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The upper oceanic mantle is the largest accessible terrestrial geochemical reservoir. 

Numerous aspects of the upper oceanic mantle’s current state, as well as its chemical 

evolution through time, remain obscure. Although studies of Mid Ocean Ridge Basalts 

(MORB), and other oceanic mantle-derived melts have provided important insights into 

the nature of their sources, previous studies have shown that they fail to capture the full 

range of end-member compositions present in oceanic peridotites. Ophiolites are especially 

useful in interrogating this issue as field-based observations can be paired with 

geochemical investigations over a wide range of geologic time. Grid sampling methods 

(3m x 3m) at the 497 Ma Leka Ophiolite Complex (LOC), Norway, and the 1.95 Ga Jormua 

Ophiolite Complex (JOC), Finland, offer an opportunity to study mantle domains at the 

meter and kilometer scale, and over a one billion year timespan. The lithology of each 

locality predominately comprises harzburgite, hosting layers and lenses of dunite and 

pyroxenite. Here, we combine highly siderophile elements (HSE) and Re-Os isotopic 

analysis of these rocks with major and trace element measurements.  

Two grids sites are studied within the LOC harzburgite mantle section. Harzburgites at 

individual LOC grid sites show variations in initial γOs(497 Ma) (-2.1 to +2.2) at the meter 

scale. Analyses of dunites within the same LOC grid, reveal that dunites may either have 

similar γOs to their host harzburgite, or different, implying interactions between spatially 

associated rock types may differ at the meter scale. A harzburgite sample is characterized 



 

by low initial 187Os/188Os (<0.121), reflecting Proterozoic melt depletion. Preservation of 

Os isotopic compositions consistent with ancient melt depletion is a common characteristic 

in oceanic peridotites. Grid sampling of adjacent harzburgites and dunites reveal that the 

geometry of these refractory domains can be constrained to be < 1 m3.  TMA model ages of 

an LOC websterite reveals at least one other stage of partial melting in the LOC, which 

broadly corresponds to the opening of the Iapetus Ocean (~620 – 550 Myr). Averaged γOs 

values between the mantle sections of two LOC grid sites (+1.3 and -0.4) separated by ~5 

km, indicate km-scale heterogeneity in the convecting upper mantle. Major and trace 

element compositions suggest that the km-scale heterogeneity in the LOC, is a result of 

variable melt-extraction at different depths, and local scale processes. Analyses of two, 1 

cm thick orthopyroxenite veins, hosted by harzburgite near Kvaløya-moen, are more 

radiogenic than host harzburgites, and suggest vein formation had minimal impact on the 

host harzburgite. Whole rock major and trace element data, and thin sections of relict 

olivine grains, are also examined to shed light on the causes of the isotopic heterogeneities 

in the LOC.  

Two grids sites are studied within the JOC serpentinite mantle section. Serpentinites at 

JOC grid JU15-16, display modest heterogeneities at the meter scale in γOs(1.95 Ga) (-0.5 to 

-3.0). TRD model ages show evidence of melt depletion at least 400 Ma prior to the accepted 

age of the ophiolite. Re-Os systematics of a separate JOC grid site, JU15-18 (~3 km away), 

show evidence of Re addition/loss at the age of the ophiolite (~1.95 Ga). LREE-enriched 

REE patterns suggest that this grid location was subsequently affected by metasomatic 

processes possibly associated with gabbroic dykes, affecting the geochemical and Os 

isotopic compositions of these JOC serpentinites. Enrichments of fluid mobile elements 

including Re, Ba, and Sr, may implicate recent Re mobilization caused by weathering and 

ground-water interactions. Trends in major elements show signs of variable MgO and SiO2 

loss by serpentinization.
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1. INTRODUCTION 
1.1. Upper Oceanic Mantle 

The oceanic mantle, or DMM (depleted mid-ocean ridge mantle), is the largest accessible 

geochemical reservoir on Earth. Mid Ocean Ridge Basalts (MORB) are produced by partial 

melting of upwelling DMM at divergent plate boundaries. Residual oceanic lithospheric 

mantle forms as a result (Dick et al., 1984). Indirect studies of the DMM based on MORB, 

and more direct studies of abyssal and ophiolite peridotites from the oceanic lithospheric 

mantle have shown chemical and isotopic heterogeneity among ocean basins, along mid-

ocean ridges, as well as centimeter to kilometer scale local heterogeneities (Dick et al., 

1984; Sharma et al., 1995; Workman & Hart, 2005; Warren et al., 2009). These 

heterogeneities are thought to have resulted from processes including: variable melt 

depletion, metasomatism, refertilization, lithospheric recycling, and melt-rock reactions. 

(Allégre & Turcotte, 1986; Snow et al., 1994; Sharma & Wasserburg, 1996; Liu et al., 

2009; Warren et al., 2009). The causes, timing, relative impact, and extent of these 

processes is however, still poorly understood. Further work investigating these processes 

is crucial for advancing our understanding of the composition of this major terrestrial 

reservoir, how the DMM has evolved throughout time, and assessing the extent of mantle 

mixing today.   

Although extensive studies of MORB and other oceanic mantle-derived melts have 

provided important insights into the nature of their sources, previous studies have shown 

that MORB fail to capture the full range of end-member chemical and isotopic 

compositions present in mantle peridotites (Brandon et al., 2000; Alard et al., 2005; Harvey 

et al., 2006; Lui et al., 2008; Rampone & Hofmann, 2012). Due to the relationship between 

the oceanic crust (MORB) and its underlying residual mantle (peridotites), both are  
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Figure 1. Os concentrations (in ppb) vs. Os isotopic composition of bulk rock abyssal peridotites 

and Alpine–Apennine ophiolitic peridotites. Figures adapted from Rampone and Hofmann (2012). 

(A) South West Indian Ridge (SWIR): [1] Standish et al. (2002), [2] Snow and Reisberg (1995); 

Mid Atlantic Ridge (MAR): [1] Standish et al. (2002), [2] Harvey et al. (2006), [3] Brandon et al. 

(2000), [4] Alard et al. (2005); Gakkel Ridge (Liu et al., 2008); and American–Antarctic Ridge 

(Snow and Reisberg, 1995). Also shown are the compositional field of global MORBs (after 

Gannoun et al., 2007) and the Depleted MORB Mantle (DM) average (after Snow et al., 2000). 

(B) Alpine–Apennine ophiolitic peridotites, Internal Ligurides: [1] Alard et al., (2005), [2] Snow 

et al., (2000); External Ligurides (Snow et al., 2000); and the Totalp ophiolite complex (Van Acken 

et al., 2008). The gray field refers to the abyssal peridotite compositions, in A. 
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expected to have identical initial Hf, Sr, Nd, Pb, and Os isotopic compositions at the time 

of primary melting, assuming: (1) a homogeneous mantle source; (2) partial melting under 

equilibrium conditions; and (3) the melt is not contaminated during extraction and 

solidification (Rampone & Hofmann, 2012). However, recent isotopic studies of 

peridotites present in modern oceanic environments and ophiolites have shown significant 

heterogeneities in their Sr, Nd, Hf, and Os compositions at variable length scales, beyond 

those observed in MORB (Sharma et al., 1995; Alard et al., 2005; Harvey et al., 2006; Liu 

et al., 2009; Warren et al., 2009; Stracke et al., 2011; Burton et al., 2012; Rampone & 

Hofmann, 2012: Fig. 1). In order to investigate heterogeneity further, direct sampling of 

oceanic mantle is advantageous. 

Oceanic mantle is primarily sampled through the dredging and drilling of abyssal 

peridotites, which are commonly interpreted to be the residues of the DMM after partial 

melting at mid-ocean ridges. Abyssal peridotites are useful in providing access to the 

present-day mantle compositions beneath ridge segments. However, because of the method 

by which they are sampled, rarely are they associated with petrological or spatial context 

(Brandon et al., 2000; Warren et al. 2009).  
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Oceanic mantle can also be sampled as ophiolitic peridotites. Ophiolites represent 

sections of the oceanic lithosphere that have been obducted onto the continental crust, most 

frequently at destructive plate margins. The stratigraphic sequences observed in ophiolites 

(Fig. 2) correspond to sequences observed at mid-ocean ridges with the peridotite section 

at the bottom of the sequence. In contrast to abyssal peridotites, ophiolites allow for easy 

access to mantle lithologies and structure over a >3 billion year range of Earth’s history. 

Ophiolite sequences also permit sampling of different rocks from the oceanic mantle, and 

provide an opportunity for field-based locations and observations to be paired with 

geochemical investigations. However, during the obduction process, ophiolite assemblages 

commonly undergo metamorphism and low-temperature alteration due to exhumation 

processes and seawater infiltration, respectively. Many ophiolites also record the effects of 

Figure 2. Idealized 

stratigraphic sequence 

of an ophiolite, with 

upper mantle peridotites 

at the bottom.  
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supra-subduction zone (SSZ) processes, such as fluid-assisted melt extraction and 

metasomatism (B ̈chl et al., 2002; Dilek & Furnes, 2011; O’Driscoll et al., 2012).  

Here we report major and trace element data, including the abundances of the highly 

siderophile elements (HSE: here includes Os, Ir, Ru, Pt, Pd, and Re) as well as Os isotopic 

data, for peridotites and pyroxenites from two ophiolite complexes: the ~497 Ma Leka 

Ophiolite Complex (LOC), Norway and the ~1.95 Ga Jormua Ophiolite Complex (JOC), 

Finland; thought to sample the DMM associated with early Paleozoic (Iapetus) and Paleo-

Proterozoic oceanic lithospheres, respectively. The primary focus of this study is to 

investigate chemical and isotopic heterogeneities in the mantle sections of these ophiolites 

at different length scales (kilometer-scale, meter-scale, and centimeter-scale) through grid 

sampling. Grid sampling methods allow for spatially controlled field-based observations 

of mantle samples to be linked with petrologic and geochemical studies.  Heterogeneities 

within these mantle sections are key in assessing the chemical structure of these oceanic 

mantle sections, focusing on mantle history (partial-melting, melt-rock interactions) and 

subsequent processes that acted on these rocks. Additionally, comparison of these two 

ophiolites from different times, compared with data from more recent ophiolites, will 

enable monitoring of changes in the DMM through the latter half of Earth history.  
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1.2. Highly Siderophile Elements 

Due to their general resistance to ophiolite modification processes, such as melt 

infiltration and fluid transport (B ̈chl et al., 2002), HSEs are useful tools for investigating 

upper mantle processes acting on peridotite samples. During mantle melting, the 

contrasting compatibilities of the highly compatible Os, Ir, and Ru (Ir-group platinum-

group elements, or I-PGE), as compared to the slightly compatible to moderately 

incompatible Pt, Pd (Pt-group PGEs, or P-PGE), and Re  make HSE particularly sensitive 

tracers of melt-depletion and melt-rock interactions (Allégre and Luck, 1980; Alard et al., 

2000; Pearson et al., 2004; Rudnick and Walker, 2009). However, metasomatic processes 

tend to strongly affect the P-PGE and can even modify the relative and absolute abundances 

of the I-PGE (Lorand et al., 2013).  

The utility of HSEs is enhanced by their association with the Re-Os (187Re  187Os + β-

; t1/2 ≈ 41.6 Ga) radiogenic isotope system (Walker et al., 1989). The difference between 

bulk partition coefficients of Re and Os forms the basis of the Re-Os chronometer. During 

partial melting of mantle peridotites, the moderately incompatible behavior of Re, but 

compatible behavior of Os, typically results in the formation of a melt with high Re/Os and 

a residue with low Re/Os, relative to the original mantle source. Residual rocks that have 

experienced significant melt removal, evolve to less radiogenic 187Os/188Os, compared to 

mantle evolving along a chondritic growth trajectory typical of the bulk mantle. Based on 

this, minimum Re-depletion (TRD) model ages can be calculated for refractory samples 

(Walker et al., 1989). These model ages are made with the assumption that all Re originally 

present in the sample was removed at the time of initial melting. TRD model ages were 

previously defined in an attempt to overcome the problem of excess Re in peridotitic 

mantle xenoliths caused by infiltration of Re enriched host magmas. Rhenium addition at 
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the time of xenolith capture, often causes Re-Os mantle model ages (TMA; (Allégre and 

Luck, 1980); analogous to Sm-Nd TCHUR and TDM model age calculations (DePaolo and 

Wasserburg, 1976)) to overestimate the time of melt depletion. To account for Re 

contamination during eruption, the Os isotopic compositions of the sample and chondritic 

reference in the TRD equation (Walker et al., 1989), are calculated back to the emplacement 

age of the xenolith host. Afterwards, the TRD calculation is performed.  

At high degrees of melt extraction, the Re concentrations of melt residues will approach 

zero, resulting in TRD = TMA. When melt extraction is less extreme, and leaves the residual 

mantle peridotites with a non-negligible concentration of Re, or if Re was introduced to 

the sample long prior to transport to the surface, TRD model ages will be less than TMA, and 

underestimate the timing of melt depletion in the sample (Carlson and Moore, 2004; 

Carlson, 2005).  

 

Rhenium-depletion models ages can be applied to mantle peridotites using the equation 

above (Eq. 1) with the eruption age (EA) representing the 187Os/188Os ratio of the sample, 

at the time of the accepted age of the ophiolite (LOC ~497 Ma; JOC ~ 1.95 Ga). The Os 

isotopic composition of the samples is then matched to a chondritic mantle reference value 

(Shirey & Walker, 1998).  

TRD model ages are resistant to high-temperature, open-system behaviors because the 

system is based on the removal of the parent isotope Re, rather than the ingrowth of the 

radiogenic daughter Os. These ages can be interpreted as the minimum estimate for the true 

melt depletion age for a sample, and can be useful for constraining the timing of initial 

melting events in small portions of the mantle (Rudnick & Walker, 2009).  

         187Os/188Os chond ‐ 187Os/188Os sample(EA) 

                          187Re/188Os chond  
+ 1  TRD = 1/ ln Eq. 1.  
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2. SAMPLES 
2.1. Regional geology 

2.1.1. Leka 

The National Geological Monument of Norway, the Leka Ophiolite Complex (LOC), 

located on the island of Leka (Dahl et al., 2011; ~90 km2), Nord Trøndelag, at ~65oN (Fig. 

3), is a well-preserved, well-exposed section of early Paleozoic (Iapetus) oceanic 

lithosphere. The LOC is one of the most completely preserved ophiolites in the 

Scandinavian Caledonides (Prestvik, 1972) and contains all of the principle components of 

Figure 3. Sketch map illustrating the regional (geographical) and tectonic setting for the Leka Ophiolite 

Complex. The harzburgite unit (with dunite) comprises the mantle section. The layered dunite and 

wehrlite is the lower crustal layered series, or dunite transition zone. The dashed lines in the main panel 

represent faulted contacts. Stars represent approximate areas of grid sampling in the lower crustal 

Kvaløya section and the mantle section at Kvaløya-moen (adapted from O’Driscoll et al., 2015). 
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a classic Penrose ophiolite sequence (Fig. 2). These units are present within various blocks 

separated by faults.  

The depleted upper mantle complex of the LOC was dubbed ‘mantle tectonite’ by Furnes 

et al. (1988). The unit is comprised of harzburgite with minor dunite and crops out over the 

entire northwestern part of the island, becoming progressively richer in dunite eastward 

where it begins to transition into the lower crustal ‘layered series’ (Furnes et al., 1988) of 

dunite and wehrlite. The petrological Moho is exposed ~2 km west of Lauvhatten (Fig. 3) 

and is defined here as the boundary between the mantle and lower crust, or the base of the 

Moho transition zone. The upper mantle section manifests dunite in the form of lenses and 

sheets that are typically oriented parallel to the Moho, and are described in detail by Maaløe 

(2005). The sequence contains numerous podiform chromitite (≥60% Cr-spinel by volume; 

O’Driscoll et al., 2015), as well as layers of pyroxene-rich rocks. Websterite and reddish-

weathered orthopyroxenite have also been found as pods, lenses, and as meter-thick 

channels to centimeter-thick veins in both dunite and harzburgite. 

Layered gabbros are featured in the southern part of the island and form a tectonic contact 

with the harzburgite upper mantle complex near Lauvhatten. The LOC gabbro sequences 

were described in detail by Furnes et al., (1988). Gabbros in the sequence are layered on 

three scales (>100 m, 10-50 m, and 30-10 cm) with ultramafic units as well as cyclic units 

of dunite-wehrlite-gabbro. Furnes et al., (1988) described the clinopyroxene and olivine of 

the gabbros as totally altered to uralitic amphibole and serpentine, respectively. The 

plagioclase is saussuritized. Despite the heavy alteration, the gabbroic texture is still 

preserved (Furnes et al., 1988). Upwards in the sequence the layering grades into a finely 

laminated and vari-textured metagabbro apparent near Madsøya (Fig. 3).  
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Metabasaltic dikes, interlayered with the dunite/wehrlite are located in the southwest and 

first appear in the upper part of the laminated/vari-textured variety of metagabbro sequence 

(Furnes et al., 1992). The metabasaltic dikes were described by Furnes et al., (1992) as 

irregular and become more consistent in form and trend higher in the stratigraphy. The dike 

length is typically in the tens of meters, while thickness varies from a few centimeters to 

over 10 m (Furnes et al., 1988). Metabasaltic dike and layered gabbro sequences both 

feature minor intrusions of quartz-keratophyre and plagiogranite ranging from (millimeter 

thick) veins to bodies >100m in diameter (Furnes et al., 1988).  

Pillow basalts and volcaniclastics crop out at three localities within the LOC; Madsøya, 

Langdraget, and on the nearby island of Storøya off the northern coast. While their 

separation prohibits the observation of their stratigraphic relations, Furnes et al. (1988) 

suggested that the time sequences for the lavas (from oldest to youngest) are Madsøya, 

Langdraget, Storøya. 

The time of formation for the mafic and ultramafic complexes of the LOC is constrained 

to 497±2 Ma, from U-Pb dating of zircons in associated trondhjemite (Dunning and 

Pedersen, 1998), while obduction likely occurred during the Taconic-Grampian orogeny 

(~470 Ma; Titus et al., 2002). The mantle rocks of the LOC are thought to reflect multiple 

stages of melt depletion, melt migration, and metasomatic processes that acted upon the 

oceanic mantle through time, with a final fluid-assisted melt extraction in a supra-

subduction zone (SSZ) setting prior to obduction (Furnes et al., 1988, 1992). 
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2.1.2. Jormua 

The Jormua ophiolite complex (JOC) is a well-preserved section of early-Proterozoic 

oceanic lithosphere located in the northernmost section of a chain of ophiolitic rocks found 

in northeastern Finland (Tsuru et al., 2000; ~20 x 40 km2 area). The JOC also contains all 

of the major components of a Penrose-definition ophiolite: (1) tectonite peridotites; (2) 

cumulate gabbros; (3) a sheeted dyke complex; (4) a unit of massive and pillow lavas. 

However, all portions are partially dismembered. Detailed petrological descriptions of each 

rock type are provided in Kontinen (1987) and Peltonen et al. (1996; 1998). The peridotitic 

mantle section of the JOC has been previously described as heavily serpentinized and 

metamorphosed, with no primary minerals preserved, with the exception of some partly 

recrystallized chromite grains (Peltonen et al., 1996).  

The JOC is bordered by Archean craton on the east, a Proterozoic Svecofennian island 

arc collage to the west (2.1 to 1.9 Ga), with a narrow sliver of Archean craton between the 

JOC and Sveconfennides (Peltonen et al., 1996). U-Pb dating of zircons from an associated 

gabbroic dike suggest the age of JOC continental rifting within an Archean craton to be 

constrained to 1953±2 Ma (Peltonen et al., 1996). The JOC was later obducted and 

emplaced into the current location during collision between the Archean craton and the 

Svecofennian island arc, ~50 Ma after rifting initiation (Peltonen et al., 1998).  

The Jormua complex is divided into three tectonic blocks largely composed of 

serpentinite (20 × 40 km2 area) termed the Antinmäki, Hannustranta, and Lehmivaara 

blocks (Tsuru et al., 2000) (Fig. 4). Peltonen et al., (1996; 1998) suggested that the three 

tectonic blocks of the JOC form a composite body representing portions of a tectonic 

setting related to continental break-up. The eastern Antinmäki block represents Early 
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Proterozoic oceanic lithosphere and resembles a typical ophiolite, with enriched (E)-

MORB sheeted dikes, gabbros, pillow lavas, mantle harzburgites/serpentinites, and 

tectonites with podiform chromitites. The western Hannustranta block represents ancient 

subcontinental lithospheric mantle (SCLM), absent of oceanic crustal rocks, and instead 

features mantle tectonics and serpentinites extensively veined by a suite of alkaline 

(hornblendite-garnetite-carbonatite veins and clinopyroxene cumulate) dikes. Zircon 

dating of the clinopyroxene cumulate dikes that intrude the western Hannusranta 

Figure 4. Geologic map of the Jormua Ophiolite Complex. (JOC). The JOC is divided into three tectonic 

blocks: The easternmost Antinmäki block is commonly associated with the occurrence of crustal units and 

is divided into the northern and eastern sections (Peltonen et al., 1998). The two slivers that extending to the 

southwest are the divided into the central Lehmivaara block and the western Hamusranta block (Tsuru et al., 

2000). The bold dashed line indicates the approximate location of the tectonic boundary between the Archean 

craton and the Proterozoic Svecofennian arc complex (Peltonen et al., 1998). The two dotted lines indicate 

the divides between the three blocks (Tsuru et al., 2000). Stars represent approximate areas of grid and 

random sampling in the respective blocks (Map adapted from Geological Survey of Finland). 
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peridotites yield 207Pb/206Pb ages between 3106±3 and 2718±12 Ma and suggest that most 

of JOC subcontinental mantle peridotites are Archean (Peltonen et al., 2003). The 

Lehmivaara block is thought to represent a transition between these two types of 

lithosphere (Peltonen et al., 1996), and is largely comprised of serpentinite. Because of its 

age and exposed mantle section, data for the JOC may shed light on the secular evolution 

of the upper mantle and ophiolite forming processes over the past two billion years.   
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2.2. Sample method and descriptions 

The ultramafic samples studied here (Fig. 5) were selected from more than 100 rocks 

collected during July, 2015. The aims of the sampling campaign for this study at both the 

LOC and JOC were twofold: to assess kilometer scale heterogeneity through sampling of 

different portions of the upper mantle, as well as to investigate small-scale (e.g., meter 

scale) chemical and isotopic heterogeneities. To assess small-scale heterogeneities, grid 

sampling, a technique new to these complexes, was conducted at four locations in the LOC 

(Fig. 3), and three locations in the Antinm ̈ki block in the JOC (Fig. 4). Grid sizes were 3 

m x 3 m for the LOC (Fig. 6) and one location for the JOC. Two grid locations in the JOC 

were 1.5 m x 1.5 m. The JOC grids were limited in size due to limited outcrop exposure. 

Grids were divided into nine 0.5 - 1 m2 squares and one sample per lithology was taken, if 

possible, from the center of each square.  

Most LOC samples were collected in the northern harzburgite mantle section containing 

abundant dunite pods and channels, as well as from just below the petrological Moho, ~2 

km west of Lauvhatten (Fig. 3, 6A). Some LOC mantle peridotites also hosted pyroxenite 

in the form of centimeter-thick veins to meter-thick dikes, and included orthopyroxenites 

and websterites. Pyroxenite veins usually strike parallel to each other and to the layering 

(Fig. 6C), but it’s not uncommon to observe them cross cutting each other.  The 

predominant lithologies for LOC grid sampling were harzburgite, followed by dunite and 

pyroxenite (Fig. 6E), while lithologies for JOC grid sampling were mostly serpentinite/ 

harzburgite (Fig. 6F). In addition, random sampling of the mantle was conducted around 

the grid locations, as well as in the central Lehmivaara and western Hannusranta blocks of 

the JOC. Minor sampling of the other ophiolite components was conducted as well at both 
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complexes. GPS data for all samples and field descriptions are provided in the 

supplementary tables. 

Figure 5. Ternary plot displaying the petrological definition of ultramafic rocks examined 

in this study (from Winter, 2010). Highlighted areas indicate lithologies observed in this 

study. 
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Figure 6. Field Photographs of LOC and JOC mantle and lower crustal lithologies. A. Photo taken at the 

petrological Moho displaying the excellent exposure of the LOC mantle section. Picnic table/viewing area 

marking the Moho is seen on the far left. B. Multiple chromitite seams (black) in dunite running horizontal 

with multiple vertical faults. Pen for scale. C. Multiple weathered orthopyroxenite seams in dunite. Top of 

boot for scale. D. Layered harzburgite-wherlite, the structure of the wherlite resembles partial boudinage. Top 

of boot for scale. E. Example of grid sampling method for LOC LK15-15 harzburgite grid shown in Fig. 3 by 

a yellow star. Grid dimensions are 3 m x 3 m and divided into 9 x 1 m2 grid squares.  F. Example of grid 

sampling method for JOC JU15-18 harzburgite/ serpentinite grid shown in Fig. 4 by a purple star. Grid 

dimension are 1.5 m x 1.5 m due to exposure limitations. Drill cores were taken from each JOC grid square.  
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2.2.1. Leka grids 

The two LOC grids examined in detail by this study are LK15-4 and LK15-10 from the 

northern harzburgite mantle section of Leka. They are shown in Fig. 3 by green and blue 

stars, respectively. The LK15-4 grid location (Fig. 7A) is a 3 m x 3 m square located in 

Kvaløya-moen  and samples 7 harzburgites, 1 harzburgite hosting a ~1 cm orthopyroxenite 

Figure 7. (left) 3 m x 3 m LOC grids located in the harzburgite mantle section in northern 

Leka, Norway. Grids are divided into 9 1 m2 grid squares. LK15-4 (A) and LK15-10 (B) 

are shown in Fig. 3 by the green and blue stars respectively. Colored Xs indicate 

approximate sample locations within each labeled grid square.  
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vein (LK15-4 A3 Harz), 3 dunites, and 1 harzburgite/dunite contact (LK15-4 C3 

Dun/Harz). The LK15-10 grid location (Fig. 7B) is a 3 m x 3 m square located west of 

Steins, approximately 6 km southwest of LK15-4 in Kvaløya-moen. The LK15-10 grid 

samples are predominately harzburgite (n = 9), but 1 sample from a ~0.5 m websterite 

channel running diagonally through the grid space is also examined.     

Samples from grid LK15-3 are also partially examined in this study. Grid LK15-3 is 

located in the harzburgite mantle section of Leka near the petrological Moho, and is shown 

in Fig. 3 by the red star. The LK15-3 grid location (Fig. 7C) is a 3 m x 3 m square and 

samples 9 harzburgites and one ~0.5 m orthopyroxenite channel, adjacent to the grid.  

Figure 7C. (right) 3 m x 3 m LOC grids located in the harzburgite mantle section in 

northern Leka, Norway. Grids are divided into 9 1 m2 grid squares. LK15-3 (C) is 

shown in Fig. 3 by the red star Colored Xs indicate approximate sample locations 

within each labeled grid square.  

 

C 
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2.2.2. LOC orthopyroxenite subdivision 

To investigate the role of pyroxenites in inducing large isotopic changes at a small scale 

in peridotites (Borghini et al., 2011; Rampone et al., 2011; Rampone & Hofmann, 2012), 

2 harzburgites hosting >1 cm orthopyroxenite veins were sampled from grid location 

LK15-4 and at location LK15-9, both located in the LOC harzburgite mantle section at 

Kvaløya-moen (Fig. 3). Each harzburgite sample was sub-divided into 1 cm slabs parallel 

to the hosted orthopyroxenite vein (Fig. 8). Each sub-division was later processed and 

analyzed separately to study the effects of orthopyroxenite vein formation on their host 

harzburgites, at the cm-scale.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Sample photos of LOC 

orthopyroxenite bearing harzburgites 

from the harzburgite mantle section at 

Kvaløya-moen. Colored boxes indicate 

the approximate location of the 

orthopyroxenite vein. 

LK15‐4 A3 
2 cm 

LK15‐9A 
2 cm 
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2.2.3. Jormua grids 

The two JOC grids examined in detail by this study are JU15-16 and JU15-18 from the 

Antinmäki block. Their locations are shown in Fig. 4 by yellow and dark purple stars, 

respectively. The JU15-16 grid location (Fig. 9A) is a   3 m x 3 m square sampling 9 

harzburgites drill cores. The JU15-18 grid location (Fig. 9B) is a 1.5 m x 1.5 m square 

located ~3 km northwest of JU15-16, and also samples 9 harzburgite drill cores. 

Additionally, the JU15-18 grid squares hosts a chromite seam that is sampled in grid square 

B2.       

Figure 9. 3 m x 3 m and 

1.5 m x 1.5 m JOC grids 

located in the eastern 

Antinmäki block near 

Kajaani, Finland. Grids 

are divided into 9 0.5-1 

m2 grid squares. JU15-

16 (A) and JU15-18 (B) 

are shown in Fig. 4 by 

the yellow and purple 

stars respectively. 

Colored Xs indicate 

approximate sample 

locations within each 

labeled grid square. 
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3. Analytical methods 
3.1. Sample preparation  

Samples were cut using a rock saw with a diamond studded blade and water as lubricant, 

in order to remove weathered surfaces. Rock billets were cut during this process for thin 

sections as well. Sawn surfaces were sanded using 120 grit sandpaper in order to remove 

contaminants introduced during cutting. Sanded rock slabs were then processed into cm-

sized chips using a ceramic jaw crusher.  

The chips were powdered, ~30 g at a time, using a ceramic swing mill shatterbox, and 

ground more finely using a ceramic disk mill, reducing the grain size to ~10 microns. Both 

powdering devices were cleaned with quartz sand and rinsed with distilled water prior to 

the processing of each sample to reduce previous contaminants. The overall weight of each 

sample processed was around 90 grams in order to ensure a representative sampling of the 

rock, with ~1.5 g of powder used for each analysis. Because HSE in terrestrial rocks are 

often hosted in trace phases, including sulfides and alloys, rather than major silicates, HSE 

can be heterogeneously distributed within a sample. This “nugget-effect” can lead to poor 

measurement reproducibility with smaller sample sizes (Meisel et al., 2001). 
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3.2. Major and trace element analysis 

Whole-rock major element concentrations were obtained by X-ray fluorescence (XRF) 

analysis using a PANalytical 2404 X-ray fluorescence vacuum spectrometer at Franklin 

and Marshall College, Lancaster, PA, following methods outlined in Boyd and Mertzman 

(1987) and Metzman (2000). Samples were heated to determine loss on ignition (LOI) prior 

to the rock powder being mixed with lithium tetraborate (Li2B4O7), placed in a platinum 

crucible and heated with a Meker burner until molten. The molten material was transferred 

to a platinum casting dish and quenched. This procedure produces a glass disk that is used 

for XRF analysis. Typical accuracy of the analyses was ~1% for major elements for 

concentrations >0.5%. Major and minor elements in concentrations <0.5% had an accuracy 

of ~5%. Working curves for each element were determined by analyzing geochemical rock 

standards outlined in Abbey (1983), Govindaraju (1994), and Mertzman (2000). The 

compositions of Fe3+ and Fe2+ were calculated from the total measured FeO based on 

stoichiometry (Droop, 1987). Reproducibility (2) of major elements, based on recent 

repeated analyses of samples were: 1.32% for SiO2, 1.80% for Al2O3, 0.87% for Fe2O3T, 

0.96% for MgO, 0.10% for CaO. 

Whole-rock trace element abundances were measured at Scripps Institution of 

Oceanography (SIO) using methods outlined in Day et al., (2014) and O’Driscoll et al., 

(2015). Samples were analyzed together with peridotite and basalt rock standards (BHVO-

2, BCR-2, BIR-1a, HARZ-01), as well as total-procedural blanks. In brief, 100 mg sample 

powders were digested in a 1:4 mixture of concentrated Optima-grade HNO3:HF for >72 

h at 150oC on a hotplate. After drying down and sequential HNO3 dry downs to break down 

fluorides, clear sample solutions were diluted by a factor of 5000 in 2% HNO3 and doped 
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with a 1 ppb In solution, in order to monitor instrumental drift. Due to the low rare earth 

element (REE) abundances in some peridotites in the LOC, a concentrated solution diluted 

by a factor of 1000 was measured specifically for the REE. Sample and standard solutions 

were measured in standard mode on a Thermo Scientific iCAP Qc quadrupole inductively 

coupled plasma mass spectrometry (ICP-MS) system at SIO. Reproducibility (2) of 

laboratory standards was generally ~2-4%. 
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3.3. Electron microprobe analysis 

30 micron thick thin sections were made and selected relict olivines, where present, (n=5 

per section, 2 points per grain) were analyzed using the JXA-8900 SuperProbe electron 

probe microanalyzer (EPMA), at the University of Maryland, for major/minor element data 

for LOC peridotites. Operating conditions for olivine analysis were as follows: accelerating 

voltage of 15 kV, beam current of 50 nA, 10 m beam diameter, peak/background times 

for Ni, Cr, Ca, Fe of 30.5 seconds and for Ti, Mn, Al, Mg, and Si of 20.5 seconds.  

The primary standards used for olivine analyses were as follows: San Carlos Olivine (Fe, 

Mg, Si, and Ni), Bushveld Chromite (Cr), Illmenite (Mn), and Kakanui Hornblende (Ca, 

Al, and Si). Statistical uncertainties (2), due to counting statistics were 1.5% for FeO, 

0.5% for MgO, 23% for MnO, 13% for NiO, 0.7% for SiO2. Concentrations for CaO, TiO2, 

Cr2O3, and Al2O3 were generally below detection limits. Peridotites from the JOC contain 

no relict olivines, due to serpentinization.  

  



     
 

25 | P a g e  
 

3.4. Re-Os isotopic and HSE analysis 

Chemical separation of Os and the other HSE was conducted at the Isotope Geochemistry 

Laboratory (IGL), University of Maryland, College Park, MD (USA), using methods 

outlined in Becker et al., (2006) and O’Driscoll et al., (2015). Between 0.75-1.5 g of whole 

rock powder, 5 mL of 2x Os-purged conc. HNO3 1x Quartz Distilled (QD) 1 x Teflon 

Distilled (TD), 4mL conc. HCl 1xQD 1xTD, and appropriate amounts of mixed 185Re-190Os 

and 99Ru, 105Pd, 191Ir, and 194Pt spikes were sealed in double internally-cleaned 25 mL 

PyrexTM borosilicate glass Carius tubes (Shirey and Walker, 1995). Sealed tubes were 

heated to ~265oC for >72 h. After digestion, Os was extracted from the acid solution using 

CCl4 solvent extraction and back-extracted into HBr (Cohen and Waters, 1996). Osmium 

was then purified via micro-distillation technique (Birck et al., 1997). Rhenium, Ru, Ir, Pt, 

and Pd were sequentially separated and purified using anion exchange chromatography 

using pre-cleaned AG 1x8 (100-200 mesh) anion exchange resin, following a modified 

protocol of Rehkämper & Halliday (1997). Average total procedural blanks (n=7) were (in 

pg) 1.4±0.7 Os, 4.5±4.2 Re, 13.2±7.6 Ru, 0.2±0.1 Ir, 225±77 Pt, and 4.3±3.2 Pd. Total 

analytical blank (TAB) for dunites and harzburgite constituted less than 0.1% for Os, <1.0-

64.0% for Re (average ~10%), <1.0 % for Ru, <0.1% for Ir, <12.5% for Pt, and <1.0% for 

Pd of the total element analyzed. High blank contributions for Re of as much as 64% is due 

to the very low concentrations of Re in some LOC and JOC peridotite samples. While 

modified cleaning techniques for borosilicate Carius tubes (Puchtel et al., 2008) were used 

to lower blanks for Pt, high-Pt blank contributions is likely from contributions from the 

tubes during sample digestion.    
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Purified Os was analyzed by negative thermal ionization mass spectrometry (N-TIMS) 

using an electron multiplier (SEM) detector of a ThermoFisher Triton® mass spectrometer 

at the IGL, University of Maryland. External precision for 187Os/188Os for measurements 

of 0.35-0.7 ng loads of UMCP Johnson-Matthey Os laboratory standard, using electron 

multiplier, was ±0.05% (0.11373±6; n=15, 2).  Rhenium, Pd, Pt, Ir, and Ru concentrations 

were determined using a Nu Plasma MC-ICP-MS, in a static mode using faraday cups or 

ion-counter detectors. Isotopic mass-fractionation was monitored and corrected for by 

alternating samples and standards. Internal precision (2) for isotope ratios of standards 

was better than ±2% for Re, Ir, Pt, Pd and Ru. Reproducibility (2) for Os concentration 

and 187Os/188Os isotopic composition via TIMS, was 38 to 56% and to 0.25 to 0.41%, 

respectively. Reproducibility (2) for HSE concentrations using MC-ICP-MS, based on 

repeat analyses of 4 samples were: 3.3 to 66% for Re, 3.6 to 70% for Ru, 2.1 to 18% for Ir, 

4.4 to 77% for Pt, and 1.0 to 83% for Pd. The poor reproducibility for HSE concentrations 

is most likely due to the heterogeneous distribution of the HSE hosted in sulfides in the 

peridotite samples, termed “the nugget effect” (Meisel et al., 2001), coupled with 

incomplete homogenization of processed sample powders. 
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4. Results 
4.1. Major elements 

4.1.1. Leka peridotites and pyroxenites 

Major element data for LOC samples are presented in Table 1. The LOC harzburgites 

and dunites have compositions that are similar to previously published data on LOC 

peridotites (e.g., Maaløe, 2005; O’Driscoll et al., 2015). The compositions of the peridotites 

are also similar to other lapetus oceanic mantle peridotites from the ~492 Ma Shetland 

Ophiolite Complex (SOC, O’Driscoll et al., 2012), and plot within a compositional range 

common to abyssal peridotites, and peridotites associated with other ophiolites (Fig. 10A 

and B). The LOI for the LOC samples is between 3.5 and 11.8 wt %; while averaged LOI 

of peridotites from grid location LK15-4 (10.2 wt %), is higher than averaged LOI of 

peridotites from the LK15-10 grid (8.3 wt %), ~6 km away (Fig. 3). Whole-rock (WR) 

concentrations of Al2O3 (anhydrous corrected, wt %) range between 0.2 and 1.6 wt % for 

all LOC samples. WR concentrations of LOC harzburgites show general negative 

correlations of Al2O3 and SiO2 with MgO (Fig. 10A and B). Lower Al2O3 and higher MgO 

concentrations observed in LOC peridotites, relative to primitive mantle (PM) estimates 

(McDonough & Sun, 1995), are broadly consistent with prior melt depletion (Fig. 10A). 

Averaged Mg# ((Mg/(Mg+Fe))*100) of grids LK15-4 and LK15-10 are 91.3 and 91.7, 

respectively.   
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Figure 10. Plots of whole-rock XRF major element data; A. 

Al2O3 vs MgO B. SiO2 vs MgO (all values plotted wt % 

anhydrous). Shown for comparison are whole rock data for 

Leka peridotites (O’Driscoll et al., 2015), Jormua 

serpentinites (Peltonen et al., 1998), Horoman peridotites 

(Saal et al., 2000), peridotites from the Taitao ophiolite 

(Schulte et al., 2009), abyssal peridotites (Brandon et al., 

2000), and Primitive Mantle (PM) estimates (McDonough 

and Sun, 1995). Shown in A are general trends for the 

effects of peridotite melt depletion (purple) and 

serpentinization (green).  

A 
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B 

Figure 10. Plots of whole-rock XRF major element data; 

A. Al2O3 vs MgO B. SiO2 vs MgO (all values plotted wt 

% anhydrous). Shown for comparison are whole rock data 

for Leka peridotites (O’Driscoll et al., 2015), Jormua 

serpentinites (Peltonen et al., 1998), Horoman peridotites 

(Saal et al., 2000), peridotites from the Taitao ophiolite 

(Schulte et al., 2009), abyssal peridotites (Brandon et al., 

2000), and Primitive Mantle (PM) estimates (McDonough 

and Sun, 1995). Shown in A are general trends for the 

effects of peridotite melt depletion (purple) and 

serpentinization (green).  
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4.1.2. Jormua serpentinites 

Major element data for JOC samples are presented in Table 1. The JOC serpentinites have 

compositions that are similar to previously published data on JOC peridotites (e.g., 

Peltonen et al., 1998; Tsuru et al., 2000). JOC samples also plot within a compositional 

range, common to abyssal peridotites, and peridotites associated with other ophiolites (Fig. 

7A). The LOI for all JOC samples fall between 11.0 and 11.4 wt %. Whole-rock (WR) 

concentrations of Al2O3 (anhydrous corrected, wt %) range from 1.0 to 1.9 wt % for all 

JOC samples.  WR concentrations of JOC serpentinites show general negative correlations 

of Al2O3 and SiO2 with MgO (Fig. 10A and B). However, serpentinites from individual 

grid locations (e.g., JU15-16 and JU15-18) show positive correlations of SiO2 with MgO. 

Samples from grid location JU15-16 also show a positive correlation of Al2O3 with MgO, 

while JU15-18 grid samples show a negative correlation for these elements.  

As with Leka peridotites, lower Al2O3 and higher MgO concentrations observed in JOC 

serpentinites, relative to primitive mantle (PM) estimates (McDonough & Sun, 1995), are 

broadly consistent with prior melt depletion (Fig. 10A). Plotted values of Al2O3 and MgO 

(anhydrous corrected, wt %) for JOC grid locations JU15-16 and JU15-18 (Fig. 10A), show 

depletions in MgO of JU15-18 samples compared to JU15-16 samples (~3 km away; Fig. 

4), yet display similar ranges of Al2O3. Averaged Mg# of grids JU15-16 and JU15-18 are 

91.1 and 89.9, respectively.  
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4.2. Minor and trace elements 
4.2.1. Leka peridotites and pyroxenites  

Lithophile, trace element data for LOC samples are presented in Table 2. Primitive 

mantle normalized (McDonough & Sun, 1995) trace element abundances for LK15-4, 

LK15-10, and LK15-3 grid samples, are shown in Fig. 11A, B, and C respectively. In 

general, LOC samples are depleted in all incompatible trace elements relative to PM 

estimates, except for: B, Cr, and Ba, with enrichments in W for LK15-10 grid samples. 

LOC samples are also depleted in Ti, Pb, and Th (relative to other trace elements). Many 

LOC harzburgites and dunites exhibit U-shaped rare earth element (REE) patterns with 

negative gradients from light REE (LREE) to middle REE (MREE) and positive gradients 

from MREE to heavy REE (HREE). This is more pronounced in the LK15-4 grid samples. 

Dunites in LK15-4 show greater overall enrichment in HREE relative to LREE in 

comparison to most harzburgites (Fig. 11A). PM-normalized REE values of LK15-10 grid 

samples (1 to 10-2 x PM; Fig. 11B), are in general, nearly an order of magnitude higher 

than LK15-4 grid samples (~10-1 to 10-3 x PM; Fig. 11A) and show overall flatter 

normalized REE patterns. Several harzburgites in both LK15-4 and LK15-10 grids, exhibit 

significant positive Eu anomalies, despite having no plagioclase in the LOC rocks. PM-

normalized REE values of LK15-3 grid samples (~1 to 10-2 x PM, Fig. 11C) show broadly 

homogeneous REE patterns with positive gradients from LREE to HREE.  

4.2.2. Jormua serpentinites 

Trace element data for JOC samples are presented in Table 2. Primitive mantle 

normalized (McDonough & Sun, 1995) trace element abundances for JU15-16 and JU15-

18 grid samples, are shown in Fig. 11D and E, respectively. In comparison to LOC 

samples, JOC serpentinites show less variability between samples at individual grid 
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locations. Samples from grid location JU15-16 are in general, depleted in incompatible 

trace elements relative to PM estimates (Fig. 11D). Most serpentinites from JU15-16, 

however, are enriched in Li and B, yet have variable depletions in Rb, Cs, and Pb (Table 

2 and Fig. 11D). Additionally, JU15-16 serpentinites show fractionation of Cu between 

samples (some enriched, some depleted). Some samples from LOC grid location LK15-10, 

display similar trends of Cu between samples (Fig. 11B), but not as pronounced as JU15-

16 samples. Most JU15-16 grid samples are characterized by HREE enrichment, relative 

to LREE, and all are depleted relative to PM estimates (<1 to >10-1 x PM). JU15-16 

serpentinites also show both significant positive and negative Eu anomalies.  

Unlike JU15-16 grid samples, samples from grid location JU15-18 are in general, more 

enriched in incompatible trace elements relative to JU15-16 grid samples (Fig. 11E). JU15-

18 serpentinites show variable depletions in Sr as well as normalized concentrations of Ba 

that range from enriched to depleted. Trace element data for grid sample JU15-18 B2 show 

strong enrichments in Ti, Zr, Nb, Hf, Ta, and U; and depletions in Cr, Co, Nu, and Cu, 

relative to other JU15-18 grid serpentinites. REE concentrations of JU15-18 serpentinites 

are enriched relative to primitive mantle (~10 to 1 x PM), and exhibit overall negative 

gradients from LREE to HREE, atypical of serpentinized peridotites. The REE patterns 

displayed by JU15-18 samples suggest that these samples do not represent simple melt 

residues.  
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4.3. Olivine compositions 

Averaged electron microprobe data for olivines in LOC peridotites are shown in Table 

3. With the exception of LK15-10 C2, all of the harzburgites and dunites contain relict 

olivine grains with overall low degrees of serpentinization (20-40%). LK15-10 samples 

show greater variation (2SD) between individual olivine grains in all major elements in 

comparison to LK15-4 samples. The Mg# of olivine grains vary from 90.9 to 92.8 within 

the two grids. There are weak positive correlations between the average Mg# of olivine 

grains and the WR Mg# (r2 = 0.45) (Fig. 12) for LK15-4 harzburgites. No relict olivine 

grains are preserved for JOC serpentinites.  

 

 

 

Figure 12. Plot of averaged Mg# in relict olivine grains vs. Mg# of whole rock LOC 

peridotite. Y-axis error bars show Mg# variation (2SD) among olivine grains within each 

sample. Symbols for LK15-4 and LK15-10 grid samples are the same as previous plots. 
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4.4. HSEs and Re-Os isotopic systematics 
4.4.1. Leka peridotites and pyroxenites 

The HSE concentration data for LOC samples are provided in Table 4. The average 

abundances for LOC harzburgites for Os, Ir, Ru, Pt, Pd, and Re are 4.1, 3.0, 4.9, 9.3, 6.0, 

and 0.03 ppb, respectively (n = 23). Average LOC harzburgite abundances are in good 

agreement with previously analyzed LOC harzburgites (O’Driscoll et al., 2015).  Current 

estimates for PM HSE abundances are (in ppb; 2SD) 3.9 ± 0.5 Os, 3.5 ± 0.4 Ir, 7.0 ± 0.9 

Ru, 7.6 ± 1.3 Pt, 7.1 ± 1.3 Pd, and 0.35 ± 0.6 Re (Becker et al., 2006). PM-normalized HSE 

abundances for LOC peridotites and pyroxenites are plotted in Fig. 13A-D, and are 

compared with previously analyzed peridotites from the Kvaløya-moen locale (O’Driscoll 

et al., 2015). Most HSE patterns for LOC peridotites are flat or have depletions relative to 

PM in the typically incompatible elements Pd and Re.  

The LOC dunites from grid location LK15-4 exhibit HSE patterns and concentrations 

similar to harzburgites from that location (Fig. 13A). Dunite sampled from a 0.5 m - thick 

channel (LK15-9C; Fig. 13C) are depleted in all of the HSE (10-1 to 10-2 x PM) and have 

the lowest Pt and Pd of all LOC samples examined (~0.1 ppb).  

The two LOC orthopyroxenites are characterized by flat HSE patterns for the I-PGE (Os, 

Ir, and Ru) and hump-shaped patterns for the P-PGE (Pt and Pd, plus Re), with enrichments 

in Pt (94.2 and 187.4 ppb) and Pd (47.1 and 80.8 ppb) (Table 4; Fig. 13D).  The HSE 

patterns of these orthopyroxenites show similar patterns to previously analyzed LOC 

orthopyroxenites (O’Driscoll et al., 2015). The HSE pattern of the websterite channel from 

grid location LK15-10, exhibits lower concentrations relative to PM of I-PGE (10-1 to 10-2 

x PM), and hump-shaped patterns and concentrations of P-PGE, similar to LOC 

orthopyroxenites.   
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Figure 13. Primitive mantle normalized (from Becker et al., 2006) HSE patterns for: (A) LK15-4 grid 

harzburgites and dunites, with a highlighted field for LOC peridotites from Kvaløya-moen, analyzed in 

O’Driscoll et al., (2015). Subchondritic Os sample, LK15-4 A3 Harz, is highlighted in red. (B) LK15-

10 grid harzburgites (the highlighted field is for LK15-4 grid peridotites from (A)). (C) LK15-9 non-

grid, harzburgites and dunites. (D) LOC orthopyroxenite, websterite (with highlighted fields for LK15-4 

and LK15-10 grid peridotites from (A) and (B), respectively). Grid locations are shown in Fig. 3, 

indicated by the colored stars.  Symbols are the same as previous figures. 
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Rhenium-Osmium isotopic data for all of the LOC samples are provided in Table 4. The 

187Re/188Os ratios for harzburgites range from 0.005 to 0.156 (average 187Re/188Os = 0.042, 

including duplicate analyses; n = 23); all are subchondritic (<0.4). The 187Re/188Os ratios 

of LOC dunites (most are from the LK15-4 grid area) are on average, higher and show 

more variation than adjacent harzburgites, ranging from 0.009 to 1.125 (average 

187Re/188Os = 0.331; n = 4). The two orthopyroxenites (LK15-4 A3(2) and LK15-3 Ortho) 

analyzed have 187Re/188Os ratios of 0.048 and 0.223. The observed ratios of these analyzed 

orthopyroxenites are lower than previously analyzed LOC orthopyroxenites by O’Driscoll 

et al., (2015) of 0.555 and 1.25. LK15-4 A3(2) (187Re/188Os = 0.048), an orthopyroxenite 

vein hosted in harzburgite, has the lowest 187Re/188Os (0.048) of all LOC orthopyroxenites 

analyzed.  

On a plot of 187Re/188Os versus 187Os/188Os, most LOC samples plot near a 497 Ma 

chondritic reference isochron (Fig. 14A and B). To describe the Os isotopic composition 

at a specific time, the term Os (T) is used, which describes the percentage difference 

between the Os isotopic composition of a sample at any time (T) and a chondritic reference 

value at that time:  

 

Samples with positive Os (T) are described as enriched or suprachondritic and imply long-

term elevated 187Re/188Os. Samples with negative Os (T) are described as depleted or 

subchondritic and imply long-term lowered 187Re/188Os (Shirey and Walker, 1998).  

Samples from grid location LK15-4 generally have suprachondritic initial Os (497 Ma) 

values and plot above the 497 Ma reference isochron. By contrast, samples from grid 

location LK15-10 have initial Os (497 Ma) values ranging from chondritic (e.g., A3) to 

         187Os/188Os sample (T) 

         187Os/188Os chond(T)  
– 1  x 100 Os =  Eq. 2.  
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subchondritic (e.g., C1) and plot on or below the 497 Ma reference isochron. For most 

samples, age corrections to obtain initial ratios are minor (Table 4), due to low Re/Os of 

LOC samples.  

Initial Os (497 Ma) values for harzburgites from grid location LK15-4 (Fig. 3; map) range 

from +2.2 to -2.1 (Table 4), while harzburgites from grid location LK15-10 range from 

+0.4 to -1.5. These values are shown in grid format in Fig. 15A and B. Replicate analyses 

of subchondritic sample LK15-4 A3 (Harz) (-2.1 and -1.9), are reproducible within 

analytical uncertainty (±0.2). It is noteworthy that sample LK15-4 A3 (Dunite), collected 

in the same 1 m2 grid square as LK15-4 A3 (Harz), exhibits a suprachondritic Os (497 Ma) 

of +1.5. By contrast, adjacent dunites and harzburgites collected in other LK15-4 grid 

squares, B1 and C3, show Os (497 Ma) values that fall within uncertainty of each other 

(Table 4; Fig. 15A). 
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Figure 14. Plots of 187Re/188Os vs 187Os/188Os for LOC harzburgites, dunites, orthopyroxenites, and websterites 

with a reference isochron of 497 Ma shown, calculated from chondritic values of Shirey & Walker (1998). The 

red box in (a) outlines low 187Re/188Os - 187Os/188Os samples shown in (b). In (b), squares with crosses indicate 

subchondritic harzburgites from grid square LK15-4 A3. Data from a previous LOC study (O’Driscoll et al., 

2015) are included for comparison.  

B 

A 
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 Figure 15. (left) 3 m x 3 m LOC grids located in the harzburgite 

mantle section in northern Leka, Norway. Grids are divided into 9 1 

m2 grid squares. LK15-4 (A) and LK15-10 (B) are shown in Fig. 3 

by the green and blue stars respectively. Colored Xs indicate 

approximate sample locations within each labeled grid square. Initial 

Os values for samples are shown adjacent to Xs and are calculated 

for 497Ma. Uncertainties on Os (497 Ma) = ± 0.2 
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4.2.2. Jormua serpentinites 

The HSE concentration data for JOC samples are provided in Table 4. The average 

abundances for JOC serpentinites for Os, Ir, Ru, Pt, Pd, and Re are 3.6, 3.7, 9.0, 5.5, 2.9, 

0.09 ppb, respectively (n = 26).  PM-normalized HSE abundances for JOC serpentinites 

are plotted in Fig. 16A and B. Most patterns for JOC peridotites are flat or have depletions 

relative to PM in the typically incompatible elements Pt, Pd, and Re. HSE abundances for 

grid location JU15-16 are slightly enriched in Os, Ir, Ru, Pt, and Pd, relative to grid JU15-

18 (~3 km away; Fig. 4), yet heavily depleted in Re (10-1 to 10-2 x PM) compared to JU15-

18 serpentinites (~0.5 x PM).  

Rhenium-Osmium isotopic data for all of the JOC samples are provided in Table 4. The 

187Re/188Os ratios for JOC serpentinites range from 0.012 to 0.739 (average 187Re/188Os = 

0.168; n = 26); most serpentinites are subchondritic (<0.4), with the exception of samples 

JU15-18 A1, A3, B1, and B3, from grid location JU15-18 (averaged grid 187Re/188Os = 

0.491; n= 9). By contrast, JU15-16 grid serpentinites (~3 km away; Fig. 4) exhibit much 

lower 187Re/188Os ratios (average 187Re/188Os = 0.028, including duplicate analyses; n = 10).  

On a plot of 187Re/188Os versus 187Os/188Os, most JOC samples plot above or below a 

1.95 Ga chondritic reference isochron (Fig. 17). Samples from grid location JU15-16 

generally have subchondritic initial Os (1.95 Ga) values (-0.7 to -3.0) and plot below the 1.95 

Ga reference isochron. In comparison, serpentinites from grid location JU15-18 show a 

much wider range with initial Os (1.95 Ga) values, ranging from +8.3 to -3.3, with 

suprachondritic (e.g., B2 and B3), chondritic (e.g., A3 and C1), to slightly subchondritic 

(e.g., A1 and C2) initial values. Initial Os (1.95 Ga) values for all JOC grid-sampled 

serpentinites are shown in grid format in Fig. 18.  
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Figure 16. Primitive mantle normalized (from Becker et al., 2006) HSE patterns for Jormua 

peridotites (A) JU15-16 grid peridotites, the highlighted purple field is for JU15-18 grid peridotites 

from (B). (B) JU15-18 grid peridotites, the yellow field is for JU15-16 grid peridotites from (A)). 

Suprachondritic Os sample, JU15-18 B2 (+8.3), is circled in red, while subchondritic Os sample, 

JU15-18 C2 (-3.3), is circled in green. Grid locations are shown in Fig. 4, indicated by the colored 

stars. The highlighted blue field on both plots are non-grid JOC peridotite compositions from the 

Antinmäki block.    
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Figure 17. Plots of 187Re/188Os vs 187Os/188Os for 

JOC serpentinites with a reference isochron of 1.95 

Ga shown, calculated from chondritic values from 

Shirey & Walker (1998). Data from a previous JOC 

study (Tsuru et al., 2000) are included for 

comparison. Suprachondritic Os sample JU15-18 

B2 is circled in blue.  

JU15‐16 Grid Serpentinite 

JU15‐18 Grid Serpentinite 

Non Grid JOC Serpentinite 

JOC Serpentinite (Tsuru) 

Key to Symbols 
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Figure 18. 3 m x 3 m and 1.5 m x 1.5 m JOC grids located in the eastern Antinmäki 

block near Kajaani, Finland. Grids are divided into 9 0.5-1 m2 grid squares. JU15-16 

(A) and JU15-18 (B) are shown in Fig. 4 by the yellow and purple stars respectively. 

Colored Xs indicate approximate sample locations within each labeled grid square. 

Initial Os values for samples are shown adjacent to Xs and are calculated for 1.95 Ga. 

Uncertainties on Os (1.95 Ga) = ± 0.2. 
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5. Leka Discussion 
5.1. Melt depletion in LOC peridotites 

5.1.1. Major and trace element data 

Leka ophiolite complex peridotites are characterized by low Al2O3, relative to estimates 

for the PM and DMM (Fig. 10A). In previous studies (Snow and Dick, 1995), low Al2O3 

in oceanic peridotites has been interpreted to be a result of pervasive marine weathering 

and partial melting. Pervasive marine weathering of peridotites is often accompanied by 

high degrees of serpentinization and major losses in MgO. For LOC peridotites, marine 

alteration as an explanation for low WR Al2O3 is unlikely, as neither of these features are 

observed. Whole-rock concentrations of Al2O3 and MgO, are instead interpreted to be 

dominated by melt depletion. Consistent with this interpretation, they plot on a general 

melt depletion trend (Fig. 10A). Based on this trend, the lower concentrations of Al2O3 and 

higher concentrations of MgO, provide evidence for higher degrees of melt depletion in 

LK15-4 samples, relative to LK15-10 samples. However, the MgO concentrations in 

LK15-4 and LK15-10 show considerable overlap despite differences in Al2O3 

concentrations. This could be a result of slight MgO loss as a result of higher degrees of 

serpentinization (i.e., higher bulk-rock LOI) in LK15-4 samples, relative to LK15-10 

samples.  
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Leka ophiolite complex peridotites from the LK15-4 grid are also characterized by linear 

trends between some major and trace elements, such as Al2O3 vs. V (R2 = 0.92; Fig. 19). 

In previous studies (Azimow, 1999; Takazawa et al., 2000; Le Roux et al., 2007; Van 

Acken et al., 2008; Schulte et al., 2009), such trends have commonly been attributed to 

either variable extents of partial melting, or mixing between depleted and enriched 

materials, which can occur via refertilization. Refertilization refers to the process where 

melt is reintroduced to previously melt-depleted peridotite, and can result in the creation 

of hybrid rocks (e.g., Saal et al., 2001; Takazawa et al., 2000; Le Roux et al., 2007; and 

Van Acken et al., 2008). Evidence for refertilization in mantle rocks can include, linear 

trends between major elements such as, Mg or Al, and some minor elements, including Ti 

(Bodinier et al., 2008). Samples from grid location LK15-4 also show a positive linear 

trend between Al2O3 and Ti (R2 = 0.64; Fig. 20), but a weak correlation between MgO and 

Figure 19. Plot of Al2O3 (anhydrous wt%) vs V for LOC peridotites/pyroxenites and 

JOC serpentinites. Data from a previous LOC study (O’Driscoll et al., 2015) and the 

Taitao ophiolite (Schulte et al., 2009) are included for comparison. The R2 values is 

calculated using least-squares regression in Microsoft Excel. 
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Ti (R2 = 0.35; Supp). The linear trends between Al2O3 vs Ti and V indicate that 

refertilization or partial melting, may have played a role in the history of LK15-4 grid 

samples. 

In contrast to LK15-4 samples, peridotites from grid LK15-10 do not show any obvious 

correlations between V and Al2O3 (Fig. 19), or Ti and MgO or Al2O3 (Fig. 20; 

Supplementary). The lack of correlation between these elements in LK15-10 grid samples, 

suggests that LK15-10 samples were not strongly affected by refertilization processes. 

However, based on the significant Al-depletion present in all LOC peridotite samples, the 

dominant compositional control on LOC peridotites was likely variable extents of melt 

Figure 20. Plot of Al2O3 (anhydrous wt%) vs Ti for LOC peridotites/pyroxenites and JOC 

serpentinites. The R2 values is calculated using least-squares regression in Microsoft 

Excel. 
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depletion. We conclude that the low Al2O3 in LOC peridotites requires at least one stage 

of partial melting and melt removal. 

To assess the conditions during mantle melting of different oceanic peridotites, Pearce 

& Parkinson (1993) used trace elements with different compatibilities, and demonstrated 

that a bivariate plot of Ti vs. Yb can be used to assess whether melting occurred in the 

garnet or spinel stability fields. In the spinel stability field, both Ti and Yb are highly 

incompatible, whereas if mantle melting occurs in the presence of garnet, extraction of Yb 

into the melt is suppressed relative to Ti, and Yb behaves instead as only a moderately 

incompatible element. Pearce & Parkinson (1993) and Parkinson & Pearce (1998) also 

used bivariate plots of V vs. Yb in order to assess oxygen fugacity conditions during mantle 

melting. In mid-ocean ridge settings (~QFM – 1 (quartz-fayalite-magnetite buffer)), V 

behaves as a moderately incompatible element. However, under the more oxidizing 

conditions during SSZ melting (~QFM + 1), V acts as a highly incompatible trace element.  

Plots of Ti vs. Yb and V vs. Yb for LOC peridotites are shown in Fig. 21A and 21B, 

respectively. Concentrations of Ti vs. Yb, and the trends they form (Fig. 21A), indicate 

that most LOC harzburgites underwent high degrees of partial melting (>20%). This 

conclusion is consistent with the major element data (Fig. 11). Additionally, these trends 

imply that melt extraction occurred in the absence of garnet for grid LK15-4 samples, 

supporting a shallow-level of SSZ-related melting. This observation is shared by previous 

work on LOC peridotites (O’Driscoll et al., 2015). Harzburgites from grid location LK15-

4 show compositions that are typical for high degrees of melting (~23-26%) Higher 

enrichment of Ti in LK15-4 peridotites, relative to LK15-10, may reflect mantle melting 

in the presence of amphibole. Pearce and Parkinson (1993) noted that Yb and Ti 
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concentrations during mantle melting in the presence of amphibole has the opposite effect 

to the presence of garnet, whereby amphibole preferentially retains Ti relative to Yb.  

By comparison, LK15-10 grid samples are distinct from LK15-4 grid samples, with 

characteristics suggestive of lower degrees of melt extraction (~18-24%), between the 

garnet and spinel melting fields. This indicates that LK15-10 harzburgites melted at slightly 

higher pressures than the LK15-4 harzburgites (Fig. 21A).   

Concentrations of V vs. Yb for samples in both grids (Fig. 21B) indicate that LOC 

peridotites underwent melt depletion under relatively oxidizing conditions (between QFM 

and QFM+1), consistent with SSZ melting. Based on the observations and geochemical 

data for trace elements Ti, V, and Yb, we conclude that SSZ melting likely played a role 

in the history of at least some of the mantle peridotites of the LOC. 
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Figure 21. Plots of Ti vs Yb (A) and V vs Yb (B) for LOC peridotites and JOC serpentinites. Figure is 
adapted from O’Driscoll et al., 2015. (A) Batch and fractional melting curves are from Pearce & Parkinson 
(1993) and the shaded grey area is from Parkinson & Parkinson (1998) depicts melting in the presence of 
garnet. (B) The modelled melt extraction and oxygen fugacities (quartz-magnetite-fayalite (QFM) buffer) 
are from Pearce & Parkinson (1993) and Parkinson & Pearce (1998). The tick marks in both plot represent 
5% melt removal increments. The theoretical composition of fertile MORB mantle is shown as FMM 
(Pearce & Parkinson, 1993). A calculated bulk value for DMM (Salters & Stracke, 2004) and data from a 
previous LOC study (O’Driscoll et al., 2015) are included for comparison, and are titled “LOC -“.  

B 

A 
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5.1.2. HSE abundances 

Before assessing the effects of mantle melt extraction on the absolute and relative 

abundances of HSE in LOC samples, it is important to determine whether serpentinization 

has modified the HSE. During serpentinization, absorption of large amounts of water 

causes density changes in peridotites and concurrent volume increases, which can cause 

dilution of HSE concentrations. However, several prior studies have concluded that the 

relative abundances of the HSE are little affected by processes involving aqueous fluids, 

including serpentinization (Rehkämper et al., 1999a; B ̈chl et al., 2002; Van Acken et al., 

2008; and Liu et al., 2008). These studies have suggested that the stability results from the 

fact that the sulfide hosts of the HSE in peridotites tend to remain stable under the highly 

reducing conditions commonly associated with serpentinization evident in both abyssal and 

ophiolite peridotites (Snow & Reisberg, 1995; Snow and Schmidt, 1998; Liu et al., 2009; 

and Schulte et al., 2009).  

Peridotites from the LOC exhibit low degrees of serpentinization when compared to 

mantle peridotites from many other ophiolite complexes (e.g., Jormua; Fig. 22), as well as 

abyssal peridotites. Leka ophiolite complex harzburgites and dunites typically contain 

abundant relict olivine grains (up to 60-70%) with only modest degrees of serpentinization. 

Furthermore, the HSE patterns of LOC harzburgites and dunites display no obvious trends 

that correlate with degree of serpentinization (e.g., HSE vs. bulk-rock LOI). However, on 

a plot of bulk-rock LOI vs initial Os (497 Ma), values of LOC peridotites (Fig. 23) show a 

positive correlation (R2 = 0.71), where all but one sample (LK15-4 A3 (Harz)) with bulk-

rock LOI ≥ 9 wt%, have initial Os values ≥ 1.3 ± 0.2, while peridotites with bulk-rock 

LOI ≤ 9 wt%, have initial Os values ≤ 0.4 ± 0.2. This weak trend could indicate that LOC  
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Figure 22. Thin section photo of olivines within LK15-4 A1 and LK15-10 A1 in cross 

polarized light. A thin section photo of highly serpentinized JU15-18 B1 from the JOC 

is shown for comparison. 

Figure 23. Plot of LOI vs initial Os (497 Ma) for LOC 

harzburgites and dunites. Uncertainties on Os (497 Ma) = ±0.2. 

The R2 value is calculated using least-squares regression in 

Microsoft Excel.  

LK15‐4 Grid Harzburgite 

LK15‐4 Grid Dunite 

LK15‐9 Harzburgite 

LK15‐10 Grid Harzburgite 

Key to Symbols 
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samples with high bulk rock LOI (i.e., higher degrees of serpentinization), gained 

radiogenic Os during serpentinization, or via water-rock interactions with highly 

radiogenic seawater (Sharma et al., 1997; Levasseur et al., 1998; Burton et al., 1999; and 

Lassiter et al., 2014). Alternatively, this trend could simply reflect different 

serpentinization histories of two peridotite populations (LK15-4 and LK15-10) with 

different initial Os (497 Ma). Seawater modification of Os isotopic compositions of 

peridotites is difficult to envision as LOC peridotites (~4 ppb) have much higher Os 

concentrations than seawater (8-10 fg/g; Sharma et al., 2000). In order to significantly 

elevate the 187Os/188Os ratios of LOC peridotites, the seawater/rock ratio must exceed ~100 

(B ̈chl et al., 2002), which is not consistent with the low degree of serpentinization 

observed in LOC peridotites. In addition, bulk-rock LOI displays no obvious correlation 

with soluble minor or trace elements (e.g., Ba). Furthermore, data from previous studies on 

the LOC (O’Driscoll et al., 2015) do not show any obvious correlation between initial Os 

(497 Ma) and LOI. Based on these observations, we conclude that the effects of 

serpentinization on the relative abundances of the HSE in LOC peridotites were minimal. 

The HSE concentrations and initial Os (497 Ma) of these samples were either established in 

the mantle, or by processes other than serpentinization. 

The relative HSE abundances in LOC harzburgite samples range from generally 

chondritic to variably depleted in the incompatible HSE (Pt, Pd, and Re) (Fig. 13). The 

types of HSE patterns present in these harzburgites are similar to those previously reported 

for LOC samples (O’Driscoll et al., 2015), and are also similar to harzburgites and 

lherzolites from the spatially and temporally associated Shetland Ophiolite Complex (SOC, 

O’Driscoll et al., 2012). The LOC harzburgite HSE patterns are also similar to those of 
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harzburgites from younger ophiolites including the ~90 Ma Troodos ophiolite, Cyprus 

(B ̈chl et al., 2002), and the ~6 Ma Taitio ophiolite, Chile (Schulte et al., 2009). 

Additionally, HSE patterns for LOC harzburgites resemble patterns commonly observed 

in abyssal peridotites (Liu et al., 2009), and harzburgites from orogenic massifs (e.g., 

Becker et al., 2006; Luguet et al., 2007; and Lorand et al., 2008).  

Plots of Os/Ir, Ru/Ir, Pt/Ir, Pd/Ir, and Re/Ir versus Al2O3 (wt%, anhydrous corrected) for 

LOC harzburgites (Fig. 24a,b,c,d,e) examined by this study overlap with previously 

published data for the LOC (O’Driscoll et al., 2015) and show considerable overlap with 

peridotites from the Shetland (O’Driscoll et al., 2012) and Taitao (Schulte et al., 2009) 

ophiolites, as well as with abyssal peridotites from the Gakkel Ridge (Lui et al., 2009). The 

similarities between the HSE patterns of LOC peridotites and what is presumed to be 

oceanic mantle from different tectonic settings, suggests that overall HSE abundances of 

LOC harzburgites were unaffected by SSZ processes.  

 Plots of initial Os vs Al2O3 (wt% anhydrous) (Fig. 24f) show that the Os isotopic 

compositions of LOC harzburgites fall within a range defined for the oceanic mantle by 

previous studies of ophiolite and abyssal peridotites. The average initial Os (497 Ma) value 

for LOC harzburgites in this study of +0.3 ± 1.4 (1 SD, n =28) is nearly identical to the 

average initial Os (497 Ma) value of LOC harzburgites reported by O’Driscoll et al. (2015) 

of +0.2 ± 2.0 (n = 16). O’Driscoll et al. (2015) concluded that the harzburgitic rocks of the 

LOC appeared to be ~2% more radiogenic than estimates for modern oceanic mantle, based 

on a filtered (>2 ppb Os) global average for modern abyssal peridotites, and projected back 

to 497 Ma. Additionally, LOC harzburgites were also found to be more radiogenic than 

averaged harzburgite compositions from the Taitao ophiolite (-2.2 ± 2.4; n = 22; Schulte et 
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al., 2009) and Os-Ir-Ru alloy grains from the Josephine ophiolite (~-1.4 ± 6.5; n = 825; 

Meibom et al., 2002; Walker et al., 2005), but remarkably similar to other well-

characterized ophiolites, including the SOC (-0.4 ± 2.4, n = 11; O’Driscoll et al., 2012) and 

Troodos (+0.3 ± 3.4, n = 14; B ̈chl et al., 2002; 2004). The offset in Os isotopic 

composition of previously studied LOC harzburgites was suggested to reflect a minor 

degree (~2%) of global-scale Os isotopic heterogeneity in the oceanic mantle, with SSZ 

processes having little effect on I-PGE and Os isotopic compositions (O’Driscoll et al., 

2015). While the average initial Os (497 Ma) values for the LOC in this study, broadly match 

values reported by previous studies, it is noteworthy that average initial Os (497 Ma) values 

for individual grid sites differ significantly, implying that the Os isotopic composition of 

LOC peridotites in individual locations in the mantle may be a result of local (km) scale 

processes, rather than global-scale heterogeneity.   
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5.1.3. Timing of melt depletion 

A study of LOC harzburgites and dunites by O’Driscoll et al. (2015) reported a moderate 

spread in calculated initial Os isotopic compositions for the LOC suite. Initial Os (497Ma) 

values for LOC peridotites from this study and O’Driscoll et al. (2015) are shown in Fig. 

25. Most of the samples have initial Os (497Ma) values similar to the chondritic reference at 

497 Ma, suggestive of melt depletion around the time of ophiolite formation (~497 Ma). 

Averaged initial Os (497Ma) values for peridotites from grid locations LK15-4 (average Os 

(497Ma) = +1.3) and LK15-10 (average Os (497Ma) = -0.4), however, are distinct from each 

other. This observation may suggest a complex melting history for the LOC mantle section 

on a regional scale. 

In some modern ophiolites, negative correlations of Os isotopic composition in WR 

samples and Mg# in olivine grains present in these rocks, and positive correlations of WR 

Os isotopic composition and Al2O3 (wt%, anhydrous), have suggested that Os isotopic 

compositions reflect primary Re/Os fractionation in the mantle by variable extents of 

partial melting at one time (i.e., Taitao ophiolite complex, Schulte et al., 2009). A plot of 

whole rock Os (497 Ma) versus olivine Mg# (Fig. 25A), reveals a broad correlation for 

peridotites from the LK15-4 and LK15-10 locales (r2 = 0.42, omitting sample LK15-4 A3 

(Harz)), and shows that all but one of the samples (LK15-4 A3 (Harz)), with high Mg#, 

have lower initial Os (497 Ma) values. This negative correlation could suggest that variability 

in the Os isotopic compositions of LOC peridotites are reflective of primary Re/Os 

fractionation (similar to the Taitao complex). However, LK15-4 and LK15-10 grid samples 

are distinct, and do not individually define good correlations. Furthermore, LOC samples 

are characterized by a broad negative correlation between WR initial Os (497 Ma) values and 



     
 

60 | P a g e  
 

Al2O3 (a common indicator of melt depletion), unlike the broad positive correlations 

present in Taitao samples (Fig. 25B). However, similar to the trends presented in Fig. 25A, 

LK15-4 and LK15-10 grid samples are distinct, and do not individually define good 

correlations. These observations more likely imply modification of the Os isotopic 

composition of the LOC peridotites at these grid locations post melt depletion, or that melt 

depletion occurred just prior to ophiolite formation, so no systematic changes in Os isotopic 

composition accompanied changes in Re/Os.  

Rhenium-depletion (TRD) model ages of LOC peridotites show Re-depletion in some 

LOC peridotites occurred at least 500 Ma prior to the accepted age of the ophiolite (Table 

4), which is significantly less time than the ~6 Ma Taitao ophiolite, which showed evidence 

for melt depletion ~1.6 Ga, before the formation of that ophiolite. We conclude, based on 

plots of WR initial Os vs Mg# (olivine) and WR Al2O3 that, unlike for Taitao (Schulte et 

al., 2009), the Os isotopic compositions of LOC samples are not dominated by a single, 

ancient melting event.  

Assuming the olivines in these samples are primary, their Mg# also suggest that LK15-

10 samples experienced higher degrees of melt depletion, relative to LK15-4 samples. This 

is contrary to whole-rock major (Fig. 10) and trace element data (Fig. 21), which show 

evidence for higher degrees of melt-depletion in LK15-4 samples, relative to LK15-10. 

This difference could imply that the WR major and trace element compositions of LK15-

10 samples were later enriched by a process following initial melt depletion (e.g., 

metasomatism), while the olivine compositions remained essentially unaffected. An 

alternative is that the melt processes which affected Al2O3 (hosted mainly by spinel and 

pyroxenes) and trace elements in LK15-4 peridotites had little effect on the Mg# of the 
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olivines. A third alternative is that, the olivines present in LOC rocks are not primary, and 

were formed during a later process. LOC olivines are characterized by low concentrations 

of CaO (~0.01 wt%), typical of metamorphic olivines (Evans and Trommsdorff, 1974).  

However, LOC olivines do not have the typical features of recrystallized olivine (e.g., 

inclusion of secondary minerals, dendritic crystals, clusters of subhedral–euhedral crystals, 

and randomly oriented crystals). While the compositions of olivines vary from rock to rock 

due to variable degrees of melt-depletion, concentrations of FeO and MnO for olivines are 

distinct between harzburgite samples from the LK15-4 and LK15-10 grid sites. Average 

FeO and MnO (wt%; 2SD) for LK15-4 olivines are 8.5 (±0.4) and 0.12 (±0.01), 

respectively. By comparison, average FeO and MnO (wt%; 2SD) for LK15-10 olivines are 

7.8 (±0.8) and 0.25 (±0.12), respectively. Low abundances of FeO and high concentrations 

of MnO in LK15-10 olivines, relative to LK15-4 olivines, is consistent with serpentinized 

olivines (Evans and Trommsdorff, 1974; Trommsdorff et al., 1998). These observations 

may indicate the compositions of LK15-10 olivines were altered by secondary processes.  
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Figure 25. Plot of initial Os (497 Ma) values vs Mg# in relict olivine grains (A) and Al2O3 (wt%, 

anhydrous; B) for LOC harzburgites. Taitao ophiolite data shown for comparison (Schulte et 

al., 2009). The R2 values are calculated using least-squares regression in Microsoft Excel. 

A 

B 
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The initial Os (497 Ma) value of one harzburgite sample, LK15-4 A3 (Harz) (Os = -2.0; 

based on repeat analyses; n = 3), in the Kvaløya-moen area of the NW portion of Leka, 

differs from adjacent harzburgites (average Os = 1.6; n = 11). Additionally, the major and 

trace lithophile element data for LK15-4 A3 (Harz) are similar to those of adjacent samples, 

and show no obvious correlation with typical indicators of melt depletion (Fig. 25). The 

depleted Os isotopic composition of LK15-4 A3 (Harz) suggests ancient melt depletion 

with long-term lowered Re/Os ratios. Re-depletion model ages (TRD) for LOC samples are 

calculated using Eq. 1, with the eruption age (EA) representing the 187Os/188Os ratio at the 

time of the accepted age of the ophiolite (~497 Ma). The calculated TRD model age of the 

average for this sample is ~1.0 Ga, or ~500 Ma prior to ophiolite formation. Three 

previously studied LOC harzburgites (one from the Kvaløya Moho locality and two from 

Kvaløya-moen) and one dunite (from below the petrological Moho, SE of Kvaløya), 

Figure 26. Histogram illustrating the distribution of initial Os (497 Ma) values of LOC 

harzburgites (including replicates), including data from O’Driscoll et al., 2015 (n=15).   
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reported by O’Driscoll et al., (2015), also yield TRD model ages of ~0.8 to 1.0 Ga. The 

depleted Os isotopic compositions in these samples provide evidence for the earliest stage 

of mantle melting recorded in the LOC, preceding ophiolite formation by as much as ~500 

Ma. Additionally, the spatial distribution of these samples indicates that these ancient 

refractory domains are not restricted to a single location in the LOC mantle. 

Previous studies of oceanic mantle materials show that samples with Os model ages ≥1 

Ga older than the age of the ambient mantle, appear to be relatively common both 

regionally and globally. For example, some harzburgites from the nearby Shetland 

Ophiolite Complex (SOC; ~492 Ma) yield TRD model ages of ~1.4 Ga (O’Driscoll et al., 

2012). Globally, samples of peridotites and alloys from other ophiolites including the 

Taitao (Schulte et al., 2009), Troodos (Büchl et al. 2004), Oman (Hanghøjet al., 2010), and 

Josephine (Meibom et al., 2002) have yielded model ages extending back to the Archean. 

Ancient Os melt depletion ages have also been observed in abyssal and fore-arc peridotites 

(Parkinson et al., 1998; Esperanca et al., 1999; Brandon et al., 2000) as well as in oceanic 

mantle xenoliths from Hawaii (~2 Ga; Bizimis et al., 2007) and the Ontong Java Plateau 

(~1.7 Ga; Ishikawa et al., 2011). Collectively, these observations from the LOC and other 

mantle materials suggest that ancient refractory domains are a common feature in the 

oceanic mantle. The spatial constraints provided by grid sampling in this study, suggests 

that these domains are <1 m3. 

The Os isotope data for an LOC websterite LK15-10 Web, further support conclusions 

made by O’Driscoll et al., (2015) for at least one other major mantle melting event in the 

LOC suite. The trace element pattern (Fig. 27) and Os TMA model ages of LK15-10 Web 

(TMA = ~690 Ma), a ~0.5 m thick websterite dike within the LK15-10 grid square (Fig. 
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15B), broadly overlaps with the trace element pattern and TMA model age of ~620 Ma 

presented by LK_12_14 (O’Driscoll et al., 2015), suggesting similar origins. For websterite 

samples, TMA model ages are used because websterite samples do not have non-negligible 

concentrations of Re, and cannot be assumed to have lost all of their Re during melt 

depletion, unlike peridotites and mantle xenoliths with low Re/Os. This age broadly 

corresponds to the opening of the Iapetus Ocean (e.g., 620 – 550 Ma; Chew 1and Strachan, 

2014).  

Numerous samples in the LOC are characterized by modestly suprachondritic initial Os 

(497Ma) values, most notably samples from Kvaløya-moen, including grid location LK15-4 

and sample LK15-9A (Average Os (497 Ma) = +1.6; n = 16). These suprachondritic initial 

Os (497 Ma) values are either a result of primordial radiogenic heterogeneity, similar to 

conclusions by O’Driscoll et al. (2015), or a result of interaction with a more radiogenic 

Os melt (e.g., SSZ metasomatic processes, melt percolation, refertilization). As noted 

above, linear trends between Al2O3 vs Ti and V indicate that refertilization may have 

played a role in the history of LK15-4 grid samples, however, results presented in Section 

5.2 suggest limited modification of Os isotopic composition by SSZ processes. 
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5.2. Small-scale heterogeneity in the LOC mantle 
5.2.1. Cm-scale effects of orthopyroxenite veins in harzburgite 

Based on field observations at Leka and the mapping of Maaløe (2005), orthopyroxenite 

comprises ~2–3 vol. % of the LOC mantle in the form of <1 cm veins to >1 m channels. 

The development of orthopyroxenite veins and channels is commonly attributed to reaction 

of peridotite with SiO2-rich hydrous melts, derived from melting of eclogite or pyroxenite 

at moderate to high pressures (1–3.5 GPa and 1200–1550oC; Kelemen, 1990). 

Orthopyroxene is produced by the reaction between olivine and siliceous melt at the higher 

H2O activities typical of SSZ settings. As the melt intrudes, it equilibrates with the host 

peridotite, causing the magmas to become increasingly richer in silica, until they become 

saturated in orthopyroxene (Kelemen, 1990). Previous work by Rampone & Hofmann 

(2012) inferred that pyroxenite components are capable of inducing large isotopic changes 

on a local-scale in peridotites, based on observed Nd isotopic variations of pyroxenite 

bands in host peridotites from the External Liguride ophiolites, Italy (Rampone et al., 2011; 

Borghini et al., 2011; 2016).  

Field-based and hand sample observations show that the harzburgite in grid square 

LK15-4 A3 (Harz), characterized by initial Os (497 Ma) = -2.0, hosts an orthopyroxenite vein 

(~1 cm thick), while other harzburgites in the LK15-4 grid are absent of any visible 

orthopyroxenite. It is important to assess whether the SSZ melt processes that formed the 

hosted orthopyroxenite vein also affected the geochemical and Os isotopic composition of 

its host harzburgite.    

Analyses of harzburgite at ~1 cm intervals away from orthopyroxenite veins for LK15-

4 A3 (Harz) and LK15-9A, show only small cm-scale Os isotopic variations in the 

harzburgite host rock (Fig. 28). Furthermore, major (e.g., Al2O3, SiO2, and MgO), and 
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incompatible trace lithophile element (e.g., V, Ni, Co, Cr, REE) concentrations of the cm-

subdivisions show no obvious correlation with distance from the orthopyroxenite vein 

(Supplementary Figures). The Os isotopic characteristics of the orthopyroxenites veins in 

LK15-4 A3 (Harz) and LK15-9A are characterized by more radiogenic compositions than 

the host harzburgite. The orthopyroxenite reaction products record the isotopic 

characteristics of the melt, or a mixture of the Os isotopic composition of the melt and its 

host harzburgite. Of greatest importance, the limited variations in isotopic and geochemical 

characteristics of harzburgite samples 1 6 cm away (Fig. 28), shows the reaction with 

the siliceous melt had limited effect on the host rock, even very close to the reaction zones. 
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Figure 28. (right) Os values of LOC orthopyroxenite (opx) bearing harzburgites. A. 

Os values of LK15-4 A3 Harz subdivisions B. Os values of LK15-9A subdivisions. 

Colored boxes on sample photos indicate the approximate location of the subdivision, 

and correspond to colored data points.  
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5.2.2. LK15-4 Grid 

Major and trace element data, as well as Os isotopic compositions of LK15-4 grid 

harzburgites, show that these LOC peridotites are geochemically and isotopically similar 

(Fig. 11A; initial Os = +1.3 to +2.2; excluding LK15-4 A3 (Harz)), at the meter scale, in 

the LOC mantle section at Kvaløya-moen. Initial Os (497 Ma) values for most dunites and 

harzburgites collected within the same grid square are similar (Fig. 15A), within 

uncertainties (grid squares B1 and C3). However, the initial Os (497 Ma) values of dunite 

within LK15-4 A3 (+1.5), is similar to most harzburgites from this grid, yet differs from 

the harzburgite collected in the same grid square (LK15-4 A3 (Harz); Os(497Ma) = -2.0). 

These observations indicate that the subchondritic, initial Os (497 Ma) value of the LK15-4 

A3 harzburgite, is not a result of interaction with the spatially associated dunite. It supports 

the concept that LK15-4 A3 (Harz) is a relic of an ancient melt depletion event. Dunites 

and harzburgites from grid squares of LK15-4 B1 and C3 are isotopically homogenous 

(Fig. 15A), as well as geochemically similar with comparable incompatible trace element 

concentrations and REE patterns (Fig. 11A). Dunite samples from grid squares A3 and C3 

have comparatively flat HSE patterns that resemble harzburgite more than dunite, 

suggesting that these samples have inherited a harzburgite host-rock component. Examples 

of ‘dunitized’ harzburgite, that contain components of harzburgite host-rock, and dunites 

that have inherited a harzburgite component are common in the LOC (Maaløe, 2005; 

O’Driscoll et al., 2015).   

Previous studies of LOC peridotites (O’Driscoll et al., 2015) observed that LOC dunites 

on average, are characterized by more radiogenic Os isotopic compositions than adjacent 

harzburgites. The similar Os isotopic compositions of adjacent dunites and harzburgites 
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within grid squares LK15-4 B1 and C3, coupled with similar incompatible trace element 

compositions, might also suggest that LK15-4 dunites inherited their host-harzburgite 

composition. Alternatively, dunites and harzburgites could have been homogenized during 

dunite/harzburgite formation, or during a later process. The relative LREE enrichments in 

some LK15-4 grid peridotites (A1, B3, and C3; Fig. 11A) suggest that these samples are 

not solely the result of melt depletion. 
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5.2.3. LK15-10 Grid 

Within the LK15-10 grid suite, REE patterns (Fig. 11B) range from LREE-enriched 

(e.g., C3) to LREE-depleted (e.g., B2). Relative enrichments/depletions in LREE suggest 

that these samples are not solely the result of melt depletion. The REE patterns of some 

LK15-10 harzburgites instead likely reflect the product of variable interactions with a 

LREE-enriched melt (e.g., mafic melt), through metasomatism related to SZZ processes 

(Allégre & Turcotte, 1986; Snow et al., 1994; Sharma & Wasserburg, 1996; Liu et al., 

2009; Warren et al., 2009). Previous studies of the Leka ophiolite complex by Furnes et al. 

(1992), showed that representatives of the first phases of magmatic development in the 

LOC (e.g., Island Arc Tholetiite (IAT) and metaboninites), displayed evidence of having 

been derived from a mantle source that may have been metasomatically contaminated by 

continentally-derived material during subduction related processes, based on similar Nd 

isotopic compositions. However, Nd isotopic compositions for LOC peridotites have not 

yet been studied to test this possibility with respect to these samples. 

Initial Os values (Fig. 15B) as well as incompatible trace element data (Fig. 11B) show 

modest meter scale heterogeneity between LK15-10 harzburgite samples. However, plots 

of REE ratios (e.g., La/Nd and La/Sm) vs Os isotopic composition (initial Os (497 Ma)) show 

no obvious correlations (Supplementary Figures). A previous study by Lorand et al. (2013), 

showed that metasomatic processes tend to strongly affect the P-PGE and can even modify 

the relative and absolute abundances of the I-PGE. Plots of Ir-normalized HSE 

concentrations vs Al2O3 (wt% anhydrous) (Fig. 24) show relative enrichments/depletions 

of Pd and Ru in LK15-10. However, similar to Os isotopic composition, HSE 

concentrations and ratios do not show any obvious correlations with REE ratios. This 
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implies that the processes responsible for modifying REE concentrations, are not likely 

responsible for the variations in HSE concentrations and in Os isotopic composition in 

LK15-10 samples.  

The initial Os (497 Ma) values for grid samples of LK15-10 harzburgite (Fig. 15B), do 

not show any spatial correlation with the suprachondritic Os (+6.3) websterite channel 

(LK15-10 Web), providing further evidence that pyroxenite formation (via SSZ 

metasomatic processes) does not affect the Os isotopic composition of adjacent 

harzburgites. We conclude, the variations in Os isotopic composition in LK15-10 samples 

reflect variable extents of partial melting at the meter-scale at some time prior to ophiolite 

formation.  
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6. Leka Summary 

The excellent exposure of the mantle sections at the Leka ophiolite complex, provide an 

opportunity to study heterogeneities in the oceanic mantle at both the kilometer-scale, by 

sampling of different locations; to the small-scale, via meter-scale grid sampling and cm-

subdivision of samples. By linking spatially controlled field-based observations of mantle 

samples, with petrologic and geochemical studies, we can assess the chemical structure of 

these oceanic mantle sections and the history of the processes that acted upon these rocks.  

Grid sampling of two locations (LK15-4 and LK15-10) within the northern Leka 

harzburgite mantle section show kilometer-scale heterogeneity within the oceanic mantle 

as a result of variable melt-extraction as well as evidence of subsequent processes, which 

affected the geochemical and Os isotopic compositions of individual grid sites. The LK15-

4 grid shows evidence high degrees of partial melting at shallow depths in the spinel 

stability field, as well as isotopic and geochemical homogenization of adjacent dunites and 

harzburgites. By comparison, the LK15-10 grid shows evidence for lower degrees of melt 

depletion at greater depths in the mantle where both garnet and spinel are stable. Rare earth 

element patterns and fractionation of HSE suggest that the LK15-10 grid location was 

subsequently affected by metasomatic processes. Both grid locations show that peridotites 

in the LOC are generally heterogeneous at the meter scale.  

Similar to previous work on the LOC (O’Driscoll et al., 2015), ancient melt-depletion 

at (TRD) ~ 1 Ga is captured in some LOC peridotites (e.g., LK15-4 A3 (Harz)). Grid 

sampling of adjacent harzburgites and dunites reveal that the geometry of these refractory 

domains can be constrained to be < 1 m3.  
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The Os isotope data for an LOC websterite LK15-10 Web, further support conclusions 

made by O’Driscoll et al. (2015) for at least one other major mantle melting event in the 

LOC suite, TMA = ~690 Ma. This age broadly corresponds to the opening of the Iapetus 

Ocean (e.g., 620 – 550 Myr; Chew and Strachan, 2014).  

Two cm thick orthopyroxenite veins hosted by harzburgite near Kvaløya-moen, are 

more radiogenic than host harzburgites. The sharp gradations in initial Os (497 Ma) values 

between the pyroxenites and harzburgites suggest vein formation had minimal impact on 

the Os isotopic characteristics of the host harzburgites.  

Overall, the combined data set shows that the Paleozoic oceanic mantle represented in 

this suite of LOC peridotites, was affected by various processes, at different times. This 

cocktail of processes responsible for the geochemical and isotopic variations observed in 

these samples, is also likely manifested in the ambient, modern oceanic mantle. 
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7. Jormua Discussion 
7.1. Melt depletion in JOC serpentinites 

7.1.1. Major and trace element data 

Similar to LOC peridotites, JOC serpentinites are characterized by low Al2O3 relative 

to estimates for the PM and DMM (Fig. 10A). The lower Al2O3 and higher MgO 

concentrations observed in JOC serpentinites are broadly consistent with a melt depletion 

history prior to ophiolite formation. However, while the concentrations of Al2O3 

(anhydrous, wt%) between the two grid locations in the Antinmäki block (JU15-16 and 

JU15-18) are similar, serpentinites from the JU15-18 grid location show depletions in MgO 

relative to JU15-16 samples (~3 km away, Fig. 4). The depletions in MgO, yet similar 

ranges of Al2O3, suggest that the major element compositions of JU15-18 are not solely 

the result of melt depletion. Previous studies by Snow and Dick (1995), have suggested 

that high degrees of serpentinization, can result in major losses of Mg through the 

dissolution of brucite formed during serpentinization, and/or the direct incongruent 

dissolution of olivine and enstatite. While the JOC samples from both grid locations are 

heavily serpentinized and do not contain any relict olivine grains, the degree of 

serpentinization (e.g, bulk-rock LOI) are comparable between the two grids (JU15-16 and 

JU15-18; 11.0 to 11.4 wt%; respectively; Table 1). This observation could imply that the 

MgO depletions in JU15-18 samples are not solely caused by serpentinization.  

On a plot of SiO2 vs. MgO of JOC serpentinites (Fig. 10B) both JU15-16 and JU15-18 

grid samples plot along a general melt depletion trend, consistent with data from other 

ophiolites (e.g. LOC and Taitao; O’Driscoll et al., 2015; Schulte et al., 2009) as well as 

abyssal peridotites (Brandon et al., 2000). Samples from the JU15-18 locale show strong 

positive correlations between SiO2 and MgO (R2 = 0.98).  With the removal of one low 
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SiO2 sample (JU15-16 B2), JU15-16 samples also show a positive correlation (R2 = 0.88). 

These trends are consistent with removal of both SiO2 and MgO, due to serpentinization 

(O’Hanley, 1996; Peltonen et al., 1998).  

The JOC peridotites are also characterized by linear trends between some major and 

trace elements, such as Al2O3 vs V (Fig. 19). Serpentinites from grid locations JU15-16 

and JU15-18 show positive correlations (R2 = 0.72 and 0.50, respectively), although V 

concentrations of JU15-16 samples vary little, and the correlation for JU15-18 samples is 

weak. As noted above, such trends have been commonly attributed to variable extents of 

partial melting and refertilization (Azimow, 1999; Takazawa et al., 2000; Le Roux et al., 

2007; Van Acken et al., 2008; Schulte et al., 2009). Evidence for refertilization in mantle 

rocks can include, linear trends between major elements (e.g., Mg or Al) and some minor 

elements (e.g., Ti) (Bodinier et al., 2008). Jormua samples from grid location JU15-16 

show strong positive correlations between Al2O3 and Ti (R2 = 0.93; Fig. 20), however the 

trend between MgO and Ti is weak (R2 = 0.38; Supplementary Figure). The weak trends 

between MgO and Ti in JU15-16 grid samples could be the result of variable Mg loss 

during serpentinization. Samples from JU15-18 show no obvious correlation between 

Al2O3/MgO and Ti. We conclude, linear trends between Al2O3 and Ti, (possibly Al2O3 and 

V) indicate that refertilization may have played a role in the history of at least the JU15-16 

serpentinites.  

Plots of Ti vs. Yb and V vs. Yb for JOC serpentinites are shown in Fig. 21A and 21B, 

respectively, to access the conditions of mantle melting. Bivariate plots of Ti vs. Yb have 

been demonstrated to be useful in assessing whether melting had occurred in the garnet-

spinel stability field (Pearce & Parkinson, 1993). Bivariate plots of V vs. Yb have also been 
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used by Pearce & Parkinson (1993), as well as Parkinson & Pearce (1998), to assess oxygen 

fugacity conditions during mantle melting.  Serpentinites from grid location JU15-16, show 

compositions that are typical for high degrees of melting (~20%) in the field that overlaps 

garnet and spinel stability. In addition, V and Yb concentrations suggest melting under 

relatively oxidizing conditions (between QFM and QFM+1), consistent with SSZ melting 

(O’Driscoll et al., 2015). By comparison, JU15-18 serpentinites show compositions 

consistent with lower degrees of melting (~5-12%), relative to JU15-16 samples. Bivariate 

plots of Ti vs. Yb suggest that JU15-18 samples also underwent melting in field that 

overlaps garnet and spinel stability, however, V vs. Yb compositions for samples in this 

grid site suggest melting under slightly more reducing conditions (between QFM-1 and 

QFM). Trace element data for V and Ti vs Yb, coupled with plots of MgO vs SiO2 indicate 

that JU15-18 samples underwent much lower degrees of melt depletion, relative to JU15-

16 samples, despite similar ranges of Al2O3 (anhydrous, wt%), a common indicator of melt 

depletion.  
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7.1.2. HSEs and Re-Os isotopic systematics  

Primitive mantle-normalized HSE patterns of JU15-16 gird samples (Fig. 16A) show I-

PGEs similar to PM values, although some samples are modestly enriched in Os, Ir, Ru, 

and Pt. All JU15-16 grid samples are characterized by depletions in Re. These depletions 

are characteristic of melt depletion, and consistent with the major and trace element 

evidence for prior melt depletion. The modest enrichments in some of the I-PGE may 

reflect primordial heterogeneity. By comparison, JU15-18 serpentinites show flat patterns 

across both the compatible I-PGEs (Os, Ir, Ru) and the moderately incompatible P-PGEs 

(Pt and Pd), as well as Re (Fig. 16B). These trends imply, that JU15-18 samples may have 

undergone low degrees of melt-extraction, consistent with the trace element evidence (Fig. 

21).  

Initial Os (1.95 Ga) values for JU15-16 samples ranges from -3.0 to -0.5 and show very 

little variation (Fig. 18A) By comparison, JU15-18 samples show a much wider range of 

initial Os (1.95 Ga) values, from -3.3 to +8.3 (Fig. 18B).  

 The initial Os isotopic compositions of JU15-16 samples are remarkably uniform. Plots 

of 187Re/187Os vs 187Os/188Os (Fig. 17) show that all JU15-16 samples have low Re/Os. The 

Re-Os systematics of these samples suggest they sample a subchondritic mantle, possibly 

representing the oceanic mantle at 1.95 Ga. 

By comparison, samples from grid JU15-18, broadly plot along a reference isochron 

(Fig. 17), implying that the Re-Os isotopic ratios present in these samples are the result of 

variable Re/Os fractionation, around the time of the accepted age of the ophiolite. The 

cause of such fractionation, could be magmatic. However, the Re/Os ratios present in 

JU15-18 samples have higher than normal Re/Os ratios for typical melt removal. Instead, 
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these samples could reflect Re addition/loss at 1.95 Ga. This is addressed in greater detail 

in section 7.1.3. Also, some samples (JU15-18 B2, B3, C2, and C3) plot well above or 

below the reference isochron. This is suggestive of more recent Re movement, as is 

discussed further in section 7.1.4.  

7.1.3. Evidence for Re addition/loss at 1.95 Ga in JU15-18 

The variations in Re-Os isotopic systematics of many of the JU15-18 samples (Fig. 17) 

appear to be the result of variable amounts of Re gain/loss around the time of the accepted 

age of the ophiolite. Previous studies of the JOC have hypothesized that black schists that 

encircle the JOC, as well as gabbros and basalts that are integral parts of the ophiolite, 

could be possible sources of Re addition in JOC peridotites (Tsuru et al., 2000). The Re 

concentrations of the schists range from 10 to 20 ppb (Geological Survey of Finland, 

unpublished data), while the basaltic rocks of the JOC have concentrations of 0.4 to 1.2 

ppb (Tsuru et al., 2000). Peltonen et al. (1996; 1998) interpreted the LREE-enriched 

patterns of peridotites from the eastern (Antinmäki) block, to be a result of metasomatic 

processes associated with gabbroic and basaltic dykes that are present in the eastern block. 

Evidence for this process was most clearly found in Sm-Nd isotope data, where the initial 

143Nd/144Nd ratios of these residual peridotite samples closely resembled those of the 

gabbroic and basaltic dykes (Peltonen et al., 1996; 1998). Rare earth element patterns of 

JU15-18 samples (Fig. 11E), also show relative enrichment in LREE, implying that these 

samples have been affected by metasomatism, possibly associated with the Proterozoic 

gabbros (Fig. 4; map). Light rare earth element-enriched serpentinites in other ophiolite 

complexes, have also been previously attributed to intraplate metasomatism, including the 

Fawakhir ophiolite, Egypt (Hamdy et al., 2011), implying these processes are relatively 
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common in ophiolite mantle sections. Uranium-lead (U-Pb) dating of zircons from 

gabbroic dikes in the JOC yield an age of 1953±2 Ma (Peltonen et al., 1996), which may 

coincide with the age of metasomatism for JU15-18 samples. We conclude that the 

observations of Re addition/loss around 1.95 Ga in JU15-18 serpentinites, could have been 

the result of metasomatic processes by spatially associated, Re-enriched gabbros.  

7.1.4. Evidence for recent Re mobility in JU15-18 

As noted above, most JU15-18 grid samples plot close to the 1.95 Ga chondritic 

reference isochron, implying variable amounts of Re gain/loss around the time of the 

accepted age of the ophiolite. However, some samples (e.g., JU15-18 B2, B3, C2, and C3), 

plot well off the 1.95 Ga chondritic reference isochron (Fig. 17). These samples define 

highly variable calculated initial Os values, and are most likely the result of recent 

addition/loss of Re. Figure 29, adapted from Tsuru et al., (2000), displays the hypothetical 

effect of various processes on Re-Os isotopic systematics. Tsuru et al. (2000), described 

Figure 29. Adapted from 

Tsuru et al. (2000) 

showing the hypothetical 

effects of various 

processes on Re-Os 

isotope systematics. The 

closed circle shows a 

chondritic starting 

composition. Arrows 

define the vectors along 

which changes in isotopic 

composition and 

composition will take 

place.  
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weathering and ground water-rock interaction as the most likely process for Re 

mobilization. While there is no observed correlation between Os isotopic composition or 

Re vs. LOI (wt%), all of the samples that show evidence for Re-gain/loss (B2, B3, C2, and 

C3), have enriched Ba (a fluid mobile element; average B2, B3, C2, and C3 = 10.8 ppb; n = 4), 

relative to other grid samples (average excluding B2, B3, C2, and C3 = 1.1 ppb; n = 5) as well as 

minor enrichments in other fluid mobile elements (Table 2; Fig. 30; Harvey et al., 2006), 

including Sr. Enrichments in these fluid mobile elements may implicate water-rock 

interactions as a cause of recent Re mobilization in these JOC serpentinites. Furthermore, 

trace elements that are mobilized by silicate melts (e.g., Ta) show little variability between 

JU15-18 samples (Fig. 11D and E).  
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Figure 30. Primitive mantle normalized Sr and Ba for JU15-18 grid samples. 

Samples that show evidence for recent Re gain/loss are highlighted in yellow. 

Normalization values from McDonough & Sun (1995). 
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7.1.5. Timing of melt depletion in the JOC 

The Re-depletion (TRD) model ages of JOC serpentinites are calculated using the 

calculated initial 187Os/188Os ratio of the sample; at the time of ophiolite formation ~1.95 

Ga) of JU15-16 serpentinites (TRD ~ 2.0-2.4 Ga; Table 4), suggest that samples from this 

grid site experienced variable degrees of melt depletion up to 400 Ma prior to the accepted 

age of the ophiolite. Rhenium-loss during an early partial melting event would cause long-

term lowered 187Re/188Os ratios, resulting in the subchondritic initial Os values observed 

in JU15-16 samples. TRD model ages for JU15-18 samples that plot near the reference 

isochron range from 1.8 to 2.4 Ga. Their average value (1.98 Ga; n = 5) is very similar to 

the chondritic reference, implying that none of these samples experienced substantial melt 

depletion prior to ophiolite formation. This is consistent with major and trace element data 

suggestive of low degrees of melt depletion (Fig. 10; 21). 
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7.2. Small-scale heterogeneity in the JOC mantle 
7.2.1. JU15-16 Grid 

 Major and trace element data, as well as Os isotopic compositions of JU15-16 grid 

serpentinites, show that JOC samples from this grid location show modest geochemical 

(Fig. 11D) and isotopic heterogeneity (initial Os (1.95 Ga) = -0.5 to -3.0; n = 9; Fig. 18B) at 

the meter scale in the eastern Antinmäki block. Geochemical and isotopic differences in 

JU15-16 samples, are likely the result of variable extents of melt depletion. Several 

elements (e.g., Cu) vary among samples from grid JU15-16. The cause of this is could be 

the result of incomplete homogenization of Cu-rich sulfides in JOC peridotites. Iridium-

normalized HSE plots of JU15-16 samples, show fractionations between both the I-PGEs 

and P-PGE (Fig. 31A-F). While there are no obvious correlations between HSE 

concentrations and Cu (ppb), samples JU15-16 C1 and JU15-16 C2 have the highest Cu 

concentrations, as well as the highest concentration of Os.  

 The relatively flat-REE patterns of JU15-16 grid serpentinites (Fig. 11D) are 

similar to REE patterns of basaltic rocks of the Jormua complex (Peltonen et al., 1996; 

1998). Peltonen et al. (1996) noted flat-REE patterns in peridotites, attributing them to 

infiltration by a relatively primitive basaltic melt. The samples from the JU15-16 grid site 

could be the result of similar processes as both sets of samples (this study and Peltonen et 

al., 1996) originate from the same eastern block, and have comparable REE patterns. 

However, the relative timing of this process remains unknown. Furthermore, the infiltration 

of this basaltic melt did not have any obvious effect on the Re composition of JU15-16 

samples, unlike processes that affected JU15-18 samples.  
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7.2.2. JU15-18 Grid 

Sample JU15-18 B2 (initial Os(1.95 Ga) = +8.3) shows enrichments in Ti, Zr, Nb, Hf, and 

Ta as well as relative depletions in Ni and Cu, compared to other JU15-18 serpentinites. 

The composition of sample JU15-18 B2 may reflect the presence of a chromite seam hosted 

within the analyzed serpentinite sample, most likely formed by fluid percolation along a 

fracture, resulting in the precipitation of phases enriched in Ti. Due to the significant 

chemical differences between B2 and the rest of the JU15-18 grid samples with respect to 

both trace element concentrations and Os isotopic compositions, we conclude that the 

composition of the analyzed powder for JU15-18 B2 is likely dominated by the chromite 

seam, rather than the host peridotite. Iridium-normalized HSE plots of JU15-18 samples 

(Fig. 31A-F), show less fraction between samples than JU15-16 samples, as well as small 

variation between Cu concentrations. This implies that Cu-rich sulfides hosting HSE 

concentrations in JOC peridotites are homogenized in JU15-18 samples, unlike JU15-16 

grid samples.  
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8. Jormua Summary 

The Jormua ophiolite complex provides an opportunity to study oceanic mantle from 

the Proterozoic. Through systematic grid sampling techniques at different locations in the 

JOC, we were able to examine the processes responsible for oceanic mantle heterogeneity 

at both the meter and kilometer-scales. The JOC serpentinites are heavily altered, showing 

signs of Mg loss and possible SiO2 loss by serpentinization. Grid samples of two locations 

(JU15-16 and JU15-18) within the eastern Antinmäki block of the JOC, show kilometer 

scale heterogeneity within the oceanic mantle, a result of variable melt-depletion at 

different times, as well as evidence of subsequent processes affecting the geochemical and 

Os isotopic composition of individual grid sites.  

The JU15-16 grid, shows evidence of melt depletion as much as 400 Myr prior to the 

accepted age of the ophiolite (1953±2 Ma; Peltonen et al., 1996). JU15-16 grid 

serpentinites also show evidence of refertilization and infiltration by basaltic melts, based 

on trace element concentrations (V and Ti vs. Al2O3) and REE patterns. Overall, the JU15-

16 grid shows modest geochemical and isotopic heterogeneity at the meter scale.  

The JU15-18 grid, roughly 3 km away, shows evidence of Re addition/loss during the 

time of ophiolite formation via metasomatic processes, possibly related to spatially 

associated gabbros. Further evidence of metasomatic processes is indicated by LREE-

enrichments comparable to those observed in the gabbros as well as other metasomatized 

JOC peridotites (Peltonen et al., 1996; 1998). Enrichments of fluid mobile elements in 

JU15-18 samples (e.g., Ba and Sr) are likely the result of ground water-rock interactions, 

causing recent Re loss and gain.  
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Overall, the combined data set shows that the Proterozoic oceanic mantle represented in 

this suite, is a complex set of serpentinites affected by various local scale processes, 

responsible for the geochemical and isotopic variations observed in these samples. Yet, it 

is remarkable that many isotopic and geochemical signatures survive processes such as, 

melt-extraction, alteration, melt-rock, and water-rock interactions over 2 billion years of 

Earth history.  
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9. Comparing the LOC and JOC 

As a result of similar sampling and analytical methodologies, we are presented with a 

unique opportunity in this study to compare mantle materials from the Paleozoic and the 

Proterozoic. As a whole, it is noteworthy that in general, the geochemical and isotopic 

compositions of individual grids sites are a product of local scale processes such as, 

variable melt depletion (LOC and JOC), refertilization (JU15-16), metasomatic processes 

(LK15-10, JU15-18), water-rock interactions (JU15-18), as well as record evidence of melt 

depletion before the age of the ophiolite (LK15-10 Web, JU15-16, and LK15-4 A3 (Harz)).  

In future sampling of ophiolite mantle sections, possible heterogeneities at different 

length scales should be taken into consideration. Kilometer-scale sampling of different 

areas in both the LOC and JOC shows that mantle sections of ophiolites can be 

heterogeneous with differing timing and intensity of prior-melt depletion, depths of 

melting, as well as different processes modifying local rocks in the same section. 

Comprehensive sampling of a single location, should not be extended to represent the 

entirety of the mantle section. Grid sampling methods can provide a more representative 

view of a sampling site, in that LOC peridotites and JOC serpentinites can be 

heterogeneous at the meter-scale, and individual samples are not always representative of 

an area (e.g., LK15-4 A3 Harz; JU15-18 B2). Additionally, grid sampling allows for 

pairing of field-based observations and geochemical analyses, to further investigate 

lithological interactions (LK15-4 and LK15-10). While grid sampling methods are useful 

for mapping meter-scale heterogeneities at these sites, laying out a 3m x 3m grid is not 

necessary for every sampling campaign. However, future sampling in ophiolite mantle 

sections should account for small-scale heterogeneities, to ensure representative sampling 
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of a site. Sampling of 4 to 5 rocks of a single lithology, within ~10m of each other, should 

be sufficient. Repeat analyses of LOC harzburgites and JOC serpentinites indicate that HSE 

can be heterogeneously distributed within a single sample powder, and between different 

1cm cuts of a hand sample. Hand samples taken should be large enough for repeat analyses.  

The northern harzburgite mantle section of the Leka ophiolite complex, is dominantly 

comprised of harzburgite followed by abundant dunite melt pods and channels. Leka 

ophiolite complex harzburgites host pyroxenites in the form of centimeter-thick veins to 

meter-thick dikes, and included orthopyroxenites and websterites. By comparison, the 

Proterozoic mantle section of the Jormua ophiolite complex, within the eastern Antinmäki 

block, is mostly comprised of serpentinized harzburgite, with spatially associated (E)-

MORB sheeted dikes and gabbros. The extensive mapping and lithologic identification of 

the LOC is due to the excellent exposure of the ophiolite at Leka, Norway; compared to 

the JOC, which is far more concealed beneath vegetation. However, both ophiolites contain 

all of the principle components of a classic Penrose ophiolite sequence (Fig. 2).    

Major (Al2O3 vs MgO; Fig. 10A) and trace element (V and Ti vs Yb; Fig. 20 and 21) 

plots of LOC peridotites and JOC serpentinites, show in general, LOC samples are more 

melt-depleted (>20%) than JOC samples (<20%) and appear less serpentinized in thin 

section analyses, further supported by the absence of relict olivine grains in JOC samples. 

However, it is noteworthy that the whole-rock LOI (wt%; a common indicator of degree 

of serpentinization) of LOC and JOC samples, are similar. While the average LOI for LOC 

samples (9.7 wt%; n = 41) is lower than the average LOI for JOC serpentinites (11.0 wt%; 

n = 18), many LOC peridotites have LOI values that fall within the range of values 

observed in JOC samples, yet do not show the same degree of alteration observed in thin 
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section analyses. There is considerable overlap between the major and trace element 

concentrations for the LOC and JOC, due to significant variation between individual 

samples, a result of local scale processes. However, there are overall concentration 

differences between the two ophiolites worth mention, including: SiO2, Al2O3, MgO (Fig. 

10).  

Harzburgite samples from the LOC (LK15-10), and serpentinite samples from the JOC 

(JU15-16 and JU15-18), show evidence of crustal contamination based on flat to LREE-

enriched REE patterns. Previous studies of the LOC (Furnes et al., 1992), and the JOC 

(Peltonen et al., 1996; 1998), showed Nd isotopic compositions consistent with 

metasomatic contamination by crustal-derived material. However, REE patterns in these 

LOC and JOC samples show no obvious correlation with HSE ratios and Os isotopic 

composition. 

Similar to major and trace element concentrations, the concentrations of the HSE vary 

between samples for each ophiolite (Table 4). The LOC and JOC show differences 

between the average concentrations of Ru, Pt, Pd (LOC: 4.9, 9.3, and 6.0; respectively; n 

= 41) (JOC: 9.0, 5.5, and 2.9; respectively; n =26). Variations in Re between the two 

ophiolites are likely the result of primary (age of ophiolite) Re addition/loss and more 

recent Re mobilization (see JU15-18 discussion above). The average initial Os values 

(calculated to the age of each ophiolite) show that the average initial Os (497Ma) for LOC 

peridotites in this study (+0.3 ± 1 (1SD); n =28), is more radiogenic, than the average 

initial Os (1.95 Ga) for JOC serpentinites (-1.3 ± 3.2 (1 SD); n = 27). The more radiogenic 

Os isotopic composition of the LOC, reflect a minor degree (~2%) of global-scale Os 

isotopic heterogeneity O’Driscoll et al. (2015).  
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The comprehensive analysis of portions of the LOC and JOC mantle sections in this 

study, provide an opportunity to investigate mantle heterogeneities at different length 

scales, during the Paleozoic and Proterozoic. The observations made in this study, highlight 

that the local scale processes and lithologic interactions, that affect the geochemical and 

isotopic compositions of ophiolite mantle samples, require further investigation. 
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Table 1: Major element abundances for LOC peridotites and pyroxenites (reported in wt%).  
Grid LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 
Sample: A1 

Harz 
A2 

Harz A3 
Dunite A3 

Harz B1 
Dunite B1 

Harz B2 
Harz B3 

Harz C1 
Harz C2 

Harz C3 
Dun/Harz 

            

SiO2 43.4 43.3 41.8 42.1 40.1 42.1 43.0 43.1 42.9 42.8 42.9 
TiO2 0.01 <0.01 <0.01 0.01 <0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 
Al2O3 0.55 0.53 0.23 0.54 0.21 0.35 0.48 0.60 0.40 0.32 0.55 
Fe2O3T 8.6 8.9 8.9 9.4 9.7 9.2 9.2 9.3 9.0 8.9 8.9 
MnO 0.13 0.14 0.13 0.13 0.12 0.13 0.12 0.14 0.13 0.13 0.13 
MgO 45.5 45.0 47.3 45.6 48.2 46.3 45.2 44.7 45.6 45.9 45.5 
CaO 0.68 0.64 0.11 0.54 0.03 0.43 0.52 0.83 0.49 0.41 0.50 
Na2O 0.02 0.02 0.02 0.08 0.02 0.01 0.02 0.04 0.02 0.01 0.08 
K2O <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.01 
P2O5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
LOI 10.8 10.1 10.1 9.7 11.3 9.1 10.2 10.0 10.6 10.4 10.5 
Total 98.8 98.5 98.5 98.4 98.4 98.5 98.5 98.8 98.5 98.5 98.6 
Mg#  91.7  91.4  91.7  91.0  91.2  91.3  91.1  90.9  91.4  91.5  91.4  
            
Grid LK15-4 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 
Sample: C3 A1 A2 A3 A3 B1 B2 B3 C1 C2 C3 
 Harz Harz Harz Harz Web Harz Harz Harz Harz Harz Harz 
            

SiO2 43.1 42.8 43.9 43.2 49.3 42.5 44.0 42.3 43.4 43.7 43.9 
TiO2 0.01 0.01 0.01 0.01 0.02 <0.01 0.02 <0.01 0.01 0.01 0.01 
Al2O3 0.58 0.80 0.87 0.74 0.68 0.70 0.82 0.55 0.87 0.71 0.90 
Fe2O3T 9.3 8.6 7.9 8.9 5.8 8.7 7.6 9.7 8.8 8.1 8.0 
MnO 0.14 0.13 0.13 0.12 0.08 0.14 0.13 0.14 0.15 0.14 0.18 
MgO 45.0 45.5 45.3 45.8 24.8 44.6 43.6 45.7 44.3 44.3 45.3 
CaO 0.45 1.13 0.86 0.47 18.4 2.33 2.68 0.73 1.50 2.00 0.76 
Na2O 0.11 0.03 0.08 0.02 0.05 0.03 0.02 0.04 0.02 0.02 0.02 
K2O 0.01 <0.01 0.04 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
P2O5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
LOI 9.8 7.6 8.2 8.8 3.5 6.8 8.1 7.4 8.0 8.9 8.8 
Total 98.7 98.9 99.0 99.2 99.2 99.0 99.0 99.1 99.0 98.9 99.0 
Mg# 91.0 91.7 92.3 91.5 89.9 91.5 92.3 90.8 91.3 91.9 92.2 
            
Grid LK15-4 LK15-4 LK15-4 LK15-4 LK15-9 LK15-9 LK15-9 LK15-9 LK15-9 LK15-9 LK15-3 
Sample: A3(1) 

Harz A3(2) 
Ortho A3(3) 

Harz A3(4) 
Harz A(1) 

Ortho A(2) 
Harz A(3) 

Harz A(4) 
Harz A(5) 

Harz C 
Dunite  

Ortho 
            

SiO2 42.7 46.1 42.6 42.9 46.5 42.6 43.4 43.4 43.91 40.6 47.2 
TiO2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 
Al2O3 0.55 1.09 0.49 0.58 0.60 0.38 0.34 0.47 0.49 0.22 1.60 
Fe2O3T 9.3 7.4 9.3 9.2 8.0 9.6 9.2 8.8 8.4 9.5 7.94 
MnO 0.13 0.10 0.14 0.16 0.08 0.14 0.16 0.13 0.13 0.13 0.12 
MgO 46.0 42.7 45.4 45.4 43.2 45.9 45.5 45.7 45.1 48.4 35.0 
CaO 0.49 1.22 0.42 0.49 0.38 0.22 0.21 0.46 0.54 0.07 7.36 
Na2O 0.08 0.16 0.09 0.11 0.04 0.04 0.04 0.03 0.04 0.04 0.04 
K2O <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
P2O5 <0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
LOI 9.5 10.7 9.5 9.8 11.8 10.6 10.4 10.6 11.1 10.4 8.2 
Total 99.3 98.8 99.0 98.8 98.8 98.9 98.8 99.0 98.6 99.1 99.3 
Mg#  91.2 92.3 91.2 91.4 91.8 90.9 91.2 91.6 91.8 91.4 90.2 
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Table 1: Major element abundances for LOC and JOC peridotites and pyroxenites (reported in wt%).  
Grid LK15-3 LK15-3 LK15-3 LK15-3 LK15-3 LK15-3 LK15-3 LK15-3 LK15-3 LK15-3 LK15-4 
Sample:  

Ortho 
A1 

Harz 
A2 

Harz A3 
Harz B1 

Harz B2 
Harz B3 

Harz C1 
Harz C2 

Harz C3 
Harz C3 

Dun/Harz 
            

SiO2 47.2 44.3 43.3 43.2 43.9 43.5 42.9 44.0 44.0 44.1 42.9 
TiO2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
Al2O3 1.60 0.87 0.70 0.80 1.08 0.58 0.78 0.72 1.01 0.91 0.55 
Fe2O3T 7.9 9.1 9.7 9.5 9.0 9.5 9.2 9.4 8.9 8.9 8.9 
MnO 0.12 0.13 0.16 0.14 0.14 0.15 0.13 0.13 0.13 0.15 0.13 
MgO 35.0 44.4 44.3 44.3 43.6 45.0 45.8 43.3 43.5 44.0 45.5 
CaO 7.36 0.11 0.79 0.91 1.05 0.28 0.05 1.08 1.22 0.83 0.50 
Na2O 0.04 0.04 0.05 0.11 0.14 0.06 0.05 0.05 0.07 0.15 0.08 
K2O <0.01 <0.01 <0.01 0.04 0.07 0.03 <0.01 <0.01 0.03 0.09 0.01 
P2O5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
LOI 8.2 11.4 10.3 9.0 9.4 10.0 10.1 9.6 9.2 9.6 10.5 
Total 99.3 98.9 99.0 99.0 98.9 99.1 98.9 98.7 98.9 99.1 98.6 
Mg#  90.2 91.1 90.5 90.6 91.0 90.8 91.3 90.6 91.1 91.1 91.4  
            
Grid JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-18 JU15-18 
Sample: A1 

Harz 
A2 

Harz A3 
Harz B1 

Harz B2 
Harz B3 

Harz C1 
Harz C2 

Harz C3 
Harz A1 

Harz A2  
Harz 

            

SiO2 44.0 45.7 45.3 44.1 43.2 44.5 44.7 44.2 44.3 46.6 45.9 
TiO2 <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.03 
Al2O3 1.38 1.53 1.83 1.22 1.26 1.45 1.01 1.04 1.32 1.01 1.93 
Fe2O3T 9.4 6.8 7.2 9.9 10.1 8.9 9.3 9.9 8.9 9.8 9.9 
MnO 0.24 0.16 0.10 0.20 0.16 0.13 0.09 0.11 0.22 0.10 0.11 
MgO 43.7 44.5 44.4 43.7 44.1 43.9 43.9 43.6 44.0 41.6 41.1 
CaO 0.03 0.04 0.03 0.01 0.02 0.01 0.02 0.04 0.02 0.02 0.02 
Na2O 0.03 0.02 0.02 0.03 0.04 0.02 0.04 0.03 0.03 0.02 0.03 
K2O <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
P2O5 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
LOI 11.3 11.4 11.4 11.2 11.1 11.0 11.3 11.2 11.3 11.1 11.0 
Total 98.8 98.7 98.9 99.1 98.8 98.9 99.0 98.8 98.8 99.2 99.0 
Mg#  90.7 93.2 92.7 90.2 90.1 91.2 90.8 90.2 91.1 89.8 89.7 
            
Grid JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-18   
Sample: A1 

Harz A2  
Harz A3 

Harz B1 
Harz B2 

Harz 
B3 

Harz C1 
Web C2 

Harz C3 
Harz   

            

SiO2 46.6 45.9 46.1 47.0 45.4 46.6 46.1 46.7 46.6   
TiO2 0.02 0.03 0.03 0.02 2.27 0.02 0.06 0.02 0.03   
Al2O3 1.01 1.93 1.56 0.98 1.01 1.24 1.31 0.97 1.21   
Fe2O3T 9.8 9.9 9.9 9.3 9.5 9.8 10.0 9.6 9.5   
MnO 0.10 0.11 0.11 0.10 0.21 0.11 0.11 0.10 0.11   
MgO 41.6 41.1 41.2 41.8 40.7 41.6 41.3 41.7 41.5   
CaO 0.02 0.02 0.02 0.02 0.10 0.02 0.02 0.02 0.02   
Na2O 0.02 0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.03   
K2O <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01   <0.01   
P2O5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01   <0.01   
LOI 11.1 11.0 11.2 11.2 11.2 11.2 11.1 11.2 11.2   
Total 99.2 99.0 99.0 99.3 99.2 99.3 99.0 99.0 98.9   
Mg#  89.8 89.7 89.7 90.3 89.9 90.0 89.6 90.2 90.2   
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Table 2: Trace element abundances for selected Leka Ophiolite Complex peridotites (concentrations in ppm).  

Grid LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 
Sample: A1 

Harz 
A2 

Harz 
A3 

Dunite 
A3 

Harz 
B1 

Dunite 
B1 

Harz 
B2 

Harz 
B3 

Harz 
C1 

Harz 
C2 

Harz 
C3 

Dun/Harz 
            

Li 0.06 0.11 0.07 0.06 0.08 0.06 0.05 0.10 0.06 0.05 0.08 
B 4.3 4.5 3.9 4.4 2.4 3.6 5.1 4.8 4.4 4.2 4.1 
Sc 2.94 3.78 1.70 2.63 1.28 2.48 2.71 4.25 2.69 2.32 3.27 
Ti 20.52 19.59 11.56 24.55 13.31 17.25 16.74 33.04 18.21 17.25 33.75 
V 21.37 22.72 12.71 21.46 13.63 16.57 21.65 24.29 19.07 16.06 20.75 
Cr 2784 2855 2407 2541 2809 2677 2619 2612 2971 2593 2330 
Mn 662 814 793 775 752 841 753 874 808 773 759 
Co 94.3 105.2 112.4 100.0 111.6 108.9 100.8 100.5 103.3 101.9 99.9 
Ni 1989 2140 2260 2112 2449 2229 2105 2005 2156 2146 2051 
Cu 1.1 1.0 1.8 0.7 3.4 3.7 1.8 0.9 0.8 4.2 2.3 
Zn 37.0 43.3 40.5 39.0 45.4 42.8 40.5 39.1 40.2 40.2 37.3 
Ga 0.49 0.48 0.26 0.48 0.32 0.36 0.43 0.51 0.41 0.36 0.49 
Ge 0.76 0.83 0.80 0.80 0.88 0.82 0.79 0.81 0.85 0.87 0.80 
Rb 0.276 0.061 0.018 0.309 0.017 0.036 0.053 0.264 0.035 0.032 0.282 
Sr 0.561 0.346 0.149 0.192 0.235 0.193 0.316 0.445 0.415 0.232 0.256 
Y 0.036 0.032 0.009 0.039 0.006 0.013 0.016 0.059 0.026 0.025 0.027 
Zr 0.203 0.135 0.031 0.030 0.041 0.069 0.157 0.115 0.130 0.070 0.047 
Nb 0.0137 0.0095 0.0035 0.0035 0.0044 0.0062 0.0095 0.0098 0.0092 0.0048 0.0044 
Cs 0.0438 0.0386 0.0145 0.1608 0.0125 0.0240 0.0391 0.1017 0.0259 0.0350 0.1416 
Ba 1.344 0.2871 0.0655 0.2545 0.2345 1.0874 1.480 25.29 2.338 0.5084 1.200 
La 0.0387 0.0045 0.0010 0.0008 0.0023 0.0052 0.0016 0.0328 0.0032 0.0041 0.0123 
Ce 0.0680 0.0094 0.0016 0.0018 0.0042 0.0106 0.0037 0.0481 0.0067 0.0079 0.0206 
Pr 0.0082 0.0011 0.0003 0.0002 0.0006 0.0014 0.0005 0.0071 0.0009 0.0009 0.0023 
Nd 0.0319 0.0046 0.0011 0.0014 0.0021 0.0050 0.0022 0.0288 0.0029 0.0036 0.0092 
Sm 0.0051 0.0011 0.0003 0.0007 0.0004 0.0010 0.0007 0.0053 0.0008 0.0009 0.0014 
Eu 0.0041 0.0004 0.0001 0.0003 0.0001 0.0004 0.0002 0.0016 0.0003 0.0003 0.0018 
Gd 0.0053 0.0019 0.0007 0.0013 0.0004 0.0011 0.0010 0.0060 0.0012 0.0013 0.0016 
Tb 0.0008 0.0004 0.0002 0.0004 0.0001 0.0002 0.0002 0.0011 0.0003 0.0003 0.0003 
Dy 0.0057 0.0041 0.0015 0.0044 0.0006 0.0020 0.0025 0.0091 0.0028 0.0026 0.0036 
Ho 0.0016 0.0013 0.0005 0.0016 0.0002 0.0006 0.0008 0.0026 0.0009 0.0009 0.0013 
Er 0.0060 0.0058 0.0023 0.0070 0.0013 0.0028 0.0036 0.0103 0.0040 0.0034 0.0059 
Tm 0.0012 0.0012 0.0005 0.0015 0.0004 0.0006 0.0008 0.0022 0.0009 0.0008 0.0013 
Yb 0.0108 0.0115 0.0041 0.0139 0.0042 0.0058 0.0073 0.0188 0.0084 0.0075 0.0121 
Lu 0.0022 0.0024 0.0009 0.0029 0.0011 0.0013 0.0016 0.0036 0.0017 0.0016 0.0026 
Hf 0.0050 0.0038 0.0008 0.0010 0.0009 0.0018 0.0049 0.0034 0.0026 0.0017 0.0012 
Ta 0.0015 0.0019 0.0013 0.0010 0.0012 0.0015 0.0015 0.0014 0.0015 0.0012 0.0011 
W 0.0183 0.0169 0.0133 0.0137 0.0122 0.0124 0.0195 0.0183 0.0163 0.0148 0.0128 
Pb 0.0483 0.0216 0.0180 0.0139 0.0077 0.0161 0.0154 0.0270 0.0314 0.0212 0.0299 
Th 0.0020 0.0003 0.0002 <0.0001 0.0001 0.0001 <0.0001 0.0003 0.0006 0.0005 0.0004 
U 0.0022 0.0022 0.0010 0.0011 0.0011 0.0016 0.0022 0.0056 0.0022 0.0014 0.0012 
          (continued) 
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Table 2: Continued  

Grid LK15-4 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 
Sample: C3 

Harz 
A1 

Harz 
A2 

Harz 
A3 

Harz 
A3 

Web 
B1 

Harz 
B2 

Harz 
B3 

Harz 
C1 

Harz 
C2 

Harz 
C3 

Harz 
 

           

Li 0.98 0.58 0.62 0.55 5.61 0.87 1.17 0.69 0.60 0.99 0.51 
B 4.9 21.8 25.2 27.1 13.6 17.0 23.8 15.7 21.0 23.7 23.7 
Sc 11.23 8.81 9.62 8.50 38.78 9.07 13.01 8.50 8.64 9.54 8.31 
Ti 37.32 14.82 41.51 29.10 101.23 11.33 52.91 13.71 20.11 48.37 28.80 
V 22.92 24.26 27.78 33.61 54.39 25.94 30.22 23.59 25.96 26.41 26.73 
Cr 2677 2423 2352 4091 5216 3555 2375 2865 3273 2669 3061 
Mn 1021 939 925 864 734 1011 963 1047 1064 1014 896 
Co 112.9 123.4 105.5 107.6 43.3 127.9 106.4 120.6 114.1 109.6 103.9 
Ni 2109 2416 2420 2363 779 2370 2262 2458 2288 2193 2309 
Cu 0.4 8.5 10.9 93.7 76.7 12.0 19.9 12.0 6.7 24.6 23.4 
Zn 45.1 36.3 39.1 50.2 25.4 48.3 35.1 42.8 41.7 38.8 41.2 
Ga 0.54 0.59 0.71 0.70 0.57 0.56 0.77 0.51 0.72 0.72 0.77 
Ge 0.84 0.81 0.73 0.84 0.54 0.76 0.69 0.90 0.75 0.75 0.73 
Rb 0.300 0.079 0.106 0.064 0.085 0.215 0.155 0.022 0.018 0.040 0.025 
Sr 0.198 0.529 0.742 0.677 7.52 0.946 1.993 0.355 0.771 1.791 0.439 
Y 0.047 0.118 0.233 0.113 1.27 0.091 0.373 0.073 0.146 0.285 0.187 
Zr 0.028 0.278 1.720 0.936 0.909 0.897 3.101 0.802 1.101 1.510 1.164 
Nb 0.0039 0.0129 0.0250 0.0148 0.0067 0.0078 0.0463 0.0052 0.0065 0.0230 0.0044 
Cs 0.151 0.0303 0.0213 0.0193 0.0631 0.0282 0.0302 0.0225 0.0167 0.0150 0.0267 
Ba 1.498 0.893 0.957 0.548 5.838 2.829 1.685 0.501 0.631 1.379 0.611 
La 0.0025 0.0286 0.0375 0.0161 0.0134 0.0075 0.149 0.0042 0.0053 0.0555 0.0032 
Ce 0.0031 0.0659 0.0883 0.0383 0.0561 0.0226 0.334 0.0105 0.0158 0.131 0.0102 
Pr 0.0005 0.0093 0.0123 0.0053 0.0125 0.0025 0.0417 0.0012 0.0025 0.0170 0.0020 
Nd 0.0018 0.0378 0.0581 0.0214 0.0968 0.0144 0.181 0.0091 0.0150 0.0733 0.0136 
Sm 0.0005 0.0124 0.0146 0.0059 0.0655 0.0054 0.0382 0.0017 0.0073 0.0187 0.0070 
Eu 0.0004 0.0050 0.0059 0.0025 0.0279 0.0039 0.0114 0.0024 0.0039 0.0071 0.0029 
Gd 0.0011 0.0144 0.0249 0.0089 0.122 0.0066 0.0509 0.0046 0.0118 0.0297 0.0155 
Tb 0.0004 0.0023 0.0044 0.0018 0.0267 0.0015 0.0071 0.0010 0.0028 0.0042 0.0029 
Dy 0.0049 0.0163 0.0340 0.0166 0.208 0.0144 0.0562 0.0095 0.0202 0.0417 0.0239 
Ho 0.0017 0.0044 0.0085 0.0039 0.0479 0.0032 0.0134 0.0022 0.0049 0.0099 0.0068 
Er 0.0083 0.0157 0.0289 0.0156 0.140 0.0111 0.0420 0.0098 0.0171 0.0349 0.0230 
Tm 0.0019 0.0027 0.0048 0.0023 0.0214 0.0021 0.0066 0.0018 0.0031 0.0057 0.0042 
Yb 0.0175 0.0273 0.0375 0.0200 0.140 0.0213 0.0515 0.0188 0.0249 0.0427 0.0326 
Lu 0.0035 0.0054 0.0063 0.0036 0.0201 0.0044 0.0080 0.0030 0.0042 0.0066 0.0054 
Hf 0.0011 0.0094 0.0616 0.0334 0.0407 0.0354 0.116 0.0318 0.0447 0.0584 0.0480 
Ta 0.0012 0.0038 0.0075 0.0061 0.0035 0.0062 0.0137 0.0062 0.0097 0.0076 0.0060 
W 0.0125 0.213 0.170 0.128 0.790 0.212 0.210 0.134 0.211 0.259 0.150 
Pb 0.0163 0.0676 0.0586 0.0440 0.0575 0.0606 0.0537 0.0290 0.0415 0.0490 0.0333 
Th <0.0001 0.0045 0.0132 0.0065 0.0060 0.0059 0.0403 0.0049 0.0050 0.0121 0.0053 
U 0.0013 0.0017 0.0029 0.0012 0.0474 0.0007 0.0063 0.0004 0.0031 0.0022 0.0005 
          (continued) 
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Table 2: Continued  

Grid LK15-4 LK15-4 LK15-4 LK15-4 LK15-9 LK15-9 LK15-9 LK15-9 LK15-9 LK15-9 LK15-9 
Sample: A3(1) 

Harz 
A3(2) 
Ortho 

A3(3) 
Harz 

A3(4) 
Harz 

A(1) 
Ortho 

A(2) 
Harz 

A(3) 
Harz 

A(4) 
Harz 

A(5) 
Harz 

C 
Dunite 

C 
Dunite 

 
           

Li 0.49 1.71 0.66 0.56 0.21 0.62 1.36 0.38 0.15 1.46 1.46 
B 3.0 6.3 2.5 2.9 5.3 3.5 2.1 3.3 2.8 2.0 2.0 
Sc 5.06 9.60 4.08 4.69 7.15 5.43 6.30 4.45 3.12 3.62 3.62 
Ti 23.65 38.15 18.10 22.45 24.41 14.43 12.68 18.24 17.71 10.10 10.10 
V 23.11 36.19 20.74 22.82 27.97 18.84 15.08 20.15 27.18 10.28 10.28 
Cr 2742 3926 2332 2565 2649 2484 1994 3216 4734 2038 2038 
Mn 868 618 884 887 531 930 1006 845 777 893 893 
Co 107.6 85.0 106.3 102.4 81.0 115.8 116.0 105.0 97.9 122.0 122.0 
Ni 2161 1728 2201 2098 1811 2243 2244 2115 1993 2494 2494 
Cu 0.9 10.2 1.1 1.1 4.2 3.4 2.6 2.9 3.5 2.4 2.4 
Zn 43.1 41.4 49.5 47.4 37.1 43.6 48.8 44.1 52.7 44.8 44.8 
Ga 0.48 0.88 0.45 0.49 0.47 0.34 0.31 0.42 0.53 0.22 0.22 
Ge 0.81 0.75 0.83 0.79 0.77 0.82 0.84 0.75 0.79 0.87 0.87 
Rb 0.190 0.481 0.150 0.241 0.061 0.035 0.036 0.042 0.041 0.021 0.021 
Sr 0.17 1.52 0.11 0.19 3.68 0.54 0.49 0.68 0.77 0.28 0.28 
Y 0.05 0.08 0.05 0.05 0.03 0.03 0.03 0.03 0.04 0.01 0.01 
Zr 0.100 0.053 0.062 0.034 0.228 0.062 0.123 0.058 0.058 0.031 0.031 
Nb 0.0046 0.0032 0.0060 0.0030 0.0034 0.0026 0.0052 0.0030 0.0058 0.0031 0.0031 
Cs 0.0655 0.207 0.0542 0.0894 0.0405 0.0182 0.0168 0.0212 0.0158 0.0041 0.0041 
Ba 0.435 0.868 0.608 0.497 1.089 0.950 0.355 0.254 0.320 0.0515 0.0515 
La 0.0064 0.0038 0.0037 0.0015 0.0047 0.0019 0.0061 0.0030 0.0022 0.0013 0.0013 
Ce 0.0113 0.0069 0.0074 0.0027 0.0094 0.0038 0.0101 0.0060 0.0037 0.0022 0.0022 
Pr 0.0017 0.0009 0.0010 0.0004 0.0014 0.0005 0.0016 0.0008 0.0006 0.0003 0.0003 
Nd 0.0073 0.0044 0.0044 0.0021 0.0054 0.0025 0.0066 0.0033 0.0026 0.0013 0.0013 
Sm 0.0018 0.0018 0.0016 0.0011 0.0014 0.0009 0.0021 0.0011 0.0010 0.0004 0.0004 
Eu 0.0006 0.0009 0.0005 0.0004 0.0006 0.0003 0.0006 0.0004 0.0004 0.0001 0.0001 
Gd 0.0026 0.0030 0.0020 0.0017 0.0020 0.0011 0.0023 0.0014 0.0015 0.0004 0.0004 
Tb 0.0006 0.0008 0.0005 0.0005 0.0004 0.0003 0.0004 0.0003 0.0004 0.0001 0.0001 
Dy 0.0063 0.0089 0.0056 0.0052 0.0041 0.0027 0.0038 0.0036 0.0042 0.0009 0.0009 
Ho 0.0018 0.0028 0.0017 0.0017 0.0012 0.0009 0.0012 0.0012 0.0014 0.0004 0.0004 
Er 0.0078 0.0113 0.0073 0.0077 0.0050 0.0041 0.0047 0.0048 0.0059 0.0020 0.0020 
Tm 0.0016 0.0025 0.0016 0.0016 0.0010 0.0010 0.0011 0.0011 0.0013 0.0006 0.0006 
Yb 0.0155 0.0211 0.0139 0.0150 0.0094 0.0091 0.0094 0.0096 0.0119 0.0064 0.0064 
Lu 0.0031 0.0041 0.0028 0.0031 0.0019 0.0020 0.0019 0.0019 0.0025 0.0015 0.0015 
Hf 0.0026 0.0020 0.0019 0.0012 0.0064 0.0021 0.0038 0.0018 0.0020 0.0010 0.0010 
Ta 0.0005 0.0003 0.0006 0.0003 0.0004 0.0003 0.0005 0.0003 0.0004 0.0003 0.0003 
W 0.0122 0.0450 0.0116 0.0125 0.0474 0.0239 0.0136 0.0129 0.0119 0.0122 0.0122 
Pb 0.0220 0.147 0.0123 0.0152 0.0157 0.0117 0.0125 0.0144 0.0138 0.0063 0.0063 
Th 0.0002 0.0003 0.0001 0.0000 0.0002 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 
U 0.0007 0.0853 0.0002 0.0001 0.0088 0.0007 0.0005 0.0012 0.0003 0.0003 0.0003 
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Table 2: Continued  

Grid LK15-3 LK15-3 LK15-3 LK15-3 LK15-3 LK15-3 LK15-3 LK15-3 LK15-3 LK15-3 LK15-10 
Sample:  

Ortho 
A1 

Harz 
A2 

Harz 
A3 

Harz 
B1 

Harz 
B2 

Harz 
B3 

Harz 
C1 

Harz 
C2 

Harz 
C3 

Harz 
C3 

Harz 
 

           

Li 2.79 0.02 0.19 0.39 0.07 0.18 0.06 4.32 0.07 0.11 0.51 
B 8.7 3.6 3.3 3.2 3.6 3.5 3.2 3.0 2.9 3.1 23.7 
Sc 13.3 5.83 8.03 6.93 6.17 7.02 4.92 34.5 6.22 6.77 8.31 
Ti 100.4 23.99 18.88 29.67 20.55 17.22 11.28 31.34 23.19 21.32 28.80 
V 57.04 29.07 35.67 29.68 37.20 30.59 22.75 31.76 38.80 36.73 26.73 
Cr 4743 2547 2679 2381 2370 2613 1589 3122 2454 2499 3061 
Mn 851 809 1012 891 841 989 845 1277 822 766 896 
Co 77.1 106.4 110.2 104.7 100.5 114.6 112.2 139.8 98.8 102.3 103.9 
Ni 805 2215 2037 1956 2030 2187 2425 1910 2026 2070 2309 
Cu 3.3 4.9 4.6 5.4 6.4 6.3 19.1 6.0 5.1 5.7 23.4 
Zn 37.6 52.6 51.2 49.4 48.0 54.2 53.4 61.1 47.7 48.5 41.2 
Ga 1.03 0.74 0.54 0.57 0.79 0.49 0.55 0.63 0.72 0.66 0.77 
Ge 0.68 0.88 0.82 0.81 0.83 0.83 0.83 0.77 0.77 0.75 0.73 
Rb 0.327 0.010 0.008 0.013 0.010 0.007 0.008 0.010 0.010 0.010 0.025 
Sr 11.54 0.29 0.28 0.36 0.41 0.23 0.12 0.33 0.26 0.25 0.439 
Y 0.18 0.09 0.13 0.13 0.15 0.09 0.08 0.12 0.16 0.13 0.187 
Zr 0.127 0.137 0.074 0.068 0.083 0.049 0.093 0.085 0.287 0.067 1.164 
Nb 0.0039 0.0070 0.0047 0.0035 0.0044 0.0046 0.0046 0.0042 0.0029 0.0041 0.0044 
Cs 0.404 0.0090 0.0059 0.0106 0.0087 0.0064 0.0042 0.0066 0.0097 0.0095 0.0267 
Ba 0.0898 0.941 - 0.790 0.114 - 0.033 - 0.828 - 0.6112 
La 0.0057 0.0019 0.0018 0.0016 0.0025 0.0022 0.0033 0.0020 0.0014 0.0038 0.0032 
Ce 0.0102 0.0044 0.0038 0.0035 0.0066 0.0045 0.0070 0.0043 0.0032 0.0072 0.0102 
Pr 0.0016 0.0007 0.0006 0.0005 0.0008 0.0006 0.0010 0.0008 0.0006 0.0010 0.0020 
Nd 0.0072 0.0031 0.0029 0.0029 0.0047 0.0029 0.0040 0.0041 0.0037 0.0043 0.0136 
Sm 0.0031 0.0020 0.0019 0.0023 0.0022 0.0015 0.0015 0.0025 0.0023 0.0015 0.0070 
Eu 0.0020 0.0006 0.0006 0.0008 0.0008 0.0004 0.0005 0.0009 0.0009 0.0006 0.0029 
Gd 0.0063 0.0029 0.0039 0.0046 0.0045 0.0024 0.0020 0.0052 0.0051 0.0032 0.0155 
Tb 0.0019 0.0009 0.0013 0.0013 0.0014 0.0009 0.0006 0.0015 0.0017 0.0012 0.0029 
Dy 0.0207 0.0096 0.0150 0.0147 0.0169 0.0097 0.0084 0.0162 0.0188 0.0142 0.0239 
Ho 0.0063 0.0031 0.0047 0.0046 0.0055 0.0034 0.0029 0.0046 0.0059 0.0047 0.0068 
Er 0.0252 0.0131 0.0200 0.0181 0.0229 0.0139 0.0129 0.0171 0.0234 0.0185 0.0230 
Tm 0.0052 0.0027 0.0042 0.0036 0.0047 0.0031 0.0029 0.0033 0.0046 0.0039 0.0042 
Yb 0.0437 0.0251 0.0365 0.0322 0.0401 0.0274 0.0259 0.0277 0.0408 0.0340 0.0326 
Lu 0.0082 0.0051 0.0070 0.0061 0.0078 0.0055 0.0051 0.0052 0.0076 0.0062 0.0054 
Hf 0.0046 0.0045 0.0025 0.0026 0.0024 0.0015 0.0026 0.0032 0.0075 0.0023 0.0480 
Ta 0.0004 0.0012 0.0008 0.0006 0.0007 0.0006 0.0009 0.0004 0.0005 0.0005 0.0060 
W 0.0066 0.0093 0.0143 0.0137 0.0148 0.0121 0.0153 0.0137 0.0152 0.0132 0.1504 
Pb 0.0211 0.0046 0.0048 0.0048 0.0045 0.0046 0.0038 0.0060 0.0045 0.0049 0.0333 
Th 0.0008 0.0006 0.0002 0.0001 0.0001 0.0001 0.0004 0.0004 0.0002 0.0001 0.0053 
U 0.0014 0.0001 0.0001 0.0002 0.0005 0.0001 0.0001 0.0002 0.0001 0.0002 0.0005 
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Table 2: Trace element abundances for selected Jormua Ophiolite Complex serpentinites (concentrations in ppm).  

Grid JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15- JU15- 
Sample: A1 

Harz 
A2 

Harz 
A3 

Harz 
B1 

Harz 
B2 

Harz 
B3 

Harz 
C1 

Harz 
C2 

Harz 
C3 

Harz 
A1 

Harz 
A2  

Harz 
            

Li 5.21 2.69 1.04 1.78 3.23 2.56 0.01 0.06 3.79 0.05 0.08 
B 17.3 14.2 12.9 21.0 16.0 15.4 18.1 15.4 16.6 4.2 4.1 
Sc 6.71 6.36 6.45 5.24 7.32 7.18 6.87 6.22 7.22 2.32 3.27 
Ti 64.09 69.22 98.30 49.78 43.08 57.67 35.53 30.85 45.42 17.25 33.75 
V 26.90 25.79 35.43 26.47 26.22 26.56 22.95 25.24 25.79 16.06 20.75 
Cr 3187 2573 2493 3591 3485 2925 2269 2161 2455 2593 2330 
Mn 1584 1079 678 1256 1035 884 624 718 1525 773 759 
Co 137.8 112.2 112.6 131.2 131.5 117.2 104.3 120.2 121.7 101.9 99.9 
Ni 2862 2609 2625 2745 2651 2474 2798 2563 2492 2146 2051 
Cu 7.3 11.8 127.2 11.1 8.0 7.2 459.6 240.7 3.5 4.2 2.3 
Zn 88.3 71.2 61.6 82.6 87.4 72.5 51.7 49.6 64.3 40.2 37.3 
Ga 1.41 1.42 1.66 1.27 1.28 1.37 1.09 1.10 1.35 0.36 0.49 
Ge 0.93 0.78 0.83 0.95 0.92 0.87 0.89 0.88 0.92 0.87 0.80 
Rb 0.002 <0.001 0.001 <0.001 <0.001 0.000 <0.001 0.006 <0.001 0.032 0.282 
Sr 0.21 0.17 0.11 0.06 0.28 0.21 0.21 0.46 0.15 0.232 0.256 
Y 0.46 0.33 0.66 0.32 0.34 0.33 0.31 0.29 0.33 0.025 0.027 
Zr 0.539 0.432 0.718 0.517 0.555 0.435 0.467 0.488 0.495 0.070 0.047 
Nb 0.0578 0.0398 0.0536 0.0541 0.0526 0.0439 0.0482 0.0475 0.0554 0.0048 0.0044 
Cs 0.0006 0.0006 0.0012 0.0003 0.0010 0.0005 0.0003 0.0011 0.0006 0.0350 0.1416 
Ba 0.0919 0.0634 <0.0001 0.142 <0.0001 0.0887 0.0803 0.134 0.154 0.5084 1.1996 
La 0.0540 0.0290 0.0323 0.0514 0.0619 0.0421 0.0373 0.0490 0.0504 0.0041 0.0123 
Ce 0.151 0.0839 0.104 0.127 0.152 0.122 0.0850 0.138 0.124 0.0079 0.0206 
Pr 0.0253 0.0147 0.0190 0.0191 0.0230 0.0201 0.0125 0.0221 0.0185 0.0009 0.0023 
Nd 0.134 0.0808 0.117 0.0969 0.108 0.106 0.0604 0.101 0.0899 0.0036 0.0092 
Sm 0.0477 0.0277 0.0536 0.0276 0.0310 0.0307 0.0223 0.0269 0.0260 0.0009 0.0014 
Eu 0.0139 0.0072 0.0071 0.0132 0.0132 0.0084 0.0140 0.0135 0.0081 0.0003 0.0018 
Gd 0.0558 0.0360 0.0766 0.0365 0.0372 0.0366 0.0302 0.0350 0.0331 0.0013 0.0016 
Tb 0.0097 0.0064 0.0135 0.0060 0.0068 0.0066 0.0056 0.0062 0.0061 0.0003 0.0003 
Dy 0.0694 0.0474 0.0981 0.0451 0.0454 0.0450 0.0441 0.0438 0.0472 0.0026 0.0036 
Ho 0.0142 0.0100 0.0210 0.0099 0.0104 0.0099 0.0104 0.0095 0.0106 0.0009 0.0013 
Er 0.0430 0.0304 0.0602 0.0326 0.0341 0.0307 0.0328 0.0317 0.0336 0.0034 0.0059 
Tm 0.0067 0.0049 0.0094 0.0052 0.0055 0.0051 0.0055 0.0046 0.0055 0.0008 0.0013 
Yb 0.0495 0.0383 0.0634 0.0399 0.0430 0.0379 0.0406 0.0334 0.0434 0.0075 0.0121 
Lu 0.0074 0.0066 0.0100 0.0063 0.0062 0.0064 0.0061 0.0054 0.0069 0.0016 0.0026 
Hf 0.0155 0.0133 0.0216 0.0149 0.0161 0.0133 0.0124 0.0150 0.0132 0.0017 0.0012 
Ta 0.0039 0.0030 0.0038 0.0038 0.0045 0.0028 0.0038 0.0053 0.0030 0.0012 0.0011 
W 0.0151 0.0110 0.0141 0.0254 0.0241 0.0235 0.0146 0.0159 0.0182 0.0148 0.0128 
Pb 0.0505 0.0241 0.0416 0.0380 0.0319 0.0216 0.117 0.0888 0.0274 0.0212 0.0299 
Th <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0005 0.0004 
U 0.0024 0.0010 0.0012 0.0024 0.0168 0.0018 0.0015 0.0035 0.0031 0.0014 0.0012 
          (continued) 
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Table 2: Continued  

Grid JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 LK15-10 LK15-10 
Sample: A1 

Harz 
A2 

Harz 
A3 

Harz 
B1 

Harz 
B2 

Harz 
B3 

Harz 
C1 

Harz 
C2 

Harz 
C3 

Harz 
C2 

Harz 
C3 

Harz 
 

           

Li 0.31 1.03 0.89 0.83 1.01 0.90 0.74 0.86 0.88 0.99 0.51 
B 6.0 6.6 6.3 7.3 7.4 6.0 6.9 6.3 5.4 23.7 23.7 
Sc 7.49 9.72 8.73 10.16 17.85 9.54 13.79 10.89 9.57 9.54 8.31 
Ti 211.1 238.4 284.1 181.5 12450 271.5 440.9 270.2 264.2 48.37 28.80 
V 63.94 74.27 82.25 58.57 59.55 75.85 66.38 61.48 75.98 26.41 26.73 
Cr 1656 3390 2588 1445 911 2327 2536 1647 2633 2669 3061 
Mn 771 796 835 773 1541 837 781 790 841 1014 896 
Co 123.3 119.6 120.1 121.1 86.1 122.4 124.3 122.5 128.0 109.6 103.9 
Ni 2424 2296 2314 2329 1246 2245 2351 2304 2481 2193 2309 
Cu 19.7 18.1 18.1 18.8 4.3 17.5 19.0 19.5 19.3 24.6 23.4 
Zn 36.1 56.6 47.1 32.4 40.5 47.9 48.4 36.5 54.9 38.8 41.2 
Ga 3.23 3.87 3.84 3.38 3.50 3.67 3.60 3.43 3.74 0.72 0.77 
Ge 1.06 1.07 1.07 1.07 1.05 1.03 1.08 1.07 1.05 0.75 0.73 
Rb 0.360 0.439 0.481 0.563 0.505 0.595 0.325 0.615 0.595 0.040 0.025 
Sr 0.47 0.25 0.18 0.51 1.18 0.78 0.41 0.71 0.63 1.791 0.439 
Y 2.38 2.09 3.14 2.53 3.08 2.79 2.62 2.47 2.68 0.285 0.187 
Zr 1.680 1.670 2.077 1.787 31.60 3.038 1.982 2.000 1.788 1.510 1.164 
Nb 0.497 0.459 0.466 0.546 7.879 0.458 0.784 0.568 0.419 0.0230 0.0044 
Cs 0.0731 0.0663 0.0848 0.0832 0.0895 0.0863 0.0747 0.0811 0.0837 0.0150 0.0267 
Ba 0.983 1.283 0.529 1.601 2.948 23.11 1.205 6.502 10.47 1.3793 0.6112 
La 1.038 0.908 1.072 1.111 2.372 0.961 1.033 0.973 0.891 0.0555 0.0032 
Ce 2.368 2.005 2.343 2.407 3.861 2.128 2.204 2.038 1.939 0.1308 0.0102 
Pr 0.319 0.269 0.318 0.325 0.479 0.287 0.293 0.277 0.262 0.0170 0.0020 
Nd 1.316 1.114 1.359 1.314 1.947 1.221 1.214 1.158 1.130 0.0733 0.0136 
Sm 0.313 0.269 0.359 0.319 0.441 0.317 0.302 0.289 0.306 0.0187 0.0070 
Eu 0.126 0.112 0.128 0.137 0.188 0.128 0.141 0.132 0.120 0.0071 0.0029 
Gd 0.337 0.285 0.407 0.338 0.479 0.362 0.346 0.321 0.343 0.0297 0.0155 
Tb 0.0559 0.0486 0.0691 0.0584 0.0751 0.0620 0.0607 0.0563 0.0593 0.0042 0.0029 
Dy 0.370 0.324 0.475 0.392 0.497 0.423 0.405 0.396 0.405 0.0417 0.0239 
Ho 0.0744 0.0663 0.100 0.0793 0.101 0.0876 0.0865 0.0803 0.0824 0.0099 0.0068 
Er 0.211 0.185 0.2865 0.229 0.307 0.250 0.249 0.238 0.242 0.0349 0.0230 
Tm 0.0295 0.0259 0.0416 0.0333 0.0456 0.0370 0.0378 0.0358 0.0356 0.0057 0.0042 
Yb 0.184 0.170 0.276 0.217 0.304 0.238 0.247 0.240 0.228 0.0427 0.0326 
Lu 0.0247 0.0238 0.0369 0.0305 0.0510 0.0332 0.0362 0.0359 0.0315 0.0066 0.0054 
Hf 0.0493 0.0646 0.0740 0.0569 0.817 0.0904 0.0790 0.0800 0.0680 0.0584 0.0480 
Ta 0.0397 0.0342 0.0321 0.0392 0.450 0.0308 0.0525 0.0367 0.0305 0.0076 0.0060 
W 0.0548 0.0479 0.118 0.0484 0.175 0.0462 0.0474 0.0499 0.0425 0.2591 0.1504 
Pb 0.362 0.336 0.382 0.372 0.156 0.371 0.350 0.323 0.420 0.0490 0.0333 
Th 0.0082 0.0233 0.0218 0.0074 0.1010 0.0289 0.0391 0.0240 0.0195 0.0121 0.0053 
U 0.0097 0.0087 0.0110 0.0093 0.0526 0.0096 0.0095 0.0086 0.0076 0.0022 0.0005 
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Table 4: Osmium isotope systematics and highly siderophile element abundance* data for Leka Ophiolite peridotites.  

Grid LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 
Sample: A1 

Harz 
A2 

Harz 
A3 

Dunite 
A3  

Harz 
A3 Harz 
(Replicate) 

B1 
Dunite 

B1  
Harz 

B2 
Harz 

B3 
Harz 

C1 
Harz 

C2 
Harz 

            

Os 4.274 5.119 3.906 5.869 3.302 1.799 2.672 4.194 5.142 4.528 2.804 
Ir 2.155 2.638 3.388 4.145 3.456 1.493 2.019 1.835 2.988 3.180 1.879 
Ru 3.780 3.580 4.129 7.416 3.312 2.315 2.173 2.165 3.870 3.000 2.151 
Pt 4.032 7.380 6.197 7.678 7.224 1.715 8.212 7.477 8.536 11.39 4.322 
Pd 4.128 2.331 3.629 8.026 8.631 0.892 6.935 1.317 6.667 6.267 3.470 
Re 0.021 0.030 0.024 0.012 0.011 0.060 0.028 0.022 0.020 0.031 0.037 
187Re/188Os 0.0238 0.0283 0.030 0.0096 0.017 0.160 0.0501 0.0258 0.0185 0.033 0.0627 
±2σ (abs) 0.0003 0.0003 0.0019 0.0002 0.0022 0.0041 0.0005 0.0003 0.0003 0.0016 0.0005 
187Os/188Os 0.12652 0.12548 0.12579 0.12118 0.12147 0.12691 0.12570 0.12587 0.12572 0.12624 0.12628 
187Os/188Osi 0.1263 0.1252 0.1256 0.1211 0.1213 0.1256 0.1253 0.1257 0.1256 0.1260 0.1258 
γOs(497 Ma) 2.2 1.3 1.5 -2.1 -1.9 1.5 1.3 1.6 1.5 1.9 1.7 
±2σ  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
TRD 0.3 0.4 0.4 1.0 1.0 0.4 0.4 0.4 0.4 0.3 0.4             

Grid LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-4 LK15-10 LK15-10 LK15-10 LK15-10 
Sample: C3 

Dun/Harz 
C3  

Harz 
A3(1) 
Harz 

A3(2) 
Ortho 

A3(3) 
Harz 

A3(4) 
Harz 

B1 
Harz 

B2 
Harz 

B3 
Harz 

C1 
Harz 

           

Os 2.523 3.201 3.352 2.792 4.965 5.103 2.746 4.840 6.551 3.209 
Ir 2.402 4.076 3.006 2.255 2.586 1.921 2.387 3.442 4.463 2.550 
Ru 1.877 3.303 4.271 0.924 5.582 2.824 5.705 5.521 10.41 4.466 
Pt 8.769 8.362 8.511 94.20 7.423 6.452 4.953 6.164 24.56 5.648 
Pd 2.517 2.601 7.003 80.83 6.163 7.114 10.84 1.578 2.542 2.914 
Re 0.004 0.003 0.025 0.028 0.006 0.007 0.029 0.066 0.034 0.034 
187Re/188Os 0.0085 0.0051 0.0358 0.0476 0.0062 0.0061 0.051 0.065 0.025 0.050 
±2σ (abs) 0.0028 0.0023 0.0003 0.0005 0.0005 0.0005 0.0027 0.0015 0.0011 0.0022 
187Os/188Os 0.12553 0.12528 0.12198 0.12465 0.12235 0.12221 0.12285 0.12475 0.12368 0.12223 
187Os/188Osi 0.1255 0.1252 0.1217 0.1243 0.1223 0.1222 0.1224 0.1242 0.1235 0.1218 
γOs(497 Ma) 1.5 1.3 -1.6 0.5 -1.1 -1.2 -1.0 0.4 -0.2 -1.5 
±2σ  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
TRD 0.4 0.4 0.9 0.6 0.9 0.9 0.8 0.6 0.7 0.9 
      *HSE are reported in ppb. 
        Locality abbreviations are the same as in Table 1.  

        Uncertainty on 187Os/188Os is ~±0.2% (see text for details) 
        Chondrite data for TRD model age calculations obtained from Walker et al., 2002. 
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Table 4: Osmium isotope systematics and highly siderophile element abundance* data for Leka Ophiolite peridotites.  

Grid LK15-3 LK15-9 LK15-9 LK15-9 LK15-9 LK15-9 LK15-9 LK15-9 LK15-10 LK15-10 LK15-10 
Sample: (Bulk) 

Ortho 
A(1) 
Ortho 

A(2) 
Harz 

A(3) 
Harz 

A(4) 
Harz 

A(4) Harz 
(Replicate) 

A(5) 
Harz 

C  
Dunite 

A1 
Harz 

A2 
Harz 

A3  
Harz 

            

Os 1.270 5.912 3.521 3.063 3.792 3.883 5.698 0.144 3.320 4.738 7.024 
Ir 1.613 2.397 3.486 2.269 4.019 3.088 6.646 0.218 3.349 2.937 3.037 
Ru 2.930 3.314 1.435 1.370 1.372 2.024 2.042 1.182 5.336 7.247 15.331 
Pt 187.4 5.741 7.338 5.309 25.50 18.46 71.78 0.096 10.34 5.741 7.906 
Pd 47.08 58.50 3.527 2.816 11.90 11.34 28.51 0.075 3.574 2.984 12.62 
Re 0.0587 0.093 0.0192 0.017 0.0292 0.0375 0.0514 0.0335 0.044 0.055 0.059 
187Re/188Os 0.223 0.0756 0.0263 0.0259 0.0371 0.0466 0.0434 1.125 0.064 0.056 0.040 
±2σ (abs) 0.0016 0.0005 0.0003 0.0008 0.0003 0.0007 0.0007 0.0070 0.0022 0.0015 0.0010 
187Os/188Os 0.12955 0.13697 0.12592 0.12546 0.12653 0.12635 0.12556 0.16499 0.12446 0.12276 0.12400 
187Os/188Osi 0.1277 0.1363 0.1257 0.1252 0.1262 0.1260 0.1252 0.1556 0.1239 0.1223 0.1237 
γOs(497 Ma) 3.3 10.3 1.6 1.3 2.1 1.9 1.2 25.9 0.2 -1.1 0.0 
±2σ  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
TRD 0.1 -1.1 0.6 0.4 0.3 0.3 0.4 -4.0 0.6 0.9 0.6             

Grid LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 LK15-10 
Sample: A3  

Web 
A3 Web 
(Replicate) 

B1 
Harz 

B2 
Harz 

B3 
Harz 

B3 Harz 
(Replicate) 

C1 
Harz 

C2 
Harz 

C3 
Harz 

C3 
Harz 

           

Os 0.087 0.071 2.746 4.840 6.551 3.760 3.209 2.054 5.131 5.131 
Ir 0.163 0.176 2.387 3.442 4.463 4.002 2.550 2.572 2.246 2.246 
Ru 0.062 0.040 5.705 5.521 10.41 5.016 4.466 3.338 8.921 8.921 
Pt 54.84 41.85 4.953 6.164 24.56 10.92 5.648 15.83 5.814 5.814 
Pd    - 67.28 10.84 1.578 2.542 1.043 2.914 21.31 4.901 4.901 
Re 0.043 0.046 0.029 0.066 0.034 0.031 0.034 0.066 0.055 0.055 
187Re/188Os 2.37 3.13 0.051 0.065 0.025 0.0392 0.050 0.156 0.052 0.052 
±2σ (abs) 0.082 0.014 0.0027 0.0015 0.0011 0.0003 0.0022 0.0086 0.0034 0.0034 
187Os/188Os 0.15302 0.15687 0.12285 0.12475 0.12368 0.12374 0.12223 0.12387 0.12370 0.12370 
187Os/188Osi 0.1333 0.1309 0.1224 0.1242 0.1235 0.1234 0.1218 0.1226 0.1233 0.1233 
γOs(1.95Ga) 7.8 5.8 -1.0 0.4 -0.2 -0.2 -1.5 -0.9 -0.3 -0.3 
±2σ  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
TRD -0.8 -0.4 0.8 0.6 0.7 0.7 0.9 0.8 0.7 0.7 
      *HSE are reported in ppb. 
        Locality abbreviations are the same as in Table 1.  

        Uncertainty on 187Os/188Os is ~±0.2% (see text for details) 
        Chondrite data for TRD model age calculations obtained from Walker et al., 2002. 
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Table 4: Osmium isotope systematics and highly siderophile element abundance* data for Leka/Jormua Ophiolite peridotites.  

Grid JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 JU15-16 LK15-10 
Sample: A1  

Harz 
A2  

Harz 
A2 Harz 
(Replicate) 

A3  
Harz 

B1  
Harz 

B2  
Harz 

B3 
Harz 

C1 
Harz 

C2 
Harz 

C3 
Harz 

A3 Web 
(Replicate) 

            

Os 1.838 3.358 4.943 1.860 1.787 2.076 2.534 9.004 5.270 1.590 0.071 
Ir 7.222 5.984 6.111 3.778 4.072 4.117 3.079 4.063 1.193 7.472 0.176 
Ru 9.525 40.34 38.93 4.371 10.14 10.29 7.724 5.464 5.637 5.537 0.040 
Pt 6.543 6.200 6.479 13.86 9.673 9.723 7.427 3.357 2.950 2.749 -8.866 
Pd 6.799 6.642 6.574 6.620 3.512 3.561 1.094 0.446 1.123 0.242 67.282 
Re 0.007 0.009 0.017 0.005 0.019 0.019 0.016 0.031 0.027 0.017 0.046 
187Re/188Os 0.018 0.012 0.0168 0.012 0.050 0.045 0.0309 0.0163 0.0243 0.0521 3.126 
±2σ (abs) 0.0050 0.0030 0.0002 0.0038 0.0077 0.0067 0.0004 0.0001 0.0002 0.0006 0.0142 
187Os/188Os 0.11193 0.11165 0.11120 0.11319 0.11201 0.11199 0.11189 0.11195 0.11379 0.11322 0.15687 
187Os/188Osi 0.1113 0.1112 0.1106 0.1128 0.1104 0.1105 0.1109 0.1114 0.1130 0.1115 0.13088 
γOs(497 Ma) -2.1 -2.2 -2.7 -0.8 -3.0 -2.8 -2.5 -2.0 -0.7 -2.0 5.8 
±2σ  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 9.2 
TRD 2.4 2.4 2.5 2.2 2.5 2.5 2.4 2.4 2.1 2.4 -4.2             

Grid JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-18 JU15-16 
Sample: A1 

Harz 
A2 

Harz 
A3  

Harz 
B1 

Harz 
B2 

Harz 
B3 

Harz 
C1 

Harz 
C2  

Harz 
C3 

Harz 
C3 

Harz 
           

Os 1.677 1.555 1.373 2.087 3.912 1.762 3.337 4.241 1.928 1.590 
Ir 2.051 2.651 2.057 2.494 4.344 2.011 3.202 2.769 2.893 7.472 
Ru 5.957 5.146 5.312 7.492 9.534 4.760 6.165 2.927 5.881 5.537 
Pt 3.135 3.155 5.168 2.606 7.852 2.779 5.521 0.688 7.214 1.238 
Pd 1.928 0.952 3.007 2.639 5.673 3.680 1.142 0.738 2.734 0.242 
Re 0.220 0.190 0.210 0.212 0.062 0.180 0.247 0.238 0.310 0.017 
187Re/188Os 0.6316 0.589 0.7386 0.4891 0.0762 0.4931 0.3561 0.2702 0.776 0.052 
±2σ (abs) 0.0006 0.0017 0.0007 0.0005 0.0003 0.0006 0.0003 0.0002 0.0014 0.0006 
187Os/188Os 0.13201 0.13494 0.13797 0.12872 0.12564 0.13517 0.12527 0.11892 0.13639 0.11322 
187Os/188Osi 0.1112 0.1155 0.1136 0.1126 0.1231 0.1189 0.1135 0.1100 0.1108 0.11149 
γOs(1.95Ga) -2.3 1.5 -0.1 -1.0 8.3 4.5 -0.2 -3.3 -2.6 -2.0 
±2σ  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
TRD 2.4 1.8 2.1 2.2 0.7 1.3 2.1 2.6 2.5 2.1 
      *HSE are reported in ppb. 
        Locality abbreviations are the same as in Table 1.  

        Uncertainty on 187Os/188Os is ~±0.2% (see text for details) 
        Chondrite data for TRD model age calculations obtained from Walker et al., 2002. 
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Table 4: Osmium isotope systematics and highly siderophile element abundance* data for Leka/Jormua Ophiolite peridotites.  

Grid ATK ATK ATK ATK ATK ATK ATK ATK LHV JU15-18 LK15-10 
Sample: 57-A 57-B 59 75 76 96 589 600 21 A3(2) 

Ortho 
A3 Web 
(Replicate) 

            

Os 3.254 4.037 2.665 4.820 6.159 3.457 10.84 3.623 2.206 3.760 0.071 
Ir 4.456 3.544 2.386 3.877 4.422 3.020 5.605 1.815 0.364 4.002 0.176 
Ru 5.689 7.517 5.065 9.206 1.656 7.451 9.336 4.052 2.646 5.016 0.040 
Pt 7.718 4.738 3.877 4.456 4.976 6.037 6.715 3.587 3.013 37.253 -8.866 
Pd 3.844 3.015 2.341 1.842 1.120 3.105 2.575 2.071 0.916 1.043 67.282 
Re 0.034 0.037 0.112 0.033 0.052 0.284 0.030 0.046 0.084 0.031 0.046 
187Re/188Os 0.0504 0.0436 0.203 0.0329 0.0404 0.395 0.0135 0.0605 0.184 0.039 3.126 
±2σ (abs) 0.0005 0.0004 0.0020 0.0003 0.0004 0.0040 0.0001 0.0006 0.0018 0.0003 0.0142 
187Os/188Os 0.1159 0.1157 0.1174 0.1115 0.1113 0.1146 0.1111 0.1176 0.1174 0.12374 0.15687 
187Os/188Osi 0.1142 0.1143 0.1107 0.1104 0.1100 0.1016 0.1107 0.1156 0.1113 0.12342 0.13088 
γOs(497 Ma) 0.45 0.46 -2.7 -2.9 -3.3 -10.7 -2.7 1.6 -2.1 -0.2 5.8 
±2σ  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 8.2 9.2 
TRD 1.7 1.8 1.5 2.3 2.4 1.9 2.4 1.5 1.5 0.6 -4.2 
      *HSE are reported in ppb. 
        Locality abbreviations are the same as in Table 1.  

        Uncertainty on 187Os/188Os is ~±0.2% (see text for details) 
        Chondrite data for TRD model age calculations obtained from Walker et al., 2002. 

Table 5: Total Analytical Blank (TAB) Data. 
TAB Ir (pg) Ru (pg) Pt (pg) Pd (pg) Re (pg) Os (pg) 187Os/188Os 
        

11/1/2015 0.10 20.1 432 5.9 0.8 1.20 0.1522 
2/17/2016 0.01 9.6 152 3.4 4.5 0.68 0.3701 
4/8/2016 0.17 8.0 191 1.9 4.5 0.64 0.6651 
7/11/2016 0.28 20.8 146 11.4 13 0.37 0.1936 
8/5/2016 0.23 10.4 254 6.6 0.6 2.94 0.4651 
11/10/2016  16.7 256 0.8  1.56 0.1204 
11/10/2016  6.8 145 0.3    
5/28/2017* 0.29 69.4 97.0 4.1 1.7 3.08 0.1247 
*Ir, Ru, Pt, Pd, and Re run on  ThermoFisher Element2 sector field ICP-MS 

 

 

 

Table 6: Os standard analyses for N-TIMS using a secondary electron multiplier (SEM) detector of a ThermoFisher  
Triton® mass spectrometer. 2SDM% represents the percent of standard deviation of the mean at the 2σ level 

 
187Os/188Os 2SDM 186Os/188Os 2SDM 190Os/188Os 2SDM 189Os/188Os 2SDM          

12/16/2015 0.11376 0.058 0.12002 0.089 1.9838 0.040 1.2196 0.043 
12/19/2015 0.11382 0.041 0.11991 0.061 1.9840 0.021 1.2197 0.021 
12/19/2015 0.11378 0.040 0.11989 0.058 1.9837 0.017 1.2195 0.021 
3/7/2016 0.11368 0.071 0.11985 0.069 1.9840 0.033 1.2197 0.040 
3/8/2016 0.11381 0.073 0.11984 0.091 1.9848 0.035 1.2201 0.036 
4/25/2016 0.11366 0.034 0.11976 0.040 1.9853 0.012 1.2200 0.016 
4/27/2016 0.11356 0.068 0.11963 0.094 1.9836 0.032 1.2197 0.034 
7/27/2016 0.11350 0.067 0.11950 0.085 1.9856 0.027 1.2198 0.028 
7/28/2016 0.11357 0.083 0.11974 0.101 1.9846 0.021 1.2200 0.029 
9/19/2016 0.11375 0.055 0.11978 0.068 1.9849 0.021 1.2226 0.028 
9/21/2016 0.11380 0.052 0.11988 0.067 1.9847 0.023 1.2222 0.031 

11/20/2016 0.11381 0.067 0.11994 0.089 1.9834 0.032 1.2191 0.036 
11/21/2016 0.11393 0.082 0.12004 0.112 1.9846 0.051 1.2200 0.047 
11/23/2016 0.11387 0.090 0.12029 0.158 1.9851 0.042 1.2208 0.047 
11/23/2016 0.11371 0.072 0.11987 0.102 1.9837 0.035 1.2199 0.041 
6/1/2017 0.11359 0.062 0.11960 0.073 1.9855 0.027 1.2203 0.037 
6/3/2017 0.11363 0.079 0.11978 0.094 1.9849 0.034 1.2203 0.034 
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