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Abstract

This paper is concerned with the efficient execution of
multiple query workloads on a cluster of SMPs. We tar-
get applications that access and manipulate large scien-
tific datasets. Queries in these applications involve user-
defined processing operations on data and distributed data
structures to hold intermediate and final results. Our goal
is to implement system components to leverage previously
computed query results and to effectively utilize process-
ing power and aggregated I/O bandwidth on SMP nodes so
that both single queries and multi-query batches can be ef-
ficiently executed.

1 Introduction

The availability of low-cost storage systems, built from
a cluster of PCs with a disk farm, is making it possible for
institutions to create data repositories and make them avail-
able for collaborative use. In a collaborative setting, a data
server may need to answer queries simultaneously submit-
ted by multiple clients. Thus, efficient handling of multiple
query workloads is an important optimization in many ap-
plication domains [2, 9, 13].

The query optimization and scheduling problem has been
extensively investigated in past surveys [7]. Tradition-
ally, multiple query optimization techniques for relational
databases rely on caching common subexpressions [11].
Cache space is limited by nature, and it is very well possi-�This research was supported by the National Science Foundation un-
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ble that the space available will not be enough to store all
the common subexpressions detected. Carefully scheduling
queries also plays an important role, because one could craft
the query execution order in a way to better exploit expres-
sions that have been already cached. Gupta et al. [8] present
an approach that tackles this problem in the context of deci-
sion support queries.

In this work we look at methods for efficient execution of
multiple queries with user-defined functions and data struc-
tures. This class of queries arises in data analysis applica-
tions that make use of large scientific datasets. Data anal-
ysis applications often access a subset of all the data avail-
able in a dataset. The data of interest is then processed to
transform it into a new data product. This data product is
usually generated by computing an aggregation over some
of the dimensions of the dataset, ranging from simple asso-
ciative arithmetic and logical operators to more complicated
user-defined functions such as scientific visualization oper-
ations. Oftentimes, a user-defined data structure is created
to maintain intermediate results during processing. When
data analysis is employed in a collaborative environment,
queries from multiple clients are likely to have overlapping
regions of interest and similar processing requirements (i.e.
the same operations on data). Hence, several optimizations
can be applied to improve system response time. These op-
timizations include reuse of intermediate and final results,
data prefetching and caching, and scheduling to improve
inter-query locality [2, 3].

This paper investigates the use of SMP clusters to im-
prove response times and overall system performance. In
particular, we look at the effective use of aggregate process-
ing power and I/O bandwidth for executing single and mul-
tiple queries efficiently. Unlike previous work on query ex-
ecution in parallel systems [5, 6, 10, 12], our system design
combines parallel execution of queries with data caching
and multi-threaded execution so that multiple queries can
execute concurrently on multiple processors on an SMP



node and also reuse cached results to improve performance
and lower interprocess communication. Moreover, a query
is executed in parallel to exploit processing power and mem-
ory space distributed across the SMP nodes in the system,
as well as the available aggregate I/O bandwidth. We also
investigate different strategies for accumulating the final
query result, as well as strategies to perform the final stitch-
ing of the partial results computed by each of the processors.
Finally, we describe experimental results on a cluster of 2-
processor SMP nodes using an image visualization applica-
tion, exploring multiple system configurations using a fixed
amount of caching memory.

2 Runtime System Architecture

We have deployed the runtime system within a middle-
ware framework we have developed for evaluating multiple,
simultaneous queries on a shared-memory system [2, 3]. In
the current implementation, each SMP node essentially runs
a copy of the middleware with extensions to handle data ex-
change among SMP nodes. We briefly describe the middle-
ware in this section. The extensions we have implemented
for execution on a cluster of SMPs are presented in Sec-
tion 3.

The middleware architecture consists of several service
components, implemented as a C++ class library and a run-
time system, which support multithreaded execution on a
cluster of shared-memory multiprocessor machines. Each
processor hosts a complete instance of the system, with all
the service components available. In the current implemen-
tation, there is conceptually only one copy of each of the
system components in the parallel machine, however, con-
cretely, these components exist in all the nodes but they
work on partitioned data, which is a function of the loca-
tion of the required input data, i.e., an instance handles only
data blobs computed from the input data residing on its local
disks.

Query Server : The query server interacts with clients
for receiving queries and returning query results, and is im-
plemented as a fixed-size thread pool (typically the number
of threads is set to the number of processors available on a
SMP node). A client request contains a query type id and
user-defined parameters to the query object implemented in
the system. The user-defined parameters include a dataset
id for the input dataset, query meta-information1, and an in-
dex id for the index to be used for finding the data items that
are requested by the query.

An application developer can implement one or more
query objects that are responsible for application-specific

1The query meta-information describes which part of the dataset is rel-
evant to satisfy a query, and is domain dependent, e.g., it can be an 3-
dimensional bounding box in a visualization application or a boolean ex-
pression in relational database queries.

subsetting and processing of datasets. When a query object
is integrated into the system, it is assigned a unique query
type id. The implementation of a new query object is done
through C++ class inheritance and the implementation of
virtual methods. A Query base class is provided for this pur-
pose. A query object is associated with (1) an execute
method, (2) a query meta-information object qmi, which
stores query information, and (3) an accumulator object
qbuf, which encapsulates user-defined data structures for
storing intermediate results. The execute method imple-
ments the user-defined processing of data. In the current de-
sign, this method is expected to carry out index lookup oper-
ations, the initialization of intermediate data structures, and
the processing of data retrieved from the dataset. Both the
query meta-data object and the accumulator meta-data ob-
ject are implemented by the application developer by deriv-
ing a subclass from a QueryMI base class provided by the
system.

When a query is received, the query server instantiates
the corresponding query object and spawns a Query Thread
to execute the query. The query thread searches for cached
results that can be reused to either completely or partiallyan-
swer a query. The lookup operation employs a user-defined
overlap operator to test for potential matches. The user-
defined accumulator meta-data object associated with the
query object is compared with the accumulator meta-data
objects of the cached results for the same query type. A user-
defined project method is then called so that the cached
result can be projected, potentiallyperforming a transforma-
tion on the cached data, to generate a portion of the output
for the current query (see Figure 1(a)). Finally, if the current
query is only partially answered by the cached results, sub-
queries are created to compute the results for the portions of
the query that have not been computed from cached results.
The sub-queries are processed just like any other query in
the system, thereby allowing more intermediate results to be
reused.

Both the overlap and projectmethod interfaces are
defined in the QueryMI class, and have to be implemented
by the application developer. These two methods allow for
the identification and implementation of reuse possibilities
by the runtime system for user-defined data structures, when
a new query is being executed.

Data Store Manager : The data store manager (DS)
is responsible for providing dynamic storage space for data
structures generated as intermediate or final results for a
query. The most important feature of the data store is that it
records semantic information about intermediate data struc-
tures. This makes the use of intermediate results possible
to answer queries later submitted to the system. A query
thread interacts with the data store using a DataStore object,
which provides functions similar to the C language function
malloc. When a query wants to allocate space in the data

2



p2p1 p3

Fully Replicated Accumulator (FRA)

p1        p 2         p 3

Sparsely Replicated Accumulator (SRA)

Input Data

Processing

Processing

Global Combine

Global C
ombine

Output Data

(a) (b)

Figure 1. (a) The query execution mechanism. Once a new query qj with meta-information Mj is
submitted, the system tries to find a complete or partial cach ed match that can be used to computeqj. Once it is found (region Ri, in our example), a data transformation is applied with the u ser-defined
project method to compute region Rj. Sub-queries – Sj;1, Sj;2, Sj;3, and Sj;4 – are generated to com-
plete the query processing and produce the answer J . (b) Strategies for allocating the accumulator.
The upper path represents how a query gets answered with the S parsely Replicated Accumulator
(SRA) strategy in which each processor allocates only the re levant part of the accumulator object.
The lower path shows the Fully Replicated Accumulator (FRA) strategy.

store for an intermediate data structure, the size (in bytes) of
the data structure and the corresponding accumulator meta-
data object are passed as parameters to the malloc method
of the data store object. DS allocates the buffer space, inter-
nally records the pointer to the buffer space and the associ-
ated meta-data object containing a semantic description, and
returns the allocated buffer to the caller.

DS also provides a method called lookup. This method
can be used by the query server to check if a query can
be answered entirely or partially using the intermediate re-
sults stored in the data store. The lookup method calls the
overlap method for accumulator meta-data objects in the
data store, and returns a reference to the object that has the
largest overlap with the query. A hash table is used to access
accumulator meta-data objects in DS.

Data Sources : A data source can be any entity used for
storing datasets. In the current implementation, a dataset is
assumed to have been partitioned into fixed-size pages and
stored in a data source. That is, the data source abstraction
presents a page-based storage medium to the runtime sys-
tem, whereas the actual storage can be, for example, a file
stored on a local disk or a remote database accessed over a
wide-area network. When data is retrieved in pages instead
of as individual data items, I/O overheads (e.g., disk seek
time) can be reduced, resulting in higher application level
I/O bandwidth. Using fixed-size pages also allows more
efficient management of available memory space. A base
class, called DataSource, is provided by the runtime sys-
tem so that an application developer can implement support
for multiple physical devices and data storage abstractions.
The base class has virtual methods, with semantics similar

to Unix file system operations (i.e., open, read, write, and
close), that are called by the runtime system. We have im-
plemented two data source subclasses, one for the Unix file
system and a second to overcome the 2GB file size limita-
tion in the Linux ext2 file system.

Page Space Manager : The page space manager (PS)
controls the allocation and management of buffer space
available for input data in terms of fixed-size pages. All in-
teractions with data sources are done through PS. Queries
access PS through a Scan object, which is instantiated with
a data source object and a list of pages (which can be gen-
erated as a result of index lookup operations) to be retrieved
from the data source. The pages retrieved from a data source
are cached in memory. The current implementation uses a
hash table for searching pages in the memory cache. PS also
keeps track of I/O requests received from multiple queries
so that overlapping I/O requests are reordered and merged,
and duplicate requests are eliminated. For example, if the
system receives a query into a dataset that is already being
scanned for another query, the traversal of the dataset for the
second query can be piggybacked onto the first query in or-
der to avoid traversing the same dataset twice.

Index Manager : The index manager provides indexing
support for the datasets. A query thread interacts with the
index manager to access indexing data structures and search
for data that intersect with the query. The integration of new
indexing mechanisms is achieved by derivation from base
classes defined in the core middleware.
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3 Execution on a Cluster of SMPs

We now discuss how queries are executed on a clus-
ter of SMPs, and the extensions we have incorporated into
the shared-memory server for execution in a distributed-
memory environment. The parallel implementation uses
MPI, employed to behave correctly in a multi-threaded en-
vironment2.

Dataset Organization : We assume that each SMP
node in the system has one or more local disks. In such a
system, efficient access to, and processing of data depends
on how datasets are declustered across disks and proces-
sors, since workload distribution and communication costs
depend on where data elements are stored. Therefore, the
fixed-size data pages of a dataset are distributed across the
disks in the system. If data subsets are defined by range
queries, data pages that are close to each other in the under-
lying attribute space should be assigned to different disks.

Query Execution : Queries execute as threads, as in
the original runtime system. This configuration allows mul-
tiple queries to execute concurrently on a SMP node. We
consider several approaches for evaluating multiple queries
when a cluster of SMP nodes is employed. One possible ap-
proach is to execute each query sequentially on a separate
node in the system. The advantage of this approach is that
if there are n nodes with k processors, n� k queries can be
executed in the system simultaneously. However, this ap-
proach is likely to incur high interprocessor communication
volume. Since datasets are declustered across the nodes in
the system, if a query is executed on a single processor other
processors in the system must retrieve data pages required
by the query and forward them to that processor. Moreover,
if fewer queries than the number of processors available are
submitted to the system, some of the processors will be idle
causing under-utilizationof the aggregate processing power.
In order to alleviate these problems, each query is executed
in parallel.

We have implemented two strategies based on the repli-
cated accumulator scheme developed in [10]. In the Fully
Replicated Accumulator (FRA) scheme, a query is assigned
to all the SMP nodes in the system for evaluation. The entire
accumulator structure associated with the query is allocated
on all the nodes. Each SMP node is responsible for retriev-
ing and carrying out the aggregation operations on its local
input data. In the Sparsely Replicated Accumulator (SRA)
scheme, a query is also assigned to all SMP nodes in the
system for evaluation. However, for this scheme each SMP
node only allocates memory for the portions of the accumu-
lator for which it has local input data and/or cached results.
This scheme can effectively result in a partitioningof the ac-
cumulator data structure across the nodes. Both schemes are

2We have used the MPICH implementation of MPI, which is not thread-
safe.

shown schematically in Figure 1(b).
Other strategies are also possible. Our earlier work [6,

10] and the work of Shatdal and Naughton [12] have shown
that other strategies, such as distributed accumulator, may
outperform the replicated accumulator strategies, depending
on machine configuration (e.g., number of nodes) and appli-
cation characteristics. The previous work evaluated various
strategies, but only when one query was executed in the sys-
tem at a time and no results were cached. We plan to im-
plement additional query strategies and evaluate them in the
near future on multiple query workloads.

When a new query arrives in the system, the query is
broadcast to all the nodes. We have implemented a query
launcher module as an extension to the query server (Sec-
tion 2) for this purpose. The launcher module is executed by
one thread on one SMP node. That thread polls for queries,
and upon receiving one, broadcasts it to all the nodes. The
query is executed in four main steps:
(1) Initialization. Accumulator elements for the query are
allocated and initialized on each SMP node.
(2) Local Processing. Local input data that intersects the
query window is retrieved from disk and aggregated into the
accumulator elements allocated in step 1.
(3) Global Combine. Results computed in each node in
step 2 are combined across all nodes to calculate the final
intermediate results and final output.
(4) Output. Output is sent back to the client.

The query evaluation structure of the replicated accumu-
lator schemes is similar to the execution of a query on a
shared-memory system using the original middleware [2].
In the initialization phase, each SMP node allocates and ini-
tializes the accumulator structure for a given query. The data
store is searched to find the cached results that can be reused
to answer the query. The accumulator is divided into two
types of regions; one that requires input data, and the other
that uses intermediate results from previous queries. Only
the local input data that intersects the first type of region is
read from the disk(s) attached to the SMP node. At the end
of step 2, each node has computed intermediate results using
its local cached results or input data. As a result, the accu-
mulator on each node contains partial intermediate results,
and a global combine step is necessary to compute final in-
termediate results, and eventually the output.

The global combine step can be executed in different
ways using the FRA and SRA strategies, and the strategy
can be selected by the application developer based on ap-
plication characteristics, as well as the cluster network con-
figuration. The first strategy, Global Combine at Server
(GCS), performs the global combine at the server, as seen
in Figure 2(a), and therefore leverages the computational re-
sources and network bandwidth available within the SMP
cluster. In this strategy, once a query is received a master
node is assigned to that query that is responsible for collect-
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Figure 2. (a) The Global Combine strategies. The upper diagr am shows the Global Combine at Client
(GCC) strategy and the lower one shows Global Combine at Serv er (GCS). When GCS is used, a
master node (shown in solid black) is needed for each query. ( b) The Virtual Microscope zooming
operators - (i) subsampling and (ii) pixel averaging.

ing the query results from other nodes and returning the out-
put to the client. In the current implementation, nodes are as-
signed as master nodes in round-robin order. For the Global
Combine at Client (GCC) strategy, each processor ships its
results to the client, as seen in Figure 2(a), which performs
the global combine of partial results. This strategy is pos-
sible because both the client and server have access to the
query object over the entire lifetime of a query (the client
instantiates the query object and hands it off to the query
server). We will see that GCC is potentially beneficial for
queries in which SRA is used and the combine operation is
inexpensive. This strategy off-loads some of the computa-
tion from the server to the client so that the server can pro-
cess other queries.

We have added two methods to the Query base class in
the original system to implement the global combine phase
for the GCS scheme. The send method takes a pointer to
the local accumulator structure, query meta-data and accu-
mulator meta-data, and returns a list of nodes, and for each
node a pointer to a buffer. On each SMP node, the buffer
pointer for a remote node points to the portion of the lo-
cal accumulator that will be sent to the corresponding node.
The combine method takes a pointer to the local accumu-
lator buffer and a pointer to the buffer received from a re-
mote node. The combine method is called by the runtime
system when a node receives a message, to merge the lo-
cal accumulator values with the received accumulator val-
ues. After a node has received all the remote accumula-
tor elements and combined them with local accumulator el-
ements, the project method is called on the final inter-
mediate results to compute the final output. The combine
method is expected to be implemented by the application de-

veloper for application-specific global combine operations.
The middleware provides a default implementation for the
send method. The current default implementation sends
the local accumulator elements in each node to the master
node assigned for the query. However, this method can also
be customized by the application developer for application
or hardware specific optimizations3.

After a query has been executed, each node has partial
intermediate results for the query. These results are stored
in the local accumulator on each node and maintained in the
local data store for possible reuse by future queries. When a
new query is received, and if it can be answered by cached
results, only the global combine and output phases are exe-
cuted. That is, the cached partial results that can be used to
answer the query are extracted from the data store and used
to produce new intermediate results. This is the characteris-
tic that makes our middleware particularly suitable to handle
multiple query workloads, especially when intra- and inter-
query locality is present.

Note that the class of queries targeted in this work in-
volves aggregation/reduction operations on input data, and
the size of the output is often much smaller than the size
of the input dataset. As a result, the replicated accumula-
tor strategy is likely to incur less communication overhead
than executing multiple queries such that each query exe-
cutes sequentially on an SMP node. In addition, the RA
schemes achieve better load balance and better utilization of
distributed processing power, when there are fewer queries
than the number of processors.

3We are in the process of implementing different versions of the send
method to minimize communication overheads.
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4 Example Application: The Virtual Micro-
scope

The Virtual Microscope (VM) application [1] imple-
ments a realistic digital emulation of a high power light mi-
croscope. VM can be used in a training environment, where
a group of fellows or students may examine and manipulate
the same set of slides. In such a setting, the data server has
to process multiple queries simultaneously.

The input datasets for VM are digitized, 2-dimensional
full microscope slides. Each digitized slide can be up to sev-
eral gigabytes in size, and is stored on disk at the highest
magnification level. In order to achieve high I/O bandwidth
during data retrieval, each slide is regularly partitioned into
data chunks, each of which is a rectangular subregion of the
2D image and corresponds to fixed-size pages in our frame-
work. In this paper, the data chunks are row-wise ordered
and distributed to the disks in the SMP cluster in a round-
robin fashion. Each pixel in a chunk is associated with a co-
ordinate (in x- and y-dimensions) in the entire image. Since
the image is regularly partitioned into rectangular regions, a
simple lookup table consisting of a 2-dimensional array cor-
responding to the bounding boxes of data chunks serves as
an index.

During query processing, the chunks that intersect the
query region, which is a two-dimensional rectangle within
the input image, are retrieved from disk. Each retrieved
chunk is first clipped to the query window. Each clipped
chunk is then processed to compute the output image at the
desired magnification. We have implemented two functions
to process high resolution clipped chunks to produce lower
resolution images, each of which results in a different ver-
sion of VM as can be seen in Figure 2(b). The first func-
tion employs a simple subsampling operation, and the sec-
ond implements an averaging operation over a window. For
a magnification level of N given in a query, the subsam-
pling function returns every N th pixel from the region of
the input image that intersects the query window, in both di-
mensions. The averaging function, on the other hand, com-
putes the value of an output pixel by averaging the values ofN � N pixels in the input image. The averaging function
can be viewed as an image processing algorithm in the sense
that it has to aggregate several input pixels in order to com-
pute an output pixel. Algorithms such as image enhance-
ment and automatic feature extraction would have similar
relative computing and I/O requirements. The accumulator
for these functions is a 2-dimensional pixel array, each en-
try of which stores values for a pixel in the lower resolution
output image.

We have added a query object to the runtime system for
each of the processing functions. The magnification level,
the processing function, and the bounding box of the out-
put image in the entire dataset are stored as meta-data. An

overlap function was implemented to intersect two re-
gions and return an overlap index, which is computed asoverlap index = IAOA � ISOS (1)

In this equation, IA is the area of intersection between the in-
termediate result in the data store and the query region, OA
is the area of the query region, IS is the zooming factor used
for generating the intermediate result, and OS is the zoom-
ing factor specified by the current query. OS should be a
multiple of IS so that the query can use the intermediate re-
sult. Otherwise, the value of the overlap index is 0.

For execution on a cluster of SMPs, we have imple-
mented two different accumulator strategies. The first im-
plementation creates a copy of the full accumulator struc-
ture on each node. In the local processing phase, output pix-
els generated by processing input data chunks, or cached re-
sults, are stored in the full accumulator. In the global com-
bine phase, each node forwards the local full accumulator
to the master node. This implementation will likely incur
high interprocessor communication volume, and memory
on each node is not efficiently utilized. The second imple-
mentation allocates only the accumulator elements in each
node for which there are local cached results or local in-
put elements. Once the local input elements and cached re-
sults that contribute to the accumulator elements have been
determined (by a lookup into the index and searching the
data store), the accumulator is partitioned into rectangular
regions. Each region corresponds to a portion of the accu-
mulator that is entirely covered by a subset of the input el-
ements and/or cached results. If the regions are allocated
separately, during the global combine phase either multiple
messages must be generated to send the regions to the master
node, or the regions should be packed into a compact buffer,
requiring each region to be copied into the buffer. In order
to avoid these overheads, in the initialization phase a buffer
large enough to hold all of the regions is allocated and each
region is assigned a place in this buffer. In order to do this,
we have extended the Data Store manager (see Section 2) to
include a method that allocates a buffer without registering
any meta-data information.

5 Experimental Evaluation

We show experimental results with several configura-
tions, varying the version of VM used, the global com-
bine strategies, the accumulator handling strategies, as well
as employing multi-threaded vs. multi-process execution.
The experiments ran on a cluster of eight dual-processor
550MHz Pentium III nodes, each with 512KB cache, 1GB
of memory and 36GB of disk storage. The nodes are inter-
connected via a Gigabit Ethernet switch.
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Figure 3. Processor scalability for the pixel averaging imp lementation of VM using different global
combine and accumulator handling strategies. GCC is Global Combine at Client and GCS is Global
Combine at the Server. FRA is Fully Replicated Accumulator a nd SRA is Sparsely Replicated Ac-
cumulator. MP denotes Multiple Processes, meaning that 2 processes are executed on each node as
opposed to 2 threads for MT (Multiple Threads). DS fonjo�g specifies whether the partial results
stored at the Data Store manager are used during query execut ion.

For the experiments, we have employed two datasets,
each of which is an image of size 30000�300003-byte pix-
els, requiring a total of 7.5GB storage space. Each dataset
was partitioned into 64KB pages, each representing a square
region in the entire image. These pages were declustered in
round-robin fashion across the nodes, and stored on the local
disk attached to each node. We have emulated 16 concurrent
clients. Each client generated a workload of 16 queries (8
queries for the more computationally expensive pixel aver-
aging version), producing 1024�1024RGB images (3MB)
at various magnification levels. Of the 16 clients, 8 is-
sued queries to the first dataset, and 8 submitted queries to
the second dataset. We have used the driver program de-
scribed in [4] to emulate the behavior of multiple simulta-
neous clients. The implementation of the driver is based
on a workload model that was statistically generated from
traces collected from experienced VM users. We have cho-
sen to use the driver for two reasons. First, extensive real
user traces are very difficult to acquire. Second, such an em-
ulator allows us to create different scenarios and vary the
workload behavior (both the number of clients and the num-
ber of queries) in a controlled way.

The experiments using the subsampling implementation
of VM show the system behavior when the queries are es-

sentially I/O intensive, and the pixel averaging algorithm
shows the system performance, when queries are computa-
tionally more expensive, so more balanced between the time
spent on computation and on I/O. We have determined in [3]
that the CPU time to I/O time ratio is between 0.04 and 0.06
for the subsampling implementation (i.e., for each 100 sec-
onds, between 4 and 6 seconds are spent on computation,
and between 94 and 96 seconds are spent doing I/O). The
averaging implementation is more balanced, with the CPU
and I/O times nearly equal. We show scalability results for
different strategies when the number of processors is var-
ied. Hence, we fixed the total aggregate amount of memory
available for the Page Store Manager (PS) at 64MB and for
the Data Store Manager (DS) at 128MB. That is, for a con-
figuration with P nodes, each node allocates 64P MB for PS,
and 128P MB for DS.

Figures 3 and 4 show experimental results for processor
scalability for the pixel averaging and subsampling imple-
mentations, respectively. We now evaluate the results ac-
cording to several criteria.

Using multiple query optimization support (DS
is on). The major strength of our middleware lies in its abil-
ity to leverage intermediate results previouslycomputed. As
is seen from the figures, performance improves when results
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Figure 4. Processor scalability for the subsampling implem entation of VM with different global com-
bine and accumulator handling strategies.

are cached in the data store. We see in Figure 3(a) that this
improvement can be up to a three-fold decrease in the query
execution time, although the improvements are not that high
in general. Note that even for configurations that do not
show good scalability, using DS usually decreases execution
times.

Multi-process (MP) versus Multi-threaded (MT)
Execution. Each of the nodes in our cluster is has two
processors, hence it is possible to run two processes or only
one process with two threads on a node. In the majority of
cases, MT performs better than MP. As is seen from Fig-
ures 4(b) and (d), multi-threading can greatly improve scal-
ability. Multi-process execution allows a greater degree of
intra-query parallelism, since both processes can work on
the same query simultaneously. Multi-threaded execution,
on the other hand, enables a higher degree of inter-query
parallelism because two queries can be executed simultane-
ously, resulting in better utilization of cached results. In ad-
dition, communication cost per query is lower than for MP.

Fully Replicated Accumulator versus Sparsely
Replicated Accumulator. The Virtual Microscope
queries can be handled well with the Sparsely Replicated
Accumulator strategy, because VM is regular, in the sense
that the input data on each processor always maps to the lo-
cal portion of the accumulator allocated on that processor.
We show experimental results for the Fully Replicated Ac-
cumulator strategy because many other data analysis appli-
cations map local input data or cached results into the en-

tire accumulator. As can be seen by comparing the results
in Figure 4(a) vs. 4 (c), and in Figure 4(b) vs. 4 (d), using
SRA results in almost perfect scalability in 4(a) and reason-
ably scalable behavior when the DS optimizationsare turned
on (Figure 4(b)). For the pixel averaging results shown in
Figure 3, FRA does not have such high overhead because
the computation cost is much higher than for the subsam-
pling implementation. Therefore the extra communication
does not have as big an impact on overall performance.

Global Combine at the Client versus Global
Combine at the Server. The final phase of query execu-
tion is the global combine, where the multiple pieces of the
accumulator are combined into a final result. As we previ-
ously described, our middleware is able to perform the com-
bine at the client or at the server. Each of these strategies has
both benefits and drawbacks. Offloading the Global Com-
bine to the client removes the computational and communi-
cation burden from the server, which in high server work-
load situations may improve overall system performance.
This is especially true when the SRA strategy is used for
query evaluation, because the total amount of communica-
tion will be the same as if the Global Combine were exe-
cuted at the server. This is exactly the behavior we observe
in Figures 3(a) and Figure 4(a). In the GCC-SRA configu-
ration, both VM implementations show almost perfect scal-
ability up to 16 processors.

Our overall results show that for both implementations
of VM, the ideal system configuration is SRA with GCC.
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SRA achieves good performance, because each input ele-
ment (pixel) corresponds to a single output element, thus all
the operations and data structures can be evenly partitioned
across the processors. GCC achieves good performance,
because the global combine operation for VM is simply to
stitch together the individual image pieces computed at each
processor. There is no extra computation in the global com-
bine where the parallel server could be beneficial. Therefore
shipping the results directly to the client lowers the overall
communication cost compared to GCS. On the other hand,
if the Global Combine were an expensive operation, lever-
aging the parallel and multithreaded capability of the server
should lead to better performance. When FRA is used, per-
forming the Global Combine at the server would be bene-
ficial, because of the amount of communication involved.
The advantage is actually two-fold, both from getting the re-
sults from each of the processing nodes faster, assuming a
fast network between nodes in the server, and because only
one copy of the accumulator is shipped to the client (as op-
posed to n - where n is the total number of processes).

6 Conclusions

We have presented a parallel and multithreaded middle-
ware system suitable for the implementation of data analy-
sis applications dealing with large distributed datasets. Its
major and novel strength lies in its ability to leverage previ-
ously computed results in order to speed up the processing
of new queries. It integrates several different strategies for
handling partial results using replicated accumulators, and
also provides multiple methods for performing the global
combine to produce final results.

We have presented experimental scalability results for
two implementations of the Virtual Microscope application
that show that one particular configuration that employs one
way of performing the global combine operation and han-
dling of the accumulator object is much better than all other
configurations. Additionally, we have shown that making
use of the intermediate results available at the Data Store
Manager, to avoid recomputing partial or complete common
aggregates, usually improves query response time signifi-
cantly. In fact, for some cases, reuse is the major factor in
explaining the difference between good scalable behavior
and poor scalability for the various potential configurations
for a particular application.

We are now in the process of implementing new data in-
tensive applications with our middleware to further study
and explore the flexibility the system allows with the vari-
ous execution strategies. We are also starting to experiment
with scheduling techniques in the context of parallel execu-
tion, much in the way we have done for the single node, mul-
tithreaded version we have shown results for in [3].
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