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.Abstfact-_ - - ) - - — .

A strategy for design optimization of nonlinearly constrained problems 1is
presented. The strategy combines techniques used in production rule systems
with an optimization procedure dealing with local monotonicity and sequential
“quadratic programming techniques. The Fule syséém fs based on“obséfvatigns
obtained by appTying'the optimization procedure to different c]asﬁeg of test
problems. The observations-made may be incorporated in a rule-based system in
such a way that if its premise. 1S true, then the action part of the rule 1is

concluded. This is the first step at developing such a rule-based system for

design optimization.



1. Introduction _ — -
Tfaditional]y the design process has been based on ;ria1~dnd~error
methods, with high quality designs achieved only as experience has accumu-
lated. However, whenever it has been possib]e to specjfy én exact-or even an-
apéroximate;¥e1ationship bétWeen‘thqmproperties of the objeét being -designed
and the design variables, then the use of an optimization te;kniqdérhas
enabled the quick generation of a good design. Optimization téchniques are
most appropriate when there exists a comparatively large number of possible
values for the design variables which would all produce a feasible solution.
The optimization task is then to find the best acceptable design among all
possible designs. Here, the general form of the problem Statement to be
discussed is given:

minimize f(x)

subject to (1)
9 (x) =0 J=1, ..., m
g; (x) <0 o= (m+l),...,p

where f and gj are {scalar) osjective and constraint functions, and X is a n-
vector of design variables. It is assumed that at least one of the functions
(objective or constraints) is nonlinear, i.e. a nonlinear programming (NLP)
problem. Solution strategies for the NLP problem have maintained a high
degree of interest on the part of both engineers and operation researchers
;[1—4]. These strategies~genera1]y utilize techniques which:a}e based on 1oc§1
: {nformatioﬁ. ~-For exémgle, i; one class of gnadient-basgd'teégdiques, the par-

“tial deérivatives of the objective and constraint functions at the current



“poiat -are calcqlated'(lqpal information)&ﬁand then the direction of minus -the

grad};nt of the oﬁjective function (or the reduced gradient_of the objective
function, if there is any equality constraint) is used to obtain the next

point while satisfying the -constraints. The information provided by the gra-.
dient is based on the 1inearizationrof the functions at the curcent point -
(1ocai:information)r:and may not describe the behavior of the functions

involved properly (incomplete information). Therefore, while the algorithﬁ
adequately solves one class of problems, it may perform poorly on others,

unless extensive “tuning” on the algorithm is done by the user. This has led

to a general feeling in the industry that only experts in design optimizaton

can apply optimization techniques.

In this paper, we present an approach to the solution of nonlinear
programming problems which goes beyond the traditional optimization tech-
niques. The approach couples optimization techniques with the observations
made from the test results of different classes of NLP problems. The opti-
imization technique used is based on a local wonotonicity analysis [5,6] com-
bined with a sequential gquadratic programming technique [7]. A short
description of the program, its major features, and use of rule-based
techniques to enhance the program procedures are presented. Various test
problems and results are then examined to show the effectiveness and variabi-
lity of design strategies, and to identify areas where additional knowledge

and subsequent rules can be meaningfully employed.

2. Description of the Program

-,The—optimjzhtion program described here is ‘an extension of the one exb1ainéa

in [6]. -It is based on thé”dbéeryation (8-10] that in design optimization,



there usually exists a large number of inequafity_fonstraints; many of

them satisfied as equalities at the optimum (active constraint). The program
utilizes an active set strategy based on local monotonicity information. Two
rules usgd in local monotonicity analysis [5] are repeated here for con-
venience. Referring to problem (1) we have the fo]]owfpg‘rules:

(1), If the objective function-is monotonic with respe;t to (w.r.t.) a
partifu]ar variable in the neighborhood of a local minimum, then
there exists at least one active constraint with opposite monotoni-
city w.r.t. that variable 1in that neighborhood.

(2). 1f the objective function is stationary w.r.t. a particular
variable in the neighborhood of a local minimum, then elither ail
constraints containing that variable are inactive, or there exists

at least oWwo active constraints having opposite monotonicity w.r.t.

that variable in that neighborhood.

The rules can be viewed as a special case of the Karash-Kuhn-Tucker (KKT)
optimality conditions [5]. Since both rules identify the candidate active
constraints, a selection criterion is necessary. The selection criterion
(which is also in the form oftrules) utilizes a local dominance criterion to
select the active constraint per rule in a given iteration. If the local pre-
diction of monotonicity is untrue, corrective action is taken, such as a line
search between the points generated by two consecutive iterations. We sum-
marize here the basic steps of the algorithm:

- Given an dnitial point as the current point X; _ -



Step 1: ' , - L - : -

Find partial derivatives of the objective and constraint functions. If
there are some constraints active at this point, then the partial constrained
derivatives are evaluated [11].

Step 2: - - -
If 9F(x) ] < e, and if

{a) g_is feasible, then check KKT optimality conditions, if they are
satisfied, then g-= §* and stop; otherwise deactivate constraint(s)
with negative Lagrange rmultiplier(s) and go to step 1:
(b) 'g is infeasible, then deactivate the current active set and go to
Step 1:
Otherwise, continue to Step 3.
Step 3:
In the objective function, select the variable (to be referred as the

active variable) for which the objective function has the largest absolute

partial derivative, continue to Step 4.

Step 4:
Apply first and second monotonicity rules to identify the active
constraint{s). If no constraint is active, go to Step 5; otherwise go to Step

6.

Step 5:

Move along a descent direction-to a new point-and_then go iqlsgep'l,



Step 67 A R - _ -

If estimated monotonicities are preserved, go to Step 1. Otherwise deac-
tivate the constraints associated with offending monotonicities. If monotoni-
city estimates generate violations perﬁaining to the objective function, do a
one—dimeqsiona] search. If the violations pertain to the constraints, make a
descent move. Then return to Step 1.°

The preceding algorithm has been executed for a number of design and test
problems [6,10]. The results suggested that further improvement in the
algorithm was possible. In particular, to improve the reliability of the
algorithm, a sequential quadratic programming (SQP) technique similar to that
suggested by Powell [7] was introduced into the program. Transition from a
local monotonicity strategy to the sequential quadratic programming technique
occurs whenever there is no improvement in the objective function value after
a specified number of iterations. The sequential quadratic programming solves
a quadratic programming subproblem in each iteration. This subproblem is an
approximation of the Lagrangian subject to linearized constraints of (1), and
it is guaranteed to have a positive definite Hessian. The subproblem is

stated in the following form:

minimize Q(8) = F(X)+s vF(X)+(1/2) 6 'B(X,X)
subject to (2)
Ty e o =y _ s
-V g.(x)s§ +g.(x) =0 j=1,....m
AR N
S vgt R e g0 <0 G, .



where

§ = x - X
B =v

aoc b e A

e T
T LOGa) = ) T+ Y aLg LX)
R ~o -~ . le -] J -~

(3)

The solution of this quadratic programming subproblem estimates the

dimensional search.

Lagrange multipliers and direction of search xJ, §J used in a subsequent one-

This one-dimensional minimization has two goals:

to
decrease the objective function and to minimize the constraint infeasibili-
ties.

The function used for one-dimensional minimization is

¢la) = f(§) +
J

i ~13

p
u. lg.(x)| + u.{min(0,q.(x))
1Jl93*‘jz‘m+13 PN

where

X =X + o and u; > 0

Here, we select u.

ijll for the first iteration and

i i i-1 i
uj = max[lxj |, 1/2 (uj + {x. D]

for subsequent iterations to guarantee convergence [7].

The program is writ-
ten in FORTRAN and implemented on an IBM-AT microcomputer.



K 'Knowledge-Based Optimization Program -

The need for developing optimization programs.based on information other
than that used by the traditional nonlinear programming techniques was
discu§§ed previously in [5,10,13]. _In that research the idea was to incor-
porate_qvailaﬁle global knowledge for a ﬁarticular problem, with nbnlineariu
programming techniques. In most-'cases, the knowledge can be organized in the
form of rules describing possible constraint activity of inactivity, redun-—
dancy, and dominance. In Li and Papalambros [13] it was proposed that rules
be organized in a production system that made deductions about possible active
constraints in the problem.

Here the idea is to use different local optimization strategies and
observe the effect of each strategy on the overall performance of the NLP
method using a set of test problems. The observations made here form the pre-
mise of a production rule system. If the premise is true, then the action

part of the rule is concluded:
1f premise then action

The production rule system constructed this way may not be deterministic. In
that case, based on the degree of certainty in the premise, the strength of
the action is modified [14]. Such a rule-based system is particularly useful
in nonlinear programming methods because there is no single NLP method which
can solve all classes of nonlinear problems unless extensive “tuning" in the
various parameters is done within the'program.

One particglar;requirement of an_intelligent ‘optimization énglysis is the

determination of a good initial strateqy which can be altered in the midst of



the program execution._.This in turn requires thatz}he selection—process exa-

mine all possible states as well as the history of the process.

Thére are various types of selection processes, each of which can change
the behavior and Qonve(gence>of the optimizafiqn a]gO(ijm. This will be
described in thg.sectfdn of test results. The choitce dfha se]éctidn process
is dependent on the class of the optimizatibalproﬁ1em.

In this résearﬁh, the size of the selection space which will generate the
proper solution is unknown. For this reason, we attempted to identify all
possible states, with checks to see if rules could be discarded or combined,
in an effort to collapse the selection space. For a large selection space
this tends to be difficult. However, as constraints are placed on the struc-
ture, the number of possible selection processes becomes reduced. It has been
noted that there reaches a point where selection rules aid in simplifying the
analysis process and reducing the execution time. Presently, we have examined
the applicability of a production rule scheme based on identifying classes of
solution paths. In particular, the selection of an “active variable" as an
initial strategy parameter, can be based on a variety of factors pertaining to
the partial derivative of the objective function w.r.t. that variable.

The termination method involves examining the parameters which measure the
degree of success. They include: (1) the number of objective function eva-
luations; (2) the number of constraint functions evaluations and (3) number

of gradient evaluations.

4. Test Prdb]ems'

To make ‘observations with regard to the perﬁgrmance of the program descfibed

_in section-2, a set of test problems have been selected from Hock and-



-VSchittkowgki'{IZ]; “Since “the test problems_have different structure, a classi-

fication number is defined. Following the practice of Hock and Schittkowski -
with a slightly different notation, we define the sequence of letters: 0CS-N.
The following list gives all possible abbreyiations which could replace the let-

ters 0, C; S,wqu N éﬁr tﬁ? tested problems:
OA : Information about thé Objectiverfﬁﬁction

0=L: Linear objective function

0=Q: Quadratic objective function

0=P: Generalized Polynomial objective function
C : Information about the constraint functions

C=L: Linear constraint functions

€=Q: Quadratic constraint functions
S : Information about the Starting point

S=F: Feasible starting point

S=I: Infeasible starting point
N : Problem number in Hock & Schittkowski [12]

As an example, consider the following NLP prongm:

minimize f(f) = fix2x3 . 7 3 - -

subject to : x12;2x22+4x32'- 48 < 0



and with the startgng point: X = (1,1,1)t S - 7 - =

This problem is classified as PQF-29 since the objective function is
Polynomial, the constraint is Quadratic, the starting point is Feasible, and
it is probiem}No.,ZQ in [12]. N

We now summarize the abbreviations used in Table 1 to describe the test

probliems:
TP : Test problem number

0CS-N : Classification of the test problem

NV : Humber of variables

NEQ : Number of equality constraints

NC : Total number of constraints, i.e., equalities and inequalities
NACTC : Total number of active constraints

f(x,) : Objective function value at the optimal solution

The test problems considered in this study have 2 to 15 variables with 1 to
22 coastraints. In 17 of the test problems, there are as many variables as there

are active constraints at the optimum.

5. Test Results

The numerical resﬂ]ts of the program testing are listed in Table 2. The

abbreviations used in the table are described here: -

TP : Test problem number -

10



SU : strategy used: - - D

SU=LA; select the active variable for which the objective function has
the Largest Absolute partial derivative.

_SU=LN; select the active variable for -which the objective function has
the Largest Nega£ivgﬁpaf¥§ai derivative. ”

SU=LP; select the active variable for which the objective function has

the Largest Positive partial derivative.

NF : HNumber of objective evaluations

NG : Number of constraint functions evaluations

NDF : Number of gradient evaluations of objective function
NDG : Number of gradient evaluations of constraint functions

We have selected the most efficient strategy for a probiem, to be the one

with the lowest value of the TOTAL, i.e.:
TOTAL = NF + NG + NDF(or HNDG)

If one strategy had the lowest TOTAL, it was assigned a probability of one.
If two strategies had identicAI lowest totals, then each of those strategies
was assigned a probability of one-half. Finally, if each strategy had the
same TOTAL, then each was assigned a probability of one-third.

Once this information was gathered for all the problems executed with all
the strategies, an analysis was done to detrmine what the best strategy or

combination of strategies is to solve an NLP :problem of a particular class..

The following simple probability calculation &as done for_gachiclass_of;NtP_

- problems:

11



©Pr(LX) = £ Pr (LX/PROBLEM) . ‘ -
PC - - -

where,
1. Pr(LX) = Probability of success of strategy LX for-that class.

2. Pr{LX/PROBLEM) = Probability of success of.a strategy for a -
. problem. - - : -

3. NPC = Number of problems in the particular class of problems being
analyzed. )

Thus, the strategy that had the greatest Pr(LX) was most likely the best
strategy to solve that class of problems. The results of our efforts are
shown in Table 3. The table includes the probability of success of a strategy
for a particular class of NLP problems. The strategy with the highest proba-
bility is most likely the best strategy to solve that class of problems.
Table 4 shows the classes of problems and the best strategy for each class.
In addition to indicating the best strateqgy for each class, Table 4
also suggests a global strategy based on the feasibility of the starting
point. If the starting point were infeasible, the best strategy to solve the
NLP problem is LN. On the other hand, if the starting point is feasible, the
optimal strategy in LP, except for PLF class. In essence this shows perhaps
that the structure of the objéctive function and the constraints is not as
important as the feasibility of the starting point in determining the

appropriate strategy.

6. Conclusion
The main thrust of this paper is to emphasize the need and feasibility of
developing an optimization program which uses knowledge other than that tradi-

tionally used in optimization strategies. This knowledge is based on the

12



observations which are “drawn by'applyiﬁg the optimization program ofn different -

classes of test problems. The observations may then be used to develop a

rule-based system which determines a course of action based on the results of

the applied rules.

13



TABLE 1—:. List of Test Problems

P 0CS-N NV NC NACTC f{x,)

1 | PPF-93 | 6 | 8 2 135.1

2 |epF-100| 7 | & 2 680.6

3 |ePF-26 | 3 -1 1 0

4 |eer-101| 7| 200 3 1810

5 | pPI-102| 7 | 20 3 911.9

6 |PPI-71 | 4 | 10 3 17.01

7 LQI-10 2 1 1 1. :

8 |LQI-95 | 6 | 16 6 0.0156

9 |LqI-96 | 6 | 16 6 0.0156
LQI-97 | 6 | 16 6 3.136
LQI-98 | 6 | 16 6 3.136
LQI-106| 8 | 22 6 7049
PQI-15" | 2 | 3 2 306.5
PQI-16 2 5 1 0.25
PQI-17 | 2| 5 2 1
PQI-19 | 2 | 6 2 ~6962
PQI-20 2 5 2 38.2
PQI-27 3 1 1 4
PQF-29 3 1 1 -22.63
PQF-33 | 3 | 6 3 -4.586
PQF-117| 15 | 20 | 11 32.35
PLF-24 | 2| 5 2 -1
PLF-36 | 3 | 7 3 -3300
PLF-37 | 3| 8 1 ~3456
PLF-86 | 5 | 15 4 32.35
QF-35 | 3| 4 1 0.1111
QLF-44 | 4 | 10 4 -15
QLF-76 | 4 | 7 2 -4.68
QLF-74 | 4 | 13 3 5126
QLF-75 4 13 4 5174
QQF-30 | 3 | 7 2 1
WF-31 | 3| 7 1 6
QQF-43 | 4 | 3 2 -44 ,
QQF-84 | 5 | 16 5 -0.528x10
QQF-113| 10 | 8 6 24.31
QQF-12 | 2 | 1 1 -30
Qi-14 | 2| 2} 2 1.39
QQI-18 | 2 | 6 1 5
Qi-22 | 2| 2 2 1
I-23 | 2| 9 2 2

lQQi-65 | . 3| 7 1 - 0.95

QQI-83 | 5 | "16 5 _-0.3067x10°

14




TABLE 2:

Test Ré;ults

™| su | N NG | NDF or DG
I TA | 141 T4 70
N | 141 141 20
| 141 141 20
2 LA | 1268 3118 | 144

40 e | 283 684 21 - -
tp | 142 378 13
30 LA | 220 850 | 55
N | 133 253 34
L | 133 258 34
4 1 A | 1172 1172 | 104
LN | 1172 1172 | 104
Lp | 1172 1172 104
5 | LA | 1212 1212 109
LN | 1212 1212 109
Lp | 1212 1212 | 109
6 | LA | 238 238 13
LN | 238 238 13
P | 226 226 11
7| LA | 403 797 22
LN | 403 797 22
Lp | 403 797 22
8 | LA | 479 479 10
LN | 479 479 10
| 479 479 10
9 | LA | 479 479 10
LN | 479 479 10
L | 479 479 10
10 | LA { 570 570 15
N | 570 570 15
L | 570 570 15
11| A | s70 570 15
: LN | 570 570 | 15
i P | s70 570 15

12 | ta {153 ] 1153 | 44

LN | 1153 | -1153.| 44 -

Lp | 1153 1153 44

15




14

15

16

17

18

13

20

21

22

23

24

25 |-

LA
LN
LP

LA
LN
LP

LA

LN
Lp

LA
LN
LP

LA
LN
LP

LA
LN
LP

LA
LN
LpP

LA
LN
LP

LA
LN
Lp

LA
LN
Lp

LA
LN
Lp

LA
LN

P

LA
LN

LpP

L 19 26
.85 90
4?2
87 87
87 87
87 87
“Could not find
109 ) 120
“Could not find
91 124
45 53
91 124
126 126
126 126
118 118
254 245
254 245
254 245
432 921
432 921
97 134
26 34
46 47
26 34
337 337
337 337
337 337
19 26
19 26
40 43
34 46
34 46
45 48
63 63
58 58
63 63
85 | -85
-85
85 85

54

85 |

14
13

14
14
14

feasible point'

22

easible point'

18
16
18

27
27
25

17
17
17

108
108
25

Y O

[Se el

15
15
15

14

6A

14

14 -

16




26

27

28

29

30

31

32

33

34

35

36

37

38

LA
LN
Lp

LA
LN

LP.

LA
LN
LP

LA
LN
Lp

LA
LN
LP

LA
LN
LpP

LA
LN
LP

LA
LN
LP

LA
LN
LpP

LA
LN
Lp

LA
LN
LP

LA
LN

LP-

LA

LN

LP

34 ]

58
34

19
74

68

180
162
193

382
382

616

317
317
491

98
66
98

187
142
170

987
399
244

13
73
73

265
265
265

83

83
149

166

~166 .

166

173
" 45

173

34
58
34

92
86
69

542
252
280

382
382
616

317
317
491

178
67
178

423
409
262

1957
2780
510

73
73

73

265
265
265

237
237
311

166
166
166

578
48
578

15
15

14

16

22
21

19
19
15

18

18 -

14

10
17
10

13
14
23

177
32
31

12
12
12

24
24
24

24
24
28

0w WY

19
16
19

17




39

40

41

42

LA

LN
LpP

LA
LN

LP .

LA
LN

1P

LA
LN
LP

91 _|

91
91

19
47
19

19
108
108

207
207
207

96
96
96

29
57
29

79
108

© 108

207
207
207

16 -

16
16

" 12

20

12
12
12

20 .
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TABLE 3: Strategy Effectiveness

PROBABILITY OF SUCCESS

CLASS (NPC) STRATEGY
PPF(3) LA 0.11
_ LN 0.28
i Lp 0.61
PPI(3) LA 0.33.
- LN -70.33
Lp 0.33
LQI(6) LA 0.33
LK 0.33
Lp 0.33
PQL(6) LA 0.28
LN 0.44
Lp 0.28
PQF (3) LA 0.28
LK 0.11
Lp 0.61
PLF(4) LA 0.33
LN 0.58
Lp 0.09
PGI(3) LA 0.50
LN 0.50
Lp 0.00
QLF(2) LA 0.17
LN 0.33
LP 0.50
QQF({6) LA 0.19
LN 0.36
Lp 0.45
QQ1(6) LA 0.36
LN 0.45
Lp 0.19

19




TABLE 4 Best Strategies
Class (NPC) Strategy
PPF(3) LP
PPI(3) LA,LN, or LP
LQL(6) LA,LN, or 1p
PQI(6) LN
PQF (3) LP
PLF(4) LN
PGI(3) LA or LN
QLF(2) Lp
QQr (6) LP
QQI{6) LN

20
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