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Raymond A. Adomaitis and Eyad H. Abed
Institute for Systems Research
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Abstract

A combination of theoretical and computational non-
linear analysis techniques are used to study the sce-
nario of bifurcations responsible for the initiation of
rotating stall in an axial flow compressor model. It is
found that viscosity tends to damp higher-frequency
modes and so results in a sequence of bifurcations
along the uniform-flow solution branch to stall cells
of different mode number. Lower-mode stalled flow
solutions are born in subcritical bifurcations, meaning
that these equilibria will be unstable for small ampli-
tudes. Secondary bifurcations, however, can render
them stable, leading to hysteresis. Using throttle po-
sition as a control, we find that while the stall bifur-
cations are not linearly stabilizable, nonlinear state
feedback of the first mode amplitude will reduce the
hysteresis. This improves the nonlinear stability of
the compression system near the stall margin.

1. Nomenclature

@y, bn, A, mode amplitude coeflicients
plenum/compressor volume
wave speed

axisymmetric compressor characteristic
shut-off head

throttle characteristic
pressure rise scaling factor
controller gain

overall compressor length
exit duct length factor
mode number

control input

axial velocity perturbation
perturbation at =0

mean axial velocity

Vioe total local axial velocity

w mean velocity scaling factor

< eRI IS EMmmMESO W

@ internal compressor lag
v throttle opening

Copyright ©1993 by the American Institute of Aeronau-
tics and Astronautics, Inc. All rights reserved.

0 nominal throttle opening
plenum-atmosphere pressure rise

[ =
b

7 axial coordinate

[} circumferential coordinate
An n’th eigenvalue

B viscosity

T time

2. Introduction

There are great incentives for understanding the
transitions to fully developed rotating stall and de-
veloping active control schemes for suppressing the
onset of stall. Cast in terms of a bifurcation prob-
lem, progress has been made in clarifying the com-
plicated transition scenarios of qualitatively-different
flow patterns, both in low-order models!!! and with
highly truncated discretizations of distributed param-
eter models which account for the spatial nature of
the stall cells2]. In parallel with this theoretical work,
experimental studies of stall suppression[3]‘[5] and
numerical analysis of stall avoidancel® have shown
that the range and operability of compressors near
peak pressure rise can be improved. This paper com-
bines a more detailed analysis of the transitions to
rotating stall with a theoretical and numerical bi-
furcation study of nonlinear controllers designed to
improve the operability of an axial flow compressor
operated near peak pressure rise conditions.

Our work begins with a modification to the Moore-
Greitzer('] model to include viscous dissipative forces
in the unsteady performance of a compressor blade
row. The resulting compression system model, while
somewhat more complicated than the original Moore-
Greitzer model, is still amenable to formal local
stability and bifurcation analysis. Linearization of
the axial flow disturbance partial differential equa-
tion along the branch of uniform-flow solutions (the
axisymmetric compressor characteristic) reveals a
countable sequence of bifurcation points. These
points mark where nonuniform flow solution branches
of different mode numbers are born. The physical in-
terpretation of this phenomenon is that a single cell
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Figure 1: The compressor geometry.

stalled-flow solution is born first and just to the left of
the compressor characteristic peak, and stalled-flow
solutions of different mode numbers branch off still
farther to the left (towards decreasing mean flow val-
ues). Substituting the eigenfunction associated with
the bifurcating eigenvalue into the flow disturbance
PDE and evaluating the mode amplitude coefficient
with Galerkin’s method, we find the first to be a sub-
critical bifurcation, meaning that the bifurcating so-
lution will be born unstable, and so small amplitude
rotating stall cells will not be observed in an actual
compression system corresponding to the parameters
used in this work.

The practical importance of the subcritical stall bi-
furcation, however, is that when the uniform-flow op-
erating point becomes unstable to infinitesimal per-
turbations, the system will jump to a large amplitude,
fully developed stall cell. Subcritical bifurcations also
imply hysteresis, and so returning the throttle to its
original position may not bring the system out of
stall. These features are quantified with non-local
numerical bifurcation analysis and continuation tech-
niques. The points where numerical continuation of
the different stalled-flow equilibria are started are de-
termined by the local analysis discussed above. These
computations reveal rich sequences of secondary bi-
furcations, the primary importance of which is they
give rise to regions of throttle opening parameter val-
ues where fully developed stable stalled-flow solutions
of different mode number coexist, a phenomenon that
has been observed experimentallyls].

Having achieved this basic understanding of the lo-
cal and global bifurcations associated with rotating
stall, we turn to the design and analysis of active con-
trol schemes to allow safe operation of the compressor
near conditions of peak pressure rise. Building on the
work of Liaw and Abedlg], we design output feedback
controllers that render the local bifurcations leading
to rotating stall supercritical, i.e., stable. Moreover,
the ability of such a control law to also limit the
amplitude of the bifurcated solution branches over
a given parameter range is also studied. These con-
trol laws are found to reduce hysteresis effects which

occur in the uncontrolled system. Using the throttle
opening as a control, it has been shown that the crit-
ical eigenvalue is unaffected by linear feedback, and
so a quadratic feedback control law using the mea-
surement of the amplitude of the first mode of the
axial flow disturbance, or of the pressure rise, is used.
This effectively stabilizes the small amplitude stall
cells and so reduces the dangerous hysteresis. Bifur-
cation analysis of a high-order spectral discretization
of the full system is used to judge the benefits of the
controller.

3. The Compression System Model

3.1. Equations of Motion

A local momentum balance describing the two-
dimensional flow in the compressor and its associated
ducting (Fig. 1) gives the partial differential equation:

ar ~ Mor

0
av 7}
Ap=f(V+w)-—lc / vdn
—00

1 600 a‘vo
%0 [2-5; + —67] . (1)
Note that our notation differs considerably from the
original notation of Moore and Greitzerl’l: V denotes
the annulus-averaged (mean) gas axial velocity; vp is
the axial velocity perturbation evaluated at = 0
(the inlet face of the compressor); A, is the plenum-
to-atmosphere pressure rise; and 5,  are the axial and
angular coordinates.

The compressor pressure rise f(Vi,c) is particu-
lar to each compressor and is obtained from exper-
iments in the stable operating range and estimated
in the nonuniform-flow range. Following Moore and
Greitzer[7], we use a cubic equation in axial velocity

R CEDE )

where Vioc = V+vg (the total local axial flow) and the
characteristic parameters used throughout this work



Param | Value | Description

a 1/3.5 | internal compressor lag

I 8.0 overall compressor length

m 1.75 | exit duct length factor

H 0.18 | pressure rise scaling factor

w 0.25 | mean velocity scaling factor

fo 0.3 shut-off head

B 0.5 plenum/compressor volume ratio

Table 1: Values of compressor parameters used in this
work.

are given in Table 1, with I, fixed at a representative
valuel7}010],

If the momentum balance (1) is averaged over the
circumferential coordinate, we find

2x

Icﬂ+A (r) = = /fde @)

0

which can be thought of as determining the ampli-
tude of the zeroth-order Fourier mode, and so (2) de-
termines the transient behavior of the mean flow (V).
If there are no spatial variations of gas density and
pressure in the plenum, an overall material balance
on the gas over the plenum gives:

- Lve-r@a) @

where the throttle characteristic is given by the orifice
equation F~1(A,) = v\/A,. The parameter v is
proportional to the throttle opening.

4. Onset of Stall—Open Loop

Equilibrium solutions to (1-3) which have no spa-
tial variations in the axial velocity profile are the
uniform-flow solutions. From (2) we obtain

Ap = f(V)
and from (3)

V=v9/4,

and so uniform-flow solutions (V,A,) are found at
the intersections of the axisymmetric compressor and
throttle characteristic curves.

If vo = 0, it can be seen from (1) that the time
derivatives of vy must remain zero. Thus, computing
the two eigenvalues of (2-3) linearized at (V, A,,, vy =
0) will only reveal the stability with respect to per-
turbations in the mean flow and pressure rise. While
this will signal the local onset of compressor surge, we
must consider perturbations to the spatial flow profile
for a complete local stability picture.

4.1. Linearized Stability Analysis

Substituting the annulus-averaged momentum bal-
ance (2) into the local momentum balance (1) and
linearizing at V = V' and vo = 0, we find

_df(V) 1 [ 0v v
0==gv v~ a/”d" [a*ao]
(4)
Solutions to (4) are linear combinations of functions
which are periodic in the circumferential coordinate 8,
satisfy vp = 0 at the inlet duct entrance (at  — —o0),
and satisfy the continuity condition (since we assume
potential flow in the ducting). These functions are

Un = 2n exp(AnT + nn + inf) (5)

where 2, is complex and n is the mode number. Sub-
stituting (5) into (4) and solving for the eigenvalues
An, we obtain
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and so, as pointed out by Paduano and co—workers[3],
the uniform flow sclution becomes unstable to spatial
perturbations at the peak of the compressor charac-
teristic.

4.2. Bifurcating Stall Cells

The rotating stall equilibria born at the stall bi-
furcation point are spatial waves of local axial veloc-
ity, rotating at a constant speed around the annulus.
Near the bifurcation point, the amplitude of the bi-
furcating mode will dominate the shape of the stall
cell. Thus, in the neighborhood of the bifurcation
point we can approximate v by the eigenfunction as-
sociated with the critical eigenvalue A,

v = exp(n7) [an cos(nf) + b, sin(nb)] )

(so vp = a, cos(nf) + a, sin(nd)). Substituting (7)
into (1) to form the residual and using Galerkin’s
method to determine the amplitude coeflicients gives
a family (dependent on the stall mode number n) of

sets of four ordinary differential equations in timel 111,

By introducing the rotating coordinate frame 4 —
6 +cr into the mode amplitude differential equations,
the wave speed ¢ of the bifurcating modes can be
computed by the requirement that if the coordinates
rotate in the amplitude coefficient space at the same
speed as the traveling wave, the eigenvalues will cross
the imaginary axis on the real axis. This requirement
gives an explicit expression for the wave speed (c.f.
equation (57) of Moore and Greitzerm):

-n

= 2(am+n)



Constraining the Fourier mode amplitude coeffi-
cients by A2 = a2 + b2 gives

mc;:-nd:r,, _ 3HV(22wu;— V)A,.—g%fii(&
Ic%‘;/ = —Ap+fo+ﬂ2(73u:%iz
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Ic% = Z%;[V—Y\/K;]- (10)

The amplitude of the bifurcating traveling wave
comes from the steady-state form of (8) with A, # 0:
8uwd df
2 _ —_——
= 3mav (D

The steady mean flow V can now be computed from

(9)
v 2 121r
&=(%) =270/f"“’=

HV2(@Bw-V) 3H(w-YV) ,
fot 2u3 + 43 An-

For A, # 0, the mean gas velocity V of the stalled-
flow solutions are defined by the cubic polynomial in
V:

V\? 15HV? B5HV® 6HV
fo—(—) - + +

¥ 2w? 23 =0. (12)
We must be careful in interpreting solutions to (12),
since some of the roots, when substituted back into
(11), will give A2 < 0, clearly an impossible physical
result. Thus, when the physically-relevant roots of
(12) are used to compute the axial velocity pertur-
bation amplitude of the bifurcating stalled-flow so-
lutions, and the local stability of the solutions are
determined by computing the eigenvalues of the lin-
earization of (8-10), we obtain the bifurcation dia-
gram Fig. 2. In this diagram, solid curves represent
locally asymptotically stable solutions and dashed
curves indicate unstable solutions.

These results for n = 1 have been discussed exten-
sively in the literaturel73(10], However, from (11) and
(12), we observe that both the amplitude of the bifur-
cating traveling waves and the mean flow and pressure
rise are the same for all mode numbers n. Because
n can be arbitrarily large, this does not appear to be
physically realistic since the large velocity gradients
associated with stalled flows of very high cell num-
ber will be damped by viscous effects. The addition
of a viscous momentum transport term will change
the form of (1) and so we should expect important
changes in the bifurcation behavior of the modified
model.
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Figure 2: Subcritically bifurcating stall cells.

4.3. Viscous Dissipation

If we include a term which accounts for viscous
transport of momentum in the compressor section,
(1) becomes

0
dv 17}
Ap = f(V+v) - ICE; —mg= / vdn

-00

1 [ Ovg  Ow vy

—— 2=t = - == 1
2a [2 or + 50 Voe2 (13)

Linearized stability analysis reveals the important dif-

ference in the structure of the stall bifurcation—the
eigenvalues are now

m 1 _df(V) n? . n
[;+;]An_ dav ~#2aiz2a' (14)

This expression can be given some physical “feel” by
considering its behavior for very small (positive) p.
For all 4 and all mode numbers n, the real part of
the eigenvalue expression will be negative for com-
pressor characteristic segments where the derivative
of the characteristic with respect to the mean flow V
is negative (see the right-most portion of the uniform-
flow solution branch in Fig. 3). As the throttle is
closed (moving left on the solution branch), the local
maximum is crossed and so the derivative changes
sign. This means, for small 4 and the first stall mode
(n = 1), the real part of the eigenvalue vanishes at
a point just to the left of the peak. Since this point
will move farther down (to the left) the uniform-flow
branch as the viscosity parameter increases, we see,
true to what we should expect, that viscous effects
tend to damp out spatial perturbations. Similar ar-
guments can be made for the higher mode (n) bifur-
cation points shown in Fig. 3.

Another important effect is that the number of bi-
furcating modes will be reduced from an infinite num-
ber (for p — 0) to a finite number for u # 0 and for
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Figure 4: Bifurcating stall modes computed with lo-
cal methods for y = 0.01.

bounded maximum positive slope of the compressor
characteristic.

While the wave speed is unaffected by this modi-
fication, the amplitude expression of the bifurcating
stall cells becomes

42 8uw? [i n2]

"T3H [dV "2 (15)

and the mean gas velocity V of the stalled-flow solu-
tions can be found by:

2
foe (K) _ 15HV?

¥ 2w?
5HV? 6HV pun?
+W+—w—-+(V—w)T = 0. (16)

Computing solutions to (16) gives the mean flow
values V of the bifurcating stall cells. Note how the

roots of (16) are now an explicit function of mode
number n, as opposed to the inviscid case (12). In
Fig. 4, we observe that the lower mode number stall
cells are born during subcritical bifurcations, a sig-
nal of possible hysteresis behavior. The nature of the
bifurcation changes with larger mode numbers, how-
ever, with the n > 5 bifurcations being supercritical
(with respect to decreasing ) for the set of parameter
values studied.

5. Local Stall Suppression

5.1. 1-D Controllers

In this work we will only consider using the throttle
position as a control and so ¥ = 4o + u is substituted
into the plenum mass balance (3). This type of con-
trol appears to be simpler to implement than those
techniques depending on directly affecting the flow
field in the compressor inlet ductBMO! and successful
experimental results have been reported[4]. An im-
portant limitation of this type of control is that is
cannot linearly stabilize the bifurcating stall modes:
we see that v does not appear in the linearization of
the momentum balance (4) and so this type of control
will have no effect on the eigenvalues (6) or (14).

While this control cannot linearly stabilize the uni-
form flow solution with respect to spatial perturba-
tions, it can improve the operability in the neighbor-
hood of the stall margin. As discussed in the previous
section, the subcritical nature of the lower-cell num-
ber stall bifurcations leads to operating conditions
featuring multistability: conditions where the locally
asymptotically stable uniform flow solution coexists
with a locally stable fully developed stall cell. Pertur-
bations of the flow field which destabilize the uniform
flow operating point correspond to states in the basin
of attraction of the stalled flow solutions. The bound-
aries separating different basins of attraction are the
stable manifolds of the smaller amplitude stalled flow
solutions with saddle-type stability, born during the
stall bifurcations on the uniform flow solution branch.
While not directly observable in an experimental sys-
tem, these unstable equilibria are crucial in organiz-
ing the dynamics of the phase space. With this in
mind, we see that if the stability of the bifurcating
solutions can be controlled, we might be able to im-
prove the compression system’s resistance to finite
sized disturbances in the neighborhood of the stall
margin.

5.2. Bifurcation Control
If we consider the nonlinear state feedback con-
troller of the form(4h(12]

v =70 +u = 70 + kA?
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Figure 5: Stabilization of the 1st stall mode with k =
0.5.

and compute the stalled flow solutions with the single
mode Galerkin discretization, (16) remains valid for
n>2whileforn=1

15HV? 5HV® 6HV pn?
[fo T 2w T s w T V- w)—g—] [70
12 CEY o _v) fﬂ2—W—ﬁ (17)
3H \2ud v Hoa -

We see that the [..]? term always reduces to [yo)?
at the stall bifurcation point, but the roots of (17)
away from the stall initiation point will depend on
the controller gain k. This is another indication that
while the stall point will not be affected by this type
of control, the dynamics in the neighborhood will be
changed for k # 0. This can be seen in Fig. 5, where
for k = 0.5 the single cell stall solution is now born
locally stable during a supercritical bifurcation (with
respect to decreasing throttle opening).

In the uncontrolled system with the single-mode
discretization of the axial velocity perturbation, the
stalled-flow solution branch, which is unstable near
the stall bifurcation point, becomes locally stable at
a turning point found at vo & 0.636. If we follow
the location of this secondary bifurcation as the con-
troller gain is increased, we find that the value of 1o
of the limit point and the corresponding amplitude of
the stalled-flow solution shrink with increasing k until
the limit point and local stall bifurcation points ulti-
mately converge. This marks the transition from sub-
critical to supercritical bifurcation of the unimodal
stalled-flow solution branch in parameter space and
takes place at the codimension-2 bifurcation point
seen in Fig. 6. For k£ > 0.378, the bifurcating stalled
flow solution is locally asymptotically stable and for
k < 0.378 it is unstable. This means that the con-
troller tuning is a bifurcation problem, which can be
solved computationally by computing two-parameter
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Figure 6: Limit point behavior of the 1st mode as a
function of the nonlinear controller gain k.

bifurcation diagrams as done here, or by the normal
forms approach of Wang and co-workers12].

5.3. Simulation Results

We have designed and tuned our nonlinear con-
troller using a highly truncated discretization of the
flow field perturbation. To test the controller in a
more realistic manner, we first assume that the ax-
ial velocity perturbation v can be approximated by a
higher-order discretization:

N
v= Z exp(nn) [an cos(nf) + b, sin(nb)] .

n=1

Substituting the Fourier expansion into the local mo-
mentum balance PDE (13) in a rotating coordinate
frame and using Galerkin’s method to determine the
amplitude coefficients, the cos(nf) moment gives, af-
ter some rearranging,

2x
1, 1
{ﬂ+;} = ;r-/fcos(ne)dﬁ
0

n

n? en | on
- I—;Ta,. - (cm + - + 2—0[-) ba  (18)

and the sin(nfd) moment gives

2%

{3 + l} b, = l/fsin(no)do
n o T
]
2
pn o,
~ 5 by + (cm+ > + 2a) a, (19)

along with the ODEs (2-3). Note that the controller
must now take the form y = yo + k(a? + b%). For the
results reported in this work, we use N = 6.
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Figure 7: Spatial perturbation (solid curve) intro-
duced to gauge nonlinear stability characteristics of
the open/closed-loop system. Dashed curves indicate
contributions of individual Fourier modes.

By the local analysis (Fig. 5), the uniform flow so-
lution is locally asymptotically stable to all perturba-
tions (of infinitesimal size) at vy = 0.64. However, if
the axial velocity profile is perturbed in the manner
shown in Fig. 7 from the uniform flow equilibrium
conditions, and the evolution of this disturbance is
followed forward in time, we see that the system set-
tles down to a fully-developed rotating stall equilib-
rium instead of returning to the uniform flow operat-
ing point. This dynamical behavior is shown as the
solid curve time trace of Fig. 8, where V + vo(8 = 0)
is plotted as a function of time. With the nonlinear
controller tuned by the local bifurcation analysis tech-
niques discussed in the previous Section, however, the
closed-loop system is stable to this perturbation and
so returns to the desired uniform flow operating point
(see the dashed curves of Fig. 8).

6. Concluding Remarks

From the dynamics of the manipulated parame-
ter shown in Fig. 8, we see that its time scale is on
the order of the growth rate of the stall cell ampli-
tude and not on its rotational speed. This means the
controller bandwidth demands are reasonable. This
makes sense in the context of the “l-dimensional”
controls discussed, since the phase of the stall cell is
irrelevant in this controller design. This is not the
case, of course, for distributed actuators, since they
must operate on time scales which are a function of
the wave speed and stall cell number.

The stall modes, while uncoupled when the model
is linearized, are coupled in a complicated nonlinear
fashion (this can be seen explicitly since the integrals
of (18-19) can be evaluated by hand with the cubic
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axisymmetric characteristic used). This means that if
the overtones grow quickly, the controller will become
ineffective outside the neighborhood of the stall initi-
ation point. Some of these effects can be compensated
for by increasing the controller gain, but as seen in
Fig. 9, even for a much higher gain than is predicted
by local tuning analysis, the bifurcating stalled flow
solution becomes unstable giving rise to a hystere-
sis loop. These bifurcation diagrams were computed
with the higher-order discretization (N = 6) using
a predictor-corrector continuation scheme similar to
the algorithm found in the bifurcation analysis pack-
age AUTO!3], While hysteresis is not completely
eliminated in this case, the stability of the system to
finite sized perturbation in the axial velocity profile is
still improved and the range of the hysteresis is also
reduced under this control.

This brings up the natural question, presently un-
der investigation, of feedback of higher-frequency
modes. Because of the damping effects of viscosity
discussed and since the continuum assumption of the
model will break down when the period of the stall
modes becomes the same length scale of the rotor
blades, it is conceivable that a globally stabilizing
controller can be found, in principle. The feedback
of higher frequency modes is fundamentally impor-
tant for stall control not only for the stabilization of
the unimodal branch, but also for the higher-modal
stalled-flow solution branches which do not have any
of the lower-frequency components.
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