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The fusion (F) protein of Newcastle disease virus (NDV) is a type I membrane 

glycoprotein that mediates the merger of the viral envelope to the host cell membrane. 

The F protein activation initiates a series of conformational changes in the F protein 

leading to membrane merge which occurs at the cell surface at neutral pH thus 

modulating NDV entry and spread. The present studies have given an insight to 

understand the role of F protein in NDV pathogenesis by using established reverse 

genetic techniques. The F gene of NDV has six glycosylation sites, two of which are 

present in heptad repeats that facilitate conformational changes during fusion process. To 

understand the importance of the glycosylation sites in NDV replication and virulence, 

each site was eliminated individually and in combination on a cDNA clone of NDV strain 

BC. Our results suggest that glycosylation of F protein plays a major role in virulence 

and some of the N-glycosylation sites are critical for fusogenicity of the F protein 

thus modulating NDV infectivity. 

The F protein is synthesized as an inactive precursor, F0, which is only 



 
 

fusogenic after cleavage into disulfide-linked F1 and F2 polypeptides by host cell 

proteases. The amino acid sequence surrounding the F protein cleavage site 

determines the virulence of NDV, since different host proteases that cleave the F 

protein of virulent strains are present in more tissues than those that cleave the F 

protein of non-virulent strains. The role of conserved glutamine residue in NDV F 

protein cleavage site in viral pathogenesis has been examined. This study has helped 

us to understand the requirement of F protein cleavage site conserved amino acids in 

proteolytic processing and viral infectivity. 

 Further in this study, the role of F protein cytoplasmic domain and conserved 

cysteine residues in viral pathogenesis have been explored using reverse genetics. 

These regions have been suggested to play important roles in F protein conformation, 

stability and thus affecting the fusion process and viral infectivity. 

 In summary, the purpose of this work is to determine the important domains 

and residues of the NDV F protein that facilitates fusion process and regulates viral 

pathogenesis and immunogenicity. An understanding of how NDV F protein fusion 

process are regulated may lead to the creation of more effective therapies and better 

vaccine against NDV and other paramyxoviruses in general. 
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Chapter 1 

 

1.1 Title 

 

 
General Introduction 
 
 

 
1.2 Introduction 

 

Newcastle disease is a highly contagious respiratory and neurologic disease in 

chickens that affects many domestic and wild avian species, leading to severe economic 

losses in the poultry industry worldwide (Alexander, 2000; Alexander et al., 1997; Samal, 

2011a). Outbreaks of virulent Newcastle disease have a tremendous impact on chickens in 

developing countries, where these birds are a significant source of protein and income. This 

disease is endemic in Asia, Africa, Middle East, South and Central America. In the United 

States the virulent form of the disease is absent and the disease caused by virulent NDV 

strains is called Exotic Newcastle Disease (END). In developed countries, the more virulent 

forms of the virus cause significant economic losses during outbreaks. In the United States, 

the last END epidemic in 2002-2003, resulted in the death of more than three million birds 

and caused industry losses estimated at $35 million (Kapczynski and King, 2005). 

  Newcastle disease is caused by Newcastle disease virus (NDV). NDV strains cause a 

continuous spectrum of clinical signs and are categorized into three major pathotypes 

depending on the severity of the disease in chickens; the lentogenic (avirulent), mesogenic 

(moderately virulent) and velogenic (highly virulent) strains (Alexander, 2000). The 
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velogenic strains cause acute fatal infection of chickens of all age groups with clinical 

findings of nervous signs or extensive hemorrhagic lesions in the gastrointestinal tract. The 

mesogenic strains are of intermediate virulence and cause moderate respiratory signs with 

occasional nervous signs while the lentogenic strains cause mild to inapparent infections 

(Alexander, 2000; Lamb, 2001). The velogenic strains of NDV have been identified as 

potential select agents for bioterrorism and are a threat to nation’s agro economy 

(http://www.cidrap.umn.edu/cidrap/content/biosecurity/agbiosec/biofacts/ 

agbiooviewhtml#Potential_Animal_Pathogens).NDV is an intrinsically tumor-specific virus, 

which is currently under investigation as a clinical oncolytic agent (Altomonte et al., 2010; 

Biswas et al., 2012). Thus, it is necessary to understand the pathobiology of NDV to design 

better vaccine vector for poultry, animal and human viruses and making it an ideal candidate 

for clinical application in cancer treatment. NDV is also a promising vaccine vector for 

animal and human pathogens (Samal, 2011a). 

NDV is a member of the genus Avulavirus in the family Paramyxoviridae in the order 

Mononegavirales (Lamb, 2001). The genome of NDV is a nonsegmented, single-stranded, 

negative-sense RNA (Lamb, 2001). The genome contains at least six genes, which encode 

the nucleocaspid protein (NP),phosphoprotein (P), matrix protein (M), fusion protein (F), 

hemagglutinin-neuraminidase protein (HN), and large RNA-dependent RNA polymerase 

protein (L). Two additional proteins, V and W, may be produced by RNA editing during P 

gene transcription (Hausmann et al., 1996). The NDV genes are arranged on the genomic 

RNA in the order 3′-NP-P-M-F-HN-L-5′. Flanking the genes are 3′ and 5′ extracistronic 

sequences, known as the leader and trailer, respectively. These leader and trailer regions are 

cis-acting regulatory elements involved in replication, transcription, and packaging of the  
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genomic and antigenomic RNAs.  

NDV initiates infection by attaching to cell surface receptors and fusing viral and host 

cell membranes(Lamb et al., 2006). Viral attachment protein, HN binds to sialic receptors 

while F protein directs membrane fusion (Lamb, 1993b). The fusion process is pH 

independent and thus virus entry occurs at host cell plasma membranes. NDV requires co-

expression of both the attachment protein and the F protein for fusion activity (Lamb et al., 

2006; Russell et al., 2003). NDV has assumed increased importance as a prototype 

paramyxovirus because crystal structures of both the NDV F and HN proteins have been 

determined (Chen et al., 2001; Crennell et al., 2000). 

NDV F protein is type 1 glycoproteins with an amino-terminal signal sequence, a 

hydrophobic transmembrane domain (TM) located near the carboxyl terminus and a 31 

amino-acid cytoplasmic domain (CT) (Chen et al., 2001; Morrison, 2003) . The NDV F 

protein is a 553-amino-acid protein and is synthesized as a precursor, F0 which must be 

proteolytically cleaved to F1 and F2 for fusion activity (reviewed in Reference (Morrison, 

2003). The F glycoprotein of NDV contains six potential N-linked glycosylation sites 

(McGinnes et al., 2001). N-glycans of viral envelope glycoproteins are involved in many 

functions, such as promoting efficient expression, transport, folding, and binding to cell 

surface receptors and facilitating fusion and infectivity (Aguilar et al., 2006; Bagai and 

Lamb, 1995; Collins and Mottet, 1991; Eichler et al., 2006; Panda et al., 2004a; Sjolander et 

al., 1996; Zimmer et al., 2001). Though, the role of N-linked glycosylation of NDV F protein 

in biological activity and protein stability has been studied earlier, the contribution of NDV F 

protein N-linked glycosylation to virus pathogenesis in the natural host is unknown. It would 
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have great significance to study the role of the functional glycosylation sites of F protein on 

the pathobiology of NDV. 

The F protein cleavage site sequence has been shown to be a major determinant of 

NDV virulence (de Leeuw et al., 2003; Nagai, 1995). The F protein cleavage site of virulent 

strains contains polybasic amino acids that are recognized by intracellular proteases present 

in most cell types and in contrast, avirulent NDV strains have one or two basic residues and 

depends on extra cellular secretory proteases for cleavage (Panda et al., 2004b). It would be 

interesting to find out the role of conserved amino acids in the cleavage sites for the 

requirement of virulence. 

The cysteine residues in viral proteins are involved in disulfide bond formation and 

thus play important role in structure and function of the protein. The F protein of NDV 

contains 13 cysteine residues of which 11 are conserved among the F proteins of other 

paramyxoviruses. However, the role of these conserved cysteine residues on NDV infectivity 

and pathogenesis is not known. Therefore, it would be important to know the role of each 

conserved cysteine residue on virus infectivity and pathogenesis. 

The F protein along with the HN protein is a main target of immune response for 

NDV. The F protein possesses conserved domains like heptad repeats, transmembrane 

domain, and cytoplasmic tail and there are presence of conserved key amino acids which 

make the proper conformational stability thus facilitating fusion process. Thus, studies on F 

protein may prove to be useful for development of better NDV vaccines and NDV as an ideal 

viral vector. 
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1.3 Research Objectives: 

The specific objectives of the present study were: 

1. To study the importance of N-glycosylation sites in NDV F protein on virus 

replication and pathogenesis. 

2. To study the role of conserved glutamine residue in the F protein cleavage site.  

3. To investigate the role of F protein cytoplasmic tail on fusion activity and NDV 

virulence. 

4. To study the role of conserved cysteine residues in the F protein on NDV infectivity 

and pathogenesis.  
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Chapter 2 

 

2.1 Title 

 

            Review of Literature 

 

2.2 Classification  

 

NDV is a member of the order Mononegavirales, family Paramyxoviridae, subfamily 

Paramyxovirinae and genus Avulavirus (Mayo, 2002). NDV is the only member of the genus 

Avulavirus. The genus Avulavirus contains nine serotypes of avian paramyxoviruses (APMV-

1-9) (Samal, 2011a). NDV represents type 1(APMV-1).Other important members of the family 

Paramyxoviridae are the mumps virus, SV5 and parainfluenza virus type 2, respiratory syncytial 

virus and recently emerging hendra and nipah virus. 

 

2.3 Virion  

 

The NDV particles are enveloped, pleomorphic in nature and range from 150-400 nm in 

size. The envelope is covered with viral glycoproteins which are 8-12 nm in diameter. The 

genome of NDV is a single strand of RNA of negative sense, and has a molecular weight of 5.2 

to 5.7 × 10
6 

daltons (Lamb, 2001). The envelope contains two surface glycoproteins; HN protein 

and F protein. The HN protein, a receptor binding protein that is responsible for the attachment of 

the virion to the host cell receptor and F protein is required for the fusion of the virion to target 

host cell membranes (Lamb et al., 2006). The Matrix (M) protein is layered under the envelope, 
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which is thought to play major role in assembly and budding of the mature virion particles 

(Peeples, 1991). The ribo-nucleocapsid forms the core structure which acts as a template for the 

virus RNA synthesis. The core structure is formed by nucleocapsid protein (NP) tightly bound to 

RNA to which phosphoprotein (P) and large polymerase (L) proteins are attached (Fig.1).  

 

2.4 Genome organization  

 

The genome of NDV is a nonsegmented, negative-sense RNA genome consists of six 

transcriptional units arranged in  (3' NP-P-M-F-HN-L 5') encoding at least eight proteins (Lamb, 

2001)(Fig.2). The genomic RNA contains a 3' extracistronic region of 55 nucleotides, known as 

the leader, and a 5' extracistronic region of 114 nucleotides, known as the trailer (Krishnamurthy 

and Samal, 1998). These regions are essential for replication of the genome, and they flank the 

six genes. Each transcriptional unit contains a major open reading frame flanked by short 5’ and 

3’ untranslated regions (UTRs), which are followed by conserved transcriptional initiation and 

termination control sequences, known as gene start (GS) and gene end (GE), respectively. 

Between the gene boundaries are non-coding intergenic sequences (IGS), which vary in length 1 

to 47 nt (Chambers et al., 1986a; Krishnamurthy and Samal, 1998). The mRNAs are capped and 

have poly (A) tails. The genome consists of six genes: nucleocapsid protein (NP) gene, 

phosphoprotein (P) gene, matrix protein (M) gene, fusion protein (F) gene, hemagglutunin 

neuraminidase (HN) gene, and large RNA-dependent RNA polymerase protein (L) gene. 

 

2.5 Viral proteins 

The genome of NDV codes for at least six major proteins: NP, P, M, F, HN, L, and two 

minor proteins V and W. 
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Figure 1. Schematic diagram of Newcastle disease virus particle (not drawn to scale). 

(From ©Viralzone 2010) 
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Figure 2. Genetic map of genomic RNA of NDV. 

The single stranded, negative sense RNA genome consists of six major genes and two minor 

genes. The length of leader and trailer is shown in parenthesis. Each gene is flanked by conserved 

gene start and gene end. Between each gene boundary, nontranscribed intergenic sequences 

present which vary 1-47 nt in length. 
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The V and W proteins are the two additional proteins formed by non- template 

nucleotide addition through the RNA editing process during P gene mRNA 

transcription (Steward et al., 1993). 

 

2.5.1 Ribonucleoprotein complex 

The genomic RNA is associated with the NP, P and L proteins to form 

the ribonucleoprotein complex (RNP), which serves as a template for RNA 

synthesis (Lamb, 2001). 

NP protein: The NDV genome is the template for two separate function in the 

life-cycle of the virus; RNA replication and transcription. The switch between 

RNA replication and transcription is considered to be controlled by the 

presence of de novo NP protein. The NP protein interacts with the P-L 

polymerase during transcription and replication and most likely, interacts with the 

M protein during virus assembly. The intracellular concentration of unassembled 

NP is also considered to be a major factor controlling the relative rates of 

transcription and replication from genome templates (Blumberg and Kolakofsky, 

1981; Blumberg et al., 1981) The NP gene of NDV consists of 1747 nucleotides 

coding for 489 amino acids. The molecular weight of the protein is predicted to 

be 54 kilodaltons (kDa) (Krishnamurthy and Samal, 1998). 

P protein: Essential component of the RNA polymerase transcription and 

replication complex. P protein binds to the viral ribonucleocapsid and 

positions the L polymerase on the template and acts as a chaperone for newly 

synthesized free N protein, so-called N0. This property of P protein has been 

suggested to prevent NP
 

from assembling RNA non-specifically. The P gene of 
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NDV is 1451 nt long and have a molecular weight of 53-56kDa (McGinnes et al., 

1988).  The P gene produces two additional proteins V and W, by RNA editing.  

The process of RNA editing is addition of one G nucleotide at the editing site 

(near the center of the ORF) which produces an mRNA that encodes the V 

protein, whereas addition of two G nucleotides produces an mRNA that encodes 

the W protein (Steward et al., 1993). The P protein is highly phosphorylated and 

acidic in nature(McGinnes et al., 1988). 

L protein: The L protein is the least abundant but the largest structural protein 

(about 50 copies per virion) in the virion core (Banerjee, 1987). The P and L 

proteins form a complex, and both proteins are required for polymerase activity 

with NP:RNA templates. The L gene is 6704 nt long and predicted molecular 

mass is 242 kDa (Yusoff et al., 1987). The L protein is also responsible for 

capping and polyadenylation of the nascent viral mRNAs.  

 

2.5.2 Matrix protein 

The matrix protein is associated with the inner surface of the 

membrane and is the most abundant protein in the virion. The M gene of NDV is 

1241 nt long. Its predicted molecular mass is 40 kDa. It is also believed that it 

interacts with the NP protein, but the exact binding domains are yet to be 

determined. The dimers of paramyxovirus M protein can form a grid-like 

array on the inner surface of the viral membrane, and probably interact with 

both the cytoplasmic tails of the HN and F glycoproteins as well as the 

nucleocapsid to initiate virus assembly and budding (Chambers et al., 1986b). 

2.5.3 Envelope surface glycoproteins 
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The envelope of NDV virions have two transmembrane glycoproteins; the  

attachment protein termed HN and the F protein and they form spikes 

protruding from the lipid bilayer. HN is a dual-function hemagglutinin/ 

neuraminidase, capable of binding to cell surface sialic acids. F mediates pH-

independent fusion with the host cell plasma membrane.  

HN protein: The HN protein of NDV is a multifunctional protein. It 

possesses both the receptor recognition and neuraminidase (NA) activities 

associated with the virus. It recognizes sialic acid-containing receptors on cell 

surface; it promotes the fusion activity of the F protein, thereby allowing the 

virus to penetrate the cell surface; and it acts as an NA by removing the sialic 

acid from progeny virus particles to prevent self-agglutination of progeny 

virus. Thus, the HN protein plays an important role in viral infection (Lamb et 

al., 2006). The HN glycoprotein of NDV is a major antigenic determinant of the 

virus (Meulemans et al., 1986; Morgan et al., 1992). The HN gene is 1998 nt long 

with a coding region of 577 amino acid residues and a molecular weight of 

74kDa. The HN of some strains of NDV is synthesized as a biologically inactive 

precursor (HN
0
), and 90 residues from the C-terminal are removed to activate the 

molecule The HN proteins are type II integral membrane proteins that span the 

membrane once. The N-terminus of the HN protein consists of the cytoplasmic 

domain, followed by the transmembrane region and the stalk region. The HN 

attachment proteins are thought to form tetramers in their active form. 

Mutational studies of the NDV HN stalk have examined effects on membrane 

fusion, NA activity, hemadsorption, F-protein complex formation, and 

oligomerization. Although mutations in the NDV HN stalk can affect both NA 
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and membrane fusion activities, it has not been clear how these two functions 

are coupled. The crystal structure of the intact NDV HN reveals a four-helix 

bundle (4HB) stalk packed between two NDV NA domain dimers, which 

provide insight into the structural basis for stalk-dependent HN NA and 

membrane fusion-promoting activities (Crennell et al., 2000). 

F protein: The F protein directs membrane fusion between the viral and the 

cellular membranes (Morrison, 2003). NDV F proteins do not require the acid 

pH of endosomes for the activation of fusion activity; thus, other mechanisms 

for F protein activation must be invoked. Because of this acid pH 

independence, infected cells expressing both the HN and the F proteins can 

fuse with adjacent cells to form multinuclear cells or syncytia, a process that is 

assumed to be similar to virus-cell fusion (Baker et al., 1999). Syncytia 

formation is a hallmark of NDV infection in host cells(Horvath and Lamb, 

1992). It is a typical cytopathic effect caused by the virus and can lead to 

tissue necrosis and might also be a mechanism of virus spread(Horvath et al., 

1992). 

The NDV F protein is synthesized as a precursor, F0 which is 1792 nt 

long encoding 553 amino acids that must be proteolytically cleaved to activate 

F protein fusion activity. Cleavage at amino acid 117 produces disulfide-

linked F2 and F1 polypeptides derived from the amino-terminal and carboxyl-

terminal domains of F0, respectively(de Leeuw et al., 2005; Nagai, 1995). The 

F1 polypeptide has one fusion peptide. Upon initiation of fusion, fusion 

peptides are thought to insert into target membranes, docking the protein to 



 14 
 

these membranes. Paramyxovirus F1 polypeptides have two heptad repeat 

(HR) regions, one (HR1) located adjacent to carboxyl terminal to the more 

amino-terminal fusion peptide and the other adjacent to the transmembrane 

domain (HR2)(Chen et al., 2001). Studies of peptides with sequences of these 

HR domains and characterization of mutations within these domains have led 

to the hypothesis that F proteins are synthesized and transported to cell 

surfaces in a metastable conformation in which the HR domains are not 

associated and the fusion peptides are masked. Upon fusion activation, F 

proteins are thought to undergo a series of conformational changes that result 

in the insertion of fusion peptides into target membranes and the interaction of 

the HR1 and HR2 domains to form a very stable complex(Lamb et al., 1999; 

Morrison et al., 1987) The formation of this complex is thought to pull target 

and attack membranes in close proximity, allowing subsequent fusion events 

(Fig 3).The amino acid sequence at the F protein cleavage site is different 

among most lentogenic, mesogenic and velogenic NDV strains (de Leeuw et 

al., 2003; Panda et al., 2004b). The F protein of all lentogenic strains has a 

monobasic cleavage site, which is cleaved by extracellular proteases restricted 

to specific tissues; whereas, the F protein of all mesogenic and velogenic 

NDV strains has a multibasic cleavage site, which is cleaved by ubiquitous 

intracellular proteases. The fully glycosylated F protein of NDV contains a 

470-amino-acid extracellular domain, a transmembrane domain near C-

terminal, and a 29-amino-acid cytoplasmic tail. The molecular weights of F0, 

F1 and F2 are  
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Figure 3. Model of Paramyxoviruses mediated fusion. (Modified from Trends of 

Mircobiology) Native state b) Prefusion activation c) Fusion activation d) Pre hairpin 

intermediate e) Fusion 
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.  

66kDa, 55kDa, and 12.5kDa respectively. The F protein is the major 

immunogenic protein of NDV. 

2.5.4 V and W proteins 

NDV produces two additional proteins, V and W, from the P gene by 

alternative mRNAs that are generated by RNA editing(Steward et al., 1993). 

In NDV, insertion of one nontemplate G residue gives rise to a V-encoding 

mRNA, while insertion of two nontemplate G residues generates a W-

encoding mRNA. Analysis of mRNAs produced from the P gene showed that 

68% were P-encoding mRNA, 29% were V-encoding mRNA, and 2% were 

W-encoding mRNA(Huang et al., 2003). All three P gene-derived proteins are 

amino coterminal but vary at their carboxyl terminus in length and amino acid 

composition. The V protein of NDV, in common with its counterparts in other 

paramyxoviruses, is cysteine rich within its unique carboxyl-terminal region 

and binds to zinc (Mebatsion et al., 2001). The V protein of NDV is found to 

be incorporated in virions, as are simian virus 5 (SV5) and mumps virus 

(Kubota et al., 2005; Sun et al., 2004). V and W proteins are present in 

infected cells but absent in viral particles. V protein is considered as a 

virulence factor acting as an interferon antagonist. The function of the W 

protein of NDV has not established, however work with other virus suggests it 

may be an inhibitor of replication. 
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2.6 Stages of replication of NDV 

The replication of NDV occurs in the cytoplasm and is very similar to that of other 

non-segmented negative-strand RNA viruses of paramyxoviridae (Fig.4). Replication of 

NDV is initiated by the binding of the HN on the virion envelope to sialic acid on the cell 

surface glycolipids followed by fusion of the viral-host cell membrane (Huang et al., 2004; 

Morrison, 2003). The F protein promotes fusion of the envelope with the plasma membrane. 

The RNA polymerase is carried into the cell as part of the nucleocapsid. Transcription, 

protein synthesis, and replication of the genome all occur in the host cell cytoplasm. The 

genome is transcribed into individual messenger RNAs (mRNAs) and a full-length positive-

sense RNA template. New genomes associate with the L, N, and NP proteins to form 

nucleocapsids, which associate with the M proteins on viral glycoprotein–modified plasma 

membranes. Finally, the progeny viruses matured by budding through plasma membrane. 

 

2.6.1 Virus attachment, fusion and entry  

Primary adsorption of the virus to the target cell is generally promoted 

by the attachment protein, with sialic acid residues or cell surface proteins 

serving as receptors. Upon adsorption of the virus to the cellular receptors, the 

viral membrane fuses with the host cellular plasma membrane at neutral pH. The 

F protein is then responsible for fusion of the viral membrane with a host cell 

membrane.NDV require their homotypic attachment protein for membrane 

fusion activity, suggesting a role for F-attachment protein interactions in 

control of fusion. This results the release of the viral nucleocapsids into the 

cytoplasm of the host cell. The M protein is considered to make several contacts 
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with the nucleocapsid. After the release of the nucleocapsid into the cytoplasm, 

disruption of the M-nucleocapsid complex occurs and the viral nucleocapsid is 

released into the host cell cytoplasm.  

 

2.6.2 Transcription  

The key feature of transcriptional control in the NDV RNA viruse is 

entry of the virus-encoded RNA-dependent RNA polymerase at a single 3' 

proximal site followed by obligatory sequential transcription of the linear 

array of genes. Levels of gene expression are primarily regulated by position 

of each gene relative to the single promoter and also by cis-acting sequences 

located at the beginning and end of each gene and at the intergenic junctions. 

Obligatory sequential transcription dictates that termination of each upstream 

gene is required for initiation of downstream genes. Therefore, termination is 

a means to regulate expression of individual genes within the framework of a 

single transcriptional promoter.The viral RNA polymerase has to first transcribe 

the leader RNA before beginning mRNA synthesis at the NP gene start signal. 

RNA replication of Sendai virus requires the genome length to be a multiple of 

six (“Rule of Six” theory), for efficient replication. NDV also follows the rule of 

six principle for efficient replication. This hexamer rule is most likely related to 

the finding that each NP subunit of the nucleocapsid is associated with exactly six 

nucleotides. Once the nucleocapsid is released in to host cell cytoplasm the leader 

mRNA is synthesized first, on entry of the NP and P/L polymerase at the 3΄ end 

of the genome followed by re-initiation of NP gene mRNA synthesis from NP 

gene start sequence. The transcription undergoes a sequential start and stop 
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mechanism producing gradient mRNA production in which 3’ proximal gene 

concentration is higher than those of downstream genes (Cattaneo et al., 1987). 

 

2.6.3 Genome Replication  

Viral RNA replication involves full length plus strand synthesis. This 

is used as a template for full length minus strand. Both full length strands are 

coated with nucleocapsid protein as they are made. New full length minus 

strands may serve as templates for replication, or templates for transcription, 

or they may be packaged into new virions. Both the genome and antigenome 

are assembled into encapsidated nucleocapsid. The leader and trailer regions 

of the genome contain specific sequences for initiating encapsidation. The 

leader and trailer regions of the genome contain specific sequences for 

initiating encapsidation. The processes of transcription and replication are 

tightly regulated. When unassembled NP is limiting, the viral RNA 

polymerase is preferentially engaged in mRNA synthesis, raising the 

intracellular levels of unassembled NP and all other viral proteins(Nagai, 

1999). When unassembled NP levels are sufficient, some viral RNA 

polymerase activity switches from transcription to replication, thereby 

lowering the levels of unassembled NP, as each initiation of encapsidation 

utilizes many NP monomers to finish the assembled genome chain (Blumberg 

et al., 1981). The RNA synthesis of NDV is shown in Fig. 5. 

 

2.6.4 Virus assembly and release  
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Once formed, RNPs must be incorporated into budding virus particles. 

The intracellular site of nucleocapsid assembly is in the cytoplasm. The first 

step in viral assembly is the encapsidation of genomic RNA into nucleocapsid. 

The nucleocapsids are thought to be assembled in two steps: first, there is an 

association of free NP subunits with the genome or template RNA to form the 

helical ribonucleoprotein (RNP) structure, followed by the association of the 

P-L protein complex. Selective genome incorporation based on the polarity of 

the viral RNA also occurs, with (−)-sense genomes incorporated more 

efficiently into budding particles than (+)-sense antigenomes. In contrast to 

the antigenomes, Paramyxovirus mRNAs are not encapsidated. Incorporation 

of genomes into budding virions is likely driven by interactions between viral 

matrix proteins and nucleocapsids at virus assembly sites.  The assembly of 

the viral envelope takes place at the cell surface. The viral integral membrane 

glycoproteins (F and HN) are synthesized in the endoplasmic reticulum and 

undergo step-wise conformational maturation before transport through the 

secretory pathway. Only correctly folded and assembled proteins are 

transported out of the endoplasmic reticulum (Braakman and van Anken, 

2000). In the Golgi apparatus, the carbohydrate chains on the HN and F 

glycoproteins are modified extensively. Cleavage of the F proteins with 

multiple basic cleavage sites, occurs in the trans Golgi apparatus (de Leeuw et 

al., 2005). Finally, the glycoproteins are transported to the plasma membrane. 

In NDV, the assembly of the envelope occurs at the cell surface and release of 

the virus takes place by budding. 
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Figure 4. The life cycle of NDV 

(Figure modified from www.uib.es/depart/dba/microbiologia/.../paramixoviruses.pdf) 

 



 22 
 

 

 

 

Figure 5. Schematic diagram of RNA replication and transcription in paramyxovirus. 

Schematic diagram showing transcription and replication of a paramyxovirus. Genome and 

antigenome are shown encapsidated by nucleocapsid protein subunits.The vertical lines 

indicate the gene junctions. The polymerase complex (P-L complex) transcribes the genome 

to yield capped and poly A-tailed mRNAs. When sufficient amount of viral protein levels are 

achieved, the viral polymerase switches from its transcription mode to replicative mode to 

produce antigenome, which serves as the template for the synthesis of the progeny viral 

genome.  
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2.7 Reverse genetics 

 
Reverse genetics is a method which is used for genetic manipulation of viruses by using the 

cloned cDNA of the viral genome that allows the generation of infectious virus in vitro. In 

nonsegmented negative-strand RNA viruses, the minimal unit that is able to initiate infection 

inside the host cell is genomic or anti-genomic RNP complexes with the viral RNA 

polymerase. Therefore, introduction of a reverse genetics system by transfecting plasmids 

expressing viral accessory proteins such as NP, P and L along with full length antigenome 

plasmid have made it possible to recover genetically engineered virus (Fig 6). Genetic 

manipulation of a negative strand-RNA virus was first made possible in 1990 for the  

segmented influenza-A virus using biological active viral RNP complexes that were reconstitute in 

vitro (made of synthetic RNA and purified nucleoprotein and polymerase protein) and then 

transfecting the complex into cells previous infected with a fully functional, helper, virus (Enami et 

al., 1990).Subsequently, recovery of several other viruses such as the vesicular stomatitis 

virus(Lawson et al., 1995; Whelan et al., 1995) simian virus 5(He et al., 1997), human 

respiratory syncytial virus (Collins et al., 1995) sendai virus(Garcin et al., 1995), rinderpest 

virus(Baron and Barrett, 1997), parainfluenza virus(Durbin et al., 1997; Hoffman and 

Banerjee, 1997) and measles virus(Radecke et al., 1995) have been achieved. The recoveries 

of infectious NDVs from cDNA using reverse genetics system were first reported in 1999 

(Peeters et al., 1999; Romer-Oberdorfer et al., 1999). Currently reverse genetics systems are 

available for lentogenic strain LaSota (Peeters et al., 1999; Romer-Oberdorfer et al., 1999) 

B1 (Nakaya et al., 2001), mesogenic strain Beaudette C (Krishnamurthy et al., 

2000)(Krishnamurthy et al., 2000) and velogenic strain Hert/33 (de Leeuw et al., 2005). The 

availability of a reverse genetics system for NDV as well as other viruses has provided 

essential information and tools to study the viral molecular mechanism in greater detail. 
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Figure 6. Schematic Diagram for the recovery of infectious NDV from cDNA.  

Plasmids encoding for antigenome full length cDNA, NP, P and L mRNA were co-

transfected into HEp-2 cells. All the plasmids are under control of the T7 RNA polymerase 

promoter. The T7 RNA polymerase is provided by the recombinant vaccinia MVA/T7 strain. 

Infectious NDV was generated entirely from cloned cDNA with procedures explained by 

Krishnamurthy et al., 2000. 
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Chapter 3 

 

3.1 Title 

Coordinated deletion of N-glycans from the heptad repeats of the F protein of 

Newcastle Disease Virus affects virulence (Samal et al., 2012) 

 

3.2 Abstract 

The role of N-linked glycosylation of the NDV fusion protein in viral replication and 

pathogenesis was examined by eliminating potential acceptor sites using a reverse genetics 

system for the moderately pathogenic strain Beaudette C (BC). The NDV-BC F protein 

contains six potential acceptor sites for N-linked glycosylation at residues 85, 191, 366, 447, 

471, and 541 (sites Ng1-6, respectively). The sites at Ng2 and Ng5 are present in heptad 

repeat (HR) domains HR1 and HR2, respectively, and thus might affect fusion. Each N-

glycosylation site was eliminated individually by substituting asparagine (N) with glutamine 

(Q), and a double mutant (Ng2+5) involving the two HR domains also was made. Each 

mutant was successfully recovered by reverse genetics except for the one involving Ng6, 

which is present in the cytoplasmic domain. All of the F proteins expressed by the recovered 

mutant viruses were efficiently cleaved and transported to the infected-cell surface. None of 

the individual mutations affected viral fusogenicity, but the double mutation at Ng2 and Ng5 

in HR1 and HR2 increased fusogenicity >12-fold. The single mutations at sites Ng1, Ng2, 

and Ng5 resulted in modestly reduced multi-cycle growth in vitro. These three single 

mutations also were the most attenuating in eggs and 1-day-old chicks, and were associated 

with decreased replication and spread in 2-week-old chickens. In contrast, the combination of 
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the mutations at Ng2 and Ng5 yielded a virus that, compared to the BC parent, replicated 

>100-fold more efficiently in vitro, was more virulent in eggs and chicks, replicated more 

efficiently in chickens with enhanced tropism for the brain and gut, and elicited stronger 

humoral cell responses. These results illustrate the effects of N-glycosylation of the F protein 

on NDV pathobiology, and suggest that the N-glycans in HR1 and HR2 coordinately down 

regulates viral fusion and virulence. 

 

3.3 Introduction 

 

Newcastle disease virus (NDV) is a major avian pathogen affecting many species of 

birds and it causes severe economic losses to poultry industry worldwide (Alexander, 1997). 

NDV isolates cause a broad spectrum of disease ranging from fatal to asymptomatic 

infection. NDV strains are grouped as highly virulent (velogenic), moderately virulent 

(mesogenic) and low virulent (lentogenic) based on pathogenicity in chickens (Alexander, 

1997). NDV is a member of the genus Avulavirus in the family Paramyxoviridae (R. Lamb, 

2005). The genome of NDV is a single-stranded, non-segmented, negative-sense RNA of 

15,186 nucleotides (de Leeuw and Peeters, 1999; Krishnamurthy and Samal, 1998; Nagai et 

al., 1989; Phillips et al., 1998). The genomic RNA contains six genes that encode at least 

seven proteins (Chambers et al., 1986a; Wilde, 1986). NDV initiates infection after  

attachment to susceptible cells and subsequent membrane fusion process directed by two 

virion glycoproteins associated with the envelope, the hemaglutinin-neuraminidase (HN) 

protein and the fusion (F) protein (Lamb, 1993a). The HN protein mediates attachment by 

binding to sialic acid receptor and has neuraminidase activity and plays a role in fusion 

promotion, whereas the F protein is responsible for membrane fusion and penetration through 

the host cell membrane (Lamb, 2007). The NDV F protein does not require the acidic pH of 
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endosomes for the activation of fusion process and because of this acidic pH independence, 

infected cells fuse with adjacent cells to form syncytia, a process very similar to virus-cell 

fusion (Baker et al., 1999). Although the trigger mechanism for F mediated membrane fusion 

is still unknown, it is postulated that interaction between the HN and F proteins stimulate 

conformational changes in the F protein that drives merger of viral and host cell membranes 

(Lamb et al., 2006).   

The NDV F protein is a trimeric type I integral membrane protein that is synthesized 

as an inactive precursor F0 (66 kDa) which is post translationally cleaved by host cell 

proteases into two disulfide-linked subunits, N-terminal F2 (12.5kDa) and C-terminal 

F1(55kDa)(Nagai et al., 1989). A stretch of hydrophobic amino acids at the N terminus of the 

F1 subunit form a fusion peptide (FP) that interacts with the host cell membrane, thereby 

initiating the fusion process.  The NDV F protein has two HR motifs in the F1 subunit; HR1 

is adjacent to the fusion peptide, and HR2 is adjacent to the transmembrane (TM) domain.  

Crystal structure of fusion proteins of different paramyxoviruses revealed that these heptad 

repeats assemble to form conserved six helix bundle and this assembly is tightly coupled to 

membrane fusion (Baker et al., 1999; Chen, 2001; Luque and Russell, 2007; Swanson et al.; 

Yin et al., 2006; Yu et al., 2002; Zhu et al., 2003a; Zhu et al., 2003b). Subsequent structural, 

biochemical, and functional studies of fusion protein of paramyxoviruses have led to the 

hypothesis that, prior to interaction of F protein with the host cell, the F protein is believed to 

fold in a pre-fusion, metastable conformation, which is then activated to undergo a large 

conformational rearrangement needed to accomplish membrane fusion (Lamb, 1993a; Lamb 

and Jardetzky, 2007; Lamb et al., 2006). However, the mechanistic details of the extensive 

conformational rearrangements of fusion protein are still not clear. 



 28 
 

The F glycoprotein of NDV undergoes N-linked glycosylation in rough endoplasmic 

reticulum of host cells, in which N glycan chains are attached covalently to asparagines 

residues at the consensus sequence motif Asn-X-Ser/Thr  (Baker et al., 1999; Braakman, 

2000; Collins and Mottet, 1991; Doms et al., 1993) (where “X” can be any amino acid except 

proline). N-glycans of viral envelope glycoproteins are involved in many functions, such as 

promoting efficient expression, transport, folding, binding to cell surface receptors, 

facilitating fusion and infectivity (Aguilar et al., 2006; Bagai and Lamb, 1995; Braakman, 

2000; Collins and Mottet, 1991; Eichler et al., 2006; Goffard and Dubuisson, 2003; Panda et 

al., 2004a). On the other hand, N-linked glycans also act in shielding the virus against 

antibody neutralization as reported in HIV, Hepatitis B and influenza viruses (Kniskern et al., 

1994; Vigerust et al., 2007; Wei, 2003).  

The F glycoprotein of NDV contains six potential N-linked glycosylation acceptor 

sites at residues 85, 191, 366, 447, 471 and 541 which are conserved in all strains (de Leeuw 

and Peeters, 1999; Paldurai et al.)(Fig.7). A previous study has predicted that four of these 

sites present at residues 85,191,366 and 471 are functionally active (McGinnes et al., 2001). 

Two of these residues at positions 191 and 471 are present within the heptad repeats HR1 and 

HR2, suggesting that N-glycosylation at these sites might play an important role in the fusion 

promotion. The previous study demonstrated the role of N-linked glycosylation of NDV F 

protein in the biological activity and protein stability using a plasmid transfection system 

(McGinnes et al., 2001). However, the contribution of NDV F protein N-linked glycosylation 

on virus replication, pathogenesis and virulence in the natural host is unknown. 

In the present study, a reverse genetics system was used to generate a panel of 

recombinant viruses with mutations in the N-glycosylation sites of the NDV F protein. These 
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mutations eliminated each of the six N-glycosylation sites individually (Ng1, Ng2, Ng3, Ng4, 

Ng5 and Ng6) and in combination (Ng2 and Ng5). These mutant viruses allowed us to 

determine the usage of each N-glycosylation site and study the role of each N-glycan on 

functional activity of F protein and its effect in viral replication, pathogenesis, virulence and 

immunogenicity in chickens. We demonstrate that NDV F protein with deglycosylation of 

each N-glycan site remains completely functional. However, deletion of N-glycosylation 

sites in viruses modulates the viral pathogenesis to various extents. 

 

3.4 Materials and Methods 

3.4.1. Cells and viruses.  

Chicken embryo fibroblast cell line (DF1) and human epidermoid 

carcinoma cell line (HEp-2) were grown in Dulbecco’s minimal essential 

medium (DMEM) with 10% fetal bovine serum (FBS) and maintained in 

DMEM with 5% FBS. The African green monkey kidney Vero cells were 

grown in Eagle’s minimal essential medium (EMEM) containing 10% FBS 

and maintained in EMEM with 5% FBS. The modified vaccinia virus strain 

Ankara (MVA) expressing T7 RNA polymerase was kindly provided by Dr. 

Bernard Moss  (NIH, Bethesda, MD) and propagated in primary chicken 

embryo fibroblast cells in DMEM with 2% FBS. The moderately pathogenic 

(mesogenic) NDV strain Beaudette C (BC) and its recombinant derivatives 

were grown in 9-day-old embryonated specific-pathogen-free (SPF) chicken 

eggs.After 2 days, the allantoic fluid was harvested and the virus was plaque 

purified using our standard procedure (Krishnamurthy et al., 2000).   
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3.4.2 Construction of plasmids and recovery of mutant viruses 

The construction of plasmid pNDVfl carrying the full length 

antigenome cDNA of the NDV strain BC has been described previously 

(Krishnamurthy et al., 2000). In the present study, a unique PacI site was 

created in the downstream untranslated region (UTR) of the M gene. To 

introduce mutations into the F gene of pNDVfl, a PacI-MluI fragment 

containing the F gene was amplified using each N-glycosylation mutant 

forward and reverse primers with desired mutations (Table 1). The PCR 

product was cloned into pCR 2.1-TOPO vector (Invitrogen, USA). The inserts 

bearing N-glycan mutation were released by digestion with PacI and MluI and 

then cloned into the full length cDNA of BC. A panel of N-glycosylation F 

mutants were generated. A double F mutant, Ng2+5, was also created by 

eliminating N-glycosylation sites 2 and 5. This was done by subjecting the 

Ng2 mutant to a second round of mutagenesis to remove Ng5. All mutant F 

cDNAs were sequenced in their entirety to confirm the presence of the desired 

mutations. Transfection and recovery of recombinant NDV mutants were 

performed by using reverse genetics technique described previously 

(Krishnamurthy et al., 2000).  

3.4.3. RT-PCR and sequence analysis.  

The recovered F mutant viruses were passaged in 9-day-old SPF 

chicken embryos for five times. From each passage total RNAs were  

isolated from mutant NDV-infected allantoic fluid of 9-day-old SPF chicken 

embryos, using TRIzol reagent (Invitrogen, USA). Reverse transcription-PCR 
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(RT-PCR) was performed using the Thermoscript RT-PCR kit (Invitrogen). 

The amplified cDNA fragments were then sequenced using the BigDye® 

Terminator v3.1 cycle sequencing kit (Applied Biosystems Inc, USA) in ABI 

3130xl genetic analyzer to confirm the presence of the introduced mutations in 

the recovered viruses. The HN gene from each recovered virus was also 

sequenced with available primers from our laboratory. 

3.4.4. Production of anti NDV-F antisera 

Three synthetic peptides were custom synthesized (Invitrogen): C-

terminal tail (30 residues), corresponding to amino acids 524 to 553 of 

cytoplasmic tail of the F protein; peptide A (10 residues), corresponding to 

amino acids 27 to 36; and peptide B (10 residues), corresponding to amino 

acids 67 to 76. One rabbit was injected subcutaneously with 1 mg of KLH 

conjugated C-terminal tail peptide and another rabbit was injected with 0.5 mg 

of each of KLH conjugated peptide A and peptide B in Freund’s complete 

adjuvant to raise anti-Fcyt and anti-FNterm antiserum, respectively. After 2 

weeks, a booster immunization was given with 0.5 mg peptide in Freund’s 

incomplete adjuvant and 2 weeks later the hyperimmune sera were collected. 

Western blot analysis was performed using NDV infected cell-lysates to 

confirm the specificity of the two antisera to NDV F protein.  
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Table 1. Primers used in this study* 
 
           Primer                                                       Nucleotide sequence  
 
Ng1 Forward…………5’ATGCATACCAGAGGACATTGACCACTTTGCTCACCCC3’ 

Ng1 Reverse…………5’AATGTCCTCTGGTATGCATCCAAGGGGGCTTTCGCAC3’ 

Ng2 Forward…… 5’ACCAATTTCAGAAAACAGCTCAGGAATTAGGCTGCATCAG3’ 

Ng2 Reverse…………5’AGCTGTTTTCTGAAATTGGTCATTAACAAACTGCTG3’ 

Ng3 Forward……….. 5’GGCCAGACATCGGCCTGTATGTACTCAAAGACCG3’ 

Ng3 Reverse…………5’CAGGCCGATGTCTGGCCGCTCAAGCAGGAATAAATACC3’ 

Ng4 Forward…………5’CAGAAGCAGATCTCAATACAAGATTCTC3’ 

Ng4 Reverse…………5’TATTGAGATCTGCTTCTGATAAGTTGCATCG3’ 

Ng5 Forward……5’GAATGTCCAGAACTCGATCAGTAATGCTTTGAATAAGTTAG3’ 

Ng5 Reverse…………5’GAGTTCTGGACATTCCCAAGCTCAGTTG 3’ 

Ng6 Forward…………5’ATTATGGCTTGGGCAGAATACCCTAGATC3’ 

Ng6 Reverse ………...5’CTAGGGTATTCTGCCCAAGCCATAATAAGGTC3’ 

Ng7 Forward…………5’ ATTATGGCTTGGGAATAATACCCTAGATC3’ 

Ng7 Reverse………… 5’CTAGGGTATTATTCCCAAGCCATAATAAGGTC3’     

 
*Bold and underline indicates mutations.  
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3.4.5 Western blot analysis and PNGase F digestion  

Vero cells were infected with each mutant virus at an MOI of 1.0 and 

incubated for 1 h at 370C. Cells were washed with phosphate-buffered saline 

(PBS) and overlaid with 2% DMEM. After 36h post infection (PI), the cells 

were washed with PBS and were divided into two aliquots. From one aliquot 

proteins were extracted using cell lysis buffer (BD Biosciences, USA) and the 

second aliquot was treated with denaturing buffer (New England Biolabs, 

USA). 40ul of cell lysates from first aliquot were diluted in Laemmli sample 

buffer (Bio-Rad Lab, USA) in the presence of reducing agent and loaded onto 

10% polyacrylamide gels. 40ul of cell lysates from second aliquot were 

digested with PNGaseF (New England Biolabs). Briefly, infected cell extracts 

were denatured at 1000C for 10 min. The reaction mixture was put on ice for 5 

min, and PNGaseF (2U) and 10x reaction buffer and 10% NP40 supplied by 

manufacturer were added to equal amounts of cell lysates from each 

recombinant virus in 40 µl reaction buffer and incubated overnight at 370C. 

The digestion was stopped by boiling and samples were diluted in Laemmli 

sample buffer in the presence of reducing agent and loaded onto 10% 

polyacrylamide gels along with equal amount of undigested cell lysates. After 

electrophoresis, the gels were equilibrated in transfer buffer and transferred 

onto nitro cellulose membrane. The membrane was blocked with blocking 

solution (5% skimmed milk in PBS) for 2 h at room temperature and 

incubated with primary antibody (1:100 dilution) anti-Fcyt overnight at 4°C. 

Membranes were washed three times in washing solution (0.05% Tween-20 in 
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PBS) and then incubated in secondary antibody, anti-rabbit IgG antibodies 

diluted (1:5000) in dilution buffer for 1 h at room temperature. Membranes 

were washed extensively and bound antibody was detected using the ECL 

Western blotting detection reagent system (Amersham,USA). 

3.4.6 Cell surface expression of the F proteins of N-glycosylation mutant 

viruses 

Cell surface expression of the F proteins of N-glycosylation mutants 

viruses were quantitatively determined by flow cytometry. Briefly, DF1 cells 

were infected with each recombinant virus at an MOI of 0.1. After 24 h the 

cells were detached with PBS containing 5 mM EDTA and centrifuged at 

500 × g for 5 min at 4 °C. Cells were then incubated with the anti-FNterm 

antiserum (1:10 dilution) for 30 min at 4 °C. Subsequently, cells were washed 

with PBS, and incubated for 30 min on ice with 1: 500 diluted Alexa Fluor 

488 conjugated goat anti rabbit immunoglobulin G antibodies. Cells were 

analyzed by using a FACSRIA II apparatus and Flowjo software (Becton 

Dickinson Biosciences). 

3.4.7 Fusion assay and syncytia formation of N-glycosylation mutant 

viruses  

The ability of each N-glycosylation mutant virus to form syncytia was 

determined according to a procedure described by Kohn (Kohn, 1965). 

Briefly, Vero cells in 6-well plates were infected with each virus at an MOI of 

0.1. Cells were maintained in 5% MEM at 37°C under 5% CO2. Thirty six h  

 



 35 
 

 

 

 

 

 

 

 

Figure 7. Linear diagram of the NDV F protein.  indicates potential N-glycosylation sites 

Ng1 to Ng6, with the amino acid position of the Asn residue in parentheses. Grey boxes, 

heptad repeats; light box, transmembrane (TM) domain. 
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PI, the medium was removed and the cells were washed with PBS, fixed with 

methanol for 20 min at room temperature, and stained with hematoxylin-eosin. 

The fusion index of each mutant virus was calculated by observing 10 fields 

per well in duplicate. The fusion index is the ratio of the total number of 

nuclei to the number of cells in which these nuclei are present (i.e., the mean 

number of nuclei per cell).  

 

3.4.8 Growth characteristics of N-glycosylation mutant viruses  

The growth kinetics of N-glycosylation mutant viruses were evaluated 

by multiple-step growth assays. DF1 cells in duplicate wells of six-well plates 

were infected with each virus at an MOI of 0.01. After 1 hour of adsorption, 

the cells were washed with PBS and overlaid with DMEM containing 2% FBS 

at 37°C. Supernatant was collected and replaced with an equal volume of fresh 

medium every 8-h intervals until 64-h PI. The titer of virus in the sample was 

quantified by plaque assay on DF1 cells. All plaque assays were performed in 

six-well plates. Briefly, monolayers of DF1 cells were infected with 0.2 ml of 

10-fold-diluted fresh virus infected allantoic fluid. After 1 h of adsorption, 

cells were covered with DMEM containing 2% FBS and 0.8% methylcellulose 

and then incubated at 37°C. Six days later, the cells were fixed with methanol 

and stained with crystal violet. The syncytia formation in DF1 cells was 

determined in duplicate wells of six-well plates infected with each virus at an 

MOI of 0.01. Cells were maintained in 5% DMEM at 37°C under 5% CO2. 

Twenty four h PI the medium was removed and the cells were washed with 
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PBS, fixed with methanol for 20 min at room temperature, and stained with 

hematoxylin-eosin. 

3.4.9 Pathogenicity studies 

The pathogenicity of the N-glycosylation mutant viruses was 

determined by mean death time (MDT) test in 9-day-old embryonated chicken 

eggs and the intracerebral pathogenicity index (ICPI) test in 1-day-old chicks 

(Alexander, 1997) and in 2-week-old chickens. The MDT is the mean time in 

hours for the minimum lethal dose to kill all inoculated embryos. For ICPI 

test, 0.05 ml (1:10 dilution) of fresh infective allantoic fluid of each virus was 

inoculated into groups of 10 1-day-old SPF chicks via the intracerebral route. 

The ICPI is the mean score per bird per observation over the 8-day period.  

The pathogenicity of the F mutant viruses was further evaluated in 2-

week-old chickens by a natural route of infection. Briefly, 2-week-old SPF 

chickens in groups of 10 were inoculated with 106 PFU (50µl in each nare and 

eye) of each virus per chicken via the occulonasal route. The birds were 

observed daily for clinical signs of disease until 14 days PI. In order to 

determine the replication efficiency of the mutant viruses, another 2-week-old 

chickens in groups of 5 were inoculated with 106 PFU of parental and each 

mutant virus per chicken via the occulonasal route. At 3 day PI, 3 birds from 

each group were sacrificed and organs (brain, nasal turbinate, lungs, and gut) 

were collected. The virus titers in these organs were determined by plaque 

assay in DF1 cells.  The extra 2 birds in each group were present to 

accommodate possible losses due to infection, which occurred in the rNg2+5  
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group.  

3.4.10 Measurement of humoral response of N-glycosylation mutant 

viruses by enzyme-linked immunosorbent assay (ELISA) 

Four-week-old chickens in groups of 5 were inoculated with 106 PFU 

of wild type and N-glycosylation mutant viruses per bird via occulonasal 

route.  Serum samples were collected on the 3rd, 7th and 14th days PI. 

Commercial NDV ELISA kits (Synbiotics Corporation, San Diego, CA) were 

used to detect antibodies against the NDV antigens. The assay was designed 

to measure NDV antibody bound to NDV whole antigen coated plates. Serum 

samples were diluted 1:100 in dilution buffer (Synbiotics Corporation) added 

to the plates, and incubated for 1 h at room temperature. The plates were 

washed three times with plate-washing solution (Synbiotics Corporation) and 

incubated for 1 h with an isotype-specific secondary antibody, namely, 

horseradish peroxidase (HRP)-conjugated goat anti-chicken IgG. The plates 

were washed three times and developed with ABTS (2,2′-azinobis [3-

ethylbenzothiazoline-6-sulfonic acid]-diammonium salt) peroxidase substrate 

solution (Synbiotics Corporation), development was stopped by the addition 

of peroxidase stop solution, and analysis was performed at 405 nm using an 

ELx800 ELISA plate reader (BioTek, Winooski, VT).  

3.5 Results 

3.5.1. Generation of recombinant NDVs containing mutations that 

eliminate potential N-glycosylation acceptor sites in the F protein 
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We investigated the role of N-linked glycosylation of the NDV F 

protein in viral biological activities and viral pathogenesis using a previously-

described reverse genetics system for the mesogenic strain Beaudette C (BC) 

(Krishnamurthy et al., 2000). The NDV F protein has six potential acceptor N-

glycosylation sites as indicated in Fig.7. Each of the six potential N-linked 

glycosylation sites at amino acid sequence positions 85, 191, 366, 447, 471, 

and 541 (Ng1-6, respectively) in the F protein was mutated by overlapping 

PCR to change asparagine, the first amino acid residue of the conserved 

sequence NXS/T, to glutamine. Glutamine was chosen because it is 

structurally similar to asparagine, differing by only a single methylene group. 

To make each mutation, the first and third positions (underlined) of the 

respective asparagine codon (AAT OR AAC, depending on the particular site) 

were substituted to create a codon for glutamine (CAG). Thus, each mutant 

would require two nucleotide changes in order to revert to any codon 

specifying asparagine, thereby reducing the likelihood of direct reversion 

during virus replication. A double N-glycosylation mutant also was created at 

positions Ng2 (191) and Ng5 (471) to examine the effect of combined loss of 

the two N-linked glycosylation sites in HR1 and HR2. The single-site mutants 

were designated Ng1, Ng2, Ng3, Ng4, Ng5, and Ng6, and the one double 

mutant was Ng2+5. The sequence of each mutant F gene was confirmed in the 

final cDNA clones. Recombinant viruses were recovered as described 

previously (Krishnamurthy et al., 2000).  We were unable to recover a viable 

virus from the Ng6 cDNA in several attempts. To investigate this further, we 
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changed the glutamine to asparagine in Ng6 clone by using primer Ng7 

forward and Ng7 reverse and found that infectious virus (Ng7 clone) could 

readily be recovered. This indicated that the inability to recover rNg6 virus 

was specific to that mutation, implying that it is severely debilitating or lethal. 

The presence of the introduced mutations in the mutant viruses was confirmed 

by RT-PCR and subsequent DNA sequence analysis of the F gene of each 

virus .  

3.5.2 Determination of the N-glycosylation site usage in the NDV F 

protein 

We examined the F proteins encoded by the N-glycosylation mutants 

to determine which of the potential N-linked glycosylation sites in the NDV-

BC F protein were utilized. Vero cells were infected with wild type rBC and 

the N-glycosylation mutant viruses. The infected cell lysates were divided into 

two aliquots: one aliquot was left untreated and other was treated with 

PNGaseF, which cleaves high mannose and complex oligosaccharides from 

N-linked glycoproteins (Fig.8).The relative electrophoretic mobilities of the F 

proteins were examined by Western blot analysis in the presence of reducing 

agent by using rabbit antiserum raised against a synthetic peptide representing 

the NDV F cytoplasmic tail (anti-Fcyt antiserum). The sizes of the F0 and F1 

proteins of wild-type rBC are 66 and 55KDAa, respectively. Our results 

showed that the F0 protein was efficiently cleaved in wild type and all mutant 

viruses. In undigested cell lysates, mutation of single N-glycosylation sites 

resulted in faster electrophoretic migration of mutants F1 protein compared to 
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the wild-type F1 protein except rNg1, suggesting that each mutation resulted 

in the loss of an N-linked glycan (Fig. 8A and 8B). In case of rNg1 the N-

glycan site at residue 85 is present in F2 subunit, hence we observed similar 

migration pattern of rNg1 F1 protein as that of rBC. In the double mutant, 

rNg2+5, the mobility shift of the F0 and F1 proteins was greater compared to 

that of F proteins of the single-site mutants, suggesting that N-glycans have 

been removed from both sites 191 and 471 (Fig.8B). The F proteins of 

mutants after treatment with PNGaseF co migrated with wild-type virus, 

supporting the interpretation that sites Ng1-5 are used in the NDV F protein 

for N-glycosylation, and that substitution of asparagine to glutamine at the 

respective sites prevented N-glycosylation.  

3.5.3 Cell surface expression of F proteins encoded by the N-glycosylation 

mutant viruses 

Cell surface expression of the F proteins of the N-glycosylation mutant 

viruses was quantified by flow cytometry. DF1 cells were infected with each 

of the mutant viruses and, 24 h PI; the cells were detached, treated with rabbit 

antiserum raised against a mixture of two synthetic peptides designed from the 

N-terminal region of the F protein (anti-FNterm antiserum), treated with Alexa 

Fluor-conjugated goat anti-rabbit antibodies, and analyzed by flow cytometry 

(Table 2).  
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Figure 8. Analysis of the F proteins of the N-glycosylation mutants by Western blotting and 

PNGaseF digestion. Vero cells were infected with wild-type rBC and N-glycosylation mutant 

viruses at an MOI 1 and total proteins were collected after 36 h PI. Samples were resolved on 

10% polyacrylamide gels in the presence of reducing agent (A) Samples from rBC, rNg1, 

rNg2, rNg3 (B) rBC, rNg4, rNg5, rNg2+5 were digested overnight with PNGaseF or kept as 

untreated controls, separated by 10% polyacrylamide gels in presence of reducing agent, and 

blotted onto nitrocellulose membrane. Western blot analysis was performed using a rabbit 

antiserum raised against a synthetic peptide designed from the F protein cytoplasmic tail. D: 

Digested;UD:Undigested. 
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The results showed that the percentages of cells expressing the different 

mutant F proteins were similar to that of the wild type rBC virus. The mean 

fluorescence intensities of rNg3, rNg4 and rNg2+5 ranged from 15% to 25% 

above the wild type rBC while cells infected with rNg1 and  rNg2 had 

decreased mean fluorescence intensity of 5 and 7% lower than wild-type rBC. 

These results suggested that all the N-glycosylation mutant F proteins retained 

their ability to be transported efficiently to the cell surface.  

3.5.4 Fusion activity of N-glycosylation mutant viruses 

To determine the role of each N-glycan in the fusion activity of F 

protein, Vero cells were infected with the mutant viruses and at 36 h PI, the 

cells were fixed and stained with hematoxylin-eosin and examined 

microscopically to quantify the percentage of nuclei involved in syncytia as 

the fusion index.  The fusion indices of the rNg1, rNg2, rNg3, rNg4, and rNg5 

viruses were similar to that of the wild-type rBC virus (Fig. 9). Interestingly, 

the rNg2+5 double mutant virus exhibited a dramatically increased (>12-fold 

higher) fusion index compared to the parental rBC virus (Fig. 9). Thus, the 

individual elimination of N-linked glycosylation sites (including Ng2 and Ng5 

in HR1 and HR2) did not significantly change the fusion activity of NDV F 

protein, but the dual loss of the sites in HR1 and HR2 in rNg2+5 resulted in a 

dramatic increase in fusion activity.  

3.5.5 Growth characteristics of the N-glycosylation mutant viruses in cell 

culture 
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Figure 9. Comparison of the fusogenicity of wild-type rBC and the N-glycosylation mutant 

viruses. Vero cells were infected with the indicated viruses at an MOI of 0.1, fixed at 36 

h.p.i, and stained with hematoxylin-eosin. The fusion index was calculated as the ratio of the 

total number of nuclei in multinuclear cells to the total number of nuclei in the field. Data 

were means from three independent experiments. 
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Figure 10A. Growth kinetics of viruses in tissue culture. (A) Comparison of multicycle 

growth kinetics of wild-type rBC and the N-glycosylation mutants viruses in DF1 chicken 

embryo fibroblast cells. Cells were infected with the indicated viruses at an MOI of 0.01 and 

cell culture media supernatant aliquots were harvested and replaced at 8 h intervals until 64 h 

PI. The virus titers in the aliquots were determined by plaque assay in DF1 cells. Values are 

averages from three independent experiments. 
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The in vitro replication of the wild-type and mutant viruses were compared in 

a multistep growth experiment in DF1 cells (Fig. 10A). Mutant viruses rNg1, 

rNg2, and rNg5 exhibited modestly delayed and reduced growth compared to 

the parental rBC virus: the yield of rNg1 was 0.5 log10 lower, whereas those of 

rNg2 and rNg5 were 1 log10 lower. In addition, syncytia formation by rNg1, 

rNg2, and rNg5 was evident by 36 h PI compared to 24 h PI for wild-type rBC 

in DF1 cells. For mutant viruses rNg3 and rNg4, there was no significant 

difference in growth kinetics or syncytia formation compared to wild-type 

rBC. Interestingly, the double mutant virus rNg2+5 replicated faster and 

attained a much higher titer than the wild-type virus. Specifically, at 64 h PI, 

the titer of mutant virus rNg2+5 was 2.5 log10 higher than that of the wild-type 

virus. Furthermore, the rNg2+5 virus initiated syncytia formation at 18 h PI 

compared to 24 h PI for the wild-type virus (Fig. 10 B). These results 

demonstrated that the individual elimination of Ng1, Ng2, and Ng5 of the 

NDV F protein decreased the replication of the virus to various extents, 

whereas the combination of two of these sites, Ng2 and Ng5, in the double 

mutant rNg2+5 strongly increased virus replication.  

3.5.6 Pathogenicity of the N-glycosylation mutant viruses in chicken eggs 

and 1-day old chicks 

The pathogenicity of the N-glycosylation mutant viruses and their 

wild-type rBC parent were evaluated by two standard pathogenicity assays, 

namely the mean embryo death time (MDT) assay and the intracerebral 

pathogenicity index (ICPI) test. MDT values were determined in 9-day-old  
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Figure 10B. Syncytia formation of rBC and rNg2+5 in Vero and DF1 cells. Vero and DF1 

cells were infected in duplicate wells of six-well plates with each virus at an MOI of 0.01. 

Cells were maintained in 5% DMEM at 37°C under 5% CO2. Twenty four h PI the medium 

was removed and the cells were washed with PBS, fixed with methanol for 20 min at room 

temperature, and stained with hematoxylin-eosin. 
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Table  2. Cell surface expression of the F proteins of the N-glycosylation mutant viruses  
 

Viruses       % of positive cells  ± SD 

        

Relative mean fluorescence 

intensity 

rBC 
 

99±2.4 1.00 

rNg1 
 

98±3.8  0.95 

rNg2 
 

99±4.2  0.93 

rNg3 
 

96±3.1 1.15 

rNg4 
 

97±2.2                      1.20 

rNg5 
 

99±1.8                      1.00 

rNg2+5 
 

99±3.0                      1.25 

None (Mock infected cells) 
 

 0.01 

 
Cell surface expression of the F protein was determined by flow cytometry. DF1 cells were 

infected with each mutant virus at an MOI of 0.1. Surface expression of the F proteins was 

assessed by flow cytometry at 24 hr PI with a cocktail of anti-FNterm antibody followed by 

anti-rabbit Alexa Fluor 488 conjugated antibodies. Surface immunofluorescence was 

quantitated by FACS analysis. Uninfected DF1 cells were used as negative controls. Values 

shown are averages of results from three independent experiments. SD;standard deviation 

(P<0.05). 
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Table 3. Pathogenicity of the N-glycosylation mutant viruses in embryonated eggs and chicks 

 

Viruses 

 

MDT
a
 

  
 

ICPI score
b
 

 

rBC 
 

59 1.52 

rNg1 
 

76 1.16 

rNg2 
 

78 1.12 

rNg3 
 

60 1.42 

rNg4 
 

56 1.48 

rNg5 
 

68 1.30 

rNg2+5 
 

51 1.88 

a Mean embryo death time (MDT). The mean time (h) for the minimum lethal dose of virus to 

kill all of the inoculated embryos. Pathotype definition: virulent strains, <60 h; intermediate 

virulent strains, 60 to 90 h; avirulent strains, >90 h.  

b Intracerebral pathogenicity index (ICPI). ICPI score= [(total number of sick chicks x1) + 

(total number of dead chicks x 2)]/80 observations. ICPI values for velogenic strains approach 

the maximum score of 2.00, whereas lentogenic strains give values close to 0.Values were mean 

of three independent experiments. P<0.05 
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embryonated chicken eggs (Table 3). NDV strains are categorized into three 

pathotypes on the basis of their MDT values: velogenic (less than 60 h), 

mesogenic (60 to 90 h), and lentogenic (greater than 90 h). The MDT values 

of rNg1 (76 h) and rNg2 (78 h) were increased compared to that of the wild 

type rBC parent (59 h), indicating a modest reduction in virulence. The rNg3, 

rNg4, and rNg5 viruses had MDT values of 60 h, 56 h, and 68 h, respectively, 

which were marginally increased (i.e., attenuated) compared to wild-type rBC. 

In contrast, the MDT value of the rNg2+5 double mutant was 51 h, indicating 

an increase in virulence compared to wild-type rBC. We also evaluated the 

pathogenicity of the recombinant viruses in 1-day-old chicks by the ICPI test. 

Velogenic strains give values approaching 2.0, whereas lentogenic strains give 

values close to 0. The ICPI values of the parental rBC, rNg1, rNg2, rNg3, 

rNg4, rNg5, and rNg2+5 viruses were 1.52, 1.16, 1.12, 1.42, 1.48, 1.30, and 

1.88 respectively (Table 3) Thus, the results of the ICPI test were consistent 

with the results of MDT test: specifically, the rNg1 and rNg2 mutants were 

the most attenuated, followed by the rNg5 mutant, and the rNg3 and rNG4 

mutants were the least attenuated, compared to the wild-type rBC parent. In 

contrast, the rNg2+5 mutant was more virulent than rBC.  

3.5.7 Replication and virulence of the N-glycosylation mutant viruses in 2-

week-old chickens 

We examined the effect of mutations of the N-glycosylation sites of 

the F protein on replication and virulence in 2-week-old chickens. Chickens in 

groups of 5 were inoculated by the oculonasal route (mimicking natural 
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infection) at a dose of 106 PFU per bird. Three chickens from each group were 

euthanized on the 3rd day PI and tissue samples of the brain, lung, nasal 

turbinates, and gut were collected. All of the birds appeared to be healthy on 

the 3rd day PI except in case of birds infected with the rNg2+5 virus, where 

two birds were found dead and one paralyzed on the 3rd day PI (tissues were 

taken only from the 3 living birds). Virus titers in tissue samples were 

measured by plaque assay using DF1 cells (Fig. 11A). Differences in the 

presence of virus and in the virus titers in the different organs were observed 

between wild-type rBC and the N-glycosylation mutant viruses. The rNg1 

mutant virus was not detected in the brain and gut, and its titers in the lung 

and nasal turbinate tissue was reduced by ~50% compared to those of wild 

type rBC. The rNg2 mutant virus was not detected in gut and there was 43%, 

64% and 67% reduction in titers in the lung, nasal turbinates and brain 

compared to those of wild type rBC virus. The rNg3 virus replicated at similar 

titers in the brain, lungs and nasal turbinates compared to the wild type virus, 

whereas the rNg5 virus was somewhat reduced and was not detected in gut. 

The rNg4 virus replicated to 7% (nasal turbinates), 14% (lungs), 33 % (brain) 

to 62% (gut) higher titers as compared to wild-type rBC. The double mutant 

rNg2+5 virus replicated to significant higher titers in all of the sampled organs 

compared to the rBC parent: specifically, ~3 logs higher titer in the gut and 

brain , 65% and 33% greater in the  lungs and nasal turbinates, respectively. 

These results are consistent with the MDT and ICPI tests, showing that, 

compared to wild-type rBC, rNg1 and rNg2 were the most attenuated, 
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followed by rNg5, whereas rNg2+5 exhibited increased replication. We also 

examined the effects of the N-glycosylation mutations on morbidity and 

mortality.  Two-week-old chickens in groups of 10 were inoculated with each 

mutant virus via the oculonasal route with 106 PFU of virus per bird and were 

observed for 14 days for clinical signs (Fig. 11B). The birds inoculated with 

wild-type rBC showed clinical signs of depression, watery greenish diarrhea, 

drooping wings by the 9th day PI. The groups of birds infected with the single-

site N-glycosylation mutant viruses remained normal throughout the 

observation period. In contrast, birds inoculated with the double mutant 

rNg2+5 virus first exhibited signs of sickness and paralysis at 2 day PI, and 

deaths were observed beginning at day 3 PI. By the 6th day PI, all 10 birds 

inoculated with the double mutant rNg2+5 virus had died (Fig. 11B).  

3.5.8 Host immune responses following N-glycosylation mutant virus 

infection 

N-glycosylation of viral proteins can influence immunogenicity. In 

order to examine the effect of loss of N-linked glycans from the F protein on 

the immune response to NDV, 4-week-old chickens in groups of 5 were 

inoculated via the occulonasal route with 106 PFU per bird of wild type and 

mutant viruses. Sera were collected on days 3, 7, and 14 PI and antibody 

levels were measured by an NDV-specific ELISA. As shown in Fig. 12, there 

were no significant differences in the total NDV-specific serum antibody 

responses elicited by wild type rBC or the mutant viruses on the 3rd PI. On the 

7th day PI, chickens inoculated with the rNg2+5 virus  
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Figure 11A. Virus replication in the indicated organs. Two-week-old chickens in groups of 5 

were inoculated with 106 PFU of virus per bird by the oculonasal route, mimicking natural 

infection. Three chickens per group were sacrificed 3 d.p.i and samples of the brain, lungs, 

trachea and gut were collected (more birds were inoculated than were sacrificed to allow for 

attrition). Virus titers were determined by plaque assay in DF1 cells. Values were averages 

from the results of three independent plaque assay experiments. * (p<0.05). 
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Figure 11B. Two-week-old chickens in groups of 10 were inoculated with 106   PFU of virus 

per bird and observed for 10 days for signs of disease and for mortality. Note that all of the 

birds survived in the rBC, rNg1, rNg2, rNg3, rNg4, rNg5 groups.  
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exhibited slightly higher antibody titers than the other groups, and on the 14th 

day PI there was a significantly higher mean antibody titer in the rNg2+5 

group as compared to the other groups including the wild-type rBC group. 

This correlates with our earlier findings that increased replication of mutant 

virus rNg2+5 resulted in enhanced antibody production.                                                                  

3.6. Discussion 

N-glycosylation has been shown to have a key role in viral glycoprotein folding, 

proteolytic processing, and function, and also has been shown to influence viral infectivity, 

tropism and the immune response (Aguilar et al., 2006; Eichler et al., 2006; Goffard and 

Dubuisson, 2003; Lin et al., 2003; McGinnes et al., 2001; Oostra et al., 2006; Panda et al., 

2004a). In the present study, we examined the role of N-glycosylation of the NDV F 

glycoprotein in the context of infectious virus using reverse genetics to construct mutants that 

were then analyzed in cell culture and, importantly, in the natural chicken host using standard 

pathogenicity tests in eggs and 1-day-old chicks, as well as inoculation of 2-week-old and 4-

week-old chickens by the oculonasal route to mimic natural infection. Analysis of N-

glycosylation site usage in NDV-BC F protein showed that five of the six potential N-

glycosylation acceptor sites are utilized, one in the F2 subunit and four in the F1 subunit. 

Previously, it was reported that the sixth N-glycosylation site of NDV strain AV, which 

corresponds to site 541 (Ng6) in NDV-BC and is located in the cytoplasmic domain in both 

strains, was not utilized as an acceptor site for N-linked glycosylation (McGinnes et al., 

2001). In the present study, we were unable to recover virus bearing the N541Q mutation, 

and the deleterious effect of this mutation was confirmed by the ability to rescue virus in  
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Figure 12. NDV-specific serum antibody responses in chickens infected with wild-type rBC 

and the N-glycosylation mutants. Four-week-old chickens in groups of 5 were inoculated 

with 106 PFU of virus per bird via the occulonasal route.  Sera were collected on days 3, 7, 

and 14 PI and analyzed by an NDV-specific ELISA assay. Data represent mean absorbance 

values ± standard deviation. .  The mean value for the rNg2+5 group was taken for 3 animals 

because 2 birds died by day 14 and were not included in the analysis. P values were <0.0001 
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which the assignment had been restored to that of wild-type virus. Taken together, these data 

suggests that this site probably does not normally contain a sugar side chain, which would be 

consistent with its location in the cytoplasmic domain, but that the assignment of N at 

position 541 is important for some function(s) of the cytoplasmic tail that is essential for 

virus replication. It was of particular interest that both previous and present studies indicated 

that sites Ng2 and Ng5 are utilized for N-glycosylation, since these sites are located in HR1 

and HR2, respectively, and thus have the potential to affect fusion.   

One of the important functions of N-glycans in glycoproteins is to facilitate protein 

processing and folding (Ellgaard, 1999). Our results showed that deletion of single or 

multiple N-glycans in the F glycoprotein in the context of whole virus had little effect on cell 

surface expression of the F protein. The results from the present study are similar to the 

findings reported previously for the respiratory syncytial virus F protein, where deletion of 

multiple N-glycans did not affect F protein transportation to the cell surface (Collins and 

Mottet, 1991; Zimmer et al., 2001). These results suggest that no single N-glycan (nor Ng2 

and Ng5 together) was essential for NDV-BC F protein transport to the cell surface. In 

addition, none of the mutations significantly affected the efficiency of F protein cleavage. 

Biophysical and crystallographic studies of several paramyxovirus F proteins have revealed 

that the F protein is present in the virus particle in a metastable state that, upon viral contact 

with the target cell, undergoes a conformational shift to insert the fusion peptide present at 

the N-terminus of the F1 subunit into the target membrane. The F protein then make the 

transition to a post-fusion structure driven by association of HR1 with HR2, which brings the 

transmembrane domain and fusion peptide into close proximity resulting in the merger of 

viral and host cell membranes. Thus, one of the important phases of the fusion process is the 
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formation of coiled coil triple strand by the HRs, which is common structural features of the 

paramyxovirus, orthomyxovirus and retrovirus fusion proteins (Joshi et al., 1998; Lamb, 

1993a; Matthews et al., 2000). The presence of N-glycan side chains in HR1 and HR2 thus 

might influence the conformational changes involved in the fusion process. Our fusion index 

assay of single N-glycan mutants showed that there were no major differences in fusion 

activity as compared to wild-type rBC. Interestingly, in the present study, while the 

individual removal of the N-linked site from HR1 or HR2 had little effect on fusion, the 

removal of both sites in rNg2+5 mutant virus resulted in hyperfusogenic phenotype. This 

result has some similarity with a previous study with Nipah virus in which the removal of 

multiple glycans from the Nipah virus F protein resulted in a hyperfusogenic phenotype 

(Aguilar et al., 2006). It was suggested that presence of N-glycans on the Nipah virus F 

protein decreases the rate of six-helix bundle formation, resulting in slower fusion kinetics. 

Similarly, for NDV, it may be that the presence of the N-linked glycans in HR1 and HR2 

delays or otherwise reduces association between HR1 and HR2, resulting in reduced fusion. 

The more interesting finding was that, while the single mutations at sites Ng2 and Ng5 were 

somewhat inhibitory to growth individually in vitro, in combination they resulted in more 

rapid growth and a dramatic 2.5 log10 increase in viral titer. This presumably was primarily 

due to the increase in fusion, which may increase the efficiency and rate of infection as well 

as cell-to-cell spread by fusion. Evaluation of the pathogenicity of the N-glycan mutants in 

vivo provided results consistent with the in vitro growth study. The rNg1 and rNg2 mutants 

(and, to a lesser extent, the rNg5 mutant) were the most attenuated based on the standard 

MDT and ICPI tests. Similarly, in 2-week old chickens, the rNg1, rNg2, and rNg5 mutants 

were the most attenuated based on tissue tropism and the magnitude of virus replication. 
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Interestingly, while the Ng2 and Ng5 mutations were modestly attenuating on their own, 

when added together they resulted in a virus that replicated to substantially higher titers in 

every sampled tissue, was more virulent in the MDT and ICPI assays, and converted NDV-

BC from a non-lethal virus into one that killed all of the inoculated 2-week-old chickens 

within 6 days. A similar observation was reported earlier in neurovirulent influenza virus 

strain A/WSN/33 in mice (Li S, 1993 Nov; Ward AC, 1995) and H5N2 influenza virus in 

chickens (Kawaoka et al., 1984): in both cases, loss of carbohydrate from HA gene increased 

the virulence of the virus. In the case of influenza virus, a suggested mechanism for this 

increased virulence was that the loss of carbohydrate resulted in improved accessibility of the 

receptor-binding site to cellular receptors. In the case of NDV, in which the attachment 

function is on the HN protein, the situation is probably different. Instead, this effect probably 

reflects the increased fusogenic nature of the F protein, which likely increases the efficiency 

and rate of infection in the various tissues.  

The oligosaccharide chains on the glycoproteins of many viruses play important role 

in altering immune responses. They may form a barrier that shields viruses from immune 

recognition (Lee et al., 2003; Li et al., 2008; Wei, 2003). Conversely, deletion of some N-

glycans in the glycoprotein of human immunodeficiency virus abrogated the in vivo priming 

of T cell recognition for a nearby epitope, indicating that carbohydrate side chains also can 

increase immunogenicity (Sjolander et al., 1996). Our study showed that the double mutant 

rNg2+5 virus elicited the highest NDV-specific serum antibody response whereas the 

attenuated rNg1 and rNg2 viruses had the lowest antibody responses, as measured by ELISA. 

We did not extend the study beyond 14 days PI because of the morbidity and mortality of the 

chickens in the rNg2+5 group.  It seems likely that the increased immune response was 
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primarily due to the increased level of viral replication, which provided more antigenic 

stimulation. It is also possible that other factors are involved, such as greater exposure of 

epitopes due the loss of shielding glycans, or improved antigen processing. This might be 

investigated in further work by comparing the immunogenicity of the rNg2+5 mutant versus 

wild-type BC using UV-inactivated virus, where differences in viral replication would not be 

a factor.  

In summary, the present study demonstrates the impact of N-glycosylation of the F 

protein on NDV pathogenesis and virulence in chickens. The most striking finding was that, 

whereas the individual removal of sites Ng2 and Ng5 in HR1 and HR2 was modestly 

attenuating, removal of both in combination resulted in a hyperfusogenic phenotype that was 

associated with increased replication in vitro and in vivo and converted a mesogenic strain 

into a velogenic strain. The simplest explanation is that the presence of N-glycans on both 

HR1 and HR2 normally impedes the conformational shifts in the F protein during the fusion 

process, and thus in effect reduces the efficiency of fusion. The crystal structure of NDV F 

published so far does not give a clear view of how the N-glycans have been decorated in the 

F protein.  It is difficult to interpret whether N-glycans orientation is affecting at all the 

fusion process or N-glycans are responsible for any structural instability from pre-fusion to 

post-fusion state thus maintaining different energy state or they are interacting with some 

other host molecules. Previously, a hyperfusogenic phenotype also was observed with 

mutants of the F protein of parainfluenza virus 5 (previously called simian virus 5) in which 

the fusion peptide was modified by glycine-to-alanine substitutions, suggesting that the 

native glycine residues serve to reduce the efficiency of fusion (Horvath and Lamb, 1992). 

Wild-type Sendai virus also down-regulates its fusion activity, in this case due to a difference 
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in a transcription gene start signal that results in reduced F gene transcription and protein 

expression; and correction of this difference results in a virus that replicates more efficiently 

and is more lethal (Kato et al., 1999). A number of other paramyxoviruses also down-

regulate F expression (Bousse et al., 2002; Rassa and Parks, 1998; Spriggs and Collins, 

1986).The idea that paramyxoviruses contain structural elements that reduce the efficiency of 

fusion suggests that this is advantageous to the virus. The present study, as well as the 

previous study with Sendai virus, indicates that a hyperfusogenic phenotype can be 

associated with increased virulence and rapid death. It may be that reducing the severity of 

disease and prolonging the survival of the infected host may increase the opportunity for viral 

spread.  
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Chapter 4 

 

4.1 Title 

 

Role of conserved glutamine residue in the NDV F protein fusion cleavage site. 

(Samal et al., 2011) 

 

4.2 Abstract 

 

 A key determinant of Newcastle disease virus (NDV) virulence is the amino acid 

sequence at the fusion protein (F) cleavage site. The NDV F protein is synthesized as an 

inactive precursor F0 and is activated by proteolytic cleavage between amino acid 

positions 116 and 117 into two disulfide-linked subunits, F1 and F2. The consensus 

sequence of F protein cleavage site of virulent [112(R/K)-R-Q-(R/K)-R↓F-I118] and 

avirulent [112(G/E)-(K/R)-Q-(G/E)-R↓L-I118] strains contains a conserved glutamine 

residue (Q) at position 114. Recently, some NDV strains from Africa and Madagascar 

were isolated from healthy birds and have been reported to contain five basic residues (R-

R-R-K-R↓F-I/V or R-R-R-R-R↓F-I/V) at the F protein cleavage site. In this study, we 

have evaluated the role of this conserved glutamine residue in replication and 

pathogenicity of NDV using moderately pathogenic Beaudette C (BC) strain, by 

replacing Q114R, K115R, and I118V. Our results showed that change of glutamine to 

basic residue arginine (R) reduced the viral replication and attenuated the virus 
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pathogenicity in chickens. The pathogenicity was further reduced when isoleucine (I) at 

position 118 was substituted by valine.  

4.3. Introduction 

 Newcastle disease virus (NDV) causes a highly contagious disease in chickens 

resulting in severe economic losses to the poultry industry worldwide (Alexander, 1989.). 

NDV is a prototype member of family Paramyxoviridae which belongs to genus Avulavirus 

(Lamb, 2007). NDV isolates can be differentiated into three clinicopathologic groups based 

on their pathogenicity in chickens; low virulent (lentogenic), moderately virulent 

(mesogenic) and highly virulent (velogenic) (Alexander, 1997). The envelope of NDV 

contains two transmembrane glycoproteins, the hemagglutunin-neuraminidase (HN) protein 

and the fusion (F) protein. The HN protein is involved in  attachment to host cell sialic acid 

receptor and release of the virus and the F protein mediates fusion of the virion envelope with 

the host cell plasma membrane (Lamb, 2007). The NDV F protein is synthesized as an 

inactive precursor F0 and is activated by proteolytic cleavage into two disulfide-linked 

subunits, F1 and F2. The amino acid sequence at the F protein cleavage site determines the 

substrate specificity for different types of cellular proteases (Kawahara et al., 1992). The F 

protein cleavage site sequence has been shown to be a major determinant of NDV virulence 

(Klenk, 1994.; Lamb and Jardetzky, 2007; Nagai et al., 1976; Panda et al., 2004b; 

Wakamatsu et al., 2006). The consensus sequence of the F protein cleavage site of virulent 

strains is 112(R/K)-R-Q-(R/K)-R↓F-I118, whereas the consensus sequence of the F protein 

cleavage site of avirulent strains is 112(G/E)-(K/R)-Q-(G/E)-R↓L-I118. The F protein cleavage 

site of virulent strains contains polybasic amino acids that are the preferred recognition site 

for furin R-X-(R/K)-R↓F, which is an intracellular protease that is present in most cell types. 
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This provides for efficient cleavage of F protein in a wide range of tissues, making it possible 

for virulent strains to spread systemically, resulting in fatal infection (Murakami, 2001.; 

Nagai et al., 1976; Ogasawara, 1992.). In contrast, avirulent NDV strains have one or two 

basic residues at the -1 and -4 positions relative to the cleavage site. These cleavage 

sequences are insensitive to intracellular proteases and depend on extra-cellular secretory 

proteases for cleavage. It limits the replication of avirulent strains to the respiratory and 

enteric tracts (de Leeuw et al., 2003; Klenk, 1994.; Panda et al., 2004b). The individual 

amino acids at the F protein cleavage site have been examined for their requirement to 

virulence. It was found that phenylalanine (F) at position 117, arginine (R) at 116, lysine (K) 

or R at 115 and R at 113 are required for virulence of NDV (de Leeuw et al., 2003). 

Interestingly, glutamine (Q) is present at position 114 of F protein in both avirulent and 

virulent strains but its role in NDV pathogenesis has not been evaluated (de Leeuw and 

Peeters, 1999; Paldurai et al.; Peeters et al., 1999). Recently some NDV strains from Africa 

and Madagascar were reported to contain five basic residues (R-R-R-K-R↓F-I/V or R-R-R-

R-R↓F-I/V) at the F protein cleavage site but were isolated from apparently healthy, 

unvaccinated poultry birds (Servan de Almeida et al., 2009; Snoeck et al., 2009). 

Furthermore, some of these strains contain valine (V) at position 118 instead of isoleucine (I) 

at fusion cleavage site, which is present in most virulent and avirulent NDV strains. This 

finding does not agree with our current understanding that the number of basic amino acid 

residues at the F protein cleavage site determines the virulence of NDV. Therefore, this study 

was undertaken to examine the role of Q at the F protein cleavage site in NDV pathogenicity 

by using reverse genetics. We have also evaluated the role of V118 in conjunction with Q114 

in NDV pathogenesis. 
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4.4. Materials and Methods 

4.4.1. Cells and viruses.  

Chicken embryo fibroblast cell line (DF1) and human epidermoid 

carcinoma cell line (HEp-2) were grown in Dulbecco’s minimal essential 

medium (DMEM) with 10% fetal bovine serum (FBS) and maintained in 

DMEM with 5% FBS. The African green monkey kidney Vero cells were 

grown in Eagle’s minimal essential medium (EMEM) containing 10% FBS 

and maintained in EMEM with 5% FBS. The modified vaccinia virus strain 

Ankara (MVA) expressing T7 RNA polymerase was kindly provided by Dr. 

Bernard Moss  (NIH, Bethesda, MD) and propagated in primary chicken 

embryo fibroblast cells in DMEM with 2% FBS. The moderately pathogenic 

(mesogenic) NDV strain Beaudette C (BC) and its recombinant derivatives 

were grown in 9-day-old embryonated specific-pathogen-free (SPF) chicken 

eggs in an enhanced BSL-3 containment facility certified by the USDA 

following the guidelines of IACUC, University of Maryland. After 2 days, the 

allantoic fluid was harvested and the virus was plaque purified using our 

standard procedure (Krishnamurthy et al., 2000).   

4.4.2 Construction of plasmids and recovery of mutant viruses 

The construction of plasmid pNDVfl carrying the full length 

antigenome cDNA of the NDV strain BC has been described previously 

(Krishnamurthy et al., 2000). In the present study, four NDV F cleavage site 

mutation clones were constructed as described in Table 4. Site-directed 
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mutagenesis was used to introduce individual amino acid substitutions into a 

cDNA of the F gene of mesogenic NDV strain Beaudette C (BC). The F gene 

of full length cDNA clone on BC antigenome was then replaced with each 

mutagenized F gene. These clones were transfected into HEp-2 cells, and 

mutant viruses were recovered as previously described (Krishnamurthy et al., 

2000). These viruses were designated as rNDV-Q114R, I118V (112R-R-R-K-

R↓F-V118), rNDV-Q114R, K115R, I118V (112R-R-R-R-R↓F-V118).  rNDV-

Q114R (112R-R-R-K-R↓F-I118),rNDV-Q114R, K115R (112R-R-R-R-R↓F-I118) 

and The F genes from recovered viruses were sequenced which confirmed the 

presence of each introduced mutation and the lack of adventitious mutations in 

the F gene. To determine the stability of each F mutation, the recovered 

viruses were plaque purified and passaged five times in 9-day-old 

embryonated chicken eggs. Sequence analysis of the F gene in the mutant 

viruses after five passages showed that the introduced mutations were 

unaltered. All infectious virus research was performed in our USDA approved 

enhanced biosafety level 3 (BSL-3+) containment facility. 

4.4.3 Surface expression of mutant F proteins 

The surface expression of F protein of each mutant virus was 

determined by Flow cytometry in infected chicken embryo fibroblast (DF1) 

cells and was found similar to that of wild type BC virus (rNDV) (Table. 4). 

Briefly, DF1 cells were infected with each recombinant virus at an MOI of 0.1. 

After 24 h the cells were detached with PBS containing 5 mM EDTA and 

centrifuged at 500 × g for 5 min at 4 °C. Cells were then incubated with the 
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NDV anti-FNterm specific antibodies (1:10 dilution) for 30 min at 4 °C. 

Subsequently, cells were washed with PBS, and incubated for 30 min on ice 

with 1: 500 diluted Alexa Fluor 488 conjugated goat anti rabbit 

immunoglobulin G antibodies. Cells were analyzed by using a FACSRIA II 

apparatus and Flowjo software (Becton Dickinson Biosciences). 

  4.4.4 Pulse-chase experiment 

DF1 cells were infected at a MOI of 10 for 24 h at 370C. Cells were 

washed and incubated in medium lacking methionine and cysteine for 1 h. 

Infected cells were pulse labeled with 100µCi of EXPRESS35S (Perkin Elmer) 

for 30 min and then chased in nonradioactive medium containing excess 

methionine and cysteine for 0, 30, 60 and 90 min. Equal amounts of cell 

lysates were immunoprecipitated with polyclonal antiserum against the 

cytoplasmic tail of NDV F protein followed by incubation with 

Staphylococcus aureus protein A. The precipitated proteins were analyzed by 

10% SDS-PAGE in the presence of reducing agent and labeled proteins were 

visualized by autoradiography.  

4.4.5. Growth kinetics of mutant viruses 

The growth kinetics of mutant viruses were evaluated by multiple-step 

growth assays. DF1 cells in duplicate wells of six-well plates were infected 

with each virus at an MOI of 0.01. After 1 hour of adsorption, the cells were 

washed with PBS and overlaid with DMEM containing 2% FBS at 37°C. 

Supernatant was collected and replaced with an equal volume of fresh medium 

every 8-h intervals until 64-h PI. The titer of virus in the sample was 
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quantified by plaque assay on DF1 cells. All plaque assays were performed in 

six-well plates. Briefly, monolayers of DF1 cells were infected with 0.2 ml of 

10-fold-diluted fresh virus infected allantoic fluid. After 1 h of adsorption, 

cells were covered with DMEM containing 2% FBS and 0.8% methylcellulose 

and then incubated at 37°C. Six days later, the cells were fixed with methanol 

and stained with crystal violet.  

4.4.6 Pathogenicity studies 

The pathogenicity of the N-glycosylation mutant viruses was 

determined by the intracerebral pathogenicity index (ICPI) test in 1-day-old 

chicks (Alexander, 1997), intracerebral growth kinetics in 1 day-old-chickens 

and by natural route of infection in 1-day-old chicks. For growth kinetics in 

brain of groups of 10 one-day-old chicks were inoculated intracerebrally with 

103 PFU of virus/chick. Two birds were sacrificed each day after infection; 

brains were collected and homogenized, and virus titrated by plaque assay in 

DF1 cells. For pathogenicity test of wild type and F protein cleavage site 

mutants of NDV in one-day-old chicks inoculated via intra-nasal and intra-

ocular route. Groups of five one-day old chicks were inoculated with 106 PFU 

of virus per bird and observed daily for signs of disease and mortality for 8 

days. 

4.5 Results 
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4.5.1 Generation of recombinant NDV mutants containing cleavage site 

mutations.  

Previously, recovery of recombinant NDV from an infectious cDNA 

clone (pNDVfl) derived from a mesogenic strain of NDV, BC, was reported 

from our laboratory (Krishnamurthy et al., 2000). In this study, the established 

reverse genetics system was used to determine the role of conserved 

glutamine on the biological activities of NDV. To achieve this goal, the PacI-

MluI subclone containing the F gene derived from the full-length clone of BC 

(pNDVfl) was mutated by site-directed mutagenesis as described in Table.4. 

To ensure the presence of the introduced mutations, the entire F cDNA clone 

was sequenced. Recombinant viruses expressing wild-type and mutant viruses 

were recovered by transfection of HEp-2 cells with full-length mutant F 

cDNA clones and support plasmids and amplification of viruses in DF1 cells. 

Recovered viruses were subjected to RT-PCR, and the F genes were 

sequenced in their entirety to confirm the presence of the introduced 

mutations. To determine the stability of each F mutation, the recovered 

viruses were passaged five times in 9- to 11-day-old embryonated chicken 

eggs and the sequence of the F gene was determined in viruses recovered at 

each passage level. These sequence analyses showed that the introduced HN 

mutations were unaltered, even after five egg passages. 

4.5.2 Cell surface expression and cleavage processivity of the F proteins of 

mutant viruses 
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The surface expression of F protein of each mutant virus was 

determined by Flow cytometry in infected chicken embryo fibroblast (DF1) 

cells and was found similar to that of wild type BC virus (rNDV) (Table. 4). 

The cell surface expressions of the mutant viruses were found to be similar to 

that of the wild type viruses. 

To determine the F protein processivity by intracellular host cell 

proteases, we infected the DF1 cells with rNDV and cleavage site mutants for 

24 h at a MOI of 10. The infected cells were labeled with a mixture of [35S] 

methionine and [35S] cysteine for 30 min (pulse) and were incubated for 

different times (chase) to allow the proteins to be processed. The cells were 

lysed and F proteins were immunoprecipitated, separated by 10% SDS-PAGE 

and subjected to autoradiography (Fig.13A & 13B). The pulse-chase analysis 

revealed that after 30 min pulse both uncleaved precursor F0 and cleaved F1 

were detected in both wild type and mutant viruses (0 min chase). In case of 

wild type rNDV, after 60 min of chase period all the F0 proteins were 

processed completely (100%) into F1-F2 subunit. In contrast, F0 proteins of 

cleavage site mutants remained incompletely cleaved even after 90 min chase, 

suggesting slow processivity of the cleavage site mutants F0 protein by host 

cell proteases. 

 4.5.3 Cleavage site mutants showed slower growth rate in DF1 cells 

To determine the in vitro growth characteristics of recombinant F 

mutant viruses, we performed mutlicycle growth kinetics in DF1 cells. The  
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Table 4.  NDV F protein cleavage site mutants, surface expression of F protein cleavage site 

mutants of NDV, pathogenicity of F protein cleavage site mutants of NDV. 

Viruses Amino acid sequences at the 

cleavage site of F protein
▲

 

112  113  114  115  116  117  118 

Cell surface 

expression
£
 

 

ICPI score
▼

 

 

rNDV    R      R      Q     K      R     F      I 100.00 1.58 

rNDV-Q114R,I118V    R      R      R     K      R     F     V 99.8 ± 1.5 1.33 

rNDV-Q114R,K115R,I118V    R      R      R     R      R     F     V 99.7 ± 2.2 1.37 

rNDV-Q114R    R      R      R     K      R     F      I 99.6 ± 4.1 1.33 

rNDV-Q114R,K115R    R      R      R     R      R     F      I 100 ± 1.2 1.36 

▲Location of F protein cleavage site mutations. Shown at the top is the wild type mesogenic 

strain BC (rNDV) virulent cleavage site amino acids position. The amino acid changes in the 

mutants are in boldface and underlined. The mutant viruses generated from rNDV are 

(rNDV-Q114R,I118V), (rNDV-Q114R,K115R,I118V), (rNDV-Q114R), (rNDV-

Q114R,K115R). Cleavage site is indicated as arrow. 

£ Shown are the cell surface expression levels of F protein of cleavage site mutants relative to 

the level of the rNDV . Expression of the F protein was quantitated by flow cytometry using 

NDV-FNterm specific antibodies. All values are averages ± standard deviations of three 

independent experiments P<0.05. 

▼The virulence of the mutant and wild type viruses was evaluated by ICPI in 10 1-day-old 

chicks. ICPI score= [(total number of sick chickens x1) + (total number of dead chickens x 

2)]/80 observations. P<0.05 
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Figure 13A. Proteolytic processivity of F0 proteins of wild type BC and cleavage site 

mutants.  Proteolytic processivity of F0 protein was determined by pulse-chase radio labeling 

and immunoprecipitation. The precipitated proteins were analyzed by 10% SDS-PAGE in the 

presence of reducing agent and labeled proteins were visualized by autoradiography. 
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Figure 13B.  Panel.13A  was  scanned  and  amount  of  F0  and  F1  proteins  were  

quantified  by densitometry (using Adobe photoshop program). The amount of F1 protein as a 

percentage of total F protein (F1 plus F0) was calculated to yield the percentage of cleavage.   
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results showed that each of the F cleavage site mutant viruses had delayed 

growth compared to rNDV (Fig.14). The mutants (rNDV-Q114R, I118V) and 

(rNDV-Q114R, K115R, I118V) had 1.5-2.0 log lower virus yield and the 

mutants (rNDV-Q114R) and (rNDV-Q114R, K115R) had 1.0 log lower virus 

yield as compared to rNDV at 32 h post infection (PI).Even after 64 h PI, the 

yield of cleavage site mutant viruses showed delayed growth than that of the 

rNDV. The virus titers of cleavage site mutant viruses from 8 h to 32 h PI 

were significantly different than that of the wild type virus (P<0.05). These 

results showed that not only the change of Q to R at position 114 decreased 

the replication of NDV but also the change of V to I at position 118 further 

decreased the replication of NDV. Further, K115R mutation did not appear to 

have an effect on the replication rate (rNDV-Q114R, K115R) vs (rNDV-

Q114R) or (rNDV-Q114R, K115R, I118V) vs (rNDV-Q114R, I118V). 

  4.5.4 Pathogenecity studies of cleavage site mutants 

We evaluated the effect of these F cleavage site mutations in vivo by 

performing intracerebral pathogenicity index (ICPI) test in 1-day-old chicks 

(Alexander, 1989.). Each virus was inoculated intracerebrally into groups of 

10 one-day-old chicks. The birds were observed and scored for paralysis and 

death once every 12 h for 8 days, and ICPI values were calculated. The ICPI 

values of all the cleavage site mutants were significantly lower than that of 

rNDV (Table. 4). The day-old-chicks infected with rNDV showed signs of 

depression and paralysis at 24 h PI, whereas the day-old-chicks infected with 

cleavage site mutants showed the same signs at 48 h PI. To further compare  
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Figure 14. Multicycle growth kinetics of wild type mesogenic strain BC (rNDV) and F 

protein cleavage site mutants of NDV in chicken embryo fibroblast (DF1) cells. DF1 cells in 

six well plates were infected in duplicates with parental and mutant viruses at a multiplicity 

of infection (MOI) of 0.01. Supernatants were collected at 8 h intervals until 64 h post 

infection and virus titers were determined at each time points by plaque assay. Values are 

averages from three independent experiments. Error bar shows the standard deviation. 
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the replication of the mutant viruses in neuronal tissue, groups of 10 one-day-

old chicks were inoculated with 50 µl of phosphate buffer saline (PBS) 

containing 103 PFU of each mutant virus/chick via the intracerebral route.  

Two birds from each group were sacrificed every 12 h PI, and brain 

tissue samples were collected and snap-frozen on dry ice.The brain tissue 

samples were homogenized, and the virus titers in the tissue samples were 

determined by plaque assay in DF1 cells (Fig.15A). The cleavage site mutants 

exhibited marked decrease in their replication rate compared to rNDV. The 

mutant (rNDV-Q114R, K115R) had 1.0 log lower and (rNDV-Q114R, 

I118V), (rNDV-Q114R, K115R, I118V), (rNDV-Q114R) had 1.5-2.0 log 

lower virus yield compared to rNDV at 48 h PI. This result corroborated with 

our earlier in vitro results of slower growth replication rate of mutant viruses 

compared to rNDV in DF1 cells. To further evaluate the pathogenicity of 

cleavage site mutants through natural route of infection, groups of 5 one-day-

old chicks were infected by natural (oculonasal) route with 100 µL of PBS 

containing 106 PFU of each mutant virus per bird. The chicks in each group 

were observed for clinical signs of disease until 8 days PI and the survival 

percentage were calculated (Fig. 15B). All the birds inoculated with rNDV 

showed clinical signs of depression, watery greenish diarrhea, drooping wings 

on 2nd day PI and died by 4th day PI, whereas the cleavage site mutants 

exhibited the same clinical signs on 4th day PI. In case of mutants (rNDV-

Q114R, K115R, I118V), (rNDV-Q114R), (rNDV-Q114R, K115R) all the 

birds died by 7th day PI and in case of (rNDV-Q114R, I118V) all the birds  
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Figure. 15A. Growth kinetics of rNDV and and F protein cleavage site mutants of NDV in 

the brain of one-day old chicks. Groups of 10 one-day-old chicks were inoculated 

intracerebrally with 103 PFU of virus/chick. Two birds were sacrificed each day after 

infection; brains were collected and homogenized, and virus titrated by plaque assay in DF1 

cells. Virus titers are shown as log10PFU/gm of brain tissue. Values are averages from three 

independent experiments. Error bar shows the standard deviation. 
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Figure 15B. Pathogenicity of wild type and F protein cleavage site mutants of NDV in one-

day-old chicks inoculated via intra-nasal and intra-ocular route. Groups of five one-day old 

chicks were inoculated with 106 PFU of virus per bird and observed daily for signs of disease 

and mortality for 8 days. Percentage survival was calculated. 
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died by 8th day PI.  

4.6 Discussion 

In summary, we have examined the role of Q114 and I118 in the F protein cleavage 

site motif in NDV pathogenesis. The precursor envelope glycoprotein F0 of virulent strains of 

NDV are processed within the trans-Golgi network in mammalian cells to produce the 

disulphide linked F1-F2 active protein. The cleavage recognition sequence Basic-X-Basic-

Basic represents a preferred substrate for the cellular enzyme furin (Durell et al., 1997; 

Klenk, 1994.; Nagai et al., 1976; Ortmann et al., 1994). Structural modeling of human furin 

and the crystal structure of mouse furin suggested that the catalytic domain of furin is 

surrounded in and around with abundant negatively charged amino acids in the substrate 

binding region. This explains the stringent requirement of positively charged basic amino 

acid present in substrate for furin proteolytic activity (Henrich et al., 2003; Schechter and 

Berger, 1967). The profusely distributed negatively charged amino acids in the furin 

substrate binding pocket are supposedly ideal for proper electrostatic bond formation with 

positively charged amino acid residues present in substrate.  However, in our study, Q114R 

mutation reduced the viral pathogenicity. Furthermore, the attenuation is more pronounced in 

(rNDV-Q114R, I118V) and (rNDV-Q114R, K115R, I118V) which in addition to Q114R 

mutations also have I118V mutation. It should be noted that, in the hypothetical two 

dimensional model of furin substrate binding site domains, enzymatic sub-domain of furin 

which interacts with glutamine and also with valine, is not a distinct site and the substrate 

points away from the enzyme towards the solvent, whereas the enzyme sub-domains that 

interact with basic residues of viral substrates are very much distinct and form a well-defined 

pocket (Roebroek et al., 1994; Siezen et al., 1994).We proposed that the presence of a strong 
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positively charged amino acid R at position 114 in the NDV F cleavage site might be 

disturbing the conformational stability of furin binding site thus influencing the host cell 

enzyme activity. It could be one of the reasons that many viral glycoproteins like human 

immunodeficiency virus gp160 (QREKR↓AV), avian influenza virus A hemagglutinin 

(KREKR↓GL), sindbis virus gpE2 (GRSKR↓SV), human parainfluenza virus type 3 F0 

(PRTKR↓FF) , ebola virus Zaire strain envelope glycoprotein (RRTRR↓EA) which are 

processed by furin protease maintain a neutral or acidic amino acid in the X position of 

consensus R-X-(R/K)-R) furin cleavage site motif (Hallenberger et al., 1992; Klenk, 1994.; 

Nagai et al., 1976; Nakayama, 1997; Wool-Lewis and Bates, 1999). In addition, I118 might 

also be playing a role in conformational dependability and stability of furin protease for its 

processivity. It will be interesting to explore further the effect of conserved acidic or neutral 

amino acids flanking mono or dibasic residues in cleavage site motif in other viral 

glycoproteins where furin is the major proteolytic processor. Although it has been known that 

the presence of paired basic amino acids residues is a prerequisite for proteolytic processing 

and infectivity of F protein of paramyxoviruses; it was evident from our study that NDV also 

needs to maintain a neutral amino acid (Q) at conserved 114 residual sites for efficient 

proteolytic processing by host cell proteases. The observation that substitution of V118 along 

with Q114 further attenuates the virus indicates the dependence of proteolytic activation on 

the overall catalytic domain structure. Our present study gives a new insight in understanding 

how NDV maintains a conserved residue for effective proteolytic processing of F 

glycoprotein thus modulating pathogenesis. In future the role of Q114 and V118 can be 

further exploited to produce a safe live attenuated vaccine. 
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Chapter 5 

 

5.1 Title 

 

 Mutations in the cytoplasmic domain of the Newcastle Disease Virus Fusion Protein   

confer hyperfusogenic phenotypes modulating viral replication and pathogenicity 

 

5.2 Abstract 

 

The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and 

hosts cell membranes and is a major determinant of NDV pathogenicity. The cytoplasmic tail 

(CT) of the NDV F protein is 31 residues long (amino acid 523 to 553), and studies with 

transfected plasmids have indicated the role of F CT in fusion. In the present study, we used 

reverse genetics to investigate the effects of mutations in the F protein CT in the context of 

complete infectious virus, using the moderately pathogenic NDV strain Beaudette C (BC). 

Out of a series of progressively longer C-terminal deletions in the CT, we were able to rescue 

recombinant viruses lacking two or four residues (r∆2 and r∆4). We further generated and 

rescued mutants with individual amino acid substitutions at each of these four terminal 

residues (rM553A, rK552A, rT551A, rT550A). In addition, the NDV F CT has two 

conserved tyrosines (Y524 and Y527) residues and a di-leucine motif at position 536-537 

(LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity 

and are central element in basolateral targeting signals thus modulating viral pathogenesis. 

We successfully rescued recombinant viruses with substitution of tyrosine residue (rY524A 
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and rY527A), but could not recover virus with mutations in the di-leucine motif. With the 

exception of one mutant (rT550A) that closely resembled wild-type virus (rWT), rest of these 

mutant viruses exhibited increased cell surface expression of the F protein, were 

hyperfusogenic, and had increased replication and increased pathogenicity in 9-day-old 

embryonated chicken eggs, 1-day-old chicks, and 2-week-old chickens. We conclude that 

these residues in the F CT have the effect of down-regulating fusion and virulence. These 

mutations may assist in the development of NDV as a vaccine vector and as an oncolytic 

agent. 

 

5.3 Introduction 

 Newcastle disease virus (NDV) is a highly prevalent avian pathogen that infects 

essentially all species of birds and is of major economic importance to the poultry industry 

(Alexander, 2000; Samal, 2011b). The disease varies in degree of severity, ranging from an 

inapparent infection to outbreaks of severe respiratory and neurologic disease that can have 

100% mortality. NDV belongs to the genus Avulavirus within the family Paramyxovirdae, a 

family of enveloped, non-segmented, negative sense RNA viruses (Lamb, 2001). The entry 

and spread of Paramyxoviruses was regulated by two viral surface glycoproteins HN and F 

(Chen et al., 2001; Iorio et al., 2001). HN mediates viral attachment by binding to sialic acid 

cellular receptors, an activity that also promotes membrane fusion mediated by F (Crennell et 

al., 2000; Yuan et al., 2011). The F protein mediates pH-independent fusion of the viral 

membrane with the host cell plasma membrane, resulting in viral penetration, and also 

mediates fusion of the membranes of adjacent cells to form syncytia (Baker et al., 1999). 
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Fusion involves a series of major coordinated conformational changes in the F protein that 

bring together and merge the opposing membranes (Chen et al., 2001; Lamb, 1993b). 

 The NDV F protein is synthesized as an inactive precursor F0 (66 kDa) that is cleaved 

post-translationally by host cell proteases into two disulfide-linked subunits, N-terminal F2 

and C-terminal F1 (Morrison, 2003; Nagai et al., 1989). The NDV F protein is a class I fusion 

protein that has structural and functional characteristics that are highly related to those of the 

F proteins of other paramyxoviruses including parainfluenza type 5 (PIV5),measles virus, 

respiratory syncytial virus (RSV), and Nipah and Hendra viruses, and also has general 

similarity to gp41 of human immunodeficiency type 1 virus (HIV), the hemagglutinin (HA) 

of influenza virus, and GP2 of Ebola virus (Baker et al., 1999; Carr and Kim, 1993; Collins 

and Mottet, 1991; Dutch, 2010; Joshi et al., 1998; Weissenhorn et al., 1998; Zhu et al., 2002). 

 Several reports on virus type I fusion glycoproteins (retrovirus, lentivirus, herpes 

virus, and other paramyxoviruses) have indicated the role of the cytoplasmic tail (CT) in 

regulating viral entry and facilitating conformational changes that can affect F protein 

cleavage and fusogenicity (Aguilar et al., 2007; Bagai and Lamb, 1996; Emerson et al., 2010; 

Fan et al., 2002; Neyt et al., 1989; Oomens et al., 2006; Saha et al., 2005; Tong et al., 2002; 

Vzorov et al., 2007; Yao and Compans, 1995). In recent years, tyrosine-containing signals, 

especially Y-X-X-aliphatic/aromatic consensus motifs, in the CT of viral membrane proteins 

have been also found to be associated with targeted protein delivery (Ball et al., 1997; 

Brewer and Roth, 1991; Weise et al., 2010). A second type of signal, a di-leucine (LL) motif, 

has similarly been shown to mediate processes including internalization and targeting to 

intracellular compartments and to the basolateral surface of polarized epithelial cells (Bello et 

al., 2001; Hunziker and Fumey, 1994). Mutagenesis of tyrosine and di-leucine motifs in the 
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CT of several viral envelope glycoproteins provided evidence that they can affect fusion and 

infectivity (Dylla et al., 2008; Javier, 2008; Runkler et al., 2009).  

 The NDV fusion protein CT is 31 amino acids long (amino acid positions 523 to 553, 

Fig. 15A) that is highly conserved among different strains of NDV (de Leeuw and Peeters, 

1999; Dolganiuc et al., 2003; Krishnamurthy et al., 2000; Paldurai et al., 2010). It has been 

previously reported that deletions in the NDV F CT greatly reduced syncytia formation 

(Sergel and Morrison, 1995). In the present study we have demonstrated the possible effects 

on CT of F protein in NDV infectivity, spread, and pathogenicity. In addition, the NDV F 

protein CT has tyrosine residues at positions 524 and 527 and a di-leucine motif at 536-537, 

and their possible roles in fusion and viral pathogenicity were not known. We have further 

investigated the potential role(s) of the tyrosine and di-leucine motifs in CT in viral 

replication and pathogenicity. Using reverse genetics, we rescued eight NDV mutant viruses 

with truncation or point mutations in the CT involving conserved signals or possible motifs. 

The mutant viruses were characterized for intracellular processing,surface expression of F, 

membrane fusion and replication in vitro and in vivo in 1-day-old chicks and 2-week old 

chickens. Our results showed that truncation of C-terminal amino acids and substitution of 

CT tyrosine residues in F protein resulted in hyperfusogenic phenotypes with increased 

spread and pathogenicity in chickens. 

 

5.4 Material and Methods 

  5.4.1 Cells and viruses. 

The chicken embryo fibroblast DF1 cell line and human epidermoid 

carcinoma HEp-2 cell line were grown in Dulbecco’s minimal essential 
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medium (DMEM) with 10% fetal bovine serum (FBS) and maintained in 

DMEM with 5% FBS. The African green monkey kidney Vero cell line was 

grown in Eagle’s minimal essential medium (EMEM) containing 10% FBS 

and maintained in EMEM with 5% FBS. The modified vaccinia virus strain 

Ankara (MVA) expressing T7 RNA polymerase was kindly provided by Dr. 

Bernard Moss (NIAID, Bethesda, MD) and propagated in primary chicken 

embryo fibroblast cells in DMEM with 5% FBS. The moderately pathogenic 

(mesogenic) NDV strain Beaudette C (BC) and its recombinant derivatives 

were grown in 9-day-old embryonated specific-pathogen-free (SPF) chicken 

eggs in an enhanced BSL-3 containment facility certified by the USDA 

following the guidelines of IACUC, University of Maryland. After 2 days, the 

allantoic fluid was harvested and the virus was plaque purified using our 

standard procedure (Krishnamurthy et al., 2000). Virus stocks were grown in 

9-day –old embryonated eggs, as above, and titers were determined by plaque 

assay.   

 

5.4.2 Construction of plasmids  

The construction of plasmid pNDVfl carrying the full-length 

antigenome cDNA of NDV strain BC has been described previously 

(Krishnamurthy et al., 2000). The mutations that were introduced into the F 

protein CT are summarized in Fig.16. Their introduction was facilitated by the 

presence of the unique restriction enzyme sites PacI and AgeI located in the 

untranslated regions (UTRs) flanking the F and HN ORFs in the NDV cDNA. 
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The Pac I-Age I fragment containing the F-HN gene was mutagenized with 

primers containing the desired mutations. The overlapping PCR was used to 

generate the ~ 4kb PacI-AgeI fragment containing the desired mutation, which 

was cloned into TOPO®-XL vector (Invitrogen, USA). The inserts bearing the 

desired mutation were cloned into the full-length antigenomic cDNA of strain 

BC. The rule of six was maintained in all of the mutants. All mutant F cDNAs 

were sequenced in their entirety to confirm the presence of the desired 

mutations.  

  

5.4.3 Recovery of mutant viruses  

Plasmid transfection and recovery of recombinant NDV mutants were 

performed as described previously (Krishnamurthy et al., 2000). Briefly, HEp-

2 cells were transfected with three plasmids individually encoding the N, P, 

and L proteins (3.0 µg, 2.0 µg, and 1.0 µg per single well of a six-well dish, 

respectively) and a fourth plasmid encoding the full-length antigenome (5.0 

µg) using Lipofectamine (Invitrogen, Carlsbad, CA) and simultaneously 

infected with vaccinia MVA expressing T7 RNA polymerase at a multiplicity 

of infection (MOI) of 1 PFU/cell. Two days after transfection, the cell culture 

medium supernatant was harvested and inoculated into the allantoic cavities of 

9-day-old SPF embryonated chicken eggs. Recovery of the virus was 

confirmed by hemagglutination assay using 1% chicken red blood cells 

(RBCs). The sequences of the F and HN genes in the recovered chimeric 

viruses were confirmed by RT-PCR and nucleotide sequencing. In cases 
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where virus was not recovered, at least three independent transfections were 

performed in parallel with the wild type (WT) cDNA as a positive control 

before considering the construct negative for virus recovery. To assay genetic 

stability, the recovered CT mutant viruses were passaged in 9-day-old SPF 

chicken embryos for five times. From each passage total RNAs were isolated 

from NDV-infected allantoic fluid of 9-day-old SPF chicken embryos, using 

TRIzol reagent (Invitrogen, USA). Reverse transcription-PCR (RT-PCR) was 

performed using the Thermoscript RT-PCR kit (Invitrogen) with specific 

forward and reverse primers to amplify the F gene. The amplified cDNA 

fragments were then sequenced using the BigDye® Terminator v3.1 cycle 

sequencing kit (Applied Biosystems Inc, USA) in ABI 3130xl genetic 

analyzer to confirm the presence of the introduced mutations in the recovered 

viruses. The HN gene from each recovered virus was also sequenced with 

available primers from our laboratory. 

 

5.4.4 Metabolic labeling and immunoprecipitation. 

Vero cells in 6-well plates infected with rWT and the CT mutant 

viruses at an MOI of 1.0 and incubated at 370C. At 24 h post infection (PI), 

the cells were starved for 1 h in Met- and Cys-free DMEM and then were 

labeled with 100µCi per ml per well of a mixture of [35S] methionine and 

cysteine for 30 min (pulse), washed, and incubated for 45 min in complete 

medium (chase). The cells were lysed using RIPA buffer (Tris 50mM, Nacl 

150mM, SDS 0.1%, Na.Deoxycholate 0.5%, Triton X100 1%, 1mM PMSF) 
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and the F proteins were immunoprecipitated using rabbit anti-Fcyt antiserum 

(raised against a 30-amino acid synthetic peptide representing amino acids 

524-553 of the F protein, representing nearly the complete CT) as described 

previously (Samal et al., 2011). The precipitated proteins were denatured and 

reduced, separated by 10% SDS-PAGE, and subjected to autoradiography.  

 

5.4.5 Cell surface expression of the CT mutant viruses.  

Cell surface expression of the F proteins of the CT mutant viruses was 

quantified by flow cytometry. Briefly, DF1 cells were infected with each 

mutant virus at an MOI of 0.1. After 24 h the cells were detached with PBS 

containing 5 mM EDTA and centrifuged at 500 × g for 5 min at 4°C. Cells 

were then incubated with rabbit anti-FNterm antiserum (1:10 dilution) for 

30 min at 4°C. This antiserum was raised against two synthetic peptides 

representing F amino acids 27-36 and 67-76, as previously described (Samal 

et al., 2011). Subsequently, cells were washed 3 times with phosphate-

buffered saline (PBS), and incubated for 30 min on ice with 1: 500 diluted 

Alexa Fluor 488 conjugated goat anti rabbit immunoglobulin G antibodies. 

Cells were analyzed by using a FACSRIA II apparatus and Flowjo software 

(Becton Dickinson Biosciences). 

 

5.4.6 Fusion assay of the CT mutant viruses 

Syncytia formation was quantified as described by Kohn (Kohn, 

1965).  Briefly, Vero cells in 6-well plates were infected with each virus at an  
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Figure 16. Schematic diagram of the NDV F protein, and mutations that were introduced 

into the CT. Linear diagram of the NDV F protein, and sequences of the intact WT CT and of 

progressive deletion mutations (∆). Grey boxes: heavy shading, fusion peptide; intermediate 

shading, heptad repeats (HR); light shading, transmembrane (TM) domain. Sequences of 

amino acid point mutations; alanine substitutions are in bold.  
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MOI of 0.1. Cells were maintained in 5% MEM at 37°C under 5% CO2. 

Twenty-four h PI, the medium was removed and the cells were washed with 

PBS, fixed with methanol for 20 min at room temperature, and stained with 

hematoxylin-eosin. The fusion index of each mutant virus was calculated by 

observing 10 fields per well in duplicate. The fusion index is the ratio of the 

total number of nuclei to the number of cells in which these nuclei are present 

(i.e., the mean number of nuclei per cell).  

 

5.4.7 Multi-cycle growth in DF1 cells 

DF1 cells in duplicate wells of six-well plates were infected with each 

virus at an MOI of 0.01. After 1 h of adsorption, the cells were washed with 

PBS and overlaid with DMEM containing 5% FBS at 37°C. The medium was 

collected and replaced with an equal volume of fresh medium at 8-h intervals 

until 64 h PI. Virus titers were quantified by plaque assay on DF1 cells.  

 

5.4.8 Mean death time (MDT) and intracerebral pathogenicity index 

(ICPI) 

The pathogenicity of the F cytoplasmic mutant viruses was determined 

by the MDT test in 9-day-old embryonated chicken eggs and the ICPI test in 

1-day-old SPF chicks. The MDT is the mean time in h for the minimum lethal 

dose to kill all inoculated embryos. The definitions for the NDV pathotypes 

based on MDT are: <60 h, velogenic strains; 60 to 90 h, mesogenic strains; 

and >90 h, lentogenic strains. For the ICPI test, 0.05 ml of a 1:10 dilution of 
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fresh infective allantoic fluid of each virus was inoculated into groups of 10 1-

day-old SPF chicks via the intracerebral route. The birds were observed for 

clinical symptoms and mortality once every 8 h for a period of 8 days. The 

ICPI is the mean score per bird per observation over the 8-day period. Highly 

virulent velogenic viruses give values approaching 2, and lentogenic strains 

give values close to 0. 

 

5.4.9 Replication and pathogenicity in 2-week-old chickens 

To determine the ability of rWT and the CT mutant viruses to replicate 

in 2-weeks-old chicken, SPF chicks in groups of 10 were inoculated with 106 

PFU in 200 µl per bird of each virus via the occulonasal route (50µl in each 

nare and eye). The birds were observed daily for clinical signs of disease until 

14 days PI. To evaluate tropism and viral spread, 3 birds per group were 

sacrificed on day 3 PI and selected organs (brain, trachea, lungs, gut and 

spleen) were collected. The virus titers in these organs were determined by 

TCID50 measurement. 

 

5.5 Results 

5.5.1 Construction and recovery of F cytoplasmic tail (CT) mutant 

viruses. 

Syncytium formation is the hallmark of paramyxovirus cytopathology 

(Hernandez et al., 1996; Horvath et al., 1992; Lamb, 1993b).  It was shown 

earlier that truncations in the CT of the NDV F protein were inhibitory to 
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membrane fusion (Sergel and Morrison, 1995). In that study, progressive 

truncations in the CT indicated that a 10-amino-acid stretch between amino 

acids 540 to 550 was important for syncytium formation. In the present study, 

we created constructs with mutations in the NDV F protein CT using a cDNA 

encoding the full-length antigenome cDNA of the moderately virulent 

(mesogenic) NDV strain BC, with the rule of six maintained (Krishnamurthy 

et al., 2000). All mutant F cDNAs were sequenced in their entirety to confirm 

the presence of the desired mutations. Transfection and recovery of 

recombinant NDV mutants was performed as described previously 

(Krishnamurthy et al., 2000). Six mutants were constructed involving 

progressive deletion of 2, 4, 6, 12, 18, or 30 amino acids from the C-terminus 

(Fig. 16). However, of these six mutants, viable virus could be recovered two, 

namely the 2- and 4-amino-acid deletions (r∆2 and r∆4, respectively). This 

implied that deletion of 6 amino acids or more from the CT was lethal for the 

production of infectious NDV. Since the C-terminal 4 amino acids of the CT 

were dispensable for virus replication, we constructed four more mutants in 

which these 4 residues were individually replaced by alanine.We were able to 

recover all four of these mutants, designated rM553A, rK552A, rT551A, 

rT550A.   

The NDV F protein CT contains two tyrosine residues (Y) at positions 

524 and 527 and one di-leucine (LL) motif at positions 536-537.  To 

investigate possible roles of these Y- and LL- motifs in regulating NDV 

fusion, we mutated each of the two tyrosine residues singly to alanine, and 
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mutated the di-leucine to di-alanine (Fig.16). We were able to rescue only the 

two viruses with substitution of tyrosine to alanine (rY524A and rY527A).  

The failure to recover the LL-motif mutant suggests that this motif is essential 

for viral viability. For each of the 8 recovered mutants, the presence of the 

introduced mutations in the recovered virus was confirmed by RT-PCR and 

sequence analysis of each F gene (data not shown). The HN gene of each 

mutant virus also was sequenced, and no adventitious mutations were detected 

in either F or HN gene. To determine the genetic stability of each F gene 

mutation, the recovered viruses were plaque purified and passaged five times 

in 9-day old SPF embryonated chicken eggs.  

 

5.5.2 Intracellular processing and cell surface expression of the F proteins 

of the CT mutant viruses 

In order to investigate the effects of CT deletions and point mutations 

on F protein synthesis and processing, the rWT and mutant CT viruses were 

used to infect DF1 chicken embryo cells. Twenty-four h PI, the cells were 

incubated for 30 min with [35S] methionine and cysteine in medium deficient 

in both amino acids, followed by washing and an additional 45-min incubation 

in complete unlabeled medium. Following lysis of the cells, the glycoproteins 

in the cell lysates were immunoprecipitated with anti-Fcyt rabbit antiserum 

and resolved by SDS-PAGE.  
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Figure 17. Analysis of the F proteins of the CT mutants by immunoprecipitation and SDS-

PAGE. Vero cells were infected with rWT and the CT mutant viruses at an MOI of 1.0. 

Twenty-four hours PI the cells were starved for methionine and cysteine for 1 h, 

metabolically labeled with [35S] methionine and cysteine for 30 min, and incubated in 

complete medium for 45 min. Cell lysates were prepared and subjected to 

immunoprecipitation using rabbit anti-Fcyt antiserum. The samples were denatured and 

reduced and subjected to SDS-PAGE on a 10% polyacrylamide gel followed by 

autoradiography. 
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under denaturing and reducing conditions, and visualized by autoradiography 

(Fig. 17). The F protein of each of the mutant viruses was expressed and 

cleaved efficiently, indicating normal intracellular transport. Note that, 

because the antiserum used in this experiment was specific to the CT, it was 

very possible that some of the mutations in the CT affected the efficiency of 

immunoprecipitation with this antiserum: thus, while all of the mutant F 

proteins reacted efficiently with this antiserum, this experiment could not be 

used to compare levels of expression. 

The relative levels of expression of the F CT mutant viruses were 

measured by flow cytometric analysis of DF1-infected cells using anti-

FNterm rabbit antiserum. The results showed that the efficiency of infection 

under these conditions, measured by the percentage of cells expressing F 

protein on the cell surface, was indistinguishable for rWT and the CT mutant 

viruses. However, the level of F protein expression per cell, measured by 

mean fluorescence intensity, varied considerably (Table 5). The rT550A virus 

was indistinguishable from rWT, but the other CT mutants exhibited levels of 

F protein expression that exceeded that of rWT by 16% to 62%, depending on 

the mutant. The highest levels of expression were observed with the two 

tyrosine mutants, rY527A and rY524A (62% and 51% increases, 

respectively), followed by the two deletion mutants, r∆2 and r∆4 (48% and 

27%), followed by the four viruses with point mutations in the last 4 amino 

acids of the CT, rT551A (26%), rM553A (24%), rK552A (16%), and rT550 
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(no increase compared to rWT). These results confirmed that all the CT 

mutant F proteins retained the ability to be synthesized and transported 

efficiently to the cell surface, and indeed showed that most of the mutants did 

so more efficiently than rWT. 

 

5.5.3. Fusion activity and CPE of the CT mutant viruses in Vero cells 

To investigate possible effect of the CT mutations on the fusion 

activity of F protein, Vero cells were infected with the mutant viruses at an 

MOI of 0.1 and, at 24 h PI, the cells were fixed and stained with hematoxylin-

eosin and examined microscopically to quantify the percentage of nuclei 

involved in syncytia formation as the fusion index (Fig. 18A). All mutant 

viruses exhibited increased (13% to 48% higher) fusion indices compared to 

the rWT virus with the exception of the rT550A mutant, which was essentially 

identical to rWT, and the rT551A mutant, which was only marginally 

increased. The most efficient fusion was observed with the rY527A and 

rY524A mutants (48% and 36% increase, respectively, compared to rWT), 

which is consistent with these mutants having the highest levels of surface 

expression of the F protein (Table 5). Substantial increases also were observed 

with the r∆2 and r∆4 mutants (27% and 13%), consistent with the observed 

substantial increases in F protein surface expression for these mutants. The 

rM553A and rK552A mutants also exhibited substantial increases in fusion  
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Table  5. Cell surface expression of the F proteins of CT mutant viruses  

Viruses % of positive cells  ± SD 

        

Relative mean fluorescence 

intensity 

rWT 
 

99±2.4 1.00 

r∆2 
 

99±2.0 1.48 

r∆4 
 

99±2.2 1.27 

rM553A 
 

98±3.5 1.24 

rK552A 
 

95±1.4 1.16 

rT551A 
 

99±1.2 1.26 

rT550A 
 

99±3.0 1.00 
 

rY524A                       100±3.4 1.51 
 

rY527A 99±1.7 1.62 
 

None (Mock infected cells) 
 

 0.01 

 

Cell surface expression of the F protein was determined by flow cytometry. DF1 cells were 

infected with each mutant virus at an MOI of 0.1. Surface expression of the F proteins was 

assessed by flow cytometry at 24 hr PI with a cocktail of anti-FNterm antibody followed by 

anti-rabbit Alexa Fluor 488 conjugated antibodies. Surface immunofluorescence was 

quantitated by FACS analysis. Uninfected DF1 cells were used as negative controls. Values 

shown are averages of results from three independent experiments. SD;standard deviation 

(P<0.05). 
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Figure 18A. Comparison of the fusogenicity and CPE of rWT and the CT mutant viruses in 

Vero cells. Relative levels of fusion obtained for the CT mutants compared to rWT. Vero 

cells were infected with the indicated viruses at an MOI of 0.1, fixed at 24 h PI, and stained 

with hematoxylin-eosin. The fusion index was calculated as the ratio of the total number of 

nuclei in multinuclear cells to the total number of nuclei in the field. 10 fields were counted 

per condition. Fusion levels were normalized to WT at 100%. Data shown are averages ± 

standard errors from three independent experiments. 
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Figure 18B. Photomicrographs of cells infected and treated as in (Fig.18A), except that the 

cells were fixed 36 h post-infection.  
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activity (32% and 27%) that were proportionately somewhat greater than the 

observed increases in F protein surface expression (Table 5).  

The CPE caused by rWT and the CT mutant viruses in Vero cells was 

evaluated  following infection at an MOI of 0.1. The rY524A and rY527A 

viruses produced the most extensive CPE, with detachment of cells at 36 h PI. 

The r∆2, r∆4, r553A, and r552A viruses also produced more CPE than the 

rWT virus, whereas the rT550A and rT551A were similar to rWT. Fig. 18B 

shows photomicrographs of cells that were fixed 36 h post-infection and 

stained with hematoxylin-eosin.  

 

5.5.4. Multicycle growth and CPE of the CT mutant viruses in DF1 cells 

The multi-step growth kinetics and magnitude of replication of the CT 

mutant viruses were determined in DF1 cells (Fig.19). All of the viruses 

replicated exponentially until ~40 h PI, after which replication was at a 

plateau. The magnitude of replication was similar for rWT and the rT550A 

and rT551A viruses, but was substantially higher for the other CT mutant 

viruses. The highest viral titers were seen with the tyrosine mutant viruses 

rY524A and rY527A, followed closely by the r∆2, rM553A, rK552, and r∆4 

viruses. For example, the titer of the rY527 virus was 1.0 log10 higher 

compared to rWT at 16 h PI and 2.0 log10 higher compared to rWT at 40 h PI. 

The CPE associated with the CT mutant viruses in DF1 cells was evaluated 

following infection at an MOI of 0.1 PFU/cell. The mutant viruses (r∆2, r∆4, 

r553A, r552A, rY524A, rY527A) initiated syncytia at 18h PI and consistently  
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Figure 19A. Comparison of the multicycle growth kinetics and CPE of rWT and the CT 

mutant viruses in DF1 chicken embryo fibroblast cells. (A) Comparison of multicycle growth 

kinetics. Cells were infected with each virus at an MOI of 0.01, and cell culture media 

supernatant aliquots were harvested at 8-h intervals until 64 h PI. The virus titers in the 

aliquots were determined by plaque assay in DF1 cells. Data shown are averages of three 

independent experiments.  
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Figure.19B.CPE of rWT and CT mutants in DF1 cells. DF1 cells were infected with each 

virus at an MOI of 0.1. Twenty-four h PI the cells were fixed with methanol and visualized 

by microscopy. rWT (A), r∆2 (B), r∆4(C), rM553A(D), rK552A(E), rT551A(F), rT550A(G),  

rY524A(H), rY527A (I). 

 

 

 

 

 

 

 



 103 
 

induced more rapid and extensive syncytia as compared to rWT virus, which 

produced syncytia by 24 h PI in DF1 cells. The rT550A and rT551A viruses 

were similar to the rWT virus. Fig. 19B shows photomicrographs of cells that 

were fixed 24 h post-infection. 

5.5.5 Analysis of fusion activity at different permissive temperatures 

The paramyxovirus F proteins, like other class I viral fusion-mediating 

glycoproteins, are present on the surface of infected cells or virions as trimers 

that are trapped in a metastable (high energy) conformation (Colman and 

Lawrence, 2003; Lamb et al., 1999; Weissenhorn et al., 1999). To evaluate 

whether the hyperfusogenic mutants observed in this study had differences in 

the energy threshold needed to trigger fusion, we compared the r∆2, r∆4, 

rY524A and rY527A mutants with rWT virus in a fusion assay that was 

performed at different permissive temperatures, namely 250C, 300C, 330C and 

370C (Fig.20). None of the viruses had detectable fusion at 250C. The fusion 

activity of rWT at 300C and 330C was 24% and 39%, respectively, as 

compared to 370C as 100%. In comparison, at 300C, the r∆2, rY524A, and 

rY527A viruses were 30%, 30%, and 28% as compared to 370C; and at 330C 

the r∆2, rY524A, and rY527A viruses were 45%, 54%, and 52% as compared 

to 370C. Thus, the hyperfusogenic mutants were marginally more fusogenic 

than rWT at reduced temperatures versus 370C, but the differences seemed 

marginal. This suggested that the hyperfusogenic CT mutant viruses did not 

exhibit a substantial change in the energy threshold to trigger fusion, as 

compared to rWT virus.  
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5.5.6. Pathogenicity of the CT mutant viruses in embryonated chicken  

and 1-day old chicks 

We evaluated the effect of the CT mutations on viral pathogenicity 

using two standard pathogenicity assays, namely the mean embryo death time 

(MDT) assay and the intracerebral pathogenicity index (ICPI) test. MDT 

values were determined in 9-day-old embryonated chicken eggs (Table 6). 

NDV strains are categorized into three pathotypes on the basis of their MDT 

values: velogenic (less than 60 h), mesogenic (60 to 90 h), and lentogenic 

(greater than 90 h). The MDT value of the rT550A mutant (59 h) was 

essentially identical to that of rWT virus mutants, The MDT of the other 

mutants were reduced to varying extents compared to rWT, suggestive of 

modest increases in virulence. The greatest differences were observed with the 

MDT of the rY527A (51.5 h), Y524A (52 h) and r∆2 (54 h) mutants, which 

had values that were up to 15% less than that of rWT virus. The other viruses 

had intermediate values.  

The pathogenicity of the CT mutant viruses also was evaluated by the ICPI 

test in 1-day-old chicks (Table 6). Velogenic strains give values approaching 

2.0, whereas lentogenic strains give values close to 0. The ICPI values of the 

CT mutants were increased compared to rWT virus, which is indicative of 

increased pathogenicity, although the increases were modest. The differences 

in ICPI values compared to rWT virus (1.51) were greatest with the rY527A 

(1.78), rY524A (1.70), and r∆2 (1.68) viruses, whose values were up to 18%  
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Figure 20.Temperature dependence of the hyperfusogenic rY524A and rY527A CT mutant 

viruses. The fusion assay was performed in Vero cells as described previously except that 

replicate cultures were incubated at the following temperatures: 250C, 300C, 330C, and 370C. 

The fusion indices were determined and normalized to that of rWT at 370C as 100%. Results 

are means of three independent experiments. 
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greater than that of rWT virus. The ICPI values of the other viruses were 

intermediate. Thus, the results of the ICPI test were consistent with the results 

of MDT test, and in particular the two tyrosine mutants, rY527A and rY524A, 

and the deletion mutant r∆2, were the most virulent.  

 

5.5.7. Replication, tissue tropism, and pathogenicity of CT mutants in 2-

week old chickens 

We further evaluated the effects of the CT mutations on viral 

replication and virulence in 2-week-old chickens. Chickens in groups of 10 

were inoculated by the oculonasal route (mimicking natural infection) at a 

dose of 106 PFU per bird. Three chickens from each group were euthanized on 

day 3 PI and tissue samples of the brain, lung, trachea, gut and spleen were 

collected and processed for virus titration by limiting dilution. The birds were 

observed daily for 10 days PI. In the groups infected with the rY524A and 

rY527A viruses, the chickens showed the clinical signs of paralysis of limbs 

and increased morbidity, and there was one mortality in the rY527A group. 

There were no apparent clinical signs in any of the other groups of chickens.  

Virus replication was detected in each of the sampled tissues (brain, lung, 

trachea, gut and spleen) for each of the viruses, including rWT (Fig. 21). The 

titers for the rT550A mutant were very similar to those of rWT, while the 

titers for the other viruses generally were increased. The highest virus titers 

were with the rY524A and rY527A viruses in the brain, lungs, trachea and 

gut. The increase in titer for these two viruses compared to rWT was, 
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respectively: brain ~ 10 and 50 fold; lungs ~ 100 and 120 fold; trachea ~ 100 

and 150 fold; and gut ~0.5 and 10 fold. The induction of paralysis in chickens 

infected with rY524A and rY524A virus is most likely due to increased 

replication of these mutants in brain tissues, although the overall titer in the 

brain for the rY524A virus was not obviously much higher than for several 

other mutants. The mutants r∆2, rM553A, rK552A, rT551A also grew to 

relatively high titers in the brain, trachea, lung, and gut (Fig. 21). None of the 

viruses recovered from the brain had reversion or other unintended mutations.  

 

5.6 Discussion 

The CTs of the several paramxyovirus F proteins have been shown to play an 

important role in modulating membrane fusion and hence are a significant determinant in the 

replication of these viruses (Bagai and Lamb, 1996; Branigan et al., 2006; Cathomen et al., 

1998). Various studies on the CTs of several viral enveloped proteins have been shown to 

harbor critical residues required for intracellular trafficking, virus assembly and budding 

(Ball et al., 1997; Popa et al., 2011; Seth et al., 2003; Waning et al., 2004; Weise et al., 

2010). In the present study, we have evaluated the effect of truncations and point mutations 

in the CT of F protein on NDV replication and pathogenesis. Previous work has shown that 

deletion of entire CT of the NDV F protein resulted in no syncytia formation whereas 

deletions of different lengths of CT reduced syncytium formation to various extents (Sergel 

and Morrison, 1995). In our study, using infectious clones we were able to assess effects of 

mutations on CT on viral replication, fusion infectivity, tropism, and pathogenesis in vivo in 

a natural host. We attempted to recover viruses with C-terminal deletions of up to 30 amino 
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acids from the 31-amino acid CT of the NDV F protein.  However, we were only able to 

recover virus with the two smallest deletions, of 2 and 4 amino acids. Thus, while infectious 

NDV can readily tolerate deletions of up to 4 amino acids in the F protein CT tail, longer 

deletions apparently were lethal. Deletion of the first 2 and 4 amino acids from the CT 

resulted in mutant virus that had a hyperfusogenic phenotype, with higher levels of F protein 

expression. Apart from the higher levels of surface expression, these mutations did not 

appear to affect moderatley in F protein processing and stability. These results suggest that a 

slightly smaller CT has the effect of enhancing F protein expression and membrane fusion. 

These deletion mutants also exhibited increased viral growth in vitro and in vivo, and 

increased virulence in 1-day-old chicks and 2-week-old chickens. This was especially evident 

with the r∆2 virus. In case of HIV-1, SIV and HSV-1, truncations of C-terminal CT of 

envelope proteins also resulted in increased cell fusion (Fan et al., 2002; Vzorov et al., 2007; 

Wyss et al., 2005; Zingler and Littman, 1993).  

We further investigated the role of these C-terminal four amino acids in the fusion 

phenotype and in viral replication and pathogenesis by individually substituting them with 

alanine. We found that the M553A (e.g., the C-terminal residue) and K552A (the penultimate 

residue) substitutions resulted in phenotypes similar to those of the r∆2 and r∆4 deletion 

viruses: increased surface expression of the F protein (without any other apparent effects on 

processing, stability and cleavability), hyperfusogenicity, increased viral replication in vitro 

and in vivo and increased virulence in 1-day-old chicks and 2-week-old chickens. Of the 

other two mutants, rT550A was generally very similar to rWT virus, whereas rT551A was 

intermediate between rWT and the rK552A/rM553A viruses. 
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Table 6. Pathogenicity of the N-glycosylation mutant viruses in embryonated chicken eggs and 1-

day-old chicks 

Viruses 

 

MDT
a
 

  
 

ICPI score
b
 

 

rWT 
 

60 1.51 

r∆2 
 

54 1.68 

r∆4 
 

56 1.65 

rM553A 
 

55 1.60 

rK552A 
 

54.8 1.53 

rT551A 
 

56 1.53 

rT550A 59 1.53 
 

rY524A 52 
 

1.70 

rY527A 51.2 
 

1.78 

a Mean embryo death time (MDT).  

b Intracerebral pathogenicity index (ICPI).  
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The mechanism by which truncations or point mutations of the C-terminal four amino 

acids of CT mediated these effects is unclear. Increased surface expression of the F protein 

appeared to an important factor. This could contribute to increased fusion, which in turn 

could contribute to increased viral replication in vitro and in vivo and increased pathogenesis. 

For example, among these two deletion mutants and four substitution mutants, the mutants 

with higher levels of F protein surface expression relative to rWT tended to have the highest 

relative fusion indices. Thus, the small deletions or substitutions involving the last four 

residues of the CT may have conferred increased efficiency of synthesis or transport to the 

cell surface, resulting in higher levels of F protein surface expression that in turn mediated 

increased fusion. However, the increases in F protein surface expression and fusion index  

were not always proportional. For example, the relative levels of surface expression for the 

r∆4, rM533A, and rT551A viruses were nearly identical (1.27, 1.24, and 1.26, respectively), 

but these viruses had substantial differences in their relative fusion indices (1.13, 1.32, and 

1.06, respectively). Thus, other factors may have contributed to the increases in fusion. 

Possible effects might include increased incorporation into virus particles or effects on the 

fusion process. For example, in case of PIV5/SV5, the F CT is implicated in regulating 

fusion pore formation (Dutch and Lamb, 2001).   

While the full mechanistic details are not known, it is clear that C-terminal residues in 

the NDV F protein CT, and in particular the two terminal residues, have the effect of down-

regulating F protein surface expression, fusion, replication in vitro and in vivo, tropism, and 

pathogenesis. The virus presumably could readily mutate to lose expression of these terminal 

residues by the introduction of missense or nonsense mutations, but this apparently does not 

confer a selective advantage because the overall WT virus population retains the WT  
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Figure 21. Virus titration from the indicated tissues harvested on day 3 following infection 

of 2-week-old chickens with rWT and the CT mutants. Chickens were inoculated by the 

oculonasal route. Three chickens for each virus were sacrificed on day 3 PI, and the indicated 

organs were harvested and the titers of NDV were determined by limiting dilution assay on 

DF1 cells. Titers are expressed in log10TCID50 per gram of tissue with SEM indicated.  

 

 

 

 

 

 

 

 

 

 



 112 
 

sequence. It may be that the increase in virus replication conferred by these mutations is 

offset by some other factor such as the increased virulence observed in the present study, or 

some other factor that was not examined here such as the physical stability of the virus 

particle.  

The CT of NDV F harbors two tyrosine residues and one di-leucine motif that are 

highly conserved among strains and have the potential to be signals involved in processing 

and transport. In the present report, we also investigated the possible roles of these residues 

in viral replication and pathogenesis. We were able to recover virus in which either of the 

tyrosine residues was substituted with alanine. Our inability to recover the LL-motif mutants 

even after several attempts suggests the importance of LL- motif in F protein function and 

viability of virus.  

The two recovered tyrosine mutants Y524A and Y527A exhibited phenotypes similar 

to those of the truncation and substitution mutants described above, including increased 

surface expression of the F protein (without any other apparent effects on processing, 

stability and cleavability), hyperfusogenicity, increased replication in vitro and in vivo, and 

increased pathogenesis. Indeed, of the mutants characterized in the present study, these 

phenotypes were the most pronounced for the tyrosine mutants, In particular, 2-week-old 

chickens infected with the tyrosine mutants exhibited paralysis and, in one case, death, that 

were not observed with rWT virus or with the other mutants. The most widely used tyrosine-

based motif is YXXɸ (where Y is tyrosine, X is any amino acid and ɸ is an amino acid with 

bulky hydrophobic group). In the NDV F CT, Y524 and Y527 are both present in the motif 

YLMY, and Y527 also is present in the motif YKQK. Thus, neither of these conforms to the 
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YXXɸ motif. Whether these two tyrosines are involved in a signal, and whether these 

mutations have any effect on the trafficking of the F protein is presently being investigated.  

In conclusion, our results provide evidence that deletions or substitutions involving 

the terminal 2 amino acids of the NDV F protein, or substitutions involving the two tyrosine 

residue found in the CT, resulted in increased F protein expression on the cell surface, 

increased fusion, increased replication and pathogenesis. Effects on the surface expression of 

the F protein appeared to play an important role. It is reasonable to suggest that increased 

surface expression of F was an important determinant of the hyperfusogenic phenotype 

observed for these mutants, although, as noted, the level of expression of F was not always 

proportional to the level of fusion. Thus, other factors may also contribute. It also is 

reasonable to suggest that increased fusion played an important role in the observed 

increased replication in vitro and in vivo and increased pathogenesis. These results show that 

the NDV F protein has features that restrain the fusogenic phenotype. Since mutations to the 

terminal residues and to the tyrosine resides were well-tolerated and presumably could 

readily occur and be selected for in nature, there apparently is a lack of selective advantage 

for these mutations in nature. This study has increased our understanding of NDV virulence 

mediated by the F protein, but also has raised new questions about the mechanism by which 

the CT restrains fusion. These hyperfusogenic viruses may be useful in developing NDV as a 

vaccine vector and as an oncolytic agent. 
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Chapter 6 

 

6.1 Title 

 

 The Conserved Cysteine Residues in Newcastle Disease Virus Fusion protein are  

              essential for virus infectivity 

 

6.2 Abstract 

Newcastle disease virus (NDV) fusion protein (F) contains 13 cysteine residues, 11 of 

which are conserved across the member of the family Paramyxoviridae. The cysteine 

residues are critical for proper folding and structural stability of the fusion protein. In this 

study we have determined the individual contribution of conserved cysteine residues present 

in the F protein at positions 76,199,338,347, 362,370,394,399,401,424 and 523 on NDV 

infectivity and pathogenicity using reverse genetics techniques. Site-directed mutagenesis 

was employed to replace each cysteine residue by an alanine and the mutations were 

introduced into a full length clone of a moderately pathogenic NDV strain Beaudette C (BC). We 

were able to rescue only three mutants at positions C362A, C370A and C523A. Mutation of 

cysteine residues at positions C362A and C370A resulted in highly debilitated viruses with 

significantly impaired biological functions. The mutants rC362A and rC370A replicated in 

embryonated chicken eggs but failed to replicate further in cell culture. The mutant virus 

rC523A showed reduced fusogenicity and delayed growth kinetics compared to the wild type 

virus. The pathogenicity of the rC523A mutant virus was moderately decreased in vivo. To 

assess the effect of cysteine residues on protein expression, 293T cells were transfected with 
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plasmids encoding the parental and cysteine mutated F proteins. Mutations of C76A, C199A 

C347A, C362A, C370A, and C401A did not react with an antibody prepared against the 

cytoplasmic tail of F protein, suggesting profound effects on protein conformation. Mutations 

at C338, C394A, C399A, C424A and C523A showed different levels of protein expression. 

These results suggest that the conserved cysteine residues in NDV F protein play a critical 

role in structure and function of F protein thus regulating NDV infectivity. Further analysis 

of the polypeptides of rC362A and rC370A showed altered migration patterns of F protein, 

nucleoprotein (NP) and matrix (M) protein in 10% SDS-PAGE. Sequence analysis of NP and 

M genes of rC362A and rC370A showed compensatory mutations thus changing the open 

reading frames (ORF) of NP and M genes. 

 

6.3 Introduction 

Newcastle disease is a contagious and highly fatal viral disease, affecting most 

species of birds and leads to severe economic losses in the poultry industry worldwide 

(Alexander, 2000). The disease has a wide spectrum of clinical signs ranging from a mild, 

inapparent infection to 100% mortality. The aetiological agent Newcastle disease virus 

(NDV) belongs to the genus Avulavirus in the family Paramyxoviridae and has a 

nonsegmented, negative-sense RNA genome consisting of 15,186 nucleotides (Lamb, 2001; 

Samal, 2011a).  Strains of NDV are classified into three major pathotypes, depending on the 

severity of disease produced in chickens. Avirulent strains are termed lentogenic, 

intermediately virulent strains are termed mesogenic, and highly virulent strains are termed 

velogenic (Lamb, 2001). The envelope of NDV contains glycoproteins hemagglutinin-

neuraminidase (HN), a receptor binding protein that is responsible for attachment to 
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sialoglycoconjugates at the cell surface and fusion protein (F) which upon activation initiates 

the fusion of the viral and target membranes (Lamb, 2001; Lamb et al., 2006).  

The F protein is well conserved among NDV strains (de Leeuw and Peeters, 1999; 

Krishnamurthy et al., 2000; Paldurai et al., 2010) and has common structural features with 

other paramyxovirus F proteins (Baker et al., 1999; Chen et al., 2001; Lamb et al., 1999). 

The NDV F protein is a type I homotrimeric integral membrane glycoprotein with a 

monomer length of 553 amino acids for most strains (de Leeuw and Peeters, 1999; 

Krishnamurthy et al., 2000; Paldurai et al., 2010). The F protein is synthesized as a 

biologically inactive precursor (F0) that must be cleaved by host cell proteases (extracellular 

or intracellular proteases) to form an active fusion protein (Morrison, 2003). The cleavage 

which takes place at a fusion peptide sequence, generating two subunits F1 (55kDa) and F2 

(14kDa) that remain covalently linked by at least one disulfide bond. Upon fusion activation, 

the F protein is thought to undergo major conformational changes that mediate fusion of the 

viral and cellular membranes (Dutch, 2010; Lamb, 1993b). Similar to other paramyxoviruses 

the mature F protein of NDV contains 13 cysteine residues, 11 of which are conserved across 

the F proteins of family Paramyxoviridae (Chen et al., 2001; Day et al., 2006; McGinnes and 

Morrison, 1986; Morrison, 2003; Paldurai et al., 2010).  Two of these cysteine residues at 

positions 76 and 199 have been assigned to form disulfide bond thus linking F2-F1 

polypeptide chains and hence form the fusion competent active protein (Morrison, 2003; 

Scheid and Choppin, 1977). The cysteine residues at positions 338,347,362,370, 394, 

399,401 and 424 form four disulfide bonds on the F protein head region (Chen et al., 2001). 

A single cysteine residue is present in the cytoplasmic tail (CT) of NDV F protein at position 

523. The cysteine residues present in the CT of diverse viral envelope glycoproteins have 
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been shown to be the targets for palmitoylation, which is necessary for the association with 

membrane lipid rafts (Bhattacharya et al., 2004; Caballero et al., 1998; Veit et al., 1989). 

However, it has been suggested that palmitoylation of NDV F cytoplasmic tail is not required 

for lipid raft association (Dolganiuc et al., 2003). The strict conservation of cysteine residues 

of NDV F protein is suggestive of their critical role played on structure and functions of F 

protein.  Further, the cysteine residues are a prerequisite for the formation of conformational 

dependent antigenic epitopes necessary for NDV infectivity and virulence.  

The individual contribution of conserved cysteine residues in NDV F protein to virus 

infectivity and pathogenesis has never been evaluated. In this study, we have employed 

reverse genetic techniques to evaluate the role of each conserved cysteine residue on virus 

recovery, fusion, replication and pathogenesis. Our results demonstrate that eight cysteine 

residues at positions 76,199,338,347,394,399,401 and 424 are indispensable for virus 

recovery. However, three cysteine residues at positions 362,370 and 523 were found to be 

tolerated for the recovery of NDV. The biological characteristics and replication of the 

mutant viruses with cysteine substitution at positions C362A, C370A and C523A were 

evaluated in vitro and in vivo. The mutant virus rC523A showed reduced fusion activity, 

delayed replication in cell culture and moderate decrease in pathogenicity compared to the 

wild type (WT) virus; whereas, the mutant viruses rC362A and rC370A grew only in 

embryonated eggs but showed complete abolishment of fusion activity and replication in cell 

culture, whereas Our results demonstrated that the conserved cysteine residues of NDV F 

protein are indispensable for virus infectivity except the cysteine residue in the cytoplasmic 

domain which is not essential for virus infectivity. The role of each conserved cysteine 
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residue on structure and functions of F protein was further evaluated using a plasmid 

transfection system. 

6.4 Materials and Methods 

  6.4.1 Cells and viruses 

The chicken embryo fibroblast DF1 cell line and human epidermoid 

carcinoma HEp-2 cell line were grown in Dulbecco’s minimal essential 

medium (DMEM) with 10% fetal bovine serum (FBS) and maintained in 

DMEM with 2% FBS. The African green monkey kidney (Vero) cell line was 

grown in DMEM containing 10% FBS and maintained in DMEM with 2% 

FBS.  293T cells were grown at 370C in a humidified atmosphere of 5% CO2 

and maintained in 2% DMEM. The modified vaccinia virus strain Ankara 

(MVA) expressing T7 RNA polymerase was kindly provided by Dr. Bernard 

Moss (NIAID, Bethesda, MD) and propagated in primary chicken embryo 

fibroblast cells in DMEM with 5% FBS. The wild type (WT) mesogenic NDV 

starin Beaudette C (BC) and its recombinant derivatives were grown in 9-day-

old embryonated specific-pathogen-free (SPF) chicken eggs in an enhanced 

BSL-3 containment facility certified by the USDA following the guidelines of 

IACUC, University of Maryland. Two days after infection the allantoic fluid 

was harvested and the virus was plaque purified using our standard procedure 

(Krishnamurthy et al., 2000).  

6.4.2 Construction of plasmids  

The construction of plasmid pNDVfl carrying the full-length 

antigenome cDNA of NDV strain BC has been described previously 
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(Krishnamurthy et al., 2000). The mutations that were introduced into the F 

protein are summarized in Fig 22. Their introduction was facilitated by the 

presence of the unique restriction enzyme sites PacI and MluI located in the 

untranslated regions (UTRs) flanking the F and HN ORFs in the NDV cDNA. 

The PacI-MluI fragment containing the F-HN gene was mutagenized with 

primers containing the desired mutations and cloned into TOPO®-TA vector 

(Invitrogen, USA). The inserts bearing the desired mutation were then cloned 

into the full-length antigenomic cDNA of strain BC. The total number of 

nucleotides was adjusted to maintain the ‘rule of six’ in all full length cDNAs 

(Krishnamurthy et al., 2000; Peeters et al., 2000). All mutant F genes on full 

length clones were sequenced in their entirety to confirm the presence of the 

desired mutations.  

For construction of F expression in plasmids, the WT and cysteine 

mutant F genes were amplified from TOPO-TA clones and were introduced 

into plasmid pCAGGS expression vector provided by J. Miazaki (Osaka 

University, Japan).  

     6.4.3 Recovery of mutant viruses  

Recovery of recombinant NDV mutants were performed as described 

previously (Krishnamurthy et al., 2000). Briefly, HEp-2 cells were transfected 

with three plasmids individually encoding the N, P, and L proteins (3.0 µg, 2.0 

µg, and 1.0 µg per single well of a six-well dish, respectively) and a fourth 

plasmid encoding the full-length antigenome (5.0 µg) using Lipofectamine 

(Invitrogen,USA) and simultaneously infected with vaccinia MVA expressing 
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T7 RNA polymerase at a multiplicity of infection (MOI) of 1 PFU/cell. Two 

days after transfection, the cell culture medium supernatant was harvested and 

inoculated into the allantoic cavities of 9-day-old SPF embryonated chicken 

eggs. Recovery of the virus was confirmed by hemagglutination (HA) assay 

using 1% chicken red blood cells (RBCs). The sequences of the F and HN 

genes in the recovered chimeric viruses were confirmed by RT-PCR and 

nucleotide sequencing. In cases where the virus was not recovered, at least 

three independent transfections were performed in parallel with the parental 

(WT) cDNA as a positive control before considering the construct negative 

for virus recovery. To assay the genetic stability, the recovered mutant viruses 

were passaged three times in 9-day-old SPF chicken embryos. From each 

passage total RNAs were isolated from NDV-infected allantoic fluid using 

TRIzol reagent (Invitrogen, USA). RT-PCR was performed using the 

Thermoscript RT-PCR kit (Invitrogen) with specific forward and reverse 

primers to amplify the F gene. The amplified cDNA fragments were then 

sequenced using the BigDye® Terminator v3.1 cycle sequencing kit (Applied 

Biosystems Inc, USA) in ABI 3130xl genetic analyzer to confirm the presence 

of the introduced mutations in the recovered viruses. The HN gene from each 

recovered virus was also sequenced using available primers from our 

laboratory. 

6.4.4 Expression of fusion proteins  

To evaluate the expression of WT and mutant F proteins, Vero cells in 

6-well plates infected with rWT and the mutant viruses at an MOI of 1.0 and 
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incubated at 370C. Twenty-four hours after infection the cells were lysed 

using cell lysis buffer (Clontech,USA) and the F proteins were 

immunoprecipitated using rabbit anti-Fcyt antiserum  as described previously 

(Samal et al., 2011) or HN monoclonal antibody (kindly provided By Ron 

Iorio, University of Massachusetts Medical School), NP or M polyclonal anti-

peptide antibody. The proteins were separated by 10% SDS-PAGE, and 

subjected to autoradiography. To confirm F protein expression using 

plasmids, 293T cells in six-well plates were transfected with 2 µg of plasmids 

expressing either WT F proteins, the panel of cysteine mutants or a vector 

only control. Twenty-four hours after transfection, cells were lysed and 

immunoprecipiated as described above. 

The cell surface expression of WT and cysteine mutant F proteins was 

evaluated by flow cytometry. Briefly, DF1 cells were infected with each 

mutant virus at an MOI of 0.1.After 24 h the cells were detached with PBS 

containing 5 mM EDTA and centrifuged at 500 × g for 5 min at 4°C. Cells 

were then incubated with rabbit anti-FNterm antiserum (1:10 dilution) for 

30 min at 4°C as previously described (Samal et al., 2011). Cells were washed 

3 times with PBS, and incubated for 30 min on ice with 1: 500 diluted Alexa 

Fluor 488 conjugated goat anti rabbit immunoglobulin G antibodies. Cells 

were then fixed in 2% paraformaldehyde and analyzed by using a FACSRIA 

II apparatus and Flowjo software (Becton Dickinson Biosciences). The 

expression of F protein in surface of 293T cells transfected with mutant and 

wild type F protein plasmids were quantitated by flow cytometry as described  
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above. 

6.4.5 Cell fusion assays 

Syncytia formation was quantified as described by Kohn (Kohn, 

1965). Briefly, Vero cells in 6-well plates were infected with each virus at an 

MOI of 0.1. Cells were maintained in 5% MEM at 37°C under 5% CO2. 

Twenty-four hours after infection, the medium was removed and the cells 

were washed with PBS, fixed with methanol for 20 min at room temperature, 

and stained with hematoxylin-eosin. The fusion index of each mutant virus 

was calculated by observing 10 fields per well in duplicate. The fusion index 

is the ratio of the total number of nuclei to the number of cells in which these 

nuclei are present (i.e., the mean number of nuclei per cell). To evaluate cell 

fusion activity of WT and mutant F proteins, 293T cells were co-transfected 

with pCAGGS vector-F (wild type or mutants) and pCAGGS vector-HN. The 

fusion assays were conducted as described above. 

6.4.6 Growth characteristics of wild type and mutant viruses  

The growth characteristics of rWT and mutant viruses were evaluated 

by multicycle growth kinetics. Briefly, DF1 cells in duplicate wells of six-well 

plates were infected with each virus at an MOI of 0.01. After 1 h of 

adsorption, the cells were washed with PBS and overlaid with DMEM 

containing 5% FBS at 37°C. The medium was collected and replaced with an 

equal volume of fresh medium at 8-h intervals until 64 h PI. Virus titers were 

quantified by plaque assay on DF1 cells.  
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6.4.7 Mean death time (MDT) and intracerebral pathogenicity index 

(ICPI) tests 

The pathogenicity of the F cysteine mutant viruses was determined by 

the MDT test in 9-day-old embryonated chicken eggs and by the ICPI test in 

1-day-old SPF chicks (Alexander, 2000; Samal, 2011a). All studies were 

conducted under enhanced biosafety level (EBSL-3) conditions at the 

University of Maryland. The MDT is the mean time in hours for the minimum 

lethal dose to kill all inoculated embryos. The criteria for classifying the 

virulence of NDV isolates are: <60 h, virulent strains; 60 to 90 h, intermediate 

virulent strains; and >90 h, avirulent strains. 

For ICPI test, 0.05 ml (1:10 dilution) of fresh infective allantoic fluid 

of each virus was inoculated into groups of 10 1-day-old SPF chicks via the 

intracerebral route.The ICPI is the mean score per bird per observation over 

the 8-day period. Highly virulent velogenic 1 viruses give values approaching 

2 and avirulent or the lentogenic strains give values close to 0. 

6.4.8 DNA sequencing and analysis 

Viral RNA was isolated from infected allantoic fluid using RNeasy kit 

according to the manufacturer's instructions (QIAGEN, USA). Reverse 

transcription (RT) was performed using Superscript II RT (Invitrogen) and an 

oligo dT primer. The resulting first strand cDNA was PCR-amplified. PCR 

products were gel purified and were sequenced directly or were cloned into 

the TOPO TA cloning vector (Invitrogen) and positive clones were sequenced 

using M13 forward and M13 reverse primers. DNA sequencing was 
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performed in a 3130xl genetic analyzer (Applied Biosystems Inc, USA) 

according to the manufacturer's instruction. The entire genome sequence was 

determined at least three times. Sequence analysis and prediction of ORFs 

were carried out using the SeqMan and EditSeq programs, and PCR primers 

were designed using the PrimerSelect program in DNASTAR Lasergene 8 

(software suite for sequence analysis, version 8.0.2(13) 412). 

6.5 Results 

6.5.1 Each conserved cysteine residue in the NDV F protein is 

indispensable for virus infectivity 

There are eleven conserved cysteine residues in the F protein of NDV 

(Day et al., 2006; Krishnamurthy et al., 2000).To examine the effects of these 

conserved cysteine residues on virus infectivity and pathogenesis, we 

performed site-directed mutagenesis by substituting individual cysteine (C) 

residue by alanine (A) to construct a series of mutant F genes (Fig.1).  Each 

mutagenized F gene was then inserted into a full-length cDNA clone of the 

BC antigenome. These clones were transfected into HEp2 cells and mutant 

viruses were recovered using reverse genetics as previously described 

(Krishnamurthy et al., 2000). We were unable to recover infectious virus with 

cysteine substitutions at positions76, 199, 338, 347, 394, 394,399,401 and 

424, suggesting that these cysteine residues are essential for virus recovery. 

However, the substitutions of three cysteine residues at positions C362A, 

C370A and C523A did not affect the virus recovery in 9-day-old embryonated 

chicken eggs, indicating that these residues are not crucial for virus viability.  
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Figure 22. Schematic representation of NDV F protein and locations of conserved cysteine 

residues were marked with an arrow. Mutations correspond to the cysteine residues to alanine 

in F protein and clones recovered or not recovered to viable virus listed below. 
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The sequence analysis of the F genes from recovered viruses confirmed the 

presence of each introduced mutation. 

     6.5.2 Effect of cysteine mutation on expression of F proteins  

To evaluate the expression of F protein in cysteine mutant viruses, 

DF1 cells were infected with recombinant wild type (rWT) and mutant 

viruses. Twenty-four hours after infection cell extracts were collected and F 

protein expression was determined by Western blot (Fig.23A panel A). The 

expression level of F protein of rC523A mutant virus was similar to that of the 

rWT virus and in presence of reducing agent, both F0 and F1 proteins were 

detected. Whereas,  in case of the mutant viruses rC362A and rC370A the 

synthesis of F protein was not detected by Western blot. To confirm viral 

protein synthesis in those two mutant viruses, the western blot experiment was 

repeated using a HN monoclonal, a NP polyclonal and M polyclonal antibody. 

Our results did not show synthesis of any of these viral proteins, confirming 

absence of rC362A and rC370A replication in DF1 cells (Fig.23A panel B, C 

and D). The cell surface expression of rC523A mutant F protein was 

determined by flow cytometry. We observed that the mutant F protein was 

expressed at 72% of wild type level (Table 7). 

To further characterize the mutant F proteins, 293T cells were 

transfected with expression plasmids encoding WT and mutant F 

proteins.Twenty-four hour after transfection cell extracts were analyzed by 

western blot using an anti F-cyt polyclonal antibody (Samal et al., 2012).  
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Figure 23A.Western blot analysis of WT and cysteine mutant F proteins (A) Vero cells in 6-

well plates infected with rWT and the cysteine mutant viruses at an MOI of 1.0 and 

incubated at 370C. At 24 h post infection (PI), the cell lysates were precipitated with anti-

Fcyt antibody or HN monoclonal antibody or NP polyclonal or M polyclonal antibody and 

analyzed by 10% SDS-PAGE. Panel A: F antibody; Panel B: HN antibody; Panel C: NP 

antibody; Panel D: M antibody. 
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Mutation of cysteine residues at C338A, C394A, C399A, and C424A showed 

reduced expression levels of F protein compared to that of WT F protein 

(Fig.23B). The F protein of mutant plasmid C523A was expressed at wild-

type level. In contrast, we were not able to detect any expression of F protein 

in C76A, C199A, C347A, C362A, C370A, and C401A mutants. These results 

suggest that either these mutations are affecting the translation and/or stability 

of F protein or these mutations are changing the conformation of F protein 

thus leading to failure of binding to anti-Fcyt antibodies. To determine cell 

surface expression of the cysteine mutant F proteins, 293T cells were 

transfected with plasmids encoding WT or mutant F proteins. Twenty-four 

hours after transfection, cells were analyzed by flow cytometry using anti-

FNterm antiserum as described previously (Samal et al., 2012). The cell surface 

expression of mutations at C424A, C338A, C394A, and C399A were 6%, 

14%, 28% and 32%, respectively, of the WT F protein level (Table.7). The 

cell surface expression of C523A F protein was 78% of the WT F protein.  

6.5.3 Effect of cysteine mutations on fusion activity of F protein 

To assess the fusion activity of the mutant viruses, fusion assay was 

performed in Vero cells. The fusion activity of rC523A was reduced by 37% 

of the rWT virus. The mutant viruses rC362A and rC370A showed no fusion 

activity or growth in Vero cells (Fig.24A and 24B).  We then determined the 

fusion activity of the mutant F proteins expressed from transfected plasmids, 

by performing syncytium assay in 293T cells as described in Methods. Mutant  
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Figure 23B. Western blot analysis of 293T cells were transfected with the plasmids 

and after 24 h PI cell lysates were collected and precipitated with anti-Fcyt antibody 

and analyzed by 10% SDS-PAGE. 

 

 

 

 

 

 

 

 

    WT             M          C338A      C394A     C399A     C424A       C523A 

F
0
 



 130 
 

 

Figure 24A. Cell fusion assay (a) Photomicrographs of Vero cells infected with the 

indicated viruses at an MOI of 0.1, fixed at 24 h PI, and stained with hematoxylin-

eosin. 
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 Figure 24B. Relative levels of fusion obtained for the mutant viruses compared to rWT. The 

fusion index was calculated as the ratio of the total number of nuclei in multinuclear cells to 

the total number of nuclei in the field. 10 fields were counted per condition. Fusion levels 

were normalized to WT at 100%. Data shown are averages ± standard errors from three 

independent experiments. 
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Figure 24C. Relative levels of fusion obtained for the mutant proteins compared to WT-F 

proteins. 293T cells were co-transfected with pCAGGS vector encoding mutant proteins and 

pCAGGS-HN protein and fusion index were calculated as described above. 
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proteins that failed to express matured conformation stable proteins (C76A, 

C199A, C362A, C370A, C399A, C401A) did not show syncytium formation. 

However the F protein expressed from plasmid C523A showed 28% reduction 

in syncytia formation compared to that of the WT F protein. The mutants F 

proteins of C338A, C394A, C399A and C394A showed no or minimal 

syncytium formation activity (Fig.24C). 

6.5.4 Role of cysteine residues on virus infectivity 

We have shown that three of the eleven cysteine mutant viruses were 

rescued in embryonated chicken eggs and all the three mutant viruses 

produced high levels of HA titer as the rWT virus (rC362A and rC370A; 

HA:27  and rWT and rC523A; HA: 29 ). We then sought to determine the 

ability of these mutant viruses to grow in cell culture. In vitro growth 

characteristics of cysteine mutant viruses were evaluated in DF1 cells 

(Fig.25A). The mutant rC362A and rC370A viruses failed to grow in DF1 

cells. The rC523A virus showed a delayed growth kinetics and had lower 

virus yield (1.5 to 2.0 log U lower) than that of rWT virus. The size of the 

plaques produced by the mutant virus rC523A was also slightly smaller than 

that of rWT virus (Fig.25B).  There were no plaque formation by mutant 

viruses rC362A and rC370A. These results suggest that the cysteine residues 

at postions 362 and 370 are essential for virus infectivity in cell culture. 

We further determined the effect of cysteine mutations on the 

pathogenicity of NDV in embryonated chicken eggs and 1-day-old chicks 

(Table.8). The effect of the cysteine mutation on the pathogenicity of NDV in  
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Figure 25A. Comparison of the multicycle growth kinetics of rWT and the mutant viruses in 

DF1 cells. 
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Figure 25B. Plaque morphology in DF1 cells by parental and cysteine mutant viruses 4 days 

PI. 
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Table 7. Cell surface expression were measured by flow cytometry in 293T cells 

Plasmids Cell surface expression (%) 

 

 

WT 100 

C338A 14 

C394A 28 

C399A 32 

C424A 6 

C523A 78 
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Table 8. Cell surface expression, MDT and ICPI values 

 

Virus Cell surface 

expression (%) 

MDT(h) ICPI 

rWT 100 58 1.56 
 

rC362A 0 More than 7 days; 
No Death 

No death 

rC370A 0 More than 7 days; 
No Death 

No death 

rC523A 72 71 1.40 

 

Cell surface expression of the F protein was determined by flow cytometry. DF1 cells were 

infected with each mutant virus at an MOI of 0.1. Surface expression of the F proteins was 

assessed by flow cytometry at 24 hr PI with rabbit anti-FNterm antiserum followed by anti-

rabbit Alexa Fluor 488 conjugated antibodies. Surface immunofluorescence was quantitated 

by FACS analysis. Uninfected DF1 cells were used as negative controls. Values shown are 

averages of results from three independent experiments. Values are expressed as % relative to 

parental F protein. 

Mean embryo death time (MDT). The mean time (h) for the minimum lethal dose of virus to 

kill all of the inoculated embryos. Pathotype definition: virulent strains, <60 h; intermediate 

virulent strains, 60 to 90 h; avirulent strains, >90 h.  

Intracerebral pathogenicity index (ICPI). ICPI score= [(total number of sick chicks at each 

observation x1) + (total number of dead chicks at each observation x 2)]/80 observations. 

ICPI values for velogenic strains approach the maximum score of 2.00, whereas lentogenic 

strains give values close to 0.Values were mean of three independent experiments.  
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1-day-old SPF chicks was also determined by intracerebral pathogenicity 

index (ICPI) test (Alexander, 2000). The MDTs value of rC362A and rC370A 

were greater than 120h and ICPI values were 0.00, indicating that they are 

completely avirulent. In case of rC523A mutant virus the MDT value was 71h 

compared to 58h for rWT virus and ICPI value was 1.40 compared to 1.56 for 

rWT virus. These results suggested that the delayed growth kinetics of 

rC523A virus probably resulted in a moderately attenuated phenotype. 

 

6.5.5 Effect of cysteine mutations on incorporation of viral proteins into 

envelope of virions 

To analyze the incorporation of the mutant F proteins into the 

envelope of virions, the rWT and mutant viruses were harvested from 

allantoic fluid and were partially purified through a 30% sucrose cushion. The 

viral proteins separated on a 10% SDS-PAGE,were detected by Coomassie 

blue staining (Fig.5). The rC523A mutant virus proteins migrated at same rate 

of the rWT virus proteins. Densitometry analysis of the rC523A mutant virus 

proteins showed there was no difference in ratios of mutant virus proteins 

compared to ratios of rWT virus proteins. Surprisingly, the migration pattern 

of NP and M proteins of mutants rC362A and rC370A were different 

compared to the migration pattern of the respective proteins of rWT virus in 

10% SDS-PAGE (Fig.5). The NP protein of mutant viruses migrated faster 

than the NP protein of rWT virus. The M protein of mutant viruses migrated 

slower than the M protein of  rWT virus. 
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6.5.6 Sequence analysis of cysteine mutant viruses 

The stability of cysteine mutations was confirmed after three passages 

in 9-day-old embryonated chicken eggs. Sequence analysis of the F gene of 

the mutant viruses at each passage showed that the introduced mutations were 

unaltered (data not shown). To determine whether there were any 

compensatory mutations in other viral proteins, the complete genome of the 

recovered mutant viruses were sequenced and confirmed from uncloned and 

cloned RT-PCR products of allantoic fluid. The sequences were compared 

with rWT virus genome sequence. No change in genome sequence was found 

in the rC523A mutant virus (data not shown). However, in mutant viruses 

rC362A and rC370A, compensatory mutations in NP and M genes were 

found. In rC362A virus there were 15nt changes in NP gene and 24 nt changes 

in M gene and in rC370A virus there were 12 nt changes in NP and 21 nt 

changes in M gene. There were no compensatory mutations in other viral 

genes. Sequence analysis showed that these mutations have changed the ORF 

of the NP and M proteins of rC362A and rC370A viruses, which resulted in 

not only change in the length of the proteins but also amino acid composition 

of the two proteins. In both the rC362A and rC370A viruses there were 

introduction of new stop codon at position 313 which might be resulted in 

decrease in length of ORF of NP. There was 4.8% divergent (rC362A) and 

5.6% divergent (rC370A) in M ORF as compared to M ORF of rWT. These 

results suggest that probably mutations of NP and M protein of rC362A and  
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Figure 26. Expression of viral proteins of wild type and cysteine mutants. Equal amounts of 

proteins from wild type and mutant purified viruses were analyzed by SDS-PAGE. The 

migration and protein stability of the viral proteins from each virus were examined after 

Coomassie blue staining. A protein molecular mass marker was also run along with the 

purified viral samples to assess the viral proteins based on their molecular masses.  
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rC370A viruses have occurred to suppress the effects of cysteine mutations at 

positions 362 and 370 of F protein. 

6.6 Discussion 

The entry of paramyxovirus into the host cell is mediated by F protein, which upon 

activation undergoes major structural rearrangements to facilitate membrane fusion (Baker et 

al., 1999; Chen et al., 2001; Dutch, 2010; Lamb et al., 2006; Morrison, 2003). The cysteine 

residues present in the F protein have been shown to be essential for its biological functions 

in diverse paramyxoviruses (Day et al., 2006; Iwata et al., 1994; Segawa et al., 1998; Wild et 

al., 1994). The F protein of NDV has 13 cysteine residues, out of which 11 are conserved 

across the F proteins of paramyxovirus family and were suggested to form disulfide linkage 

thus is essential for trafficking, membrane binding, and conformational stability (Chen et al., 

2001; McGinnes and Morrison, 1986; Morrison et al., 1987). 

To analyze the effects of the cysteine residues in the NDV F protein on virus 

infectivity and pathogenesis, we generated a series of cysteine mutants by substituting each 

cysteine residue with alanine. Eight of the cysteine residues were found to be indispensable 

for the viability of NDV. The failure to recover these eight cysteine mutant viruses indicated 

that these residues play an important role in F protein folding and conformation, hence 

critical for survival of the virus. We were able to recover three cysteine mutants C362A, 

C370A, and C523A. Two of the cysteines, C362A and C370A, form a disulfide linkage in 

the head region (Chen et al., 2001). These cysteine mutant viruses replicated in 9-day-old 

embryonated chicken eggs as shown by HA test and RT-PCR, however, they failed to infect 

cell culture and 1-day-old chicks indicating complete inhibition of virus replication. The 

disulfide linker between C362A and C370A also had a potential N-linked glycosylation site 
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at residue 366. Previous studies have reported that removal of this N-glycosylation site has a 

moderate effect on the biological functions of F proteins and slightly attenuated the wild type 

virus (McGinnes et al., 2001; Samal et al., 2012). Therefore, removal of the disulfide linker 

might be disrupting the F protein conformation and restricting virus fusion and replication. 

The mutant viruses rC362A and rC370A further showed different migration patterns of NP 

and M proteins in SDS-PAGE. The complete genome sequences of the mutant viruses 

revealed compensatory mutations only in NP and M genes leading to change in the ORFs of 

these genes. It has been earlier reported that membrane glycoproteins (HN and F) of NDV 

interact with M protein and M protein interacts with NP protein in virus assembly (Kim et al., 

2009; Pantua et al., 2006). Therefore, it is possible that the mutation only in NP and M 

proteins were induced by the virus to suppress the effect of cysteine 362 and 370 mutations 

in F proteins. It was interesting to observe how NDV can quickly adapt to survive by 

inducing extragenic mutations in NP and M genes to suppress the deleterious effect of a 

cysteine mutation in F gene. Our results suggest a possible role of these cysteine residues in 

F protein in virus assembly by regulating F-M-NP interactions.  

The mutant rC523A had the ability to produce syncytia in cell culture; however, the 

fusion activity was slightly decreased as compared to the wild type virus (Fig.24A). 

Although the mutation C523A had little effect on expression and cleavability of the F protein 

(Fig.2 and Table.1a), it delayed the replication of the virus in cell culture thus producing a 

slightly attenuated phenotype (Fig.25 and Table.8). The cysteine residue C523 is present in 

the F protein cytoplasmic tail. In previous studies with other paramyxoviruses, this residue is 

suggested to undergo fatty acid acylation and hence modulating fusion activity (Arumugham 

et al., 1989; Caballero et al., 1998; Veit et al., 1989).  However, in NDV F protein, removal 
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of the palmitate site had no effect on virus association with lipid rafts (Dolganiuc et al., 

2003). In our study, we have observed a moderate decrease in fusion activity and delayed 

viral replication. It is possible that the substitution of cysteine with an alanine might be 

disrupting the overall cytoplasmic tail conformation of NDV F protein and thus affecting its 

interaction with the M protein in virus assembly. 

To further investigate the role of cysteine residues in F protein expression and 

trafficking we generated F expression plasmids and studied the expression of mutant cysteine 

proteins after transfection in 293T cells. Our anti-Fcyt antibody recognized only five mutants 

that were expressed to various levels in cell culture (Fig.23B).  These results suggested that 

mutations at residues 76,199,347,362,370,401 have modified the folding of F protein 

affecting the conformational epitopes. Furthermore, the mutations at residues 338, 394,399, 

401 have significantly reduced cell surface expression and fusion activity when co-expressed 

along with NDV HN protein, indicating defect in F protein trafficking. 

In summary, mutational analysis of the conserved cysteine residues of NDV F protein 

suggests that these residues play a key role in folding, trafficking and maturation of the F 

protein and are indispensable for virus infectivity. These residues might be contributing to 

the viral protein-protein interactions during assembly thus regulating virus infectivity and 

pathogenesis. It will be interesting to explore whether the rC523A mutation can be used to 

generate attenuated NDV strains for vaccine purpose. 
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Chapter 7 

 

7.1 Title.  

 

Conclusion and Future prospects 

 

7.2 Conclusion and future prospects 

  

 Newcastle disease (ND) is an avian viral disease caused by Newcastle disease virus 

(NDV) that causes infection in over 8000 species of birds, including domestic and wild-type, 

thus resulting in substantial losses to the poultry industry worldwide. Newcastle disease is 

sufficiently serious disease to be included in List A of the Office Internationale dese-

epizooties (OIE). NDV is an enveloped, negative-sense, single stranded RNA virus, 

belonging to the genus Avulavirus and family Paramyxoviridae family and (Lamb, 2001; 

Samal, 2011a). The family Paramyxoviridae also includes some important human pathogens, 

such as Mumps virus, Measles virus, and Respiratory syncytial virus and some important 

animal pathogens, such as Rinderpest virus, canine distemper virus, and recently emerging 

Nipah and Hendra viruses   

 

The highly virulent form of Newcastle disease is one of the most important poultry 

diseases worldwide, which can cause morbidity and mortality rates up to 100%. Outbreaks of 

virulent Newcastle disease have a tremendous impact on backyard chickens in developing 

countries, where these birds are a significant source of protein and income. This disease is 
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endemic in Asia, Africa, Central and South America. Vaccination can protect birds from 

clinical signs but does not necessarily prevent virus replication and shedding. Understanding 

of the biology of NDV can serve as an important guide for future research on the molecular 

principles that determine its virulence and it will help further to develop highly effective 

NDV vaccines. 

 

Reverse genetic techniques allow the introduction of site-specific mutations into the 

genomes of viruses. This revolutionary technique is crucial for the study of the 

structure/function relationships of viral genes, for investigation of viral pathogenicity, and for 

development and manufacture of novel vaccines. The technique has significant implications 

in understanding and preparing for infectious disease pandemic. With the help of the reverse 

genetics, we have investigated the role of F protein in NDV pathogenesis. 

 

The studies summarized in this project have indicated the importance of the F protein 

in NDV in virus pathobiology. Our results on N-glycosylation of NDV F protein 

demonstrated that N-linked carbohydrates are crucial for the fusion function, and this may 

provide important clues for the development of live attenuated vaccines. By deletion of N-

glycans together from HR1 and HR2, we generated a hyperfusogenic phenotype which 

showed increased spread of the virus and infectivity. The F protein is the main target for 

immune response and possesses significant immunogenic property. The result of this study 

can be useful to design effective vaccine strains or avian paramyxovirus vaccine vectors 

(Kumar et al., 2011; Subbiah et al., 2011; Xiao et al., 2012) by increasing the fusion activity 

of the vaccine virus which can increase replication and immunogenicity. Similarly it can also 
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increase the replication of the NDV vector. NDV strains have wide spectrum of virulence in 

chickens from completely avirulent to highly virulent and also there is variation in tissue 

tropisms (viscerotropic, neurotropic, and some strains are restricted to only respiratory tract). 

In our study we have used the BC strain which is moderately pathogenic and the infection is 

restricted mostly to the brain and respiratory tract. However, in our study on N-glycans the 

( rNg2+5) hyperfusogenic phenotype had shown an significant spread in gut tissues; this 

gives an new insight to understand how N-glycans of NDV F protein possibly modify the 

structure and function thus influencing virus replication and tropism. Additional studies of N-

glycans of other velogenic and lentogenic strains will provide better understanding towards 

the critical role of F protein in NDV pathogenesis. 

 

The wide variation in NDV pathogenicity is primarily due to differences in the 

cleavage site sequence within the F protein. This protein is synthesized as a precursor (F0) in 

non-functional state, which then is cleaved by host proteases into two functionally active 

polypeptides (F1 and F2). However, recently the vast scale of sequence analysis and studies 

on NDV virulence factors have demonstrated that virulence of NDV is a multigenic trait. Our 

studies on cleavage site of NDV F protein have pointed out the importance of the conserved 

glutamine residue on the F protein cleavage site and have given a plausible explanation why 

many field isolates can harbor virulent strains of NDV without showing clinical signs, and 

that it consequently may act as silent carriers. This study can be extended in future to other 

strains of NDV and other avian paramyxoviruses to understand the role of cleavage site and 

to generate more genetically stable live attenuated NDV vaccines. 
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The paramyxovirus F protein is a class I viral membrane fusion protein which 

undergoes a significant refolding transition during virus entry. The availability of the crystal 

structures of two surface glycoproteins, F and HN, of NDV has allowed us to understand the 

complex mechanism by which these viruses initiate infection (Chen, 2001; Crennell et al., 

2000; Swanson et al.). The exact molecular mechanism by which the F protein mediates the 

critical steps of fusion process is still unknown. Recombinant NDVs serve as an excellent 

model natural for understanding paramyxovirus pathogenesis, because pathobiology of NDV 

can be measured on a quantitative basis in its natural host chickens. Our studies on 

cytoplasmic domain and conserved cysteine residues of NDV F protein have broadened our 

understanding on the requirement of conserved amino acids in F protein functions. In the 

future, more detailed studies on this can have higher implications to understand the 

mechanism of paramyxovirus fusion and for strategies to prevent viral entry.  

 

NDV has inherent oncolytic potential for the treatment of human cancers. NDV 

replicates selectively in human cancerous cells sparing normal cells and activates 

programmed cell death program in cancer cells. It is demonstrated that NDV selectively 

replicates in tumor cells and induces death while sparing normal cells. Due to this property, 

NDV has been exploited as a potential anti-cancer agent in humans. A previous study 

demonstrated that recombinant NDV expressing highly fusogenic F protein has enhanced 

oncolytic property (Vigil et al., 2007). For a successful virotherapy, virion production rates in 

the infected tumor cells must outstrip the growth rate of healthy tissue. Our studies on NDV 

F protein has demonstrated how various domains and conserved residues play a critical role 

in generating hyper or hypo fusogenic phenotypes and the possible interactions of F protein 
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with HN and other internal proteins. These studies can help in improvement of therapeutic 

index of recombinat NDV strains as oncolytic agents. In the future, more detailed studies of 

NDV F protein will provide us with more knowledge to increase the oncolytic property of 

NDV.  

An important application of reverse-genetic techniques is the generation of 

recombinant viruses for use as vaccine vectors. Recombinant NDV is an excellent vaccine 

vector expressing foreign proteins for both human and animal diseases (DiNapoli et al., 

2007; Khattar et al., 2010; Khattar et al., 2011; Xiao et al., 2011) . Our study can be further 

exploited to increase the efficacy of the NDV as a vaccine vector. The HN and F 

glyocproteins of the paramyxoviruses are known to be responsible for initiation and progress 

of the infection process and thus are the potent immunogenic candidates. Our studies can be 

explored further to enhance the immunogenicity of F protein.  

In summary, our studies on NDV F protein provide the basis for further investigation 

to understand overall F protein in NDV virulence. It will be interesting to explore further 

whether F protein determines NDV tropism and virus host interactions. 

  

 

 

 

 

.  
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