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Abstract

This paper is concerned with the efficient execution of
multiple query workloads on a cluster of SMIPs. We tar-
get applications that access and manipulate large scien-
tific datasets. Queries in these applications involve user-
defined processing operations on data and distributed data
structures to hold intermediate and final results. Our goal
is to implement system components to leverage previously
computed query results and to effectively utilize process-
ing power and aggregated 1/0 bandwidth on SVIP nodes so
that both single queries and multi-query batches can be ef-
ficiently executed.

1 Introduction

The availability of low-cost storage systems, built from
acluster of PCswith adisk farm, is making it possible for
ingtitutionsto create data repositories and make them avail-
ablefor collaborative use. In a collaborative setting, a data
server may need to answer queries simultaneously submit-
ted by multipleclients. Thus, efficient handling of multiple
guery workloads is an important optimization in many ap-
plicationdomains[2, 9, 13].

The query optimization and scheduling problem has been
extensively investigated in past surveys [7]. Tradition-
ally, multiple query optimization techniques for relational
databases rely on caching common subexpressions [11].
Cache space is limited by nature, and it is very well possi-
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ble that the space available will not be enough to store all
the common subexpressions detected. Carefully scheduling
gueriesal so playsan important role, because one could craft
the query execution order in away to better exploit expres-
sionsthat have been aready cached. Guptaet al. [8] present
an approach that tackles this problem in the context of deci-
sion support queries.

Inthiswork we ook at methodsfor efficient execution of
multiple queries with user-defined functions and data struc-
tures. This class of queries arises in data analysis applica-
tions that make use of large scientific datasets. Data anal-
ysis applications often access a subset of al the data avail-
ablein adataset. The data of interest is then processed to
transform it into a new data product. This data product is
usually generated by computing an aggregation over some
of the dimensions of the dataset, ranging from simple asso-
ciativearithmetic and logical operatorsto more complicated
user-defined functions such as scientific visualization oper-
ations. Oftentimes, a user-defined data structure is created
to maintain intermediate results during processing. When
data analysis is employed in a collaborative environment,
gueries from multiple clients are likely to have overlapping
regions of interest and similar processing requirements (i.e.
the same operations on data). Hence, severa optimizations
can be applied to improve system response time. These op-
timizations include reuse of intermediate and final results,
data prefetching and caching, and scheduling to improve
inter-query locality [2, 3].

This paper investigates the use of SMP clusters to im-
prove response times and overall system performance. In
particular, welook at the effective use of aggregate process-
ing power and 1/0 bandwidth for executing single and mul-
tiple queries efficiently. Unlike previouswork on query ex-
ecution in parale systems|[5, 6, 10, 12], our system design
combines paralel execution of queries with data caching
and multi-threaded execution so that multiple queries can
execute concurrently on multiple processors on an SMP



node and al so reuse cached resultsto improve performance
and lower interprocess communication. Moreover, a query
isexecuted in parallel to expl oit processing power and mem-
ory space distributed across the SMP nodes in the system,
as well as the available aggregate 1/O bandwidth. We also
investigate different strategies for accumulating the final
query result, aswell as strategies to perform thefinal stitch-
ing of the partial resultscomputed by each of the processors.
Finally, we describe experimental results on a cluster of 2-
processor SMP nodes using an image visualization applica
tion, exploring multiple system configurations using afixed
amount of caching memory.

2 Runtime System Architecture

We have deployed the runtime system within a middle-
wareframework we have devel oped for eval uating multiple,
simultaneous queries on a shared-memory system [2, 3]. In
the current implementation, each SMP node essentially runs
acopy of the middleware with extensionsto handle data ex-
change among SMP nodes. We briefly describe the middle-
ware in this section. The extensions we have implemented
for execution on a cluster of SMPs are presented in Sec-
tion 3.

The middleware architecture consists of several service
components, implemented as a C++ class library and arun-
time system, which support multithreaded execution on a
cluster of shared-memory multiprocessor machines. Each
processor hosts a compl ete instance of the system, with al
the service components available. In the current implemen-
tation, there is conceptually only one copy of each of the
system components in the parallel machine, however, con-
cretely, these components exist in all the nodes but they
work on partitioned data, which is a function of the loca-
tion of therequired input data, i.e., an instance handles only
data bl obscomputed from theinput dataresiding onitslocal
disks.

Query Server : The query server interacts with clients
for receiving queries and returning query results, and isim-
plemented as a fixed-size thread pool (typically the number
of threads is set to the number of processors available on a
SMP node). A client request contains a query type id and
user-defined parameters to the query object implemented in
the system. The user-defined parameters include a dataset
idfor theinput dataset, query meta-information?, and anin-
dexid for theindex to be used for finding the dataitems that
are requested by the query.

An application developer can implement one or more
guery objects that are responsible for application-specific

1The query meta-information describes which part of the dataset is rel-
evant to satisfy a query, and is domain dependent, e.g., it can be an 3-
dimensional bounding box in a visualization application or a boolean ex-
pressionin relational database queries.

subsetting and processing of datasets. When a query object
is integrated into the system, it is assigned a unique query
type id. The implementation of a new query object is done
through C++ class inheritance and the implementation of
virtual methods. A Query base classisprovided for thispur-
pose. A query object is associated with (1) an execut e
method, (2) a query meta-information object qni , which
stores query information, and (3) an accumulator object
gbuf , which encapsulates user-defined data structures for
storing intermediate results. The execut e method imple-
ments the user-defined processing of data. In the current de-
sign, thismethod isexpected to carry out index |ookup oper-
ations, theinitialization of intermediate data structures, and
the processing of data retrieved from the dataset. Both the
guery meta-data object and the accumulator meta-data ob-
ject are implemented by the application devel oper by deriv-
ing a subclass from a QueryMI base class provided by the
system.

When a query is received, the query server instantiates
the corresponding query object and spawns a Query Thread
to execute the query. The query thread searches for cached
resultsthat can bereusedto either completely or partially an-
swer aquery. The lookup operation employs a user-defined
over | ap operator to test for potential matches. The user-
defined accumulator meta-data object associated with the
guery object is compared with the accumulator meta-data
objectsof thecached resultsfor the same query type. A user-
defined pr oj ect method isthen called so that the cached
result can be projected, potentially performing atransforma-
tion on the cached data, to generate a portion of the output
for the current query (seeFigure 1(a)). Finally, if thecurrent
guery isonly partially answered by the cached results, sub-
gueries are created to compute theresults for the portions of
the query that have not been computed from cached results.
The sub-queries are processed just like any other query in
the system, thereby allowing moreintermediateresultsto be
reused.

Boththeover | ap and pr oj ect method interfacesare
defined in the QueryMI class, and have to be implemented
by the application developer. These two methods allow for
the identification and implementation of reuse possibilities
by the runtime system for user-defined data structures, when
anew query isbeing executed.

Data Store Manager : The data store manager (DS)
isresponsible for providing dynamic storage space for data
structures generated as intermediate or final results for a
guery. The most important feature of the data storeisthat it
records semantic information about i ntermedi ate data struc-
tures. This makes the use of intermediate results possible
to answer queries later submitted to the system. A query
thread interactswith the data store using a DataStore object,
which providesfunctionssimilar to the C language function
malloc. When a query wants to alocate space in the data
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Figure 1. (a) The query execution mechanism. Once a new query
submitted, the system tries to find a complete or partial cach

gj. Once itis found (region
pr oj ect method to compute region
plete the query processing and produce the answer

storefor an intermediate data structure, the size (in bytes) of
the data structure and the corresponding accumulator meta-
data object are passed as parameters to the malloc method
of the data store object. DS alocates the buffer space, inter-
nally records the pointer to the buffer space and the associ-
ated meta-data object contai ning a semantic description, and
returnsthe allocated buffer to the caller.

DSalso providesamethod called | ookup. Thismethod
can be used by the query server to check if a query can
be answered entirely or partialy using the intermediate re-
sultsstored in the data store. Thel ookup method calsthe
over | ap method for accumulator meta-data objectsin the
data store, and returns a reference to the object that has the
largest overlapwiththequery. A hash tableisused to access
accumulator meta-data objectsin DS.

Data Sources : A datasource can be any entity used for
storing datasets. In the current implementation, a dataset is
assumed to have been partitioned into fixed-size pages and
stored in a data source. That is, the data source abstraction
presents a page-based storage medium to the runtime sys-
tem, whereas the actual storage can be, for example, afile
stored on aloca disk or aremote database accessed over a
wide-area network. When dataisretrieved in pages instead
of as individua data items, 1/0 overheads (e.g., disk seek
time) can be reduced, resulting in higher application level
[/O bandwidth. Using fixed-size pages also allows more
efficient management of available memory space. A base
class, called DataSource, is provided by the runtime sys-
tem so that an application devel oper can implement support
for multiple physical devices and data storage abstractions.
The base class has virtual methods, with semantics similar

R;, in our example), a data transformation is applied with the u
R;. Sub-queries — S; 1, S; 2, Sj 3, and S; 4 —are generated to com-
J. (b) Strategies for allocating the accumulator.

The upper path represents how a query gets answered with the S
(SRA) strategy in which each processor allocates only the re
The lower path shows the Fully Replicated Accumulator (FRA)
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strategy.

to Unix file system operations (i.e., open, read, write, and
close), that are called by the runtime system. We have im-
plemented two data source subclasses, one for the Unix file
system and a second to overcome the 2GB file size limita
tionin the Linux ext2 file system.

Page Space Manager : The page space manager (PS)
controls the allocation and management of buffer space
available for input datain terms of fixed-size pages. All in-
teractions with data sources are done through PS. Queries
access PS through a Scan object, which isinstantiated with
a data source object and a list of pages (which can be gen-
erated as aresult of index |ookup operations) to be retrieved
fromthedatasource. The pagesretrieved fromadatasource
are cached in memory. The current implementation uses a
hash tablefor searching pagesin the memory cache. PSalso
keeps track of 1/0 reguests received from multiple queries
so that overlapping 1/0O requests are reordered and merged,
and duplicate requests are eliminated. For example, if the
system receives a query into a dataset that is aready being
scanned for another query, thetraversal of the dataset for the
second query can be piggybacked onto thefirst query in or-
der to avoid traversing the same dataset twice.

Index Manager : Theindex manager providesindexing
support for the datasets. A query thread interacts with the
index manager to access indexing data structures and search
for datathat intersect with the query. Theintegration of new
indexing mechanisms is achieved by derivation from base
classes defined in the core middleware.



3 Execution on aCluster of SMPs

We now discuss how queries are executed on a clus-
ter of SMPs, and the extensions we have incorporated into
the shared-memory server for execution in a distributed-
memory environment. The parallel implementation uses
MPI, employed to behave correctly in a multi-threaded en-
vironment?.

Dataset Organization : We assume that each SMP
node in the system has one or more local disks. In such a
system, efficient access to, and processing of data depends
on how datasets are declustered across disks and proces-
sors, since workload distribution and communication costs
depend on where data elements are stored. Therefore, the
fixed-size data pages of a dataset are distributed across the
disks in the system. If data subsets are defined by range
gueries, data pages that are close to each other in the under-
lying attribute space should be assigned to different disks.

Query Execution : Queries execute as threads, as in
the original runtime system. This configuration allows mul-
tiple queries to execute concurrently on a SMP node. We
consider severa approaches for evaluating multiple queries
when acluster of SMP nodesisemployed. One possible ap-
proach is to execute each query sequentially on a separate
node in the system. The advantage of this approach is that
if there are n nodes with & processors, n x k queriescan be
executed in the system simultaneously. However, this ap-
proach islikely toincur highinterprocessor communication
volume. Since datasets are declustered across the nodes in
the system, if aquery isexecuted on asingle processor other
processors in the system must retrieve data pages required
by the query and forward them to that processor. Moreover,
if fewer queriesthan the number of processors available are
submitted to the system, some of the processorswill beidle
causing under-utilization of the aggregate processing power.
In order to alleviate these problems, each query is executed
inparalle.

We have implemented two strategies based on the repli-
cated accumulator scheme developed in [10]. In the Fully
Replicated Accumulator (FRA) scheme, aquery isassigned
toall the SMP nodesinthe system for evaluation. Theentire
accumulator structure associated with the query isallocated
on al the nodes. Each SMP nodeis responsiblefor retriev-
ing and carrying out the aggregation operations on itslocal
input data. In the Sparsely Replicated Accumulator (SRA)
scheme, a query is aso assigned to al SMP nodes in the
system for evaluation. However, for this scheme each SMP
node only allocates memory for the portions of the accumu-
lator for which it haslocal input dataand/or cached results.
This scheme can effectively resultin apartitioningof theac-
cumul ator datastructureacross thenodes. Both schemesare

2We have used the M PICH implementation of MPI, whichis not thread-
safe.

shown schematically in Figure 1(b).

Other strategies are also possible. Our earlier work [6,
10] and thework of Shatdal and Naughton [12] have shown
that other strategies, such as distributed accumulator, may
outperformthereplicated accumul ator strategies, depending
on machine configuration (e.g., number of nodes) and appli-
cation characteristics. The previouswork evaluated various
strategies, but only when one query was executed inthe sys-
tem at atime and no results were cached. We plan to im-
plement additional query strategies and evaluatetheminthe
near future on multiple query workloads.

When a new query arrives in the system, the query is
broadcast to al the nodes. We have implemented a query
launcher module as an extension to the query server (Sec-
tion 2) for thispurpose. The launcher moduleis executed by
one thread on one SMP node. That thread pollsfor queries,
and upon receiving one, broadcasts it to al the nodes. The
query isexecuted in four main steps:

(1) Initialization. Accumulator elements for the query are
allocated and initialized on each SMP node.

(2) Local Processing. Loca input data that intersects the
guery window isretrieved from disk and aggregated into the
accumulator elements allocated in step 1.

(3) Global Combine. Results computed in each node in
step 2 are combined across al nodes to calculate the fina
intermediate results and final output.

(4) Output. Output is sent back to the client.

The query evaluation structure of the replicated accumu-
lator schemes is similar to the execution of a query on a
shared-memory system using the origina middleware [2].
Intheinitialization phase, each SMP nodeallocates and ini-
tializestheaccumulator structurefor agivenquery. Thedata
storeis searched to find the cached resultsthat can be reused
to answer the query. The accumulator is divided into two
types of regions; one that requires input data, and the other
that uses intermediate results from previous queries. Only
the local input data that intersects the first type of region is
read from the disk(s) attached to the SMP node. At theend
of step 2, each node has computed intermediateresultsusing
itslocal cached results or input data. As a result, the accu-
mulator on each node contains partial intermediate results,
and a global combine step is necessary to compute final in-
termediate results, and eventually the output.

The global combine step can be executed in different
ways using the FRA and SRA dtrategies, and the strategy
can be selected by the application developer based on ap-
plication characteristics, aswell asthe cluster network con-
figuration. The first strategy, Globa Combine at Server
(GCYS), performs the globa combine at the server, as seen
inFigure 2(a), and therefore | everages the computational re-
sources and network bandwidth available within the SMP
cluster. In this strategy, once a query is received a master
nodeisassigned to that query that is responsiblefor collect-
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Figure 2. (a) The Global Combine strategies. The upper diagr
(GCC) strategy and the lower one shows Global Combine at Serv
master node (shown in solid black) is needed for each query. (

operators - (i) subsampling and (ii) pixel averaging.

ing the query resultsfrom other nodes and returning the out-
puttotheclient. Inthecurrentimplementation, nodesare as-
signed as master nodes in round-robin order. For the Global
Combine at Client (GCC) strategy, each processor shipsits
resultsto the client, as seen in Figure 2(a), which performs
the global combine of partia results. This strategy is pos-
sible because both the client and server have access to the
guery object over the entire lifetime of a query (the client
instantiates the query object and hands it off to the query
server). We will see that GCC is potentially beneficia for
gueriesin which SRA is used and the combine operationis
inexpensive. This strategy off-loads some of the computa
tion from the server to the client so that the server can pro-
cess other queries.

We have added two methods to the Query base class in
the origina system to implement the global combine phase
for the GCS scheme. The send method takes a pointer to
the local accumulator structure, query meta-data and accu-
mulator meta-data, and returnsa list of nodes, and for each
node a pointer to a buffer. On each SMP node, the buffer
pointer for a remote node points to the portion of the lo-
cal accumulator that will be sent to the corresponding node.
The combi ne method takes a pointer to thelocal accumu-
lator buffer and a pointer to the buffer received from are-
mote node. The conbi ne method is called by the runtime
system when a node receives a message, to merge the lo-
cal accumulator values with the received accumulator val-
ues. After a node has received all the remote accumula-
tor elements and combined them with local accumulator -
ements, the pr oj ect method is called on the fina inter-
mediate results to compute the final output. The cormbi ne
method i sexpected to beimplemented by theapplicationde-

high magnification image
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am shows the Global Combine at Client
er (GCS). When GCS is used, a
b) The Virtual Microscope zooming

veloper for application-specific global combine operations.
The middleware provides a default implementation for the
send method. The current default implementation sends
the local accumulator elements in each node to the master
node assigned for the query. However, thismethod can also
be customized by the application developer for application
or hardware specific optimizations®.

After a query has been executed, each node has partia
intermediate results for the query. These results are stored
intheloca accumulator on each node and maintained in the
local datastorefor possiblereuse by futurequeries. When a
new query isreceived, and if it can be answered by cached
results, only the global combine and output phases are exe-
cuted. That is, the cached partial resultsthat can be used to
answer the query are extracted from the data store and used
to produce new intermediate results. Thisisthe characteris-
ticthat makes our middleware particul arly suitableto handle
multiple query workloads, especially when intra- and inter-
query locality is present.

Note that the class of queries targeted in this work in-
volves aggregation/reduction operations on input data, and
the size of the output is often much smaller than the size
of the input dataset. As a result, the replicated accumula
tor strategy is likely to incur less communication overhead
than executing multiple queries such that each query exe-
cutes sequentially on an SMP node. In addition, the RA
schemes achieve better |oad bal ance and better utilization of
distributed processing power, when there are fewer queries
than the number of processors.

3We are in the process of implementing different versions of the send
method to minimize communication overheads.



4 Example Application: The Virtual Micro-
scope

The Virtual Microscope (VM) application [1] imple-
ments arealistic digital emulation of a high power light mi-
croscope. VM can be used in atraining environment, where
agroup of fellows or students may examine and manipulate
the same set of dides. In such a setting, the data server has
to process multiple queries simultaneoudly.

The input datasets for VM are digitized, 2-dimensional
full microscope dlides. Each digitized didecan be up to sev-
eral gigabytesin size, and is stored on disk at the highest
magnification level. In order to achieve high 1/O bandwidth
during data retrieval, each dideisregularly partitioned into
data chunks, each of whichisarectangular subregion of the
2D image and corresponds to fixed-size pages in our frame-
work. In this paper, the data chunks are row-wise ordered
and distributed to the disks in the SMP cluster in a round-
robinfashion. Each pixel inachunk isassociated with aco-
ordinate (in x- and y-dimensions) in the entireimage. Since
theimageisregularly partitioned into rectangular regions, a
simplelookup table consisting of a 2-dimensional array cor-
responding to the bounding boxes of data chunks serves as
an index.

During query processing, the chunks that intersect the
guery region, which is a two-dimensiona rectangle within
the input image, are retrieved from disk. Each retrieved
chunk is first clipped to the query window. Each clipped
chunk isthen processed to compute the output image at the
desired magnification. We have implemented two functions
to process high resolution clipped chunks to produce lower
resolution images, each of which resultsin a different ver-
sion of VM as can be seen in Figure 2(b). The first func-
tion employs a simple subsampling operation, and the sec-
ond implements an averaging operation over awindow. For
a magnification level of N given in a query, the subsam-
pling function returns every N** pixel from the region of
theinput image that intersects the query window, in both di-
mensions. The averaging function, on the other hand, com-
putesthe value of an output pixel by averaging the val ues of
N x N pixésin the input image. The averaging function
can be viewed as an image processing algorithmin the sense
that it has to aggregate severa input pixelsin order to com-
pute an output pixel. Algorithms such as image enhance-
ment and automatic feature extraction would have similar
relative computing and 1/O requirements. The accumul ator
for these functionsis a 2-dimensional pixel array, each en-
try of which storesvauesfor apixe inthelower resolution
output image.

We have added a query object to the runtime system for
each of the processing functions. The magnification level,
the processing function, and the bounding box of the out-
put image in the entire dataset are stored as meta-data. An

over | ap function was implemented to intersect two re-
gionsand return an overlap index, which is computed as

. Iy Is
overlap index = Oa X Os (@D}
Inthisequation, 4 istheareaof intersection betweenthein-
termediate result in the data store and the query region, O 4
isthearea of thequery region, /¢ isthezooming factor used
for generating the intermediate result, and O isthe zoom-
ing factor specified by the current query. Og should be a
multipleof Is so that the query can usethe intermediatere-
sult. Otherwise, the value of the overlap index is 0.

For execution on a cluster of SMPs, we have imple-
mented two different accumulator strategies. The first im-
plementation creates a copy of the full accumulator struc-
tureon each node. Inthelocal processing phase, output pix-
elsgenerated by processing input data chunks, or cached re-
sults, are stored in the full accumulator. 1n the global com-
bine phase, each node forwards the loca full accumulator
to the master node. This implementation will likely incur
high interprocessor communication volume, and memory
on each node is not efficiently utilized. The second imple-
mentation allocates only the accumulator elements in each
node for which there are local cached results or local in-
put elements. Once thelocal input e ements and cached re-
sults that contribute to the accumulator elements have been
determined (by a lookup into the index and searching the
data store), the accumulator is partitioned into rectangular
regions. Each region corresponds to a portion of the accu-
mulator that is entirely covered by a subset of the input el-
ements and/or cached results. If the regions are allocated
separately, during the global combine phase either multiple
messages must be generated to send the regionsto the master
node, or theregions should be packed into acompact buffer,
requiring each region to be copied into the buffer. In order
to avoid these overheads, in the initialization phase a buffer
large enough to hold all of theregionsis alocated and each
region is assigned a place in thisbuffer. In order to do this,
we have extended the Data Store manager (see Section 2) to
include a method that allocates a buffer without registering
any meta-data information.

5 Experimental Evaluation

We show experimental results with several configura-
tions, varying the version of VM used, the global com-
bine strategies, the accumulator handling strategies, as well
as employing multi-threaded vs. multi-process execution.
The experiments ran on a cluster of eight dual-processor
550MHz Pentium I11 nodes, each with 512KB cache, 1GB
of memory and 36GB of disk storage. The nodes are inter-
connected via a Gigabit Ethernet switch.
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opposed to 2 threads for MT (Multiple Threads). DS {on|off} specifies whether the partial results
stored at the Data Store manager are used during query execut ion.

For the experiments, we have employed two datasets,
each of whichisanimage of size 30000 x 30000 3-bytepix-
els, requiring atotal of 7.5GB storage space. Each dataset
was partitionedinto 64K B pages, each representing asgquare
regionin the entireimage. These pages were declustered in
round-robinfashion across the nodes, and stored on thelocal
disk attached to each node. We have emulated 16 concurrent
clients. Each client generated a workload of 16 queries (8
gueries for the more computationally expensive pixel aver-
aging version), producing 1024 x 1024 RGB images (3MB)
at various magnification levels. Of the 16 clients, 8 is-
sued queriesto thefirst dataset, and 8 submitted queries to
the second dataset. We have used the driver program de-
scribed in [4] to emulate the behavior of multiple smulta-
neous clients. The implementation of the driver is based
on aworkload modd that was statistically generated from
traces collected from experienced VM users. We have cho-
sen to use the driver for two reasons. First, extensive red
user traces are very difficult to acquire. Second, such an em-
ulator allows us to create different scenarios and vary the
workload behavior (both the number of clientsand the num-
ber of queries) in a controlled way.

The experiments using the subsampling implementation
of VM show the system behavior when the queries are es-

sentially 1/0O intensive, and the pixel averaging agorithm
shows the system performance, when queries are computa-
tionally more expensive, so more balanced between thetime
spent on computation and on I/O. We have determined in[3]
that the CPU timeto I/O timeratiois between 0.04 and 0.06
for the subsampling implementation (i.e., for each 100 sec-
onds, between 4 and 6 seconds are spent on computation,
and between 94 and 96 seconds are spent doing 1/O). The
averaging implementation is more balanced, with the CPU
and 1/0 times nearly equal. We show scalability results for
different strategies when the number of processorsis var-
ied. Hence, we fixed the total aggregate amount of memory
available for the Page Store Manager (PS) at 64MB and for
the Data Store Manager (DS) at 128MB. That is, for a con-
figuration with P nodes, each node allocates %M B for PS,
and 122MB for DS.

Figures 3 and 4 show experimental results for processor
scalability for the pixel averaging and subsampling imple-
mentations, respectively. We now evaluate the results ac-
cording to severa criteria.

Using multiple query optimization support (DS
ison). Themajor strength of our middlewareliesinitsabil-
ity to leverageintermediateresults previousy computed. As
isseen fromthefigures, performance improveswhen results
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bine and accumulator handling strategies.

are cached in the data store. We see in Figure 3(a) that this
improvement can be up to athree-fold decrease in the query
execution time, although theimprovementsare not that high
in general. Note that even for configurations that do not
show good scal ahility, using DS usually decreases execution
times.

Multi-process (MP) versus Multi-threaded (MT)
Execution. Each of the nodes in our cluster is has two
processors, hence it is possibleto run two processes or only
one process with two threads on a node. I1n the maority of
cases, MT performs better than MP. As is seen from Fig-
ures 4(b) and (d), multi-threading can greatly improve scal-
ability. Multi-process execution alows a greater degree of
intra-query parallelism, since both processes can work on
the same query simultaneoudly. Multi-threaded execution,
on the other hand, enables a higher degree of inter-query
parallelism because two queries can be executed simultane-
oudly, resulting in better utilization of cached results. In ad-
dition, communication cost per query islower than for MP.

Fully Replicated Accumulator  versus Sparsely
Replicated Accumulator. The Virtua Microscope
gueries can be handled well with the Sparsely Replicated
Accumulator strategy, because VM is regular, in the sense
that the input data on each processor aways mapsto the lo-
cal portion of the accumulator alocated on that processor.
We show experimental results for the Fully Replicated Ac-
cumulator strategy because many other data anaysis appli-
cations map local input data or cached results into the en-
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entation of VM with different global com-

tire accumulator. As can be seen by comparing the results
in Figure 4(a) vs. 4 (c), and in Figure 4(b) vs. 4 (d), using
SRA resultsin amost perfect scalahility in 4(a) and reason-
ably scalablebehavior whenthe DS optimizationsare turned
on (Figure 4(b)). For the pixel averaging results shown in
Figure 3, FRA does not have such high overhead because
the computation cost is much higher than for the subsam-
pling implementation. Therefore the extra communication
does not have as big an impact on overall performance.

Global Combine at the Client versus Global
Combine at the Server. Thefina phase of query execu-
tionisthe globa combine, where the multiple pieces of the
accumulator are combined into afina result. Aswe previ-
oudly described, our middlewareisableto perform the com-
bineat theclient or at the server. Each of these strategieshas
both benefits and drawbacks. Offloading the Global Com-
bineto the client removes the computational and communi-
cation burden from the server, which in high server work-
load situations may improve overall system performance.
This is especially true when the SRA strategy is used for
guery evaluation, because the total amount of communica-
tion will be the same as if the Globa Combine were exe-
cuted at the server. Thisis exactly the behavior we observe
in Figures 3(a) and Figure 4(a). In the GCC-SRA configu-
ration, both VM implementations show almost perfect scal-
ability up to 16 processors.

Our overdl results show that for both implementations
of VM, the ideal system configuration is SRA with GCC.



SRA achieves good performance, because each input ele-
ment (pixel) correspondsto asingle output e ement, thusall
the operations and data structures can be evenly partitioned
across the processors. GCC achieves good performance,
because the global combine operation for VM is simply to
gtitch together theindividual image pieces computed at each
processor. There isno extracomputationin the globa com-
binewheretheparallel server could bebeneficia. Therefore
shipping the results directly to the client lowers the overall
communication cost compared to GCS. On the other hand,
if the Global Combine were an expensive operation, lever-
aging the parallel and multithreaded capability of the server
should lead to better performance. When FRA is used, per-
forming the Global Combine at the server would be bene-
ficial, because of the amount of communication involved.
Theadvantageisactually two-fold, bothfrom gettingthere-
sults from each of the processing nodes faster, assuming a
fast network between nodes in the server, and because only
one copy of the accumulator is shipped to the client (as op-
posed to n - where n isthe total number of processes).

6 Conclusons

We have presented a parallel and multithreaded middle-
ware system suitable for the implementation of data analy-
sis applications dealing with large distributed datasets. Its
major and novel strengthliesinitsability to leverage previ-
ously computed resultsin order to speed up the processing
of new queries. It integrates severa different strategies for
handling partia results using replicated accumulators, and
also provides multiple methods for performing the global
combine to produce final results.

We have presented experimental scalability results for
two implementations of the Virtual Microscope application
that show that one particul ar configuration that employsone
way of performing the globa combine operation and han-
dling of the accumulator object is much better than all other
configurations. Additionally, we have shown that making
use of the intermediate results available at the Data Store
Manager, to avoid recomputing partial or complete common
aggregates, usually improves query response time signifi-
cantly. In fact, for some cases, reuse is the mgjor factor in
explaining the difference between good scalable behavior
and poor scalability for the various potentia configurations
for aparticular application.

We are now in the process of implementing new datain-
tensive applications with our middieware to further study
and explore the flexibility the system alows with the vari-
ous execution strategies. We are also starting to experiment
with scheduling techniquesin the context of parallel execu-
tion, muchintheway wehave donefor thesinglenode, mul-
tithreaded version we have shown resultsfor in[3].
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