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ABSTRACT

This paper is concerned with strong approximation in queueing networks. A model of a circuit-switched
network with fixed routes is considered in the limiting regime where the link capacities and the offered traffic
are increased at the same rate. The process of normalized queue lengths is shown to converge almost surely
to a sliding mode solution of an-ordinary differential equation. The solution is shown to posess a unique
stable point. It is reached exponentially fast or in finite time, depending on the values of the parameters.
This has implications on the settling time of the network. The technique is applicable to closed Jackson
networks and their settling times. In contrast with other asymptotic results on queueing networks it does
not make use of product form distributions and extends easily to non-Markovian models.
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1. Introduction

The difficulty of computing the normalizing constant of product form distributions of networks that are
moderately large has recently lead to the investigation of asymptotic methods. Pittel [6] and McKenna and
Mitra [5] consider classes of closed Jackson networks, and Kelly [3] investigates an asymptotic regime for a
product form model of a circuit switched network. The methods used in [5], [6] and [3] rely heavily on the
product form of the stationary distribution of these networks. The aim of this paper is to show that standard
strong approximation methods can be used to study the asymptotic regime-in [3]. The same methods can
be applied to other networks such as the ones in [5] and [6]. Our methods lead to approximations for the
transient and the stationary behavior of these networks and do not rely on the product form of the stationary
distribution. )

We describe a special case of the model in [3]. The general case will be discussed elsewhere. The network .
consists of a graph whose edges represent communication links between the nodes. Link j € {1,...,J}
comprises Cj circuits. A route in the network is a simple path in the graph that establishes a- connection _
between its endpoints. Assume that there are M possible routes and denote their set by R. Calls requesting
route » € R form a Poisson process with rate-v, and each such call uses Ajr € {0,1} circuits from link
j. Let A denote the matrix (A;,). If there are less than Aj, calls available on any link j € 7 the call is
lost. Call arrivals for different routes are independent. Each successful call holds its circuits for a pé}iod
of time which is exponentially distributed with mean p, and is independent of earlier arrival and holding
times. Denote by y,(t) the number of calls in progress on route r € R at time t > 0. We will consider the
asymptotic regime where the arrival rates of the calls and the link capacities increase to infinity at the same
rate, i.e., the parameters v = (v,, r € R)7, C = (C;, j=1,...,J)7T are replaced by vV = (v, r € R)7,

= (C}V, i=1,...,J)T, where

lim -l—V,N =uv, TER
N=eo (1.1)

LN A
Nll—I};l)oNCJ —C]s J e{l,,]}
For a link j define the set of routes sharing that link,
Ri={reR|jer}.

The vector process y™N(t) = (yV(t), r € R)7 satisfies the following stochastic integral equations, for each
N=12,....

W) = vV (0) + Y8 / [Tt + 3 4506 (s) < CV}ds

jer g€R; (1.2)

-Y! (ur /0 uy (S)d8> :

for all r € R, ¢ > 0, where Y,2(-), Y.¢(:)rer are independent Poisson processes with unit rate.
As in Kurtz [4], by setting '

M) = ),
(1.2) becomes

cN
N(t) = 2N 0) + 1Y" uj"/ Hl{ Ajr 3 Ajgzy —]\1/—}1_13
jer 9€ER, : (£.3)

t
-d N
7\’)’ (Npr/o zr (s)ds).
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To proceed as in [4] one considers the limit equation (sec Theorem 2.1),

H 1{ 2 Ajozy(s) £ Cjlds — pr /‘ 2.(s)ds, r € R. | (1.4)

0

)= 2@+ [

0 jer qeR;

Note that the integrands on the right hand side of (1.4) are discontinuous and a solution in the usual sense
may fail to exist. We will consider solutions of (1.4) in a wider sense, allowing (z(1)) to be non-differentiable
at a finite number of times but retaining continuity. This gives rise to so-called “sliding mode” solutions. It
is shown that the solution of (1.3) converges to such a solution of (1.4) almost surely on finite time intervals.

The results in Kurtz [4] are not directly applicable because the right hand side of (1.4) fails to be con-
tinuous. Instead, in Section 2.1, the results in [4] are applied to simple perturbations of (1.4) which are given
in (2.3) and (2.5). The limit of the perturbed processes, given in (2.4) and (2.6) is seen to approximate a
“sliding mode” solution of (1.3), given by (2.2), (2.7) and (2.8) in Section 2.2. The corresponding determin-
istic limit is simpler in the closed Jackson networks considered in [5] and [6]. In Section 3:it is seen that this
“sliding mode” solution has a unique stable point. Weak convergence of the stati-onafry measure of (z(t))

to this stable point follows from standard results in Ethier and Kurtz [2]. The. method provides information-

on the settling times of networks. The corresponding results imply some of the results in Anantharam .

Furthermore, our results can be extended to non-Markovian models. '
Of particular interest are non-product form networks where the “sliding mode” solution of the deter-

ministic limit equation has multiple stable points. Such a situation will be considered in a future paper.

2. Limits

2.1 Approximation

We will henceforth set y, = 1 in (1.3) and (1.4). This leads to solutions of (1.4) that are piecewise
straight lines. The case of arbitrary p’s and of an arbitrary vector field can be handled by modifying the
- argument below. However, the description of the “sliding mode” solution of (1.4) becomes more complicated.
Equation (1.3) is rewritten as

0 =0+ 3 ([ 26 6a0)
- -1]\‘-,}’: (N /0: zi"(s)ds> .

cN
@) = [[HAir + Y Ajgz(s) < =)} r=L.,M
JjEr qER;

(2.1)

where we have set ,

We now proceed to describe component-wise lower bounds for the process '(zN(t)),Zo.

Notation
(a) Denote the admissible set by 4 = {z > 0| Az < C}.

{(b) The relative bouhdary and the relative interior of a set K are denoted by 8/ and IntK respectively.
Set 7x = inf{t > 0| z(t) € K}. '

(c) A set of indices {7;,...,4;} is denoted by I; and i;j, = 1; U j;. i

(d) For iy,..., iin {1,..., J}, we will find useful to consider the subsets of intersections of hyperplanes

Hy={2€dA|al .z=Cy, ke, al . 2<Ci, k¢i}
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(e) For j,€{1,...,J}, the sets of routes
I
= U R;,
k=1
Rjvi = Rj\R;,

will be repeatedly considered. The quantities AV, 7§ and Hi’:’ , are defined in the obvious way.

- Lower bounds will be developed so that the limit of the bounding process can be identified from standard ‘
strong approximation results. For simplicity, fix zV(0) = 2°, a constant. We need to distinguish between
three cases.

(i) z° € IntAN
The limit of (2" (t)) as N — oo is directly 1dent1ﬁed as the solution of the differential equatlon

) =v-a(t), t<ma wO)=2 - - ()
One has from (4], Theorem 2.1, and for T > 0,
sup{[l2¥ (t) = 2)]| | £ S ToA AT} =0 0, a5,

(i) 2° € HN
For € > 0, set If(z(t)) = diag (1{z(u) € AN, u€lt -], r€ R}, r=1,...,M). A component-
wise lower bound can be obtained as the solution of equations

Ne(t) = 20 4 =V S @ () IE (2 (5)) ds
1;’ ( / ) (2.3)

f’,d(N/ zf"(s)ds), r=1,..., M,
N 0

where Y,%(-) and ¥,2(-) are independent Poisson processes with unit rate and are chosen so that, almost
surely, as N — oo, 2V () > z2V:¢(t), as. for t < TN

From the strong law of large numbers one has Y (Nu)/N = u, almost surely, and the limiting process
can be seen to be the sawtooth-like solution of the differential equation

54(1) = vIE(z4(t) - 2(t), 2(0)=2°, t<Th, (2.4)

where 7, is defined in the obvious way. Recall that we allow a finite number of non-differentiable points in
the solution of a differential equation. Indeed, one has, for T > 0,

N-—oo

sup {||zN"(t) -z |t < 7, /\T} 0, aus.

(iii) 2° € HYY

For € > 0, set I (2(1)) = diag(1{z(u) € [t —€,¢], r € Ripi,_,}, ©=1,...,M). As in the previous
case, an asumptotic lower bound can be obtained that satisfies the equation

L1y ([ e i o)

t N
Yy (N/ z?’"(s)ds), r=1,..., M,
0 -

4

M) =0+

2|- 2|




.where, again, ¥,*(-) and Y2(-) are independent Poisson processes with unit rate and are chosen so that
zN(t) > z2V4(1), as., for t < r}l}""‘. The limit process is the solution to the equation

2¢(t) = vIf (2 (1)) — 2(t), 2°(0)= 2°, t< T’(’h’ (2.6)

and one obtains

1 . N—oo
sup {{lz™<(t) - 5“0l | £ < s, A T} "0, as.

2.2. The limit equation

- We next examine the behavior of (2(t)), defined by (2.4) and (2.6), as ¢ — 0. The case where v € IntA
" is of no interest because then one obtains 794 = 00 in (22) Again, we need to consider the same cases as
above. Case (ii) is included below for clarity. In the sequel, certain assumptions are progressively imposed.
They ensure that (z(t)).will evolve in the corresponding intersection of hyperplanes for a positive time. No
loss of generality results if the stated assumptions do not hold. In that case, (z(t)) evolves in the intersection
of fewer hyperplanes. See also the procedure of Section 3. ]

(i) z° € H;
For t < ¢ one has
z(t) = —2°(1) + 0, r €Ri, v, TE Rf)T’

and assuming that a] -v — C; > 0, one sets

def af -v

TG

Bi=

Quantities 75 4 = 7, and z°(7f,) are calculated as
54 = Tiy, = Bie + 0(¢) and
2¢(rf) = 2° + 7y, {ui — 2%} + o(€), where,
yE, -l% (vr, T€ Ri;0, 7 € EHT. (2.7)
i
From this, one concludes that (2¢(t)) converges uniformly to (z(t)) where

2(t) = v —2(t), 2(0)=2", 0<t<7he.

If aT - v — C; < 0, then (2¢(t)) will never return to H; and (z(t)) will obey equation (2.2) for t <T54.

(ii) 20 & 11,']'
It is assumed that af - v > C;, a] -v > Cj, B < Bj, and that a -v* = Cj > 0. This last assumption
implies that a;r -2f(t) < Cj for 0 < ¢ g Tfy,,- Some algebra shows that ‘

Tie = i, = Bije + o€), where

T
al . (ur, T E-Rj\i; 0, r€ R?\i)

def J
Bi;= al . v - C;
J

Similarly to the above case, one verifies that

z(tyy,)) = z° + TH,; {Vij —2°} +o(c), where
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Gar ;1 '
vy éf V- -B:;- (Vr’ re RJ\“O, TE Rj\‘)
From this, one concludes that (z¢(t)) converges uniformly to (2()) where

#(t) = v — a(t), z(0) =2° 0<t< TH,

(lll) z0 (= Hi,
Motivated by the above considerations one defines inductively, for 1 = 2,...,J,
T
I. (Vry re Ri(\i(_x; 0! re Rc )

der &t i\
i =

T - :
ay vt 1 -G

Cder 1 T
i déf ph-1 B—_ (U,., '7‘ G R,-,\i,_,;O, re Rfl\i!..n)» .

u

To ensure that the limit solution will evolve in Hj, for some positive time one assumes,
al .v>Ci k=1,...,0; B =min{B;, |k=1,...,1}

al V1 >Ci, k=2...,l; By =min{Bi |k=2,...,1}

al

o vt > Gy,

Then, it can be verified as in the previous cases that (z¢(t)) converges uniformly to (z(t)) where
a(t) =M —z(t), 2(0)=2°, 0<i< TH; (28).

It remains to show that the process (z" (t)) converges to (z(t)) as N — co. To this end note that for
some K > 0 and for ¢t > 0,

z(t) 2 (1) 2 () -~ Ke+o(e), r=1,..., M.

Then, since z¥ () > zN:¢(t) for all r = 1,..., M, the limit results of Section 2.1 imply that
limsup sup,¢7 ||2(t) — 2N (t)|| < Ke + ofe), as.
N—oo - .

By piecing together the above cases the following is established.

Theorem 2.1: For T > 0, one has

lim sup,<rlla(t) — 2~ (2)|| = 0,
Neroo =

where (z(1)) is determined by equations (2.2), (2.7) and (2.8).

~ 3. Stability of the limit trajectory
In this section we study the behavior of (z(t)), defined in (2.2), (2.7) and (2.8), as t — oo. It will be
proved that if v € IntA then there exists a unique stable point on d.4. Depending on the location of the
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stable point, convergence is exponential or can be achieved in finite time. This is not the case for the closed
Jackson network considered in Anantharam [1). There, convergence is always achieved in finite time.

Given an intersection of hyperplanes we now present a procedure which determines the intersection of
hyperplanes in which (z(t)) will evolve. Specifically, for z° € Hj,. # 0, this procedure determines the set of
indices I(jm) def i/ C jm. Thus, by computing v**, one determines the intersection of hyperplanes on which
(z(t)) will evolve for some time interval of positive length. It is assumed that the indices {4,...,4} below
are defined uniquely. Simple modifications of the procedure are needed for the general case.

Procedure .
Step 0: Set Jo = jm\{j € Jm | al v < Cj}.1f Jo = 0, then I(jm) = 0 and (z(t)) satisfies (2.2); else proceed
to Step 1.
Step 1: Set 4, = argmin{B; | j € Jo} and J; = Jo\{j € Jo | a vih <G} I =0, then I(Jm) = {i1}
and (z(t)) satisfies (2.7) with i = 4;; else proceed to Step 2.
- Step l: Set i, = argmin{B; | j € Jo_1} and Jp = Ja_i\{j € Jn_1 | a] ‘¥i* < Cj). If J,, = @, then
I(jm) = {i1,...,1a} and (z(t)) satisfies (2.8); else proceed to Step I+ 1.

The procedure terminates in at most m steps.

From equations (2.2), (2.7) and (2.8) one sees that z(t) = 0 iff z(t) = vi» for some set of mdlces in
produced by the above procedure and such that vi» € A. By following the trajectory of (z(t)) for z° = 0 one
verifies that z(t)—-t—_-:.i-n/i where %1 (1,...,M). It can be checked that 4 € A. Furthermore, it is proven
next that 1! is the unique such point in A. V

Theorem 3.1: For all index sets i; produced by the Procedure,
We Aiff i = I(1,..., M).

The only if part of the theorem is a consequence of the following.

Lemma 3.1: Let i; = {41,...,4} and Jm = {j1,...,Jm} be sets of indices in {1,..., M} such that itjn
is produced by the Procedure. If for some k & itjm, ‘

Bik < Byj,, then al - viim > Cy.

The proof is by induction using the definitions of Section 2.1.
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