this accident sequence is skewed far beyond

most operational changes would occur to the system. As a result, the volatility of the

parameters lessens over time, making inspection beyond a certain point unnecessary.

This is seen in the relatively constant CPTs constructed over time. Despite the

additional information, the data was still incorporated into the CPTs at the same

rate (as in, doubling the time steps over the period of time would just double the

count of data to consider).

Understanding CES operational scenario nuances is important when consider-

ing discretization strategies for a health monitoring model design, particularly in the

case for hybrid time-based discretization. As previously mentioned, models built to

assess system health within the context of the scenario in this study are intended

to reflect the health of a system that has already experienced damage. Given that

insight, the hybrid-time structure best suited for this study is one that collects more

system data early on, gradually loosening restrictions once a certain threshold has

been reached. Other CES operational data may appear differently than the accident

data used in this study, however. For example, the scenario of interest may be the

lead-up to a potential system failure based on component degradation or human

intervention. In that instance, system parameter values begin as baseline values

but become more abnormal over time. There, it is reasonable to increase measur-
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ing rates once an abnormal threshold is met, as the aim there is to identify the

likelihood of system failure as early as possible. To determine which discretization

approach would be best suited for that CES scenario would require a similar study

to the one carried out here that takes into consideration the operational nuances

and requirements of the CES of interest.

This prognostics modeling architecture is well-suited for models that represent

CESes with known distinct failure modes that take time to develop. These prog-

nostic models provide insight into potential future system failures; however, time is

required to collect the necessary data to support the identification of specific future

scenarios or current system health. If system failure follows immediately after an

event, this type of model analysis is limited in its usefulness. Failure modes should

also be known or expected for this type of analysis. To construct model CPTs,

data should either available or able to be simulated; however, that requires in-depth

knowledge of the system. This model analysis is also beneficial when the approach

to managing and mitigating CES failure modes are wildly differently. By identi-

fying specific failure modes that are more likely to occur than other under certain

operational conditions, operators would be able to prioritize addressing those types

of failures over less likely ones.
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6.5.2 Applying Study Methodological Process to Other SIPPRA Model

Design Decisions

The results from this study provide further insight into how discretization

strategies affect different aspects of model performance, and also serve as a valida-

tion for the use of the methodological process applied in this study to investigate as-

pects of CES health monitoring model design decisions. Effectively discretizing data

streams is just one open question in the area of SIPPRA and CES health manage-

ment; there are many others that would greatly benefit from a similarly structured

comparison study. These potential research areas may be focused, like studying the

impact of different data binning discretization practices on DBN health assessments,

or broad, like comparing different approaches to health monitoring. Tackling these

research questions would require a similar approach: identifying the different model

designs for the comparison, selecting the performance metrics used to compare the

model designs, and then applying them on a specific CES health monitoring sce-

nario and analyzing the results of the comparison. The continual process of studying

the impact of different SIPPRA approaches on model performance would support

a richer understanding of CES health and provide better approaches for effectively

monitoring and managing them.
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6.6 Chapter Conclusion

This chapter presents the results of comparing fifty-six DBN-based SIPPRA

health models for a sodium fast reactor experiencing a transient overpower built

using different discretization techniques outlined in Chapter 4 and compared across

different performance metrics from Chapter 3. Although the risk assessments for

each model are comparable to one another, the computational time and information

content for each model vary drastically. This indicates that the modeling decisions

one makes in the formation of health monitoring models has an impact on their

performance. Although the state-based discretization models offers a fast solution

and general approximation of system safety, their approach of removing possible

scenarios from the risk analysis and reliance on system-generated data reduce the

coverage of the model and threaten usability issues during accident scenarios when

the state threshold is not reached. Time-based discretization models provide the

greatest accuracy in this study, but face a significant computational burden in model

development. Hybrid time-based discretization offers a compromise between compu-

tational time, information content, and alignment value. By capturing the relevant

scenarios, this approach offers an alignment of scenarios most similar to current prac-

tices. Ultimately, the results of the study show that other performance metrics are

needed outside of considering assessment accuracy in determining appropriate dis-

cretization parameters for optimal performance. This study helps to provide better

understanding on how DBN time-step discretization impact performance through

the variations of these metrics; prioritizing certain metrics over others will allow
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risk model developers to design useful tools to provide risk managers clearer insight

into potential accident scenarios and help to develop improved risk management

strategies for CESes.
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Chapter 7: Summary, Contributions, and Suggested Work

7.1 Summary of Research Conclusions and Contributions

This research expands upon the current understanding of the impact that time

segmentation of continuous time-series data has on DBN system-level health assess-

ments using SIPPRA framework. The work is structured across four research activ-

ities to meet distinct research objectives. Conclusions and technical contributions

are made at the overall research level and also at the objective and supplementary

levels below that. Figure 7.1 provides a graphical representation of the technical

contributions for this research and will be referred to throughout this section.

Given the novelty of SIPPRA and the limited understanding of system health

Figure 7.1: Technical contributions from this research separated into overall research
(primary), objective-level (secondary), or supplementary (tertiary) contributions.
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management for CESes, the first contribution from this research is the development

of a methodological process for rigorously comparing CES health monitoring model

designs based on multi-dimensional performance metrics (TC 1). Before the process

could be applied to the underlying research question about the impact of time dis-

cretization strategies on the performance of DBN-based health monitoring models,

three elements were required: a set of performance metrics to evaluate SIPPRA

methods, a list of methods used to discretize continuous time-series data for DBNs,

and a real-world case study for analyzing the impact of different design choices on

health monitoring models.

7.1.1 Defined Set of Performance Metrics for SIPPRA Models

This work produced a set of thirty-five metrics that could be used to com-

pare the performance of different system-level health monitoring models as a multi-

dimensional concept (TC 4). Current metrics used to evaluate model performance

in PRA and PHM techniques are not sufficient for system-level health models that

utilize SIPPRA techniques. Developing a rigorous process to identify performance

metrics as indicators of a successful completion of SIPPRA tasks (TC 4a) ensured

that the metrics set was comprehensive and verifiable. These performance metrics

are designed to be evaluated for a specific a system or operational environment, en-

abling meaningful and justifiable comparisons across model designs. These metrics

were then classified based on their functionality and cross-validated as a viable set

using multiple complementary methods (TC 4b). The results of applying a selec-
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tion of these metrics to a simple model design decision highlight their usefulness in

providing measurable and structured means to compare different models.

7.1.2 Defined Data Stream Discretization Strategies

This work structured three categories of methods for discretizing system data

streams into distinct time segments (TC 5). A review of the recent reliability lit-

erature indicated that researchers have relied on the use of only two discretization

methods for discretizing DBNs: time-based and state-based (TC 5a). However,

these approaches are shown to not always respond appropriately to changes in a

complex engineering system timeline. Between the capability gaps of these two dis-

cretization lies a third approach: a multi-interval hybrid discretization that adjusts

its sampling frequency based on operational and environment changes. This work

presents and verifies the framework to develop a model using this discretization pro-

cess (TC 5b) through a simplified model of a CES undergoing an accident sequence.

The results of the toy problem indicate that using a multi-interval discretization

method allows for greater flexibility in the data that is used for the model, and

therefore its alignment with expected operational scenarios.

7.1.3 Developed CES Case Study

This work produced a real-world case study of the operational after-effects of

a SFR experiencing a transient overpower; this serves as a structured means for

studying the impact of different DBN structures and designs meant to capture CES
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health (TC 6). Structured processes were defined for converting simulated opera-

tional nuclear data into the DBN’s node structure and CPTs. This work introduced

a framework to use for constructing DBNs for CES health monitoring based on con-

necting operational environments, component health, and human interventions, to

system failures and prognostics (TC 6a). An equally structured method was also

designed for this work to develop DBN CPTs based on case study data generated

across different measuring periods. Model verification indicated that the proposed

DBN structure is appropriate for design experimentation as the model responds to

new system data with either increased or decreased likelihood of system failure (TC

6b).

7.1.4 Integrated Previous Results to Validate Model Comparisons

Using the developed performance metric set, data-stream discretization clas-

sifications, and SFR case study, this work validated the methodological process for

comparing SIPPRA-based DBN health monitoring model performances through a

real-world case study (TC 2, TC 7). The performance of fifty-six different DBN

models were analyzed based on three performance metrics: assessment accuracy,

CPT computational cost, and average information content per sampling (TC 7a).

Results from the comparison validated the methodology used in this research and

helped provide insight into the impact of data-stream discretization on DBN health

monitoring model performance (TC 7b). As the comparison was made across DBNs

with CPTs built using different discretization strategies, it specifically identifies the
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contrasting model performances based on those differences (TC 3).

The results of this study indicate that the selection of the time discretization

strategy impacts different aspects of model performance. In terms of overall safety

assessments, all three provided comparable values, with time-based values providing

the most similar results to the underlying estimate from the DET. Those methods,

however, were particularly susceptible to a wide range of CPT development time,

making some theoretically possible time steps unsuitable for potential operational

use. Relying on state-based discretizations produced DBNs that did not provide

coverage for possible scenarios that did not generate system data which met the

measurement threshold requirement. The novel hybrid time-based discretization

proposed in this research not only provided comparable accuracy at a fraction of

the computational time required for time-based models, but also provided further

information content for relevant scenarios. This indicates that the hybrid-interval

method is best suited for CES health monitoring models constructed with a SIPPRA

as it can respond accordingly to the operational needs of the user.

7.2 Work Products

7.2.1 Models and Programming Codes

DBN models consist of a node-arc network structure and the CPTs that in-

dicate the probability of node state transitions; as such, a substantial portion of

the products from this research are the DBN model structures and associated code

for CPT quantification. Two different model structures were made made: a generic
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DBN framework for modeling CES PHM and a quantified DBN derived from that

framework that is specific to the SFR case study from Chapter 5.

The list of models considered as products from this research are:

• DBN Framework for Generic CES PHM.

• DBN structure built for SFR case study described in [17].

In order to quantify the CPTs within the DBNs, code was developed to convert

the case study’s operational data into usable information for the model. Since the

discretization technique used in a DBN determines what information is collected for

the CPTs, separate codes were developed for each discretization method. While the

codes are structured for data based on the case study, they are modifiable and work

with other input data from this or other CES operational scenarios.

The list of annotated programming codes for CPT quantification are as follows:

• Time-based discretization.

• State-based discretization.

• Hybrid time-based discretization.

This code is available to use with other DBN-related SIPPRA research within

the Systems Risk and Reliability Analysis (SyRRA) lab; dissemination of the codes is

possible upon contact and further discussion with Austin Lewis at adlewis@umd.edu.
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7.2.2 Publications

7.2.2.1 Journal Papers

• Austin D. Lewis and Katrina M. Groth. “A dynamic Bayesian network struc-

ture for joint diagnostics and prognostics of complex engineering systems”.

Algorithms 13 (Mar. 2020). Special Issue Bayesian Networks: Inference Algo-

rithms, Applications, and Software Tools, pp. 64+. doi: 10.3390/a13030064.

Invited paper & cover article.

• Austin Lewis and Katrina Groth. “Metrics for evaluating the performance

of complex engineering system health monitoring models” (). Accepted in

Reliability Engineering & System Safety

• Austin Lewis and Katrina Groth. “Comparison of performance of DBN mod-

els for SIPPRA-based health monitoring based on different data stream dis-

cretization methods” (). In progress

7.2.2.2 Conference Papers

• Austin Lewis and Katrina Groth. “A review of methods for discretizing

continuous-time accident sequences”. Proceedings of the 29th European Safety

and Reliability Conference (2019), pp. 754–761

• Austin Lewis and Katrina Groth. “A multi-interval method for discretizing

continuous-time event sequences”. 2021 Annual Reliability and Maintainabil-
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ity Symposium (2021), pp. 1–7

• Austin Lewis and Katrina Groth. “Impact of different time discretization

methods on dynamic Bayesian network-based dynamic probabilistic safety as-

sessments”. Proceedings of the 2021 International Topical Meeting on Proba-

bilistic Safety Assessment and Analysis (2021), pp. 410–419

• Austin Lewis and Katrina Groth. “Impact of complex engineering system

data stream discretization techniques on the performance of Dynamic Bayesian

Network-Based Health Assessments” (). In progress.

7.2.2.3 Presentations

• 2019 European Safety and Reliability Conference (ESREL 2021). Hannover,

Germany. September 22-26. Conference Paper Presentation and Poster.

• 2021 Reliability and Maintainability Symposium (RAMS 2021). Orlando, FL

(presented remotely). May 24-27. Conference Paper Presentation.

• 2021 International Topical Meeting on Probabilistic Safety Assessment and

Analysis (PSA 2021). Columbus, OH (presented remotely). November 7-12.

Conference Paper Presentation.

• 2021 Society for Risk Analysis Annual Meeting (SRA 2021). Washington, DC

(presented remotely). December 5-9. Conference Paper Abstract Presenta-

tion.
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• 2022 Probabilistic Safety Assessment & Management Conference (PSAM 2022)

(anticipated). Honolulu, HI. June 26-July 1. Conference Paper.

7.3 Opportunities for Future Work

As an initial investigation into the impact that applying different time-discretization

strategies has on the performance of SIPPRA-based DBNs, there are several areas

to further our understanding of CES health management.

7.3.1 Expanding SFR CES Case Study

• The model used in this research can be expanded by adding additional nodes

and arcs to the structure to provide a more detailed representation of SFR

system operations following a transient overpower. One such area to inves-

tigate would be a richer depiction of the operator interventions currently

present in the network model as “Cold Pool Temperature”-“Human Inter-

vention”–“DRACS” causal triangle. This would entail further discretization

of the cold pool temperature and the incorporation of thermal pumps into the

structure.

• The DET used to represent this accident event provided more information

about the states of other components, including the status of primary and

secondary pumps. Incorporating information about these components could

provide either more understanding about the current scenarios explored in the

case study, or provide more information about the impact that time discretiza-
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tion strategies have on DBNs constructed for dynamic PRA.

• The hybrid-interval approach was only applied in the case study as a one-

time breach of a specific value of net reactivity. However, in most accident

scenarios, there are multiple events or thresholds which need to be considered

when calculating the future progression of system health. Introducing more

complicated discretization strategies would better reflect operational reality

and could provide additional insight into the validity of these models as useful

decision support tools.

7.3.2 Performing Additional CES Case Studies

• A number of conclusions were drawn on the contrast of performance of models

utilizing different time discretization strategies from the model comparisons

made in the SFR case study. Carrying out another case study on a different

system would help to validate the applicability of these findings across CESes.

This secondary case study could be on another accident scenario for a different

nuclear reactor, other systems within the nuclear power plant, or even in a

completely separate system domain.

• Only a few metrics were selected to analyze the differences of each DBN model

built under different time discretization values changed to consolidate research

scope. A more detailed effort is needed to provide more differences between

the models. This would entail the use of other prognostic and diagnostic model

metrics, including outcome accuracy and prognostic horizon. Another metric
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to consider further is model uncertainty. As the DBNs are constructed using

different subsets of available operational data, there is inherent uncertainty

about the goodness of form that should be studied in deeper detail [2].

7.3.3 Moving Beyond DBNs for CES Health Management

• This research relies on DBNs and the construction of their CPTs as the pri-

mary source of comparison for model performance. However, DBNs are in-

herently limited in their ability to represent scenarios in which no data exist.

Currently, expert judgement has identified likely CPT values for instances in

which no data exists; however, this raises the possibility of inaccurate model

outputs. Recently, the use and implementation of probabilistic programming

languages [97] enables causally-driven models to be developed outside of these

limitations. A better understanding and utilization of these types of mod-

els may provide more accurate measurements of the likelihood of an accident

scenario or system failure than is currently available.

• The development time for the CPTs for this model could be improved by im-

plementing machine learning techniques that identify and align scenario char-

acteristics associated with related branches in the underlying DET. A further

analysis of implementing such clustering techniques may be useful in identi-

fying what other available methods can be leveraged to reduce computational

requirements for developing the model.

• The framework for discretizing continuous-time operational data streams into
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individual segments can be applied as a pre-processing approach for different

system-level PHM techniques, including machine learning and constructing

neural networks. Implementing these different time discretization strategies

in the context of these different methods may provide further insight into more

effective ways of capturing operational and accident data.

7.4 Potential Impact

“Fundamentally, how do we address the challenges with high impact low proba-

bility events within conventional prioritization and ROI methodologies...particularly

if the cost is high...it’s precisely because of the tremendous success and vigor of most

of our complex systems that we tend to take their reliability for granted. But we ob-

viously cannot.” - Richard Laudenat, Immediate Past President, American Society

of Mechanical Engineers (ASME) [3]

In his opening remarks at the ASME Safety Engineering and Risk Analysis

Division (SERAD) and the University of Maryland’s Center for Risk and Reliability

(UMD-CRR) Joint Interactive Seminar and Pre-Workshop on Intersection of PRA

and PHM in October 2020, Laudenat stressed the importance of leveraging com-

puting technologies and process simulation tools on complex industrial applications

[3]. Although they represented current perspectives on PRA and PHM practices,

respectively, Smith [98] and Droguett [99] echoed the same message at the seminar:

there is a clear gap in detailed system-level health management practices for CESes.

This research bridges that gap by studying how the application of different
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time-discretization methods on continuous operational timelines impacts health in-

sights formed from system-level DBN models. By prioritizing data from opera-

tionally relevant accident scenarios and associated conditions as input into DBN

CPTs, model designers can provide targeted tools for improved decision support.

The use of on-line data to update the health information within system logic struc-

tures addresses the challenges of monitoring CES health at the system level, allowing

for a more updated assessment of the system’s health and provides valuable infor-

mation for responsive system maintenance and risk management practices.

A primary result of this research is a better understanding of how the con-

struction of SIPPRA-based DBNs impacts the system-level health insights formed

from them. The conclusions and technical contributions from this research have sig-

nificant implications for how CESes are modeled to enable insight into their health.

When modeling a CES, there are limitations on data storage and computational

availability that restrict what is theoretically possible in a computational setting.

Knowing the trade-offs in data requirements and health forecasting capabilities be-

tween different time-discretization methods will lead to SIPPRA-based DBNs that

are structured for system-level health management and are reflective of the moni-

toring needs and operational restrictions of a critical system.

In addition to the specific insight about SIPPRA-based DBN time-discretization

methods for the health management for CESes, this research provides a structured

framework for further efforts to establish rigorous SIPPRA approaches for CESes.

By identifying model-design practices of interest, a case study environment, and

metrics for PHM comparison, multiple system health models can be constructed for
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a single scenario and evaluated over different aspects of model performance. Since

the performance metrics are applicable to any health management model, changing

either the model-design choice or the system scenario provides new insight into SIP-

PRA approaches for CESes. If this process is performed repeatedly over a range of

model parameters and scenarios, there will be well-documented procedures for devel-

oping SIPPRA-based DBN models for CES health management for a given system

and across operational scenarios. This information will enable model designers to

develop more effective models for CES health management.
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Appendix A: Case Study Data

The data used in this case study comes from simulations run by Jankovsky

et al. [93] using SAS4A/SASSYS-1 and PRIMAR4 models as part of a project

to develop methodologies for merging Dynamic Event Trees (DETs) with operator

actions. The DET was designed to ”investigate the effects of various mitigating

actions and uncertain plant parameters in an SFR following an inadvertent insertion

of reactivity.” It consisted of seven branching conditions resulting in 2 to 10 child

branches each, and two ending conditions: failure by fuel relocation or failure by

loss of cladding thickness. This resulted in a collection of 2,052 accident sequences

that had the outcomes of model success, clad relocation, or temperature failure. A

SAS4A/SASSYS-1 model was then used to calculate the operational data along the

tree for each branch.

For this work, a modified version of that tree was used to study the effects

of data stream discretizations on DBNs for SIPPRA-based health management.

Although the DET used in this research had the same outcomes (failures by fuel

relocation or loss of cladding and a successful run of the model), the scope of the

scenarios were less detailed, focusing primarily on the human intervention of the

direct reactor auxiliary cooling system (DRACS). As this tree only considered the
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Table A.1: Branching conditions used in the modified DET for this research
Branching Condition States Marginal Probabilities
1: Reactivity Coefficients 10 Different Reactivity Coefficient States 0.1

2: TOP Magnitude
0.06 0.901
0.3 0.090
0.5 0.009

3: SCRAM Functionality

SCRAM and Trip Success 0.99999971
SCRAM Success, Trip Failure 1.4 ∗ 10−9
SCRAM Failure, Trip Success 1.4 ∗ 10−9

SCRAM and Trip Failure 2.9 ∗ 10−7

4: RPS Functionality
Operational 0.5

Not Operational 0.5
5: Human Intervention Intervene 0.5
with DRACS Don’t Intervene 0.5

6: DRACS Functionality
Enhanced 0.9
Degraded 0.1

effects of a TOP, this tree consisted of the following branching conditions presented

in Table A.1:

The simplification of the previous tree resulted in the use of only 1,920 of the

2,052 potential accident sequences. Furthermore, the marginal probabilities were

adjusted from the previous research to account for assumption that a TOP had

already occurred.

Due to the limitations of feasibly presenting the data in an effective manner,

the data is not provided in this work. However, requests for more detail can be

made by contacting Austin Lewis at adlewis@umd.edu.
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Appendix B: Case Study DBN Formation

This appendix describes the formation of the DBN for the case study scenario

of a sodium fast reactor experiencing a SCRAM mechanism failure during a transient

overpower.

Overview

Figure B.1 is the illustration of the DBN model nodes and directed relation-

ships within their respective information regions. This network structure was deter-

mined by a general understanding of the nature of the SCRAM mechanism and the

two described failure modes in the study by Jankovsky, et al [93]. Table B.1 lists

the nodes constructed in the model, the information region they are located in, the

number and the value of node states.

In addition to a network structure of nodes and directed arcs, a DBN model

requires associated conditional probability tables, as well as an additional initial

distribution table for the dynamically changing nodes. Therefore, the following is

the list of CPT tables needed for the model designed for the SFR scenario:

• Static Conditional Probability Tables

1. P (SCRAM State)

2. P (RPS Pump)
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Figure B.1: DBN node structure and relationship graph for SFR TOP case study

Table B.1: Model nodes and node states
Node Name Type of Node Number of General State

States Descriptions
SCRAM State System Component 4 SCRAM and Trip Success,

SCRAM Success and Trip Failure,
SCRAM Failure and Trip Success,

SCRAM and Trip Failure
RPS Pump System Component 2 Operational, Not Operational

DRACS System Component 3 Degraded, Nominal, Enhanced
Human Intervention Human Involvement 3 Yes, No, Undecided

Cold Pool Temperature System Information/ 3 Below 753K, Above 753K
Sensor Data

Net Reactivity System Information/ 3 Low, Medium, High
Sensor Data

Coolant Feedback System Information/ 3 Low, Medium, High
Sensor Data

Radial Expansion System Information/ 3 Low, Medium, High
Sensor Data

Doppler System Information/ 3 Low, Medium, High
Sensor Data

Clad Thickness System Information/ 11 90-100% (by percent),
Sensor Data Below 90%

Failure: Fuel Relocation System Prognostics 2 Yes, No
Failure: Clad Fraction System Prognostics 2 Yes, No

System Diagnostics System Diagnostics 2 Yes, No
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3. P (Human Intervention)

4. P (DRACS)

5. P (Cold Pool Temperature|SCRAM State, RPS Pump, DRACS)

6. P (Net Reactivity|SCRAM State, RPS Pump, DRACS)

7. P (Coolant Feedback|SCRAM State, RPS Pump, DRACS)

8. P (Radial Expansion|SCRAM State, RPS Pump, DRACS)

9. P (Doppler|SCRAM State, RPS Pump, DRACS)

10. P (Clad Thickness|SCRAM State, RPS Pump, DRACS)

11. P (Failure : Fuel Relocation|Net React., Coolant Feedback,Radial Exp.,

Doppler)

12. P (Failure : Clad Melting|SCRAM State, Power − to− Flow)

13. P (System Diagnostic|Failure : Clad Melting, Failure : Fuel Relocation)

• Dynamic Conditional Probability Tables

1. P (Human Intervention|Human Intervention(t−1), Cold Pool Temperature(t−

1)

2. P (DRACS|Human Intervention,DRACS(t− 1)

3. P (Clad Thickness|SCRAM State, RPS Pump,DRACS,Clad Thickness(t−

1)

4. P (Outlet Temperature|SCRAM State, Outlet Temperature(t− 1))

To quantify these tables, either prior expert knowledge or operational data

is required. For this case study, a hybrid approach was used to complete the

CPTs. Expert-based opinions were determined from either source documents (i.e.,

167



the PSID) [100] or mentioned in the study by Jankovsky, et al. [93]. The operational

data used was generated based on the description provided in Appendix A.

Coding Scenario Information

The structure of the model relies on data from both system sensors and other

monitoring equipment, in addition to situational information regarding different ac-

cident scenarios that the reactor may be exposed to. The scenario information de-

scribes the different conditions following the accident event as well as the simulated

outcome of that particular event sequence (successful system survival or system fail-

ure). To allow the DBN model’s CPTs to be constructed from the operational data

attached to the different scenario sequences, data measurements from the different

system parameters (Cold Pool Temperature, Net Reactivity, Coolant Feedback, Ra-

dial Expansion and Doppler Feedback) were assigned a number based on the amount

of bins available for discretization. For this study, the sensor data were treated with

either ”High”, ”Medium”, or ”Low” relative to baseline operating information.

Creating Operational Timelines for Different Timelines

In order to create the conditional probability tables for each of the nodes,

the operational data is formatted into a single timeline. Relevant information was

identified from both models; in the case study, the system sensors were the primary

indicators for the automatic SCRAM and trip mechanism. Those two data sets

were then merged together and sorted based on the timing that the information was

received. In some instances, data from one model was received, and not from the

other. In those instances, the newer information replaces the earlier measurements

received from the same system sensor, whereas all other system information remains

168



the same.

Separating Scenario Outcomes by Accident Node State (SCRAM State)

Based on the model structure shown in Figure B.1, the accident node ”SCRAM

state” is connected to each of the system information/sensor data as well as to the

system prognostic nodes; as a result, it is important to be able to classify the accident

scenario sequences by their accident states. This requires the operational data to

be categorized according to what accident the reactor experienced. This situational

information is critical for constructing the CPTs for the CES prognostics nodes.

Creating the CPTs

The conditional probability tables for each node were created by measuring the

frequency of different data combinations with respect to the different node states

and supplementing the available data with expert opinions when there was not

information available. For example, for the dynamic table for the inlet temperature,

the value P (Net Reactivity|SCRAM State, RPS Pump, DRACS) was calculated

for the different values of net reactivity that were associated with each of the different

SCRAM/trip and DRACS states. Each state was then normalized over the same

parent node conditions.

The manner of providing expert opinion for the CPTs depended on the nature

of the CPTs as well as the location of the node:

• Accident State (SCRAM State): The expert opinion used to construct

the CPT for the ”SCRAM State” node was based on probabilities taken from

the PRISM Preliminary Safety Information Document (PSID) and listed in
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Table B.2: Prior distribution for SCRAM states.
SCRAM State Prior Distribution

SCRAM and Trip Success 1− ΣP (failure) ≈ 1
SCRAM Success and Trip Failure 1.4 ∗ 10−9
SCRAM Failure and Trip Success 1.4 ∗ 10−9

SCRAM and Trip Failure 2.9 ∗ 10−7

Table B.2 [100].

• System Information/Sensor Data (Cold Pool Temperature, Net Re-

activity, Coolant Feedback, Radial Expansion and Doppler): The

initial distribution of each measurement was assumed to be within the normal

operating baseline of the variable; therefore, the missing measurement for each

system sensor would be placed in the middle bin marked ”Medium.”

• System Prognostics (Failure: Fuel Relocation, Failure: Clad Melt-

ing): Due to the limited number of scenarios that result in an overall system

failure from the two outcomes specified in the case study, the prognostics CPTs

are the most incomplete in the model. To fill the CPTs with values that would

not skew the outcome, it was assumed that the empty parent condition cases

would result in no likelihood of system failure or further system degradation.

• System Diagnostics (Diagnostics): For this model, it is assumed that

if a failure occurs, then the system is not healthy. As such, the CPT for the

diagnostics node ”Diagnostics” is constructed using the conditional probability

table shown in Table B.3.
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Table B.3: CPT for “System Diagnostics” node.
Diagnostics Distribution

Failure: Fuel Relocation True False
Failure: Clad Melting True False True False

Healthy 0 0 0 1
Not Healthy 1 1 1 0
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Appendix C: Common Case Study CPTs

This appendix presents the CPTs that are common across the different DBN

models analyzed for this study. These CPTs capture the causal relationships for the

boxed nodes in Figure C.1.

Figure C.1: This appendix provides the CPTs for the boxed DBN nodes.

SCRAM State

SCRAM State
SCRAM and trip success ∼1
SCRAM success, trip failure 1E-8
SCRAM failure, trip success 1E-8
SCRAM and Trip failure 1.3E-9

RPS Pump
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RPS Pump State
Operational 0.5
Not Operational 0.5

Human Intervention

Human Intervention t=0
Cold Pool Temperature Below 785 Above 785
Intervene 0 0
Not Intervene 0 0
Undecided 1 1

Human Intervention t>=1
Cold Pool Temperature Below 785 Above 785
Human Intervention (t-1) Intervene Not Intervene Undecided Intervene Not Intervene Undecided
Intervene 1 0 0 1 0 0
Not Intervene 1 0 0 1 0 0
Undecided 0 0 1 0 0 1

DRACS

DRACS t = 0
Human Intervention Yes No Undecided

Enhanced 0 0 0
Nominal 1 1 1
Degraded 0 0 0

DRACS t>=1
Human Intervention Yes No Undecided
DRACS [t-1] Yes No Undecided Yes No Undecided Yes No Undecided

Enhanced 1 0.9 0 0 0 0 0 0 0
Nominal 0 0 0 1 1 1 1 1 1
Degraded 0 0.1 1 0 0 0 0 0 0

Clad Thickness

Clad Thickness t=0
SCRAM State Success and trip success SCRAM success, trip failure
RPS Pump Operational Not Operational Operational Not Operational
DRACS Enh. Nom. Deg. Enh. Nom. Deg. Enh. Nom. Deg. Enh. Nom. Deg.
99-100% 1 1 1 1 1 1 1 1 1 1 1 1
98-99% 0 0 0 0 0 0 0 0 0 0 0 0
97-98% 0 0 0 0 0 0 0 0 0 0 0 0
96-97% 0 0 0 0 0 0 0 0 0 0 0 0
95-96% 0 0 0 0 0 0 0 0 0 0 0 0
94-95% 0 0 0 0 0 0 0 0 0 0 0 0
93-94% 0 0 0 0 0 0 0 0 0 0 0 0
92-93% 0 0 0 0 0 0 0 0 0 0 0 0
91-92% 0 0 0 0 0 0 0 0 0 0 0 0
90-91% 0 0 0 0 0 0 0 0 0 0 0 0

Below 90% 0 0 0 0 0 0 0 0 0 0 0 0
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Clad Thickness t=0 (con.)
SCRAM State SCRAM failure, trip success SCRAM and trip failure
RPS Pump Operational Not Operational Operational Not Operational
DRACS Enh. Nom. Deg. Enh. Nom. Deg. Enh. Nom. Deg. Enh. Nom. Deg.
99-100% 1 1 1 1 1 1 1 1 1 1 1 1
98-99% 0 0 0 0 0 0 0 0 0 0 0 0
97-98% 0 0 0 0 0 0 0 0 0 0 0 0
96-97% 0 0 0 0 0 0 0 0 0 0 0 0
95-96% 0 0 0 0 0 0 0 0 0 0 0 0
94-95% 0 0 0 0 0 0 0 0 0 0 0 0
93-94% 0 0 0 0 0 0 0 0 0 0 0 0
92-93% 0 0 0 0 0 0 0 0 0 0 0 0
91-92% 0 0 0 0 0 0 0 0 0 0 0 0
90-91% 0 0 0 0 0 0 0 0 0 0 0 0

Below 90% 0 0 0 0 0 0 0 0 0 0 0 0

Failure: Clad Melting

Clad 99-100% 98-99% 97-98% 96-97% 95-96% 94-95% 93-94% 92-93% 91-92% 90-91% Below 90%
Thickness

True 0 0 0 0 0 0 0 0 0 0 1
False 1 1 1 1 1 1 1 1 1 1 0

System Diagnostics

Failure: Clad Melting True False
Failure: Fuel Relocation True False True False

Healthy 0 0 0 1
Not Healthy 1 1 1 0
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Appendix D: Case Study Results

This appendix presents the full results from the case study comparison pre-

sented in Chapter 6.

D.1 Results from the Accuracy Alignment Comparison

Measured health assessments from the time-based discretization models

Time-Step Length (s)
1200 120 60 9

Model Risk Assessment 2.68E-07 2.59E-07 2.57E-07 2.73E-07

Measured health assessments from the state-based discretization models

Net Reactivity Threshold (%)
-0.1 0 0.02 0.2

Model Risk Assessment 1.50E-07 8.00E-08 5.16E-08 1.26E-08

Measured health assessments from the hybrid time-based discretization models
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Primary Time-Step Length
Threshold

Value
1200 120 60 9

0.2 2.47E-07 2.45E-07 2.60E-07
0.02 2.47E-07 2.45E-07 2.54E-07

0 2.47E-07 2.45E-07 2.55E-07
1200

-0.1 2.67E-07 2.65E-07 2.86E-07
0.2 9.46E-08 2.46E-07 2.63E-07
0.02 8.65E-08 2.46E-07 2.62E-07

0 8.65E-08 2.46E-07 2.62E-07
120

-0.1 9.46E-08 2.55E-07 2.84-07
0.2 5.67E-08 1.85E-07 2.63E-07
0.02 4.96E-08 1.83E-07 2.60E-07

0 4.96E-08 1.85E-07 2.62E-07
60

-0.1 5.67E-08 1.85E-07 2.80E-07
0.2 2.06E-07 2.14E-07 2.45E-07
0.02 8.61E-10 1.36E-07 1.03E-07

0 8.77E-10 1.29E-07 2.06E-07

Secondary Time-
Step Length (s)

9

-0.1 9.5E-10 1.46E-07 2.06E-07

D.2 Results from the CPT Construction Time

Measured CPT construction time from the time-based discretization models

Time-Step Length (s)
1200 120 60 9

Non-Observable Parameters 383.3 3,420.4 6,974.9 73,604.8
Observable Parameters 2,035.6 19,590.1 39,060.4 225,895.5
Fail: Fuel Relocation 58.7 58.7 58.7 58.7
Dynamic Clad Thickness 1.0 10.2 18.2 149.8
Total Computational Time 2,478.6 23,032.9 46,053.5 299,708.8

Measured CPT construction time from the state-based discretization models

Net Reactivity Threshold (%)
-0.1 0 0.02 0.2

Non-Observable Parameters 1,934.4 838.2 326.1 16.1
Observable Parameters 32,423.9 9,958.6 450.2 2.2
Fail: Fuel Relocation 65.5 15.1 15.1 37.8
Dynamic Clad Thickness 891.0 305.3 21.8 2.2
Total Computational Time 36,121.1 12,033.3 898.7 22.3

Measured CPT construction time from the hybrid time-based discretization

models
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Primary Time-Step Length (s)
Threshold
Value (%)

Computational Time for... 1200 120 60 9

Non-Observable Parameters 1,050.9 1,782.7 9,279.6
Observable Parameters 2,167.9 2,355.1 4,197.6
Fail: Fuel Relocation 15.6 16.4 15.8

Dynamic Clad Thickness 310.7 637.7 4,152.1
0.2

Total Computational Time 3,545.1 74,791.9 17,645.1
Non-Observable Parameters 1,223.0 1,827.5 8,874.2

Observable Parameters 2,229.9 2,353.0 4,227.9
Fail: Fuel Relocation 17.1 15.4 14.7

Dynamic Clad Thickness 338.4 635.2 4,030.2
0.02

Total Computational Time 3,808.4 4,831.1 17,147.0
Non-Observable Parameters 1,235.0 1,806.5 8,932.2

Observable Parameters 2,173.4 2,350.0 4,277.1
Fail: Fuel Relocation 14.6 14.9 15.0

Dynamic Clad Thickness 312.4 624.7 3,955.2
0

Total Computational Time 3,735.4 4,796.1 17,179.5
Non-Observable Parameters 4,379.6 8,909.9 56,200.3

Observable Parameters 14,114.1 27,354.2 164,494.20
Fail: Fuel Relocation 15.2 15.9 15.6

Dynamic Clad Thickness 311.7 593.1 3,986.2

1200

-0.1

Total Computational Time 18,820.6 36,783.1 229,696.3
Non-Observable Parameters 617.5 5,779.1 12,525.2

Observable Parameters 2,116.1 20,095.1 21,786.5
Fail: Fuel Relocation 16.0 15.7 15.0

Dynamic Clad C0C0C0 30.4 624.0 3,969.0
0.2

Total Computational Time 2,780.0 26,513.9 38,295.7
Non-Observable Parameters 4,068.6 5,785.4 12,752.2

Observable Parameters 2,610.3 19,788.3 21,546.4
Fail: Fuel Relocation 16.4 14.7 15.5

Dynamic Clad Thickness 31.9 614.3 3,920.8
0.02

Total Computational Time 6,727.2 26,202.7 38,234.9
Non-Observable Parameters 4,012.0 5,856.1 12,946.7

Observable Parameters 8,734.6 20,312.3 22,185.5
Fail: Fuel Relocation 15.5 15.8 16.6

Dynamic Clad Thickness 29.6 613.1 4,367.0
0

Total Computational Time 12,791.7 26,797.3 39,515.8
Non-Observable Parameters 4,597.5 10,303.3 57,294.1

Observable Parameters 19,489.7 33,480.1 175,244.4
Fail: Fuel Relocation 16.0 14.8 63.3

Dynamic Clad Thickness 31.2 622.2 3,962.2

120

-0.1

Total Computational Time 24,134.4 44,420.4 236,564.0
Non-Observable Parameters 578.3 5,629.7 17,001.1

Observable Parameters 2,007.4 20,141.6 40,945.9
Fail: Fuel Relocation 14.6 65 16.1

Dynamic Clad Thickness 31.8 323.1 4,030.3
0.2

Total Computational Time 2,632.1 26,159.5 61,993.4
Non-Observable Parameters 8,327.7 9,520.7 17,184.4

Observable Parameters 2,511.6 36,389.1 41,560.9
Fail: Fuel Relocation 15.5 64.2 14.9

Dynamic Clad Thickness 30.1 304.3 3,929.4
0.02

Total Computational Time 10,884.9 46,278.3 62,689.6
Non-Observable Parameters 8,878.1 9,414.4 17,356.3

Observable Parameters 16,023.2 38,898.7 41,345.3
Fail: Fuel Relocation 15.5 16.3 15.0

Dynamic Clad Thickness 30.6 297.6 3,972.8
0

Total Computational Time 24,947.4 48,627.0 62,689.4
Non-Observable Parameters 9,024.3 9,566.4 59,513.1

Observable Parameters 38,768.9 39,566.5 186,103.6
Fail: Fuel Relocation 66.0 15.8 15.5

Dynamic Clad Thickness 30.1 309.7 3,946.2

60

-0.1

Total Computational Time 47,889.3 49,458.4 249,578.4
Non-Observable Parameters 671.7 6,367.6 12,470.6

Observable Parameters 2,008.6 20,242.3 40,033.3
Fail: Fuel Relocation 14.0 16.1 15.5

Dynamic Clad Thickness 30.7 304.4 605.6
0.2

Total Computational Time 2,725.0 26,930.4 53,125.0
Non-Observable Parameters 5,720.8 59,366.0 58,600.3

Observable Parameters 5,244.3 235,737.2 222,087.5
Fail: Fuel Relocation 15.0 13.5 16.0

Dynamic Clad Thickness 32.1 306.6 600.4
0.02

Total Computational Time 62,493.2 295,423.3 281,304.2
Non-Observable Parameters 57,254.8 52,928.1 59,636.0

Observable Parameters 98,377.8 251,224.8 251,689.8
Fail: Fuel Relocation 66.4 12.3 63.6

Dynamic Clad Thickness 30.9 310.3 628.3
0

Total Computational Time 155,729.9 304,475.5 312,017.7
Non-Observable Parameters 58,796.7 58,197.5 58,851.6

Observable Parameters 253,911.8 254,894.3 258,539.9
Fail: Fuel Relocation 64.0 15.2 67.3

Dynamic Clad Thickness 30.2 305.6 610.5

Secondary
Time-Step
Length (s)

9

-0.1

Total Computational Time 312,802.7 313,412.6 318,069.3
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D.3 Results from the Information Content

Conditional entropy chart for the time-based discretization models

Conditional entropy chart for the state-based discretization models

Conditional entropy charts for the hybrid time-based discretization models with
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primary measurement rate of 120s and a secondary measurement rate of 1200s

Conditional entropy charts for the hybrid time-based discretization models with

primary measurement rate of 60s and a secondary measurement rate of 1200s

Conditional entropy charts for the hybrid time-based discretization models with
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primary measurement rate of 9s and a secondary measurement rate of 1200s

Conditional entropy charts for the hybrid time-based discretization models with

primary measurement rate of 1200s and a secondary measurement rate of 120s

Conditional entropy charts for the hybrid time-based discretization models with
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primary measurement rate of 60s and a secondary measurement rate of 120s

Conditional entropy charts for the hybrid time-based discretization models with

primary measurement rate of 9s and a secondary measurement rate of 120s

Conditional entropy charts for the hybrid time-based discretization models with

primary measurement rate of 1200s and a secondary measurement rate of 60s
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Conditional entropy charts for the hybrid time-based discretization models with

primary measurement rate of 120s and a secondary measurement rate of 60s

Conditional entropy charts for the hybrid time-based discretization models with

primary measurement rate of 9s and a secondary measurement rate of 60s
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Conditional entropy charts for the hybrid time-based discretization models with

primary measurement rate of 1200s and a secondary measurement rate of 9s

Conditional entropy charts for the hybrid time-based discretization models with

primary measurement rate of 120s and a secondary measurement rate of 9s
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Conditional entropy charts for the hybrid time-based discretization models with

primary measurement rate of 60s and a secondary measurement rate of 9s

184



Bibliography

[1] Martin Mayfield, Giuliano Punzo, Richard Beasley, Ginny Clarke, Nic Holt,
and Stuart Jobbins. “Challenges of complexity and resilience in complex en-
gineering systems”. ENCORE Network+ White Paper (2018).

[2] Mohammad Modarres. Risk analysis in engineering: techniques, tools, and
trends. CRC press, 2006.

[3] Richard Laudenat. “Opening Remarks”. Proceedings from the ASME-SERAD
and UMD-CRR Joint Interactive Seminar and Pre-Workshop on Intersection
of PRA and PHM. Oct. 2, 2020. url: http://hdl.handle.net/1903/26664.

[4] Ahmed K Noor. “The world is more than complicated”. Mechanical Engi-
neering 133.11 (2011), pp. 30–35.

[5] Vicki M Bier. “An overview of probabilistic risk analysis for complex engi-
neered systems”. Fundamentals of risk analysis and risk management. Ed. by
Vlasta Molak. Lewis Publishers, 1997.

[6] Charles R Farrar and Keith Worden. Structural health monitoring: a machine
learning perspective. John Wiley & Sons, 2012.

[7] Judea Pearl. “The seven tools of causal inference, with reflections on machine
learning”. Communications of the ACM 62.3 (2019), pp. 54–60.

[8] Michael Pecht. “Prognostics and health management of electronics”. Ency-
clopedia of structural health monitoring (2009).

[9] Ramin Moradi and Katrina M Groth. “Modernizing risk assessment: A sys-
tematic integration of PRA and PHM techniques”. Reliability Engineering &
System Safety 204 (2020), p. 107194.

[10] Katrina Groth, Matthew Denman, Michael Darling, Thomas Jones, and George
Luger. “Building and using dynamic risk-informed diagnosis procedures for
complex system accidents”. Proceedings of the Institution of Mechanical En-
gineers, Part O: Journal of Risk and Reliability 3.1 (2020), pp. 193–207.

[11] Takehisa Kohda and Weimin Cui. “Risk-based reconfiguration of safety mon-
itoring system using dynamic Bayesian network”. Reliability Engineering &
System Safety 92.12 (2007), pp. 1716–1723.

[12] Baoping Cai, Lei Huang, and Min Xie. “Bayesian networks in fault diagnosis”.
IEEE Transactions on Industrial Informatics 13.5 (2017), pp. 2227–2240.

[13] Sandia National Laboratories. Transient Overpower Data for Sodium Fast
Reactor. 2019.

185

http://hdl.handle.net/1903/26664


[14] Austin Lewis and Katrina Groth. “Comparison of performance of DBN mod-
els for SIPPRA-based health monitoring based on different data stream dis-
cretization methods” (). In progress.

[15] Austin Lewis and Katrina Groth. “A review of methods for discretizing
continuous-time accident sequences”. Proceedings of the 29th European Safety
and Reliability Conference (2019), pp. 754–761.

[16] Austin Lewis and Katrina Groth. “A multi-interval method for discretizing
continuous-time event sequences”. 2021 Annual Reliability and Maintainabil-
ity Symposium (2021), pp. 1–7.

[17] Austin D. Lewis and Katrina M. Groth. “A dynamic Bayesian network struc-
ture for joint diagnostics and prognostics of complex engineering systems”.
Algorithms 13 (Mar. 2020). Special Issue Bayesian Networks: Inference Algo-
rithms, Applications, and Software Tools, pp. 64+. doi: 10.3390/a13030064.
Invited paper & cover article.

[18] Austin Lewis and Katrina Groth. “Impact of complex engineering system
data stream discretization techniques on the performance of Dynamic Bayesian
Network-Based Health Assessments” (). In progress.

[19] Diego Mandelli, Andrea Alfonsi, Congjian Wang, Zhegang Ma, Carlo Parisi,
Tunc Aldemir, Curtis Smith, and Robert Youngblood. “Mutual Integration
of Classical and Dynamic PRA”. Nuclear Technology (2020), pp. 1–13.

[20] Gregory W Vogl, Brian A Weiss, and Moneer Helu. “A review of diagnostic
and prognostic capabilities and best practices for manufacturing”. Journal
of Intelligent Manufacturing 30.1 (2019), pp. 79–95.

[21] Andrew Rae, Rob Alexander, and John McDermid. “Fixing the cracks in the
crystal ball: A maturity model for quantitative risk assessment”. Reliability
Engineering & System Safety 125 (2014), pp. 67–81.

[22] Ali Mosleh. “PRA: a perspective on strengths, current limitations, and possi-
ble improvements”. Nuclear Engineering and Technology 46.1 (2014), pp. 1–
10.

[23] Ranganath Kothamasu, Samuel H Huang, and William H VerDuin. “Sys-
tem health monitoring and prognostics—a review of current paradigms and
practices”. The International Journal of Advanced Manufacturing Technology
28.9-10 (2006), pp. 1012–1024.

[24] Abhinav Saxena, Jose Celaya, Bhaskar Saha, Sankalita Saha, and Kai Goebel.
“Metrics for offline evaluation of prognostic performance”. International Jour-
nal of Prognostics and health management 1.1 (2010), pp. 4–23.

[25] Sreerupa Das, Richard Hall, Stefan Herzog, Gregory Harrison, Michael Bod-
kin, and Lockheed Martin. “Essential steps in prognostic health manage-
ment”. 2011 IEEE Conference on Prognostics and Health Management. IEEE.
2011, pp. 1–9.

186

https://doi.org/10.3390/a13030064


[26] Jian Guo, Zhaojun Li, and Meiyan Li. “A Review on Prognostics Methods
for Engineering Systems”. IEEE Transactions on Reliability (2019).

[27] Andrew KS Jardine, Daming Lin, and Dragan Banjevic. “A review on ma-
chinery diagnostics and prognostics implementing condition-based mainte-
nance”. Mechanical Systems and Signal Processing 20.7 (2006), pp. 1483–
1510.

[28] Zhaoyi Xu and Joseph Homer Saleh. “Machine learning for reliability engi-
neering and safety applications: Review of current status and future oppor-
tunities”. Reliability Engineering & System Safety (2021), p. 107530.

[29] Michele Compare, Piero Baraldi, and Enrico Zio. “Challenges to IoT-enabled
predictive maintenance for industry 4.0”. IEEE Internet of Things Journal
7.5 (2019), pp. 4585–4597.

[30] Philippe Weber and Lionel Jouffe. “Complex system reliability modelling
with dynamic object oriented Bayesian networks (DOOBN)”. Reliability En-
gineering & System Safety 91.2 (2006), pp. 149–162.
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