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The long-term goal of this research is to design cooperative-control algorithms for

autonomous vehicles inspired by the collective behaviors in animal groups. The

specific research objectives of this dissertation are twofold: (1) to analyze and model

the swarming and pursuit behaviors observed in the mating swarms of mosquitoes,

and (2) to design mosquito-inspired control algorithms to perform swarming and

pursuit with autonomous rotorcraft.

The first part of this dissertation analyzes the reconstructed flight data of

the malarial mosquito Anopheles gambiae to characterize the velocity-alignment

interaction between male mosquitoes, who aggregate to form mating swarms and

subsequently pursue a female mosquito. Both swarming and pursuit behaviors are

represented using self-propelled particle models. The model is used together with

tools from control theory to investigate the connection between velocity-alignment

behavior and success in pursuit. The results of this research have a potential impact

on vector-control methods for malaria, and are also utilized in the second part of



this dissertation.

The second part of this dissertation studies two types of pursuit problems in-

spired by the collective behavior in mosquito swarms. The first problem considers

the strategy for a single pursuer chasing a single target. This problem has been

studied extensively for the application to missile guidance and navigation. Here,

we tailor the assumptions on the dynamics of the agents as well as the design cri-

teria for the application to small and agile rotorcraft. The second pursuit problem

incorporates the swarming behavior by considering a scenario in which multiple

guardian vehicles are deployed to protect an area against fast intruders. We de-

rive necessary and sufficient conditions for capturing the intruder. We also present

swarming strategies to maximize the performance of the guardians, inspired by the

random-oscillatory motion and the velocity-alignment behavior of male mosquitoes.
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Chapter 1

Introduction

Cooperative control of autonomous mobile robots has been studied for various appli-

cations including search and rescue, surveillance, cargo transportation, and environ-

mental monitoring. The advantages of multi-agent systems include their capability

to cover a large area simultaneously, to distribute the work load (both physical

and computational) within the agents, and their robustness to failure of individ-

ual agents. The challenge lies in the complexity of the systems involving multiple

agents, and the essential task for engineers is to make such systems operate reliably

under various conditions. Collective behaviors in animal groups, which show remark-

able coordination with high robustness to uncertainties in the natural environment,

have inspired engineers to design algorithms that emulating them. This dissertation

studies cooperative control strategies for small and agile rotorcraft inspired by the

behaviors of the malarial mosquito Anopheles gambiae (An. gambiae).
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Figure 1.1: Two objectives of the dissertation.

1.1 Motivation

The males of An. gambiae aggregate and form a mating swarm to attract a female

mosquito. A female, which flies faster than the males, passes through the swarm

several times until she mates with a single male. These collective dynamics of

mosquitoes contain two key aspects—swarming and pursuit—that are relevant to

various control problems for autonomous mobile robots. In addition, the collective

behavior of males shows an interesting combination of collaboration and competi-

tion, i.e., they cooperate with one another to form a swarm in order to increase the

chance of an encounter with a female, but they also compete against each other to

capture the female. Furthermore, the fact that the female moves faster introduces

an additional challenge to the pursuit problem for male mosquitoes.

Inspired by the aforementioned observations that are unique to mosquito

swarms, we seek to design control laws that achieve swarming and pursuit flight

with autonomous rotorcraft. To make use of the observations from mosquito be-

haviors in control design, we first desire to have a sufficient understanding of the
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biological system. Therefore, the objectives of this dissertation are two fold: bi-

ological data analyses and bio-inspired control design. Figure 1.1 illustrates the

interrelation between the two parts. The goal is to use tools from engineering to

understand the biological system, and then to use inspirations from the biological

system to solve engineering problems.

Previously, Butail et al. [1] obtained video sequences of the malarial mosquito

An. gambiae in Mali, Africa. The authors developed a tracking software to recon-

struct three-dimensional kinematics (positions and velocities) of flying mosquitoes

from the image sequences. Understanding some of the collective behaviors based on

the reconstructed flight data is the objective of the first part of this dissertation.

Since insect aggregations have highly random motion as compared to more orga-

nized group behaviors such as bird flocks or fish schools, one of our interests is in

characterizing the inter-agent interactions that may exist but are obscured by the

apparent randomness of the swarm. We also seek to understand how males’ swarm-

ing behavior is related to their success in pursuit. Understanding the processes that

lead to mating in this species of mosquito has potential to aid in a release-based

program of malaria vector control.

In studying the pursuit flight of male mosquitoes, we attempted to compare

it against existing pursuit strategies developed for engineering applications. Missile

guidance and navigation is one of the fields in which the problem of pursuit has been

extensively studied. However, the dynamics of fixed-wing vehicles (or missiles) and

small and agile agents (like mosquitoes) are so different that we could not find an

appropriate algorithm to employ. This difficulty motivated our study of pursuit laws

3



for small and agile agents. Since mosquitoes can hover around a fixed point in the

space and also change their directions of motion rapidly, we emulate their behavior

using rotorcraft micro aerial vehicles (MAVs), instead of fixed-wing vehicles.

We are also interested in the randomness that exists in mosquito swarms, in

contrast to collective motion in bird flocks or formation control of aircraft, where

well-organized coordinated flight is desired. We formulate a novel problem that

combines both swarming and pursuit aspects. In particular, we consider a scenario

where multiple guardian vehicles are deployed to protect an area against fast in-

truders. Our interest is to see how the strategies inspired by the behaviors of male

mosquitoes (e.g., random oscillatory motion and velocity-matching interaction) can

be useful in this pursuit scenario for autonomous vehicles. The results of the second

part of this dissertation have potential application to drone countermeasures.

1.2 Background and Related Work

This section presents previous research in the field that is relevant to the two topics

we study in this dissertation: (1) analysis and modeling of animal group behavior,

and (2) pursuit problems for autonomous vehicles.

1.2.1 Analysis and Modeling of Animal Group Behavior

Collective movement of animals exemplified by birds [2–4] and fish [5–8] is often

analyzed using the concept of collective order. The most standard form of order is

polarization, which quantifies how well the velocity vectors of the group members

4



are aligned with each other. An example of a polarized group is a pigeon flock [4],

where members fly in parallel resulting in the translation of the entire group.

Although polarization is a commonly used order parameter, the concept of

collective order is more general. Consider a milling motion in fish [8]. The velocity

vectors of the group members are not polarized, but there is a collective order in

the form of rotation. In addition, a group can expand or contract, which gives rise

to dilatational collective order [9].

Unlike bird flocks or fish schools, aggregation of insects appears to lack col-

lective order, and therefore the interactions that may exist between the animals

are less obvious compared to groups with collective order. Researchers have found

evidence of local interactions in midge swarms. Kelly et al. [10] used speed distri-

butions and the statistics of spatial arrangement to find evidence for local clusters

of correlated motion. Attanasi et al. [9] used an instantaneous velocity correlation

to show evidence for correlated motion based on a metric perception mechanism.

The swarming behavior of malarial mosquitoes also appears to lack collective

order. Crepuscular swarms of An. gambiae and Anopheles coluzzii, formerly known

as the M and S “molecular forms” [11], can be described as three-dimensional leks

with characteristics of scramble competition by numerous males for a few females

[12]. The behavioral and evolutionary bases for mating swarms in this species have

only recently been examined in detail and observations to date suggest that it does

not fall neatly into a single category [12–14]. One important area of investigation

in the mating system of these malaria vectors is the nature and extent of male-male

interaction in the swarm. Male-male interactions are representated in theories of lek
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formation, where they range from aggression or arena defense [15], to collectively

increased signaling to females [16], and association with successful males [17].

In modeling and analyzing various animal group behaviors discussed above,

self-propelled particle models are useful. Vicsek et al. [18] first introduced a self-

propelled particle model to show that some emergent behaviors observed in animal

collectives can be generated by a simple model in which individuals move in the

average direction of their neighbors. Following this work, researchers have used self-

propelled particle models to investigate many other collective behaviors in animal

groups.

Couzin et al. [19] used a particle model to investigate the spatial dynamics of

an animal group such as a fish school or bird flock; this model revealed the existence

of group-level behavioral transitions related to minor changes in individual-level

interactions. Scott and Leonard [20] studied a three-agent model involving a single

pursuer (a bear) and two evaders (a mother caribou and her calf), and performed

stability analysis of some equilibrium formations. Gazi and Passino [21] studied a

general class of attraction/repulsion functions that can be used to achieve swarm

aggregations; they presented stability analysis to characterize swarm cohesiveness,

size, and motion.

Following the work by Okubo [22] on the dynamics of insect aggregation,

Butail et al. modeled swarming mosquitoes as particles attached to the centroid

of the swarm with damped spring [23]. They also used a velocity autocorrelation

to find the natural frequency and the damping ratio of the mosquito’s oscillatory

motion. This dissertation extends these prior works and augments the existing
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particle model in Chapters 2 and 3.

Particle models are not only useful in investigating animal behaviors, but

have also been used to design formation controls for multiple vehicles. For example,

Leonard and Fiorelli [24] presented a framework for coordinated and distributed

control of multiple autonomous vehicles using artificial potentials and virtual leaders.

Paley and Leonard [25] showed the stability of the parallel and circular group motion

presented in [19], and extended it to a control law for trajectory tracking. Olfati-

Saber and Murray [26] presented a dynamic, graph-theoretic framework for flocking

and used it to achieve obstacle avoidance. Gazi [27] considered a general model

for vehicle dynamics and used sliding-mode control to track the motion of swarm

members presented in [21]. This dissertation formulates pursuit problems using

self-propelled particle models in Chapters 4 and 5.

1.2.2 Pursuit Problems for Autonomous Agents

The problem of pursuit has a number of applications such as missile guidance,

surveillance, robot control, and animal behavior. Taxonomy and surveys of the

research in the field have been presented, for example, in [28] and [29]. Depending

on how we model the environment, pursuer, and the target—including the number

of agents, their dynamics, and sensing capabilities—pursuit problems can be divided

into a variety of subcategories [29].

In general, pursuit problems are mathematically formulated as a system of

differential equations describing the motion of the pursuer and the target. The
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input to the system are the control algorithms of the agents, and the definition

for successful target capture is typically given by some conditions on the agents’

positions and velocities. Of interest is the design of pursuit algorithms to guarantee

target capture while considering other design criteria such as time optimality, energy

efficiency, and robustness to uncertainties. Note that the evasion strategy for the

target is also an equally important problem, although it is not the main focus of

this dissertation.

There are two distinct approaches in studying pursuit problems. The first

approach, which is related to game theory, formulates the problem as a pursuit-

evasion game. This approach utilizes an objective function (e.g., distance between

the agents) that the pursuer tries to minimize while the evader tries to maximize.

Optimization techniques are used to find the optimal algorithms for both the pursuer

and the evader. Pioneering work in this field was done by Isaacs [30], who formalized

a class of problems know as differential games. The second approach designs pursuit

laws a priori and then analyzes the behavior of the system. The control laws are

designed based on the tools from control theory, or sometimes from the observation

of biological systems. This dissertation uses the latter approach for its convenience

in incorporating mosquito-inspired attributes.

In the recent history, pursuit has been studied extensively for application to

missile guidance and navigation. In the missile-guidance literature, it has been

shown that a viable approach to target intercept is stabilizing the line of sight

(LOS), i.e., the line extending from the pursuer to the target [31]. The idea is to

enhance the efficiency of target intercept by avoiding the tail-chase scenario, which
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may occur with pure pursuit (also known as classical pursuit [32]) in which the

pursuer simply aims directly at the target. A well-known strategy to achieve the

LOS stabilization is called proportional navigation (PN) [33–35]. PN is known to

have optimality in terms of the square integral of the control effort against a non-

maneuvering target [36]. Some variants of PN can be found in [37–40].

Pursuit is also an important component in biological systems ranging from

prey capture to mating [20, 41, 42]. Stabilization of the LOS has also been studied

in this context and related strategies include constant-bearing pursuit and motion

camouflage [32, 41]. Animals like bats [41] and insects [12, 42] execute pursuit with

limited sensor accuracy using highly agile motion. These characteristics are espe-

cially pertinent to the bio-inspired pursuit problem using small, robotic vehicles

considered in Chapter 4.

The aforementioned works on pursuit typically define the success of pursuit

as target intercept, where the pursuer aims to collide into the target. On the other

hand, a less aggressive pursuit scenario considered for the application to autonomous

robots is target tracking, where a pursuer seeks to approach and stay close to the

target without colliding with it. A path-planning algorithm to track a ground vehicle

with a UAV is proposed in [43]. Strategies to encircle a target with a team of pursuers

are proposed in [44,45]. The idea of tracking is also utilized in formation control as

the concept called cyclic pursuit [46, 47]. Each agent pursues another agent in the

group to generate a chain of leader-follower interactions [48, 49].

The capabilities of the pursuers greatly influence the pursuit problem. First,

consider how a pursuer’s sensor is modeled. One category in the pursuit-evasion

9



game is the so-called search problem, in which a pursuer has limited perceptual

range [50, 51]. The objective of a pursuer is to intelligently search for the target

without the knowledge of its location (pursuit before detection). On the other hand,

in the missile-guidance literature and in target-tracking problems, it is assumed

that the pursuer at least knows the position of the target (pursuit after detection).

Second, consider how the dynamics of the pursuer are modeled. In the robotics

community, there are studies on pursuit problems for the application to agents with

specific constraints [52,53]. However, more generally, when the agents are treated as

point particles, the majority of pursuit-evasion games assume that the pursuer has a

constant speed [43–45,50], whereas some other works consider variable speed [54,55].

With a unique combination of these assumptions, this dissertation introduces a novel

pursuit problem in Chapter 5.

1.3 Contributions of Dissertation

This dissertation makes contributions to the understanding of the behaviors in

the mating swarms of mosquitoes and in the application to control design for au-

tonomous rotorcraft. Some materials from this dissertation have been previously

published or submitted for review, including [56–59]. Conference papers in which

early versions of these results appeared include [60, 61]. Some results—including

the analysis of pursuit and coupling behavior described in Chapter 3—have not yet

appeared elsewhere.

We characterize the interaction between male mosquitoes in their mating
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swarms. We develop a time-resolved correlation function to quantify the degree

of velocity alignment for a given pair of mosquitoes. The correlation function is

applied to different data sets (male only swarms, male-female coupling flights, and

simulated swarms) to obtain probability distributions of the correlation value. Us-

ing Bayes’ decision rule, we define a threshold on the correlation value to determine

whether a given pair of mosquitoes are interacting or not. The correlation threshold

combined with the lag analysis generates instantaneous interaction graphs, which

show that the male mosquitoes form subgroups whose size and membership change

rapidly. We also improve an existing particle model by including local interactions

represented by damping of the relative velocity between males. The new model pro-

vides a better null hypothesis against which to test deviations from normal swarming

behavior.

We also study the velocity-alignment behavior in relation to the pursuit be-

havior. We analyze the pursuit behavior preceding the formation of a male-female

couple in the swarm to find the pursuit strategy used by mosquitoes. We also

model the coupling flight using a delayed differential equation, i.e., the relative ac-

celeration is modeled as a force from a damped spring (with delay) connecting the

couple. We show that the spring and damping constants, which can be interpreted

as control gains, increase when the male changes its behavior from swarming to

coupling. We extend the existing particle model by including gain switching, and

also a particle that represents a female mosquito. The new model produces three

behaviors observed in a mosquito swarm—swarming, velocity-alignment, and pur-

suit. We perform Lyapunov stability analyses on the particle model to show how
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the velocity-alignment behavior during the swarming phase can potentially increase

the success of subsequent pursuit.

Inspired by the pursuit in mosquito mating swarms, we study two pursuit

problems. The first problem considers pursuit of a single target by a single pursuer,

in which the assumptions on each agent’s dynamics and design criteria are specific

for small and agile vehicles. We design a pursuit law based on Lyapunov analysis

and establish its robustness to unknown target acceleration and measurement errors

using the concept of ultimate boundedness. Robustness to control saturation is

analyzed using the phase portrait of the closed-loop system. We also present results

from experiments that were conducted to study the practical challenges involved in

pursuit by lightweight platforms with noisy sensors. These experiments highlight

the benefit of using less control effort in the presence of large measurement errors,

when compared with existing pursuit guidance laws.

The second problem considers a scenario in which multiple guardians with

limited perceptual range and bounded acceleration are deployed to protect an area

from an intruder. The main challenge for the guardian (male mosquito) is to quickly

respond to a fast intruder (female) by matching its velocity. We focus on the strat-

egy in the swarming phase, when a guardian has not yet perceived the intruder. In

the parameter space consisting of the intruder’s speed and guardians’ abilities (i.e.,

maximum acceleration and perceptual range) we identify necessary and sufficient

conditions for target capture. We propose swarming algorithms inspired by the be-

havior of male mosquitoes to improve the target capture capability. The theoretical

results are illustrated by experiments with an indoor quadrotor swarm.
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The problem studied in this work can be applied to a situation where multiple

vehicles are deployed to enforce a no-fly zone, for the application to drone counter-

measures, or for convoy protection. The results of this work may provide guidelines

in selecting the capabilities of vehicles for such applications, and also provide a

methodology to fully utilize those capabilities.

1.4 Outline

Chapter 2 analyzes the swarming behavior of male mosquitoes, and characterizes

their intermittent velocity-alignment interaction. We propose a particle model that

includes velocity-alignment behavior and show how it reduces the discrepancy be-

tween the existing swarm model and the flight data of real swarms. A discussion of

the results and their significance are provided at the end of the chapter.

Chapter 3 analyzes the pursuit and coupling behavior of mosquitoes. We

first present how the male’s behavior switches with a close encounter with a female

mosquito. We then analyze the mechanism that causes the close encounter to occur,

in relation to existing pursuit strategies (i.e., pure pursuit, motion camouflage). We

model the relative motion between the male and female during the coupling phase

and use the result to extend the particle model to include pursuit behavior. Finally,

we perform Lyapunov analysis of the particle model to show the effect of male’s

velocity-alignment behavior on his success in pursuing a female.

Chapter 4 formulates and studies the pursuit problem for small and agile

agents. After proposing a pursuit law and showing its robustness to unknown target
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maneuver and sensor noise, we compare it against existing pursuit laws analytically,

numerically, and experimentally. We experimentally implemented the pursuit laws

using an autonomous hovercraft testbed. The experimental results, which validate

the theoretical contributions, are provided at the end of the chapter.

Chapter 5 formulates and studies the cooperative pursuit problem for a swarm

of guardian vehicles protecting an area from fast intruders. We characterize this new

pursuit problem with control-theoretic analyses. We then propose swarming strate-

gies inspired by the swarming behavior of male mosquitoes. The performance of the

swarming strategies are illustrated by computer simulation and also by experiments

with small quadrotors in a motion-capture environment.

Chapter 6 concludes the dissertation and suggests directions for future re-

search.
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Chapter 2

Analyses and Modeling of

Swarming Behavior

Butail et al. obtained three-dimensional positions and velocities of swarming mosquitoes

from stereoscopic video sequences and described the oscillatory motion of male

mosquitoes in the swarm [23] using the dynamic model of Okubo [22]. Evidence

for interactions in mosquito swarms was suggested in [23] by analyzing the velocity

disagreement between neighbors. Inspired by studies of neural networks that show

incidence of correlated signals [62], we analyze the interaction networks in a mosquito

swarm using the unit-velocity cross correlation to classify mosquito pairs as interact-

ing or non-interacting. Section 2.2 proposes a procedure to define a threshold on the

correlation value to detect whether a given pair of mosquitoes are interacting or not.

Section 2.2 presents how the correlation threshold combined with the lag analysis

generates instantaneous interaction graphs, which show that the male mosquitoes

form subgroups whose size and membership change rapidly. Section 2.3 improves

an existing particle model by including local interactions represented by damping
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of relative velocity between males. The chapter concludes with some discussions of

the results.

2.1 Correlation Function

Cross correlation [3,4] measures the similarity between two signals taking time delay

or lag into account. The cross correlation value of two discrete, scalar signals f(t)

and g(t) with time lag m is rfg(m) =
∑∞

t=−∞ f(t+m)g(t). Maximum correlation at

a positive lag m indicates that f is lagging behind g. We use as signals the three-

dimensional velocity v of each mosquito obtained from stereo-video tracking in the

field [23]. Let Tw be an even integer that specifies the time window in which we

calculate the correlation value and · denote the vector inner product. The velocity

cross correlation of mosquito i and j at time t with lag m is

R̃ij(m, t;Tw) =
1

Tw + 1

Tw/2∑
n=−Tw/2

vi(t+ n+m) · vj(t+ n). (2.1)

When Tw = 0, R̃ij(m, t) = vi(t + m) · vj(t) represents an instantaneous measure of

correlation; when Tw ≥ 2, R̃ij(m, t) is averaged over Tw + 1 video frames. Since we

wish to know at each instant whether a given pair of mosquitoes is interacting, the

instantaneous correlation Tw = 0 is problematic because it fails to reject incidental

velocity alignment. (Further details for choosing Tw are described in the sequel.)

The cross correlation (2.1) is positive when the angular disagreement in the

direction of motion is less than π/2 radians; otherwise it is negative. The value (2.1)

is also affected by flight speed in the following sense: the (absolute value of) R̃ij is
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large when either insect is flying at high speed, even if the direction of motion is not

well aligned. In order to focus on the directional alignment, we consider the unit

velocity v̂ = v/‖v‖ of each mosquito and define the unit-velocity cross correlation

as

r̃ij(m, t;Tw) =
1

Tw + 1

Tw/2∑
n=−Tw/2

v̂i(t+ n+m) · v̂j(t+ n). (2.2)

The unit-velocity cross correlation (2.2) takes values in the range [−1, 1]; the value

+1 (resp. −1) occurs when the direction of motion is completely parallel (resp. anti-

parallel) throughout the time interval of length Tw. Figure 2.1 illustrates the cal-

culation of the unit-velocity cross correlation. Although the unit-velocity cross cor-

relation ignores speed (velocity magnitude), its value is easier to interpret than

the velocity cross correlation because it represents the degree of alignment in the

direction of motion.

The correlation value Cij(t) between mosquito i and j at time t with a time

window Tw is calculated using (2.2) as follows:

Cij(t) , C̃ij(m
∗, t;Tw) =

1

2

(
r̃ij(m

∗, t;Tw) + r̃ji(−m∗, t;Tw)
)
, (2.3)

where m∗ = arg max
|m|≤mmax

C̃ij(m, t;Tw). (2.4)

Taking the mean of r̃ij and r̃ji ensures the relation between i and j is consistent,

i.e., i and j do not lag behind each other at the same time. The parameter Tw af-

fects the correlation value in various ways. First, it specifies the number of the data

points used to find the similarity between the direction of motion of two mosquitoes.
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Figure 2.1: Calculation of unit-velocity cross correlation. (a) Two hypothetical
flight trajectories and direction of motion projected on a plane (actual calculation
is performed with three-dimensional velocities). (b) Calculation of cross correlation
(2.3) between i and j with Tw=2, using three data points from each trajectory
(actual calculation is performed with Tw=10). Cross correlation between vi and vj
at time t is shown for lags m = −1, 0, and +1. (c) Determining the optimal lag
m∗ and cross correlation r̃∗ij by choosing the peak from r̃ij(m, t). A positive lag
indicates that i is following j.
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Figure 2.2: Interval between tight turns. (a) Cumulative probability of curvature
value. (b) Interval between tight turns. A tight turn is defined as a turn with
curvature greater than 0.1 (cm−1). The peak is at 8 frames (0.32 s).

Therefore, a smaller value of Tw leads to a higher risk of detecting accidental coordi-

nation. Second, since we average the value over Tw + 1 frames, the true correlation

may be suppressed if we choose Tw to be too large. Considering these two points,

we base the choice of Tw on the frequency of the flight turns that the males make.

Figure 2.2-a shows the cumulative probability of the curvature in a male’s flight

trajectory. Using this figure, we set a threshold of 0.1 (cm−1) on the value of the

curvature to define tight turns. Figure 2.2-b shows that the interval between tight

turns so defined has its peak probability at 8 frames (0.32 s). We choose Tw = 10

frames (0.40 s) so that these turning flights are typically included in every sliding

time window.

Recall that m∗ is the lag value that maximizes the correlation value. We set

two restrictions on the optimal lag m∗ when we search for the maximum in (2.4).

First, to avoid erroneous correlation, we set an upper and a lower bound on m∗

given by mmax = 4 frames (0.16 s), based on the frequency of the tight turns as
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described above. Second, since the optimal m∗ in terms of matching two signals

should be a critical point in the curve of C̃ij(m, t) as in Figure 2.1-c, we restrict the

candidates for m∗ to those m that achieve local maxima. When there are multiple

local maxima, we use m∗ with the largest C̃ij(m, t) among those candidates; when

there is no critical point within the range [−mmax, mmax], then we use the value

m∗ = 0.

2.2 Interaction Network

This section introduces a procedure to define a threshold on the correlation value

to define whether a given pair of mosquitoes are interacting or not. We then char-

acterize the features of pairwise interaction network.

2.2.1 Induced Interaction Graph

The unit-velocity cross correlation measures the degree of interaction (if any) be-

tween two mosquitoes according to the alignment in their direction of motion. Fig-

ure 2.3 shows the probability density for the correlation values taken from 8 swarms

of An. gambiae (approximately 450,000 data points). These data are compared to

simulated data from a random-walk model, to simulated data from a swarming model

without interaction, and to field data from 8 male-female coupling events (about 200

data points). Construction of the simulated swarm is described in Section 2.3.

Comparing the simulated swarm and the real swarm to the simulated random

walk, we see that the first two have their peak-probability correlation values near
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Figure 2.3: Frequency distribution of correlation values for real and simulated
swarms. Unit-velocity cross correlation probabilities calculated for 8 real swarms
and 8 coupling flights, normalized to have unit integral. The vertical dashed line
passing through the orange dot indicates the threshold for interaction. The area
under each curve to the right of the threshold shows the proportion of the pairs that
are classified as interacting.

zero, whereas the latter has an almost uniform distribution in the interval [−1, 1].

Although the simulated swarm without interaction captures some of the features of

the real swarm, the real swarm exhibits an elevated probability of high correlation

values compared with the simulated swarm. To detect interactions, we define a

threshold on the correlation value inspired by Bayes decision rule [63], using the

intersection at 0.75 of the green curve (simulated swarm without interaction) and

the red curve (male-female couples). This choice ensures the minimum error rate

in classification, assuming that it is equally probable for a pair of mosquitoes to be

interacting or not [63]. We label pairs that have a correlation value greater than the

threshold as interacting; otherwise we label them as non-interacting.
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For an interacting pair, a nonzero lag value m∗ that maximizes the correlation

indicates an instantaneous following behavior [4]. A positive lag for Cij (or a neg-

ative lag for Cji) indicates that mosquito i is following the motion of mosquito j.

(Note that this does not necessarily imply i is chasing j; simply that i is matching

its direction of motion to that of j.) The interaction lag analysis, combined with the

cross-correlation threshold, induces a directed graph [4] that describes the instan-

taneous interaction topology in the swarm. Each node represents a mosquito and

the edges are directed towards the followers. Figure 2.4-a depicts the instantaneous

interaction graph for a real swarm. Figure 2.4-b depicts the interval graph [64].

Note that, although males in the simulated swarm are not directly interacting, pairs

with correlation value above the threshold are misclassified as interacting; the area

under the green curve above the threshold, which corresponds to the misclassified

data, accounts for less than 2% of the area under the curve.

2.2.2 Features of Pairwise Interaction Network

Here we analyze the characteristics of the interactions that occur between pairs

of males in the An. gambiae swarms, as well as the subgroups that are defined

by those pairwise interactions. Figure 2.5-a plots the probability density of the

distance between all pairs of males. The curve for interacting pairs lies to the left of

the curve for non-interacting pairs, which indicates that an interacting pair is likely

to fly closer together than a non-interacting pair. Figure 2.5-b shows the neighbors

with which each male is interacting, sorted by their relative proximity. When a
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Figure 2.4: Visualization of interaction network. (a) Visualization of interaction
graph generated by software “SoNIA” [McFarland, D., BenderedeMoll, S., SoNIA: Social

Network Image Animator. Available from http://www.stanford.edu/group/sonia]. The figure
shows an instantaneous interaction graph. Each node represents a mosquito and
each edge directed towards a follower represents an interaction. The size of a node
is proportional to the number of incident edges originating from it. Note that the
distance in this figure does not represent Euclidean distance. Nodes without edges
are located randomly. (b) Interval graph. Directed edges are shown at the starting
and the ending point of each pairwise interaction. The thick line indicates that the
mosquito is in an interacting state.

male is interacting with more than one other male at the same time, the plot shows

the one with the greatest correlation value. The probability of interaction decreases

as the neighbor number increases. Figure 2.5-c shows the duration of interaction

(i.e., the period of time that the correlation value stays above the threshold). The

resolution of this analysis is equal to the video frame rate (0.04 s).

Consider a subgroup of a swarm to be defined as the weakly connected compo-

nent of an interaction graph induced as in the preceding section. A weakly connected

component is a set V of nodes that are connected to each other by edges; treating
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Figure 2.5: Features of interaction and network. (a), Probability density of distance
between two males, for interacting and non-interacting pairs. (b), Probability of
interacting with kth-neighbor. (c), Duration of interaction, i.e., the period of time
that the correlation value stays above the threshold. (d), Probability of the size
of subgroup in which a male may be included at each moment for subgroup sizes
greater than one. The result is compared to a reference null model with randomized
edges [64]. (e), Number of subgroups versus swarm size with linear regression passing
through the origin.

the edges as undirected, each node in V is reachable from any other node in V [65].

For example, if i is following j and j is following k, then {i, j, k} are in the same

subgroup. If i and j are both following k, they are also in the same subgroup.

Figure 2.5-d shows the instantaneous probability of the subgroup size in which a

male may be included omitting subgroup size 1, which corresponds to no interac-

tion. In order to find the type of subgraph that is overrepresented in the mosquito

swarm, called a motif [64], compare the result to a randomized edges model; in this
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model the connected pairs are randomly shuffled while the number of edges at each

time remains the same as in the real data. Figure 2.5-e shows the number of sub-

groups versus swarm size in 8 swarm sequences (regression slope = 0.427, adjusted

R2 = 0.612).

2.2.3 Differences between Species

Along with data on 8 swarms of An. gambiae, we have sequences of positions from 3

swarms of An. coluzzii, formerly known as the Anopheles gambiae M form [11]. We

performed the same unit-velocity cross correlation analysis of the flight data from

An. coluzzii, and compared the results with those from An. gambiae. In order to test

whether the difference in the species affects the degree of male-male interactions,

we used a linear regression model with the proportion of time each male spends

interacting with other males as the response variable; the species and the mean

swarm size were fixed effects. Data were averaged over entire swarms. Table 2.1

indicates a significant positive relationship between swarm size and the proportion of

time individuals spent interacting but no significant differences between the species.

An interaction term for the fixed effects was included in a separate model but found

to be not statistically significant (results not shown).
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Table 2.1: Linear regression model. The effect of the species and swarm size on
the proportion of time each male spends interacting with another male. Standard
error (SE), t-statistics (t), and p-values (p) are shown.

source value SE t p

Intercept 0.239 0.145 1.643 0.139
Species -0.106 0.108 -0.976 0.358
Mean Swarm Size 0.025 0.009 2.772 0.024

Residual SE = 0.155 (8df); Adjusted R2=0.469; Model F2,8 = 5.418; p = 0.033

2.3 Swarm Model

This section studies self-propelled particle models to characterize the swarming be-

havior of male mosquitoes. First, we introduce an existing swarming model without

interaction, which was used in the previous section to find the threshold in the

correlation value. We then propose a new swarming model which reproduces the

velocity-alignment interaction. Model parameters are optimized to fit to swarming

data from real swarms.

2.3.1 Simulated Swarm Model without Interaction

Consider a system of point particles with unit mass. Let ri, vi, and ai be the

position, velocity, and acceleration of mosquito i with respect to an inertial point

O. Following [22], we model the force on mosquito i as a linear combination of the

external force F
(ext)
i , the drag force F

(drag)
i , and the interaction force F

(int)
i , i.e.,

ai = F
(ext)
i + F

(drag)
i + F

(int)
i . (2.5)
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Velocity fluctuation is modeled as a damped oscillator [23]; the frequency and damp-

ing ratio are obtained from the velocity autocorrelation. Based on this previous

analysis, we model the first two components in (2.5) as resulting from a damped

spring that connects the mosquito to the centroid of the swarm. Let r̂i = ri/‖ri‖.

Assuming the centroid is fixed in an inertial frame (only approximately true in real

data), then we can without loss of generality attach the spring to the point O, i.e.,

F
(ext)
i + F

(drag)
i = − diag{k}ri − diag{b} (vi · r̂i) r̂i. (2.6)

The parameters k and b denote the three-dimensional spring constants and the

damping constants, respectively; since they are vector quantities, the spring can have

different constants in each direction (e.g., down-wind, cross-wind, and vertical) [23].

Since we do not know the internal interaction force, we assign white noise as the third

component, i.e., F(int) = W, where the random process W(t) has the autocorrelation

RW(τ) = Aδ(τ). The intensity A of the white noise was determined in [23]. We

discretize W(t) in the numerical integration with the integration time step ∆t = 0.04

(s), equal to the video frame rate.

2.3.2 Simulated Swarm Model with Interaction

The dynamic swarming model (2.5)-(2.6) is based on a damped, spring-like force

between each insect and the swarm centroid. Although a central-force model repro-

duces the cohesive motion of males in the swarm, it does not match the unit-velocity

cross correlation probability density of the real swarms (see Fig. 2.3). In order to
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model coordinated behavior through velocity alignment, we introduce a damper be-

tween interacting males. Let Si denote the set of mosquitoes that mosquito i are

interacting with, and W denote white noise with zero mean and intensity A. Let

rj/i = rj − ri, and r̂j/i = rj/i/‖rj/i‖. The interaction force model is

F
(int)
i = λ

∑
j∈Si

bint
(
vj/i · r̂j/i

)
r̂j/i + (1− λ)W. (2.7)

The gain λ ∈ (0, 1] creates a convex combination of the damping force and the

random force when mosquito i is in the interacting state; λ = 0 eliminates the

damping term when it is in the non-interacting state. When two particles are

connected by a velocity damper, it decreases the relative velocity between them and

increases the velocity alignment. Figure 2.6 illustrates the augmented swarming

model.

Swarm center

j

i

Damped spring

Damper

White noise

Ri/O

O

Figure 2.6: Illustration of the augmented swarming model with five males. All five
are connected to the swarm centroid by a damped spring. At the instant shown,
male i is in the interacting state and is subject to the (uni-directional) force from
the damper connected to j; the random force is weakened proportionally. Male j
does not feel this damper force.
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The interaction topology is determined as follows: males interact if the dis-

agreement in the direction of their motion is less than the threshold 0.75; one is

picked randomly to be the follower for the duration of interaction. The remaining

model parameters are the damping constant bint and the gain λ. We used a prob-

abilistic search method called simulated annealing [66] to obtain the values of bint

and λ that best fit the real swarm in terms of the correlation probabilities. Table 2.2

shows the parameters that are used in the simulation model. Note that fitting the

model to each of the 8 real swarms yields a unique set of parameters. Table 2.2 shows

the mean and standard deviation of the parameter values from all 8 An. gambiae

swarms.

Table 2.2: Parameters for the swarm simulation. The four parameters at the
bottom are used only in the new simulation with interaction. Three components
in each of k and b correspond to the values used for down-wind, cross-wind and
vertical direction, respectively.

mean SD units

Cohesive motion
mass of mosquito m = 1 N/A kg
rest length of spring l0 = 0 N/A m
spring constants k = [35, 27, 10] ±[23, 20, 21] N/m
damping constants b = [5.4, 4.5, 5.4] ±[2.0, 1.5, 2.7] N·s/m
integration time step ∆t = 0.04 N/A s

intensity of random forcing diag{
√
A} = [9.0, 11.0, 5.5] ±[6.5, 7.1, 4.6] N

Interaction
damping constant for interaction bint = 116 ±66 N· s/m
threshold for velocity alignment r∗ = 0.75 N/A
gain of damping term λ = 0.73 ±0.12

Figure 2.7 shows the unit-velocity cross correlation of the simulation model

with interaction, which has elevated probability of high values as compared to the

model without velocity damping. Nonparametric Kruskal-Wallis comparison of the

mean squared error, E, between the probability distributions of real and simulated
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Figure 2.7: Model fit to swarming data from two real swarms of An. gambiae. The
simulated swarm with interaction (red) fits the real data better than the original
swarming model without interaction (green).

data for the 8 swarms reveal a significant reduction in error (p = 0.011, χ2 = 6.35)

from using the model without interaction (E = 0.072±0.06) to the new model with

interaction (E = 0.024± 0.02).

2.4 Discussion

The results presented in this chapter strongly support the hypothesis that there is

significant male-male interaction in mating swarms of An. gambiae and An. coluzzii

and that these interactions go beyond simple collision avoidance. Indeed, there is

regular occurrence of parallel flight between pairs and within subgroups of swarming
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males. This observation and the basis and function of male-male interactions have

important implications on the origins of swarming behavior and for mating in these

species.

Observed parallel flight behavior may result from velocity-matching behavior

by each male. It is possible that males would perform velocity-matching to any

nearby flying insect in a swarm to allow mate recognition via wingbeat frequency

matching [67] or potentially volatile pheromone communication, though as yet there

is no evidence of the latter [68]. In mating swarms, behavioral sequences leading to

insemination may be initiated by a couple matching their velocities.

A second possibility is that the observed interactions represent a means of

obtaining information on what may be occurring in a part of the swarm outside an

individual’s perceptive range. For example, if a female enters the swarm at a point

distant from a given male, but other males are responding to her by altering their

flight patterns, then information may be transmitted from male to male by velocity

matching. Such a scenario may be amenable to further analysis via information

theory [69]; interestingly, males nearest to the female should be disadvantaged by

communicating that fact, so data transmission in the context of the swarm may be

viewed as detrimental for the transmitter but beneficial for the receiver.

A third interpretation of the interactions in the swarm is that males are com-

peting for space in the lek, so that parallel flight is a form of ritualized aggression [70]

between males, as is observed in the dragonfly Plathemis lydia [71]. Early theories

of lek formation included elements of male-male competition (see review in [72]).

However, this hypothesis is opposed by limits to the visual acuity of An. gambiae and
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An. coluzzii and by the lack of observation of individual territories even including

the denser swarm centroid [23,73].

An important contribution of the current work is the improved model of male

An. gambiae swarming over the previous approach [23]. The model presented here

(see equations (2.5), (2.6), and (2.7)) includes a term representing male-male inter-

action: velocity correlation between males is initiated randomly, but once it occurs

individuals attempt to maintain a high correlation. Incorporation of male-male

interactions in an improved mathematical characterization of the swarms signifi-

cantly improves the statistical fit of the model to real swarm data. Therefore the

new model provides a better null hypothesis against which to test deviations from

normal swarming behavior.

Male-male interactions were not found to vary significantly between species.

It has been generally observed that An. coluzzii males swarm over markers of con-

trast on the ground, such as a well or a pile of refuse, whereas An. gambiae males

swarm over bare ground [12,72]. In this respect, the degree of male-male interaction

might be expected to vary between these species [74], since the external marker may

serve as an attractor. As a result, one might predict that a higher degree of male-

male interaction is required to maintain swarm cohesion for An. gambiae, which do

not swarm over a marker in our study area, compared with An. coluzzii, which do.

While our analysis does not support this prediction, it is possible that a better test

would require a larger data set on An. coluzzii, similar to the one we collected for

An. gambiae.

Genetic control of the degree of velocity matching may be through one or a
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few linked loci and thus be a trait that can drive the speciation in the An. gambiae

complex [75], in this case between An. gambiae and An. coluzzii. The genetic basis of

male-male interaction will also be critical for any release-based program of malaria

vector control such as one based on Sterile Insect Technique [76] or Genetic Mod-

ification [77]. Such releases will almost certainly involve colony-reared males that

will have to successfully inseminate wild females, probably by mating with them

in swarms. Therefore understanding and regulating the genetic basis of swarming

behavior for these purposes may be critical to these programs. Future experiments

could include correlations between swarming behaviors and genetics to elucidate the

link between the two.

33



Chapter 3

Analyses and Modeling of Pursuit

and Coupling Behavior

This chapter analyzes the eight data sets that include female mosquito, to study the

pursuit and coupling behavior in mosquito swarms. Section 3.1 shows how male’s

behavior changes when the distance to the female becomes small, which we call the

close encounter. Section 3.2 focuses on the phase right before the close encounter,

and studies who is closing the distance, i.e., whether it is the male or the female

who is initiating the close encounter. Section 3.3 focuses on the phase after the

close encounter, and analyzes the coupling flight of the male and female. We model

their relative motion as a damped-spring system with time delay, and analyze how

the control gains (spring and damping constants) are modulated when they switch

from swarming to coupling behavior. Inspired by the analyses of mosquito flight

data, Section 3.4 extends the particle model introduced in Chapter 2 by including

a particle that represents a female mosquito. The model generates three differ-

ent behaviors (swarming, velocity alignment, and pursuit) by switching the model

34



parameters. Section 3.5 performs Lyapunov analysis of the new swarming model

to study the stability of the velocity-alignment interaction that generates intermit-

tent parallel flight studied in Chapter 2. We also study how the velocity-alignment

behavior may help male’s success in pursuing the female.

3.1 Switching in Male’s Behavior

A mating swarm of mosquitoes consists almost entirely of males, and a female ap-

proaches and passes through the swarm several times until it forms a couple with a

male. In the video sequences of the swarming mosquitoes, couples were found based

on its size in the image [78]. By following the couples backward in time to the point

when they formed, the female and its mate were identified. These two individuals

were further traced backwards in time to the point where one of them had entered

the field of view and the other was already a member of the swarm. The former is

the female and the latter is a male which we term the focal male—the male who

mated in the given sequence (Nicholas C. Manoukis, personal communication, July

20, 2015).

When the female moves in and out of the swarm, its velocity is higher than

the males. During this phase, males do not appear to respond to the presence of the

female, which we call the swarming phase or the search phase. However, once the

distance to the female becomes small, which we call the close encounter, the male

accelerates to match its velocity with the female and starts the pursuit (or coupling)

phase. Figure 3.1 shows an example of the speed of a female and focal male, and the
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Figure 3.1: Time history of the distance and speed during the coupling flight. Close
encounter is defined to be the time when the distance between the male and female
becomes small for the first time, which is followed by the increase in male’s speed.
Phase 1 is the swarming (or searching) phase. Phase 3 is the pursuit (or coupling)
phase. Phase 2 is the transition between phases 1 and 3. The distance decreases
during Phase 2, which leads to the close encounter.

distance between them. The time axis is shifted so that the close encounter occurs

at 0 (s). The male’s speed increases rapidly after the close encounter, whereas the

female’s speed decreases as compared to the search phase.

We have so far introduced two phases—swarming and coupling—that are la-

beled as Phase 1 and Phase 3 in Fig. 3.1. However, we are also interested in the

mechanism that generates the close encounter between the female and the focal

male, i.e., the transition between phases 1 and 3. To study this transition, we define

Phase 2 to be the duration of time when the distance between the male and the

female is decreasing prior to the close encounter. Note that if the close encounter

occurs by pure chance, then Phase 2 does not exist, i.e., the transition from Phase 1
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to Phase 3 occurs suddenly by chance. Assuming that either the female or the

male (or both) is closing the distance intentionally, we study the pursuit behavior

in Phase 2 next.

3.2 Initiation of Close Encounter

This section focuses on Phase 2, i.e., the transition between the swarming phase and

the coupling phase (see Fig. 3.1). Assuming that the close encounter does not occur

by pure chance, we first study who is initiating the close encounter—does the female

approach the male, or the male approaches the female? To answer this question, we

study the relation between the velocity vector and the relative position vector, in

the context of some existing notions of pursuit.

3.2.1 Classical Pursuit

F

M

✓F

✓M rF/M

vF

vM

Figure 3.2: Illustration of the vec-
tors and angles used to define the
classical pursuit metric.

The first notion of pursuit we consider is called

classical pursuit [79]. In classical pursuit, the

pursuer’s velocity is directed towards the target.

For example, if the male is the pursuer, then vM

is directed from M to F (see Fig. 3.2). Classi-

cal pursuit does not require the pursuer to know

the target’s velocity or absolute position, only

its relative position. We use the dot product · to
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Figure 3.3: Time history of the metric for classical pursuit. Examples from three
data sets are shown here. Phase 2 is shaded in grey. The three data sets support
hypotheses of mutual pursuit, male pursuit, and female pursuit, respectively.

define a metric for classical pursuit. A metric for male pursuit is

ΛMP =
vM
‖vM‖

· rF/M
‖rF/M‖

= cos θM ,

where θM ∈ [0, π] is the angle between the velocity vector and the relative-position

vector. The male-pursuit metric satisfies ΛMP ∈ [−1, 1], where positive values

support a hypothesis of male pursuit. (Negative values support a hypothesis of

male evasion.) Similarly, a metric for female pursuit is

ΛFP =
vF
‖vF‖

· rM/F

‖rM/F‖
= cos θF ,

and positive values of ΛFP support a hypothesis of female pursuit.

Figure 3.3 shows the time history of ΛMP and ΛFP before and after the close
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Figure 3.4: Metric for classical pursuit from seven data sets. The directionality
of the pursuit (i.e., male pursuit (MP), female pursuit (FP), and mutual pursuit)
derived from the data is indicated at the top.

encounter. We define Phase 2 to be the 10 video frames (0.4 s) preceding the close

encounter. The duration of 10 video frames is selected based on the timing when the

distance between the male and female starts decreasing (see Fig. 3.1). Figure 3.4

shows the statistics of Λ during Phase 2. (Data set 2 is excluded since the female and

the focal male were already in the coupling phase (i.e., Phase 3) when they entered

the camera field of view.) This analysis shows that there is no dominant direction

in the pursuit. More samples of coupling flight are needed to draw a statistically

significant conclusion.

3.2.2 Motion Camouflage

The second notion of pursuit that we consider is called motion camouflage [79],

which is known to be a stealth strategy observed in nature. The pursuer stabilizes

the line of site (LOS) in the inertial frame so that it appears stationary from the

perspective of the target. In motion camouflage, the pursuer requires knowledge
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of the target’s relative position and relative velocity. Once again, we use the dot

product to define the metric for motion camouflage:

ΛMC =
rM/F

‖rM/F‖
· vM/F

‖vM/F‖
= cos θMC , (3.1)

where θMC is the angle between the relative-position vector and the relative-velocity

vector. Note that this metric does not distinguish between male pursuit and female

pursuit.

The motion-camouflage metric satisfies ΛMC ∈ [−1, 1]. The LOS is stabilized

when |ΛMC | ≈ 1, whereas |ΛMC | ≈ 0 indicates a pure rotation of the relative position

vector rM/F . The distance between the male and female is increasing when ΛMC >

0 and decreasing when ΛMC < 0. Therefore, the motion camouflage hypothesis

is supported by the value ΛMC ≈ −1. Figure 3.5 shows three examples of the

time history of the metric ΛMC . It shows that the metric ΛMC stays negative in

Phase 2 since the distance is decreasing, and also that the values are often close to

−1, indicating that the LOS is stabilized. Figure 3.6 shows the box plot obtained

from the 10 data points during Phase 2 for each mating sequence. The data sets

1, 4, 6, and 7 strongly support the motion camouflage hypothesis. Although the

directionality of the pursuit behavior in Phase 2 is unclear, we find an evidence that

supports the motion camouflage hypothesis. This result also supports the existence

of Phase 2, i.e., the close encounter occurs because either the male or the female is

pursuing the other.

Finally, note that the metric ΛMC oscillates rapidly in Phase 3 (see Fig. 3.5)
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Figure 3.6: Metric for motion camouflage from seven data sets. The data sets 1, 4,
6, and 7 strongly support the hypothesis of motion camouflage with ΛMC ≈ −1.
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due to the criss-crossing type of motion during the coupling flight. This phenomenon

indicates that the analyses of the velocity vector may be inappropriate to study their

relative motion during the coupling phase (Phase 3), which motivates our analysis

of the acceleration vector next.

3.3 Male-Female Coupling Flight

This section focuses on Phase 3 that comes after the close encounter (see Fig. 3.1).

We use acceleration vectors to study the relative motion between the male and the

female during their coupling flight. Since the reconstructed flight kinematics only

include the positions and velocities, we numerically differentiate the velocity data

using the central difference to obtain the acceleration, i.e.,

a(n) =
v(n+ 1)− v(n− 1)

2∆t
, (3.2)

where n denotes the index of discrete time step (video frame), and ∆t denotes the

frame rate (0.4 s). Let aF/M = aF − aM denote the relative acceleration of the

female with respect to the male. We study how the relative acceleration changes as

a function of the relative position rF/M and the relative velocity vF/M . Note that the

analysis of the relative acceleration lacks in the information about the directionality

(who is pursuing whom), but it is robust to external effects that affect both insects,

e.g., wind gust.

During the coupling flight, the male and female fly in approximately the same

direction while their separation distance oscillates as though they are connected by
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a damped spring with zero rest length (see Fig. 3.7). Based on this oscillation, we

model the relative acceleration as a force resembling a spring-damper system with

time delay, i.e.,

aF/M(t) = −krF/M(t− τ)− bvF/M(t− τ) (3.3)

where k, b, and τ denote the spring constant, damping constant, and time lag,

respectively. Linear regression calculates the parameters k, b and τ for each of eight

coupling events. Note that τ is a multiple of 0.04 (s) which is the frame rate of the

video sequences. Figure 3.8 shows the comparison between the actual acceleration
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data and the acceleration predicted by the model. All eight coupling events have

τ = 0.04 (s) as the optimal time lag, and the spring and damping constants are

plotted as red crosses in Fig. 3.9-a (adjusted R2 = 0.75).

0 50 100 150
Spring constant, k

0

5

10

15

20

25

D
am

pi
ng

 c
on

st
an

t, 
b

Male-female pairs
(Coupling phase)

Male-male pairs
(Swarming phase)

(a) (b)

Figure 3.9: Control gains during the coupling flight. (a) The eight crosses depict the
parameters (control gains) obtained from linear regression. The contour plot shows
the maximum tolerable delay before the system becomes unstable. (b) Probability
distribution of the control gains obtained from all eight data sets.

Now, we interpret the parameters k and b as the control gains that the

mosquitoes choose. (The gains may be chosen by the male, or the female, or both.)

We first study the stability of the delayed system, since time delays often destabilize

the system. For the mosquito-couple case, unstable system corresponds to a couple

with their separation distance increasing over time. We seek to confirm that the

control gains k and b, and the time lag τ (obtained earlier by the linear regression)

are consistent in terms of system stability.

Since the model (3.3) is a linear system, the value of the lag that destabilizes
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the system can be obtained using techniques from linear systems theory. Here, we

use the characteristic equation of the system:

f(λ) = λ2 + bλe−λτ + ke−λτ = 0, (3.4)

where the roots λ ∈ C are the poles of the system (3.3). Although this transcendental

equation has infinitely many roots, system stability is guaranteed if they all have

negative real parts. The critical case is when there exists an imaginary root λ∗ = iω.

If we find the smallest time delay τ ∗ = τ ∗(k, b) that gives a solution ω ∈ R to the

following equation:

f(λ∗) = f(iω) = 0,

then we know that all values of τ satisfying τ < τ ∗ give roots with negative real parts

(assuming that the system without time delay is stable, i.e., k and b are positive).

The contour plot in Fig. 3.9-a depicts the maximum tolerable lag τ ∗. Recalling that

the optimal time lag obtained from the linear regression is τ = 0.04 (s), the control

gains from all eight coupling sequences lie in the stable region, i.e., parameters are

consistent in terms of system stability.

Finally, we study how the control gains are modulated when a focal male

switches its behavior from swarming to pursuit. We obtain the control gains k and

b also from the interacting male-male pairs during the swarming phase. Linear re-

gression is performed for each pair with a moving time window, similar to how we

calculate unit-velocity cross correlation in Chapter 2. Figure 3.9-b shows the prob-
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ability distribution of the control gains obtained from all eight data sets combined.

The gains are smaller during the swarming phase. This result indicates that the focal

male may be increasing the control gains of the interaction force when it perceives

a female. This switching behavior is included in the new swarming model next.

3.4 Swarm Model with Pursuit Behavior

The goal of this section is to add flexibility to the existing swarming models (see

(2.5)–(2.7) in Section 2.3), in order to accommodate, with minimal complexity,

the following three behaviors in a single model: swarming, velocity-matching, and

pursuit.

3.4.1 Force Model

Consider the following continuous-time, dynamical model of N identical, unit-mass

particles subject to forces:

ai = F
(space)
i + F

(align)
i + F

(ext)
i (i = 1, 2, ..., N), (3.5)

where F
(space)
i and F

(align)
i are the spacing and alignment forces that arise from inter-

actions, respectively, and F
(ext)
i denotes all other external forces, including air resis-

tance and random disturbances. One difference from prior models in Section 2.3 is

that here we divide the interaction force, F
(int)
i , into two terms (F

(space)
i and F

(align)
i )

and combine the drag force and unknown disturbance into one term, F
(ext)
i .

Let rj/i , rj − ri and vj/i , vj − vi denote the relative position and relative
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velocity, respectively, of particles i and j in an inertial frame. Let Q
(i)
s = {k|

∥∥rk/i∥∥ ≤
ρs} denote the set of particles within the perceptual range ρs > 0 of the ith particle,

and Q
(i)
a = {k |

∥∥vk/i∥∥ ≤ νa,
∥∥rk/i∥∥ ≤ ρs} denote the set of particles that are also

within interaction range νa > 0 in the velocity space. We model each force term as

follows:

F
(space)
i = c

∑
j∈Q(i)

s

(
1− x0/

∥∥rj/i∥∥) rj/i (3.6)

F
(align)
i = b

∑
j∈Q(i)

a

vj/i (3.7)

F
(ext)
i = −dvi + wi, (3.8)

where wi represents random noise, and c, x0, b, and d are the spring, rest length,

damping, and drag constants, respectively. Figure 3.10 illustrates the model param-

eters.
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In order to generate oscillatory motion, the spacing force connects interacting

particles as opposed to connecting each particle to a fixed point, as was considered

previously in Section 2.3 (see (2.6)). The previous model was valid for swarms that

form above a fixed marker on the ground (this behavior is known to occur for only one

of the two anopheline genetic types [73]). The new model accommodates swarming

above a fixed point by adding a fixed, virtual particle. Noting that
∥∥rj/i∥∥ < x0

results in repulsion and
∥∥rj/i∥∥ > x0 in attraction, F(space) is a dynamical analogue

of existing models with attraction and repulsion zones [19]. As mentioned in [21],

each agent does not have to know the positions of all other agents in the swarm.

For the set Q
(i)
a , an annular region around the agent was considered in [19].

Section 2.3 determined interactions by proximity in the unit-velocity space (i.e.,

disagreement in the direction of motion), based on the idea that insects may be

able to recognize other insects’ motion and perform velocity matching only if their

relative velocity is sufficiently small. The use of the dot product in Section 2.3.2

was convenient, because of the compatibility with the unit-velocity cross correlation.

However, even when the distance is small in the unit-velocity space, the relative

velocity can still be large if the speeds are sufficiently different. Using distance in

the velocity space avoids this problem, and it is also convenient for the Lyapunov

analysis presented in Section 3.5.

The relative velocity vj/i is generally not easy to measure (e.g., by sensing) for

a moving agent if it has non-zero rotational velocity. However, mosquitoes do not

rely heavily on yawing when they change their direction of motion [80]. In a planar

problem, this condition makes the relative velocity in a body-fixed frame equivalent
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to the relative velocity in the inertial frame, which justifies the use of vj/i in the

interaction model.

The alignment force F(align) was previously modeled in (2.7) as a damper that

connects interacting particles. While intuitively straightforward, its function as a

velocity damper was limited because the force was constrained along the direction

parallel to the line connecting those two particles. The modified model (3.7) gen-

erates the alignment force using two dampers that act independently in orthogonal

directions, so that the force in the position space is arbitrary. This modification

improves the velocity-matching function and also simplifies the model compared to

the first term in (2.7).

3.4.2 Female Model and Pursuit

To consider pursuit behavior, we include one or more particles that represent M

female mosquitoes, denoted i = N+1, ..., N+M . As mentioned in Section 3.1, a fe-

male mosquito is attracted to the swarm and typically passes through it several times

before coupling with a male. Therefore, we model the female as a particle attracted

to its estimate of the centroid of the swarm. Let rG denote the swarm centroid as

estimated by the female: i.e., rG = 1
nf

∑
j∈Nf rj, where Nf = {k |

∥∥rk/f∥∥ ≤ ρf}

denotes the set of males in the perceptual range ρf of the female and nf denotes

the number of elements in Nf . Also let rf denote the position of the female and

rG/f = rG − rf . The spacing and external forces on the female are (there is no
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Figure 3.11: The pursuit state from start to end. Blue and red represent the male
and female, respectively. The male in the pursuit state is highlighted in green.

alignment force)

F
(space)
f = cfrG/f and F

(ext)
f = −dvf + wf , (3.9)

where cf denotes the spring constant.

Inspired by observations of coupling flight, we impose the following rules on the

male’s pursuit behavior. A male starts pursuit when the female is within the range

ρp, and continues as long as the female is in the range ρs, where ρp ≤ ρs. All other

interactions are ignored during pursuit, i.e., Q
(i)
s and Q

(i)
a are replaced by Q

(i)
p = {f},

where f denotes the index of the pursued female. Figure 3.11 summarizes the use

of parameters ρp and ρs.

3.4.3 Parameter Switching

To generate different behaviors, we switch the constants in the force model (3.6)

and (3.7). Let ∅ denote an empty set. Particle i is in the

1. swarming state, if Q
(i)
s 6= ∅ and Q

(i)
a = Q

(i)
p = ∅;
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Figure 3.12: State transition diagram for male mosquito. The parameters associated
with the transition are shown. The male-female coupling phase is not modeled.

Table 3.1: Parameter switching between three behavioral states.

Swarming Alignment Pursuit

Spring constant (c) cs = cs ≤ cp

Rest length (x0) xs ≥ xa ≥ 0

Damping constant (b) ba ≤ bp

2. alignment state, if Q
(i)
a 6= ∅ and Q

(i)
p = ∅; and

3. pursuit state, if Q
(i)
p 6= ∅.

By definition, the states are mutually exclusive, and the transitions between the

states are summarized with the relevant parameters in Fig. 3.12. The switching is

summarized in Tab. 3.1, and Fig. 3.13 shows a simulation snapshot of each behavior

generated by the model (3.5)–(3.8).

In the alignment behavior, the rest length of the spring is decreased relative to

the swarming behavior (i.e., xa ≤ xs). This switching is inspired by the decreased

distance between interacting pairs shown in Fig. 2.5-a. When the pursuit behavior

is triggered by a close encounter with the female, the spring and damping constants

are increased relative to the swarming behavior (i.e., cp ≥ cs and bp ≥ bs). This

switching is based on the gain modulation shown in Fig. 3.9.
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(c)(b)(a)

Figure 3.13: (a) Swarming behavior. The alignment behavior is turned off by choos-
ing νa=0. (b) Velocity-alignment behavior. Particles in the alignment state are
highlighted in magenta. (c) Pursuit behavior. The red particle is the female and
the green particles are in the pursuit state.

3.5 Lyapunov Stablity Analysis

This section performs Lyapunov stability analysis of the swarm model. Our interest

in this chapter is how the male’s velocity-matching behavior affects its success in

pursuing a female1. Because the female’s behavior is unknown, and because we are

interested in the male’s pursuit behavior, we define pursuit to be successful if a male

stays close to the female for a certain duration of time:

Definition 3.1. Consider the behavior of male i pursuing female f . Let tstart be the

time of the close-encounter (i.e., when
∥∥rf/i∥∥ = ρp occurs) and tend be the time when

f leaves the perceptual range of i (i.e.,
∥∥rf/i∥∥ > ρs). Pursuit of duration Tdur > 0

is successful if

δt , tend − tstart > Tdur. (3.10)

Note that we are interested in Tdur that is much larger than the time it takes

for a female to accidentally pass through the perceptual region of a male, i.e.,

1The cohesiveness of the swarm and the stability of velocity-matching interaction are also
considered in [57] using Lyapunov analysis.
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Tdur � (ρp + ρs)/ ‖vf‖. We show that the chance of this success may be increased

by the male’s alignment behavior.

Proposition 3.1. Consider the pursuit behavior of male i and female f . Let vdur ,

(ρs − ρp)/Tdur. Pursuit of duration Tdur is successful if

(bp + d)vdur > cfρf + 2w, and (3.11)∥∥vf/i(tstart)∥∥ < vdur. (3.12)

Proof. We first show that
∥∥vf/i(t)∥∥ < vdur for t ∈ [tstart, tend]. Consider the Lya-

punov function V = 1
2

∥∥vf/i∥∥2
. Let ∆f/i , F

(space)
f − F

(space)
i + wf −wi, denote the

difference in the spacing and random forces acting on i and f . Since F
(space)
i = 0 in

the pursuit phase, we have

V̇ = af/i · vf/i

=
[
cfrG/f − dvf + wf − (bpvf/i − dvi + wi)

]
· vf/i

=
[
−(bp + d)vf/i + ∆f/i

]
· vf/i

≤ −
(
bp + d− a

2

)∥∥vf/i∥∥2
+

1

2a

∥∥∆f/i

∥∥2

where a is any positive number. Using the concept of ultimate boundedness [81],

vf/i remains in the interior of a ball with radius vdur centered at 0 if

−
(
bp + d− a

2

)
v2

dur +
1

2a

∥∥∆f/i

∥∥2
< 0

⇔
∥∥∆f/i

∥∥2
< 2a

(
bp + d− a

2

)
v2

dur.
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The right-hand side is maximized when a = bp + d, which gives

∥∥∆f/i

∥∥2
< (bp + d)2 v2

dur.

One can also show that
∥∥∆f/i

∥∥ < cfρf + 2w. Now we have shown that (3.11) and

(3.12) guarantees
∥∥vf/i(t)∥∥ < vdur, for t ∈ (tstart, tend). Then, the shortest time for

f to leave the range ρs of i is bounded below by

min{δt} > (ρs − ρp)/vdur > Tdur,

which completes the proof.

The direct contribution of the velocity alignment term F(align) is seen in (3.11);

i.e., condition (3.11) is satisfied if the damping constant bp is sufficiently large.

However, the more important effect is that the condition (3.12) is more likely to be

satisfied if
∥∥vf/i(tstart)∥∥ is made small by the velocity-alignment behavior prior to

the start of the pursuit behavior.

The following result provides conditions that guarantee the success of pursuit

of any duration. Consider the Lyapunov function candidate

VP =
1

2

∥∥rf/i∥∥2
+

1

2cp

∥∥vf/i∥∥2
. (3.13)

Proposition 3.2. Pursuit is stable (i.e.,
∥∥rf/i∥∥ < ρs, ∀ t > tstart) if the following

are true:
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cfρf + 2w < (bp + d)
∥∥vf/i∥∥ , and (3.14)∥∥vf/i(tstart)∥∥ < √cp

(
ρ2
s − ρ2

p

)
. (3.15)

Proof. Let ∆f/i=F
(space)
f +wf −wi. Then we have

cpV̇P = cpvf/i · rf/i + af/i · vf/i

= cpvf/i · rf/i +
[
−(bp + d)vf/i − cprf/i + ∆f/i

]
· vf/i

= −(bp + d)
∥∥vf/i∥∥2

+ ∆f/i · vf/i

≤ −‖vf/i‖
[
(bp + d)

∥∥vf/i∥∥− (cfρf + 2w)
]
.

We have shown that (3.14) guarantees V̇P < 0, which gives the bound VP (t) <

VP (tstart) for all t > tstart. Also, from (3.13) the distance between f and i is bounded

by
∥∥rf/i∥∥ ≤√2VP (t). Noting that

∥∥rf/i(tstart)∥∥ = ρp, (3.15) implies that

VP (0) <
1

2
ρ2
p +

1

2cp
cp
(
ρ2
s − ρ2

p

)
,

2VP (t) < 2VP (0) < ρ2
s.

Hence the distance never exceeds the limit ρs.

Condition (3.14) is strong since the right-hand side can be arbitrarily small.

However, even if the condition is violated occasionally, the result of Proposition 3.2

remains true as long as VP (t) stays less than its initial value VP (tstart). Moreover, if

the female is following a straight path and the random disturbance is ignored (i.e.,

cf =w= 0), then the left hand side of (3.14) becomes zero, and the condition is
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always satisfied. In this case, the only condition required for a stable pursuit is the

initial condition (3.15).

The condition (3.15) on the initial relative velocity ‖vf/i‖ highlights how the

velocity-alignment behavior is useful for the success of pursuit. If a male aligns its

velocity to a female prior to the pursuit phase (without knowing that it is a female),

condition (3.15) is more likely to be satisfied. A more interesting case is when a male

i (who does not see a female) performs velocity alignment to another male j who

is pursuing the female. Through the velocity-alignment behavior, male i indirectly

matches its velocity to a female, which increases the probability that the pursuit

will be successful if the female eventually enters the perceptual range of male i. A

similar scenario is considered later in Chapter 5, where we study cooperative pursuit

strategy to capture a fast target.
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Chapter 4

Mosquito-Inspired Pursuit:

Single Pursuer Case

Historically, pursuit has been studied extensively for the purpose of missile guid-

ance and navigation [31,33–36,40]. Various approaches have been taken with differ-

ing assumption including constant-speed agents, linearized dynamics about collision

course, a non-maneuvering target, initially negative range rate, and knowledge of

the target’s acceleration. These assumptions, especially the first two, are valid

for fixed-wing vehicles or missiles, but do not apply to small and agile agents like

mosquitoes or rotorcraft micro aerial vehicles (MAVs). This chapter considers a

pursuit problem with assumptions and design criteria derived from the observation

of the pursuit behavior in mosquito mating swarms. The results of this section

advocate replacing pursuit laws developed for missile guidance with a bio-inspired

algorithm designed for small, agile robotic vehicles. Section 4.1 discusses the design

criteria for mosquito-inspired pursuit, formulates the problem, and introduces the

hovercraft testbed used in the experiments. Section 4.2 derives the pursuit law, es-
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tablishes its robustness, and compares it with existing pursuit strategies. Section 4.3

presents the experimental results using the autonomous hovercraft testbed.

4.1 Background

This section discusses the design criteria for mosquito-inspired pursuit and formu-

lates the pursuit problem as a planar particle system. Next, the section introduces

the concept of ultimate boundedness, which we use to prove the robustness of the

proposed control law in the sequel. The hovercraft testbed used in the experiments

are also introduced in this section.

4.1.1 Design Criteria

Chapters 2 and 3 studied swarming and pursuit behaviors of mosquitoes. The

motion in mosquito pursuit has two main features that do not match with the

assumptions made in missile guidance literatures. First, a male accelerates once the

distance to a female is sufficiently small (close encounter), which indicates that the

agents have variable speed. Second, there is no well-defined collision course between

a male and a female (see Fig. 4.1), instead they change their direction of motion

rapidly.

To accommodate the aforementioned characteristics of the mosquito behavior,

we consider a particle pursuit problem with nonlinear dynamics, allowing accelera-

tion to be in an arbitrary direction. One closely related pursuit study used a sliding-

mode controller [54] and another used a partial-stability-based controller [82]. We
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Figure 4.1: Trajectories of wild mosquitoes in coupling flight, reconstructed from
stereoscopic video sequences [1]. Pursuit (possibly mutual) continues after several
close encounters.

design a bio-inspired pursuit law using a Lyapunov-based approach fortified by the

concept of ultimate boundedness. In addition to LOS stabilization, we consider the

following design criteria.

The first criterion of bio-inspired pursuit is minimal control effort. In small

vehicles—like in insects—the available control effort is restricted because of limited

payload capacity, actuator size, and power/energy storage. Also, unlike missiles

whose task ends at the target intercept, these pursuers may have to continue other

tasks after intercept. Therefore, achieving target capture with low energy consump-

tion is important.

Another criterion is robustness to uncertainties like sensor noise. The mea-

surement errors of pertinent states like range, range rate, and LOS angular rate

are often ignored in missile guidance. However, measurement error is an important

consideration for a low-cost vehicle with rudimentary sensors.

The third design criterion arises in a near-miss scenario, i.e., how does the
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pursuer behave if the pursuit continues after a near miss? The effect of wind, losing

sight of the target, or an unexpectedly fast target maneuver may cause the pursuit

to fail. The near-miss scenario is also seen in mosquito coupling flight (see Fig. 4.1)

when the distance between two mating mosquitoes becomes very small and then

grows; this cycle repeats several times before they form a couple. An important

strategy may be to remain close to the target after a close encounter in order to

decrease the control effort for the next attempt. The same scenario also applies if

the objective of the pursuer is not to intercept the target but merely to stay close

to it. In this case, the pursuer may be required to continue the pursuit for a longer

duration of time. This work considers continued pursuit in the near-miss scenario,

and we design the pursuit law so that it ensures robustness and efficiency.

4.1.2 Problem Formulation

Consider the following formulation of the pursuit problem as a planar system of

two point particles with unit mass. Let T and P denote the target and the pursuer,

respectively. Figure 4.2 depicts the relevant reference frames and coordinates, which

includes the inertial frame I , (O, x̂, ŷ, ẑ), the LOS frame B , (P, êr, êθ, ẑ), the

relative position vector r = rT/O − rP/O, the range r = ‖r‖, and the LOS angle θ,

where cos θ = êr · x̂.

The inertial kinematics of the two-particle system expressed as components in
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Figure 4.2: (a) The definition of line-of-sight (LOS) frame B and the coordinate
system (r, θ) where the pursuer P is pursuing the target T . (b) Decomposition of the
acceleration into radial component µ and normal component σ in the LOS frame.

frame B are [84]

[Id2

dt2
r

]
B

=

 r̈ − rθ̇2

2ṙθ̇ + rθ̈


B

=

 µT − µP

σT − σP


B

, (4.1)

where µT and σT (resp. µP and σP ) denote the radial and normal components of

the acceleration of T (resp. P ) in frame B.

The state of the system is x = [x1, x2, x3]T , [r, ṙ, rθ̇]T . The input to the

system is the relative acceleration between T and P , i.e., u = [µ, σ]T , uT − uP ,

where uT , [µT , σT ]T and uP , [µP , σP ]T . Noting that x1 > 0, we have the following

state-space system on the domain D = R+ × R2:

ẋ = f(x) + g(x)u, where f(x) =


x2

x2
3/x1

−x2x3/x1

 , and g(x) =


0 0

1 0

0 1

 .(4.2)
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Let δ be a small positive constant. The statement

ṙ(t) = x2(t) < −δ < 0, ∀ t > tf , (4.3)

is a sufficient condition for target intercept in finite time [54]. Having a fixed LOS-

angle θ or, equivalently, satisfying the condition x3 = 0, is an efficient means of

target intercept [31, 33–36,40].

We seek to design a control law uP that ensures solutions of the system (4.2)

converge to the domain D2 = {x | x2 < 0, x3 = 0}. In doing so, we assume the

following:

(A1) either particle may accelerate in an arbitrary direction;

(A2) the pursuer measures the state x with random errors;

(A3) the target acceleration uT is unknown, but the bound ūT , max{‖uT‖} is

known; and

(A4) the particles have finite size and collide only when x1 is less than r0 > 0;

x1 = 0 does not occur.

Assumption (A1) may not apply to typical fixed-wing aircraft or missiles since they

use control surfaces to accelerate in the direction approximately normal to the body

forward axis. However, (A1) is applicable to rotorcraft such as a small-scale heli-

copter or quadcopter, which can change its attitude quickly and accelerate in any

direction.
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4.1.3 Ultimate Boundedness

We introduce the following lemmas related to ultimate boundedness [81] in order to

subsequently prove robustness of the pursuit law in Section 4.2.2.

Lemma 4.1. Consider a system ẋ = F(t,x), where x ∈ Rn, F(x) is piecewise

continuous and locally Lipshitz in x. Let Be denote a simply connected set that

contains a point x∗. Let the Lyapunov function candidate be V (x) = (x−x∗)TP (x−

x∗) where P > 0. Then the solution of the system enters the set Ω =
{

x
∣∣ V (x) ≤ c

}
in finite time tf and stays there for all t > tf if the following conditions are true:

• V̇ (x) ≤ −W (x) for all x /∈ Be, where W (x) is continuous and strictly positive

in x /∈ Be.

• Ω contains Be.

Proof. Suppose the solution starts at x(t0) = x0, and V (x0) < cmax. Let Λ ={
x
∣∣ c ≤ V (x) ≤ cmax

}
. Let k = minx∈ΛW (x) > 0. The minimum exists because

W (x) is continuous and Λ is compact. The solution enters Ω in finite time since

V (x(t)) ≤ V (x0)− k(t− t0), ∀ x ∈ Λ,

implies that V (x(t)) reduces to c within the time interval [t0, t0 + (cmax − c)/k].

The solution in Ω stays there for all future time since V̇ (x) < 0 on the boundary of

Ω (i.e., Ω is positively invariant).

63



Figure 4.3: Autonomous pursuer hovercraft with onboard camera (left), and target
hovercraft with IR light tower (right).

Lemma 4.2. Using the same conditions as Lemma 4.1, if W (x) (in the first bul-

let of Lemma 1) is of the form W (x) = (x − x∗)TQ(x − x∗) − D, where Q =

diag{ρ1, ρ2, ..., ρn}, ρi > 0, D > 0, then Be is an ellipsoidal region centered at x∗

with axis length λi =
√
D/ρi in each direction.

4.1.4 Hovercraft Testbed

Existing guidance laws derived with strong assumptions have proven to be useful for

real missile implementation [31], but there has not been an experimental validation

of a pursuit law with small, agile vehicles. Experiments with heterogeneous teams

of ground and aerial vehicles have been conducted for pursuit-evasion games [83],

however our focus is on terminal guidance. We constructed an experimental testbed

using custom-built, autonomous hovercraft with onboard sensing and control (see

Fig. 4.3). Hovercraft are suitable to replicate flight conditions in two dimensions

because, unlike most wheeled vehicles, they are holonomic and capable of rapid

acceleration. These features make the hovercraft testbed a suitable preliminary
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step towards implementation of three-dimensional pursuit in flight.

Both hovercraft in Fig. 4.3 participate in each experiment—one as pursuer

and the other as target. We considered several objectives in the design of this

platform: good representation of point-mass dynamics, i.e., full actuation and low

drag; onboard target tracking and control; sturdiness to endure possible collisions

during pursuit; and a small size to operate in the available lab space.

Conventional hovercraft are frequently propelled by two rear-facing fans or one

fan and one or more rudders to provide forward thrust and yaw torque with a small

number of fans [85, 86]. However, the conventional configuration is underactuated

and rotationally asymmetric, making it ill-suited to our application. Other platforms

add side-to-side thrusters to be fully actuated or use large numbers of thrusters, but

these hovercraft are still rotationally asymmetric [87,88]. Stubbs et al. [89] developed

a networked hovercraft platform that is fully actuated and rotationally symmetric;

however, it uses offboard cameras for position measurements and a layout of four

unidirectional thrusters for propulsion.

Each hovercraft in our testbed measures 6.5 inches in diameter and weighs

between 110 and 125 grams, depending on its configuration. Two lift fans carry

the hovercraft and four unidirectional thrust fans arranged as in [89] accelerate and

rotate it. Each hovercraft carries an ATmega32u4 processor capable of running fully

autonomous target tracking and pursuit. The pursuer tracks the target using an

onboard infrared (IR) camera from a Wii-mote game controller and an MPU6050

digital 6DOF Inertia Measurement Unit (IMU). The target hovercraft carries an

infrared beacon consisting of two IR LED rings placed vertically three inches apart.
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This arrangement allows the pursuer to autonomously track the target without

the use of any offboard measurements. The camera field of view is also limited

to approximately 60 degrees in azimuth. Proportional Integral Derivative (PID)

control of the pursuer rotation centers the target in the camera field of view.

Target range x1 is measured from the spacing of the IR points in the image.

The range-rate x2 is calculated by differentiating the measured range with respect to

time. The angle to the target from the camera axis is differentiated with respect to

time to find the LOS rotation rate in the body frame. This rate is added to the body-

frame rotation rate in the inertial frame as measured by the IMU to determine the

LOS angular-rate θ̇ in the inertial frame. Discrete low-pass filters are applied to all

measured values in order to smooth out the discretized digital-image measurements

and to reject erroneous single-measurement deviations.

Both hovercraft are equipped with an XBee wireless transceiver with which

the pursuer transmits telemetry and the evader receives wireless commands from a

ground station. The ground station uses an OptiTrack motion-capture system to

track the trajectories of the pursuer and evader and to control the trajectory of the

evader. In addition, the ground station logs telemetry from the pursuer and matches

it to motion-capture data to record the performance (e.g., sensor measurements,

controller output) of the pursuer. The pursuer’s onboard sensing and control system

are entirely autonomous and do not require human intervention or the motion-

capture system.
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4.2 Theoretical Results

This section presents a pursuit law designed with a Lyapunov-based approach and

derives the conditions on the control gains to guarantee robust target intercept. We

modify the pursuit law to accommodate noisy measurements. We also analytically

and numerically compare the modified pursuit law to existing ones. Finally, we

consider the effect of control saturation. The performance of the pursuit law is

demonstrated by experiments described in Section 4.3.

4.2.1 Bio-inspired Pursuit Law

One way to satisfy the target-intercept condition (4.3) is to decrease x2 as much as

possible, as in [82]. Although this strategy may result in a short capture time, it

requires a large control effort (see 4.2.4). In addition, a high closing speed may be

problematic in a near-miss scenario. Another approach is to drive x2 to a negative

constant vcl < 0 representing the desired closing speed [54]. This strategy will keep

x2 at a reasonable value and eliminate the issues raised above.

Consider the positive semi-definite Lyapunov function candidate

V = V3(x3) + V2(x2) (4.4)

=
κ

2
x2

3 +
1

2
(x2 − vcl)2, κ > 0. (4.5)

We first find the desired relative acceleration udes and then consider the actual

control law uP of the pursuer.
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One possible desired relative acceleration udes for the control Lyapunov func-

tion (4.5) was found previously using knowledge of target acceleration and Sontag’s

formula [90], which is proved to have optimality in minimizing the integral of control

effort and states. In contrast, we make the pursuit law robust to uncertainties like

unknown target acceleration by choosing

udes =

 −
x2

3
x1
−Nr(x2 − vcl)(
x2
x1
−Nθ

)
x3

 , Nr > 0, Nθ > 0. (4.6)

The robustness arises from the linear terms with sufficiently large control gains Nr

and Nθ (see Proposition 4.1). The feedback control (4.6) makes the derivative of the

Lyapunov function V in (4.5) negative semi-definite along solutions of (4.2), i.e.,

V̇ = −κNθx
2
3 −Nr(x2 − vcl)2 ≤ 0. (4.7)

The quadratic terms in (4.7) are convenient for analyzing the robustness of the

pursuit law in the sequel. Note that udes is the desired relative acceleration, whereas

u = uT − uP is the actual relative acceleration.

If the pursuit law is chosen to be uP = uT − udes, then the relation u = udes

holds, and the closed-loop system will stabilize the equilibrium point x∗ = [x∗2, x
∗
3]T

= [vcl, 0]T , which ensures target capture in finite time. However, this pursuit law

requires knowledge of the target acceleration uT . Therefore, we treat uT as an
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external disturbance, ∆ , [∆r,∆θ]
T , and consider the pursuit law

uP = −udes. (4.8)

The relative acceleration achieved by (4.8) is

u = uT − uP = udes + ∆, (4.9)

where ∆ ≡ uT . We consider the robustness of the controller to the disturbance ∆

in the next section.

Remark 4.1. One could use a disturbance observer [91, 92] to estimate the target

acceleration and to incorporate the estimated value ûT into the pursuit law, so that

uP = ûT − udes. However, there would still be a disturbance due to the estimation

error uT−ûT for a time-varying uT [91] and the achieved relative acceleration would

still be expressed as in (4.9), with ∆ ≡ uT − ûT ; the robustness analysis in the next

section still applies in this case.

Remark 4.2. The terms −x2
3/x1 and x2x3/x1 in (4.6) may become large when the

range x1 becomes small, although they do not grow unbounded (see assumption (A8)).

The proposed control law avoids this issue by regulating |x3| to be small. Also, for

the case where large acceleration is commanded, robustness to control saturation is

considered in Section 4.2.5.
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4.2.2 Robustness to Measurement Error

Robustness of the pursuit law to unknown target acceleration was studied in [54]

using sliding-mode control and in [82] using partial-stability-based control. In those

studies, signum functions were employed to address the possibility of unknown target

acceleration, which was treated as a matching disturbance. However, the effect

of measurement error was not considered in [54] or [82]. We show here that the

proposed pursuit law (4.8), where udes is given by (4.6), is robust to both unknown

target acceleration and measurement error under a proper choice of the control gains

Nr and Nθ.

As observed in our experimental testbed, the measured states x1, x2 and x3

typically include some amount of noise. Let the measured states (or estimated

states, see Remark 1 above) available to the pursuer be defined as xmeas , x + e,

where e = [e1, e2, e3]T denotes the measurement (or estimation) error. We make

the following additional assumptions regarding the error based on the experimental

testbed:

(A5) the error on the range measurement e1 may be ignored, since it is sufficiently

small compared to e2 and e3;

(A6) |ei| � |xi| for i=1, 2, 3, so the error terms that are higher than first order

may be ignored; and

(A7) the magnitudes |e2| and |e3| are bounded by constants e∗2 and e∗3 respectively,

where e∗2 < |vcl| and e∗3 < |vcl|/
√
κ.
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The validity of these assumptions for the experimental testbed is discussed in

Section 4.3. Since the upper bound on the vehicle speed (which limits x3) and the

lower bound on the range (x1) both exist in the physical implementation, we also

assume

(A8) the absolute value of the LOS rate |θ̇| = |x3/x1| is bounded by a constant,

ω > 0.

The desired acceleration term, udes in (4.8) is implemented with the measured

states xmeas, and the input u in (4.9) becomes

u = udes(xmeas) + ∆ (4.10)

=

 −
(x3 + e3)2

x1 + e1
−Nr(x2 + e2 − vcl) + ∆r(

x2 + e2
x1 + e1

−Nθ

)
(x3 + e3) + ∆θ

 . (4.11)

Let x̃2 , x2−vcl. The derivative of the Lyapunov function candidate in (4.7) becomes

V̇ = V̇2 + V̇3, where (4.12)

V̇2 = −Nrx̃
2
2 −Nrx̃2e2 − 2

x3

x1

x̃2e3 + x̃2∆r, and (4.13)

V̇3 = κ

(
−Nθx

2
3 −Nθx3e3 +

x3

x1

(x3e2 + x2e3) + x3∆θ

)
. (4.14)

Proposition 4.1. The pursuit law (4.8) is robust to disturbance ∆ and measure-

ment error e if the control gains are chosen to satisfy

Nr >
ūT + 2ωe∗3
|vcl| − e∗2

and (4.15)
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Nθ >

√
κ(2ūT + 2ωe∗2 + ωe∗3 + 4κωe∗3)

2|vcl| − 2
√
κe∗3

. (4.16)

Moreover, if e is ignored, the conditions (4.15) and (4.16) simplify to

Nr >
ūT
|vcl|

and Nθ >

√
κūT
|vcl|

. (4.17)

Proof. Since the worst case of V̇2 can be decoupled from the x3 dynamics by As-

sumption (A8), we first show that x2 is bounded in steady state using the Lya-

punov function V2(x2). The cross terms, for example x̃2e2, may be bounded by

|x̃2e2| ≤ 1
2
(c1x̃

2
2 + e2

2/c1) using a constant c1 > 0. Bounding the other cross terms

using positive constants ci, i = 2, 3, and using (A5), (A6) and (A8) yields

V̇2 ≤ −Nrx̃
2
2 +

Nr

2

(
c1x̃

2
2 +

e∗22

c1

)
+ ω

(
c2x̃

2
2 +

e∗23

c2

)
+

1

2

(
c3x̃

2
2 +

ū2
T

c3

)
.

Choosing the constants to be

c1 =
e∗2
|vcl|

, c2 =
e∗3
|vcl|

, and c3 =
ūT
|vcl|

, (4.18)

we have

V̇2 ≤ −ρ2(x2 − vcl)2 +D2, where

ρ2 =

(
1− e∗2

2|vcl|

)
Nr −

ūT + 2ωe∗3
2|vcl|

and

D2 =
|vcl|

2
(ūT +Nre

∗
2 + 2ωe∗3).
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Figure 4.4: Ultimate boundedness of the solutions in the x2x3-plane. The solutions
starting at any initial condition x0 are guaranteed to converge to regions A2 and A3.
Convergence to the set Ω lying on the left side of x2 = −δ ensures target capture in
finite time.

Lemmas 4.1 and 4.2 apply if ρ2 > 0, which is true when Nr satisfies the

condition (4.15). From Lemmas 4.1 and 4.2, the solutions of the system converge

to a region A2 = {x |x2 ∈ Ω2}, where Ω2 is a line segment that contains the set

B2 , {x2 : |x2− vcl| ≤ λ2} with λ2 =
√
D2/ρ2, which is a one-dimensional analogue

of the ellipsoidal region in Lemma 4.2.

One may choose λ2 to be small so that x2 converges to a small region around vcl.

However, in order to require less control effort, we seek to relax as much as possible

the requirements on the control gain Nr. Making use of the condition (4.3), it is

sufficient for solutions to fall inside the set Ω2 lying in the left-half plane in Fig. 4.4

(strictly speaking, to the left of the line x2 = −δ). A suitable δ > 0 and Ω2 exist if

λ2 < |vcl|, which is equivalent to D2 < |vcl|2ρ2. Using the expressions for D2 and ρ2

above, the latter condition reduces to (4.15).

Suppose condition (4.15) is satisfied, then there exist tf ≥ 0 such that x2 ∈

Ω2,∀ t > tf . After entering Ω2, x2 is bounded as 0 < x2
2 < 4v2

cl. Although V̇3

includes the x2
2 term, we use this inequality and positive constants ci, i = 4, 5, 6, 7,
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to bound V̇3 as

V̇3

κ
≤ −Nθx

2
3 +

Nθ

2

(
c4x

2
3 +

e∗23

c4

)
+

1

2

(
c7x

2
3 +

ū2
T

c7

)
+
ω

2

(
4c5v

2
cl +

e∗23

c5

+ c6x
2
3 +

e∗22

c6

)
.

Note that the above inequality is valid for t > tf . Choosing the constants to be

c4 = c5 =

√
κe∗3
|vcl|

, c6 =

√
κe∗2
|vcl|

, and c7 =

√
κūT
|vcl|

, (4.19)

we have

V̇3 ≤ −κρ3x
2
3 + κD3, where (4.20)

ρ3 =

(
1−
√
κe∗3

2|vcl|

)
Nθ −

√
κ(ūT + ωe∗2)

2|vcl|
and (4.21)

D3 =
|vcl|
2
√
κ

(ūT +Nθe
∗
3 + ωe∗2 + ωe∗3 + 4κωe∗3). (4.22)

The condition ρ3 > 0 is true if Nθ satisfies the condition (4.16). By the same

argument as above, we seek the condition for the convergence of the solutions to

A3 = {x | x3 ∈ Ω3}, where the set Ω3 contains B3 , {x3 : |x3| ≤ λ3 =
√
D3/ρ3}.

Consider the condition λ3 < |vcl|/
√
κ, which is equivalent to κD3 < |vcl|2ρ3.

Using the expressions for D3 and ρ3 above, this condition reduces to (4.16). A large

κ stabilizes x3 to a small value while requiring greater control effort (see (4.16)).

Nonetheless, the solution is guaranteed to converge to the rectangular region Ω ,

{x | x2 ∈ Ω2, x3 ∈ Ω3} in Fig. 4.4, which completes the proof.
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4.2.3 Modification of the Pursuit Law

Although convergence to a rectangular region provides a relaxed condition on the

control gains, the required control may be large if the terms |x2 − vcl| or |x3| are

initially large. This problem is not restricted to the initial conditions; for example,

if the measurement error is large, it may cause an erroneously large control input.

In order to avoid this issue and to keep the acceleration command small even

in the presence of measurement error, we saturate the linear terms in (4.6) using

the saturation function

sat(x) =


x if |x| ≤ 1,

1 otherwise.

(4.23)

The saturated control is

udes =


−x

2
3
x1
−N ′rsat

(
x2

|vcl| + 1

)
x2x3
x1
−N ′θsat

(√
κ
|vcl|x3

)
 , (4.24)

where N ′r = Nr|vcl| and N ′θ = Nθ|vcl|/
√
κ. Note that the saturated terms are

identical to the original terms when |x̃2| ≤ |vcl| and |x3| ≤ |vcl|/
√
κ. The nonlinear

terms are excluded from the saturation function in order to ensure cancellation of

f(x) in (4.2). Note that the ultimate-boundedness property still holds after this

modification, which is proved as follows.

It is sufficient to show that V̇2 and V̇3 are still negative in the region where
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the linear terms are actually saturated. For the radial component V2, the saturated

control (4.24) yields

V̇2 = x̃2ẋ2

= x̃2

(
x2

3

x1

− (x3 + e3)2

x1 + e1

−N ′rsgn(x̃2) + ∆r

)
< x̃2sgn(x̃2)(2ωe∗3 −N ′r + ūT )

= −|x̃2| (N ′r − 2ωe∗3 − ūT ) .

Noting that N ′r , Nr|vcl| > 2ωe∗3 + ūT (if we choose Nr according to (4.15)), the

term inside the parenthesis is positive, and we have V̇2 < 0. The stability of the

normal component V3 can be proved in a similar way.

4.2.4 Comparison with Existing Pursuit Laws

In order to distinguish (4.8) from other pursuit laws, let uA denote pursuit law

(4.8), where udes is given by (4.24). We compare uA to the partial-stability-based

controller [82], uB, and to the sliding-mode controller [54], uC , which are also robust

to unknown target acceleration; uB and uC are

uB =

 µB

σB

 =


x2

3

x1

− νx2 + η1(
−x2

x1

+N

)
x3 + η2sat

(x3

ε

)
 (4.25)
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and

uC =

 µC

σC

 =


x2

3

x1

+ η1sat

(
x2 − vcl

ε

)
−(N + 1)

x2x3

x1

+ η2sat
(x3

ε

)
 , (4.26)

where ν,N, ε > 0, η1 > ūT , and η2 > ūT . Also consider a naive controller, uD,

whose radial acceleration is constant, i.e., µD = µ∗, and whose normal acceleration

is σD = σA.

Remark 4.3. The pursuit law µB requires x2(0) < 0 for an initial condition [82],

whereas law µA and the sliding-mode control µC are robust to x2(0) > 0.

Metrics often used in comparing pursuit strategies include the capture time,

the required σP , and the required µP . There is no significant difference in the

performance and control effort in the normal component between the considered

pursuit laws, as can be seen in [82] and also in the numerical simulations shown

below. Once θ̇ ≈ 0, short capture times are achieved by using a large µP , which

can be seen from the dynamics (4.2), i.e., ẋ2 = µT − µP when x3 = 0. Therefore,

to achieve a pursuit law with a short capture time one needs simply to command

the maximum available radial acceleration. Based on these observations, we focus

on the radial component and compare the control effort and energy consumption

required for robust target capture.

Since all of the pursuit laws except uD have the term x2
3/x1, which cancels the

77



centrifugal acceleration in B, let

G , µ− x2
3

x1

(4.27)

denote the additional term on the radial component, and compare G from the three

pursuit laws. For a fair comparison, we choose the smallest control gains for Nr and

η1 that guarantee robustness (strictly speaking, the limiting value, i.e., if N > a

is required, then we choose N = a). Small constants ν and ε are retained as

parameters. Only the no-measurement-error case is considered since measurement

error was not studied in [54,82].

From condition (4.17) and (4.24), N ′θ = ūT . The additional term G of the

control laws with minimal gains are

GA = ūT sat

(
x2

|vcl|
+ 1

)
(4.28)

GB = −νx2 + ūT (4.29)

GC = ūT sat

(
x2 − vcl

ε

)
(4.30)

GD = µ∗ − x2
3/x1. (4.31)

Figure 4.5 shows G as a function of x2. Noting that uA ensures x̃2 < |vcl|, or

equivalently 2vcl < x2 < 0, after a certain amount of time, GA has the smallest

absolute value for the same states x.

Remark 4.4. The sliding mode controller µC becomes identical to µA if ε = |vcl|.

Although ε is typically a small value introduced in order to avoid the chattering from
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Figure 4.5: Comparison of the controller specific terms G (see (4.27)) in the radial
control as a function of range rate x2. For simplicity, x3=0 is assumed for the naive
controller GD. The pursuit law GA has the smallest absolute value, which results in
the smallest control effort.

the signum function [54], it may be as large as |vcl| and still guarantee robustness. In

the particular case for which the smallest control gains are considered, the proposed

controller µA can be categorized as a sliding-mode controller with sliding surface

relaxed as much as possible while maintaining robustness. The comparative study

shows the advantage of this design philosophy with respect to the design criteria that

we consider.

Figure 4.6 shows the results of numerical simulations up to the time of the

first close encounter. The open-loop trajectory of the target is specified by uT (t) =

[0.5 sin(0.4πt+0.3π), 0.5 sin(πt+0.4π)], and the initial conditions are rP/O(0) = [0, 0],

vP/O(0) = [0, 0], rT/O(0) = [2, 0], and vT/O(0) = [−.5, .7]. Parameters and control

gains were vcl =−2.0, κ= 400, ν = 0.1, N = 2, ε= 0.1, and ūT = 0.5, which gives

N ′r =N ′θ = η1 = η2 = 0.5. The naive control law uD is simulated with µ∗1 = 0.4 and

µ∗2 = 0.7, denoted Naive 1 and Naive 2, respectively. Consider the energy consump-

tion defined as Etot =
∫ t
t0
‖u(τ)‖2dτ [93]. Since the motor voltage is proportional
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Figure 4.6: Numerical simulation until the first close encounter. (a) Trajectories
from different pursuit laws against the same target (black). (b, c) States. (d, e)
Absolute value of acceleration commands. (f, g) Energy expenditure calculated form
the time integral of squared acceleration commands. The left column (b, d, f) and
the right column (c, e, g) describe the radial and normal components in the LOS
frame, respectively.

to the magnitude of the acceleration command, Etot is proportional to the amount

of energy consumption, assuming that the motor impedance is approximately con-

stant. Eµ and Eσ are the radial and normal components of the energy consumption.

Comparison of the normal component differs only at the end, when x1 becomes

small. In the radial component, the bio-inspired control law (blue) has the smallest

maximum acceleration and energy consumption.

Figure 4.7 shows the case when the pursuit is continued after the first close

encounter. This scenario corresponds to a near miss or target tracking. To quantify

the performance, look at the energetic cost J =
∫ t

0
{x1(τ)}2dτ shown in Fig. 4.7-b.

The bio-inspired pursuit law has the smallest J and the smallest energy consump-
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Figure 4.7: Numerical simulation of near-miss scenario. (a) Trajectories from differ-
ent pursuit laws against the same target (black). (b) Energetic cost, which penalizes
the deviation from the target. (c) The total energy expenditure Etot. (d) Phase por-
trait in x2x3-space for proposed controller. The time stamps t1 to t4 correspond to
those in (a).

tion Etot. Figure 4.7-d shows a phase portrait in x2x3-space. At the instant of a

near miss, the range rate x2 changes sign from negative to positive, but the solution

returns to the set Ω (see the proof of Proposition 4.1) in finite time.

4.2.5 Robustness to Control Saturation

In the pursuit problem considered thus far, as well as in [54, 82], the pursuer may

achieve arbitrary acceleration: i.e., it can accelerate in any direction with any magni-

tude. Under such an assumption, the pursuit law (4.8) effectively cancels the vector

field f(x) in (4.2) and adds a vector field [−Nrx̃2,−Nθx3]T that is sufficiently strong

81



to drive the solution of the system to x∗, even in the presence of uncertainty ∆.

However, the cancelation of f(x) is not always possible, e.g., in a physical implemen-

tation for which the acceleration is limited. This section considers the robustness of

the pursuit law to control saturation.

To simplify the analysis, consider udes in (4.6) without the measurement errors,

and the case where the target is under a naive evasive maneuver:

uT =

 µT

σT

 =

 ūT

ūT sign(x3)

 . (4.32)

This evasive strategy increases the range rate by accelerating away from the pursuer

and increasing the LOS rate. The target tries to avoid what the pursuer is trying

to achieve—zero LOS rate and negative range rate.

Let ūP denote the bound on pursuer’s acceleration in each direction; i.e.,

ηP , σP ≤ ūP . With the pursuit strategy (4.8) and evasive strategy (4.32), the

system (4.2) is described as

ẋ =


x2

x2
3/x1 − ūP sat

(
h1(x)

ūP

)
+ ūT

−x2x3/x1 − ūP sat

(
h2(x)

ūP

)
+ ūT sign(x3)


,

where

 h1(x)

h2(x)

 =

 x2
3/x1 +Nr(x2 − vcl)

−x2x3/x1 +Nθx3

 .

Let ū , ūP − ūT > 0. Also, let N∗r and N∗θ denote the limiting gain values
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ẋ3 > 0

ẋ3 < 0

ẋ2 < 0

ẋ2 > 0

Figure 4.8: Nullclines of the system; i.e., surfaces where ẋ2 = 0 (red) and ẋ3 = 0
(blue). The surface for ẋ1 = 0, which is a x1x3-plane at x2 = 0, is omitted for
clarity.

that satisfy (4.17), i.e., N∗r , ūT/|vcl| and N∗θ ,
√
κūT/|vcl|.

Proposition 4.2. The pursuit law (4.8) is robust to control saturation and evasive

maneuver (4.32) if ū = ūP − ūT > 0 and the control gains satisfy condition (4.17)

and

N∗θ
Nθ

(
1− N∗r

Nr

)√
κ < 1 (4.33)

with
√
κ = |vcl|/

√
ūr0.

Proof. Figure 4.8 shows the nullclines of the system with the proper choice of control

gains. By symmetry, consider only the positive x3 region (x3 = 0 is a separatrix).

From the sign of ẋ2 and ẋ3 in each area separated by the nullclines, observe that the

black solid line is a stable manifold. Hence, the following two conditions guarantee

target capture: (1) the stable manifold exists and lies in the negative x2 region; and
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(2) the stable manifold intersects the surface x1 = r0.

We express these conditions in a different way by looking at the two-dimensional

slice of the nullclines for each x1 value. Figure 4.9 shows four configurations of the

nullclines arising from different choices of the control gains and x1. The locations

of the solid lines are determined by the system parameters ū and r0, whereas the

dashed lines are determined by the control gains vcl, κ, Nr and Nθ (chosen by the

pursuer). The intersecting points of the dashed and solid lines are denoted as P2

and P3, respectively (right bottom in Fig. 4.9).
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Figure 4.9: Four different configurations of nullclines. The red and blue lines corre-
spond to nullclines for ẋ2 and ẋ3, respectively. Pstab, Punst, and Psad denote stable
node, unstable node, and saddle point, respectively.

The top two configurations in Fig. 4.9 have a stable manifold but the bottom

two do not. The stable manifold exists if and only if point P2 is above and to the

right of point P3. Also, the stable node has to be in the negative x2 region in order to
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ensure target capture. The coordinates of those points are P2 = [vcl+ ūT/Nr,
√
ūx1],

P3 = [−Nθx1ū/ūT , ūT/Nθ], and Pstab = [vcl + ūT/Nr, ūT/Nθ], assuming ū , ūP −

ūT > 0.

Hence, the stability conditions required at each x1 are

(a) the stable node must lie to the left of x2 = 0, i.e.,

vcl +
ūT
Nr

< 0; (4.34)

(b) P2 must be above P3, i.e.,

ūT
Nθ

<
√
ūx1; (4.35)

(c) and P2 must be on the right side of P3, i.e.,

−Nθx1
ū

ūT
< vcl +

ūT
Nr

. (4.36)

Since conditions (b) and (c) become more stringent for smaller x1, the con-

ditions are satisfied for all x1 > r0 if they are satisfied at x1 = r0. By choosing

the parameter κ as κ = |vcl|2/ūr0, the three conditions at x1 = r0 are rewritten

as (a) Nr > N∗r ; (b) Nθ > N∗θ ; and (c)
N∗
θ

Nθ

(
1− N∗

r

Nr

)√
κ < 1. Note the first two

conditions (a) and (b) are equivalent to condition (4.17).

Because control gains that satisfy (4.33) always exist, Proposition 4.2 ensures

the pursuit law is robust to control saturation as long as the pursuer has maximum

acceleration larger than the naive evader. Although we treated the effects of mea-

surement error and control saturation separately in this section, the experimental
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results presented in the following section demonstrate the robustness of the pur-

suit law to the combination of measurement error, unknown target maneuvers, and

control saturation.

4.3 Experimental Results

The various pursuit laws described above were implemented using the autonomous

hovercraft testbed. A motion-capture camera system was employed to position

the vehicles to the desired initial conditions in the inertial frame, to command a

repeatable trajectory for the target, and to analyze the pursuit performance by

measuring the ground truth. Initial conditions and target trajectory identical to the

numerical simulation were used.

4.3.1 Measurement Noise

Vision-based tracking like one used on the pursuer hovercraft is a low-power, light-

weight tracking solution for a small, payload-limited platform. Measurements of

the range and body-frame angle to the target from the pursuer are corrupted by

limited camera resolution, occasional extraneous IR sources and reflections, and

other random noise. Differentiation of this noisy signal to calculate the radial and

angular velocities further exacerbates the high frequency noise. Table 4.1 shows the

measurement errors across eighteen pursuit trials.

Figure 4.10-a shows an example of the measured states that are corrupted with

noise. Due to the generally large size of e2 and e3 and infrequent extreme deviations
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in e3, ei often approaches xi and even occasionally exceeds it, though the error-to-

signal ratio is usually less than 0.5, as shown in Fig. 4.10-b. Hence, Assumption (A6)

is marginally true for e2 and e3. With the controller parameters vcl = −2 (m/s)

and κ = 10, the magnitudes of e2 and e3 agree with Assumption (A7) most of the

time; |e2| > |vcl| and |e3| > |vcl|/
√
κ occurs only 0.42% and 0.73% of the time. We

estimate the bounds as e∗2 = 0.56 (m/s) and e∗3 = 0.30 (m/s) using two standard

deviations, which accommodates 97.6% and 95.4% of all errors. Assumption (A8)

is reasonable since the upper bound on the vehicle speed (which limits x3) and the

lower bound on the range both exist in the hardware implementation. We estimate

the maximum LOS angular rate as ω = 1 (rad/s).

The control gains calculated from (4.15), (4.16) and (4.24) are N ′r = 1.1 and

N ′θ = 12.4; N ′r =N ′θ = 0.5 from (4.17) when measurement error is ignored. Although

the mean capture time from 10 experimental trials increased from 2.7 (s) with the

former control gains to 3.2 (s) with the latter control gains, robust target capture

was still achieved with the smaller gain setting, which implies that the condition to

ensure robustness to measurement error may be conservative for this testbed.

Table 4.1: Characteristics of the State Measurement Errors

Units Mean S.D. Max.

e1 m 0.023 0.031 0.14

e2 m/s 0.112 0.289 2.26

e3 m/s -0.002 0.151 3.15

87



4 4.5 5 5.5 6 6.5
0

2

4

x
1
(m

)

 

 
Ground truth
Measured

4 4.5 5 5.5 6 6.5
−2

0

2

x
2
(m

/
s)

4 4.5 5 5.5 6 6.5
−1

0

1

Time (s)

x
3
(m

/
s)

0 0.5 1 1.5 2
0

1

2

Ratio

P
ro

b
.
d
e
n
si
ty

 

 
|e 1|/|x1|
|e 2|/|x2|
|e 3|/|x3|

(a)

(b)

Figure 4.10: (a) Example of measured states corrupted with noise. (b) Probability
density of error to signal ratio from 18 trials.

4.3.2 Comparison between Pursuit Laws

As in the numerical simulations, we ran each controller against a pre-programmed

target trajectory and recorded the pursuer’s trajectory, onboard state measurements,

and control effort. The parameters and control gains were identical to those in the

numerical simulations. Figure 4.11 shows the results from conducting identical ex-

perimental trials for each law. Note that µ and σ in Fig. 4.11-d and -e are not

the acceleration commands from the control law but those values after saturation

at 1 (m/s2) due to the limitation of the motor. We characterize controller perfor-
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Figure 4.11: Experimental trial up until the first close encounter. Subfigures corre-
spond to those in Fig. 4.6.

mances by capture time, maximum control command, and energy expenditure. As

in Section 4.2, we are most interested in the maximum control command and energy

expenditure since both the control authority and energy capacity are particularly

limited on small vehicles. Each controller was run three times and the average of

each of the above metrics is listed in Tab. 4.2. The symbols µmax, Umax, Eµ, Etot and

Tcap denote maximum commanded radial acceleration, maximum commanded total

acceleration, radial energy expenditure, total energy expenditure, and capture time,

respectively. The bio-inspired controller has the smallest acceleration, the smallest

energy expenditures, and the longest capture time. The naive pursuit law has the

shortest capture time and the largest energy expenditure.
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4.3.3 Comparison with Theory

Our experimental pursuit implementation revealed several insights as compared to

analytical and numerically simulated results. First, the experiments provide a real-

istic baseline for noise in small, low-cost, vision-based sensors used in pursuit. As

expected, differentiated rate measurements like x2 and x3 are significantly noisier

than direct range or angle measurements, like x1, when using vision sensors such

as the camera on the pursuer. Though the magnitude of the noise in x2 and x3

violated the theoretical assumptions, the controllers’ success demonstrate that a

well-designed controller may still reliably achieve target capture outside of the guar-

anteed operating regime.

Second, actuator saturation due to limited actuator authority changed con-

troller performance as compared to simulation, emphasizing the importance of a

low, maximum commanded acceleration. Since no bound is assumed on pursuer ac-

celeration in the controller derivations, unachievable acceleration magnitudes might

be commanded. This problem is exacerbated by sensor noise, which may produce

erroneously large state measurements and corresponding large fluctuations in accel-

Table 4.2: Performance of various pursuit laws

µmax Umax Eµ Etot Tcap

(m/s2) (m/s2) (m2/s3) (m2/s3) (s)

Proposed 0.81 3.70 0.30 1.80 3.16

Partial stab. 1.18 5.46 0.53 2.48 2.90

Sliding mode 1.13 6.63 0.68 2.02 2.88

Naive 0.80 6.70 0.79 2.38 2.75

90



eration commands. In the experimental implementation, overly large acceleration

commands are saturated by scaling down to the maximum achievable acceleration

magnitude while maintaining the original direction. In particular, saturation modi-

fied the achieved acceleration when either µ or σ exceeded the maximum acceleration

magnitude. This effect is observed in the experimental σ acceleration, in which the

controllers differ from each other earlier in pursuit than they do in simulation. The

effects of actuator limits may be avoided or mitigated by limiting the maximum

commanded acceleration or by different scaling and saturating strategies when un-

achievable accelerations are commanded.
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Chapter 5

Mosquito-Inspired Swarming for

Decentralized Pursuit

The previous chapter considered an individual pursuit problem assuming that the

target is always perceived by the pursuer. Using the definition in Chapter 3, the

previous problem corresponds to Phase 3 in the mosquito pursuit behavior, i.e., the

phase after the close encounter. This chapter considers a pursuit problem that also

includes the swarming phase, where male mosquitoes have not yet perceived the

female mosquito. We study how swarming motion in autonomous vehicles helps the

success of target capture, by considering the scenario in which multiple guardians

with limited perceptual range and bounded acceleration are deployed to protect an

area from an intruder. Section 5.1 introduces the novel pursuit problem inspired by

the collective behaviors in mosquito swarms. Section 5.2 performs analyses of the

problem to quantify how difficult it is to capture the target depending on the sys-

tem parameters. Section 5.3 presents various swarming strategies that are designed

to maximize the probability of capturing the intruder, and illustrates the perfor-
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mance with numerical simulations. Section 5.4 validates the theoretical results with

experiments using an indoor quadrotor swarm.

5.1 Background

This section introduces a novel pursuit problem involving a swarm of guardians and

intruders. We begin by discussing how this problem is inspired by the collective

behaviors in mosquito swarms.

5.1.1 Inspiration from Mosquitoes

Section 1.2.2 categorized pursuit problems by the definition of capture (intercept

or tracking) and the agents’ capabilities (dynamics and sensing). Wild swarms of

malarial mosquitoes show an interesting combination of these categories, which mo-

tivates the formulation of a new type of pursuit problem. Male mosquitoes aggregate

and form mating swarms to attract female mosquitoes that fly faster than the males.

In this stage, which we call the swarming phase, male mosquitoes cooperate with

one another to increase the chance of encounter with a female. When the female

enters the swarm, male’s pursuit behavior is triggered only when the distance to

the female becomes small, which we call the close encounter. This switching in

the male’s behavior indicates that they have limited perceptual range to detect the

female.

After the pursuit phase, the male and the female exhibit coupling flight during

which they fly in approximately the same direction while their separation distance
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oscillates—as though they are connected by a damped spring with zero rest length

(see Chapter 3). For a male to achieve this flight, simply intercepting a female is

insufficient; he also has to align his velocity with the female. For this reason, the

objective of the mosquito pursuit is a combination of target tracking and intercept.

In addition, since the female flies faster than a swarming male, a male has to accel-

erate after the close-encounter in order to successfully track the female. Therefore,

the mosquito pursuit has to be modeled with agents with variable speed.

The combination of limited perceptual range and the dynamical model of the

agent raises the importance of quick response, i.e., when a male detects a female, it

has to speed up and match the velocity of a fast female in time so that the female

does not escape from its perceptual range. The velocity matching may also require

favorable initial conditions for the male, i.e., its initial velocity should be relatively

aligned with female. This observation motivates our investigation below of swarming

rather than static guardians.

Although the pursuit law that governs the motion of mosquitoes in the pursuit

phase is an interesting topic, we focus on the swarming phase in this work. (See

Chapter 4 for the work on pursuit after detection.) A key characteristic of insect

swarms is their unpolarized oscillatory motion [23], in contrast to fish schools [6], bird

flocks [3], and formation controls inspired by those animals [26,94]. The oscillatory

motion and the interactions between males have been studied in Chapter 2, and it

was suggested in Chapter 3 that this motion may increase the sensitivity to external

stimuli, for example, to respond quickly to a female that enters the swarm (also see

the discussion in [9]).
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Figure 5.1: Illustration of the swarming and pursuit scenario. In the swarming
phase, an intruder (red) is approaching the protected region (green). The guardians
(with static formation here for clarity) are deployed to wait for the intruder. Once
the intruder enters the perceptual range, the guardian turns into a pursuer and the
intruder becomes the target.

Inspired by the mosquito behavior, we study how swarming motion may be

useful in a scenario where multiple pursuers with limited perceptual range wait for

a fast target that comes from an unknown direction at an unknown time. The goal

of the pursuers is to track the target, so simply blocking the target by constructing

a wall-like formation will not achieve the goal. Instead, the pursuer has to match

its velocity with the target.

5.1.2 Problem Formulation

Consider a planar system of point particles with unit mass representingNP guardians

and NT intruders (we use the subscripts T and P to denote the intruder/target and

guardian/pursuer, respectively). The intruders seek to pass through a protected re-

gion that is known to the guardians. Figure 5.1 illustrates the case where only one

intruder is seen in the picture. The timing and the direction of the intruder trajec-

tories are unknown to the guardians. Once the intruder enters the perceptual range

of a guardian, the roles of the agents change—the intruder becomes a target and the
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guardian becomes a pursuer. The goal of the pursuer is to capture the target (i.e.,

approach the target and stay close to it). Although the difference between target

capture that occurs before and after the intrusion is important to some applications,

and is a subject of our ongoing work (see Section 6.2 for our preliminary work), we

do not distinguish between those two cases here.

Consider the case where the protected region is sufficiently small to be ap-

proximated as a point O. Let O to be the origin of the inertial frame; ri, vi, and

ai denote the position, velocity, and acceleration of particle i in the inertial frame.

The agents have second-order dynamics, i.e., ṙi = vi and v̇i = ai. We assume the

following capabilities of the guardians:

(A1) The magnitude of the guardian’s acceleration is bounded according to ‖aP‖ ≤

ūP ; and

(A2) Each guardian perceives the position and velocity of all other agents within

the range ρs.

We also introduce another perceptual range that determines when the pursuit be-

havior is triggered:

(A3) Each guardian becomes a pursuer once the distance to an intruder becomes

less than ρp.

The threshold ρp is inspired by the observation that the pursuit behavior of

a male mosquito is triggered by the close encounter with a female (see the swarm

model in Section 3.4). We also note that the parameter ρp allows two interpretations.
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First, it can be interpreted as the limitation of the guardians to distinguish between

a friendly guardian vehicle and the intruder, i.e., guardian i does not know whether

an agent j (in its perceptual range) is an intruder or not if ρp < ‖rj/i‖ < ρs, where

rj/i = rj − ri. Second, ρp may be a control parameter that the guardian can choose;

i.e., the guardian will ignore the intruder unless it gets closer than the distance ρp.

In either case, the value of ρp will not exceed ρs.

In contrast to target intercept where pursuers aim to collide into the target,

we consider target tracking, defined as follows.

Definition 5.1. Let rT/P = rT − rP denote the relative position of the target with

respect to the pursuer. Let rcap > 0 denote the capture threshold. Target capture is

successful if there exists tcap such that ‖rT/P‖ < rcap, for all t > tcap.

From assumption (A2), the pursuit can last as long as the target is in the range ρs.

Therefore, we choose the threshold in Definition 5.1 to be rcap = ρs.

The capture problem can be separated into two parts. The first is the swarm-

ing phase in which the guardian does not know where the intruder is. Once the

intruder enters the circle with radius ρp around a guardian, the pursuit phase starts.

Although we discuss the control law for the pursuit phase in Section 5.2.2, our fo-

cus here is on the swarming phase. The success of target capture depends on how

quickly a guardian can respond (i.e., close the distance and match the velocity) to

the intruder once it is in perceptual range ρp. If the response is too slow, then the

target will escape from the range ρs. We seek to find a strategy for how the guardians

should prepare for the intruder to maximize the probability of target capture.
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Table 5.1: List of system parameters and their nominal values.

Symbol Description Nominal Value

NP Number of guardians 10
ūP Maximum acceleration 2.7
ρs Perceptual range 1
ρp Threshold for close encounter 0.5

NT Number of intruders 1
vT Intruder speed 3

To focus on the guardians’ strategy, assume that the intruder moves with a

constant velocity ‖vT‖ = vT on a straight path that passes through O. Note that

even with this simplification, the intruders can take variety of different strategies

in terms of the directions from which they approach O, and also the timing of

their arrival. Let tint
j and ψint

j denote the time and azimuthal direction that the

jth intruder arrives at O (assuming it is not captured), and let T int
j = tint

j+1 − tint
j

denote the time interval between two successive intruders. The sets {ψj} and {T int
j }

significantly affect the success rate of pursuit. This chapter studies the case where

T int
j is sufficiently large that each intruder may be considered separately. This

scenario can be approximated as a single-intruder case, i.e., NT = 1. (The effects of

{ψj}, {T int
j }, and NT are subjects of ongoing work. Our preliminary results can be

found in [95].) Table 5.1 lists the parameters that are introduced in this section.

5.2 Control Theoretic Analysis

This section describes a condition for when the target capture fails by a static

guardian, and introduces nondimensional parameters that describe the difficulty
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of target capture. We then derive sufficient conditions for target capture, which

motivate the swarming algorithms in the sequel.

5.2.1 Limitation of Static Guardian

A naive strategy is to uniformly distribute stationary guardians around the protected

area as in Fig. 5.1 and wait for the intruder. However, if the intruder is too fast,

the guardian may not react (i.e., speed up and align its velocity) in time to keep the

intruder in the perceptual range. We first find the necessary condition for a static

guardian to achieve target capture.

Proposition 5.1. A guardian who is stationary at the beginning of the pursuit phase

never achieves target capture if

ūP <
v2
T

2(ρp + ρs)
. (5.1)

Proof. Consider the easiest case for the pursuer: the target trajectory passes through

the pursuer’s position. Let tf = vT/ūP denote the time required for the pursuer to

reach the speed vT . The target escapes if it can travel a distance longer than

ρp + ρs + 1
2
ūP t

2
f within a duration of time tf . The inequality vT tf > ρp + ρs + 1

2
ūP t

2
f

reduces to (5.1).

The above condition is given in terms of the intruder’s speed vT and the

guardian’s capability ūP , ρs, and ρp. To explore this parameter space efficiently in
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Table 5.2: List of nondimensionalized system parameters that describe the difficulty
of target capture and their nominal values.

Symbol Description Nominal Value

NP Number of guardians 10
Γ Guardian acceleration 0.9
α Pursuit activation distance 0.5

the following sections, we introduce the following two nondimensional parameters:

α =
ρp
ρs

and Γ =
2ūP (ρs + ρp)

v2
T

. (5.2)

The first parameter α ∈ (0, 1] is the pursuit activation distance, which describes the

ratio between the two perceptual ranges defined in assumptions (A2) and (A3). The

second parameter Γ is the nondimensionalized guardian acceleration, which describes

the ratio between the guardian’s capability and the intruder’s speed. Noting that

Γ is obtained from the limiting case in (5.1), a static guardian will fail to capture a

target if Γ < 1. (We introduce an augmented version of Γ considering the effect of

time delay in Section 5.4.3.)

For the case with infrequent intruders (or equivalently NT = 1), the difficulty

of target capture can be completely described by the two nondimensional param-

eters α and Γ and the number of guardians NP , which we summarize in Tab. 5.2

with nominal values derived from the dimensional parameters in Tab. 5.1. For the

frequent-intruders case, the number of intruders NT as well as their strategies ({ψint
j }

and {T int
j }, see Section 5.1.2) determine the difficulty of target capture.
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5.2.2 Sufficient Conditions for Target Capture

Next, we derive a sufficient condition for target capture. Since the condition will be

given for the relative velocity vT/P at the time of close encounter (i.e., the initial

condition of the pursuit phase), it applies to any guardian strategy in the swarming

phase. Based on this general condition, we consider two cases: a static swarm and

a swarm with a circling motion.

As a pursuit law, aP = F
(pursuit)
P , following the mosquito-inspired swarm model

in Chapter 3, consider a force resembling a damped-spring attached to the target,

i.e.,

FP = crT/P + bvT/P ,

where c and b are positive constants. The spring term alone never exceeds the

acceleration limit ūP with the follwoing constraint:

0 < c <
ūP
ρs
. (5.3)

In this case, there always exists a scaling factor β ∈ (0, 1] such that

‖crT/P + βbvT/P‖ ≤ ūP . (5.4)

In this way, the actual pursuit force is saturated as follows:

F
(pursuit)
P = crT/P + βbvT/P , (5.5)
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β =


1 if ‖crT/P + bvT/P‖ < ūP ,

β∗ otherwise,

where β∗ > 0 is the maximum value of β that satisfies the equality in (5.4). The

value of β∗ as a function of rT/P , vT/P , c and b can be obtained using Stewart’s the-

orem in geometry (see Appendix A.1). Although mosquitoes exhibit underdamped

oscillation (see Chapter 3), for the application to guardians, a large number for b

(i.e., an over-damped spring) gives good performance since velocity alignment is nec-

essary for target capture. (Instability caused by the time delay also has to be taken

into account for the gain tuning, in practice.) However, the following proposition

gives a sufficient condition for target capture, which is independent of the choice of

c and b as long as (5.3) is satisfied.

Proposition 5.2. Consider a pursuer under (5.5) with the gain c satisfying (5.3).

Let t0 denote the time when ‖rT/P‖ = ρp (i.e., the time when the pursuit phase

starts). The target capture is guaranteed if

‖vT/P (t0)‖ ≤ v0, where v0 = vT

√
Γ(1− α)

2
. (5.6)

Proof. Consider the energy function

V =
1

2
‖rT/P‖2 +

1

2c
‖vT/P‖2.
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Since the target is not accelerating, the time derivative of V satisfies

cV̇ = crT/P · vT/P + vT/P · (aT − aP )

= crT/P · vT/P − vT/P · (crT/P + βbvT/P )

= −βb‖vT/P‖2.

Thus, V is nonincreasing for all t > t0. It follows that

1

2
‖rT/P (t)‖2 ≤ V (t) ≤ V (t0) =

1

2
ρ2
p +

1

2c
‖vT/P (t0)‖2.

We obtain ‖rT/P (t)‖ ≤ ρs for all t > t0 if the right hand side of the above inequality

is bounded by 1
2
ρ2
s, i.e.,

1

2
ρ2
p +

1

2c
‖vT/P (t0)‖2 ≤ 1

2
ρ2
s

‖vT/P (t0)‖ ≤
√
c(ρ2

s − ρ2
p)

Noting (from definitions of Γ and α) that

ūP
ρs

(ρ2
s − ρ2

p) = v2
T

Γ(1− α)

2
,

the above inequality is equivalent to (5.6) with the constraint (5.3).

If the pursuer’s velocity vP (t0) at the time of close encounter lies in the circle

Bv0(vT (t0)) ≡ {v | ‖v − vT (t0)‖ ≤ v0},
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Figure 5.2: Sufficient condition on the initial velocity for target capture depicted
in the velocity space. Target capture is guaranteed if the pursuer’s velocity (blue
arrow) lies in the red circle at the beginning of the pursuit phase.

which is centered at vT (t0) with radius v0 (see Fig. 5.2), the target capture is guar-

anteed. If Γ is sufficiently large that the origin of the velocity space (Ov in Fig. 5.2)

is included in Bv0(vT (t0)), even a static pursuer can guarantee target capture. This

case is stated in the following result.

Corollary 5.1. Target capture is guaranteed by a pursuer that is stationary at the

beginning of the pursuit phase if the following condition is satisfied:

Γ >
2

1− α. (5.7)

Proof. From Proposition 5.2 and the discussion above, the sufficient condition is

v0 > vT , which reduces to (5.7).

One strategy to achieve the velocity alignment derived in Proposition 5.2 is to

use a circling motion. The target capture is guaranteed if the circling motion has (i)

a radius less than ρp so that O is always in the perceptual range; (ii) sufficient speed

such that ‖vP‖ ∈ (vT − v0, vT + v0); and (iii) there are sufficiently many guardians
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so that there exists one whose direction of motion is approximately aligned with vT

when the intruder passes through O. Assuming (iii) is true, the conditions (i) and

(ii) give the following result.

Corollary 5.2. Assuming that there are sufficiently many guardians so that there

always exists one whose direction of motion is approximately aligned with vT , a

circular motion around O guarantees target capture if

√
Γ

2

(√
α

1 + α
+
√

1− α
)
> 1. (5.8)

Proof. Given the smallest required speed vT − v0 and the acceleration bound ūP ,

the radius of the circular orbit has to be greater than (vT − v0)2/ūP to be able to

counteract the centrifugal acceleration. From condition (i), the radius also has to be

smaller than ρp. Therefore, the condition is ρp > (vT − v0)2/ūP , which is equivalent

to (5.8).

The analysis on the required number of guardians for condition (iii) to hold is

presented in the Appendix A.2.

The necessary and sufficient conditions (5.1), (5.7) and (5.8) are summarized

in Fig. 5.3. RegionR1 is where a static swarm fails to achieve target capture. Region

R3 is where a static swarm is guaranteed to achieve target capture, assuming that the

intruder encounters at least one guardian. The region R2 ∪ R3 is where a circling

swarm is guaranteed to achieve target capture. The circling motion guarantees

target capture with lower Γ as compared to a static swarm. If Γ is below the red
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Figure 5.3: Conditions for target capture in the nondimensional parameter space:
R1 is where the static formation never achieves target capture; R2 is where tar-
get capture is guaranteed by circling formation; R3 is where the static formation
guarantees target capture.

curve in Fig. 5.3, guardians cannot achieve the desired circular motion; i.e., either

the radius is too large or the speed is too low. The following section proposes

strategies for the guardians so that they can achieve target capture even inside of

the region R1.

5.3 Algorithms and Simulation Results

This section considers the strategies for the guardians in the swarming phase to

achieve target capture even when Γ < 1. We describe the probabilistic nature of

the problem, and state the objectives of the swarming motion. The first strategy

considers various orbiting motion around O. Next, we propose strategies inspired

by mosquito behavior: random oscillatory motion and velocity-alignment behavior.

The performance of the strategies, in terms of the probability of target capture, is
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studied with numerical simulations.

5.3.1 Orbiting Strategy

In the previous section, Proposition 5.2 showed that target capture can be achieved

if the velocities of the guardian and the target at the time of close encounter are

aligned so that the relative velocity is sufficiently small. This condition suggests

the importance of the guardians maintaining sufficiently high velocity during the

swarming phase. In addition, the condition prerequisite to velocity matching is

that the close encounter occurs. Therefore, the two key objectives of the swarming

motion are to (i) maintain high density around O where the intruder passes through;

and (ii) maintain high speed that can lie in the circle Bv0(vT ).

Note that now the problem of target capture is probabilistic. Each guardian

may encounter an intruder with probability Penctr, and the velocity at the time of

close-encounter may lie in Bv0(vT ) with probability Palign. Since target capture

occurs if those two occur for any of the guardians, the probability of target capture

Pcap is dictated by Penctr and Palign. For the same number NP of guardians, Pcap

may be increased by improving Penctr and Palign, as discussed below.

The control law for the guardian is described by the combination of artificial

forces Fi that generates the desired acceleration ai of the agent. The overall forcing

on agent i is given by

ai = Fi = (1− λPi )F
(swarm)
i + λPi F

(pursuit)
i , (5.9)
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where the switching parameter λPi ∈ {0, 1} takes the value λPi = 0 (resp. 1) in the

swarming (resp. pursuit) phase. The pursuit term F
(pursuit)
i is defined in (5.5).

We first consider a central force F
(swarm)
i = F

(cent)
i that generates oscillatory

motion of the guardians around O, where F
(cent)
i = −kcri. Since the guardian’s

acceleration is bounded, the central force on agent i will be saturated as follows:

F
(cent)
i =


−kcri if ‖kcri‖ ≤ ūP ,

−ūP ri/‖ri‖ otherwise.

(5.10)

For simplicity, consider the case where kc is sufficiently large that F
(cent)
i is al-

ways saturated. Depending on the initial condition, the central force F
(cent)
i produces

various orbiting motions characterized by the speed vmax and the distance from the

center Rmin ∈ [0, v2
max/ūP ] when the agent is closest to the center (see Fig. 5.4-a).

Two extreme cases are (i) Rmin = 0, corresponding to a pure radial motion, and (ii)

Rmin = v2
max/ūP , corresponding to a pure circular motion. The set (Rmin, vmax) not

only affects the shape of the orbit, but also modulates the speed and the density of

the swarm. Figure 5.5-c and -d shows Pcap obtained from numerical simulation with

NP = 12, α = 0.5, and two values of Γ: 0.5 and 0.9. Although Γ is in region R1 for

both cases, target capture is achieved with nonzero probability if the set (Rmin, vmax)

is chosen properly. Although the probability is higher with larger Γ, the optimal

(Rmin, vmax) varies with Γ. In particular, for Γ = 0.5, circling motion is not optimal;

the probability of capture is maximized for a blended motion in Fig. 5.4-b.

To further investigate how the optimal orbiting motion varies with Γ and α,
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Figure 5.4: Effect of initial conditions on the orbiting motion. (a) The definition of
vmax and Rmin; guardians’ trajectories in (b1) radial motion; (b2) general case; (b3)
circular motion.
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two nondimensional parameters describe the energy and roundness of the orbits.

Consider the following energy function:

E(v, ρ) =
1

2
v2 + U(ρ), (5.11)

where positive semidefinite function U(ρ) denotes the potential energy. Since a large

kc so that ‖F(cent)
i ‖ = ūP is assumed, we choose U(ρ) = ūPρ. Now, consider the

baseline energy E0 = E(vT−v0, ρp) corresponding to the circling motion considered

in Corollary 5.2. The nondimensional parameter εorb > 0 describes the energy of

the given orbit normalized by the baseline energy, i.e.,

εorb ,
E(vmax, Rmin)

E0

=
E(vmax, Rmin)

E(vT − v0, ρp)
. (5.12)

Remark 5.1. If kc is sufficiently small so that F
(cent)
i is never saturated, then we

choose U(ρ) = kc
2
ρ2. For a general case we can use

U(ρ) =


kc
2
ρ2 if |ρ| < ūP/kc,

ūP

(
ρ− ūP

2kc

)
otherwise.

For the roundness of the orbit, consider the speed required to achieve a pure

circular motion, i.e., v∗max =
√
ūPRmin. The nondimensional parameter ωorb ∈ [0, 1]

defined by

ωorb ,
v∗max

vmax

=

√
ūPRmin

vmax

(5.13)
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Figure 5.6: Optimal orbiting motion as a function of system parameters Γ and α:
(a) Pcap achieved with optimal orbiting motion; (b) optimal energy εorb; (c) optimal
roundness ωorb.

describes the degree of roundness scaled between 0 (pure radial motion) and 1 (pure

circular motion). The level curves of εorb and ωorb are depicted in Fig. 5.5-b.

Remark 5.2. A point in (vmax, Rmin)-space is mapped to a unique point in (εorb, ωorb)-

space and vice versa through (5.12) and (5.13), except for the origin, which is mapped

to the line εorb = 0.

Figure 5.6 shows the optimal values of εorb and ωorb as a function of the system

parameters α and Γ. Figure 5.6-b shows that the swarm has to increase the energy,

εorb, for small Γ and large α. Since the energy is increased at the cost of swarm
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density (which causes a drop in Penctr), we see low values of Pcap in the corresponding

region in Fig. 5.6-a. Figure 5.6-c shows that the pure circular motion is only optimal

in the subset of the (α,Γ)-space.

Consider the case where guardian-vehicles have fixed values of α and ūP , and

intruders may have different speeds vT that are approximately known a priori. For

the guardians to respond optimally to different intruders (i.e., different Γ values), the

swarm has to be able to change the orbiting motion between radial and circular. A

control law that can modulate the balance between the radial and rotational compo-

nent of the swarming motion while avoiding collisions is presented with some earlier

version of the experimental results in [61] and [https://youtu.be/Hova4bMiVZg].

5.3.2 Random-Swarming Strategy

The orbiting motion enables the guardians to capture the target even when Γ < 1,

however, the approach has two disadvantages. First, for orbits that are close to

radial motion, there is a high risk of collision near the center. Second, since the

orbiting motion is deterministic (except for the initial conditions), the strategy and

its weaknesses may be detected by the intruders in practice (e.g., intruder may try

to approach O on the side opposing the direction of rotation). To overcome these

disadvantages, this section presents another swarming algorithm.

The swarming algorithm F
(swarm)
i consists of three forces; central, spacing, and

random force, i.e.,

F
(swarm)
i = F

(cent)
i + F

(spac)
i + F

(rand)
i . (5.14)
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The central force F
(cent)
i resembling a damped spring attached to O maintains

the cohesiveness of the swarm:

F
(cent)
i = −kcri − bcvi, (5.15)

where positive constants kc and bc are the spring and damping constants.

The spacing force F
(spac)
i , which also resembles a damped spring, generates

attraction, repulsion, and alignment behavior between the agents:

F
(space)
i = −ks

∑
j∈S(ρ0)

i

(
1− x0

‖ri/j‖

)
ri/j − bsvi/j. (5.16)

The positive parameter x0 denotes the rest length of the spring, and the set S
(ρ0)
i =

{ j | ‖ri/j‖ ≤ ρ0} consists of all the agents within the range ρ0 from agent i. By

choosing x0 to satisfy (ρ0−x0)/ρ0 � 1, the guardians may form a crystalized forma-

tion shown in Fig. 5.8-a (the formation is called an α-lattice in [26]). However, the

convergence to crystalized formations depends on the amount of energy dissipation

in the system. Therefore, random swarming motion may be generated even with

the selection x0 ≈ ρ0.

The spacing term can be used to control the density of the swarm by modulat-

ing the inter-agent distance. In addition, another important purpose of the spacing

term is to avoid collisions between guardians. Therefore, the selection of ρ0 (and

x0) may depend on the relative size of the vehicle with respect to the perceptual

range ρs, i.e., a small value of ρ0 may be sufficient to guarantee collision avoidance
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if the vehicle size is small. Instead of introducing another parameter to describe the

vehicle size, we make a conservative choice: ρ0 = ρs.

The random force F
(rand)
i has a constant magnitude KrūP in a random direction

θi, i.e.,

F
(rand)
i = KrūP [cos θi, sin θi]

T , (5.17)

where Kr ∈ [0, 1). The random variable θi is generated by the following process:

θ̇i = Wwi, (5.18)

where wi denotes the unit-intensity white noise, andW > 0 is a parameter describing

the intensity. The intensity W determines how much (on average) the force F
(rand)
i

changes its direction in each time step.

The main purposes of the random forcing F
(rand)
i are (i) to make the trajectories

of the guardians unpredictable to the intruders (unlike the orbiting motion studied

in the previous section); and (ii) to propel the guardians to maintain sufficiently high

speed during the swarming phase (recall the second objective of swarming stated in

Section 5.3.1). For the latter purpose, we seek to use W that maximizes the mean

speed of the guardians during the swarming phase. Figure 5.7 shows how the mean

speed (average taken over agents and time) varies with W for different Kr. The

mean velocities are obtained from numerical simulations performed with nominal

parameters shown in Tab. 5.1 and 5.3. Figure 5.7 shows that for every choice of Kr,

there exists an optimal W that maximizes the mean speed. The figure also shows
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Table 5.3: List of parameters in the swarming algorithm and their nominal values.

Force Description Nominal Value

F(cent) kc Spring constant 1
bc Damping constant 0.5

F(spac) ρ0 Interaction range ρs
ks Spring constant 4
x0 Rest length ρs
bs Damping constant 0

F(rand) Kr Magnitude 0.5
W Intensity of white noise 0.13

that the magnitude Kr positively affects the mean velocity of the guardians.

Treating W as a function of Kr, the random force only has a single parameter

Kr. Figure 5.8 shows the snapshot of the swarm with different values of Kr. The

edges indicate the link defined by the proximity-based interaction used in F
(spac)
i .

A crystalized formation (α-lattice) forms for small values of Kr, whereas the links

are broken and the swarm becomes more random for larger values of Kr. The

trajectories extending from the particles indicate the velocities that they have, i.e.,

guardians have higher velocities for larger Kr. The figure also shows that there is

a tradeoff between the two objectives of the swarm—high density and high speed.

(Although it is possible to modulate the spring constant kc to maintain a fixed

swarm density while the speeds of the agents are increased with Kr, we allow the

swarm density to decrease here in order to reduce the risk of collision.)

Finally, note that the magnitude of F
(swarm)
i can exceed the limit ūP , in which
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Figure 5.7: Mean velocity in the swarming phase as a function of the intensity of
the white noise, W , that drives the direction of the random forcing. Different lines
are generated from different magnitudes, Kr, of the random forcing. The red circles
highlight the critical points.
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Figure 5.8: Snapshots of the swarm showing how the strength of random forcing,
Kr, changes the swarm from crystalized formation to random oscillatory motion.
The edges connect the agents within the range ρs.
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case the control is saturated while preserving its direction, i.e.,

Fi =
ūPF

(swarm)
i

‖F(swarm)
i ‖

. (5.19)

The next section studies how the random swarming motion affects the probability

of target capture.

5.3.3 Optimal Randomness

We introduced various control parameters in Section 5.3.2 that are listed in Tab. 5.3.

However, we are most interested in how the random oscillatory motion plays a role

in the target capture scenario. Therefore, we choose Kr to be the independent

parameter of the swarming motion, and study how the random forcing affects the

probability of target capture.

Numerical simulations calculate the probability of target capture Pcap by count-

ing the number of successful pursuits. In the simulation, the success of target capture

(see Definition 5.1) is assessed using the energy function introduced in the proof of

Proposition 5.2, i.e., the target is captured if the quantity Vi = 1
2
‖rT/i‖2 + 1

2c
‖vT/i‖2

becomes less than 1
2
ρ2
s at any point in time for any guardian i.

Figure 5.9 shows how Pcap varies as a function of Kr for different sets of

parameters. The critical points are highlighted with circles. The left figure shows

the effect of Γ, and the right figure shows the effect of NP . The trend on the

optimal Kr can be explained by the two objectives of the swarming: density and

speed (see the discussion in Section 5.3.1). For a larger Kr, the guardians have
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Figure 5.9: Probability of target capture as a function of Kr (the strength of random
forcing). The nondimensionalized guardian acceleration Γ is varied in (a), whereas
the number of pursuers NP is varied in (b).

higher speed by sacrificing the density of the swarm, and vice versa. Therefore, the

optimal Kr increases with increasing NP , because a larger swarm inherently has a

high probability of target encounter, Penctr, and is able to sacrifice the density. On

the other hand, the optimal Kr reduces with increasing Γ because guardians with

higher Γ do not have to rely on their initial speed for successful pursuit (i.e., they

inherently have high Palign), and therefore, increasing the density is more important

than maintaining high velocity. The specific values of Kr that give optimal Pcap

will vary if we tweak the other parameters in Tab. 5.3, however, the aforementioned

trends are preserved.

5.3.4 Gain Modulation

This section discusses some of the strategies for the guardians to adapt to different

situations by tuning their control gains in the swarming phase.
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Recall that the expression of nondimensionalized guardian acceleration Γ in

(5.2) involves target speed vT . This implies that for intruders with different speeds,

the value of Γ will be different for each of them even if the guardians’ capabilities

(ūP , ρs and ρp) are fixed. The immediate application of simulation results in the

previous section (Fig. 5.9-a) is to modify Kr according to the a priori knowledge

about the speeds of incoming intruders. If the intruder is expected to be slow (i.e.,

Γ > 1), the guardians should wait with crystalized formation using Kr = 0. On the

other hand, if the intruder is expected to be fast (i.e., Γ� 1), the guardians should

increase their speed by using Kr ≈ 1.

Consider another situation where the number of guardians change over time.

For example, if the guardians leave the swarm as they successfully track the intrud-

ers, the number of guardians that remain in the swarm decreases over time. If more

guardian vehicles are deployed to join the swarm, the number NP may increase over

time. In either case, the guardians should modulate the gain Kr according to the

result in Fig. 5.9-b; i.e., increase (resp. decrease) Kr when NP increases (resp. de-

creases). (Estimation of NP without a centralized control system is an interesting

problem, but it is out of the scope of this work.)

Finally, consider another situation where the guardians have some a priori

knowledge about the azimuthal direction of the intrusion ψint
j ; e.g., the probability

density function of ψint
j . The guardians can increase Pcap by modifying the central
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force F
(cent)
i as follows. Let R denote a rotation matrix

R(ψ̂) =

 cos ψ̂ sin ψ̂

− sin ψ̂ cos ψ̂

 , (5.20)

and Λ denote a diagonal matrix

Λ(σ) =

 1/σ 0

0 σ

 , (5.21)

where additional parameter ψ̂ describes the expected direction of intrusion, and

σ > 1 describes the confidence in that direction. The swarm is elongated in the ψ̂

direction by the following modification:

F
(cent)
i = R(ψ̂)TΛ(σ)R(ψ̂) (−kcri − bcvi) , (5.22)

Figure 5.10 shows the snapshots from simulation. The elongated swarm increases

both Penctr and Palign if ψ̂ is sufficiently close to the actual ψint.

We introduced ways in which guardians can utilize a priori knowledge about

the intruders to maximize the probability of target capture. The next section in-

troduces a simple communication between the guardians to enable cooperation, and

show how it significantly improves the probability of target capture.
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Figure 5.10: Snapshots of the swarm showing how the elongation of the swarm is
controlled by the parameter σ. The expected direction of intrusion is ψ̂ = π/4, and
the randomness is chosen to be Kr = 0.3.

5.3.5 Velocity-Alignment Strategy

The swarming algorithms introduced in Section 5.3.1 and 5.3.2 focused on the indi-

vidual motion of the guardians. This section adds cooperation among the guardians

to further improve the target-capture capability. In particular, we consider a col-

laboration that is generated from a velocity-alignment behavior.

The employment of velocity-alignment behavior is inspired by swarms of male

mosquitoes. Chapter 2 analyzed the flight data of wild mosquitoes and observed

their intermittent velocity-alignment behavior. Although the reason for the velocity-

alignment behavior is unknown, one hypothesis is that the male mosquitoes may be

transmitting information about the presence of a female mosquito in the swarm.

Since male mosquitoes are competing against each other to mate with the

female, the male that sees a female will not broadcast that information to other

males. Instead, it is the other males that try to sense male behavior changes to

recognize the presence of a female. On the other hand, the guardian vehicles are

cooperating with each other, so it is reasonable for them to actively communicate
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to share the information about the presence of the intruder.

Consider a one-digit binary signal (i.e., communication of “Yes” or “No,”

instead of a serial communication like “010010...”) that each vehicle can broadcast

to other vehicles within the range ρs. The signal from vehicle i tells other vehicles

whether it is in a regular swarming state or in an alerted state, which is the union

of pursuit phase and velocity-alignment phase. In practice, the signal can be based

on vision or acoustic sensing received by cameras or microphones, for example.

Although there exist more sophisticated communication schemes that may carry

richer information—like target position and/or velocity—we show how this one-digit

binary signal can be used to significantly improve performance.

The algorithm for the velocity-alignment behavior is as follows. Let S(alert) be

the set of guardians that are either in pursuit phase or velocity-alignment phase. A

guardian i in the swarming phase switches to velocity-alignment phase if it sees any

guardian in the set S(alert), i.e., if the following set is nonempty:

S
(align)
i = { j | ‖ri/j‖ ≤ ρs, j ∈ S(alert)}. (5.23)

The velocity-alignment phase will terminate in one of the following two ways: (i)

guardian i switches back to the swarming phase when S
(align)
i = ∅; or (ii) it switches

to the pursuit phase when it encounters the target, i.e., ‖rT/i‖ < ρp.

Additional forcing for guardian i in the velocity-alignment phase is

F
(align)
i = ba

∑
j∈S(align)

i

vj/i, (5.24)
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Figure 5.11: Probability of target capture with velocity-alignment behavior. (Note
that Γ = 0.7 instead of 0.9 is used in (b).)

which is equivalent to changing the damping constant bs in the spacing term F(spac)

to ba, only for those guardians in the set S
(align)
i . The constant ba (> bs) is sufficiently

large that it dominates the other control terms during the the velocity-alignment

phase.

If the guardian in pursuit phase aligns its velocity to the target, and if the

velocity-alignment interaction propagates through the swarm, guardians that are far

from the target can start moving in the direction that matches the velocity of the

target. This mechanism allows the guardians to effectively increase their perceptual

range ρp to the size of the swarm in order to gain favorable initial conditions for

pursuit.

Figure 5.11 shows Pcap with varyingKr. For fixedNP = 10, the target is always

captured (i.e., Pcap = 1.0) for Γ greater than 0.7. Similarly for fixed Γ = 0.7, target

capture is guaranteed for NP > 10. This improvement is significant compared to

the results from the random-swarming case in Fig. 5.9. (Note that Γ = 0.9 was used
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for Fig. 5.9-b.) The figure also shows that Pcap = 1.0 is achieved with a crystalized

formation (Kr = 0), because high connectivity is necessary for the guardians to

propagate the velocity-alignment interaction.

Note, guardians perceive only the velocities of nearby agents, and this in-

formation is not transmitted through communication. Therefore, for the velocity-

alignment strategy to work properly in the target-capture scenario, it is necessary

that the guardians in the spanning tree of the interaction graph quickly adjust their

velocities in the correct direction (i.e., the direction of target’s motion). Other-

wise, the error in the direction may propagate through the interaction network, and

guardians far from the target may end up accelerating in the wrong direction. (The

issue of velocity-alignment in erroneous directions occurs in the experiments due

to the slow response of the guardians caused by latency in the closed-loop system.

Section 5.4.5 addresses this issue and augment the velocity-alignment behavior by

adding a directionality constraint to their interaction.)

5.4 Experimental Results

This section experimentally validates the results in Section 5.2 and 5.3 using a

quadrotor swarm. Additional challenges that arise in the experimental implemen-

tation are discussed, and algorithms are augmented to overcome those challenges.
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Figure 5.12: The architecture of the experimental setup. The red numbers indicate
the approximate time delay from each component. The blue box is duplicated
according to the number of vehicles.

5.4.1 Experimental Testbed

We conducted experiments using a group of small quadrotors in an indoor motion-

capture environment. We used six BLADE Nano QX, a commercially available

quadrotor. The architecture of the experiments is summarized in Fig. 5.12. The

commands are computed on a desktop computer and sent to an Arduino Nano via

USB serial communication. The Arduino Nano converts the received serial signal

into a PPM (Pulse Position Modulation) command and sends it to the trainer port

of a Spektrum DX6 transmitter which sends RF (Radio Frequency) commands to

the vehicle. The OptiTrack motion-capture system tracks the position and attitude

of the vehicle and streams them to the computer. When it is sent out from the

computer, the control law proposed in Section 5.3 is converted to a desired stick

input (see [96] for details).

One additional challenge in our experimental setup is the time delay caused

by the vehicle dynamics and the communication between Matlab and the Nano QX.

It takes approximately 170 ms for the commands from the computer to affect the
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vehicle acceleration. Another limitation is the size of the test area. The horizontal

footprint of the vehicle is 18.2×18.2 cm, whereas the horizontal area of the volume

tracked by the motion-capture system is approximately 3×3 m.

5.4.2 Disturbance Observer

Achieving the desired position or velocity can be accomplished by various techniques

including PID or LQR control. However, our control law in Section 5.3.2 is given in

terms of the desired acceleration, and achieving a specified acceleration is a nontrivial

problem. First, we do not have access to the IMU (Inertial Measurement Unit) data

on the vehicle, and also the position data from motion capture system is too noisy

to estimate the acceleration. Second, because of the reflective markers mounted on

the vehicle, there is an offset in the position of the center of mass, and trimming

cannot completely eliminate the effect of this offset. Third, even if each vehicle is

trimmed very accurately, the battery usage significantly affects the conversion from

stick input to the achieved acceleration.

This work elects to use an adaptive disturbance observer to estimate the dis-

crepancy between the desired and achieved acceleration. (A more general version of

this observer was introduced in [97] for the application to friction compensation in

mechanical systems.) Let d , aactual − udes be the disturbance, i.e., the difference

between the actual and desired acceleration of the vehicle. The goal is to estimate

d and augment the control input as

u′des = udes − d̂, (5.25)
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where d̂ denotes the estimated disturbance. The actual acceleration then becomes

aactual = udes +d− d̂. For the case where d is constant the following observer drives

the estimation error e = d− d̂ to zero:

d̂ = z + kOv, (5.26)

ż = −kO(udes + d̂), (5.27)

where kO > 0 denotes the observer gain and z denotes the observer states. (To

see the convergence to zero, use the Lyapunov function V = 1
2
‖e‖2.) Although the

disturbance due to battery usage is time varying, it is sufficiently slow compared to

the vehicle dynamics that we treat it as a constant.

5.4.3 Effect of Time Delay

The nondimensionalized guardian acceleration Γ quantifies the difficulty of target

capture problem. Since we have time delay in the experimental testbed, the guardian

can only respond to the intruder τ = 0.17 (s) after the close encounter. Modify-

ing the proof of Proposition 5.1, we define the augmented version of the pursuer

acceleration Γ′ as follows.

The time it takes from the close encounter to the time that the guardian

reaches the speed vT is now t′f = vT/ūP + τ . The intruder has to travel the distance

ρs + ρp + 1
2
ūP t

2
f in order to escape. The condition for escape is now vT t

′
f > ρs +

ρp + 1
2
ūP t

2
f , and this condition gives rise to the following time-delayed guardian
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acceleration:

Γ′ , Γ− 2ūP τ

vT
. (5.28)

The effective advantage on the guardian’s side reduces proportionally to the time

delay τ . Extending the theoretical analysis in Section 5.2.1, we expect that a static

guardian with Γ′ < 1 will never capture the target in the experiment.

We confirmed this extension with experiments using a virtual target simu-

lated in Matlab. The maximum acceleration of the vehicle is approximately ūP =

6.0 (m/s2). By varying vT , we tested pursuit with different values of Γ. For a static

guardian with α = 0.67, where ρs = 0.6 (m) and ρp = 0.4 (m), we simulated the

easiest-case scenario considered in the proof of Proposition 5.1, i.e., the case where

the intruder’s trajectory passes through the guardian’s position. Although the orig-

inal theory predicts that Γ > 1 will enable target capture for this easiest case, the

experiment required Γ > 1.78 (or equivalently vT < 2.6 (m/s)) due to the latency in

the system. However, using the definition (5.28) with the time delay in our system

τ = 0.17 (s), we obtain Γ′ = 0.99 which is close to 1, as expected.

5.4.4 Optimal Randomness

We conducted experiments of the swarming and pursuit scenario with six guardians

to validate the simulation results in Section 5.3.3. Based on the analysis in the

previous section, we use Γ′ as the index to describe the difficulty of the pursuit

problem. Specifically, we chose ρs = 1.0 (m), ρp = 0.5 (m), ūP = 2.0 (m/s2), and

vT = 2.23 (m/s), which corresponds to Γ′ = 0.9.
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Figure 5.13: Probability of target capture as a function of the strength of random
forcing. For each Kr, experimental results are calculated from 30 trials. The ani-
mation is available at [https://youtu.be/Cnz75WZ88rI ]. Γ greater than 0.7 are not
tested due to the constraint in the motion-capture area. The box plot is obtained
from computer simulation; i.e., 200 sets of 30 trials are used to see the variance that
we expect from 30 experimental runs.

The swarming algorithm in Section 5.3.2 is extensible to three dimensions,

except for the random forcing term. Since we only consider the case where the

target speed has zero vertical component, pursuit behavior is considered in the

horizontal direction only. Although we give guardians the reference altitudes with

0.15 (m) interval, the spacing term F(spac) is important to ensure collision avoidance

and to avoid the downwash from the vehicles above.

The perceptual ranges ρs and ρp, as well as the intruder, are represented

virtually in Matlab. The pursuit is defined to be successful if the following two

conditions are satisfied: (i) a guardian is in pursuit phase when the target reaches

the boundary of the motion-capture arena; and (ii) at that time, the energy function

satisfies V , 1
2
‖rT/P‖2+ 1

2c
‖vT/P‖2 < 1

2
ρ2
s, as was considered in the simulation study.
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We ran 30 experiments for each of 4 values of Kr and obtained the probability

of target capture. Due to the limitation in the motion-capture area, the values of Γ

greater than 0.7 could not be tested (recall that the size of the swarm increases with

Kr). Figure 5.13 shows the comparison of the experimental data with the simulation

results. The 6000 trials from the simulation results are partitioned into 200 sets of

30 trials to compute the variance in Pcap we expect from the experiments (see the

box plot in Fig. 5.13). For the values of Kr that are tested, the experimental results

show the same trend as the simulation results; i.e., the experimental results support

the existence of the optimal random forcing at around Kr = 0.3 for this set of Γ, α

and NP . The agreement between simulation and experimental results also supports

the validity of the augmented parameter Γ′.

5.4.5 Velocity-Alignment Strategy

We tested the velocity-alignment behavior with a swarm of six guardians. Following

the simulation results in Section 5.3.5, we only study the case with Kr = 0, which

gives the optimal performance. The sensing and communication, as well as the

intruder motion are represented virtually in Matlab.

A major challenge in the experimental setting is highlighted in Fig. 5.14. In

the simulation, all guardians instantaneously respond to the target through velocity-

alignment behavior, and their acceleration (see the forcing vector in Fig. 5.14-a)

point in the same direction that matches the target velocity. However, in the exper-

iment forcing vectors point in various directions (see Fig. 5.14-b).
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Figure 5.14: Comparison of the velocity-alignment forcing in simulation and exper-
iment. All guardians quickly respond in the desirable direction in the simulation,
whereas the guardians have forcing in various directions in the experiment. Note
that the velocity vectors for guardians are scaled six times larger than the intruder
for clarity.

The velocity-alignment forcing in erroneous directions are caused by the delay

in individual velocity-matching interaction. In simulation, guardians 2, 4 and 6 are

already aligned with guardian 5. However, in the experiment, guardians 2, 3 and 4

are not yet aligned with guardian 6. As a result, guardian 1 is accelerating towards

the right bottom at this moment, since it is matching its velocity to guardians 3, 4

and 5 who have their velocities in the wrong directions. The velocity-matching in the

experiment is slower than the simulation because (i) the latency in the closed-loop

system delays the response to alerted neighbors; and (ii) the latency also generates

velocity oscillation during crystalized formation, which may give unfavorable initial

conditions, e.g., see guardian 3 in Fig. 5.14-b.

To reduce the velocity-alignment in erroneous directions, we augment the al-

gorithm by introducing directionality in the communication. The directionality is

added to both the transmitter side and the receiver side. First, a guardian i in the
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alerted state now sends signal to j only if

v̂i · r̂j/i < cosφ1, (5.29)

whereˆdenotes a unit vector, i.e., v̂ = v/‖v‖. Second, a guardian j receives signal

from an alerted guardian i only if

v̂i · v̂j < cosφ2. (5.30)

These two constraints help the guardians to propagate the signal in the desirable

direction. Small values for φ1 and φ2 increase the accuracy of the velocity infor-

mation carried through the interaction, but will also reduce the connectivity. Since

securing sufficient connectivity is important for a small swarm, we choose φ1 = 150◦

and φ2 = 90◦ for the experimental results presented next.

Figure 5.15 shows the snapshots from a single experimental trial. System

parameters were chosen so that Γ′ = 0.90 and α = 0.5. Due to the velocity-

alignment behavior, guardian 2 on the far side starts accelerating in the direction

of target’s motion even though it does not perceive the target itself (see the forcing

F2 in Fig. 5.15-a). This behavior generates a favorable initial condition at the time

of close encounter (see v2 and vT in Fig. 5.15-b). This initial condition enables

guardian 2 to successfully capture the target (Fig. 5.15-c). As was done in the

simulation and in the random-swarming case, we define target capture by looking

at the the energy function introduced in the proof of Proposition 5.2. It has a
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Figure 5.15: Snapshots of pursuit scenario with velocity-alignment strategy. The
animation is available at [https://youtu.be/Cnz75WZ88rI ]. An intruder approaches
from right bottom of the figure. (a) Guardian 3 and 4 are in pursuit phase, and
there is a network of velocity alignment interaction also involving guardians 1, 2
and 5. As a result, guardian 2 is already accelerating towards the top left corner
(see the forcing F2), which matches with the direction of target velocity. (b) At the
time guardian 2 encounters the target, its velocity v2 is well aligned with the target
velocity vT . Note that guardian 4 is still in pursuit phase since the target is still
within the range ρs (but not ρp). (c) Guardian 2 successfully tracks the target, while
other guardians are returning to O (i.e., their accelerations are pointing towards O).

133



value V = 0.26 for guardian 2, which is less than the criterion 1
2
ρ2
s = 0.50, i.e., the

Lyapunov analysis in Proposition 5.2 predicts that the target will stay within the

range ρs of guardian 2 indefinitely.

The target was captured 15 times out of 18 trials, which gives the success

rate of Pcap = 0.83. This probability is lower compared to the simulation result

(Pcap = 1.0), mainly due to the velocity-alignment in the wrong directions caused

by the latency in the system (see earlier discussion). Nonetheless, the success rate

is improved as compared to the case without velocity-alignment interaction, which

validates the advantage of utilizing the communication of binary information.
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Chapter 6

Conclusion

6.1 Summary

This dissertation analyzes the collective behaviors in mosquito mating swarms and

considers their application to pursuit problems with autonomous rotorcraft. The

tools from engineering help the analysis and modeling of the biological data (i.e.,

the flight kinematics of mosquito), and in tern, inspirations from mosquito behavior

help formulating and solving engineering problems (i.e., pursuit with small and agile

rotorcraft).

For the analysis of swarming behavior, we develop a correlation function that

quantifies the degree of velocity alignment for a given pair of mosquitoes. We propose

a procedure to define a threshold on the correlation value to classify whether a

given pair of males are interacting or not. The time-varying interaction graphs

show that the mosquitoes form subgroups in the swarm whose size and membership

change rapidly. The results indicate that the mosquitoes interact with each other

instead of flying around independently around the swarm marker, which is how
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insect aggregation was previously modeled. We augment the existing particle model

by including a local interaction represented by damping of relative velocity between

males. The augmented model shows good agreement with the correlation data from

real swarms.

For the analysis of the pursuit behavior, we consider two phases: the flight

before and after the close encounter. Our interests in the flight before close encounter

are the directionality of pursuit (i.e., who is closing the distance) and the strategy

used to close the distance. Using the metric for classical pursuit we show that the

pursuit may occur in both directions. We also show an evidence supporting the

hypothesis that mosquitoes use motion-camouflage pursuit.

The flight after the close encounter, which we call the coupling phase, is mod-

eled using delay differential equations. We interpret the model parameters as the

control gains that the mosquitoes may be modulating, and analyze the stability of

the delayed system. Inspired by the gain modulation observed in the data, we design

a particle model that replicates three behaviors: swarming, velocity alignment and

pursuit. The Lyapunov stability analysis of this model showed that males’ velocity-

matching behavior may help them generate good initial conditions to start pursuing

the female.

Inspirations from mosquito behavior are applied to pursuit problems. The first

pursuit problem corresponds to the phase after the close encounter, in which the

pursuer has already perceived the target. The main focus is to address the discrep-

ancy between the pursuit law necessary for small and agile agents and laws that

were developed for the application to missile guidance and navigation. We propose
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a bio-inspired pursuit law based on the agent dynamics and design criteria that are

suitable for rotorcraft MAVs. We show that the pursuit law is robust to unknown

target maneuvers, state measurement errors (sensor noise), and control saturation.

We perform analytical, numerical, and experimental comparison of various pur-

suit laws and show that the proposed law has the least energy consumption—while

staying closest to the target in a near-miss scenario—among all those considered,

including a sliding-mode controller and a partial-stability-based controller.

The second pursuit problem considers a swarming strategy for multiple guardians

to defend a protected zone from an intruder. The scenario is inspired by aggregation

of male mosquitoes preparing for the encounter with a female. We are interested in

how swarming motion in autonomous vehicles helps the success of target capture.

We show that a static guardian requires high capability to guarantee target capture,

whereas swarming motion relaxes the requirement. Guardians maximize the proba-

bility of target capture by balancing the swarm density and their speed. Inspired by

the swarming behavior of male mosquitoes, a random swarming motion is studied,

and ways in which control parameters may be optimized are discussed. In addition,

velocity-alignment strategy is considered for the case where guardians communicate

with each other. Even with a communication of only one digit of binary informa-

tion, the probability of target capture is significantly increased when used with the

velocity-alignment strategy, both in simulation and in experiment.
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6.2 Ongoing Work and Proposed Work

This dissertation makes contribution in two directions: analysis of mosquito be-

havior, and control design for autonomous rotorcraft. However, there is still much

work to be done to fully understand the collective behaviors in mosquito swarms,

and there are also various directions to extend the pursuit problems considered in

this dissertation. Section 6.2.1 discusses one of the key aspects in mosquito be-

havior that needs to be studied—the difference between successful and unsuccess-

ful males—and some approaches that may be taken. The planar pursuit problem

studied in Chapter 4 is an intermediate step towards pursuit with flying vehicles.

Section 6.2.2 discusses how the work may be extended to pursuit in three dimen-

sions. The guardian-intruder problem introduced in Chapter 5 is just the beginning

of a new research involving competing swarms of autonomous vehicles. Section 6.2.3

presents some ongoing work to formulate the problem with game-theoretic approach,

and discusses how the multi-intruder scenario will make the game more interesting

and also challenging.

6.2.1 Mosquito Mate Selection

One of the broader impacts of mosquito data analysis is its application to release-

based program of malaria vector control such as Sterile Insect Technique [76]. To

contribute to such an application, it is important to know the characteristics of the

males that are successful in mating with females.

Previous works have hypothesized that the female is captured by one of the
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males in the swarm [98]. However, the hypothesis of female choice in An. gambiae is

reasonable given the large difference in potential reproductive rates between males

and females [99], and that the females in this species mate once for life (Nicholas

C. Manoukis, personal communication, July 20, 2015).

To test the hypothesis of female choice, additional data collection and analyses

must be performed. First, the flight data used in this dissertation is limited by its

frame rate, which is 25 Hz. This time resolution is insufficient to detect the lag

information in the male-female interaction, i.e., whether the male is matching its

velocity to the female or the other way around. With the video sequences with

higher frame rates, we may be able to take a closer look at what is happening before

and after the close encounter.

To characterize the behavior of males who successfully mate with the female,

it will be useful to compare them against flight data of unsuccessful pursuit. We

observed only a few of such unsuccessful flights in the current data set. Increasing

the number of data sets that include the formation of couple will help us draw

statistically justified conclusions. If we still observe significantly less occurrences of

unsuccessful pursuit, that would imply that the close encounter is not only necessary

but also sufficient to form a couple. It would also indicate that female choice (if

any) is already made at the time of close encounter.

Combining sensory data with kinematic data will add another dimension to

the data analysis. It is known that acoustic interaction plays an important role in

mosquito mating [67, 100, 101]. Males detect a female by her specific flight tone,

and coupling male and female synchronize their wing-beat frequencies. If the flight
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tones in the free flight can be measured, we may be able to find the relation between

wing-beat frequency and the flight speed of the mosquito. This relation may shed

light on the mechanism and the meaning of velocity-alignment behavior.

6.2.2 Rotorcraft Pursuit in Three Dimensions

Pursuit algorithms have been considered for agents that move in three-dimensional

space. For missile guidance and navigation, the LOS stabilization in three-dimensions

using proportional navigation is considered in [35,102,103]. The motion-camouflage

pursuit was extended to three dimension in [104]. For the pursuit algorithm designed

in Chapter 4, the polar coordinates may be modified to spherical coordinates for the

extension to three dimension. (Similar approach can be found in [105]) However, to

avoid singularities in this extension, some other formulation that uses quaternions

or SE(3) matrix group to describe the relative motion of the target with respect to

the pursuer may be appropriate.

With the dynamics in three dimensions, an important direction for future

research is to consider a more realistic problem for counter UAS applications, i.e.,

capture a multirotor helicopter using another multirotor helicopter. This scenario is

similar to air-combat, which was studied extensively for the application to fixed-wing

aircraft [106–108]. In air-combat, various maneuvering strategies were proposed to

achieve the desired condition for the pursuer (attacker), which is to stay behind the

target.

For air-combat with small and agile rotorcraft, the problem needs to be for-
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mulated with different assumptions. First, the dynamics (maneuvering capabilities)

of rotorcraft are different from fixed-wing aircraft. Also, the sensing capability of

unmanned rotorcraft MAVs will be different from the visibility that human pilot

has in the cockpit of an aircraft. Moreover, the desired condition for the pursuer

(attacker) depends on the tools that it uses to capture the target. For example, if

the pursuer shoots a net to capture the target, it may be easier to aim from above

or in front of the target, rather than behind or below the target. The necessity to

avoid the downwash may also require specific paths when approaching the target

from below. These additional constraints may lead to pursuit and evasion strategies

that are specific to rotorcraft MAVs.

6.2.3 Competition between Two Swarms

The guardian-intruder problem studied in Chapter 5 has a potential for various

extensions. A direct extension is the scenario with multiple intruders. The problem

now becomes a competition between two swarms of autonomous vehicles: intruders

and guardians. A closely related problem is the multiplayer reach-avoid game, which

deals with a scenario where one group seeks to reach an area quickly while the other

group tries to delay or prevent it [109–111].

One example of a reach-avoid game is the so-called Capture-the-Flag [112]. In

this game, each team owns a flag, and their goal is to capture the opponent’s flag

and safely return. This game has a pursuit-evasion aspect, since an agent can be

intercepted by its opponent in the opponent’s territory. However, the capture-the-
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flag problem is very complex because it also involves an attacking-defending aspect

and, possibly, switching of the agent roles, as well as the assignment problem to

decide which agent should pursue which opponent agent. Some works have tackled

this complex problem by combining the tools from differential games and graph

theory [109, 112], whereas some other works made simplifying assumptions on the

attackers’ dynamics and used optimization techniques [110,111].

Ongoing Work

Our preliminary work [95] formulates the intruder-guardian problem from a game-

theoretic perspective to accommodate intruders’ strategies, and also to distinguish

between the capture that occurs before and after the intrusion. Let the intruder-

guardian competition be a zero-sum game by considering the payoff function JI and

JG = −JI associated to the team of intruders and guardians respectively. The payoff

for the intruder team is the sum of the individual payoff for each intruder, i.e.,

JI =

NT∑
i

Ji, (6.1)

where Ji is the payoff function associate to ith intruder. (Note that the payoff for

individual guardian is not defined, because the performance is considered in terms

of the entire guardian swarm.)

The value of Ji is determined as described in the payoff matrix in Fig. 6.1.

Successful intrusion, corresponding to the first row of the matrix, is the case where

intruder i reaches O without being captured by any of the guardians. (Note, this
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Figure 6.1: Value of individual intruder payoff Ji depending on the performance of
ith intruder and the guardian swarm.

definition is independent from the capture that might occur after the intrusion.)

Once the intruder successfully reaches O, it scores Vint(t), which is a decreasing

function of time defined as follows:

Vint(t) = e−(t−t0)/τ , (6.2)

where t0 is the start time of the game and τ is the intruder-payoff time constant. If

the intruder i misses O, or if it is captured by any of the guardians before reaching

O, it does not score Vint(t), corresponding to the second row of the matrix.

The parameter τ > 0 models the risk of waiting incurred by the intruder’s

team. Consider, for example, the Capture-the-Flag problem [112] where two teams

(A and B) divide their members into offensive and defensive players. The problem

studied here can be considered as the competition between team A’s offensive players

(intruders) and team B’s defensive players (guardians). In this case, there is another

identical game played simultaneously where team A is guarding their flag against

team B’s offensive players. The decaying payoff Vint(t) with the time constant τ

quantifies the risk that A’s flag is attacked by B within the duration of time t− t0.
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The use of an exponential function in (6.2) is inspired by the Poisson distri-

bution [63], which is often used to model the probability of an event occurring in a

fixed interval of time (e.g., earthquake, customer entering a store). In our problem,

we are modeling the attack from B’s offensive players as a Poisson process, i.e., the

probability that A’s flag is not attacked by B decays exponentially. Furthermore,

with this Poission-process assumption, the time constant τ corresponds to the ex-

pected time interval between successive attacks from B. Therefore, higher risk on

team A (intruder’s side) can be modeled by a smaller value of τ , i.e., faster decay

in Vint(t). Note, if the game is one sided and A does not have to defend their flag,

then the constant can be set to τ =∞ so that Vint(t) ≡ 1.

Next, consider the performance of the guardian swarm. If any of the guardian

captures the intruder i, then the guardian swarm scores η > 0 (equivalently, ith

intruder scores −η), which corresponds to the second column in Fig. 6.1. Note that

capture may be before or after the intrusion. The parameter η describes the penalty

on the intruder swarm to lose its vehicles. Depending on the value of η, the scenario

can be categorized into the following three cases:

η = 0: Pure guarding scenario. Guardians cannot win the game, but they

lose unless they capture every intruder before intrusion.

0 < η < 1: The payoff Ji = Vint(t)− η, which corresponds to capture after intru-

sion, changes its sign from positive to negative during the game.

η > 1: The payoff Ji = Vint(t)− η is already negative at the beginning of the

game. There is no benefit for intruders to approach O unless they can
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escape without capture.

Various intrusion-capture scenario can be modeled by the proper choices of

parameters η and τ . As one example, consider a scenario where guardian vehicles

are protecting an area against bombers or missiles. What happens after the intrusion

is not so important (guardians have to capture the intruders before they attack the

area), so we use η � 1 for this case. Another example is the scenario where intruders

are manned aircraft for a reconnaissance mission. The penalty for losing a vehicle

will be particularly high if it is manned, so we use η > 1 for this case. Consequently,

intruders will only attempt to approach if probability of capture is sufficiently low.

The other parameter τ can be chosen to model how sensitive the intruder’s mission

is to time.

Based on this payoff function, theoretical prediction on the outcome of the

game as well as the effect of intrusion frequency (i.e., {T int
j } defined in Section 5.1.2)

are presented in [95]. We also considered a naive strategy for the intruder team to

group the intruders to simultaneously approach the protected region, which showed

improvement in the intruders’ payoff.

Proposed Work

The preliminary work in [95] showed an approach to formulate the intruder-versus-

guardian problem, but the strategy introduced for the intruders was a naive one.

One approach to design intruders’ strategy more rigorously may be to use the idea

of system identification. If a guardian swarm has a fixed strategy, the input to the
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system are the intrusion time interval {T int
j } and the direction of intrusion {ψint

j }.

The output of the system may be the payoff JI or the probability of capture before

and after the intrusion. If the intruders can predict the output of the system from

the input that they control, they may be able to optimize their strategies.

However, the estimation of the input-output relation is challenging because

the system is highly nonlinear, and not only the individual T int
j and ψint

j , but the

preceding values (T int
i and ψint

i for i = j − 1, j − 2, ...) affect the output. Even if

we use numerical simulations to estimate the input-output relation, the design of

useful test cases is a non-trivial problem. For example, say we want to estimate

the output corresponding to the following input: {T int
j } = {3, 5, 3, 5} and {ψint

j } =

{0, π, 0, π, 0}. (Note, there are 4 time intervals for a group of 5 intruders.) What

kind of general simulation results will help us predict the output? Simulation results

with {T int
j } = {3, 3, 3, 3, ...} and {T int

j } = {5, 5, 5, 5, ...} will probably help, but with

how many intruders and with what {ψint
j }? More generally, what is the set of

simulation results needed to estimate the output from any arbitrary choice of {T int
j }

and {ψint
j }? One has to develop a systematic way of running numerical experiments

to explore the input-output relation.

The suboptimality of the strategy is also true for guardians’ swarming al-

gorithm presented in Chapter 5. We showed improvements in the target-capture

capability using mosquito-inspired strategies, but their optimality or theoretical

predictions were not considered. In addition, frequent intrusion (or equivalently,

multiple-intruder scenario) and the choice of parameters in the payoff function (i.e.,

η and τ) significantly affect the guardian team’s performance. Much work has to be
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done to design swarming strategies that address these aspects.
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Appendix A: Supplemental Theoretical Results

A.1 Calculation of β∗

Figure A.1 depicts the case where the damping term bvT/P has to be saturated to

give F
(pursuit)
P = umax. Let n = β∗‖bvT/P‖, m = (1 − β∗)‖bvT/P‖, A = n + m,

B = ‖crT/P‖, C = ‖crT/P + bvT/P‖, and D = F
(pursuit)
P = umax. Stewart’s theorem

states that

B2m+ C2n = A(D2 +mn). (A.1)

Using (A.1) and A = m+ n, we can solve for n to obtain

n =
E ±

√
E2 + F

2A
, (A.2)

crT/P

bvT/P

crT/P + bvT/P

umax

�bvT/P

F
(pursuit)
P

n
m

B
CD

A = n + m

Figure A.1: Computing the saturation factor β to obtain the control law F
(pursuit)
P .
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v(1)
P

q ⇤ qT/P

vP

Ov ẋ

ẏ

vT (t0)
v0

vP(t0)

Bv0(vT (t0))

Figure A.2: Definitions of angles and speeds in the velocity space.

where E = A2 +B2−C2 and F = 4A2(D2−B2). Noting that F is always positive,

the one with + is the only valid solution. The scaling factor is β∗ = n/A, i.e.,

β∗ =
E +
√
E2 + F

2A2
. (A.3)

A.2 Required NP for Circling Strategy

Consider a circling motion with radius ρp. Let vP denote the circling speed. Let

θT/P = cos−1

(
vT · vP
‖vT‖‖vP‖

)
denote the difference between the direction of motion

of the target and the pursuer. First, we seek to find the maximum angle θ∗ such

that vP ∈ Bv0(vT (t0)). See Fig. A.2 for the definitions of the relevant quantities.

For a given guardian speed vP , the angle θ∗ is the maximum allowable difference in

the direction of motion to guarantee target capture. From Fig. A.2 and the law of

cosines, we have

θ∗ = cos−1

(
v2
P + v2

T − v2
0

2vPvT

)
. (A.4)
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2q ⇤

P

T

Figure A.3: Example of circling motion where θ∗ = π/3. Guardians are uniformly
spaced and there is always one guardian in the fan-shaped region. When the target
reaches the center, the velocity of the pursuer in the fan-shaped region satisfies
θT/P < θ∗.

The angle θ∗ is maximized when the limiting vP is tangent to the circle Bv0(vT ),

i.e., the blue dashed line in Fig. A.2. This geometry is achieved when vP satisfies

vP = v
(1)
P =

√
v2
T − v2

0 = vT
√

1− Γ(1− α)/2. (A.5)

However, because of the centrifugal acceleration, the achievable circling speed vP is

bounded as

vP ≤ v
(2)
P =

√
ρpumax = vT

√
Γα

2(1 + α)
. (A.6)

We choose the circling speed vP to be

vP = min
(
v

(1)
P , v

(2)
P

)
, (A.7)

i.e., use v
(1)
P when it is achievable, otherwise, use maximum possible speed which is

v
(2)
P . If the guardians are uniformly distributed on the circle, and if the number of
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Figure A.4: Sufficient number of guardians to guarantee target capture with circling
motion.

guardians NP satisfies

NP >
π

θ∗
, (A.8)

there will be at least one guardian whose direction of motion satisfies θT/P < θ∗.

See Fig. A.3 for the illustration of the case with NP = 3. When the target reaches

the center, the velocity of the pursuer in the fan-shaped region satisfies θT/P < θ∗.

If the condition (A.8) is satisfied, then there is always at least one guardian in the

fan-shaped region.

Figure A.4 shows the required number of guardians obtained from conditions

(A.4), (A.7) and (A.8). Close to the boundary ∂2, the angle θ∗ → 0 and the sufficient

number N → ∞. Close to the boundary ∂3, the angle θ∗ → π and the sufficient

number N → 2.
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G. Gibson, A. Diabaté, R. S. Lees, J. Gilles, and K. R. Dabiré, “Swarming
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