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We address the problem of channel-aware scheduling for wireless ad-hoc net-

works, where the channel state information (CSI) are utilized to improve the overall

system performance instead of the individual link performance. In our framework,

multiple links cooperate to schedule data transmission in a decentralized and op-

portunistic manner, where channel probing is adopted to resolve collisions in the

wireless medium.

In the first part of the dissertation, we study this problem under the assump-

tion that we know the channel statistics but not the instant CSI. In this problem,

channel probing is followed by a transmission scheduling procedure executed inde-

pendently within each link in the network. We study this problem for the popular

block-fading channel model, where channel dependencies are inevitable between dif-

ferent time instances during the channel probing phase. We use optimal stopping

theory to formulate this problem, but at carefully chosen time instances at which



effective decisions are made. The problem can then be solved by a new stopping rule

problem where the observations are independent between different time instances.

We first characterize the system performance assuming the stopping rule problem

has infinite stages. We then develop a measure to check how well the problem can

be analyzed as an infinite horizon problem, and characterize the achievable sys-

tem performance if we ignore the finite horizon constraint and design stopping rules

based on the infinite horizon analysis. We then analyze the problem using backward

induction when the finite horizon constraint cannot be ignored. We develop one re-

cursive approach to solve the problem and show that the computational complexity

is linear with respect to network size. We present an improved protocol to reduce

the probing costs which requires no additional cost.

Based on our analysis on single-channel networks, we extend the problem to ad-

hoc networks where the wireless spectrum can be divided into multiple independent

sub-channels for better efficiency. We start with a naive multi-channel protocol

where the scheduling scheme is working independently within each sub-channel. We

show that the naive protocol can only marginally improve the system performance.

We then develop a protocol to jointly consider the opportunistic scheduling behavior

across multiple sub-channels. We characterize the optimal stopping rule and present

several bounds for the network throughputs of the multi-channel protocol. We show

that by joint optimization of the scheduling scheme across multiple sub-channels,

the proposed protocol improves the system performance considerably in contrast to

that of single-channel systems.

In the second part of the dissertation, we study this problem under the as-



sumption that neither the instant CSI nor the channel statistics are known. We

formulate the channel-aware scheduling problem using multi-armed bandit (MAB).

We first present a semi-distributed MAB protocol which serves as the baseline for

performance comparison. We then propose two forms of distributed MAB proto-

cols, where each link keeps a local copy of the observations and plays the MAB game

independently. In Protocol I the MAB game is only played once within each block,

while in Protocol II it can be played multiple times. We show that the proposed

distributed protocols can be considered as a generalized MAB procedure and each

link is able to update its local copy of the observations for infinitely many times.

We analyze the evolution of the local observations and the regrets of the system.

For Protocol I, we show by simulation results that the local observations that are

held independently at each link converge to the true parameters and the regret is

comparable to that of the semi-distributed protocol. For Protocol II, we prove the

convergence of the local observations and show an upper bound of the regret.
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k (n) from Protocol B with homogeneous initialization;

(e) Average of Ŷ j
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Chapter 1

Introduction

In this chapter, we describe the background and motivation for the problem

that is studied in this dissertation. We summarize related works for this topic and

the contribution of this dissertation.

1.1 Background

There are several common factors that affect the performance of a wireless

communication system, e.g. the time-varying channel fading and the co-channel

interference from concurrent wireless transmissions within a neighborhood. In the

traditional design of wireless systems, the loss due to these two factors are usually

handled independently, i.e. the channel fading is considered at the physical (PHY)

layer while the co-channel interference is addressed at the media access control

(MAC) layer. The layered design philosophy enables us to overcome these two issues

independently, reducing the complexity of the system design and analysis. The

separation of point-to-point link reliability and multiple access functionality relies

on the implicit assumption that the PHY layer can work perfectly to hide fading

from the MAC layer. However, recent results show that there is a coupling between

the time-scales of PHY fading and MAC. It is shown in [1,2] that channel fading and

co-channel interference often occur on the same time scale. It is difficult to tell if a
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packet loss is due to PHY layer channel fading or MAC layer co-channel interference.

Fading can often adversely affect the MAC layer protocols in many realistic systems.

Hence a separate design for the PHY and MAC layers cannot achieve the best

overall system performance. A unified PHY and MAC layer design for wireless

ad-hoc network is desired in order to achieve better overall system performance

compared to the separate system design approach case. On the other hand, the

traditional PHY layer techniques are usually based on the assumption that intrinsic

channel fluctuations (e.g. temporal and frequency variations) of fading channels

are harmful to reliable communications. These conventional PHY layer techniques

usually try to counteract the adverse effects of channel fluctuations to improve the

system performance. This is true if the focus is the instantaneous performance of an

individual wireless link. However, if the overall system performance is considered,

it is possible to take advantage of the channel fluctuations. It is usually referred

to as opportunistic communications in the literature [3–6]. One way to jointly

consider these two issues is to schedule data transmissions at the MAC layer such

that PHY layer channel information are utilized to exploit better opportunities for

communications in the system. These works are usually known as as opportunistic

scheduling or channel-aware scheduling [7–13].1

The concept of opportunistic scheduling comes from a system-wide point of

view: Instead of treating the channel fading as a source of unreliability and try-

1There are also works on opportunistic communications focusing at the network layer, often

known as opportunistic packet forwarding or opportunistic routing, see e.g. [14–17]. Works along

this line are not discussed in this work.
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ing to mitigate the channel fluctuations, fading can be exploited by transmitting

information opportunistically when and where the channel is strong [3–6]. Oppor-

tunistic scheduling is particularly desirable for communications between multiple

autonomous micro agents in adversarial environments, where the highly dynamic

nature of the terrain blocks the line-of-sights (LOS) between the vehicles and re-

sults in reflection and scattering that make reliable point-to-point communications

challenging [18]. We showed that in such circumstances it is impossible to maintain

active communications at all times for each individual link even with collabora-

tions between these micro agents [19]. On the other hand, energy is also strictly

constrained in each agent due to its small size. In [20], we studied the problem

of efficient communications between a group of autonomous vehicles with energy

consumption and total operation time constraints. Our idea is to exploit communi-

cation opportunities at different positions along the trajectories of the nodes. We

showed that opportunistic communications significantly improves the system per-

formance, both in terms of the total operation time when the agents only transmit

situational information and data throughput when additional data transmission is

needed.

1.2 Opportunistic Scheduling

Generally speaking, opportunities for communication arise in the presence

of multiple independently faded signal paths which could originate from different

sources, e.g. time, frequency or multiuser diversity. As a result, channel fluctuations

3



can be exploited in an opportunistic fashion focusing on different aspects of these

sources in the system.

Many works on opportunistic scheduling has focused on exploiting channel

fluctuations from multiple users. In short, in a multiuser network where the same

wireless medium is shared between users, there always exists some user with better

channel quality compared to others. Hence the shared wireless medium can be

utilized more efficiently if the user with better channel quality can be chosen for

data transmission. It is often referred to as multiuser diversity in literature [3–13].

Almost all work on exploiting multiuser diversity in wireless networks have their

roots in [3], where a power control scheme is proposed to maximize the information

theoretic capacity of the uplink of a single cell with time-varying channels. The

problem of exploiting opportunism in multiuser diversity can be generally described

as the following [4, 5]: Consider a single antenna downlink flat fading channel with

M users

ym[k] = hm[k]x[k] + wm[k], m = 1, . . . ,M,

where {hm[k]}k is the channel fading process of user m and is assumed to be i.i.d..

Compared to a single-user system, the gain from opportunism in multiuser diver-

sity lies in that the effective channel gain at time k is improved from |h1[k]|2 to

max1≤m≤M |hm[k]|2. The amount of multiuser diversity gain depends on the tail of

the fading distribution |hm|2. With a heavy tail, it is more likely that there is a user

with a very strong channel, and a large multiuser diversity gain can be achieved. In

general, the more users available to choose from, the larger the performance gain can

4



be achieved by the scheduler. Hence a large channel fluctuation is not a drawback,

but is preferred in terms of opportunism from multiuser diversity [4, 5].

To fully exploit opportunism in multiuser diversity, it is crucial to dynamically

schedule resources among the users as a function of the channel states |hm[k]| for

every time instance k. Since the seminar work [3], many works have been developed

to design scheduling algorithms for downlink transmissions in multiuser wireless

cellular networks [7–13]. There is also industry implementation like Qualcomm’s

High Data Rate (HDR) system (1xEV-DO) [6]. Several scheduling algorithms have

been developed to study the throughput-optimal performance under different rules,

e.g. the revenue-based policy [7] or the exponential rule [8]. Fairness is also an

important issue when exploiting multiuser diversity, since few users with excellent

channel qualities can easily starve other users if only efficiency or throughput are

considered. Therefore, many works in this area concentrates on designing schemes

that tradeoff between overall performance (e.g. throughput) and quality-of-service

(QoS) requirements (e.g. fairness) [9, 10]. A general framework for opportunistic

scheduling is presented in [11] to exploit channel fluctuations and maximize system

performance stochastically under a certain resource allocation fairness constraint.

A utility based approach is used to solve the problem of determining which user

should be scheduled to transmit at each time slot so that the network performance

is optimized under fairness constraints. The optimality of the scheduling scheme is

established and a practical procedure is proposed to implement the scheme. It is

shown that their scheme results in performance improvements of 20%-150% com-

pared with a scheduling algorithm that does not take into account channel condi-

5



tions. Three heuristic time-fraction assignment schemes are proposed to balance

the system performance and fairness among good and bad users. This problem is

further extended to multichannel wireless networks in [12]. The authors developed

a general methodology to exploit multiuser diversity over multiple wireless channels

using an adaptive control framework. The selection of the best users and rates from

a complex general optimization problem is transformed into a decoupled formula-

tion, i.e. a multiuser scheduling problem that maximizes total system throughput,

and a control-update problem that ensures long-term deterministic or probabilistic

fairness constraints. These two sub-problems can be solved separately to simplify

the design procedure. In solving the multichannel problem, their key technique is to

jointly exploit the variations in the source consumption of multiple users to oppor-

tunistically select users with greater throughput potential while ensuring fairness

constraints. Practical schedulers are also designed and evaluated to approximate

these objectives. While [7–11] focus on the performance of opportunistic scheduling

algorithms at the packet level for a static user population, this problem is studied at

the flow level in a dynamic setting with random finite-size service demands [13]. The

authors show that the user-level performance may be evaluated in certain cases by

means of a multi-class processor-sharing model, where the total service rate varies

with the total number of users. Various statistics, e.g. the distribution of the num-

ber of active users from different classes, the mean throughput, are discussed under

this model. It is also shown that in the presence of channel variations, greedy or

myopic strategies which maximize throughput in a static scenario, may result in

sub-optimal throughput performance for a dynamic user configuration and cause

6



instability effects.

Opportunistic scheduling for multicast applications is also studied under the

name of opportunistic multicasting [21–25]. Conventional multicast scheduling ex-

ploits the multicasting gain by serving all users simultaneously. However, to prevent

channel outage, the message has to be sent at a low rate which is constrained by

the user with the poorest channel conditions, which in turn results in performance

degradation. The opportunistic multicasting problem is first studied in [21] to jointly

exploit the multiuser diversity gain and the multicast gain offered by the wireless

medium. Their idea is to schedule transmission to a fraction of the users that have

favorable channel conditions. A throughput-delay tradeoff is studied by varying the

fraction of users targeted in each transmission. The asymptotic optimality of the

throughput for a median user scheduler is established, where the best 50% users are

served in each transmission. In [22], the optimal user selection ratio in static and

dynamic opportunistic multicasting is investigated to maximize multicast through-

put in a homogeneous network. The authors study the general order statistics of

users’ supportable data rates and derive its limiting distribution based on extreme

value theory, and establish the optimal selection ratio by maximizing the average

network throughput. A dynamic selection algorithm is proposed to adjust the user

selection ratio adaptively in each transmission. It is shown that the opportunistic

multicasting scheme with optimized static and dynamic selected ratios outperform

the median-user static opportunistic multicasting scheme. This problem is further

extended to heterogeneous networks where users are subject to different channel

statistics [23]. The authors consider a single-cell wireless network with users uni-

7



formly distributed in a circular region around the base station. The key idea of [23]

is that system performance may be predicted by the behavior of users in the outmost

ring of the cell, which are approximately homogeneous. The multicast throughput

maximization problem is also studied for opportunistic multicasting problem with

erasure coding [24]. A linear gain for the multicast capacity is shown over i.i.d.

Rayleigh fading channels with respect to the number of users for a large number

of blocks. The analysis are extended to the case with shorter block lengths and

the delay-capacity tradeoffs under a simple setting are quantified. The authors also

show the achievable gains for non-i.i.d. channel conditions by modifying the pro-

portional fair sharing (PFS) scheduling algorithm presented in [4]. It is shown that

opportunistic multicasting with erasure coding can significantly improve the system

performance under both i.i.d. and non-i.i.d. channel conditions. The opportunistic

multicasting problem is also extended to multichannel networks in [25]. The problem

is formulated as a system throughput maximization problem subject to the fairness

constraints derived from each user’s specific minimum QoS requirement. A priority

metric is adopted which follows an exponential rule. This metric takes into account

the CSI for opportunism from different subsets of the multicast users at different

time slots and sub-channels. It also explicitly includes a term to compensate the

deviations observed by individual users from their QoS targets.

In these work, timely channel information is required to enable effective op-

portunistic scheduling, which makes the scheduling algorithm essentially centralized.

This kind of architecture usually happens in the downlink of a wireless cellular net-

work, where the base station acts as a central controller and control channels are

8



available for channel state feedback. However, frequent feedback of CSIs also im-

poses additional overhead for the system at the same time. There are few works in

systematic characterization of the overhead due to opportunism in the context of

multiuser diversity [26].

There are also works on opportunistic scheduling for the uplink in a many-

to-one network, where a group of users communicate to a single user (e.g. a base

station in a cellular network) [27–31]. Different from the downlink, the closed-loop

channel feedback is not available and the sender has no centralized control. Channel-

aware ALOHA [27,28] first discusses this problem under a collision channel model.

In channel-aware ALOHA, each user only knows its own channel quality and the

statistics of other users’ channel fading. Channel-aware ALOHA is first proposed

in [27] as a modification to the ALOHA protocol, where a user only transmits when

its channel gain is above a threshold H0. It is shown that the multiuser diversity

is achieved. In fact, the total system throughput increases at the same rate as in a

system with a centralized scheduler, and asymptotically the fraction of throughput

loss due to random access is 1/e. Splitting algorithms are presented in [28] to resolve

collisions over a sequence of mini-slots and determine the user with the best channel.

The idea is to determine two thresholds (Hl and Hh) for each mini-slot such that

at each time only users whose channel gains satisfying Hl < h < Hh are allowed

to transmit. It is shown that for a system with i.i.d. block fading and a fixed

number of backlogged users, the average number of mini-slots required to find the

user with the best channel is less than 2.5, which is independent of the number

of users or the fading distribution. With the proposed splitting algorithms the
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throughput is improved and approaches the optimal value as the channel’s coherence

time increases. Channel-aware ALOHA is also studied under a reception channel

model [29], where the reception is allowed to depend on the channel states of the

transmitting users and it is also possible to model the simultaneous reception of

multiple packets. In [29], the transmission probability is allowed to be a function

of the CSI named transmission control, where both polulation-independent and

polulation-dependent transmission controls are considered. It is shown that the

effect of transmission control is equivalent to changing the probability distribution of

the channel state. In [30], the authors derive sufficient conditions for system stability

as well as upper bounds on average queue sizes using the dominant system approach

for channel-aware with random arrival traffic. They prove the binary scheduling

scheme of [27] maximizes the sum throughput for a homogeneous network, and

maximizes the sum of the logs of the average throughputs while asymptotically

guaranteeing fairness among users. Opportunistic ALOHA is also extended to the

multichannel case for OFDMA wireless network [31], where the number of channels

used and the corresponding channel conditions would affect a user’s transmission

rate, and on the other hand the number of channels used and the transmission

probability would in turn determine the collision probability. A key step in [31]

is to characterize the mapping from a user’s channel conditions to the number of

channels used and the transmission probability. The multichannel opportunistic

ALOHA has a larger diversity gain compared to the single channel case, since the

channel variation comes not only from the independence across users but also from

the independence across frequency channels. It is showed that the multichannel
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opportunistic ALOHA approaches 1/e of the optimal centralized scheme, provided

that the only performance loss is due to the contention from random access.

There have been few works to exploit opportunism in multiuser diversity for

wireless ad-hoc networks due to the distributed nature of the network. Existing

works are usually based on heuristics and focus on IEEE 802.11 like network based

on the RTS/CTS handshaking. For example, the idea of multicast RTS and pri-

oritized CTS have been proposed to exploit multiuser diversity [32, 33]. In [32],

based on the multicast RTS probing, the sender chooses the neighboring nodes with

channel quality better than a certain level to schedule the transmissions of packets

in its queue. In the Contention-Based Prioritized Opportunistic (CBPO) MAC pro-

tocol [33], based on multicast RTS channel probing, all qualified users contend the

channel with pulses of energy signals called black burst, and only the users with the

highest priority will send CTS back to the sender. Opportunistic Medium Access

and Auto Rate (OMAR) [34] considers a cluster based approach to exploit the mul-

tiuser diversity in ad hoc networks. In OMAR protocol, each node with a certain

number of links is enabled to form a cluster and function as the clusterhead to co-

ordinate multiuser communications locally. In each cycle, the cluster head initiates

medium access with certain probability and then the cluster members distributedly

make medium access decision based on the observed instantaneous channel con-

ditions. A CDF-based K-ary opportunistic splitting algorithm and a distributed

stochastic scheduling algorithm are proposed to resolve intra- and inter-cluster col-

lisions. Fairness is formulated and solved in terms of social optimality within and

across clusters. In [35], the authors proposed to study a distributed opportunistic
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scheduling (DOS) problem for ad-hoc networks, where M links contend the wireless

medium and schedule data transmissions in a distributed fashion. In such networks,

the transmitter has no knowledge of other links’ channel conditions, and even its

own channel condition is not available before a successful channel probing. The

channel quality corresponding to one successful probing can either be good or poor

due to channel fluctuations. In each round of channel probing, the winner makes

a decision on whether or not to send data over the channel. If the winner gives

up the current opportunity, all links re-contend again, hoping that some link with

better channel condition can utilize the channel after re-contention. The goal is

to optimize the overall system performance. The authors show that the decision

on scheduling further channel probing or data transmission is based only on local

channel conditions, and the optimal strategy is a threshold policy.

1.3 Contribution of the Dissertation

In this dissertation, we address the channel-aware scheduling problem for wire-

less ad-hoc networks where channel probing is adopted to property assist in accessing

the wireless medium and resolving collisions in a decentralized fashion. The main

contribution is that we consider this problem for channel fading with both paramet-

ric and non-parametric models, and we present a mathematical treatment to handle

how channel dependencies affect the performance of the protocol.

In the first part of the dissertation, we consider the channel-aware scheduling

problem assuming that the instant CSIs are not available but the channel statistics
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are known. In Chapter 3, we consider dependencies of the channel rates between

different time instances during the channel probing phase and its impacts on the

transmission scheduling. We use optimal stopping theory to model this problem,

but at carefully chosen time instances when effective decisions are made. By merg-

ing repeated decisions, the new model transforms winners’ channel rates into in-

dependent random variables, even though these channel rates are not independent

under the block fading channel model. We characterize the system throughputs of

the distributed opportunistic scheduling scheme assuming the problem has infinite

stages. We then develop a measure to see how likely the problem can be analyzed

as an infinite horizon optimal stopping problem. We characterize the actual system

throughput if we ignore the finite horizon constraint and design stopping rule based

on the infinite horizon analysis. We then analyze the problem using backward in-

duction if the finite horizon constraint cannot be ignored. We develop one recursive

approach to solve the problem and show that the computational complexity is linear

with respect to the network size. We then present an improved protocol to reduce

the probing costs which requires no additional cost and characterize its performance.

In Chapter 4, we extended this problem to ad-hoc networks where the wireless spec-

trum can be divided into multiple independent sub-channels for better efficiency. We

start with a naive multi-channel protocol where the scheduling scheme is working

independently from sub-channel to sub-channel. We show that the naive protocol

can only marginally improve the system throughput. We then develop a protocol to

jointly consider the opportunistic scheduling behavior across multiple sub-channels.

We characterize the optimal stopping rule and present several bounds for the system
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throughput of the multi-channel protocol. We show that by joint optimization of

the scheduling scheme across multiple sub-channels, the proposed protocol improves

the system throughput considerably in contrast to that of single-channel systems.

In the second part of the dissertation, we study this problem under the assump-

tion that neither the instant CSI nor the channel statistics are known. In Chapter

5, we formulate and solve the opportunistic scheduling problem using multi-armed

bandit (MAB). We first present a semi-distributed MAB protocol which serves as

the baseline for performance comparison. We then propose two distributed MAB

protocols, where each link keeps a copy of local observations and plays its own MAB

game independently. We prove that these distributed protocols can be considered

as a generalized MAB procedure, where each link can update its local observations

for infinitely many times. By means of numerical results, we compare statistics of

the local observations and the regrets under different parameters. Simulation results

suggest that the local observations that are held independently at each link converge,

and they converge to the true parameters if the game is played independently for

multiple times. Simulations also show that the distributed protocols yields a regret

which is greater than but still comparable to that of the semi-distributed protocol.
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Chapter 2

Distributed Opportunistic Communications for Collaborative

Control Application

2.1 Introduction

Collaborative control of groups of autonomous agents (robots, unmanned vehi-

cles, etc.) has gained a growing amount of attention recently. Collaborative robotics,

automated highway services, mobile sensor networks, and disaster relief operations

are examples of applications in which advances in wireless and other technologies

has led engineers to design groups of unmanned mobile vehicles [36]. In all of the

above applications there is a strong incentive to come up with efficient decentralized

control and decision-making schemes. Decentralization is preferred due to lack of

expensive central coordination and robustness to single node failure. A challeng-

ing issue in design of collaborative swarms of autonomous vehicles is the need to

implement efficient communication mechanisms. In many control theoretic studies,

certain communication capabilities are implicitly assumed to hold [37–40].

In this chapter, we explicitly address the effects of communication on the per-

formance of the networked system with emphasis on maintaining group connectivity.

We study both the control and communication problems for a group of autonomous

vehicles that are maneuvering with little or no direct human supervision in an adver-
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sarial environment. The mission is to explore the terrain, cover a target area while

avoiding any possible obstacles or threats, and finally send information about fea-

tures of the area to a command center. Building on our earlier work [40,41], we use

gradient flow based artificial potential methods for path planning [42,43] in a kine-

matic setup. Despite their limitations, artificial potential based navigation functions

have been found lots of applications in collaborative control [37, 38, 44, 45]. Hybrid

stochastic methods have been proposed to overcome local minima problems [41].

We study the effects of communication between nodes on the group’s path planning

by comparing two schemes. In one scheme the vehicles only process their sensed

local information whereas in the second scheme they collaborate by communicating

among themselves. We study the performance of the wireless inter-vehicle network

based on the IEEE 802.11 media access mechanism. Simulation results show that

collaboration between vehicles results in better performance for path planning and

wireless inter-vehicle communications. However, contention-based communication

protocols are likely to fail due to severe channel conditions.

To solve this issue, we look at the joint control and communication problem

from a different point of view. When there are other constraints besides maintaining

inter-vehicle communications, it is not efficient to attempt reliable communication

regularly. We address this problem under the constraints of energy consumption

and total operation time to perform the mission. We propose an algorithm to seek

communication opportunities based on the qualities of the wireless channels and

make communication attempts accordingly. We compare our algorithm with a non-

opportunistic algorithm, in which a vehicle makes a fixed number of communication
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attempts at a new position before moving to the next position. We show by simu-

lation that the proposed algorithm reduces the total operation time when there are

only position information to be exchanged, and also communicates more packets

utilizing the same operation time when there are additional data traffic.

2.2 System Model

We consider a group of n autonomous ground vehicles maneuvering within

an area A ⊂ R2, e.g. a battlefield or a building with unknown potential dangers.

Besides the boundary of A, there is very limited knowledge available regarding the

internal structure or topology of A. The vehicles’ mission is to explore A under

little or no direct human supervision, cover a target area T ⊂ A while avoiding any

possible obstacles or threats, and finally send information about features of A to

some server, e.g. a command center.1 We assume there is only one common target

T for all vehicles.

The main constraints of maneuvering the group of vehicles come from the

obstacles and moving threats that are distributed in A. An obstacle is a closed area

that cannot be entered by any vehicle. A moving threat is an object that moves

along an unpredictable trajectory with an unknown speed. A vehicle must keep at

least a distance of Re away from any moving threat, otherwise it will be destroyed. In

addition to the obstacles and moving threats, vehicles should keep a safety distance

from each other in order to avoid collisions while maintaining communications with

1We will use the term server or command center interchangeably throughout this paper.
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nearby vehicles. We further assume that the size of an obstacle is much larger than

that of a vehicle or a moving threat, hence we denote a vehicle or a moving threat

as a point in A for simplicity.

Before starting to maneuver, each vehicle is given an initial position of the tar-

get T . However, the position of the target can change during the maneuver. This is

because either better motion planning results are available after collecting certain

amount of information, or capturing a new target is required after the environment

has changed considerably. In this paper, we assume the change of the target posi-

tion can only be initiated from the server. The server sends the message of target

update to one or several vehicles depending on links available, and the message is

gradually spread to other vehicles via vehicle-to-vehicle communications. Since the

environment in A is highly dynamic, we assume that there is no global information

available about the positions of other vehicles, obstacles or moving threats. Instead,

each vehicle is equipped with devices for short-range detection, i.e. a vehicle can

discover another object (another vehicle, an obstacle or a moving threat) if it is

within a distance of Rd.

The vehicles also have other devices such as sensors or cameras to capture var-

ious features of the internal structure of A, which are later delivered to the server.

However, due to the highly dynamic nature of the environment, the server can only

access limited number of vehicles at any time. From time to time, the server may

change the vehicles from which data are pulled. Hence it is necessary that a vehi-

cle can deliver its data to any other vehicle via vehicle-to-vehicle communications.

On the other hand, since each vehicle only has information about positions of the
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neighboring objects from local detections, they need to exchange such information

between themselves. These information are time-sensitive, since each vehicle can

have a better trajectory if it collects more information regarding the position of the

target, other vehicles, obstacles and moving threats. We denote these information

as position information, and other information that are delivered to the server as

additional data traffic.

It is well known that wireless channels used for communication in such settings

are vulnerable to fading and interference. The mathematical modeling of the wireless

channels for our application is very challenging due to the highly dynamic nature

of the terrain which blocks the line-of-sights (LOS) between the vehicles and results

in reflection and scattering among many other physical phenomena which affect the

transmitted signals [18]. Interference happen when more than one pair of vehicles

attempt to communicate simultaneously within a short distance and thus lead to

confliction in the wireless medium. In this paper, we mainly consider the shadowing

effects and model the path loss based on the Fresnel zone radius and the obstruction

that lie in the first Fresnel zone [46].

2.3 The Collaborative Control Algorithm for Networked Vehicles

We consider the general high level kinematic path planning problem for the

group of vehicles over a wireless network. The algorithm generates a sequence of

waypoints to follow by each vehicle. The algorithm uses artificial potential naviga-

tion functions and is based on our previous work [40]. The potential functions are
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chosen to lead the vehicles towards the target while avoiding collision and moving

threats.

2.3.1 Potential Functions

We assume time is slotted. At time t, let V(t) denote the set of vehicles

that are alive, O(t) the set of obstacles, and M(t) the set of moving threats. Let

pi(t) = (xi(t), yi(t)) be the position of the i-th vehicle at time t. We let N i
v(t) denote

the set of vehicles known to the i-th vehicle at time t 2

N i
v(t) = {j ∈ V(t) : j 6= i, i knows the position of j}. (2.1)

Similarly, we define the set of the obstacles and moving threats known to the i-th

vehicle at time t as

N i
o(t) = {j ∈ O(t) : i knows the position of obstacle j} (2.2)

and

N i
m(t) = {j ∈M(t) : i knows the position of threat j}, (2.3)

respectively. We denote by T i(t) the target area at time t as far as the i-th vehicle

knows.

To maneuver the vehicles, the following optimization problem is solved locally

2We define N i
v(t) in this way instead of a set of neighboring vehicles within the detection range

Rd, i.e. N i
v(t) = {j ∈ V(t) : j 6= i, ‖pi(t)− pj(t)‖ ≤ Rd}, since the i-th vehicle knows the positions

of some vehicles beyond Rd in Figure 2.3.
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at time t at the i-th vehicle

min
pi(t)

Ji,t(pi(t))

s.t. Gk(pi(t)) ≤ 0, k ∈ N i
o(t)

‖pi(t)− pi(t− 1)‖ ≤ δ,

(2.4)

where Gk(pi(t)) is the nonlinear constraint corresponding to the k-th obstacle, and

δ is the step size. A potential function is constructed for each vehicle consisting of

several terms, each of which reflects a goal or a constraint. The potential function

Ji,t(pi(t)) for the i-th vehicle at time t is

Ji,t(pi(t)) = λgJ
g
t (pi(t)) + λnJ

n
i,t(pi(t)) + λoJ

o
t (pi(t)) + λmJ

m
t (pi(t)), (2.5)

where Jg
t , Jn

i,t, J
o
t and Jm

t are the component potential functions relating to the

target, neighboring vehicles, obstacles and moving threats respectively, and λg, λn,

λo and λm are weighting factors. The potentials are chosen such that they encode the

intended behavior of the vehicles regarding obstacle avoidance, keeping distance from

neighbors and target finding correctly. For example, the target potential function

is Jg
t (pi) = fg(ρ(pi, T i(t))), where ρ(pi, T i(t)) = infa∈T i(t) ‖pi − a‖ is the smallest

distance from pi to the target area T i(t). Here fg(·) is a strictly increasing function

with fg(0) = 0. This function guarantees that the i-th vehicle will move toward

the target T i(t) in absence of other objects. We use fg(r) = r2 in our simulations.

The threat and obstacle avoidance potentials are on the contrary strictly decreasing

functions of the vehicles’ distance to threats and obstacles, and tend to infinity

as this distance approaches 0. The neighboring potential is more involved, since

it is designed to make the vehicles maintain some optimal distance. Figure 2.1
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Figure 2.1: Neighboring potential function

provides the shape of the neighboring potential function that we use. For the detailed

discussion of these components and the effects of the weights, we refer the reader to

our earlier work [40]. The velocity of the i-th vehicle at time t is derived from the

gradient descent equation:

ṗi(t) = −∂Ji,t(pi)

∂pi

(2.6)

In this chapter, we introduce two distributed algorithms to control the tra-

jectories of the autonomous vehicles. It should be noted that in both cases the

optimization is performed locally at each vehicle. However, we will show later that

better performance can be achieved through collaboration even with the same opti-

mization algorithm.

2.3.2 Distributed Control Algorithm with Local Information

We first introduce the distributed algorithm with only local information. In

this case, the i-th vehicle performs a local detection and identifies all neighboring

vehicles, obstacles, and moving threats within Rd and update its N i
v(t), N i

o(t) and
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1: The initial position of the target T is loaded into each vehicle;

2: t← 0;

3: while V(t) is not empty and some vehicle in V(t) is outside the target

T (t) do

4: for all vehicles in V(t) do

5: The i-th vehicle identifies its local information set N i
v(t), N i

o(t) and

N i
m(t) through a local detection procedure;

6: The i-th vehicle starts an optimization algorithm to minimize

Ji,t(pi(t)) and finds an optimal solution p∗i (t) based on N i
v(t), N i

o(t)

and N i
m(t);

7: The i-th vehicle moves to the new position p∗i (t);

8: end for

9: t← t+ 1;

10: Update the set of alive vehicles V(t);

11: end while

Figure 2.2: The distributed control algorithm with only local information

N i
m(t). All other vehicles, obstacles or moving threats which are beyond the rangeRd

are completely unknown to the i-th vehicle, and thus are not included in Ji,t(pi(t)).

For the sake of simulations, we have considered discretization of the system with time

steps small enough to preserve the stability of the original continuous algorithm. We

also assume a prearranged synchronization scheme. The algorithm can be described

as Figure 2.2.

From Figure 2.2 we can see the local information set N i
v(t), N i

o(t) and N i
m(t)

that can be obtained by the i-th vehicle highly depends on the detection range

Rd, which is limited by the device and energy constraint. Hence the benefits of

the application of Figure 2.2 to highly adversarial environments are limited, since
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local information may not be sufficient to provide the vehicles with appropriate

maneuvering capabilities.

2.3.3 Distributed Control Algorithm with Collaborative Information

We notice if the i-th vehicle can access the position information of the objects

that are beyond its detection range Rd, then a better performance is expected even

with the same local optimization procedure to derive p∗i (t). This can possibly be done

through local vehicle-to-vehicle communications. In our algorithm, at each time t,

the vehicles exchange this control information before they start to transmit the data

traffic. We note that the amount of data for control information is much smaller

than that of the bulk data traffic. Hence the control information can spread rapidly

among the vehicles, either by using the control channel when the wireless connections

are established, or through other local, epidemic or gossip based protocols [47, 48].

The details of the algorithm are shown in Figure 2.3.

Figure 2.3 shows that not only a vehicle can get the position information of

the objects beyond its detection range, but the server can also update the target

position by communicating with only one or several vehicles. This is very useful

when more accurate position estimates of the target is calculated at the server after

collecting more information, or the target position must be changed due to discovery

of hazardous objects nearby. Figure 2.3 can be used in more adversarial and highly

dynamic situations.
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1: The initial position of the target T is loaded into each vehicle;

2: t← 0;

3: while V(t) is not empty and some vehicle in V(t) is outside the target

T (t) do

4: for all vehicles in V(t) do

5: The i-th vehicle performs a local detection procedure and updates

its local information set N i
v(t), N i

o(t) and N i
m(t) accordingly;

6: The i-th vehicle updates T i(t) if notified;

7: The i-th vehicle exchanges the local information set T i(t), N i
v(t),

N i
o(t) and N i

m(t) with the vehicles that have connections between

them, and updates the local information set accordingly;

8: The i-th vehicle starts an optimization algorithm to minimize

Ji,t(pi(t)) and finds an optimal solution p∗i (t) based on T i(t), N i
v(t),

N i
o(t) and N i

m(t);

9: The i-th vehicle moves to the new position p∗i (t);

10: end for

11: t← t+ 1;

12: Update the set of alive vehicles V(t);

13: end while

Figure 2.3: The distributed control algorithm with collaborative information

2.4 The Distributed Opportunistic Communication Algorithm for

Networked Vehicles

2.4.1 Wireless Inter-Vehicle Networks

The communication module in our system is responsible for both inter-vehicle

control information and data traffic transmission to and from the command center.

Note that the control information is more time-sensitive but needs much less band-
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width compared to the bulk data traffic. In light of that, we assume that either the

transmission of control information can be accomplished via control channels, or the

bandwidth that is consumed by the control information is negligible compared to

that of the bulk data traffic. Hence, in this paper we assume that the exchange of

control information can be finished before the transmission of bulk data traffic in

each time slot. With this assumption, the transmission of control information and

data traffic can be well separated.

Hereafter we only consider the data transmission when discussing the perfor-

mance of the wireless vehicle-to-vehicle network. We assume each vehicle always

has data to transmit whenever communication opportunities are available.

Modeling the physical layer loss for wireless networks of moving vehicles is very

challenging. The physical loss is highly environment dependent. Since the vehicles’

motion in our scenarios are generally slow enough, we can simplify the problem by

only considering the shadowing effects. The concept of Fresnel zone clearance has

been used to analyze interference caused by obstacles near the path of a wireless

transmission [46], where the first zone must be kept largely free from obstructions.

We model the physical layer path loss by considering the obstructions occurring

in the first Fresnel zone and the Fresnel zone radius. We use the IEEE 802.11

based medium access protocol. Under this assumption, the wireless medium is

shared between vehicles using the CSMA/CA mechanism. We use an ad hoc routing

protocol at the network layer, e.g. Dynamic Source Routing (DSR) routing [49].

We assume UDP protocol at the transport layer. This is because smaller delays are

desirable for timely decision making at the server in our application, where certain
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level of packet transmission errors can be overcome by aggregating data traffic from

all vehicles.

2.4.2 The Distributed Opportunistic Communication Algorithm

The wireless communication module in the networked system exchange mes-

sages for both position information and additional data traffic between vehicles.

Note the position information is time sensitive but needs much less bandwidth com-

pared to the bulk data traffic. In light of that, throughout this paper we assume

whenever there is available bandwidth, the vehicles transmit data traffic only if there

are currently no position information need to be sent.

We assume the duration of one snapshot, i.e. the time elapsed between a ve-

hicle’s presence in two consecutive positions, is T0 = Ts + Tc + Tm, where Ts is the

time used for local sensing, Tc is the time used for inter-vehicle communications, and

Tm is the time used to move from the current position to the next position. When

the resources are not strictly restrained, we can choose a large enough Tc such that

the vehicles can exchange at least the position information within Tc. However,

in other situations there are other constraints such as the total operation time to

finish the mission which makes a choice of large Tc unacceptable. On the other

hand, even without such constraints, it is difficult to achieve reliable inter-vehicle

communications over the wireless medium at all positions along their trajectories,

since the time-varying wireless links sometimes experience severe degradation due

to obstacles, mobility of vehicles and radio interferences. In this case reliability for
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communications comes with a higher price of increased complexity of the communi-

cation algorithms and higher energy consumption. As a result, it is not efficient to

make efforts for reliable communications equally at any positions, especially when

the qualities of the wireless links are not good enough.

We now address the problem of efficient communications between vehicles un-

der the constraints on energy consumption and total operation time to finish the

mission. The proposed communication algorithm is based on opportunistic com-

munications or channel-aware scheduling in some literature [3, 4, 11, 13, 27, 50–52].

The general idea is to communicate more when opportunities arise and less other-

wise. There has been work on exploiting communication opportunities across time

slots [50–52] or across multi-users [3,4,11,13,27]. In this paper, we explore another

communication opportunity, i.e. we seek communication opportunities across differ-

ent positions along the trajectories of the moving vehicles. At those positions where

the wireless links are likely to fail, the vehicles proceed with their planned motion,

and they attempt to make more communication attempts at positions where the

qualities of the wireless links are better. As a result, the vehicles exchange infor-

mation efficiently at positions with better link qualities and maneuver when the

wireless links are severely degraded.

We use energy consumption and total operation time as the metrics for per-

formance comparison. We assume most of the energy is consumed by local sensing,

wireless communications and mechanical move.3 Furthermore, we assume local sens-

ing consumes much less energy compared to wireless communications and mechanical

3Here we ignore the energy consumption due to local computation and decision making.
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move. If we assume energy consumption is proportional to the time duration, we

can set Ts ≈ 0. In order to compare the energy consumption and total operation

time using one single metric, we further make the following assumptions: We choose

a T such that a vehicle can communicate exactly one message with its peer within

duration T . We then select a step size δ such that a vehicle spends the same amount

of energy on communicating one message or moving a distance of δ, i.e. Tm = T .4

For the non-opportunistic algorithm, we assume that a vehicle makes K com-

munication attempts in each snapshot regardless of the qualities of the wireless chan-

nels, i.e. Tc = KT . The duration of a snapshot is thus T1 = Tc + Tm = (K + 1)T .

For opportunistic communication algorithm, on the other hand, we can utilize the

time slots with bad channel qualities to maneuver to some other positions with bet-

ter channel qualities. Hence, unlike the non-opportunistic algorithm, a snapshot

may have different number of slots for inter-vehicle communications, which depends

on the qualities of the wireless channels. Here an important part is to estimate

the qualities of the wireless channels in each position, based on which decisions on

whether to communicate or not will be made. However, in practice it is difficult

to estimate the wireless channel qualities accurately. Hence, we make the current

decision on whether to communicate or not based on the result of the last communi-

cation attempt at the same position. To find the channel quality at a new position,

a vehicle first makes one communication attempt after moving to a new position.

Figure 2.4 implements this opportunistic approach.

In Figure 2.4, a vehicle first makes one communication attempt at a new po-

4Here a message can be a chunk of many packets.
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1: M ← maximum number of slots for communication without moving;

2: t← 0, V(t)← all vehicles that are initially alive;

3: Load the initial position of the target into each vehicle in V(t);

4: Mi ← 0 for each vehicle in V(t);

5: while V(t) is not empty and at least one vehicle in V(t) has not reached

the target T (t) do

6: for all vehicles in V(t) do

7: The i-th vehicle performs a local detection procedure and updates

its local set N i
v(t), N i

o(t), N i
m(t) and T i(t) accordingly;

8: if the current position is new for the i-th vehicle then

9: The i-th vehicle attempts to communicate one message;

10: Mi ← 1;

11: else

12: if the last communication at the current position is successful and

Mi < M then

13: The i-th vehicle attempts to communicate one message;

14: Mi ←Mi + 1;

15: else

16: The i-th vehicle starts an optimization algorithm to minimize

Ji,t(pi(t)) and finds an optimal solution p∗i (t) based on T i(t),

N i
v(t), N i

o(t) and N i
m(t);

17: The i-th vehicle moves to the new position p∗i (t);

18: end if

19: end if

20: end for

21: t← t+ 1;

22: Update the set of alive vehicles V(t);

23: end while

Figure 2.4: The opportunistic communication algorithm for networked vehicles
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sition and the further decisions for the following slots are based on the previous

outcomings. If the communication attempt is successful, the vehicle continues to

communicate until a communication failure happens or the vehicle has communi-

cated for M consecutive slots without moving; otherwise the vehicle moves to the

next position. Hence the length of a snapshot is T2 = (X + 1)T where X is an

integer-valued random variable depending on the channel qualities. Here M ensures

the mission can be finished within a reasonable time. Although the duration of a

snapshot can be different from time to time for different vehicles, in this paper we

assume time is synchronized by the duration of slot T among different vehicles.

2.5 Simulation Results

Modeling the physical layer loss for wireless networks of moving vehicles is very

challenging. The physical loss is highly environment dependent. Since the vehicles’

motion in our scenarios are generally slow enough, we can simplify the problem by

only considering the shadowing effects. The concept of Fresnel zone clearance has

been used to analyze interference caused by obstacles near the path of a wireless

transmission [46], where the first zone must be kept largely free from obstructions.

We model the physical layer path loss by considering the obstructions occurring in

the first Fresnel zone and the Fresnel zone radius.

We consider a group of autonomous vehicles in an 40m× 40m area A with 10

obstacles randomly distributed. We choose a scenario of 4 vehicles for illustration

purposes, which are indexed from 0 to 3. The target area is a point whose position is
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(30, 30). There are 6 moving threats circling around to protect the target, where 4 of

them are on a circle centered at the target (30, 30), 1 of them is on a circle centered

at (28, 24), and 1 of them is on a circle centered at (24, 28). The detection range

is Rd = 3, and Re =
√

2/2. The step size for maneuvering is δ = 0.5. There are 4

wireless links in our simulation, where Flow 1 is from vehicle 0 to 3, Flow 2 is from

vehicle 2 to 0, Flow 3 is from vehicle 1 to 2, and Flow 4 is from vehicle 3 to 1. In our

simulation, we assume the wireless modules of the vehicles are full-duplex. We also

assume these devices can detect communication success or failure. As an illustrative

example, we set K = 4 for the non-opportunistic communication algorithm.

In our first simulation, we assume that there are only position information to

be exchanged. Since there are no additional data traffic, we are interested in the

saving of total operation time that can be achieved by the opportunistic commu-

nication algorithm. Hence we set M = 4, i.e. the vehicles have at most the same

communication opportunities compared to the non-opportunistic algorithm. We

run 100 independent simulations for the two algorithms respectively and show the

results in Table 2.1 and Figure 2.5. We compare the means and standard deviations

from the 100 simulations in Table 2.1. Table 2.1(a) and 2.1(b) show that the ratios

of standard deviation to mean is at most 1.5% for the non-opportunistic algorithm

and at most 9.9% for the opportunistic algorithm. We notice that the standard de-

viations of Table 2.1(b) are relatively larger, which is due to vehicles communicating

opportunistically. We then show the means and standard deviations for the number

of mechanical moves and messages exchanged until the 160-th slot in Table 2.1(c)

and 2.1(d) respectively. The largest ratio of STD
Mean

is 0.8% in Table 2.1(c) and 7.7%
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in Table 2.1(d). While running more independent simulations provides more reli-

able results, 100 simulations are enough for our illustration example. We randomly

pick one from the 100 simulations and show the vehicles’ trajectories for the two

algorithms in Figure 2.5(a) and 2.5(b) respectively. We notice that the trajectories

of the vehicles are slightly different due to the opportunistic way of communication

in the latter case. We then compare the average performance of 4 vehicles from 100

simulations for the two algorithms in Figure 2.5(c) and 2.5(d). The average total

operation time of the non-opportunistic algorithm is 428.8 slots in Figure 2.5(c).

The total operation time of the opportunistic algorithm reduces to 223.3 slots in

Figure 2.5(d), which is a time saving of 47.9%. On the other hand, the vehicles

spend an average of 85.8 and 84.6 slots on actual mechanical move respectively, as

shown in Figure 2.5(c) and 2.5(d). Hence there is no additional energy consumption

on mechanical move for the opportunistic communication algorithm. Furthermore,

the vehicles are able to exchange an average of 71.2 packets in the non-opportunistic

algorithm as shown in Figure 2.5(c) and an average of 77.8 packets in the oppor-

tunistic algorithm as shown in Figure 2.5(d). Hence the opportunistic algorithm is

able to exchange more position information even though the vehicles give up com-

munication after failures at some positions. We also randomly pick one vehicle and

compare the average performance from 100 simulations for the two algorithms. Fig-

ure 2.5(e) and 2.5(f) show the performance of vehicle 1 for the two algorithms. The

average total operation time of this vehicle is 427.0 and 201.3 slots respectively for

the two algorithms, i.e. using opportunistic algorithm the vehicle can save 52.9% of

the total operation time compared to the non-opportunistic algorithm. Meanwhile,
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Table 2.1: Mean and standard deviation from 100 independent simulations: (a)
Total operation time for non-opportunistic algorithm; (b) Total operation time for
opportunistic algorithm; (c) Number of mechanical moves until slot 160 for oppor-
tunistic algorithm; (d) Number of messages for position information exchanged until
slot 160 for opportunistic algorithm.

Vehicle 0 1 2 3

Mean 407.2 427.0 447.6 433.5

STD 4.5 5.2 4.3 6.6

STD
Mean

1.1% 1.2% 1.0% 1.5%

(a)

Vehicle 0 1 2 3

Mean 236.9 201.3 259.6 195.4

STD 16.0 14.0 14.1 19.3

STD
Mean

6.8% 7.0% 5.4% 9.9%

(b)

Vehicle 0 1 2 3

Mean 63.3 66.6 66.9 71.7

STD 0.52 1.03 0.32 0.68

STD
Mean

0.8% 1.6% 0.5% 1.0%

(c)

Vehicle 0 1 2 3

Mean 35.2 28.6 28.9 16.8

STD 1.2 2.0 0.8 1.3

STD
Mean

3.4% 7.0% 2.7% 7.7%

(d)

the average of the actual time used for mechanical move is 85.4 and 82.4 respectively

in the two algorithms, and the average number of packets exchanged is 60.5 and 65.2

respectively, as shown in Figure 2.5(e) and 2.5(f). Hence, by utilizing opportunistic

communications, the vehicles can maneuver to the target much earlier while there is

no additional energy required for mechanical moving and no sacrifices to the amount

of position information exchanged.

In the second simulation, we assume there is additional data traffic besides

position information. In this case, we are interested in comparing the number of ad-

ditional data packets successfully exchanged within the same operation time. Here

34



we adjust the value of M until the total operation times for the two algorithms are

close to each other. A value of M = 12 is finally used in our simulation. We also

run 100 independent simulations. Again, Figure 2.6(a) and 2.6(b) show the trajec-

tories of the vehicles from a randomly drawn simulation from the 100 independent

simulations. We compare the average performance from 100 simulations for the two

algorithms in Figure 2.6(c) and 2.6(d). The average total operation time is 428.7

slots for the non-opportunistic algorithm in Figure 2.6(c) and 406.5 slots for the

opportunistic algorithm in Figure 2.6(d). Notice the total operation time for the

opportunistic algorithm is slightly smaller than that of the non-opportunistic algo-

rithm. The average of the actual time used for mechanical move is 85.7 slots for

the non-opportunistic algorithm and 83.5 slots for the opportunistic algorithm. We

then take a look at the number of packets exchanged. For position information, the

vehicles exchange an average of 71.2 packets for the non-opportunistic algorithm

and an average of 155.2 packets for the opportunistic algorithm. For additional

data traffic, only an average of 94.2 packets is exchanged in Figure 2.6(c) and this

number is increased to 148.8 in Figure 2.6(d). As a result, the vehicles can exchange

more packets for both the position information and additional data traffic in the

opportunistic communication algorithm even with a slightly smaller total operation

time. Finally, following Figure 2.5, we also take a look at the average performance of

vehicle 1 from 100 simulations for the two algorithms. The average total operation

time of this vehicle is 426.7 slots in Figure 2.6(e) and 452.0 slots in Figure 2.6(f),

which are close to each other. The average of the actual time used for mechanical

move is 85.3 and 81.0 slots respectively. Meanwhile, for position information, the ve-
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hicle is able to exchange 60.4 packets for the non-opportunistic algorithm in Figure

2.6(e), and this number increases to 89.5 in Figure 2.6(f). The number of packets for

additional data traffic is 87.9 for the non-opportunistic algorithm in Figure 2.6(e)

and 239.4 for the opportunistic algorithm in Figure 2.6(f). Hence by using approxi-

mately the same total operation time and the actual time used for mechanical move,

there is a considerable increase in the number of packets exchanged for both position

information and additional data traffic.
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Figure 2.5: Performance comparing of the non-opportunistic and opportunistic com-
munication algorithms, assuming that the vehicles only exchange position informa-
tion. (a) Trajectories of the vehicles for non-opportunistic algorithm; (b) Trajec-
tories of the vehicles for opportunistic algorithm; (c) Average performance of the
vehicles for non-opportunistic algorithm; (d) Average performance of the vehicles
for opportunistic algorithm; (e) Performance of vehicle 1 for non-opportunistic al-
gorithm; (f) Performance of vehicle 1 for opportunistic algorithm.
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Figure 2.6: Performance comparing of the non-opportunistic and opportunistic com-
munication algorithms, assuming that the vehicles exchange both position informa-
tion and additional data traffic. (a) Trajectories of the vehicles for non-opportunistic
algorithm; (b) Trajectories of the vehicles for opportunistic algorithm; (c) Average
performance of the vehicles for non-opportunistic algorithm; (d) Average perfor-
mance of the vehicles for opportunistic algorithm; (e) Performance of vehicle 1 for
non-opportunistic algorithm; (f) Performance of vehicle 1 for opportunistic algo-
rithm.
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Chapter 3

Distributed Opportunistic Scheduling for Single-Channel Networks

3.1 Introduction

In general, opportunistic scheduling requires the CSIs at the PHY layer to

schedule transmissions at the MAC layer. The difficulty involved with obtaining

CSIs in a distributed manner makes many works on opportunistic scheduling only

considers the centralized scenario. For example, many existing works assume a

cellular like system model where a central scheduler tries to optimize the overall

system performance by selecting the on-peak user for data transmissions [3,4,7,10–

12]. In contrast, in ad-hoc networks it is necessary to access the wireless medium

and schedule data transmissions in a distributed fashion. So far few existing works

have studied this problem in distributed scenarios. Such examples include rate

adaptation with MAC design based on the RTS/CTS handshaking for IEEE 802.11

networks [50–52] and channel-aware ALOHA for uplink communications [27–29].

However, rate adaptation focuses on protocols to exploit temporal opportunities

while leaving the distributed medium access issue to the RTS/CTS mechanism.

On the other hand, channel-aware ALOHA associates the probability to access the

uplink with channel quality under the assumption that each user knows its own

channel state information (CSI) from the uplink. These schemes ignore the overhead

due to the distributed nature of ad-hoc networks when considering the medium
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access and scheduling problem. In fact, these costs should be counted into the

protocol design in order to fully exploit the channel fluctuations in the network.

In [35], the authors proposed to study a distributed opportunistic scheduling

(DOS) problem for ad-hoc networks, where M links contend the wireless medium

and schedule data transmissions in a distributed fashion. In such networks, the

transmitter has no knowledge of other links’ channel conditions, and even its own

channel condition is not available before a successful channel probing. The channel

quality corresponding to one successful probing can either be good or poor due to

channel fluctuations. In each round of channel probing, the winner makes a decision

on whether or not to send data over the channel. If the winner gives up the current

opportunity, all links re-contend again, hoping that some link with better channel

condition can utilize the channel after re-contention. The goal is to optimize the

overall system performance. The authors show that the decision on further channel

probing or data transmission is based only on local channel conditions, and the

optimal strategy is a threshold policy.

One key issue in the design and analysis of opportunistic scheduling protocols

for wireless ad-hoc networks is to seek an optimal trade-off between the costs to

obtain the CSIs and the opportunities that can be exploited based on these infor-

mation. When channel probing is adopted for this purpose, the problem reduces to

the tradeoff between the durations elapsed for channel probing and those remaining

for data transmissions. The authors in [35] consider the constant data time (CDT)

model, where a fixed duration of T is available for data transmission regardless of

the time consumed for channel probing. To further understand this tradeoff and
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its impact on the system performance, we consider the constant access time (CAT)

model, where the total time duration available is a fixed amount T and the protocol

needs to decide how to split T between channel probing and data transmissions in

order to improve the system performance. On the other hand, in [35] the winners’

channel rates were explicitly assumed to be independent during the channel prob-

ing phase, which is an ideal assumption. As we will explain in Section 3.3, there

are inevitable dependencies between the winners’ rates at different time instances

during the channel probing phase. In our earlier conference paper [53], we analyzed

the distributed opportunistic scheduling problem for the CAT problem under the

ideal assumption that the winners’ channel rates are independent during the channel

probing phase. In a later technical report [54], we further investigate this problem

under the popular block fading channel model. We explicitly consider how such

dependencies could impact the transmission scheduling and hence the system per-

formance. We use optimal stopping theory [55–57] to describe this problem, where

we only choose the time instances when an effective decision is taken to make our

mathematical analysis tractable. The contributions of this chapter include:

1) We study a distributed opportunistic scheduling problem under the popular block

fading channel model where there are inevitable dependencies between the win-

ners’ channel rates during the channel probing phase. To the best of our knowl-

edge, this problem has not been studied in the literature.

2) We present a concept named “effective observation points”, where we only take

observations at time instances when effective decisions are made. In this ap-
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proach, repeated decisions by the same link are properly treated as a single deci-

sion. This approach makes our mathematical analysis tractable, where winners’

channel rates in the probing phase are not independent in the first place.

3) We characterize the optimal stopping rules and network throughputs for net-

works at different scales. We show that the finite horizon analysis is necessary

for networks whose sizes are not large enough, otherwise the actual achievable

network throughputs may deviate a lot from the infinite horizon analysis results.

4) We propose a modified protocol to reduce the probing costs, which requires no

additional overhead for protocol design. By analytical and numerical results, we

show that the new protocol improves the system performance, in particular for

scenarios when the network size is not large or the network is “over-probed”.

Furthermore, we show that the new protocol can reduce the energy consumed

in the channel probing phase considerably. This makes the improved protocol of

particular interest for networks whose nodes have limited battery life.

This chapter is organized as follows. In Section 3.2 we describe our system

model for the distributed opportunistic scheduling problem. In Section 3.3 we for-

mulate the problem as an optimal stopping problem and present our concept of

effective observation points for analyzing the problem. We first present a rigorous

analysis for the CAT problem based on the finite horizon approach in Section 3.4.

Due to its computational complexity, in Section 3.5 we introduce an approximate

approach to characterize the system performance. In Section 3.6 we present a modi-

fied protocol to reduce the probing costs, and analyze the performance improvement
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in network throughputs and energy savings in the channel probing phase. In Section

3.7 we introduce the results for the CDT problem and a performance comparison to

the CAT problem. We show our numerical results in Section 3.8.

3.2 System Model and Motivation

In this section, we introduce our system model for the distributed opportunistic

scheduling problem. Similar to the problem discussed in [35], we assume M links

share the wireless medium without any centralized coordinator in an ad-hoc network.

To access the wireless medium, all links have to probe first. Suppose the links adopt

a fixed probing duration τ . A collision channel model is assumed, where a link wins

the channel if and only if no other links are probing simultaneously. If link m probes

the channel with probability p(m), the duration of the n-th round of channel probing

is Tn = τKn, where Kn is the number of probings before the channel is won by some

link. Hence Kn has a geometric distribution Geom(ps) with parameter ps, where

ps =
M
∑

m=1

p(m)
∏

j 6=m

(

1− p(j)
)

(3.1)

is the successful probing probability. Throughout this paper, we use superscript

(m) to denote variables related to the m-th link, and subscript n to denote variables

related to the winner in the n-th round of channel probing. We also use the terms

“n-th round” of channel probing and “time n” interchangeably. At the end of the

n-th round, winner sn has an option to send data through the channel at the current

available rate Rn or to give up this opportunity. Based on the current rate Rn, sn

makes a decision on whether or not to utilize the channel for data transmission in
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order to optimize the overall network throughput. If sn gives up the opportunity,

all links re-contend again. This procedure repeats until some link finally utilizes

the channel. The goal is that all links cooperate indirectly to make the channel

accessible by some link with a good enough channel quality.

The performance analysis in [35] relies on an important assumption: the win-

ners’ channel rates Rn are independent with respect to time n in the channel probing

phase but can be locked for a constant duration T in the data transmission phase. It

should be noted that the independence of R(m) within one block does not necessarily

imply the independence of the winners’ rates Rn. In fact, possible dependencies do

exist between the winners’ channel rates Rn, since some link m̃ might win the chan-

nel for multiple times within one block. This assumption can generally hold when

the network size (i.e. the number of links in the network) is infinitely large. It is

not necessarily true for a network with a finite size M . On the other hand, although

opportunistic scheduling has been shown to improve the system performance dra-

matically for large networks [5, 12, 35], there are other factors we need to consider

in the design of such systems. For example, we could take a look at the average

waiting time for any link to access the medium [58]. Suppose the channel fading are

i.i.d. for all M links in the network. Then based on the distributed opportunistic

scheduling scheme [35, 53, 54], any link m is able to access the current block with

a probability 1
M

. Hence it takes roughly M blocks before link m is able to send

data over the wireless channel. This will lead to a long delay for large networks.

Hence for such kind of systems, one practical approach is to consider multi-cell or

multi-channel schemes [59–61] to trade-off several design goals (e.g. throughput,
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delays). In line with that, we argue that it is important to consider this problem

for a network with a finite size M , which is the basis for a more complex multi-cell

or multi-channel system.

To investigate how the dependencies of the winners’ channel rates in the chan-

nel probing phase affect the system performance, we study this distributed oppor-

tunistic scheduling problem for the popular block fading channel model. We assume

the channel rates are flat fading within one block. Hence the channel rate R(m) for

any link m does not change within one block. The total block length Ts is separated

into two parts as Ts = Tp + Td, where Tp is for channel probing and Td is for data

transmission. At the end of the n-th round of channel probing, the total time dura-

tion for channel probing is Tp =
∑n

i=1 Ti. We consider the CAT model [53,54,59,60],

where the transmitter has a fixed duration Ts = T in total, leaving the available

duration for data transmission as Td = T −∑n
i=1 Ti. If we decide to send data at

the end of the n-th round, the normalized network throughput is

Yn =
Rn · (T −

∑n
i=1 Ti)

T
. (3.2)

3.3 The Optimal Stopping Problem Formulation

In this section, we formulate the distributed opportunistic scheduling problem

as an optimal stopping problem. In particular, we present the concept of effective

observation points to facilitate the mathematical treatment of our problem.

The theory of optimal stopping [55–57] is about the problem of choosing a time

to take a given action based on sequentially observed random variables in order to
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maximize an expected payoff. The stopping rule problem is defined by a sequence

of random variables X1,X2, . . . whose joint distribution is known and a sequence of

real-valued reward functions Y0, Y1(x1), . . .. Let (Ω,B, P ) be the probability space,

and Fn be the sub-σ-field of B generated by X1, . . . ,Xn. We have a sequence of

σ-fields as F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ . . . ⊂ B. A stopping rule is defined as a random

variable N ∈ {0, 1, . . . ,∞} such that the event {N = n} is in Fn. Our goal is to

choose a stopping rule N∗ to maximize the expected reward E[YN ]. If there is no

bound on the number of stages at which one has to stop, this is an infinite horizon

problem and the optimal return can be computed via the optimality equation. When

there is a known upper bound on the number of stages, it is a finite horizon problem

and the optimal return can be solved by backward induction. A short summary of

optimal stopping theory can be found in Appendix A, and details on this topic can

be found in [55–57].

At the end of the n-th round, winner sn observes the probing duration Tn and

the available channel rate Rn. Recalling that Tn = τKn and the fact that τ is a

constant, we denote the observations at time n as a random vector Xn = (Rn, Kn)

and one realization of Xn as xn = (rn, kn). The σ-fields can be denoted as

Fn = {X1,X2, . . . ,Xn} = {R1, K1; R2, K2; . . . ; Rn, Kn} . (3.3)

Then sn makes a decision on whether or not to stop based on Fn, to maximize

the overall network throughput (3.2). Here a decision to “stop” means that sn

decides to utilize the remaining time duration for data transmissions. A decision to

“continue” means that sn decides to give up the current opportunity. Another round
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1: for each link m do

2: m probes the channel with a fixed probability p(m);

3: if m wins the channel then

4: m makes a decision on whether or not to send data over the channel;

5: if m decides to utilize the channel then

6: m sends data through the channel for a duration of T −∑n
i=1 Ti

(CAT) or T (CDT), where n is the current index of channel prob-

ing;

7: end if

8: end if

9: end for

Figure 3.1: The distributed opportunistic scheduling protocol

of channel probing and decision making then begins. This probing and decision

behavior continues within this block until winner sN finally utilizes the channel for

data transmissions, where N is the stopping time. It could be easily sensed and

detected by all other links at this point. Hence all links don’t send probing signals

anymore until the beginning of the next block. If this procedure is repeated for I

blocks independently, the decision making process can be described as

Y ∗ = max
N∈Fn

E
[

RN · (T − τ
∑N

i=1Ki)
]

T
, (3.4)

where N is the stopping time. This procedure can be described as in Figure 3.1.

Now the problem is to find an optimal rule N∗ to maximize the overall network

throughput. To do this, we need to characterize the joint distribution of Rn and
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Kn. We notice that Rn and Kn are independent of each other, and Kn are also

independent with respect to time n. However, the winners’ channel rates Rn are

not independent due to the block fading assumption. The dependencies of Rn make

the mathematical analysis of this problem intractable. In this paper, we tackle this

problem by using effective observation points instead of the original observation

points in (3.3). The whole idea is motivated from the following fact: at time n, if

the winner sn decides to give up the opportunity, the same decision will be repeated

for all future ñ > n in this block when the channel is won by sn again at time ñ.

This is because utilizing the channel at time ñ will only yield a smaller reward, i.e.

Yñ =
Rñ(T − τ∑ñ

i=1Ki)

T
<
Rn(T − τ∑n

i=1Ki)

T
= Yn, (3.5)

where we used the fact that Rñ = R(sñ) = R(sn) = Rn. It implies that an effective

decision is always made at the time instances when a link wins the channel for the

first time. If we only take observations at these time instances, the channel rates

R̃n are independent. We denote the σ-fields at these time instances as

F̃n =
{

R̃1, K̃1; R̃2, K̃2; . . . ; R̃n, K̃n

}

. (3.6)

Lemma 3.3.1. The solutions to the optimal stopping problem based on F̃n and Fn

have different distributions for the stopping time N . However, both solutions have

the same network throughputs and distributions for the elapsed probing durations

L =
∑N

i=1Ki.

Hence if we do not care how many times a given link m has given up its oppor-

tunity upon winning the wireless medium, the problem is equivalent to analyzing
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the problem using F̃n instead of Fn. For the rest of this paper, we always refer to

the σ-fields at the effective observation points unless noted otherwise. Hence we use

the notations Fn, Tn, Kn instead of F̃n, T̃n, K̃n for short for the rest of the paper.

3.4 A Rigorous Performance Analysis: the Finite Horizon Approach

In this section, we characterize the optimal stopping rules and the network

throughputs. We analyze the protocol using σ-fields (3.6) recorded at those effec-

tive observation points. By this notation, the number of effective probing links is

monotonically decreasing as time n moves on, even though physically all links are

still probing the wireless medium as in Figure 3.1. On the other hand, since no

recall is allowed, if link m gives up its opportunity at some point, link m cannot

reclaim it at a later time. As a result, the “last” winner must utilize the wireless

medium for data transmission, otherwise the channel will be completely wasted for

this block. Hence the stopping rule problem always has an implicit horizon at M ,

where M is the network size. The problem should be treated as a finite horizon

problem and be solved by the backward induction approach [55–57].

We denote the optimal expected reward based on observations until the n-th

round of channel probing as λ∗n = λ∗n(x1, . . . ,xn). We will use the term the n-th

round of channel probing, “time n” or “stage n” interchangeably in this section.

The backward induction procedure can be described as

λ∗M(x1, . . . ,xM) = YM(x1, . . . ,xM), (3.7)

49



λ∗n(x1, . . . ,xn) = max

{

Yn(x1, . . . ,xn),

E
[

λ∗n+1(X1, . . . ,Xn,Xn+1)|X1 = x1, . . . ,Xn = xn

]

}

,

(3.8)

where n = 0, 1, . . . ,M − 1, and Yn(x1, . . . ,xn) is the instant reward based on Fn.

At stage n, it is optimal to stop if Yn(x1, . . . ,xn) ≥ λ∗n(x1, . . . ,xn) and to continue

otherwise. The optimal return at stage n is the instant payoff if the decision is to

stop and the expected payoff if the decision is to continue. The optimal network

throughput is λ∗0, i.e. the optimal expected reward before taking any observations.

However, it is not practical to directly solve this problem using (3.7) and (3.8)

for two reasons. First, the channel rates rn are generally continuous variables. We

have to discretize rn to use (3.7) and (3.8). Second, the instant observation xn

at time n is a two dimensional vector. To directly apply the backward induction

procedure on xn, there will be too many states in the state space. The overwhelming

computational complexity will restrict us to solve problems only with a small M .

In this paper, we develop one approach to reduce the computational complexity for

this procedure. First we note that the last item in (3.8) only depends on x1, . . . ,xn

since the expectation is taken with respect to Xn+1. Hence we can denote it as

wn(x1, . . . ,xn) = E
[

λ∗n+1(X1, . . . ,Xn,Xn+1)|X1 = x1, . . . ,Xn = xn

]

(3.9)

for short. Now the problem in (3.7) and (3.8) reduces to the calculation of wn(x1, . . . ,xn).

Next, we show that the calculation of wn(x1, . . . ,xn) does not need all of these obser-

vations x1, . . . ,xn. To show this, we define the total number of probings up to time

n as Ln =
∑n

i=1Ki. Note that Ln is a random variable. We denote one realization
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of Ln as ln.

Lemma 3.4.1. Suppose the network size is M ≥ 2, the expected reward at time n

can be characterized as

wn(x1, . . . ,xn) =



































wM(rM , lM) for n = M,

wn(ln) for n = M − 1, . . . , 1,

w0 = λ∗0 for n = 0.

(3.10)

Proof. Since the network size is M , the backward induction procedure has a hori-

zon at stage M . The reward at stage M is wM(x1, . . . ,xM) = max
{

0, rM (T−τlM )
T

}

.

Hence wM(x1, . . . ,xM) only depends on rM and lM , and it can be denoted as

wM(rM , lM) for short.

Now we let n = M − 1 in (3.9). We can see that the expectation in (3.9) is

taken with respect to XM , i.e. RM and KM . We have showed that wM(x1, . . . ,xM)

only depends on rM and lM , but is independent of rM−1. Hence after taking the

expectation, wM−1(x1, . . . ,xM−1) is still independent of rM−1. On the other hand,

wM−1(x1, . . . ,xM−1) does depend on lM−1, since lM−1 remains in the expression after

taking expectations with respect to KM , where LM = LM−1 + KM . Hence wM−1

only depends on lM−1. We can iterate this procedure from n = M − 2 to n = 1. As

a result, for n = M − 1, . . . , 1, wn(x1, . . . ,xn) can be denoted as wn(ln) for short.

Finally, the network throughput is the optimal expected reward before taking

any observations. That is to say n = 0. In this case, ln can only be 0. Hence we

can write it as w0 = λ∗0 for short.

Following Lemma 3.4.1, we can use ln as the only state for the backward
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induction procedure. The problem is reduced to a one-dimensional problem. To

calculate w0, we need to calculate w1(l1) for all possible l1, and then w2(l2) for all

possible l2, and so on until stage M . Hence the problem is to compute wn(ln) for

n = 1, . . . ,M − 1 and wM(rM , lM).

Theorem 3.4.1. The optimal stopping rule for the distributed opportunistic schedul-

ing problem is

N∗ = min

{

n ≥ 1 : Rn ≥ λ∗n ·
T

T − τ∑n
i=1Ki

}

. (3.11)

The optimal network throughput is w0 = λ∗0. Suppose the network size is M . The

finite horizon analysis reduces to the calculation of w0, which eventually iterates all

wn(ln) for n = 1, . . . ,M −1 and wM(rM , lM). The expected reward can be calculated

recursively as

wn−1(ln−1) =
∑

k∈Ωn(ln−1)

(1− ps,n)k−1ps,n · qn(ln−1, k) (3.12)

qn(ln−1, k) = Pn(k) · En(k) + [1− Pn(k)] · wn(ln−1 + k), (3.13)

where qn(ln−1, k) is the conditional expected reward given Kn = k. Kn can take

values in

Ωn(ln−1) = {k | τ · (ln−1 + k) < T, k ∈ N} ,

and Pn(k) and En(k) can be calculated as

Pn(k) = P

[

Rn >
wn(ln−1 + k) · T
T − τ(ln−1 + k)

]

En(k) = E

[

Rn

∣

∣

∣

∣

Rn >
wn(ln−1 + k) · T
T − τ(ln−1 + k)

]

· T − τ(ln−1 + k)

T
.
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Proof. To calculate wn−1(ln−1), we use n to substitute n − 1 in (3.9) and take

expectation on both sides of (3.8) as

wn−1(ln−1) = E [max{Yn(x1, . . . ,xn−1,Xn), wn(x1, . . . ,xn−1,Xn)}] , (3.14)

where the expectation is taken with respect to Xn. We further take its conditional

expectation with respect to Kn and write it as

wn−1(ln−1) =
∑

k∈Ωn(ln−1)

P [Kn = k] · qn(ln−1, k),

where qn(ln−1, k) is the conditional expectation of (3.14) given Kn = k. As we

showed in Section 3.5, Kn has a geometric distribution with parameter ps,n. Hence

we have P [Kn = k] = (1 − ps,n)k−1ps,n. On the other hand, combing (3.2) and

Lemma 3.4.1, we have

qn−1(ln−1, k) = E

[

max

{

Rn (T − τ(ln−1 + k))

T
,wn(ln−1 + k)

}]

.

Now if we take its conditional expectation with respect to the following event

{

Rn (T − τ(ln−1 + k))

T
> wn(ln−1 + k)

}

,

we can immediately have (3.13). This proves the theorem.

We can also bound the computational complexity of the procedure described

in Theorem 3.4.1.

Proposition 3.4.1. To calculate the optimal network throughput w0 and the ex-

pected reward based on a set of given observations {r1, k1; . . . ; rM , kM} with a relative

error less than ǫ where 0 < ǫ≪ 1, the computational complexity of the procedure in
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Theorem 3.4.1 is

min

{

M ⌈T/τ⌉ ,
M
∑

n=1

n

⌈

log ǫ
1+ǫ

log(1− ps,n)

⌉

}

. (3.15)

Proof. For a network with size M , the backward induction procedure in Theorem

3.4.1 has M stages. In the n-th stage, the procedure involves calculation of all

possible wn(ln). For the CAT problem, ln can simply be bounded as 1 ≤ ln ≤ ⌈T/τ⌉.

Hence the computational complexity in the n-th stage is at most ⌈T/τ⌉, and the

total computational complexity of the backward induction procedure is at most

M⌈T/τ⌉.

On the other hand, since qn(ln−1, k) is the conditional expected reward if the

probing duration is Kn = k at time n, qn(ln−1, k) is a decreasing function of k. For

a given integer kǫ, we have

∑

k>kǫ
P [Kn = k] · qn(ln−1, k)

∑

k≤kǫ
P [Kn = k] · qn(ln−1, k)

<

∑

k>kǫ
P [Kn = k] · qn(ln−1, kǫ)

∑

k≤kǫ
P [Kn = k] · qn(ln−1, kǫ)

=
1

1− (1− ps,n)kǫ
−1,

(3.16)

where we used the fact that Kn has a geometric distribution Geom(ps,n) with pa-

rameter ps,n. To ensure the relative error in the calculation of wn−1(ln−1) is less than

ǫ, we let the right hand side of (3.16) be less than ǫ. After some manipulation, we

have kǫ ≥
log ǫ

1+ǫ

log(1−ps,n)
. Hence we only need to iterate

⌈

log ǫ
1+ǫ

log(1−ps,n)

⌉

items in the n-th

stage. Iterating this procedure from the top level n = 0 to n = M and noticing that

l0 = 0, we immediately have our conclusion.
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3.5 An Approximation for Performance Analysis: the Infinite Hori-

zon Approach

As we can see in Section 3.4, the computational complexity of backward in-

duction can quickly become overwhelming as M increases. In contrast, the infinite

horizon analysis based on the optimality equation [55–57] has a much smaller com-

putational complexity. Hence we would like to see if the performance analysis in

Section 3.4 can be approximated using the infinite horizon approach. In this section,

we analyze the protocol using the infinite horizon approach and develop a metric as

a guideline to choose the appropriate approach for a given network.

Lemma 3.5.1. For the same stopping rule problem described in Section 3.3, the

infinite horizon analysis yields an optimal network throughput slightly larger than

that from the finite horizon analysis. The gap decreases to 0 as the network size

M →∞.

If the network size M is large enough, this problem does not have a finite

horizon and can be analyzed using the optimality equation [55–57]. We make the

following assumptions:

[A1] The total number of links M in the network is large enough;

[A2] The channel rates only take values in (0,+∞);

[A3] Each link m probes the wireless medium with probability p(m) = p;

[A4] The channel rates for all links have the same cumulative distribution function

(CDF) FR(r).
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Here [A1] ensures the problem does not have a finite horizon, and [A2]-[A4] make

our mathematical analysis tractable. To analyze this problem, we first characterize

the distribution of Kn. By the n-th round, n− 1 links in total have given up their

opportunities in previous rounds. Hence only the rest of the M − n + 1 links can

contribute to an effective channel probing. If we ignore the events when the channel

is won by any of these n− 1 links, Kn has a geometric distribution Geom(ps,n) with

parameter ps,n, where

ps,n = (M − n+ 1) · p(1− p)M−1 (3.17)

is the successful probing probability in the n-th round. To better explain our results,

we introduce some notations that will be used frequently in our proof. We define

a sequence of parameters fn ,
ps,n

ps,1
= M−n+1

M
and a sequence of random variables

K̃n = fnKn. Since fn is a constant, K̃n also has a geometric distribution with

mean E[K̃n] = fnE[Kn] = E[K1]. Hence K̃n and K1 can be considered equal in

distribution [62, 63].

Theorem 3.5.1. The average network throughput λ∗O of Figure 3.1 is the solution

of

E

[

1 +
M(M + 1)

(M + 0.5)2
· τK̃1

T
− λ

R0

]+

=
M(M + 1)

(M + 0.5)2
· τ

Tps,1

, (3.18)

where E[·]+ is defined as E[X]+ = E[max(X, 0)]. The optimal stopping rule is

N∗ = min

{

n ≥ 1 : Rn ≥ λ∗n ·
T

T − τ∑n
i=1Ki

}

, (3.19)
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where λ∗n is the solution of

E

[

1− τ

T

{

n
∑

i=1

Ki −
M(M + n+ 1)

(M + 0.5)2
K̃1

}

− λ

Rn

]+

=
M(M + n+ 1)

(M + 0.5)2
· τ

Tps,1

.

(3.20)

Proof. By [A2], we can rewrite the network throughput (3.2) at time n as Yn =

T−τ
Pn

i=1 Ki

T/Rn
. This problem can be solved as a maximal rate of return problem. For

a fixed rate λ, we define a new reward function at time n as

Vn(λ) = T − τ
n
∑

i=1

Ki −
λT

Rn

. (3.21)

The problem is then to characterize the optimal rate λ∗n and the stopping rule to

achieve λ∗n. First, we need to show the existence of the optimal stopping rule. We

notice that E{supn Vn(λ)} < T < ∞. On the other hand, we can easily see that

lim supn→∞ Vn(λ) → −∞ and Vn(λ) → −∞ a.s.. Putting them together leads to

lim supn→∞ Vn(λ) → V∞(λ) a.s.. Hence an optimal stopping rule exists and can

be described by the optimality equation. By the definition of K̃n, we notice that

Ki = M
M−i+1

K̃i. Substituting it into (3.21) and using the i.i.d. property of K̃i, we

have

Vn(λ) = T − τ
n
∑

i=1

M

M − i+ 1
K̃i −

λT

Rn

= T − τK̃1

n
∑

i=1

M

M − i+ 1
− λT

Rn

.

Note that the above equation holds in distribution. Since the network size M is

large enough and the problem can be solved as an infinite-horizon problem, the

number of rounds n is usually much smaller compared to M . To calculate the above

summation, we approximate M
M−i+1

+ M
M−(n+1−i)+1

as 2M
M−n/2+0.5

. By repeating this
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procedure for all i ≤ n/2, we can approximate Vn(λ) as

Vn(λ) ≈ T − τK̃1 ·
Mn

M − n/2 + 0.5
− λT

Rn

.

Similarly, the payoff at time n+ 1 can be written as

Vn+1(λ) ≈ T − τK̃1 ·
M(n+ 1)

M − (n+ 1)/2 + 0.5
− λT

Rn+1

.

Meanwhile, note that Rn are i.i.d. by [A4]. Hence in the sense of distribution the

difference between Vn(λ) and Vn+1(λ) can be written as

∆Vn(λ) = Vn+1(λ)− Vn(λ) = −τK̃1 ·
M

M + 0.5

[

n+ 1

1− (n+1)/2
M+0.5

− n

1− n/2
M+0.5

]

.

By [A1], we can approximate the item in the above square bracket as

(n+ 1)

{

1 +
n+1

2

M + 0.5

}

− n
{

1 +
n
2

M + 0.5

}

=
M + n+ 1

M + 0.5
. (3.22)

Substituting it into the optimality equation V ∗
n = max{Yn, E(V ∗

n+1|Fn)} [55–57], we

have

V ∗
n (λ) = E

[

max

{

T − τ
n
∑

i=1

Ki −
λT

Rn

, V ∗
n (λ)− τK̃1 ·

M(M + n+ 1)

(M + 0.5)2

}]

.

According to optimal stopping theory [55–57], the optimal rate λ∗n that maximizes

the rate of return should yield 0 for (3.21). If we substitute V ∗
n (λ∗n) = 0 into the

above equation and note that E[K̃1] = 1/ps,1, we can rewrite the equation as (3.20).

The uniqueness of λ∗n can be easily verified. The optimal stopping rule can be

written as

N∗ = min

{

n ≥ 1 : T − τ
n
∑

i=1

Ki −
λ∗nT

Rn

≥ V ∗
n (λ∗n) = 0

}

,
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which leads to (3.19) after some manipulation. The optimal network throughput

is the expected rate of return before taking any observations. Hence we get the

optimal network throughput λ∗O if we let n = 0 in (3.20), which immediately yields

(3.18).

The optimal network throughput (3.18) can be further simplified under certain

conditions.

Proposition 3.5.1. Assume τ ≪ T , the network throughput λ∗O of Figure 3.1 can

be approximated as the solution of

E

[

1− λ

R0

]+

=
M(M + 1)

(M + 0.5)2
· τ

Tps,1

. (3.23)

Proof. By [A1], we have M(M+1)
(M+0.5)2

≈ 1. Since τ
T
≪ 1, the term τ

T
· M(M+1)

(M+0.5)2
K̃1 can be

ignored compared to 1 on the left hand of (3.18). This completes the proof.

An immediate question following Lemma 3.5.1 and Theorem 3.5.1 is: how good

is the approximation compared to the rigorous analysis in Section 3.4, in particular

for networks at a finite size M? In fact, we prefer to design the stopping rule

based on the analytical results from Theorem 3.5.1 due to their low computational

complexity even for a finite network sizeM . What will the actual achievable network

throughput be like?

To answer these questions, we present one metric which serves as a guideline

when we decide whether or not we could use the infinite horizon analysis. For a

given network, if the problem can be treated as in Section 3.5, in a probabilistic

sense the optimal stopping time N∗ should be much smaller than the network size
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M . Hence one necessary condition is that the probability P [N∗ > M ] should be

small enough.

Theorem 3.5.2. For a network with size M , suppose the infinite horizon analysis

in Theorem 3.5.1 yields a sequence of optimal expected network throughputs λ∗n for

Figure 3.1. If τ ≪ T , the probability P [N∗ > M ] can be approximated as

P [N∗ > M ] ≈
M
∏

n=1

FR(λ∗n). (3.24)

If this probability is not small enough, it is not recommended to design stopping rules

based on the infinite horizon analysis.

Proof. For a given integer k > 0, we have

P [N∗ > k] = P

[

min

{

n ≥ 1 : Rn ≥ λ∗n ·
T

T − τ∑n
i=1Ki

}

> k

]

. (3.25)

Since τ ≪ T and the optimal stopping time N∗ is much smaller than M , we consider

τ
T
·∑n

i=1Ki ≪ 1 for approximation. Substituting it into (3.25), we have

P [N∗ > k] ≈ P [min {n ≥ 1 : Rn ≥ λ∗n} > k]

=
∏

n≤k

P [Rn < λ∗n], (3.26)

where we used the fact that Rn are i.i.d.. To get (3.25), simply let k = M in

(3.26).

On the other hand, if P [N∗ > M ] is not small enough, it implies that the

stopping rule problem cannot be treated as an infinite horizon problem. In this case,

if we design a stopping rule based on Theorem 3.5.1 nevertheless, the procedure will

quickly reach the last stage and be forced to stop then. In this case, the actually

achieved network throughput is generally not optimal.
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Theorem 3.5.3. Suppose the infinite horizon analysis yields a sequence of λ∗n for

a network with size M . Suppose we design a stopping rule N̂ based on these rates

and (3.19). If τ ≪ T , the achievable network throughput based on N̂ is

λ̂∗ =
M
∑

n=1

E [Rn|Rn ≥ λ∗n]
T − τ∑n

i=1 1/ps,i

T
× [1− FR(λ∗n)]

n−1
∏

i=1

FR(λ∗i ). (3.27)

Proof. According to the stopping rule (3.19), the expected reward can be written as

λ̂∗ =
M
∑

n=1

E [Yn(X1, . . . ,Xn) · P (N = n|X1, . . . ,Xn)]. (3.28)

The condition to stop at time n is Rn ≥ λ∗n · T
T−τ

Pn
i=1 Ki

. When τ ≪ T , this condition

can be simplified as Rn ≥ λ∗n. Hence the expected reward at time n can be written

as a conditional expectation, i.e.

E

[

Rn ·
T − τ∑n

i=1Ki

T

∣

∣

∣

∣

Rn ≥ λ∗n

]

= E [Rn|Rn ≥ λ∗n] · T − τ
∑n

i=1 1/ps,i

T
,

where we used the fact that Ki has a geometric distribution Geom(ps,i) and is

independent from Rn. On the other hand, by (3.26) the probability to stop at time

n can be approximated as

P (N = n|X1, . . . ,Xn) =
n−1
∏

i=1

FR(λ∗i )−
n
∏

i=1

FR(λ∗i ) = [1− FR(λ∗n)]
n−1
∏

i=1

FR(λ∗i ). (3.29)

Substituting it into (3.28) together with the expected reward at time n, we have

(3.27).

3.6 An Energy Efficient Improvement of the Protocol

In this section, we present an improved distributed opportunistic scheduling

protocol, which is directly motivated by the concept of effective observation points

introduced in Section 3.3.
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According to (3.23), the network throughput λ∗O decreases as the successful

probing probability ps,1 decreases. Hence to improve the network throughputs, we

need to improve ps,1. For a given network with size M , we can first tune the

parameter p to maximize ps,1. To do this, we let n = 1 in (3.17) and take the

first-order derivative as ∂ps,1

∂p
= M(1− p)M−2(1−Mp) = 0. The non-trivial solution

in (0, 1) is p∗ = 1/M . Hence to maximize ps,1, on average there is exactly Mp∗ = 1

link probing the channel. The maximal successful probing probability is ps,1 =

1
1− 1

M

·
(

1− 1
M

)M
for M ≥ 2, which is a decreasing function of M . Hence the optimal

throughput λ∗O is a decreasing function as M increases. From the perspective of

channel probing costs, a smaller M is preferred for better system performance. On

the other hand, from (3.5) we can see that if link m ever gives up the current

opportunity, m will always repeat the same decision in the current block. Hence if

link m ever decides to send data in the current block, it should happen when m wins

the channel for the first time. If after that m still contends the medium, it would

not lead to an effective decision, and meanwhile it lowers the successful probability

ps,n. Based on this observation, we have an improved protocol as shown in Figure

3.2 [53,54].

Suppose at time n the set of active probing links isMn. This is the set of links

whose current state is TRUE in Figure 3.2. Denoting its cardinality as Mn , ‖Mn‖,

we have Mn = M − n + 1 following line 9 of Figure 3.2. We can see that Mn is

decreasing as time n moves on. The shrinking of Mn is an important feature of

the improved protocol. It not only reduces the probing costs, but also ensures the

winner sn is different at each time n. Hence the winners’ rates Rn are independent
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1: Link m sets its state as TRUE, where m = 1, . . . ,M ;

2: for each link m whose state is TRUE do

3: m probes the channel with a fixed probability p(m);

4: if m wins the channel then

5: m makes a decision on whether or not to send data over the channel;

6: if m decides to utilize the channel then

7: m sends data through the channel for a duration of T −∑n
i=1 Ti

(CAT) or T (CDT), where n is the current index of channel prob-

ing;

8: else

9: m sets its state as FALSE;

10: end if

11: end if

12: end for

Figure 3.2: The improved distributed opportunistic scheduling protocol

in Figure 3.2. At time n, the successful probing probability can be written as

ps,n = Mnp(1− p)Mn−1. (3.30)

We now characterize the performance of the improved protocol shown in Figure

3.2. First of all, the finite horizon analyses described in Section 3.4 can be applied in

a similar way here. The computational complexity can also be estimated similarly.

The only difference is that the successful probing probability ps,n in (3.12) should

be calculated according to (3.30). Now we analyze this problem assuming that it
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can be treated as an infinite horizon problem. By [A1], we can approximate the

successful probing probability (3.30) as

ps,n ≈Mp(1− p)Mn−1 = Mp(1− p)M−n. (3.31)

We can see that ps,1 < ps,2 < . . . < ps,n. Similar to Theorem 3.5.1, we introduce

a sequence of parameters gn ,
ps,n

ps,1
= (1 − p)−(n−1) and a sequence of random

variables K̃n = gnKn. It is easy to verify that K̃n and K1 can be considered equal

in distribution and thus {K̃n} are i.i.d..

Theorem 3.6.1. The network throughput λ∗P of Figure 3.2 is the solution of

E

[

1 +
τ

T
· (1− p)2K̃1 −

λ

R0

]+

= (1− p)2 τ

Tps,1

. (3.32)

The optimal stopping rule is

N∗ = min

{

n ≥ 1 : Rn ≥ λ∗n ·
T

T − τ∑n
i=1Ki

}

, (3.33)

where λ∗n is the solution of

E

[

1− τ

T

{

n
∑

i=1

Ki − (1− p)n+1K̃n+1

}

− λ

Rn

]+

= (1− p)n+1 τ

Tps,1

. (3.34)

Proof. We use Vn defined in (3.21) in our proof. The existence of the optimal

stopping rule can be verified in the same way as in Theorem 3.5.1. To compute the

optimal reward V ∗
n , we take a look at the reward after l steps since time n. By the

definition of gn, we can write Kn = (1 − p)n−1K̃n. Substituting it into (3.21), we

have

Vn+l(λ) = T − τ
n
∑

i=1

(1− p)i−1K̃i −
[

τ
n+l
∑

i=n+1

(1− p)i−1K̃i +
λT

Rn+l

]

.
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If we start from time n+ 1, the reward after l rounds is

Vn+l+1(λ) = T−τ
n
∑

i=1

(1− p)i−1K̃i−τ(1−p)nK̃n+1−
[

τ

n+l+1
∑

i=n+2

(1− p)i−1K̃i +
λT

Rn+l+1

]

.

The item in the above square bracket is the recursive part for l rounds of observations

since time n+ 1. We can rewrite it as

(1− p)
{

τ

n+l
∑

i=n+1

(1− p)i−1K̃i+1 +
λT

Rn+l+1

}

+ p · λT

Rn+l+1

.

By [A1], p should be reasonably small; otherwise the average number of probing

links Mp will be much larger than 1, leading to increased probing costs. Hence we

can ignore the last term and write the optimality equation as

V ∗
n (λ) = E

[

max

{

T − τ
n
∑

i=1

Ki −
λT

Rn

, (1− p) (V ∗
n (λ)− τKn+1)

}]

.

Again, the optimal reward λ∗n that maximizes the rate of return must satisfy V ∗
n (λ∗n) =

0. We substitute this into the optimality equation and rewrite it as

E

[

1− τ

T

{

n
∑

i=1

Ki − (1− p)Kn+1

}

− λ∗n
Rn

]+

= (1− p) · τ
T
E[Kn+1].

If we further notice that Kn+1 = 1/gn+1K̃n+1 = (1−p)nK̃n+1 and that K̃n+1 and K1

are i.i.d., we can rewrite the above equation as (3.34). The optimal stopping rule

N∗ can be derived in the same way as in Theorem 3.5.1. To get the optimal system

throughput λ∗P , we let n = 0 in (3.34) and rewrite the equation as (3.32).

Similar to Section 3.5, we further simplify the network throughput as Propo-

sition 3.6.1 if τ ≪ T . Based on this, we show that the modified protocol improves

the network throughput as in Proposition 3.6.2. The proofs are straight forward

and are skipped due to space limitations.
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Proposition 3.6.1. If τ ≪ T , the network throughput λ∗P can be approximated as

the solution of

E

[

1− λ

R0

]+

= (1− p)2 · τ

Tps,1

. (3.35)

Proposition 3.6.2. The improved protocol in Figure 3.2 yields a higher network

throughput compared to the protocol in Figure 3.1, i.e. λ∗P > λ∗O.

In the improved protocol any link who decides to give up the current opportu-

nity for data transmission will not probe the channel anymore until the beginning

of the next block. Hence these links can temporarily switch to a sleep mode until

the beginning of the next block and reduce the energy used for channel probing.

This could be very useful for mobile ad-hoc or sensor networks where most of their

mobile nodes have limited battery life.

Similar to the analyses for throughputs, we focus on the total energy savings for

all links in the channel probing phase, not for a specific link. Suppose each probing

signal consumes roughly a constant energy of c. Then the energy consumed during

the channel probing phase can be written as c
∑N

i=1 Zi, where Zi is the number of

probing signals sent during the i-th round of channel probing, and N is the stopping

time associated with the stopping rule. Hence the average energy spent during the

channel probing phase is z = cE
[

∑N
i=1 Zi

]

. Using the law of total expectation, we

can write

z = cE

[

E

[

N
∑

i=1

Zi

∣

∣

∣

∣

∣

N

]]

= c
∑

n

P [N = n]
n
∑

i=1

E[Zi]. (3.36)

Theorem 3.6.2. The average energy consumed for the channel probing of Figure
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3.1 can be written as

zO = c
∑

n

P [N∗
O = n] · 1

(1− p)M−1

n
∑

i=1

M

M − i+ 1
, (3.37)

where N∗
O is the optimal stopping rule for Figure 3.1, and the average probing energy

of Figure 3.2 can be written as

zP = c
∑

n

P [N∗
P = n] · 1

(1− p)M−1

1− (1− p)n

1− (1− p) , (3.38)

where N∗
P is the optimal stopping rule for Figure 3.2.

Proof. As we mentioned in Section 3.3, we will use the notation of F̃n in the proof.

For the protocol in Figure 3.1, in the i-th round there are a total of K̃i probings,

each of which has a duration of τ and on average Mp links sending probing signals.

Hence there are on average E[Zi] = Mp · E[K̃i] probing signals sent in the i-th

round. Hence we can write

E[Zi] = Mp · 1

(M − i+ 1)p(1− p)M−1
=

1

(1− p)M−1
· M

M − i+ 1
.

Substituting the above equation into (3.36), we can immediately have (3.37).

On the other hand, for the improved protocol in Figure 3.2, in the i-th round

there are a total of K̃i probings, and each of them has on average (M − i+1)p links

sending probing signals. This is because in the improved protocol once a link gives

up its opportunity, he would not probe again until the beginning of the next block.

Hence we can write

n
∑

i=1

E[Zi] =
n
∑

i=1

(M − i+ 1)p · 1

(M − i+ 1)p(1− p)M−i
=

1

(1− p)M−1
·1− (1− p)n

1− (1− p) .

Combining the above equation with (3.36), we have (3.38).
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In Theorem 3.6.2, the probability of P [N∗ = n] can be approximated in the

same way as (3.29).

3.7 The Constant Data Time Problem

Our analyses in Section 3.4, 3.5 and 3.6 can be applied to the CDT problem in

a similar way. In the CDT problem [35,59,60], the transmitter has a fixed duration

Td = T for data transmission, regardless of the duration Tp elapsed for channel

probing. The normalized network throughput to utilize the channel at the end of

the n-th round is

Yn =
Rn · T

T +
∑n

i=1 Ti

. (3.39)

We list the analytical results for the CDT problem in this section and compare

its numerical results to that of the CAT problem in Section 3.8.

First of all, due to the block fading assumption, the CDT problem also has an

implicit horizon at M . Hence the CDT problem for the original protocol in Figure

3.1 or the improved protocol in Figure 3.2 should be treated as a finite horizon

problem.

Theorem 3.7.1. The network throughput of the CDT problem based on backward

induction is w0 = λ∗0, and the optimal stopping rule is

N∗ = min

{

n ≥ 1 : Rn ≥ λ∗n ·
(

1 +
τ

T

n
∑

i=1

Ki

)}

. (3.40)

The finite horizon analysis reduces to the calculation of w0, which eventually iterates

all wn(ln) for n = 1, . . . ,M − 1 and wM(rM , lM). The expected reward can be

68



calculated recursively as

wn−1(ln−1) =
∑

k∈N

(1− ps,n)k−1ps,n · qn(ln−1, k) (3.41)

qn(ln−1, k) = Pn(k) · En(k) + [1− Pn(k)] · wn(ln−1 + k), (3.42)

where qn(ln−1, k) is the conditional expected reward given Kn = k, and Pn(k) and

En(k) can be calculated as

Pn(k) = P

[

Rn > wn(ln−1 + k) · T + τ(ln−1 + k)

T

]

En(k) = E

[

Rn

∣

∣

∣

∣

Rn > wn(ln−1 + k) · T + τ(ln−1 + k)

T

]

× T

T + τ(ln−1 + k)
.

Proposition 3.7.1. For the CDT problem, to calculate the optimal network through-

put w0 and the expected reward for given observations {r1, k1; . . . ; rM , kM} with a

relative error less than ǫ where 0 < ǫ ≪ 1, the computational complexity of the

procedure in Theorem 3.7.1 is at most
∑M

n=1 n
⌈

log ǫ
1+ǫ

log(1−ps,n)

⌉

.

Similar to Section 3.5, we prefer to analyze the CDT problem using the infinite

horizon approach when it can yield a good approximation to the finite horizon

approach. The proof of Theorem 3.7.2 can be found in Appendix B.1.

Theorem 3.7.2. The average network throughput λ∗O of the CDT problem is the

solution of

E

[

R0

λ
+
M(M + 1)

(M + 0.5)2
· τK̃1

T
− 1

]+

=
M(M + 1)

(M + 0.5)2
· τ

Tps,1

. (3.43)

The optimal stopping rule N∗ is

N∗ = min

{

n ≥ 1 : Rn ≥ λ∗n ·
(

1 +
τ

T

n
∑

i=1

Ki

)}

, (3.44)
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and λ∗n is the solution of

E

[

Rn

λ
− τ

T

{

n
∑

i=1

Ki −
M(M + n+ 1)

(M + 0.5)2
K̃1

}

− 1

]+

=
M(M + n+ 1)

(M + 0.5)2
· τ

Tps,1

.

(3.45)

Proposition 3.7.2. Assume τ ≪ T , the network throughput λ∗O for the CDT prob-

lem can be approximated as the solution of

E

[

R0

λ
− 1

]+

=
M(M + 1)

(M + 0.5)2
· τ

Tps,1

. (3.46)

In one block, the available duration for data transmission is T − τ
∑n

i=1Ki

for the CAT problem and T for the CDT problem respectively. Hence intuitively

the protocol in Figure 3.1 should yield a higher network throughput for the CDT

model.

Proposition 3.7.3. Denote λ∗CAT and λ∗CDT as the optimal network throughput for

the CAT and CDT problem respectively, we have λ∗CAT < λ∗CDT .

Proof. For any r > λ∗CAT , we have 1− λ∗CAT

r
< r

λ∗

CAT

− 1. By taking integration on

both sides of the inequality, we have

E

[

R0

λ∗CAT

− 1

]+

> E

[

1− λ∗CAT

R0

]+

=
M(M + 1)

(M + 0.5)2
· τ

Tps,1

= E

[

R0

λ∗CDT

− 1

]+

,

where the first and second equality is from Proposition 3.5.1 and Proposition 3.7.2

respectively. If we compare the first and last item in the above inequality, we have

λ∗CAT < λ∗CDT .

Theorem 3.7.3. Suppose the infinite horizon analysis yields a sequence of rates λ∗n

for a network of size M . If τ ≪ T , the probability P [N∗ > M ] can be approximated
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as

P [N∗ > M ] ≈
M
∏

n=1

FR(λ∗n). (3.47)

If this probability is not small enough, it is not recommended to design stopping rules

based on the infinite horizon analysis. Otherwise if we use the stopping rule based

on these rates and (3.44), the achievable network throughput is

λ̂∗ =
M
∑

n=1

E [Rn|Rn ≥ λ∗n]
T

T + τ
∑n

i=1 1/ps,i

× [1− FR(λ∗n)]
n−1
∏

i=1

FR(λ∗i ). (3.48)

For the improved protocol shown in Figure 3.2, the performance for the CDT

problem can be shown in Theorem 3.7.4. The proof of Theorem 3.7.4 can be found

in Appendix B.2.

Theorem 3.7.4. The network throughput λ∗P of Figure 3.2 for the CDT problem is

the solution of

E

[

R0

λ
+
τ

T
· (1− p)2K̃1 − 1

]+

= (1− p)2 τ

Tps,1

. (3.49)

The optimal stopping rule N∗ is

N∗ = min

{

n ≥ 1 : Rn ≥ λ∗n ·
(

1 +
τ

T

n
∑

i=1

Ki

)}

, (3.50)

where λ∗n is the solution of

E

[

Rn

λ
− τ

T

{

n
∑

i=1

Ki − (1− p)n+1K̃n+1

}

− 1

]+

= (1− p)n+1 τ

Tps,1

. (3.51)

Proposition 3.7.4. If τ ≪ T , we can approximate the network throughput λ∗P as

the solution of

E

[

R0

λ
− 1

]+

= (1− p)2 τ

Tps,1

. (3.52)
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3.8 Numerical Results

In this section, we show numerical results based on our discussions from Section

3.4 to Section 3.7. We consider an ad-hoc network where the wireless medium is

Rayleigh fading within each block. The channel rate can be written as

R(h) = log2(1 + ρh) bits/s/Hz,

where ρ is the average signal-to-noise ratio (SNR), and h is the channel gain cor-

responding to Rayleigh fading. Hence the probability density function (PDF) of h

can be written as

f(h) =
h

σ2
e−

h2

2σ2 , h ≥ 0.

We assume T = 1 fixed throughout all simulations in this section. We compare nu-

merical results from the finite horizon and the infinite horizon analyses with various

settings of the parameters M , p, τ and ρ. For performance comparison purposes,

we also show network throughputs from a pure random access approach, where the

first winner of the wireless medium always utilizes the channel for data transmission,

regardless of the available channel rates.

In Figure 3.3, we show numerical results from both the infinite horizon and

finite horizon analysis, where the network size is M and other parameters are p =

1/M , τ = 0.01, ρ = −10dB and σ = 1. In Figure 3.3(a), the dashed line shows the

network throughputs for the pure random access scheme. Clearly we can see that

the distributed opportunistic scheduling schemes show a considerable performance

improvement, e.g. 57% improvement at a network size M = 30 in Figure 3.3(a).
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Figure 3.3: Numerical results for ad-hoc networks with M links, where the param-

eters are p = 1/M , τ = 0.01, ρ = −10dB and σ = 1: (a) network throughputs; (b)

P [N∗ > M ]; (c) energy savings in probing signals.

On the other hand, we notice that the finite horizon and infinite horizon analy-

ses yield quite different network throughputs, especially when the network size M is

not large enough. Figure 3.3(a) shows the network throughputs for the distributed

opportunistic scheduling protocol described in Figure 3.1, where the line with “◦”

is from the finite horizon analysis and the line with “�” is from the infinite horizon
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analysis. The network throughputs show opposite trends as the network size M in-

creases in Figure 3.3(a). The network throughput from the infinite horizon analysis

decreases while the network throughput from the finite horizon analysis increases.

This is because in the infinite horizon analysis, there is enough multiuser diversity

to be exploited. In the finite horizon analysis, there is not enough multiuser diver-

sity to be exploited when the network size M is small, which is constrained by the

finite horizon. Hence the infinite horizon analysis always shows a larger network

throughput than the finite horizon analysis, and the gap between these two lines

gradually decreases to 0 as the network size M increases. For example, the two lines

show a gap of 8.7% at M = 10, and the gap drops to 4.9% at M = 20. In Figure

3.3(b), we show the estimated probability P [N∗ > M ] in Theorem 3.5.2. We can see

that P [N∗ > M ] is as high as 20% at M = 10, but drops quickly to 5% at M = 20.

Hence for a given network, the estimated P [N∗ > M ] serves as a measure of how

well the problem can be treated as an infinite horizon problem. In line with this

guideline, the line with “⋄” in Figure 3.3(a) shows the actual achievable rewards

based on Theorem 3.5.3 if the stopping rule is designed based on the results from

the infinite horizon analysis. To our surprise, the actual reward is much smaller

than the one from the infinite horizon analysis. This gap is pretty large when the

network size M is not large enough, say M ≤ 20 in Figure 3.3(a). This observa-

tion agrees with the trend of P [N∗ > M ] in Figure 3.3(b). Hence if the problem

is not suitable to be treated as an infinite horizon problem, it is not recommended

to design stopping rules based on the infinite horizon analysis; otherwise the actual

achievable rewards may deviate a lot from the infinite horizon analysis results for
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small and medium-size networks.

In addition, Figure 3.3(a) shows the network throughputs for the improved

protocol described in Figure 3.2, where the line with “⊲” is from the finite horizon

analysis and the line with “⊳” is from the infinite horizon analysis respectively.

We can see that the improved protocol always yields a slightly better performance.

For example, the line with “⊲” steadily shows a 2% performance improvement over

the line with “◦” based on the finite horizon analysis. This coincides with our

theoretical result in Proposition 3.6.2. Even though the performance improvement

is not significant, it is still worth mentioning since there is no additional cost in the

protocol design of Figure 3.2. This performance improvement can be considered as a

“free ride” based on the concept of effective observation points. On the other hand,

in Figure 3.3(c) we show the energy savings in probing signals that can be achieved

by the improved protocol, where the y-axis is zP/zO for each M . We can see that

the improved protocol can considerably reduce the total number of probing signals

sent in the network. For example, at M = 30 the improved protocol only needs

67% of the probing signals sent in the original protocol in Figure 3.1. This results

in 33% energy savings for probing signals. Hence with only a simple modification,

the improved protocol can slightly improve the network throughputs while saving

considerably energy used for probing signals. This is of particular interest for mobile

ad-hoc networks or sensor networks where many nodes in the network have limited

battery life.

In Figure 3.4(a)-(d), we compare network throughputs with different param-

eters, where we vary one parameter at a time from the default parameter settings.
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Figure 3.4: Numerical results for ad-hoc networks with M links, where the default

parameters are p = 1/M , τ = 0.01, ρ = −10dB and σ = 1: (a) network throughputs

with p = 0.01; (b) network throughputs with p = 0.1; (c) network throughputs with

τ = 0.05; (d) network throughputs with ρ = 10dB.

We first show the network throughputs under two different scenarios for p in Figure

3.4(a) and Figure 3.4(b) respectively. Figure 3.4(a) shows the network throughputs

for p = 0.01, which represents an “under-probed” scenario since Mp < 1. We can

see that the protocols yield smaller throughputs compared to Figure 3.4(a). On the
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other hand, the improved protocol has almost the same performance as the original

protocol. In this case, it would not help to reduce the probing costs since the system

is already under-probed. Figure 3.4(b) shows the opposite scenario with p = 0.1

where the medium is “over-probed” since Mp > 1. The network throughputs are

also smaller compared to Figure 3.4(a). However, the improved protocol shows a

5% performance improvement compared to the original protocol. Recall that this

quantity is 2% in Figure 3.4(a). In this case, it helps to reduce the probing costs

since the network is over-probed. In Figure 3.4(c), we show the network through-

puts with a larger probing cost τ = 0.05. With larger probing costs the protocols

yield smaller network throughputs. Meanwhile, there is a larger gap between the

finite horizon and infinite horizon analyses results. This is because with larger τ/T ,

a smaller horizon is imposed for the CAT problem, which makes it less likely to be

treated as an infinite horizon problem. Figure 3.4(d) shows the network through-

puts with ρ = 10dB. With higher SNR, the protocols have much better network

throughputs. However, compared to the random access scheme, the performance

gain from opportunistic scheduling is only 13%. This shows that the opportunistic

scheduling scheme is particularly useful at lower SNR regions, where the random

access scheme does not perform well in the first place.

In comparison, Figure 3.5 shows numerical results for the CDT problem with

the same default parameters. Similar to the CAT problem, in Figure 3.5(a) we

can see the infinite horizon analysis always yields larger network throughputs than

the finite horizon analysis. The gap of the network throughputs between them

is more than 30%, but eventually decreases to 0 as the network size M becomes
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Figure 3.5: Numerical results for the CDT problem for ad-hoc networks with M

links, where the parameters are p = 1/M , ρ = −10dB and σ = 1: (a) network

throughputs with τ = 0.01; (b) network throughputs with τ = 0.05.

large enough. On the other hand, with the same parameters the CDT problem in

Figure 3.5(a) yields slightly larger network throughputs than the CAT problem in

Figure 3.3(a). This coincides with our theoretical result in Proposition 3.7.3. On

the other hand, we can see that the line with “⋄” in Figure 3.5(a) approaches the

finite horizon analysis faster than that of Figure 3.3(a). It implies that the CDT

problem requires a smaller network size M than the CAT problem for using the

infinite horizon analysis. In addition, Figure 3.5(a) shows the network throughputs

from the improved protocol. Similar to Figure 3.3(a), the improved protocol always

yields a slightly better performance from both analyses. Finally Figure 3.5(b) shows

the network throughputs for a larger probing cost τ = 0.05. We can see that the

gap in the network throughputs between the two analyses is 10.6%, while this gap

for the CAT problem is 14.7% in Figure 3.3(c). It implies that for the same network
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the CAT problem shows a smaller horizon compared to the CDT problem. This

coincides with our earlier observation: to safely use infinite horizon analysis, the

CAT problem generally requires a larger network size M . Furthermore, comparing

both lines with “⋄” in Figure 3.3(c) and Figure 3.5(b), we can see that the real

rewards that can be achieved by the stopping rules from the infinite horizon analysis

are very different. For the CAT problem, the expected real reward has a huge gap

from the result based on the finite horizon analysis. For the CDT problem, the

expected real reward approximates the result based on finite horizon analysis pretty

well when the network size M is large enough, say M = 15. This implies that when

the probing cost is high, it is particularly not recommended to design stopping rules

based on the infinite horizon analysis for the CAT problem. The source of this

difference lies in that there is always a constant duration of T for data transmission

in the CDT problem.
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Chapter 4

Distributed Opportunistic Scheduling for Multi-Channel Networks

4.1 Introduction

Many wireless systems now provide multiple channels for data transmission,

where a channel can be treated as a frequency in a frequency division multiple access

(FDMA) network, a code in a code division multiple access (CDMA) network, or

an antenna or its polarization state in a multiple-input multiple-output (MIMO)

network [59–61, 64–67]. For example, IEEE 802.11a has 8 channels for indoor use

and 4 channels for outdoor use in the 5GHz band [68], and IEEE 802.11b has 3

channels in the 2.4GHz band [69]. Moreover, software defined radio (SDR) [70]

and cognitive radio (CR) [71] systems also provide multiple channels, e.g. tunable

frequency bands through programmable hardware that are controlled by software.

In a multi-channel system, when the channel separation is greater than the coherent

bandwidth, different channels experience independent channel fluctuations. Hence

the availability of multiple channels substantially enhances the probability of the

existence of at least one channel with acceptable channel quality. In such systems,

the presence of multiple channels is a source of diversity which can be exploited

opportunistically to enhance the system throughput. In general, to be able to exploit

such kind of diversity, there should be enough vacant channels for the scheduler to

decide which channels to choose. Hence it is not practical to exploit opportunism
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in multi-channel diversity if the wireless network is heavily loaded. However, it is

shown that almost all wireless networks experience extended periods of low activity

or hot spots [72], during which some or all access points can try to exploit the

available spectrum opportunism.

In a multi-channel network, it is possible to exploit channel fluctuations from

multi-channel diversity by sending data at a higher rate through one channel that

is carefully chosen, which results in an enhanced system throughput. It requires the

user to obtain the current states of all channels for decision making at the scheduler.

However, to learn the instantaneous states of the channels, a user needs to probe the

channel in many ad-hoc wireless networks, which in turn consumes both additional

energy and time. Hence a user needs to not only optimally select the channel based

on available information but also optimally determine the amount of information it

should acquire about the instantaneous states of its available channels. In general,

this problem is a joint optimization of the rewards obtained from informed selections

and the cost incurred in acquiring the required information. To exploit opportunism

in multi-channel diversity, many works have focused on how to derive an optimal

strategy to determine which channels to probe, in what sequence, and which channel

to use for data transmission [59–61, 64–67]. A heuristic based approach is first

presented in [64], where the authors take channel fluctuations into consideration in

the MAC design to exploit channel variations across multiple frequency channels for

IEEE 802.11 networks. The multi-channel opportunistic auto rate (MOAR) [59,65]

considers the optimal opportunistic scheduling problem for IEEE 802.11 wireless

networks with statistically identical channels and equal probing costs. It is assumed
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that unprobed channels cannot be used for transmission and a channel can only be

used immediately after probing, i.e. no recall of previous channels. MOAR allows

users to opportunistically find the channels with the best channel quality and seeks

to optimally balance the throughput gain with measurement overhead. The key idea

of MOAR is that if the quality of the current channel is not favorable, users can

opportunistically skip to better quality channels for possible data transmission at a

higher rate. An optimal skipping rule for MOAR which maps the channel conditions

at the PHY layer to a MAC rule is presented to allow nodes to limit the number

of times they skip in search for a better channel. It is shown that opportunistic

channel skipping is most beneficial in low signal to noise regions, which are typically

the cases when the node throughput in single-channel system is the minimum. The

opportunistic spectrum access (OSA) [60, 66] studies this problem for a general

wireless network where a channel can be in one of multiple states and the channel

statistics are not necessarily identical. The authors consider both the case where the

number of channel state is finite and the case where they can take an uncountably

infinite number of states. Moreover, both recall of previous channel probing and

transmission in unprobed channels are allowed. Both the constant data time (CDT)

and the constant access time (CAT) problem are studied. The authors derive key

properties of the optimal strategy and show that the optimal strategy has a threshold

property and can only take one of a few structural forms. Based on the key structural

properties of the optimal strategy, the authors show the optimal channel probing

scheme for a number of special cases of practical interest as well as an algorithm that

computes the optimal strategy in a finite number of steps even when the channel
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has an uncountably infinite state space. This problem is further extended in [61]

to allow channels with different distributions of transmission qualities and different

probing costs. The authors show that for an arbitrary number of states the optimal

net gain can be approximated within a factor of 1/2 using a simple approximation

algorithm. This approximation ratio can be improved to 2/3 when the number of

channel states is 3. In [67], this problem is studied for the case where all channels

have equal probing costs but potentially different distributions for the channel states.

A joint channel probing and selection scheme is proposed to approximate a utility

function that captures both the cost and value of information. The approximation

can be made arbitrarily close to the optimum with an increasing computation time

of the solution.

4.2 Motivation for the Multi-Channel Problem

We consider a wireless ad-hoc network with available bandwidth W . There

are a total of M links competing the medium in a cooperative and opportunistic

manner. The whole spectrum can be directly used as one single channel, using

the distributed opportunistic scheduling protocols described in [53]. We assume a

homogeneous network where the channel statistics are identical for different links.

Now we are interested in better efficiency by dividing the whole bandwidth into J

sub-channels, where J < M . We assume each sub-channel has a bandwidth of W
J

,

and the sub-channels are orthogonal and hence their channel fadings are independent

from each other. This is a common assumption in literature. For example, wireless
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networks with independent sub-channels have been discussed in [59, 61, 66]. We

denote the time as t and the number of active probing links on the j-th sub-channel

at time t as M
(j)
t . For simplicity we use the scenario M

(j)
t = M

J
to illustrate our

idea.

We first take a look at the average waiting time for any given link to access

the medium. For a single-channel network, a given link m is able to access the

current block with a probability 1
M

. Since the procedure is independent from block

to block, the average waiting time before link m can send data through the wireless

medium is MT , i.e. M blocks. For a multi-channel system, link m is able to access

the current block with a probability 1

M
(j)
t

= J
M

. Hence the average delay for link

m to access the medium is MT
J

. This is only 1
J

of that of a single-channel network.

Hence multi-channel protocols can considerably reduce the average waiting time for

any given link to access the medium.

Now we consider the system throughput. Intuitively speaking, the system

throughput is determined by how likely a “good” link can be found in the network.

For a single-channel network, we assume the probability that the current captured

channel rate for a given link being “good” is Pg. Hence the probability that the

wireless medium will be utilized by a “good” link is MPg. For the multi-channel

network, on the other hand, we need to find J “good” links. This is because the

bandwidth of each sub-channel is only W
J

. Suppose the probability that the current

captured transmission rate being “good” on a given sub-channel is P̃g. If we consider

the scheduling is independent between sub-channels, this probability is J · M
J
P̃g =

MP̃g. There is no big difference compared to the single-channel scenario, since we
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can treat Pg ≈ P̃g if the bandwidth W is evenly allocated to each sub-channel. On

the other hand, if the distributed opportunistic scheduling is jointly designed across

all sub-channels, this probability becomes
(

M
J

)

P̃g. Hence this probability will be

improved considerably when there are enough number of sub-channels J . It gives

us some hint on the benefit from joint optimization across multiple sub-channels.

However, it is tricky to design protocols that can work in a distributed scenario to

achieve the opportunism introduced by these sub-channels.

4.3 The Multi-Channel Opportunistic Scheduling Algorithm

In this chapter, we study this problem under the constant access time (CAT)

model [53,66], where the total duration of the channel probing and data transmission

is a constant, i.e. Tp + Td = T . We adopt this model so that the beginning of each

block T on different sub-channels can easily be synchronized in a multi-channel

network. Note that the duration of channel probing is a random variable depending

on the stopping time N , i.e. Tp,N =
∑N

i=1 Ti.

4.3.1 Protocol Description

Similar to the single-channel scenario, we consider a collision model for each

sub-channel where channel probing is required before accessing any sub-channel.

The channel probing is still independent from sub-channel to sub-channel due to

lack of centralized coordinator. Suppose at time t there are M
(j)
t links actively

probing the j-th sub-channel with a fixed probability p. The j-th sub-channel is
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Figure 4.1: The channel probing within one block duration T for a network with 3
sub-channels.

won by some link after a duration of τK
(j)
nj and is captured at a transmission rate

of R
(j)
nj . Here nj = nj(t) is the index for the round of successful channel probing on

the j-th sub-channel. We can see K
(j)
nj has a geometric distribution with parameter

p
(j)
s,t , where p

(j)
s,t is the successful probing probability on the j-th sub-channel at time

t and it depends on M
(j)
t .

Since the channel probing is independent for different sub-channels, nj(t) is

generally asynchronous for different j. This is illustrated in Figure 4.1, where the

numbers above each sub-channel indicate nj at different time t. We can see that sub-

channel 2 has its first winner link later than sub-channel 1 and 3, while sub-channel

1 has its second winner link later than sub-channel 2 and 3 respectively. Whenever

any sub-channel is won by some link that is actively probing that sub-channel, we

say one event happens in the system. Now we take a look at the whole procedure

from time t = 0. We already know that it takes a duration of τK
(j)
nj for the nj-th

event to happen on the j-th sub-channel. Hence it takes a duration of τ minK
(j)
nj

for the first event ever to happen in this network. Similarly, starting from the first

event, it takes a duration of τ minK
(j)
nj for the second event to appear in the system,
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and so on. We denote the minimum duration across different sub-channels as

K̃n = min
j∈Jt

K(j)
nj
, (4.1)

where n = n(t) is the index for the round of successful probing in the system, and

Jt is the set of sub-channels that have not been utilized for data transmission until

time t. We can see that K̃n is the shortest time interval between any two events

(not necessarily originated from the same sub-channel) in the system.

Hence for a multi-channel network, it is not necessary to trace all events on a

specific sub-channel and design optimal stopping rule for that sub-channel. Instead

the protocol could make a decision as soon as there is a new event available in the

system, no matter from which sub-channel this event is originated. As a result,

one major difference of the multi-channel protocol is that the decision making at

different time instances could be based on observations from different sub-channels.

The full protocol can be described in Figure 4.2.

Note that in Figure 4.2, there are generally multiple winners on different sub-

channels at the same time and hence multiple decision makings based on different

instant transmission rates.

4.3.2 Performance Analysis

In this section, we analyze the proposed multi-channel protocol and charac-

terize its system throughput. We present lower and upper bounds on the system

throughput under various constraints.

In this chapter, we only characterize system performances for homogeneous
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1: Each link m picks one sub-channel;

2: Jt ← {1, 2, . . . , J};
3: while Jt 6= ∅ do

4: for each j ∈ Jt do

5: links probe the j-th sub-channel;

6: end for

7: if link m wins some sub-channel j then

8: m makes a decision on whether to send data on j or not;

9: if m decides to utilize sub-channel j then

10: m sends data over sub-channel j until the end of this block;

11: sub-channel j is deleted from Jt;

12: end if

13: end if

14: end while

Figure 4.2: The Distributed Opportunistic Scheduling Protocol for Multi-Channel

Networks

networks, where the distributions of the transmission rates are identical with respect

to different links or sub-channels. To facilitate our performance analysis, we make

some additional assumptions as we did in Chapter 3:

[A1] The channel rates can only take values in (0,+∞);

[A2] The probing duration τ is much smaller compared to the block length, i.e.

τ ≪ T .

We take a look at the channel probing and decision making procedure described

by Figure 4.2. Suppose the j-th sub-channel is won by some link after a duration

of K̃n, which makes it the n-th round of successful channel probing for the multi-
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channel system. Suppose sub-channel j is then captured by the winner sn at rate

R̃n.1 Hence the reward is

Yn =
R̃n · (T − τ

∑n
i=1 K̃n)

T
(4.2)

if the winner sn decides to utilize the channel, and is 0 otherwise. We can rewrite

it as

Yn =
T − τ∑n

i=1 K̃n

T/R̃n

,

and the optimization is now reduced to maximize the rate of return [55, 56]. To do

this, we need to characterize the probabilistic distribution of K̃n.

Lemma 4.3.1. K̃n has a geometric distribution Geom(p̃s,t) with parameter

p̃s,t = 1−
∏

j∈Jt

[

1− p(j)
s,t

]

, (4.3)

where p
(j)
s,t is the successful probing probability on the j-th sub-channel at time t.

Proof. It is easy to compute the CDF of K̃n based on (4.1) if we notice that K
(j)
nj

are independent geometric distributions with parameter p
(j)
s,t .

Now that K̃n has a geometric distribution Geom(p̃s,t), we can apply a similar

procedure as in [53] to characterize the optimal stopping rule.

Lemma 4.3.2. Suppose at time t, the set of sub-channels that have not been utilized

for data transmission is Jt. Then the optimal stopping rule is

N∗ = min

{

n ≥ 1 : R̃n ≥ λ∗n ·
T

T − τ∑n
i=1 K̃i

}

, (4.4)

1Strictly speaking, they should be denoted as s
(j)
n and R̃

(j)
n respectively, since there might

be multiple winners on different sub-channels at time t. Here we ignore the superscript when

discussing one of these winners.
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where λ∗n is the solution to

E

[

1− τ

T

(

n
∑

i=1

K̃i − K̃n+1

)

− λ

R̃n

]+

=
τ

T · p̃s,t

. (4.5)

The optimal system throughput λ∗ is the solution to

E

[

1− λ

R̃n

]+

=
τ

T · p̃s,t

. (4.6)

Here the successful probing probability p̃s,t is defined in (4.3).

Proof. The proof can be obtained in a similar way as the proof of Theorem 1 in

[53].

From Lemma 4.3.2, we can see the optimal reward and stopping rule only de-

pend on the cumulative durations τ
∑n

i=1 K̃n for channel probing and the captured

instant channel rate R̃n. Both of them are readily available for the winners’ deci-

sion makings in a distributed setting, even though physically these events might be

originated from different sub-channels.

We now take a look at the whole decision making procedure. Once a sub-

channel is utilized for data transmission, it will not be involved in the channel

probing until the beginning of the next block. Hence the cardinality of Jt (denoted

as Jt = ‖Jt‖) decreases whenever there is a decision to stop. All sub-channels will

be eventually utilized for data transmission. Hence there should be J decisions

that are to stop in the end. The decreasing of Jt will affect the successful probing

probability (4.3) for the multi-channel system and hence the system throughput.

We first characterize the optimal reward when the successful probing proba-

bility p̃s,t is varying as the procedure moves on.
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Lemma 4.3.3. Suppose the successful probing probability p̃s,t in Lemma 4.3.2 is

varying as the procedure moves on. Suppose before one winner decides to stop, the

minimum and maximum of p̃s,t are p̃s,min and p̃s,max respectively. Then the optimal

system throughput λ∗ for this decision can be bounded as

λ∗min ≤ λ∗ ≤ λ∗max, (4.7)

where λ∗min is the system throughput if the successful probing probability is always

p̃s,min, and λ∗max is the system throughput if the successful probing probability is

always p̃s,max.

Proof. The proof is straight-forward if we notice that the optimal reward λ∗ in (4.6)

monotonically increases as p̃s,t increases.

To calculate the system throughput, note that the successful probing prob-

ability p̃s,t increases as Jt increases. Hence p̃s,t reaches its maximal value in the

beginning when Jt = J . Based on this we can get an upper bound on the system

throughput. To simplify our notation, we further make the following assumptions:

[A3] Each sub-channel has the same number of links, i.e. M
(j)
t = M

(1)
t for j =

1, . . . , J ;

[A4] All links are probing with the same probability, i.e. p(m) = p for m = 1, . . . ,M .

Thus all sub-channels have the same successful probing probabilities, i.e. p
(j)
s,t = p

(1)
s,t

for j = 1, . . . , J .
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Theorem 4.3.1. The system throughput of Figure 4.2 is at most Jλ∗0, where λ∗0 is

the solution to

E

[

1− λ

R̃n

]+

=
τ/T

1−



1− p(1)
s,t





J
. (4.8)

We can also have a lower bound on the system throughput if Jt is available

for optimal decision making through some means.

Theorem 4.3.2. If Jt = ‖Jt‖ is available for decision making in Figure 4.2, the

system throughput is at least
∑J

j=1 γ
∗
j , where γ∗j is the solution to

E

[

1− γ

R̃n

]+

=
τ/T

1−
[

1− p(1)
s,t

]j . (4.9)

Proof. We can see when Jt = j, the optimal system throughput is γ∗j . Hence if there

is at most one sub-channel that is decided to be utilized for data transmission at

any time t, the total network throughput will be exactly
∑J

j=1 γ
∗
j .

Now suppose Jt = j. At this time there are still j sub-channels involved in

active channel probing and decision making. Suppose ∆ sub-channels are decided

to be utilized for data transmission at some point. Then the reward from these

sub-channels are ∆ · γ∗j . We can easily see that

∆ · γ∗j >
j
∑

i=j−∆+1

γ∗i . (4.10)

To bound the system throughput, iterate j from the very beginning j = J and apply

(4.10) when multiple sub-channels are decided to be utilized for data transmission

at the same time.
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Unfortunately, in ad-hoc networks Jt is not readily available for decision mak-

ing. Starting from Jt = J , more and more sub-channels will be eventually utilized

for data transmission as the procedure moves on. At any time more than one de-

cisions over multiple sub-channels might be made to stop. Hence Jt is a random

process which depends on the channel probing and decision making behavior. One

solution to this problem is to conservatively use a fixed small J0 as the true Jt for

decision making. We can get a lower bound on the system throughput if the protocol

works in this way.

Theorem 4.3.3. If a fixed J0 is used in Figure 4.2 to replace Jt when computing

the optimal stopping rule, the system throughput is at least (J − J0 + 1)ζ∗, where ζ∗

is the solution to

E

[

1− ζ

R̃n

]+

=
τ/T

1−



1− p(1)
s,t





J0
. (4.11)

Proof. To characterize the throughput from each decision, we divide the whole pro-

cedure into two phases:

• Jt ≥ J0: The decision rule is more conservative as it is using a smaller p̃s,t.

Hence the decision making will stop earlier and result in a reward ζ̂. Appar-

ently we have ζ̂ ≥ ζ∗. The first J − (J0 − 1) sub-channels that are decided to

be utilized for data transmission fall into this category.

• Jt < J0: The decision rule is more optimistic compared to the true situation.

There is a chance that it will never stop properly since a larger threshold is
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used here. The worst case is that we get a total reward of 0 for these J0 − 1

sub-channels.

Now combine these two cases, we get a total throughput which is at least (J − J0 +

1)ζ∗.

4.4 Numerical Results

We consider a wireless network with a total bandwidth W . Without loss of

generality, we assume the bandwidth is 1 in certain units, e.g. W = 1MHz. We

assume the wireless medium is Rayleigh fading within each block T = 1. Hence

if the whole spectrum is used as a single wireless channel, its channel rate can be

written as

R(h) = log(1 + ρh)

in Mbits/s/Hz, where ρ is the average signal-to-noise ratio (SNR), and h is the

channel gain corresponding to Rayleigh fading. We write the probability density

function (pdf) of h as

f(h;σ) =
h

σ2
e−

h2

2σ2 , h > 0.

There are a total of M = 400 links accessing the wireless medium with distributed

opportunistic scheduling protocols.

For a multi-channel network, we split the total bandwidth evenly as W
J

= 1
J
,

where J is the number of sub-channels in the system. Accordingly the rate for each

sub-channel can be written as

R(j)(h) =
1

J
log(1 + ρh)
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Figure 4.3: System throughput with varying number of sub-channels in the network,
where τ = 0.02, ρ = −10dB and σ = 1.

in Mbits/s/Hz, where j = 1, . . . , J .

We first show that it only marginally improves the system throughput if the

opportunistic scheduling is working independently on each sub-channel. Figure 4.3

shows the system throughput for this case, with parameters τ = 0.02, ρ = −10dB

and σ = 1. The number of sub-channels J is varying from J = 15 to J = 50. For

comparison, the dotted line shows the system throughput for the single-channel net-

work. For the single-channel system, the distributed opportunistic scheduling pro-

tocol is running where all links probe with probability p = 1
M

. For the multi-channel

system, each sub-channel is running the single-channel protocol independently with

p = 1/⌊M
J
⌋. We can see it only yields a performance improvement of roughly 1.5%

with J = 50 sub-channels.

In Figure 4.4, we show system throughput of the multi-channel opportunistic

scheduling protocols based on various bounds discussed in Section 4.3.2. Similarly

the dotted line shows the system throughput for the single-channel network. The

dashdott line shows the upper bound of the system throughput described in Theorem
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Figure 4.4: System throughput with varying number of sub-channels in the network,
where τ = 0.02, ρ = −10dB and σ = 1.

4.3.1. We can see the system throughput quickly reaches a maximal value at a

relatively medium J . It shows an increase of almost 22.4% in network throughput.

The dashed line shows the lower bound of the network throughput shown in Theorem

4.3.2, where Jt is available through other means for decision making. We can see

that as J increases, it increases slower than the upper bound. For a large enough

J , say J > 25, it shows an increase of 21.4% in network throughput. Finally, the

solid line shows the network throughput of Figure 4.2 if we simply use J0 = 3 in

the decision making procedure. We can see that the network throughput increases

much slower compared to the dashdot line. For J = 50, it shows an increase of

12.3% in the network throughput compared to the single-channel scenario. Hence

even without any additional information, the distributed version of Figure 4.2 can

still improve the system throughput considerably.
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Chapter 5

A Multi-Armed Bandit Approach for Distributed Channel-Aware

Scheduling

5.1 Introduction

In Chapter 3 and Chapter 4, we studied the distributed channel-aware schedul-

ing problem where the instant CSIs are unknown but the channel statistics are

known. In this chapter, we study one different distributed opportunistic scheduling

problem where the channel statistics of the links are fixed but unknown. The goal is

to learn these parameters in a distributed manner and minimize regret of the learn-

ing problem. We assume all links in the network have to probe the shared wireless

medium before sending any data over the channel. We formulate this distributed

learning problem using multi-armed bandit.

One of the earliest MAB papers solved classic non-Bayesian infinite horizon

MAB problem with one single play [73]. Assume K independent arms and the

rewards are i.i.d. over time from a given distribution with an unknown parameter,

an order optimal policy is presented to provide expected regret that is O(K log n).

This work is later extended to the case when multiple simultaneous plays are allowed

[74]. Easier to compute policies based on the sample means are discussed in [75]

that also has asymptotically logarithmic regret. In particular, the work in [76]
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considered arms with non-negative rewards that are i.i.d. over time with an arbitrary

distribution, where the only restriction is that the distribution should have a finite

support. A simple policy named UCB1 is proposed to achieve logarithmic regret

uniformly over time [76].

Recently the MAB framework has been popularly used to formulate learning

problems in wireless ad-hoc networks, e.g. cognitive radio networks. For exam-

ple, a combinatorial MAB problem is considered in cognitive radio networks where

a channel offers independent Bernoulli rewards with unknown means for different

users [77]. A centralized policy based on full information exchange and coopera-

tion among users is presented that achieves logarithmic order of the regret growth

rate. In [78], the problem of secondary users selecting channels is formulated as

a decentralized MAB problem, and a policy is presented to achieve asymptotically

logarithmic regret with respect to time. The work in [79] extends the index-type

single-user policy in [76] and proposes two order-optimal distributed policies, where

users are orthogonalized to different channels.

Unlike other MAB problems, here all the rewards for different links are from

the only shared wireless channel in the network. For performance comparison pur-

pose, we first introduce a semi-distributed MAB protocol, which serves as our perfor-

mance baseline due to its ideal assumption. Based on the semi-distributed protocol,

we remove its ideal assumption and propose two distributed MAB protocols, where

each link holds a set of local observations and plays the MAB game independently.

We show that these distributed protocols can be considered as a generalized MAB

protocol, where each link can update its local observations for infinitely many times.
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We run simulations under different parameters and compare statistics of the local

observations and regrets.

5.2 Problem Formulation

We use the similar channel model in Chapter 3 to formulate our problem. Here

we use the constant access time (CAT) model [66] as an example to formulate our

problem. Notice this problem can also be formulated using the constant data time

(CDT) model in a similar way.

We assume M links are sharing the wireless medium in an ad-hoc network

without any centralized coordinator. The channel has a collision model, where

a link can successfully send data if and only if no other links are transmitting

simultaneously. Hence to avoid collisions among themselves, links have to probe the

medium first. A link wins the channel if and only if no other links are probing at

the same time. Suppose the duration of a mini-slot for channel probing is fixed as

τ . If link m probes the wireless medium with probability pm, the duration of the

channel probing phase is

Ts = τ ·Ks, (5.1)

where Ks is the number of mini-slots elapsed until some link finally wins the channel.

Hence Ks has a geometric distribution Geom(ps), where ps is the successful probing

probability

ps =
M
∑

m=1

pm

∏

j 6=m

(1− pj). (5.2)

A sketch of our CAT based model is shown in Figure 5.1, where the total
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Figure 5.1: CAT based system model

duration for channel probing and data transmission is a constant T . Furthermore,

we assume the channel has a block fading with length T and the channel rate Rm is

i.i.d. over time for the m-th link. Hence if link m wins the medium in some block,

the available channel rate in this block is Rm and the duration available for data

transmission is T − τKs, which yields a total reward of Rm(T − τKs). We assume

these links have no knowledge on the distribution of the channel rates {Rm} except

that they have a finite support. Without loss of generality, we assume {Rm} are

properly normalized to a finite support [0, 1]. We assume that Rm has a mean µm

that is unknown to the links, even link m itself. We denote the set of the means as

~µ = {µm}.

To this end, we formulate this problem using a non-Bayesian MAB [73,74,76].

Our work is mostly inspired by the work in [76], which can be applied to arms with

rewards that are i.i.d. over time with an arbitrary unparameterized distribution.

Since the channel can be occupied by at most one link at any time n, we define the

k-th arm as the medium access configuration that only the k-th link is selected to

send data over the wireless channel, where k = 1, . . . ,M . Suppose the reward from

pulling the k-th arm at time n is Yk(n). We define regret, i.e. the difference between

the expected reward that could be obtained by a genie who can pick the best arm
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at each time, and that obtained by a given policy π, i.e.

Rπ
n(~µ) = n ·max

k
E[Yk]− Eπ[

n
∑

t=1

Yπ(t)(t)]. (5.3)

In the following sections, we design protocols to implement the selection of

arms in a decentralized way. We first present a semi-distributed MAB protocol

with ideal assumption in Section 5.3, then distributed MAB protocols with weak

assumption in Section 5.4.

5.3 A Semi-Distributed MAB Protocol for Opportunistic Scheduling

We first present a semi-distributed MAB protocol for our opportunistic schedul-

ing problem and give a theoretical bound on its regret. We use a relatively strong

assumption for the semi-distributed MAB protocol presented here. As a result, this

protocol cannot be directly used in ad-hoc networks. The main purpose of this semi-

distributed MAB protocol is to serve as a performance baseline for the distributed

MAB protocols in Section 5.4.

We assume all links in the network get some additional assistant from a third

party, which is denoted as S in this paper. S is a node in the network with lim-

ited memory space and limited communication capability. S keeps a copy of the

observations for the MAB game played in the network, i.e. {Ŷk, Nk}. Meanwhile,

its limited communication capability only allows it to contact one link at a time.

This could be an access point (AP) in wireless communications or an information

fusion center in wireless sensor networks.

At time n (i.e. the beginning of the n-th block), S plays the MAB game and
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picks one link, say link k. S then notifies link k and link k will probe the medium

with probability 1 instead of pk. On the other hand, all other links are still probing

the medium with probability pm where m 6= k, since S cannot contact any more

link besides k. Hence the instant reward that can be obtained by link k is

Yk = Rk · (T − τKk), (5.4)

where Rk is the channel rate for link k and Kk is the number of mini-slots elapsed by

channel probing before the k-th link actually wins the wireless medium. Combine

(5.2) and the fact that link k is probing with probability 1, Kk has a geometric

distribution Geom(ps,k) with

ps,k =
∏

m6=k

(1− pm). (5.5)

From Section 5.2, the channel rate Rk has a finite support [0, 1]. We also

properly normalize the duration of a block and a mini-slot so that T = 1. Hence

based on (5.4), the reward Yk also has a finite support [0, 1]. Since the MAB game

is played only by S who holds a copy of all observations on rewards, we design a

protocol based on the UCB1 policy in [76]. The semi-distributed MAB protocol is

described in Figure 5.2.

In Figure 5.2, Ŷk(n) is the mean reward from pulling the k-th arm up to the

current time n, and Nk(n) is the number of times the k-th arm has been pulled up

to time n.

Similar to the UCB1 policy in [76], we can have a bound on the regret.

Theorem 5.3.1. If pk = p for all k = 1, . . . ,M , the expected regret of the semi-
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1: for each link k do

2: pull arm k once and update Ŷk, Nk accordingly;

3: end for

4: n←M + 1;

5: while 1 do

6: pull arm k that maximizes Ŷk +
√

2 ln n
Nk

;

7: for each link j do

8: probe the medium with probability 1 if j = k, otherwise with prob-

ability pj;

9: end for

10: link k sends data over the channel after winning the medium;

11: update Ŷk and Nk according to the current reward yk;

12: n← n+ 1;

13: end while

Figure 5.2: The Semi-Distributed MAB Protocol

distributed protocol is at most

[

8

T − τ
ps,1

∑

k: µk<µ∗

lnn

δk

]

+

(

1 +
π2

3

)(

T − τ

ps,1

)

(

∑

k: µk<µ∗

δk

)

, (5.6)

where µ∗ = maxk µk and δk = µ∗ − µk.

Proof. We define the mean reward from pulling arm k as

θk = E[Yk] = E[Rk] · E[T − τKk]

= µk(T −
τ

ps,k

).

From Theorem 1 in [76], regret of Figure 5.2 is at most

[

8
∑

k:θk<θ∗

(
lnn

∆k

)

]

+ (1 +
π2

3
)

(

∑

k:θk<θ∗

∆k

)

, (5.7)
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where θ∗ = maxk θk and ∆k = θ∗ − θk. Notice in (5.5) we have ps,k = ps,1 when

pk = p for k = 1, . . . ,M . Substituting θk = µk(T − τ
ps,1

) into (5.7) immediately

yields (5.6).

5.4 Distributed MAB Protocols for Channel-Aware Scheduling

In this section, we present our distributed MAB protocols for the opportunistic

scheduling problem. Unlike the semi-distributed protocol in Section 5.3, the MAB

game is played independently in each link j in both protocols.

In ad-hoc networks, the existence of S in Section 5.3 is often questionable due

to the distributed nature of the network. One possible idea is to let each link j hold

a copy of its own observations and play the MAB game independently at each time

n. We denote these observations that are held locally at link j as {Ŷ j
k , N̂

j
k}k. Similar

to Section 5.3, link j probes the wireless medium with probability 1 if the j-th arm

is pulled in its local MAB game based on {Ŷ j
k , N̂

j
k}k, otherwise with probability pj.

However, one unique feature here is at any time n, at most one link j is able to

win the wireless medium and hence update its local observations. This is due to

the collision channel model we used. As a result, the observations held at link j can

only be updated when link j wins the medium, which only brings new observations

to Ŷ j
j and N̂ j

j . In other words, observations on other arms {Ŷ j
k , N̂

j
k}k 6=j can never

be updated at link j as in other MAB problems.

To properly update these observations, we introduce the following two opera-

tions:
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[Type-T update] when the k-th arm is pulled and a reward yk is obtained, update

the observations as:

Ŷk(n+ 1)← Ŷk(n) · N̂k(n) + yk

N̂k(n) + 1

N̂k(n+ 1)← N̂k(n) + 1

(5.8)

[Type-F update] when the k-th arm is pulled but no reward is able to be observed,

update the observations as:

Ŷk(n+ 1)← Ŷk(n)

N̂k(n+ 1)← N̂k(n) + 1

(5.9)

Notice a type-F update only increases N̂k by 1 to reflect the fact that the k-th

arm has been pulled at time n. In fact, we have implicitly used the assumption that

the instant reward yk at time n is the up-to-date observation Ŷk(n), i.e.

Ŷk(n+ 1)← Ŷk(n) · N̂k(n) + Ŷk(n)

N̂k(n) + 1
= Ŷk(n).

This is because we cannot observe a new reward yk at this time. Hence to update

the average reward Ŷ j
k , link j must be able to exchange information with link k in

a certain way, since the average reward on the k-th arm can only be updated by

the k-th link. In this paper, we present distributed MAB protocols based on some

additional assistance from a different type of third party W . Unlike S in Section

5.2, W is a node in the network who cannot initiate communications to any link j.

Instead, the sole functionality of W is to provide a common memory space which

can only be visited by at most one link at a time. We assume that only the link who
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wins the wireless medium can visit W and access the data kept at W . Depending

on the reliability of W , we present two different protocols:1

Protocol A when W is highly reliable (denoted as A);

Protocol B when W is not reliable (denoted as B).

5.4.1 Distributed MAB Protocol A

In this section, we assume there is a third party A who is able to provide a

reliable memory space to be visited by the winner link in the network at any time

n.2 Due to its high reliability, any data kept at A is unlikely to be destroyed. As

a result, we keep a copy of the observations based on all type-T updates in the

network at A, which is denoted as {Ŷ A
k , N̂

A
k }k in this paper. The protocol works

as follows: each link j starts with observations {Ŷ A
k , N̂

A
k }k, and plays a local MAB

game at each time n. If the j-th arm is pulled, link j probes the wireless medium

with probability 1, otherwise with probability pj. If link j does not win the wireless

medium in this block, a type-F update is performed. If link j successfully wins the

wireless medium, link j will access the observations at A and have a type-T update

based on the instant reward yj in this block. Then link j will update its local

observations {Ŷ j
k , N̂

j
k}k and A’s observations {Ŷ A

k , N̂
A
k }k using these new quantities.

The detail of Protocol A can be described as Figure 5.3.

We show that the distributed MAB Protocol A with type-F update works as

a generalized MAB procedure, where the average operation in a conventional MAB

1We need to explain clearly about the physical meaning of W.
2Similarly, we need to clarify more about the physical meaning of A.
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1: for each arm k do

2: pull arm k once and get reward yk according to (5.4);

3: set initial observations as Ŷ j
k ← yk and N̂ j

k ← 1 for j = A and j =

1, . . . ,M ;

4: end for

5: n←M + 1;

6: while 1 do

7: for each link j do

8: pull the k-th arm that maximizes Ŷ j
k +

√

2 ln n

N̂j
k

;

9: if k = j then

10: link j probes the medium with probability 1;

11: if consistent collision detected then

12: have a type-F update on {Ŷ j
j , N̂

j
j };

13: end if

14: else

15: link j probes the medium with probability pj;

16: have a type-F update on {Ŷ j
k , N̂

j
k};

17: end if

18: if link j wins the medium then

19: send data over the channel until the end of this block;

20: have a type-T update on {Ŷ A
j , N̂

A
j } based on the current reward

yj;

21: Ŷ j
k (n+ 1)← Ŷ A

k (n+ 1) and N̂ j
k(n+ 1)← N̂A

k (n+ 1) for all k;

22: end if

23: end for

24: n← n+ 1;

25: end while

Figure 5.3: The distributed MAB protocol A
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is replaced by a weighted average in Protocol A.

Theorem 5.4.1. For any link j, Protocol A updates Ŷ j
k (n) as a weighted average

based on all yk(t) that are available to link j by time n, where yk(t) is the instant

reward when link k wins the wireless medium at time t.

Proof. We prove Theorem 5.4.1 by mathematical induction. According to the ini-

tialization in Figure 5.3, at time n = M + 1, we have Ŷ j
k (n) = yk(k). Suppose the

statement holds at time n, we can write Ŷ j
k (n) as

Ŷ j
k (n) =

∑

t∈Γk(n) ĉ
j
k(t) · yk(t)

N̂ j
k(n)

,

where Γk(n) is the set of time t when link k wins the wireless medium and obtains a

reward yk(t), and yk(t) has already been spread to link j, and ĉjk(t) is a coefficient.

We notice that N̂ j
k(n) =

∑

t∈Γk(n) ĉ
j
k(t).

At time n+ 1, we can write the type-F update as

Ŷ j
k (n+ 1) = Ŷ j

k (n) =
[N̂ j

k(n) + 1] ·
P

t∈Γk(n) ĉj
k
(t)·yk(t)

N̂j
k
(n)

N̂ j
k(n) + 1

=

∑

t∈Γk(n) c̃
j
k(t) · yk(t)

N̂ j
k(n) + 1

=

∑

t∈Γk(n+1) c̃
j
k(t) · yk(t)

N̂ j
k(n+ 1)

,

where N̂ j
k(n+ 1) = N̂ j

k(n) + 1, and

c̃jk(t) =
N̂ j

k(n) + 1

N̂ j
k(n)

· ĉjk(t),

and Γk(n+1) = Γk(n) since this is a type-F update. Hence the statement also holds

at time n+ 1. By mathematical induction this proves the theorem.
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We show that under Protocol A, each link j can win the wireless medium

and update its local observations {Ŷ j
k , N̂

j
k}k for infinitely many times. We use the

following notations in our proof.

U = {j | link j wins the wireless medium for an

infinite number of times}
(5.10)

V = {j | link j wins the wireless medium for a

finite number of times}
(5.11)

We first show that at least one link j is able to win the wireless medium and

update its local observations for infinitely many times.

Lemma 5.4.1. Under Protocol A, U 6= ∅.

Proof. We prove it by contradiction. We assume that Lemma 5.4.1 doesn’t hold,

i.e. U = ∅, which immediately leads to

V = {1, 2, . . . ,M}.

Hence any link j can only win the wireless medium and update its local observations

for a finite number of times. Then we can always find a large enough integer n0

such that after time n0, no links can win the wireless medium again.

Consider the MAB game played at link j. We notice that since link j never

wins the wireless medium for n > n0, Ŷ
j
k (n) is a constant for any k. Hence only

N̂ j
k(n) is updated when the k-th arm is pulled in link j’s local MAB game. This

means that for n > n0, the pulling of the arms is solely determined by

√

2 ln(n)

N̂ j
k(n)

.
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Furthermore, since ln(n) is the same for any k, the fact that which arm will be

pulled at when is decided by N̂ j
k(n) in a deterministic fashion. Hence we can always

find some n1 > n0 such that after n > n1, any arm k will be pulled for exactly once

during time interval [n, n+M ] in any link j’s local MAB game.

We take a look at this time interval. For any n ≤ t ≤ n+M , at least two links

will have a type-T update. As a result, from t = n to t = n +M , there will be at

least 2·M type-T updates. On the other hand, we notice any link j can have exactly

1 type-T update during this time interval. Hence these type-T updates require at

least 2M links. This leads to a contradiction since there are only M links in the

network.

We then show all links j are able to win the wireless medium and update its

local observations for infinitely many times.

Theorem 5.4.2. Under Protocol A, any link l will win the wireless medium for an

infinite number of times, i.e. V = ∅.

Proof. We prove Theorem 5.4.2 by contradiction. Suppose that V 6= ∅. On the

other hand, we know U 6= ∅ from Lemma 5.4.1.

We can always find a large enough constant n1 such that for n ≥ n1, no links

in V will win the wireless medium again. We then consider the following

Ŷ i
j (n) +

√

2 ln(n)

N̂ i
j(n)

and

Ŷ i
k (n) +

√

2 ln(n)

N̂ i
k(n)

,
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where j ∈ V, and i, k ∈ U . We notice that whenever link i wins the medium and

update its local observations according to {Ŷ A
k (n), N̂A

k (n)}k, N̂ i
j(n) will be updated

to the true number of times that link j has won the medium. Since after time n1, j

never wins the wireless medium again, N̂ i
j(n) is a constant whenever it is updated

by link i. Meanwhile, for k ∈ U , N̂ i
k(n) will increase since link k will win the wireless

medium for infinitely many times. Hence we can always find a large enough constant

n2 such that for immediately after n ≥ n2,

N̂ i
j(n)≪ N̂ i

k(n).

Hence after that i must pull some k ∈ V for at least M consecutive times, since

Ŷ i
j (n) +

√

2 ln(n)

N̂ i
j(n)

> Ŷ i
k (n) +

√

2 ln(n)

N̂ i
k(n)

.

This means a pure random access of the wireless medium, which leads to a contra-

diction with the assumption that some l ∈ V cannot win the wireless medium again

after time n1. This proves Theorem 5.4.2.

5.4.2 Distributed MAB Protocol B

Notice in Section 5.4.1, it is still a strong assumption that the local data kept

at A are reliable. In this section, we remove this strong condition. We assume a

different third party B similar to A except that the memory space provided by B is

not reliable.3 Denote the observations that are held at B as {Ŷ B
k , N̂

B
k }k. As a result,

{Ŷ B
k , N̂

B
k }k might be destroyed at any time n. As a result each link j must keep

3Similarly, we need to clarify more about the physical meaning of B.
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its local observations separately. Each link j starts with its own local observations

{Ŷ j
k , N̂

j
k}k, and plays a local MAB game at each time n. Link j probes the wireless

medium with probability 1 if the j-th arm is pulled, otherwise with probability pj.

If link j does not win the wireless medium in this block, a type-F update is carried

out. If link j successfully wins the wireless medium, link j will first have a type-T

update on {Ŷ j
j , N̂

j
j }, and then exchange information with B and update them as

Ŷ j
k (n+ 1) = Ŷ B

k (n+ 1) =
Ŷ j

k (n) + Ŷ B
k (n)

2

N̂ j
k(n+ 1) = N̂B

k (n+ 1) =
N̂ j

k(n) + N̂B
k (n)

2

(5.12)

for all k = 1, . . . ,M . Notice here Ŷ j
k (n) is no longer an integer due to the average

carried out in (5.12). The detail of the protocol is shown in Figure 5.4.

One remaining question in Protocol B is the initialization of the observations

Ŷ j
k for all links j = 1, . . . ,M . We discuss two different methods in this paper. In the

first approach, we assume all links j have exactly the same initial observations, as

shown as Figure 5.5(a). This is a relatively strong assumption for ad-hoc networks.

For the second approach, we assume all links j have different initial observa-

tions. The detail is shown in Figure 5.5(b). Notice in this case, each link j is required

to obtain a separate initial observation Ŷ j
k for the k-th arm through a certain way.

To show the effectiveness of Protocol B, we show similar conclusions as Section

5.4.1.

Theorem 5.4.3. For any link j, Protocol B updates Ŷ j
k (n) as a weighted average

based on all yk(t) that are available to link j by time n, where yk(t) is the instant

reward when link k wins the wireless medium at time t.
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1: initialization with methods in Figure 5.5;

2: n←M + 1;

3: while 1 do

4: for each link j do

5: pull the k-th arm that maximizes Ŷ j
k +

√

2 ln n

N̂j
k

;

6: if k = j then

7: link j probes the medium with probability 1;

8: if consistent collision detected then

9: have a type-F update on {Ŷ j
j , N̂

j
j };

10: end if

11: else

12: link j probes the medium with probability pj;

13: have a type-F update on {Ŷ j
k , N̂

j
k};

14: end if

15: if link j wins the medium then

16: send data over the channel until the end of this block;

17: have a type-T update on {Ŷ j
j , N̂

j
j } based on the current reward yj;

18: exchange observations with B and update them according to

(5.12);

19: end if

20: end for

21: n← n+ 1;

22: end while

Figure 5.4: The distributed MAB protocol B

Proof. The proof can follow the proof of Theorem 5.4.1, and notice that (5.12) in

Protocol B is also a weighted average.

Lemma 5.4.2. Under Protocol B, we also have U 6= ∅.

The proof of this lemma can directly follow the proof in Section 5.4.1. We
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1: for each arm k do

2: pull arm k once and get reward yk according to (5.4);

3: update initial observations as Ŷ j
k ← yk and N̂ j

k ← 1 for all links j =

1, . . . ,M ;

4: end for

(a)

1: for each link j do

2: for each arm k do

3: pull arm k once and get reward yk according to (5.4);

4: update initial observation as Ŷ j
k ← yk and N̂ j

k ← 1;

5: end for

6: end for

(b)

Figure 5.5: The initialization of Protocol B in Figure 5.4 with: (a) homogeneous
observations, (b) heterogeneous observations.

then show that all links j are able to win the wireless medium and update its local

observations for infinitely many times.

Theorem 5.4.4. For any link l ∈M, l will win the wireless medium for an infinite

number of times, i.e. V = ∅.

Proof. We prove Theorem 5.4.4 by contradiction. We assume that V 6= ∅ and its

cardinality as

‖V‖ = b,

where b is an integer such that 1 ≤ b ≤ M . From Lemma 5.4.2, we know that the

cardinality of U is also a positive integer, i.e. ‖U‖ = M − b > 0.

From the proof of Lemma 5.4.1, we know that for any link j ∈ U , the pulling
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of the arms in j’s local MAB game is deterministic with a period M after n > n1. If

we look at the system time from t = n1 to t = n1 +M , and we pay special attention

to the timing where link j performs a type-T update. Without loss of generality,

we can divide the whole duration [n1, n1 +M ] into three sub-intervals:

• Time interval t ∈ [n1, n1 + b̃1]: there are at least two links j ∈ V who are

having type-T updates at time t;

• Time interval t ∈ [n1 + b̃1, n1 + b̃1 + b̃2]: there is exactly one link j ∈ V who is

having a type-T update at time t, and one link i ∈ U who is having a type-T

update at time t;

• Time interval t ∈ [n1 + b̃1 + b̃2, n1 + M ]: all links j ∈ V are having type-F

updates, and at leat one link i ∈ U is having a type-T update at time t;

Here b̃1 and b̃2 are non-negative integers. Define b̃ = b̃1 + b̃2, we have the following:

0 ≤ b̃1 ≤ b̃,

0 ≤ b̃2 ≤ b̃,

b̃1 + b̃2 = b̃,

N̄1 · b̃1 + b̃2 = b,

where N̄1 is the average number of links j ∈ V that have type-T updates at any

time t ∈ [n1, n1 + b̃1]. It must be N̄1 ≥ 2, since there is a collision in the wireless

medium for any t ∈ [n1, n1 + b̃1]. This procedure can be explained in Figure 5.6.

Now consider all links i ∈ U . During time interval [n1, n1 + M ], in total

b̃2 + (M − b̃) type-T updates have been carried out from links i ∈ U . Hence on
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Figure 5.6: A sketch for the proof of Theorem 5.4.4.

average, links from U have type-T updates with a rate

b̃2 +M − b̃
M(M − b) . (5.13)

It is easy to show that this rate is greater than 1/M . First of all, we notice that

b̃ ≤ b and thus M − b̃ ≥M − b. If b̃2 > 0, we can easily show that

b̃2 +M − b̃
M(M − b) >

M − b̃
M(M − b) ≥

M − b
M(M − b) = 1/M.

On the other hand, if b̃2 = 0, we have

b̃2 +M − b̃
M(M − b) =

M − b̃
M(M − b) =

M − b̃1
M(M − N̄1 · b̃1)

> 1/M.

The last inequality is because Ñ1 ≥ 2.

Since the average rate of type-T updates for all links from U is larger than

1/M , there must be at least one link i ∈ U such that the rate of type-T updates in

link i’s local MAB game is larger than 1/M . Denote this link as i∗. Now consider

the local MAB game played in link i∗. The i∗-th arm is pulled with a rate larger

than 1/M , which is the average rate for any arm l being pulled. Hence there must

be some arm k such that the rate of its being pulled is smaller than 1/M . Hence in

link i∗’s local MAB game, N̂ i∗

i∗ increases faster than N̂ i∗

k . Now consider

Ŷ i∗

i∗ (n)− Ŷ i∗

k (n) +

√

2 ln(n)

N̂ i∗
i∗ (n)

and
√

2 ln(n)

N̂ i∗
k (n)

.
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Since link i∗ wins the wireless medium for an infinite number of times, its local

observations {Ŷ i∗

k , N̂ i∗

k } will be updated for infinitely many times. Hence for any

small positive ǫi∗ , we can always find some N(ǫi∗) such that for n > N(ǫi∗), we can

bound Ŷ i∗

i∗ (n) as

|Ŷ i∗

i∗ (n)− µi∗| ≤ ǫi∗

with high probability. Similarly, we can also bound Ŷ i∗

k (n) as

|Ŷ i∗

k (n)− µk| ≤ ǫk

with high probability. We notice that N̂ i∗

i∗ (n) increases faster than N̂ i∗

k (n) as time

n moves on. Hence for any integer L, we can always find some nL such that

√

2 ln(n)

N̂ i∗
k (n) + L

> (µi∗ + ǫi∗)− (µk − ǫk) +

√

2 ln(n)

N̂ i∗
i∗ (n)

≥ Ŷ i∗

i∗ (n)− Ŷ i∗

k (n) +

√

2 ln(n)

N̂ i∗
i∗ (n)

.

Hence from t = nL to t = nL + L, the following inequality always holds

Ŷ i∗

k (t) +

√

2 ln(t)

N̂ i∗
k (t)

> Ŷ i∗

i∗ (t) +

√

2 ln(t)

N̂ i∗
i∗ (t)

.

This means link i∗ cannot have a type-T update in the time interval [nL, nL + L].

For any L, we can always find such a nL. It contradicts with our assumption that

starting from any time n, link i∗ can win the wireless medium and update its local

observations within a finite time duration. Hence the assumption V 6= ∅ cannot

hold, which proves that V = ∅.
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5.5 Distributed MAB Protocol II for Channel-Aware Scheduling

In this section, we present another distributed MAB protocol for the channel-

aware scheduling problem. In contrast to Section 5.4, we use a different approach

to exchange the local information sets among different links in the network.

In Section 5.4, we introduced a third party W as a mean to exchange in-

formation between different links in the network. Even though we considered the

possibility that the local information set that are held at W are not reliable, some-

times it is still difficult to implement such a third partyW in an ad-hoc network. In

this section, we use a different approach to solve this problem, where the information

exchange between different links are achieved through broadcasting at a carefully

selected time interval at the end of one block. We explicitly consider how the packet

loss during the broadcasting phase affects the performance of the protocol.

5.5.1 Protocol Description

We consider a channel model similar to the one used in Section 5.4. M links

are sharing the wireless medium in an ad-hoc network without any centralized co-

ordinator. The channel has a collision model, where a link can successfully send

data if and only if no other links are transmitting simultaneously. Hence to avoid

collisions among themselves, links have to probe the medium first. A link wins the

channel if and only if no other links are probing at the same time. Suppose the du-

ration of a mini-slot for channel probing is fixed as τ . If link m probes the wireless

medium with probability pm, the duration of the channel probing phase is ps shown
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in (5.2). We still use the CAT model to formulate our problem. The total duration

for channel probing and data transmission is a constant T . Furthermore, we assume

the channel has a block fading with a block length T and the channel rate Rm is

i.i.d. over time for the m-th link.

As we explained in Section 5.4, in an ad-hoc network, each link j has to

independently maintain a local copy of the observations on different arms, denoted

as {Ŷ j
k , N̂

j
k}k. The problem is, the observations held at link j can only be updated

when link j wins the medium, which only brings new observations to Ŷ j
j and N̂ j

j .

In other words, observations on other arms {Ŷ j
k , N̂

j
k}k 6=j can never be updated at

link j. Hence these links need to exchange their local observations {Ŷ j
k , N̂

j
k}k in a

distributed fashion. In this section, we accomplish this by allowing links to listen

at a specifically designated time interval within one block T .

To do this, we notice that all links in the network can “listen” to the medium

provided that the starting and ending time of the listening period are well synchro-

nized. It should be noted that the starting and ending point of each block is fixed

since the block length is a constant T . Hence we utilize a small time interval τ0

at the end of each block T to exchange the local information set at each link via

broadcasting. Suppose within this block the winner link is j. Then at time T − τ0,

link j will perform a type-T update on its local observations {Ŷ j
j , N̂

j
j } on the j-th

arm and broadcast it to other links. It should be noted that the local observations

on other arms at link j, e.g. {Ŷ j
k , N̂

j
k}k 6=j, are not broadcasted to other links. This

is because these observations might not be the most up-to-date ones, in particular

when we consider possible packet loss during the broadcasting phase. This issue
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will be explained in details later in this chapter. Since each time only {Ŷ j
j , N̂

j
j }

needs to be sent out, the broadcasting can be done within a short time duration τ0

where τ0 ≪ T . The remaining question is that if no link utilizes the channel within

the current block, this broadcasting will not happen and hence if all other links are

listening, this duration τ0 will be wasted. To fix this issue and make the protocol

more efficient, we use a different scheme for channel probing.

At the beginning of each block T , all links probe the shared wireless medium

according to the outcomings of its local MAB games. For a given link j, j first

plays its local MAB game. If the j-th arm is pulled in its local MAB game, link

j will probe the wireless medium for a duration of τ ; otherwise if the k-th arm is

pulled where k 6= j, link j will not probe the medium for a duration of τ . In other

words, in the beginning of one block T , for each mini-slot τ , link j will probe the

wireless medium if and only if the j-th arm is pulled in its local MAB game. If more

than one link probes the wireless medium, collisions will happen and this procedure

repeats after a duration of τ . If no links probe the wireless medium, the current

mini-slot is wasted and the same procedure will repeat for the next mini-slot. If

there is only one link probing the wireless medium, this link will utilize the channel

for data transmission until a duration of τ0 immediately before the end of this block.

As a result, if the channel rate for link j is Rj in this block, link j then utilizes the

channel for data transmission for a total duration of T − τKj − τ0, which yields

a total reward of Rj(T − τKj − τ0). Here Kj is the number of mini-slots elapsed

for channel probing. It should be noted that Kj is not a geometric distribution

anymore since whether link j probes or not depends on its local MAB game. The
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1: for each arm k do

2: pull arm k once and get reward yk according to (5.4);

3: update initial observations as Ŷ j
k ← yk and N̂ j

k ← 1 for all links j;

4: end for

5: n←M + 1;

6: while 1 do

7: while no data transmission is detected do

8: for each link j do

9: pull the k-th arm that maximizes Ŷ j
k +

√

2 ln n

N̂j
k

;

10: if k = j then

11: link j probes the medium for a duration of τ ;

12: else

13: link j has a type-F update on {Ŷ j
k , N̂

j
k};

14: end if

15: end for

16: if collision detected then

17: for all links j that probed for the previous duration of τ do

18: have a type-F update on {Ŷ j
j , N̂

j
j };

19: end for

20: end if

21: end while

22: the winner link j sends data over the channel until time T − τ0 within

the block, performs a type-T update on {Ŷ j
j , N̂

j
j } based on yj, and

broadcasts {Ŷ j
j , N̂

j
j } to other links using a duration of τ0;

23: all other links update their local observations on the j-th arm;

24: n← n+ 1;

25: end while

Figure 5.7: The distributed MAB protocol II

whole procedure can be described as Figure 5.7.
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We assume these links have no knowledge on the distribution of the channel

rates {Rm} except that they have a finite support. Without loss of generality, we

assume {Rm} are properly normalized to a finite support [0, 1]. We assume that Rm

has a mean µm that is unknown to the links, even link m itself. We denote the set

of the means as ~µ = {µm}.

In the following sections, we characterize the performance of the protocol with

respect to the packet loss during the broadcasting phase. We assume the packet

loss rate in the broadcasting phase is ǫ. We will discuss this problem for ǫ = 0 and

ǫ > 0 respectively.

5.5.2 Performance Analysis: ǫ = 0

If there is no packet loss during the broadcasting phase, for any j = 1, . . . ,M ,

the latest local observations on the j-th arm must be from the j-th link. This is

because the local observations {Ŷ j
k , N̂

j
k} on the j-th arm cannot be properly updated

at link k if k 6= j. Hence after the winner of this block j broadcasts {Ŷ j
j , N̂

j
j } to

other links, the local observations on the j-th arm {Ŷ j
j , N̂

j
j } can be updated at all

other links as

Ŷ j
k = Ŷ j

j

N̂ j
k = N̂ j

j ,

(5.14)

where k 6= j. Hence if all links have the same initial observations at the beginning

of the protocol, the local observations at different links are always synchronized by

the end of each block duration T as the procedure moves on.
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Theorem 5.5.1. If there is no packet loss during the broadcasting phase, the local

observations at different links in the network are always synchronized by the end of

each block. The expected regret of the protocol is at most

[

8

T − τ − τ0
∑

k: µk<µ∗

lnn

δk

]

+

(

1 +
π2

3

)

(T − τ − τ0)
(

∑

k: µk<µ∗

δk

)

, (5.15)

where µ∗ = maxk µk and δk = µ∗ − µk.

Proof. We have showed that the local observations at different links are always

synchronized by the end of each block. As a result, at the beginning of the next

block, all links are playing its own MAB game based on exactly the same local

observations {Ŷ j
k , N̂

j
k}k. Hence the result of the MAB game is the same, i.e. the

same arm will be pulled in all links’ local MAB games. We can see that it takes

exactly one duration of τ to have some link win the wireless medium.

Suppose the k-th link wins the wireless medium in the current block. The

mean reward from pulling the k-th arm is

θk = E[Yk] = E[Rk] · E[T − τ − τ0] (5.16)

= µk(T − τ − τ0). (5.17)

Based on Theorem 1 in [76], the regret of the protocol can be upper bounded by

[

8
∑

k:θk<θ∗

(

lnn

∆k

)

]

+ (1 +
π2

3
)

(

∑

k:θk<θ∗

∆k

)

,

where θ∗ = maxk θk and ∆k = θ∗ − θk. Substitute (5.16) into the above upper

bound, we can immediately have our conclusion.
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5.5.3 Performance Analysis: ǫ > 0

The performance analysis in the previous section relies on an important as-

sumption: there is no packet loss in the broadcasting phase when the latest local

observations are sent out to all other links from the winner link. To do this, these

messages have to be sent via a reliable channel, e.g. a separate signaling chan-

nel. This assumption might be a problem for an ad-hoc network due to the lack

of resources and infrastructure. In this case, these local observations have to be

broadcasted via the shared data channel, and we have to consider the effect from

possible packet loss during the broadcasting phase.

Following the system model used in previous sections, we assume that each

link is experiencing independent packet losses. We assume that the average packet

loss is ǫ during the broadcasting phase where ǫ > 0. It should be noted that the

average packet loss rate is different from the winner link’s channel quality. It can

be explained as follows: during the broadcasting phase, the sender is the winner

link which has better channel quality due to the channel-aware scheduling; on the

other hand, the receivers of the broadcasted messages are the rest of the links in the

network, who are experiencing independent packet loss.

In this section, we mainly address this problem by explicitly considering the

packet loss rate ǫ during the broadcasting phase. Another related question is that

each link may hold different initial observations in the beginning of the protocol. It

also affects the performance of the protocol. We don’t explicitly discuss this problem

in this chapter. However, this issue can be considered as a special case, where the
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discrepancy in initial observations can be considered as from independent packet

loss during the broadcasting phase.

To characterize the performance of the protocol, we start from several impor-

tant observations. First of all, if link j wins the wireless medium in this block, any

link k 6= j can have its local observations on the j-th arm updated correctly with a

probability ǫ. Hence all local observations on the j-th arm within the network can

correctly be updated with a probability (1− ǫ)M−1.

Next, we show that any link j has its fair chance to win the medium for

infinitely many times. We break the whole proof for this statement into two steps,

i.e. Lemma 5.5.1 and Lemma 5.5.2.

Lemma 5.5.1. For the protocol described in Figure 5.7, there is at least one link j

that is able to win the wireless medium for infinitely many times, i.e. U 6= ∅.

Proof. We prove this lemma by contradiction. Suppose the lemma is not true, then

any link in the network can only successfully capture the wireless medium for a

finite number of times. Hence there exists some integer n0 such that for n ≥ n0, the

wireless medium will never be captured by any link anymore.

On the other hand, notice that at the beginning of each block, the wireless

medium is successfully captured if and only if there is exactly one link who is probing

the wireless medium during that mini-slot; otherwise all links will repeat the same

procedure in the next mini-slot. This part of the protocol will repeat until the

wireless medium is finally captured. On the other hand, since the duration of

one mini-slot τ is much shorter compared to the total block length T , each block
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will be eventually captured by some link in one block. This contradicts with our

assumption. Hence the statement in the Lemma is true. This completes the proof.

Lemma 5.5.2. For the protocol described in Figure 5.7, any link j where j =

1, . . . ,M will win the wireless medium for an infinite number of times, i.e. V = ∅.

Proof. We prove Lemma 5.5.2 by contradiction. Suppose the statement in the lemma

is not true, hence we have V 6= ∅. On the other hand, we know U 6= ∅ from Lemma

5.5.1. We can always find a large enough constant n1 such that for n ≥ n1, no links

in V will win the wireless medium again.

We consider any link j ∈ V and any link k ∈ U . We take a look at the local

observations at link j after time n ≥ n1. Ŷ
j
j will be a constant while only type-F

update can be applied to the local observation N̂ j
j . On the other hand, Ŷ j

k and N̂ j
k

can be updated to Ŷ k
k and N̂k

k respectively when link k wins the medium and there

is no packet loss during the broadcasting phase. Now consider a long enough time

duration n2 starting from n = n1. Since V 6= ∅, there will be collisions when the

j-th arm is pulled in link j’s local MAB game. Hence on average more than one

probing will happen in one block before the medium is captured by some link. We

take a look at the local MAB game within link j. On average within one block the

MAB game will be played multiple times before the medium is captured by some

link. The difference is how N̂ j
k is updated over I blocks. If i ∈ V, whenever the i-th

arm is pulled in j’s local MAB game, N̂ j
i is increased by 1. However if k ∈ U , N̂ j

k

is only increased by 1 when link k wins the medium. And this type of update can
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happen I times in total for all k ∈ U over the I blocks. As a result, we can see on

average N̂ j
j increases faster than N̂ j

k .

On the other hand, we notice that Ŷ j
j is a constant. Hence if N̂ j

j is larger than

other arms N̂ j
k , the following inequality

Ŷ j
j +

√

2 lnn

N̂ j
j

> Ŷ j
k +

√

2 lnn

N̂ j
k

cannot hold for many times. This leads to a contradiction. Hence the assumption

V 6= ∅ cannot be true.

We have showed that each link j has its fair chance to win the wireless medium

and update its local observations properly for infinitely many times. Based on this,

we show that the local MAB games at all links are synchronized in many cases

except a few exceptions.

Lemma 5.5.3. The local MAB games at all links are synchronized after sufficient

number of blocks in many cases except a few exceptions.

Proof. To prove this lemma, we need to show that for a given k = 1, . . . ,M , the

local observations on this arm at different links will converge when the number of

blocks n is large enough. We take a look at two different links i and j where i 6= j.

Since the local MAB game is played at i and j independently, the following two

quantities

Ŷ i
k +

√

2 lnn

N̂ i
k

Ŷ j
k +

√

2 lnn

N̂ j
k
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will be checked for decision-making respectively. To show this quantity converges

with respect to the index of the links, we take a look at the difference of the above

quantity at two different links i and j as

(

Ŷ i
k +

√

2 lnn

N̂ i
k

)

−
(

Ŷ j
k +

√

2 lnn

N̂ j
k

)

. (5.18)

The above equation can be rewritten as

(

Ŷ i
k − Ŷ j

k

)

+

(√

2 lnn

N̂ i
k

−
√

2 lnn

N̂ j
k

)

=
(

Ŷ i
k − Ŷ j

k

)

+

√
2 lnn

√

N̂ i
k +

√

N̂ j
k

· 1
√

N̂ i
k ·
√

N̂ j
k

·
(

N̂ j
k − N̂ i

k

)

. (5.19)

We compare the first and second item in the above summation, focusing on how fast

they decay with respect to n. We can roughly approximate them using the following

approach.

First of all, we have showed that each link j has its fair chance to win the

wireless medium and update its local observations for infinitely many times. Hence

by the n-th block, the average number of times that each arm being pulled should

be roughly proportional to n. As a result, we can approximate them as

N̂ i
k ≈ α · n

M
,

N̂ j
k ≈ β · n

M
.

Furthermore, for the same arm k, whenever the k-th link wins the wireless

medium, both N̂ j
k and N̂ i

k have a chance to update itself to the latest value with a
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probability 1− ǫ. Hence both of them can be bounded as

∥

∥

∥N̂
j
k − N̂k

k

∥

∥

∥ ≤ C1,

∥

∥

∥N̂ i
k − N̂k

k

∥

∥

∥ ≤ C1.

Substituting them into the second item of (5.19), we can approximate the

quantity as

√
2 lnn

(α+ β)
√

n
M

· 1√
αβ · n

M

·
(

N̂ j
k − N̂ i

k

)

≤
√

2 lnn

(α+ β)
√

n
M

· 1√
αβ · n

M

· 2C1

=

√
2

(α+ β)
√
αβ
·M
√
M ·

√

lnn

n
· 1
n
· C1.

(5.20)

On the other hand, since both Ŷ j
k and Ŷ i

k are the average of the local obser-

vations on the k-th arm so far, we can approximate their difference as

Ŷ j
k − Ŷ i

k ≈
1

n
· C2, (5.21)

where C2 is a constant.

Hence we can see that when n is large, the second item in (5.19) decays much

faster than the first item. Hence (5.19) is dominated by the first item. On the other

hand, for a given k, both Ŷ j
k and Ŷ i

k are the average of the original observations on

the k-th arm, and the number of observations available wouldn’t differ too much,

i.e.
∥

∥

∥
N̂ i

k − N̂ j
k

∥

∥

∥
≤ 2C1. Hence Ŷ j

k and Ŷ i
k will converge to the true mean of Ŷ k

k . As

a result, the local MAB game at all links are synchronized in many cases except a

few exceptions.

Based on all the results above, we can put them together to get an upper

bound of the regret of the distributed MAB protocol.
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Theorem 5.5.2. If there is an average packet loss rate ǫ during the broadcasting

phase of the protocol shown in Figure 5.7, the local observations at different links

in the network are synchronized in many cases with few exceptions after a sufficient

number of blocks n. The expected regret of the protocol is at most

A+

[

8

T − (1 + 2Mǫ)τ − τ0
∑

k: µk<µ∗

ln(n− n0)

δk

]

+

(

1 +
π2

3

)

[T − (1 + 2Mǫ)τ − τ0]
(

∑

k: µk<µ∗

δk

)

,

(5.22)

where µ∗ = maxk µk and δk = µ∗ − µk.

Proof. In Lemma 5.5.3, we have showed that after the protocol has been running

for a sufficient number of blocks n, the local observations at different links are

synchronized in many cases with few exceptions. Hence there exists some integer

n0 > 0 such that for n ≥ n0, the local observations at different links will converge

to {Ŷk, N̂k}k for any arm k = 1, . . . ,M .

Now starting from this point n = n0, we can view the protocol as a centralized

MAB game, where the MAB is based on the converged observations {Ŷk, N̂k}k. It

should be noted that {Ŷk, N̂k}k are the converged versions of the local observations,

which do not physically exist within any link j.

To estimate the regret of the protocol for n > n0, we can split it into two

parts. The first part comes from the time interval between n = 0 and n = n0. Since

n0 is a fixed finite number, we can assume that at time n0 the regret of the system

is R(n0) = A. The second part comes from the time interval after n0. If we consider

time n = n0 as the new starting point, based on Theorem 1 in [76] the regret of the
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protocol in this part can be upper bouded by



8
∑

k: θ̃k<θ̃∗

(

ln ñ

∆̃k

)



+ (1 +
π2

3
)





∑

k: θ̃k<θ̃∗

∆̃k





=



8
∑

k: θ̃k<θ̃∗

(

ln(n− n0)

∆̃k

)



+ (1 +
π2

3
)





∑

k: θ̃k<θ̃∗

∆̃k



 . (5.23)

The rest of our job is to characterize those constants in the above bound, i.e. θ̃k and

∆̃k. It should be noted that these constants are different from those in Theorem

5.5.1, since the local observations at different links will not always be the same as

the converged observations {Ŷk, N̂k}k. This type of random unsynchronization will

lead to a higher regret compared to the ideal case in Theorem 5.5.1.

To estimate these constants, we consider the following worst case scenario.

Assume that at some point, there are u links whose local observations have lost

synchronization compared to the converged versions. Notice that if u = 0, i.e. the

local observations at all links are synchronized, then it takes only one mini-slot for

channel probing. Now suppose u ≥ 1, we are interested in knowing the number of

mini-slots it takes before the wireless medium is successfully captured by some link.

First of all, the rest of the M − u links will always yield the same decisions during

their local MAB games. Suppose in the current mini-slot the k-th arm is pulled in

these M−u links. The k-th link will capture the wireless medium successfully unless

one of the following happens: 1) some other link k1 also probes the wireless medium

according to its own MAB game based on its unsynchronized local observations,

hence a collision in the medium; 2) link k is not among these u links, hence a

vacancy in the medium. It should be noted that no Ŷ j
k will be updated in this block
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before the wireless medium is actually captured by some link. Hence this type of

behaviors are deterministic within this block. Now consider the worst case scenario:

starting from the first mini-slot, every time either a collision or a vacancy occurs on

the wireless medium. It will last for at most 2u+ 1 mini-slots.

On the other hand, in Lemma 5.5.3 we have showed that the local observations

at all links will converge after the protocol has been running for a long enough time.

From this point any link j will lose its synchronization if and only if there is a

packet loss during the last broadcasting phase. All links in the network have an

independent packet loss rate ǫ except the current winner of the wireless medium.

Hence the probability that any link will have its local observations unsynchronized

is also ǫ, and this probability is independent from link to link. As a result, the

probability that u links out of M links have lost their synchronizations is

P (u) =

(

M

u

)

ǫu(1− ǫ)M−u. (5.24)

Hence, if we iterate u from u = 0 to u = M , we can add them together and

get an upper bound of the elapsed number of time slots for channel probing as

Ks =
M
∑

u=0

(2u+ 1) ·
(

M

u

)

ǫu(1− ǫ)M−u (5.25)

= 1 + 2Mǫ (5.26)

Now we characterize those constants θ̃k and ∆̃k. Suppose the k-th link is the

winner of the wireless medium in the current block. Due to the randomness in the

MAB game and corresponding channel probing, it may take any number of probings

before the wireless medium is won by the k-th link in this block. Suppose it takes
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K̃k probings before the wireless medium is won by the k-th link, and the available

channel rate for the k-th link in the current block is R̃k. The reward from sending

data in this block is R̃k(T − τK̃k − τ0). To characterize an upper bound on the

regret, we need to calculate the average reward θ̃k from pulling the k-th arm. By

taking its mathematical expectation, we have

θ̃k = E
[

R̃k · (T − τK̃k − τ0)
]

= E
[

R̃k

]

·
(

T − τE[K̃k]− τ0
)

, (5.27)

where we have used the independence of the elapsed probing durations K̃k and the

available channel rate R̃k. Note that R̃k = µk since µk is the average channel rate for

the k-th link. On the other hand, E[K̃k] is the average number of probings elapsed

before the k-th link wins the channel. For the upper bound of the regret, we can

use the worst case scenario Ks instead. Put them together, we have

θ̃k = µk(T − τKs − τ0)

= µk [T − (1 + 2Mǫ)τ − τ0] . (5.28)

Substituting the above equation into (5.23), we can immediately have our conclusion.

5.6 Numerical Results

In this section, we show numerical results for our proposed distributed MAB

protocols. We use theoretical bound (5.6) and numerical results of the semi-distributed

MAB protocol as our performance baseline. This is because we have used ideal as-
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sumptions in the semi-distributed MAB protocol.

We consider an ad-hoc network with M links. The mean value of the channel

rate for link j is

δj = 0.3 +
0.4

M − 1
· (j − 1) bits/s/Hz,

where j = 1, . . . ,M . Since the UCB1 policy [76] works for arbitrary reward distri-

bution with a finite support, without loss of generality we assume that the channel

rate Rj has a Beta distribution Be(δj, 1 − δj), which yields exactly E[Rj] = δj.

Throughout all simulations in this section, we use T = 1 and τ = 0.05. We compare

performance of the distributed MAB protocols with varying M and p. The default

set of parameters used in our simulations is M = 20 and p = 1/M .

We first take a look at the statistics of the local observations that are held at

link j = 1, . . . ,M .

First of all, we need to show that in Protocol B the local observations Ŷ j
k (n)

converge with respect to j. This is because unlike Protocol A, each link j in Protocol

B has to keep its own local observations separately. In this paper, we compare the

relative standard deviations (RSD) in Figure 5.8(a) and Figure 5.8(b). The RSD is

defined as the ratio of the standard deviation to the mean of Ŷ j
k (n) with respect to j.

In Figure 5.8(a) we show the RSD of Ŷ j
k (n) for the 8-th arm. We can see the RSDs are

decreasing over time both with homogeneous and heterogeneous initializations. This

shows that the mean reward observed for a given arm will quickly converge across

different links. On the other hand, we can see with homogeneous initializations the

RSD decreases much faster compared to that with heterogeneous initializations. For
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Figure 5.8: Statistics of the local observations held independently among all links
j = 1, . . . ,M , where M = 20 and p = 1/M . (a) RSD of Ŷ j

k (n) from Protocol

B for the 8-th arm; (b) RSD of Ŷ j
k (n) from Protocol B at time n = 1000; (c)

Ŷ A
k (n) from Protocol A at time n = 1000; (d) Average of Ŷ j

k (n) from Protocol

B with homogeneous initialization; (e) Average of Ŷ j
k (n) from Protocol B with

heterogeneous initialization; (f) Average of Ŷ j
k (n) from 100 independent simulation

runs of Protocol B with homogeneous initialization.
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example, with homogeneous initialization, the RSD converges as early as n = 100,

while with heterogeneous initialization the RSD starts to converge at n = 500. In

Figure 5.8(b) we show the RSD of Ŷ j
k (n) at time n = 1000. We can see the RSDs stay

below 20% with both initializations. In fact, with homogeneous initialization, the

RSD of Ŷ j
k (n) stays below 2% for most arms, except for three arms which goes up to

13%. With heterogeneous initialization, the RSD stays below 12% for most arms,

except for the 13-th arm. Again we notice that with homogeneous initialization,

Protocol B yields a smaller RSD compared to that with heterogeneous initialization.

We then compare average of the local observations Ŷ j
k (n) to that from the

semi-distributed MAB protocol as well as the true parameters. In Figure 5.8(c) we

show Ŷ A
k (n) at time n = 1000, since this is the local observation kept at A. We

can see the rewards Ŷk(n) from the semi-distributed MAB protocol at n = 1000

show a correct trend and they are very close to the true parameters used in our

simulation. The observations Ŷ A
k (n) of Protocol A at time n = 1000 still show a

quite consistent trend except some deviations that are slightly greater than that of

the semi-distributed protocol. In Figure 5.8(d) - Figure 5.8(f) we show average of the

local observations Ŷ j
k (n) of Protocol B with respect to all links j at time n = 1000.4

From Figure 5.8(d), we can see that even with homogeneous initialization the average

of the local observations Ŷ j
k (n) show quite a large jitter at some points, e.g. the 10-th

arm. This suggests that average of the local observations from only one simulation

run might not reflect the true parameters correctly even after they converge. In

4One review pointed out that the convergence in Figure 5.8(d) is not convicing. I will need to

check numerical results under more different parameter settings.
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contrast, Figure 5.8(f) shows the results from averaging 100 independent simulation

runs of Protocol B. We can see that the average observations are very close to that of

the semi-distributed MAB protocol. On the other hand, Figure 5.8(e) shows average

of Ŷ j
k (n) from Protocol B with heterogeneous initialization at time n = 1000. We

can see the curves show a much smoother trend compared to Figure 5.8(d), even

though the average are not even close to the true parameters. This is because with

heterogeneous initialization, each link j holds its own observations to start with,

which brings robustness to Protocol B.

We then take a look at the regrets of the semi-distributed and our proposed

distributed MAB protocols.

In Figure 5.9(a) we compare theoretical bound (5.6) and simulation result for

the regret of the semi-distributed MAB protocol. We can see the theoretical bound

does show a lnn trend. However the theoretical bound is quite loose compared to

our simulation results.

In Figure 5.9(b) - Figure 5.9(f), we compare regret of the semi-distributed

MAB protocol to that of our proposed distributed MAB protocols. We first show

regret of Protocol A in Figure 5.9(b). We can see Protocol A yields a regret larger

than but with similar trend compared to that of the semi-distributed MAB protocol.

For example, at time n = 1000, the regret of Protocol A is almost 50% higher

than that of the semi-distributed MAB protocol. Protocol B with homogeneous

initialization yields a regret close to that of Protocol A in Figure 5.9(c). In contrast,

with heterogeneous initialization Protocol B yields a much higher regret in Figure

5.9(d). For example, at time n = 1000, the regret of Protocol B is 160% higher
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Figure 5.9: Regrets of the semi-distributed MAB protocol vs. that of the distributed
MAB protocols, where M = 20 and p = 1/M unless explicitly indicated in the sub-
figure. (a) Theoretical bound vs. simulation results for regret of the semi-distributed
MAB protocol; (b) Regret of Protocol A; (c) Regret of Protocol B with homogeneous
initialization; (d) Regret of Protocol B with heterogeneous initialization; (e) Regret
of Protocol B with homogeneous initialization where p = 0.1; (f) Regret of Protocol
B with homogeneous initialization where M = 10.
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than that of the semi-distributed MAB protocol. Notice all the above simulations

use M = 20 and p = 1/M so far. In Figure 5.9(e) and Figure 5.9(f), we show

different parameters affected regrets of Protocol B with homogeneous initialization.

Figure 5.9(e) shows regret of Protocol B with a different probing probability p =

0.1. We can see both the semi-distributed protocol and Protocol B yield a much

smaller regret. Furthermore, the gap between these two is reduced to around 20%.

This shows that the distributed MAB protocol is able to reduce contention in the

wireless medium greatly by trying to let selected links access the medium with higher

probability. Figure 5.9(f) shows regret of Protocol B with a different number of links

M = 10. We can see with a smaller M , both regrets are reduced. This is due to

reduced contention in the wireless medium.

In all these simulations, we can see that Protocol A yields a better performance

compared to Protocol B. This is because the local observations Ŷ A
k (n) is reliable.

Now we assume that at some time nI , when link j wins the wireless medium but finds

out that the observations at A or B is lost. Hence link j copies its own observations

to A or B and then continues the procedure. The regrets are shown in Figure 5.10

for nI = 50. We can see that with Ŷ A
k (n) lost at nI = 50, Protocol A yields a much

larger regret in Figure 5.10(a). On the other hand, Protocol B still yields almost

the same regrets in Figure 5.10(b) and Figure 5.10(c).
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Figure 5.10: Regrets of the semi-distributed MAB protocol vs. that of the dis-
tributed MAB protocols, where there is a one-time data loss within A or B at time
nI = 50. (a) Regret of Protocol A; (b) Regret of Protocol B with homogeneous
initialization; (c) Regret of Protocol B with heterogeneous initialization.
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Chapter 6

Conclusions

In Chapter 3, we studied a distributed opportunistic scheduling problem for

wireless ad-hoc networks under the popular block fading model. In this problem, we

considered the inevitable dependencies between winners’ channel rates at different

time instances during the channel probing phase and their impact on the transmis-

sion scheduling. We formulated this problem using optimal stopping theory, but

at carefully chosen time instances when effective decisions are made by merging

repeated decisions. We studied this problem for both the CAT and CDT models.

We first analyzed the problem assuming it has infinite stages, and then developed

a measure to check how well the problem can be treated as an infinite horizon

problem. We estimated the achievable network throughput if we ignore the finite

horizon constraint and use the stopping rule based on the infinite horizon analysis

nevertheless. If the finite horizon constraint cannot be ignored, we characterized its

performance using backward induction. We presented one recursive approach to re-

duce its computational overhead and derived an upper bound for its computational

complexity. We also presented an improved protocol to reduce the probing costs

which requires no additional design cost. We showed numerical results for networks

with various sizes under different settings of the parameters.

In Chapter 4, we extended this problem to ad-hoc networks where the wire-
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less spectrum can be divided into multiple independent sub-channels for better ef-

ficiency. We showed that a naive protocol where the opportunistic scheduling is

designed independently within each sub-channel can only slightly improve the sys-

tem throughput. We then came up with the idea of opportunistic scheduling across

multiple sub-channels. We developed a multi-channel protocol for ad-hoc networks

and analyzed its performance. We characterized the optimal decision rule and the

system throughput. Through numerical results we showed that by joint optimiza-

tion of the scheduling schemes across multiple sub-channels, the proposed protocol

improves the network throughput considerably.

In Chapter 5, we revisited the channel-aware scheduling problem under the

assumption that neither the instant CSI nor the channel statistics are known. We

formulated the problem using multi-armed bandit (MAB). We first presented a semi-

distributed MAB protocol which serves as the baseline for performance comparison.

We then proposed two forms of distributed MAB protocols, where each link keeps a

local copy of the observations and plays the MAB game independently. In Protocol

I the MAB game is only played once within each block, while in Protocol II it can be

played multiple times. We showed that the proposed distributed protocols can be

considered as a generalized MAB procedure and each link is able to update its local

copy of the observations for infinitely many times. We characterized the evolution

of the local observations and the regrets of the system. For Protocol I, we showed by

simulation results that the local observations that are held independently at each

link converge to the true parameters and the regret is comparable to that of the

semi-distributed protocol. For Protocol II, we proved the convergence of the local
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observations and show an upper bound of the regret.
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Appendix A

Optimal Stopping Theory

In this chapter, we briefly introduce some results used in this work from opti-

mal stopping theory. We follow notations used in [55]. A detailed introduction can

be found in [55–57,80].

The theory of optimal stopping is concerned with the problem of choosing

a time to take a given action based on sequentially observed random variables in

order to maximize an expected payoff. An optimal stopping rule is a strategy for

deciding when to take a given action based on the past events in order to maximize

the average return, where the return is the net gain, i.e. the difference between the

reward and the cost. Generally speaking, a stopping rule problem is defined by two

objects:

(a) a sequence of random variables X1, X2, . . . whose joint distribution is assumed

known, and

(b) a sequence of real-valued reward functions,

y0, y1(x1), . . . , y∞(x1, x2, . . .). (A.1)

Suppose the process starts at time 0. If we do not take any observations, we receive

a constant amount y0. At time n, after observing X1 = x1, X2 = x2, . . . , Xn = xn,

we may stop and receive a known reward yn(x1, . . . , xn), or we may continue and
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observe Xn+1. If we never stop, we receive y∞(x1, x2, . . .). Hence the problem is to

choose a time n∗ to stop to maximize the expected reward. We may use randomized

decisions, i.e. given observations up to stage n as X1 = x1, . . . , Xn = xn, we choose a

probability of stopping φn(x1, . . . , xn). Accordingly, we denote the probability mass

function (PMF) of N given X = x = (x1, x2, . . .) by ψ = (ψ0, ψ1, . . . , ψ∞), i.e.

ψn(x1, . . . , xn) = P (N = n|X = x), (A.2)

ψ∞(x1, x2, . . .) = P (N =∞|X = x). (A.3)

The problem is then to choose a stopping rule φ to maximize the expected return

defined as

V (φ) = EyN
(X1, . . . , XN)

=
∞
∑

j=0

ψj(X1, . . . , Xj) · yj(X1, . . . , Xj) (A.4)

In some applications, the reward sequence is described as a sequence of random

variables Y0, Y1, . . . , Y∞ whose joint distribution with observations X1, X2, . . . , X∞

is known. The actual value of Yn may not be known precisely at time n when the

decision to stop or continue must be made. Allowing returns to be random does not

represent a gain in general because since the decision to stop at time n may depend

on X1, . . . , Xn, we may replace the sequence of random rewards Yn by the sequence

of reward functions yn(x1, . . . , xn) for n = 0, 1, . . . ,∞ as

yn(x1, . . . , xn) = E{Yn|X1 = x1, . . . , Xn = xn}. (A.5)

The increasing sequence of σ-field approach is a simpler, more widely used

notation to model optimal stopping problems. Let (Ω,B, P ) denote the probability

145



space on which our random variables are defined, and let Fn denote the sub-σ-

field of B generated by X1, . . . , Xn, i.e. the smallest σ-field containing the sets

{X1 ≤ x1, . . . , Xn ≤ xn} for all x1, . . . , xn. Hence we have F0 = {Ω, ∅} and F∞

which is equivalent to the σ-field generated by ∪Fn, where

F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ . . . ⊂ F∞ ⊂ B (A.6)

is an increasing sequence of σ-fields. For an arbitrary random variable Z, the con-

ditional expectation of Z given X1, . . . , Xn may be denoted by

E{Z|Fn} = E{Z|X1, . . . , Xn}.

The stopping rule problem may be stated in terms of the sequence of σ-fields (A.6)

instead of the random variables X1, X2, . . . as being defined by the following

(a’) the increasing sequence of σ-fields (A.6), and

(b’) a sequence of reward random variables Y0, Y1, . . . , Y∞.

Using σ-fields, a stopping rule is defined to be a random variable N taking values in

{0, 1, . . . ,∞} such that the event {N = n} is in Fn. So the decision to stop at time

n depends only on X1, . . . , Xn and is independent of future observations. Hence the

problem is to choose a stopping rule N to maximize the expected return E{YN}.

This is a more general approach since there exist σ-fields that are not generated by

any sequence of random variables.1

There are two different types of optimal stopping problems.

1Some generality is lost here since the stopping rules defined by the σ-fields are non-randomized.

However, we may restrict our attention to non-randomized stopping rules. To see this, we attach
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A.1 Finite Horizon Problem

If there is a known upper bound on the number of stages at which one may

stop, the stopping rule problem is a finite horizon problem. If stopping is required

after observing X1, . . . , XT , we say the problem has horizon T , which can be solved

by the method of backward induction. Define V
(T )
T (x1, . . . , xT ) = yT (x1, . . . , xT ) and

then inductively for j = T − 1, backward to j = 0,

V
(T )
j (x1, . . . , xj) = max

{

yj(x1, . . . , xj),

E
[

V
(T )
j+1(x1, . . . , xj, Xj+1)|X1 = x1, . . . , Xj = xj

]

}

,

(A.7)

where V
(T )
j (x1, . . . , xj) represents the maximum return one can obtain starting from

stage j having observed X1 = x1, . . . , Xj = xj. The optimal return is therefore the

maximum of these two quantities, and it is optimal to stop at j if V
(T )
j (x1, . . . , xj) =

yj(x1, . . . , xj), and to continue otherwise. The optimal value of the stopping rule

problem is then V
(T )
0 .

A.2 Infinite Horizon Problem

If there is no bound on the number of stages, i.e. we consider a stopping

rule problem with observations X1, X2, . . . and rewards Y0, Y1, . . . , Y∞ where Yn =

an independent uniform (0, 1) random variable Uj to each Xj . For a given stopping rule φ we

can form an equivalent non-randomized stopping rule by stopping at time j when we reach it if

Uj < φj(X1, . . . ,Xj).
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yn(X1, . . . , Xn). Under the following two assumptions

A1. E{sup
n
Yn} <∞, (A.8)

A2. lim sup
n→∞

Yn ≤ Y∞ a.s., (A.9)

we have the principle of optimality

V ∗
n (x1, . . . , xn) = sup

N≥n
E{YN |X1 = x1, . . . , Xn = xn}, (A.10)

where supN≥n means supremum over the set of all stopping rulesN such that P (N ≥

n) = 1. It is optimal to stop at stage n having observed X1 = x1, . . . , Xn = xn if

and only if yn(x1, . . . , xn) = V ∗
n (x1, . . . , xn).

The optimal return can be computed by the optimality equation

V ∗
n = max{Yn, E(V ∗

n+1|Fn)}, (A.11)

where the optimal return is re-defined using the concept of essential supremum as

V ∗
n = ess sup

N≥n
E{YN |Fn}, (A.12)

so that it can also handle problems with an uncountable collection of stopping rules.

148



Appendix B

Proof of Theorems in Chapter 3

B.1 Proof of Theorem 3.7.2

Similar to the CAT problem, we solve this problem as a maximal rate of return

problem. For a fixed rate λ > 0, we define a new payoff at time n as

Vn(λ) = RnT − λ
(

T + τ
n
∑

i=1

Ki

)

. (B.1)

To show the existence of the optimal rule, we first notice that E{supn Vn} <

∞. On the other hand, we can see that lim supn→∞ Vn → −∞ and Vn → −∞

a.s.. Putting them together leads to lim supn→∞ Vn → V∞ a.s.. Hence an optimal

stopping rule exists and can be given by the optimality equation. Note that we used

the equation Ki = M
M−i+1

K̃i in the proof of Theorem 3.5.1. If we substitute it into

(B.1) and notice the i.i.d. property of K̃i, we can rewrite (B.1) as

Vn(λ) = RnT − λT − λτK̃1

n
∑

i=1

M

M − i+ 1
.

The above equation should be understood in distribution. By taking the average of

M and M − n+ 1, we approximate Vn(λ) as

Vn(λ) ≈ RnT − λT − λτK̃1 ·
Mn

M − n/2 + 0.5
.

Similarly, the payoff at time n+ 1 can be written as

Vn+1(λ) ≈ Rn+1T − λT − λτK̃1 ·
M(n+ 1)

M − (n+ 1)/2 + 0.5
.
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Meanwhile, note that Rn are i.i.d. according to [A4]. Hence in the sense of distri-

bution the difference between Vn(λ) and Vn+1(λ) can be written as

λτK̃1 ·
M

M + 0.5

[

n+ 1

1− (n+1)/2
M+0.5

− n

1− n/2
M+0.5

]

.

The item in the above square bracket has been calculated as (3.22) in the proof of

Theorem 3.5.1. If we substitute it into the optimality equation, we have

V ∗
n (λ) = E

[

max

{

RnT − λT − λτ
n
∑

i=1

Ki, V
∗
n (λ)− M(M + n+ 1)

(M + 0.5)2
· λτK̃1

}]

.

The optimal rate λ∗n that maximizes the rate of return should yield V ∗
n (λ∗n) = 0. If we

substitute it into the optimality equation and notice E[K̃1] = 1/ps,1, we immediately

have (3.45). The uniqueness of λ∗n can be verified easily. The optimal stopping rule

can be written as

N∗ = min

{

n ≥ 1 : RnT − λ∗nT − λ∗nτ
n
∑

i=1

Ki ≥ V ∗
n (λ∗n) = 0

}

,

which immediately leads to (3.44). If we let n = 0 in (3.45), we get (3.43). The

solution of (3.43) is the optimal system throughput λ∗O.

B.2 Proof of Theorem 3.7.4

We use Vn defined in (B.1) in our proof. The existence of the optimal stopping

rule can be verified in the same way as Theorem 3.7.2. To compute the optimal

payoff V ∗
n , we take a look at the payoff after l steps since time n. Note that we

have used the equation Kn = (1 − p)n−1K̃n in the proof of Theorem 3.6.1. If we

substitute it into (B.1), we have

Vn+l(λ) = −λT − λτ
n
∑

i=1

(1− p)i−1K̃i +

[

Rn+lT − λτ
n+l
∑

i=n+1

(1− p)i−1K̃i

]

.
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If we start from time n+ 1, the payoff after l rounds is

Vn+l+1(λ) = − λT − λτ
n
∑

i=1

(1− p)i−1K̃i − λτ(1− p)nK̃n+1

+

[

Rn+l+1T − λτ
n+l+1
∑

i=n+2

(1− p)i−1K̃i

]

.

The item in the above square bracket is the recursive part for l rounds of observations

since time n+ 1. We can rewrite it as

(1− p)
{

Rn+l+1T − λτ
n+l
∑

i=n+1

(1− p)i−1K̃i+1

}

+ p ·Rn+l+1T.

By [A1], p should be reasonably small; otherwise the average number of probing

links Mp are much larger than 1, leading to increased probing costs. Hence we can

ignore the last term and write the optimality equation as

V ∗
n (λ) = E

[

max

{

RnT − λT − λτ
n
∑

i=1

Ki, (1− p) (V ∗
n (λ)− τKn+1)

}]

.

Again, the optimal payoff λ∗n that maximizes the rate of return must satisfy V ∗
n (λ∗n) =

0. We substitute it into the optimality equation and rewrite it as

E

[

Rn

λ∗n
− τ

T

{

n
∑

i=1

Ki − (1− p)Kn+1

}

− 1

]+

= (1− p) · τ
T
E[Kn+1].

If we further notice that Kn+1 = 1/gn+1K̃n+1 = (1− p)nK̃n+1 and K̃n+1 and K1 are

i.i.d., we can rewrite the above equation as (3.51). The optimal stopping rule N∗

can be derived in the same way as in Theorem 3.7.2. To get the overall optimal

system throughput λ∗P , we let n = 0 in (3.51) and rewrite the equation as (3.49).
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