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In vitro culture techniques must be improved in order to increase the feasibility of cell 

based tissue engineering strategies.  Limitations of current techniques are largely a 

result of the slow diffusion of molecules such as oxygen into the interior of three 

dimensional scaffolds in static culture.  In order to enhance nutrient transport we have 

developed a novel bioreactor, the tubular perfusion system (TPS), to culture human 

mesenchymal stem cells (hMSCs) in three dimensional scaffolds.  In our design, 

hMSCs are cultured on scaffolds tightly packed in a tubular growth chamber.  Media 

is perfused by a peristaltic pump through the growth chamber and around the tightly 

packed scaffolds.  In the first part of the work hMSCs are encapsulated in alginate 

scaffolds and results demonstrate bioreactor culture enhances late osteoblastic 

differentiation of hMSCs.  An investigation into shear stress in the system revealed 

that osteogenic markers increase with increasing shear stress and that the 

differentiation of hMSCs is dependent on cell radial position within scaffolds.  In 

order to enhance the ability to implant these constructs in vivo, a method to create an 



 
 

aggregated cell containing construct in vitro in a bioreactor system was developed.  In 

this part of the work hMSCs are cultured in individual alginate beads in the TPS 

bioreactor and the beads are aggregated to form one large construct.  Following this 

the TPS bioreactor was investigated to culture synthetic poly-L-lactic acid scaffolds 

which were fabricated using supercritical carbon dioxide gel drying.  In addition to 

investigating the effects of perfusion on hMSC growth in these scaffolds, the effect of 

microporosity was investigated.  In the final part of the work, a study was completed 

to determine how TPS culture influenced in vivo bone regeneration.  Here alginate 

beads as well as synthetic PLGA/PCL constructs were used as scaffolds.  Results 

revealed the efficacy of using the tubular perfusion system for bone tissue 

engineering and demonstrated increased bone formation as a result of hMSC 

implantation in both alginate and PLGA/PCL scaffolds.  These studies highlighted the 

need for bioreactor culture in vitro as well as scaffolds to support in vivo tissue 

interaction.   
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Chapter 1: Introduction 

Cell based tissue engineering represents a promising alternative treatment for bone 

injuries that do not heal by endogenous repair mechanisms.  While other treatments have 

significant drawbacks, tissue engineering could provide a mechanism to repair bone 

injuries using an autologous stem cell population.  In this strategy mesenchymal stem 

cells (MSCs), a cell population present in the bone marrow as well as other locations in 

the body are removed and cultured in vitro.  These cells can be differentiated into several 

cell types, including osteoblasts and chondrocytes.  In vitro these cells are often cultured 

on a three dimensional scaffold which then can be implanted back into the defect site to 

support the cell population.  However in vitro culture techniques must be improved to 

increase the feasibility of this strategy.  When three dimensional cell containing scaffolds 

are cultured in static culture, a nutrient gradient often develops in which cells consume 

nutrients faster than they are replaced via diffusion.  Bioreactor culture can be used to 

improve these in vitro culture techniques.  These bioreactor systems culture scaffolds 

dynamically by flowing media through culture chambers.  This not only increases 

nutrient transport but also exposes cells to fluid shear stress, an important stimulus for 

osteoblastic differentiation.  Commonly used bioreactor systems include spinner flasks, 

rotating wall bioreactors, and perfusion systems.  While spinner flask and rotating wall 

bioreactors primarily focus on media mixing, perfusion systems force media through 

porous scaffolds to enhance culture.  However, current perfusion systems are often 

difficult to build and use as the pressure required to force media through the pores of 

scaffolds often leads to leaks.   

 



 
 

2 
 

To this end we utilize a new bioreactor, the tubular perfusion system (TPS) for the culture 

of human mesenchymal stem cells.  The TPS bioreactor features a modular design in 

which cell containing scaffolds are tightly packed in a tubular growth chamber.  Media is 

then pumped through this growth chamber using a pump.  Three different scaffolds types 

are evaluated through the course of this work.  First an alginate scaffold is evaluated.  

Alginate is a natural material which can be crosslinked into beads following exposure to a 

divalent cation such as calcium.  This encapsulates the cells within the beads although the 

cells can be easily removed by using a calcium chelating agent to dissolve the beads.  

Following this analysis of alginate scaffolds, a synthetic poly-L-lactic acid (PLLA) 

scaffold is used in the bioreactor.  These scaffolds are fabricated using a modified 

supercritical carbon dioxide (SC-CO2) gel drying process and feature a microporous 

design.  In the final chapter of research in vivo bone growth following culture of hMSCs 

in the TPS bioreactor is investigated.  In this chapter both an alginate scaffold and an 

electronspun poly(lactic-co-glycolic acid) (PLGA)/ polycaprolactone (PCL) scaffold are 

used.  In this manner comparisons can be drawn between the two differing scaffold types.  

Through the course of this research a new bioreactor system is developed for bone tissue 

engineering.  This bioreactor system is used to create modular tissue engineering 

constructs from smaller building blocks.  In addition alginate, PLLA, and PLGA/PCL 

scaffolds are cultured in the system to demonstrate its utility for both in vitro culture and 

in vivo bone regeneration.    
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Chapter 2: Objectives 

The overall goal of this work is to develop and evaluate a new bioreactor system for bone 

tissue engineering.  To this end this work has five primary objectives: 

1. The first objective is to effectively develop the tubular perfusion system, to 

demonstrate its ability to support the growth and differentiation of hMSCs, and to 

evaluate the effects of flow rate on hMSC late osteoblastic differentiation and 

matrix production. 

2. The second objective is to evaluate the effect of shear stress on hMSC 

osteoblastic differentiation in the TPS bioreactor and to evaluate the effect of 

dynamic culture on the proliferation and osteoblastic differentiation of hMSCs as 

a function of radial distance in the scaffold.   

3. The third objective is to develop an aggregated construct in the TPS bioreactor, to 

characterize its mechanical properties, to encapsulate hMSCs in the construct, and 

to determine the viability of these cells throughout the creation of this construct. 

4.   The fourth objective is to demonstrate cell viability on microporous PLLA 

scaffolds fabricated using a modified supercritical fluid based technique and 

cultured in the TPS bioreactor and to evaluate hMSC response to dynamic culture 

and pore size.  

5.   The fifth objective is to evaluate the effect statically and TPS cultured hMSCs 

cultured in alginate and PLGA/PCL scaffolds have on bone regeneration in a rat 

femoral condyle defect and to compare bone in growth and regeneration between 

the two scaffold types.   
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Chapter 3: Bone Tissue Engineering Bioreactors: Dynamic Culture and 

the Influence of Shear Stress1 

3.1 Introduction 

Every year over six million bone injuries occur in the United States and approximately 

one million bone grafting procedures are performed [1].  The source of bone for these 

grafts is either from the patient’s own body in the case of an autograft or from a cadaver 

in the case of an allograft.  Unfortunately both of these methods have significant 

disadvantages.  The incidence of medical complications arising after surgery involving an 

autograft from the iliac crest are nearly 30% [2].  Allografts are subject to an immune 

response and may transmit disease [2, 3].  Since these traditional means of treating bone 

injuries are associated with limitations, a tissue engineering approach to replace damaged 

bone represents a promising alternative.  A tissue engineering approach involves seeding 

and growing a cell source on a scaffold and implanting the scaffold and cells into the 

injury site [4].  Prior to implantation into the body the cell containing constructs are often 

cultured in vitro in order to increase cell proliferation on the scaffold and to allow for 

differentiation of the stem cells into osteoblasts.  However, in vitro culture techniques of 

3D tissue engineering scaffolds have limitations that must be overcome in order to 

increase the feasibility of cell based tissue engineering strategies.  Bioreactor systems are 

used to alleviate this nutrient transfer limitation by continuously mixing media and by 

convectively transporting nutrients to cells.   

                                                 
 
1 As published in Yeatts, A.B. and J.P. Fisher, Bone tissue engineering bioreactors: dynamic culture and 
the influence of shear stress. Bone, 2011. 48(2): p. 171-81. 
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In the overall cell based bone tissue engineering strategy of expanding a stem cell source 

in vitro, culturing and differentiating this cell source on a three dimensional scaffold, and 

implanting this scaffold in vivo, bioreactors can be used to enhance in vitro culture steps.  

Bioreactors utilize materials and cells that have already been proven effective for bone 

tissue engineering including polymer scaffolds that are biodegradable and mesenchymal 

stem cells (MSCs), a population of cells that exists in the bone marrow capable of 

differentiating into osteoblasts, chondrocytes, and adipocytes [5, 6].  This population 

represents only a small percentage of cells found in the bone marrow, thus expanding 

MSCs to clinically relevant numbers represents a significant hurdle to the implementation 

of a tissue engineering strategy utilizing these cells.  In addition to a readily available cell 

source, the use of biodegradable scaffolds is also of importance as ideally scaffolds 

degrade in vivo and are replaced by new bone, healing the defect without a permanent 

scaffold presence.  Since bones are load bearing, this degradation-regeneration balance is 

exceptionally important as the scaffold cell construct must provide continuous structural 

support.  Bioreactors have been shown to be used to improve cell seeding efficiency [7-

9], cell proliferation [10-13], and mesenchymal stem cell osteoblastic differentiation [14-

20].  In addition to enhancing differentiation and proliferation perhaps the most notable 

contribution of bioreactor systems to a bone tissue engineering strategy is the possibility 

of automation.  A clinically relevant strategy must greatly minimize the risk of 

contamination from bacteria and other cells, reduce labor intensity, and reduce costs 

associated with in vitro cell culture.  Bioreactor systems have the potential to minimize 

all of these aspects through automated cell culture.  A cell source could be added to a 

bioreactor, seeded using the bioreactor, and cultured continuously in the closed system.  
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Nutrient and oxygen concentrations could be monitored by the system and media changes 

could be automated.  By reducing the potential for contamination and the labor intensity 

bioreactors could eventually greatly improve the feasibility of bone tissue engineering 

strategies.  Continued research both on developing new innovative bioreactor systems 

and using established systems to determine relationships between system parameters and 

cell proliferation and differentiation should be completed to bring this to fruition.   

In addition to the possibility of automation, bioreactors can improve in vitro cell culture.  

In vitro cell growth is especially hindered in three-dimensional scaffold culture of these 

cells.  In these scaffolds nutrient gradients develop in static culture where the cells at the 

surface are consuming oxygen, glucose and other nutrients faster than their replacement 

by diffusion.  This creates a gradient where cells nearer to the surface of the scaffold 

receive adequate nutrients, but the concentration of these nutrients decrease toward the 

center of the scaffold.  Cell death then occurs at the center of the scaffold as nutrient and 

oxygen concentrations drop below the minimum necessary to sustain cell growth [21].  In 

the case of a bone tissue engineering construct in which cells are producing matrix, this 

gradient is magnified as the matrix produced by cells on the exterior portion of the 

scaffold further reduces nutrient transfer.  In order to mitigate this hurdle bioreactor 

systems have been developed to optimize in vitro culture conditions.  A bioreactor is a 

culture system designed to support or expand a population of cells through dynamic 

culture and a controlled environment.  This definition provides for a wide array of 

designs that would qualify as bioreactors, but this review focuses on three classes of 

bioreactor systems that have been widely utilized in bone tissue engineering: spinner 

flasks [22-24], rotating wall [22-26], and perfusion systems [15, 18, 27-31].  Each of 
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these bioreactor types has been demonstrated to be an effective means to culture cells for 

bone tissue engineering purposes.  Spinner flask and rotating wall bioreactor systems are 

effective at creating a homogenous media solution on the exterior of the scaffold, but do 

not effectively perfuse media into the scaffold.  Perfusion systems have been 

demonstrated to effectively perfuse media throughout the scaffold and have been shown 

to upregulate osteoblastic markers and increase calcium deposition.  Emphasis is placed 

on perfusion systems as these systems are more complex than spinner flasks and rotating 

wall bioreactors and feature a variety of designs.  Bioreactor systems and perfusion 

systems in particular enhance nutrient transport and expose cells to fluid shear stresses.   

An important aspect of bioreactor systems is their ability to create an in vitro 

environment that is more like the in vivo environment of bone [32].  Although bioreactor 

systems cannot replicate this environment, mechanical stresses and improved nutrient 

transport aid in improving in vitro cell culture.  For example limited transport of nutrients 

in static culture is in contrast to the in vivo conditions of bone as it is a vascular tissue.  

Because of this in vitro nutrient transfer should be improved to optimize culture of cells 

in three-dimensional scaffolds.  Bioreactor systems overcome these barriers via dynamic 

culture which convectively transports nutrients and exposes cells to mechanical stress.  

Mechanical stimulation through fluid shear stresses has been shown to be influential on 

bone differentiation and mineralization [20, 27, 32].  In vivo bone constantly remodels in 

response to mechanical stresses.  It is hypothesized that in vivo these stresses are mainly 

transmitted to bone cells via fluid shear stresses [33].  As load is applied to bone 

interstitial fluid flows through pores in the bone and the shear stress is sensed by 

terminally differentiated osteoblasts known as osteocytes.  The matrix network around 



 
 

8 
 

these osteocytes may allow for communication with osteoblasts and osteoprogenitor 

cells.  It is estimated that in response to loading bone cells experience in vivo shears from 

8 to 30 dynes/cm2 [34, 35].  Osteoblasts and MSCs have also been shown to directly 

respond to shear stress [14, 20, 31, 36-40].  Based on the natural environment of bone, an 

optimal in vitro culture system should provide for adequate nutrition and oxygen to cells 

throughout the scaffold.  Furthermore just as cells respond in vivo to fluid shear stress, in 

vitro shear stresses also affect bone cells.  This review seeks to highlight experiments that 

demonstrate the effects of both of these as well as provide some comparison between 

various perfusion systems in terms of shear stresses. 

3.2 Spinner Flasks and Rotating Wall Bioreactors 

A simple bioreactor system to achieve thorough media mixing is the spinner flask (see 

Table 3.1 for a summary of spinner flask and rotating wall bioreactor studies).  Spinner 

flasks are composed of a glass media reservoir with side arms that can be opened to 

remove scaffolds and media and often have porous covers to allow for gas exchange 

(Figure 3.1).   
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Figure 3.1:  Schematic of spinner flask bioreactor.  Scaffolds are suspended in culture 
while media is circulated using a stir bar 

The flask has a stir bar or other stirring mechanism that stirs the media in the flask.  

Scaffolds are typically suspended from the top of the flask using needles or thread [23, 

41, 42].  Spinner flasks are often used in the culture of cells for bone tissue engineering 

as they have been shown to increase expression of early osteoblastic marker alkaline 

phosphatase (ALP), late osteoblastic marker osteocalcin (OC), and calcium deposition as 

compared to static culture and rotating wall bioreactors [42].  This effect is thought to 

result from the convective transport of nutrients to the surface of the scaffold in spinner 

flask culture in contrast to the purely diffusional transport in static culture.  This will then 

increase concentrations of oxygen throughout the scaffold.  In static culture a nutrient 

concentration gradient can form where cells in the center of the scaffold receive an 

insufficient supply of nutrients.  A nutrient gradient may still exist in spinner flask culture 

as matrix deposition of rat marrow stromal cells induced into an osteoblastic lineage has 

Stir Plate
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been shown to be concentrated on the exterior portions of the scaffold in both spinner 

flask and static culture [42].  This result was also observed when human mesenchymal 

stem cells (hMSCs) were cultured for five weeks on collagen scaffolds in spinner flasks 

and bone formed only in the outer 0.5-1.0 mm of 11 mm diameter scaffolds [22].  The 

authors of this review speculate that in larger scaffolds such as these, spinner flask 

culture does not adequately enhance mass transport and a sharp nutrient gradient results 

leading to cell death in the center of the scaffold, resulting in confinement of matrix to 

exterior portions of the scaffold.  These scaffolds had interconnected pores and were only 

1.5 mm thick, but the penetration depth of transport in spinner flasks appeared to be 

limited to 1.0 mm or less.  Despite these results, spinner flasks may also expose cells at 

the surface of constructs to shear stress which could also aid in enhancing osteogenic 

differentiation [24].   

hMSCs cultured in spinner flasks for 84 days showed similar trends in osteogenic 

behavior, but both proliferation and differentiation appeared to be accelerated in spinner 

flask culture [43].  For clinical relevance in vitro culture times should be reduced far 

below 84 days to decrease costs and the time the patient must wait for an implant.  The 

differences in proliferation and differentiation observed between spinner flask and static 

culture could be caused by increased nutrient transfer or exposure to shear stresses.  

Along these lines culture conditions of spinner flask systems have been shown to affect 

stem cell differentiation and proliferation [44].  Not only was the expression of ALP 

higher in spinner flask culture but also the expression was influenced by the rate of 

stirring.  This could indicate that the increased shear resulting from higher stirring rates 

affects the osteoblastic differentiation of the rat bone marrow stromal cells (BMSCs) used 
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in the study.  This increased ALP expression in response to shear may explain the results 

of another study which compares perfusion culture to spinner flask culture [45].  Rat 

BMSCs seeded on poly (glycolic acid) (PGA) scaffolds exhibited higher ALP expression 

levels in spinner flask culture as compared to static culture, but this expression was 

significantly higher in a perfusion system.  In addition to stirring speed, material 

properties such as pore size have been shown to affect mesenchymal stem cell in growth 

and differentiation [11].  Immortalized hMSCs exhibited a faster rate of differentiation as 

shown by ALP expression in 200 μm hydroxyapatite (HA) scaffolds as compared to 500 

μm pore size scaffolds.  Cell proliferation was slightly higher in the 500 μm pore size 

group, though limited proliferation was observed throughout the study.  As pore size has 

also been shown to affect stem cell differentiation in static culture, it is not surprising that 

this effect is also observed in spinner flask culture; however dynamic culture adds 

additional variables which may affect osteogenic differentiation beyond what is seen in 

static culture.  Despite being a simple system several studies have shown spinner flasks to 

support mesenchymal stem cell expansion and osteoblastic differentiation.  However, 

matrix production is still observed to be restricted to the exterior of the surface.  MSC 

culture may benefit more from systems that provide direct perfusion of nutrients and 

expose the cells to greater shear stresses. 

Another system used in bone tissue engineering to enhance media mixing is the rotating 

wall bioreactor.  The design features two concentric cylinders, an inner cylinder that is 

stationary and provides for gas exchange and an outer cylinder that rotates (Figure 3.2).   
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Figure 3.2: Schematic of rotating wall bioreactor.  Outside wall of bioreactor rotates to 
circulate media 

The space between the two cylinders is completely filled with culture media and cell 

containing scaffolds are placed freely moving in this space.  The free movement of the 

scaffolds leads to a microgravity environment whereas the flow of the fluid caused by the 

centrifugal forces of the cylinder balance with the force of gravity [41, 42].  Using rat 

osteoblast cells rotating wall bioreactor culture was shown to cause an upregulation in 

ALP, OC and osteopontin (OPN), but no increase in cell proliferation [25].  Other studies 

have showed rotating wall bioreactors to be relatively ineffective for the culture of 

osteoblastic cells.  Using rat BMSCs seeded onto poly (lactic-co-glycolic) acid (PLGA) 

foam scaffolds ALP and OC activity were shown to be higher in a spinner flask and a 

perfusion system as compared to the rotating wall bioreactor, which was not shown to be 

significantly different from a static control [46].  It is speculated that this rather 

disappointing result could be attributed to the scaffolds moving haphazardly in the system 

and colliding with the wall of the bioreactor.  This effect was mitigated in a rotating wall 
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bioreactor system utilizing poly (lactic-co-glycolic acid) scaffolds that are less dense than 

water.  These scaffolds avoid collisions with the bioreactor wall and thus expressed 

higher amounts of ALP and calcium than scaffolds cultured in static culture [47-49].  A 

slight variation of the rotating wall bioreactor is used in the Rotational Oxygen-

Permeable Bioreactor System (ROBS) where constructs are cultured in a 50 mL 

polypropylene centrifuge tube modified with a silicone elastomer to provide for gas 

exchange [50].  The tubes containing the constructs are then placed on a roller device and 

housed in an incubator.  This system provides both for gas exchange and rotational shear 

forces and was successfully used to culture BMSCs on polycaprolactone scaffolds [12, 

51].  Mineralization and type one collagen was observed in scaffolds cultured in this 

system after four weeks.  Using another slight variation of the traditional rotating wall 

bioreactor in which scaffolds are fixed to the vessel wall rather than allowed to move 

freely, rat osteoblasts were shown to proliferate at a greater rate and produce more 

extracellular matrix (ECM) proteins and mineralization as shown by alizarin red and Von 

Kossa staining compared to both spinner flasks and static culture [52].  Other studies 

comparing rotating wall bioreactors to static and spinner flask culture have been 

completed and have found less encouraging results for rotating wall bioreactors.  

Osteocalcin and ALP expression of rat marrow stromal cells has been shown to be lower 

in rotating wall bioreactor culture than spinner flask and static culture [42].  Similar 

results were also observed in a rotating wall bioreactor using hMSCs [24].  This low 

expression of osteoblastic markers in rotating wall bioreactors could be caused by 

collisions of scaffolds in the bioreactor or the low shear stresses on cells in the bioreactor.  

Rotating wall bioreactors are another relatively simple bioreactor system that have shown 
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effectiveness in some instances; however perfusion systems have been shown to have 

greater positive effects on osteoblastic differentiation. 

Table 3.1:  Studies utilizing rotating wall bioreactors and spinner flasks for bone tissue 
engineering 

Scaffold 
Material 

Effects on osteoblastic differentiation Reference 

Coralline HA Spinner flask improves cell distribution, proliferation 
and osteoblastic differentiation of hMSCs 

[11] 

Cells in 200 μm pore size scaffolds differentiated faster 
than 500 μm scaffolds 

[11] 

PLGA Spinner flask cultured hMSCs have higher DNA content 
and 10 fold increase in calcium deposition after 21 days 

[23] 
 

Rat MSC calcium production 30 fold higher in spinner 
flask than rotating wall bioreactor 

[42] 

Rat MSC derived osteoblasts mineralized throughout 
scaffold after rotating wall culture 

[50] 

Silk 84 days of culture of hMSCs in 15 mm x 5 mm scaffolds 
showed greater calcium deposition in spinner flask 

[43] 

PLG Higher expression of ALP, osteopontin and calcium 
deposition in rat osteoblasts cultured in spinner flask 
compared to rotating wall 

[25] 

Developed a microcarrier system to culture osteoblasts in 
rotating wall system 

[47-49] 

Bio-derived 
bone 

Rat osteoblasts proliferate slower and produce less bony 
nodules in spinner flasks as compared to rotating wall 

[52] 

Gelatin/ 
hyaluronic 

acid 

Histology shows stronger staining of type I collagen, 
ALP, and osteocalcin in hMSCs after 21 days of culture 
in spinner flask compared to static and rotating wall 

[24] 

PCL Rat MSCs cultured for 4 weeks in rotating wall 
bioreactor and implanted in rats for 4 weeks.  ECM, 
mineralization, and type I collagen detected throughout 
the scaffold 

[12] 

Rat MSCs showed mineralization and type 1 collagen 
after 4 weeks of culture in rotating wall bioreactor 

[51] 

Collagen hMSCs express increase amounts of ALP and deposit [22] 
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increased amounts of calcium in spinner flask compared 
to perfusion and static 

PLGA Higher ALP activity and cell uniformity in flow 
perfusion system compared to spinner flask and rotating 
wall, similar osteocalcin expression and cell numbers in 
all three systems 

[46] 

PGA and 
Collagen 

Increased OC, ALP, and cell proliferation in spinner 
flask compared to static, decreased compared to 
perfusion 

[45] 

Polyethylene 
Terephthalate 

RPM of stirrer increases osteogenic differentiation and 
proliferation from 10 rpm to 100 rpm in rat BMSCs 

[44] 

3.3 Perfusion Bioreactors 

Spinner flasks and rotating wall bioreactors do not effectively perfuse media into a 

scaffold.  Bioreactors that use a pump system to perfuse media directly through a scaffold 

are known as perfusion bioreactors (please see table 3.2 for a summary of perfusion 

bioreactor studies).  Many different perfusion bioreactor systems have been developed 

but most systems consist of a similar basic design consisting of a media reservoir, a 

pump, a tubing circuit, and a perfusion cartridge (Figure 3.3) [32].   
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Figure 3.3:  Schematic of perfusion bioreactor.  Media is directly perfused through 
porous scaffold sealed into a growth chamber 

The perfusion cartridge houses the scaffold which is sealed so that media cannot flow 

around it, thus perfusing media directly through the pores of the scaffold.  This direct 

perfusion makes these systems difficult to develop as the perfusion cartridge must be 

custom made to tightly fit a scaffold and the scaffold must have highly interconnected 

pores.  Despite these difficulties many perfusion bioreactor systems have been developed 

and tested for bone tissue engineering purposes [10, 13, 18, 27, 28, 30, 53-56].   

Perhaps most prevalent in the literature is the flow perfusion culture bioreactor utilizing 

two media reservoirs to allow for complete media changes and a cassette that contains a 

scaffold press fit between two O-rings [20, 27].  This bioreactor design has been used 

with an array of scaffold materials including titanium, starch based scaffolds and calcium 

phosphate ceramics [14, 20, 28, 29, 57-59].  In a study utilizing this perfusion bioreactor 

Pump

Media Reservoir

Growth Chamber
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and rat marrow stromal cells a continuous flow rate of 0.3-3.0 mL/min was shown to 

increase both the calcium matrix deposition and the rate of late osteoblastic 

differentiation [20].  This study utilizes a titanium fiber mesh scaffold and though little 

changes were seen in early osteoblastic marker ALP the effect on late osteoblastic 

differentiation was very pronounced.  Osteopontin was measured as a marker of late 

osteoblastic differentiation.  Based on peaks in osteopontin expression it was concluded 

that fluid flow increased the rate at which the cells were differentiating.  Most notable 

was a dramatic increase in calcium deposition in response to flow.  As calcium is 

deposited only in late stages of osteoblastic differentiation, this result showed that the 

bioreactor culture was greatly enhancing differentiation of stem cells into mature 

osteoblasts and matrix deposition.  Shear stresses in this study were reported not to 

exceed 1 dyne/cm2, but exposure to these shears was attributed as the cause for the 

acceleration of late osteoblastic differentiation.  The use of titanium fiber meshes was 

likely dictated by the need for highly porous scaffolds so that media can be perfused 

through the scaffold.   

To increase the clinical relevance a biodegradable starch based scaffold was then used in 

this perfusion system [28, 60].  Biodegradable scaffolds ideally degrade as new bone is 

being generated, so that the bone defect can heal leaving no scaffold.  Non-biodegradable 

scaffolds like titanium would remain even after the defect has healed.  These scaffolds 

were shown to support osteoblastic differentiation and calcium production was shown to 

increase with flow.  In addition, scaffolds with porosities of 75% had greater calcium 

deposition than those of 50% porosity.  This demonstrated the combined effects of 

scaffold design parameters and flow perfusion.  Studies evaluating the combined effects 
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of these parameters are necessary to fully optimize a system as scaffold parameters have 

also been shown to influence osteogenic signal expression [61, 62].  The increased 

extracellular matrix production observed in this study may have an effect on osteoblastic 

differentiation itself as demonstrated in another perfusion bioreactor study [14].  Rat 

marrow stromal cells were cultured for 12 days in flow perfusion cultures on titanium 

scaffolds and the cells removed leaving the extracellular matrix deposits.  The marrow 

stromal cells were then cultured in the perfusion system on the scaffolds with ECM and 

compared to normal titanium scaffolds.  The constructs with ECM showed a 40 fold 

increase in calcium deposition when compared to normal titanium scaffolds even when 

cultured without dexamethasone, a glucocorticoid steroid widely used to induce 

osteogenic differentiation.  This result reveals a synergistic effect between the 

extracellular matrix and fluid shear stress, revealing that both have a strong positive 

effect on matrix production.  Findings of fluid shear having similar effects of 

dexamethasone were also reported in another study using this bioreactor system [29].  

Samples cultured for 16 days showed significant increases of calcium deposition under 

flow perfusion without dexamethasone as compared to static cultured samples with 

dexamethasone.  Adding dexamethasone to the flow culture further increased calcium 

production.  Osteopontin levels in bioreactor groups cultured with dexamethasone were 

increased to levels greater than static culture with dexamethasone and bioreactor culture 

without dexamethasone indicating that flow has a synergistic induction effect.   

The role of growth factors in bioreactor culture also should be investigated to fully 

elucidate the effect of perfusion systems on osteoblastic differentiation.  Dynamic culture 

could both enhance the production of growth factors through cell stimulation, but also 
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potentially reduce the local concentration of soluble factors through increased mass 

transport.  One such study utilized polycaprolactone scaffolds and analyzed the 

localization of several endogenously expressed growth factors including transforming 

growth factor beta 1 (TGF-β1), fibroblast growth factor-2 (FGF-2), vascular endothelial 

growth factor (VEGF), and bone morphogenetic protein-2 (BMP-2) [63].  Using 

immunohistochemistry, positively stained areas increase with increasing flow rate 

indicating flow enhanced expression of these growth factors.  In vitro enhancement of 

these growth factors could enhance in vivo bone growth.  For example VEGF, an 

angiogenic growth factor, has been used to enhance endothelial cell proliferation and 

encourage vessel sprouting aiding in the vascularization of an implanted construct [64, 

65].  BMP-2 has been widely investigated for its role in enhancing in vivo bone growth 

and in vitro osteoblastic signaling [66-69].  In vivo studies should be performed to 

establish that the increased in vitro production of these growth factors translates to 

enhanced in vivo bone formation.   

Shear stress has been shown to play a substantial role in the increased matrix production 

observed in perfusion culture, but it is also possible that the increased media flow could 

also cause this result.  The contribution of nutrient availability and shear stress have been 

examined independently in studies which use a thickening agent to increase media 

viscosity and are discussed later in this review.  In 9 mm diameter and 5 mm in height 

scaffolds seeded with a preosteoblast line, central oxygen concentration dropped to 0% in 

5 days of culture [21].  Cell death was subsequently observed in these areas of the 

scaffold.  When the demineralized bone matrix scaffolds were placed in a perfusion 

cartridge central oxygen concentration was raised to 4%.  Though this oxygen 
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concentration is still lower than the bulk media (~20%) it was high enough to prevent cell 

death.  Even in relatively small scaffold (cells in these scaffolds were no more than 2.5 

mm from the scaffold surface) concentration gradients occur in static culture, 

underscoring the importance of systems that enhance nutrient transport to cells.  

The ultimate goal of these perfusion systems is to develop a method to grow cells in vitro 

that can be implanted to repair bone injury sites.  Using a perfusion design made of a 

custom machined piece of polycarbonate with space for up to six scaffolds, hMSCs were 

shown respond to shear, increasing amounts of deposited protein [10].  This same culture 

system was shown to be effective for the osteoblastic differentiation of human adipose 

derived stem cells (hASCs) [70].  hASCs have been used as an accessible cells source for 

osteoblasts as an alternative to bone marrow derived MSCs [71-74].  The distribution of 

cells and bone matrix in the scaffolds was shown to increase in the bioreactor system 

compared to static culture.  Increasing the clinical relevance of the work, the same 

bioreactor system was used to culture a demineralized bone scaffold machined to a defect 

shape based on CT scans.  When hMSCs were cultured on the construct, cell number and 

bone volume were both significantly greater in the bioreactor as compared to a static 

control [15].  This study revealed a strategy of how bioreactors could be used to aid in the 

regeneration of bone tissue, but limited in vivo studies have been completed to assist in 

bringing such a strategy to the clinic.   

In one such in vivo study calcium phosphate ceramics seeded with goat bone marrow 

stromal cells were cultured in a perfusion bioreactor and implanted subcutaneously in 

mice [30].  The scaffold system could be used to produce as much as 10 cm3 of bone like 

engineered tissue, but the sample size of the study was small and statistical difference 
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was not observed between bioreactor and static culture.  The perfusion system used 

consisted of a growth chamber, pump, oxygenator, and media reservoir.  Oxygen probes 

were added before and after the growth chamber and measurements from these probes 

were used to predict cell doubling time based on oxygen consumption [75].  Human stem 

cells were then cultured in the bioreactor system with the goal of demonstrating bone 

tissue growth and though bone growth was observed after implantation in nude mice, no 

significant differences in bone formation or osteogenic signaling was observed between 

dynamically and statically cultured constructs [16].  While this result demonstrates the 

efficacy of using bioreactor systems, these systems must be demonstrated to enhance 

bone formation if bioreactor systems are to be utilized in a tissue engineering strategy.  In 

addition to illustrate clinical relevance this result should be demonstrated in a bone defect 

model.  In a different study again using a skin fold model human BMSCs were seeded on 

hydroxyapatite scaffolds and grown in a bioreactor also used for cell seeding [9, 76].  

Increased bone formation was observed when the constructs were implanted in an ectopic 

mouse model as compared to static controls.  Quantitative scoring of hematoxylin and 

eosin staining was used to gain these results, but nonetheless demonstrate the efficacy of 

using bioreactor systems; however more studies are necessary to confirm this result.  

Small sample sizes and large errors could make it difficult to observe significance in in 

vivo models, but careful experimentation must be completed to conclude whether or not 

bioreactor systems can improve in vivo bone growth.  Another advantage of in vivo 

models is a further demonstration of clinical relevance.  In one study osteoconductive 

grafts were created using a different seeding method that could increase clinical relevance 

[77].  Rather than isolate BMSCs from bone marrow by growing the cells in monolayer, 
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whole bone marrow was isolated, bone marrow stromal cells were enriched using a 

density gradient, and these cells were seeded directly into the bioreactor system, rather 

than first being expanded in 2D.  Bone tissue formation was observed in a mouse ectopic 

model using these constructs.  Potentially increasing the clinical relevance of bioreactor 

work, this result is interesting as adding BMSCs directly to scaffolds without prior 

expansion would shorten the time and difficulty required in implementing a tissue 

engineering strategy.  These in vivo experiments were completed in a skinfold model, but 

in vivo studies using a bone defect model have also been completed.   

Using the flow perfusion culture bioreactor rat BMSCs were cultured dynamically on 

titanium scaffolds and implanted in a rat cranial defect model [78].  After 30 days bone 

growth was observed in all cell groups, but there were not significant differences between 

the treatment groups of perfusion versus static and varying in vitro culture times.  The 

authors speculate this again could potentially be attributed to the difficultly of observing 

statistical significance in in vivo models.  This study demonstrates the principle of a bone 

tissue engineering strategy using a perfusion bioreactor.  Further in vivo studies utilizing 

perfusion bioreactors are required to prove the effectiveness of these systems especially 

those that use a bone defect model rather than simply implanting the construct 

subcutaneously.  The lack of in vivo studies could potentially be explained from the 

difficulty of developing and testing a perfusion system.  Because of the need for custom 

made parts and the difficulty of perfusing media directly through a scaffold development 

and maintenance of these systems can be time consuming.  These shortcomings need to 

be overcome and an increased amount of in vivo studies need to be completed to 

demonstrate the clinical relevance of perfusion bioreactor systems.  The clinical 
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relevance of perfusion bioreactor systems will be defined by their ability to be used with 

other strategies for bone tissue engineering including biodegradable scaffolds, scaffolds 

and growth factors that enhance osteoinduction and osteoconduction, and readily 

available stem cell populations.  Much of this work has begun to be completed, however 

additional studies focusing on scaffold parameters such as pore size and stiffness and 

exogenous growth factor delivery should be completed in conjunction with bioreactor 

studies to observe how bioreactors influence cell response to these factors.  The ultimate 

advantage of bioreactor systems over conventional techniques is the ability of bioreactor 

systems to produce reproducible culture conditions that enhance stem cell proliferation 

and differentiation and can be made to minimize handling of scaffold and human labor.  

By automating the process of 3D cell culture a bone tissue engineering strategy can be 

developed that can be feasibly implemented in the clinic on a large scale. 
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Table 3.2:  Studies utilizing perfusion bioreactors for bone tissue engineering grouped by 
bioreactor design 

Bioreactor Design Principle Findings Reference 

Flow perfusion 
culture bioreactor 

Fluid flow increases matrix deposition and 
accelerates osteoblastic differentiation of rat 
BMSCs 

[20] 

Presence of extracellular matrix on titanium 
scaffolds enhances osteoblastic differentiation 
with shear stress 

[14] 

Osteoblastic differentiation of rat BMSCs grown 
on calcium phosphate ceramics enhanced 

[58] 

Flow enhances calcium deposition, porosity of 
starch scaffolds affects ALP expression and 
proliferation of rat BMSCs 

[28, 57] 

Rat BMSCs can differentiate into osteoblasts 
under flow perfusion without osteogenic 
supplements 

[29] 

Flow enhances calcium production of rat BMSCs 
cultured on PLLA nonwoven meshes and 
improves cell homogeneity 

[18] 

Flow perfusion enhances production and 
localization of osteoblastic growth factors TGF-
β1, VEGF, BMP-2, and FGF-2 

[63] 

Rat BMSC seeding improved using bioreactor 
system set to oscillatory flow 

[7, 8] 

Increasing shear stress while keeping flow rate 
constant increases mineralized matrix production 
in rat BMSCs 

[17] 

hMSCs increase expression of BMP-2, BSP-2, 
RUNX2, OPN, and ALP in response to fluid flow 

[59] 

Rat BMSC/titanium constructs cultured in 
bioreactor implanted in cranial defect model 

[78] 

Radial channel 
perfusion system 

Improved cell number, distribution and amounts 
of bone proteins with increased flow velocity of 
hMSCs cultured on bone plugs  

[10] 

Improved cell distribution and bone matrix of 
hASCs in perfusion system 

[70] 
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Complex geometry 
perfusion system 

hMSCs cultured on decellularized bone scaffold 
manufactured to anatomical shape in bioreactor 

[15] 

Central tunnel 
perfused scaffold 

Sheep MSCs seeded on β-tricalcium phosphate 
increase glucose consumption and proliferate 
throughout the scaffold under perfusion 

[79] 

Shear stress shown to accelerate osteoblastic 
differentiation of human BMSCs while mass 
transport shown to increase differentiation among 
lower ranges 

[80] 

Direct perfusion 
bioreactor 

Homogenous cell growth of goat BMSCs, ability 
to measure oxygen consumption 

[75] 

Dynamically cultured goat BMSCs grown on 
calcium phosphate ceramic produced bone when 
implanted into mice 

[30] 

Human BMSCs formed in vivo bone in mice after 
dynamic culture.  Limited differences in 
osteogenic markers between dynamic and static 

[16] 

Tissue Culture 
Under Perfusion 

Human BMSCs cultured in bioreactor form bone 
when implanted into mice 

[77] 

U-tube cell seeding 
perfusion bioreactor 

system 

Bioreactor used for cell seeding, enhanced 
number of viable seeded cells and cell uniformity 

[9] 

Human BMSCs seeded directly on 3D scaffolds 
and cultured in bioreactor, produced bone tissue 
when implanted into mice 

[76] 

Stainless steel 
perfusion block 

Osteoblasts seeded on trabecular bone scaffolds 
showed higher proliferation as lower flow rates 
while Runx2, osteocalcin and ALP increased with 
flow rate 

[53] 

Axial perfusion 
bioreactor system 

Rate of mineralized matrix production of rat 
BMSCs increased, measured by micro-CT 
imaging 

[81] 

Gradient container hMSCs remain viable for 14 days of in vitro 
culture and 12 weeks of in vivo culture 

[82] 

Perfusion system increased central oxygen 
concentration and prevented cell death 

[21] 

Perfusion bioreactor 
system 

 

Flow enhances proliferation and differentiation of 
hTERT-hMSCs 

[13] 

After 40 days higher cell densities of hMSCs in [83] 
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bioreactor 

Higher metabolic rates and more even 
distribution of hMSCs in perfusion culture, 
mathematical modeling completed 

[84] 

Shear stress upregulated osteoblastic 
differentiation of hMSCs 

[31] 

Dynamic culture affected ability of hMSCs to 
form organized matrix and altered nuclear 
morphology, but increased expression of OPN 

[85] 

BMP-2 expression of rat MSCs impregnated with 
plasmid DNA encoding for BMP-2 enhanced 
with perfusion culture 

[55] 

In vivo ectopic bone formation enhanced after rat 
MSCs impregnated with BMP-2 cultured under 
perfusion  

[56] 

Significant increase in ALP and OC expression at 
sites of implanted collagen-PGA scaffolds seeded 
with rat MSCs cultured in perfusion system 
versus static in ectopic rat model 

[54] 

Bone marrow derived osteoblasts exhibit higher 
ALP and OC expression in perfusion container 
than static culture.  Enhancement of in vivo bone 
formation was also observed in mouse skinfold 

[86] 

ALP expression increases in rat osteoblastic cells 
cultured in perfusion container 

[87] 

 

3.4  Effect of Shear Stress and Mass Transfer on Proliferation and Osteoblastic 

Differentiation 

Studies focused on the effects of fluid shear on osteoblastic differentiation have shown 

that shear stress affects osteogenic signal expression of mesenchymal stem cells [36, 38-

40, 88, 89].  Studies reported in this section utilize laminar flow regimes.  In addition to 

the velocity of flow which affects the magnitude of shear, studies utilize flow patterns 
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including oscillatory and continuous flow.  Nearly all long term three dimensional 

bioreactor studies utilize a continuous flow rate, while many short two dimensional 

studies analyze continuous, pulsatile, and oscillatory flow.  Because most long term three 

dimensional bioreactor studies use continuous flow regimes, this section focuses on 2D 

and 3D flow systems that utilize continuous flow.  In one such study utilizing a flow that 

occurred for 5, 30, or 120 minutes every other day for 20 days shear stresses of 1.6 

dynes/cm2 were used and osteopontin and bone sialoprotein (BSP) expression were 

shown to increase in response to shear [39].  Significant changes in osteogenic signal 

expression have also been observed after shorter exposure to shear stresses in this range 

[40].  When rat BMSCs were exposed in 2D to shear stresses of 2.6 dynes/cm2 significant 

changes in osteogenic signaling pathways were observed.  Shear stress was administered 

for periods of 30 minutes to 24 hours and flow regimes were either continuous or 

intermittent.  After 30 minutes flow was shown to significantly enhance the 

phosphorylation of mitogen activated protein kinases (MAPK), p38 and extracellular 

signal-related kinase (ERK).  To test if the effect of shear stress on MAPK signaling 

processes also influenced additional osteogenic signal expression, collagen 1α1, 

osteopontin, cyclooxygenase-2 (COX-2), and VEGF were analyzed.  No changes after 

four hours of flow were observed in osteopontin or collagen 1α1, but COX-2 and VEGF 

were significantly upregulated.  However when cells were exposed to shear for 24 hours 

and then cultured in static conditions for 14 additional days, significant upregulation of 

osteopontin, collagen 1α1, bone sialoprotein, and osteocalcin were observed, indicating 

this early impact on osteoblastic signal expression affected late osteoblastic 

differentiation [40].  This effect on early osteoblastic differentiation was observed at a 
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high shear stress when human osteoblast ALP protein levels were shown to double after 

just 30 minutes of exposure to 20 dynes/cm2 shear stresses [38].   

Long term exposure to shear stresses an order of magnitude lower has been shown to 

generate similar results [88].  Human bone marrow stromal cells were exposed to shear 

stresses of 0.012 dynes/cm2 for ten days using a two dimensional parallel plate.  

Following exposure to the shear stress, the cells were shown to proliferate at a slower rate 

as compared to static culture; however immunohistochemical staining for type one 

collagen and Von Kossa staining showed more intense staining for fluid flow groups.  

This indicates that cells exposed to shear are producing more calcium and collagen, 

components of bone extracellular matrix.  Signal expression data showed mixed results 

after exposure to shear with upregulation of collagen type 1 and osterix, but 

downregulation of ALP and OC.  BSP and OPN were also analyzed and these genes were 

either upregulated or downregulated by shear depending on substrate type [88].  These 

studies on short or long term shear rate in 2D cultures indicate that osteogenic signal 

expression is greatly affected by fluid shear stresses with magnitudes as little as 0.01 

dynes/cm2 and as high as 20 dynes/cm2.  These 2D studies allow for greater control of 

experimental variables and can give beneficial information on how MSCs and osteoblasts 

are responding to shear.   

Bioreactor studies using three-dimensional scaffolds also provide information about 

shear, but additional variables in the systems can make it difficult to calculate exact shear 

stresses cells are exposed to.  Complex modeling is required to accurately compute flow 

rate induced shears from fluid flowing through the pores of three-dimensional scaffolds 

and these shears are influenced by factors that are difficult to measure including cell 
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growth and extracellular matrix deposition.  These two factors can effectively alter the 

path that fluid flows, thus altering local velocities and shear rates.  Bioreactor systems 

also enhance mass transport which could also be influencing osteogenic signal 

expression, as well as influencing local concentrations of soluble factors influencing 

osteoblastic differentiation.  Long term perfusion bioreactor studies have reported shear 

stresses from 0.05 to 1.0 dynes/cm2 (table 3.3).  Increased calcium matrix production is 

often observed in these studies and this outcome is often attributed to shear stress.  Based 

on short term and 2D studies this is a valid conclusion, and it is further verified by studies 

that isolate the effects of shear stress by holding mass transport constant and increasing 

shear through the use of thickening agents such as dextran.  The addition of dextran to 

culture media increases the viscosity and dextran itself does not affect osteoblastic 

differentiation [90].  Two studies are reported that evaluate the direct effect of shear 

stress on osteoblastic differentiation in three dimensional perfusion systems.   

One of these studies performed in a bioreactor system previously discussed and utilizing 

titanium fiber mesh scaffold used dextran to increase fluid viscosity 2 and 3 fold [17].  As 

viscosity increased, calcium deposition also increased, with a 7 fold increase as a result of 

the 3 fold viscosity increase.  Though the shear stresses in the system were still relatively 

low, the extended culture time (16 days) with fluid flow induces the changes in 

osteoblastic differentiation.  Shear is an important variable to isolate in bioreactor 

systems as most studies that increase shear also increase flow rate, enhancing mass 

transport.  Isolating the effect of shear from mass transport enables researchers to greater 

understand the results of their experiments.  The effect of this increased mass transport 

from perfusion systems was studied in detail in a recent work.  This study uses a 
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perfusion system in which a porous β-tricalcium phosphate scaffold (TCP) is placed in a 

media reservoir and a tube sealed into an opening in the middle of it.  Media is then 

pumped from the reservoir by a pump into the opening and the media is forced through 

the pores perfusing the scaffold [79].  Flow rate was first held constant while the shear 

stress increased through addition of dextran to the media.  In other experimental groups 

the shear stress was held constant while the flow rate was increased, permitting the 

effects of both shear stress and mass transport to be analyzed separately.  Results 

revealed that increasing mass transport increases osteogenic markers ALP and OPN over 

lower values (0-6 mL/min), but begins to have an inhibitory effect at 9 mL/min [80].  

This likely occurs as a certain flow rate is required to sufficiently supply nutrients to the 

cells, but once that flow rate is reached, high mass transport rates interfere with cell-cell 

signaling mechanisms.  This result indicates that there is an optimal mass transport rate 

that exists.  As in previous studies, increased shear stress (approximately 0.11 dynes/cm2 

to 0.15 dynes/cm2) induced a higher amount of OPN and OC activity at 28 days.  It is 

also likely that a maximum shear stress exists above which either no further enhancement 

of cell signaling is observed or that shear begins to be inhibitory.  This study however did 

not reach that level.  The result that shear stress can accelerate osteoblastic differentiation 

is confirmed by this study, but it also reveals that this effect occurs in tandem with 

increased mass transport.   

Mathematical modeling can be an important tool to determine what shear stresses a 

bioreactor system exposes cells to and how the system affects mass transport.  These 

analyses can be difficult to complete as flow through random porous architecture 

scaffolds can be difficult to model and this architecture changes with cell growth.  A 
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possible way to account for cell growth would be to combine mathematical modeling 

with an advanced imaging technique that could map cell growth and matrix production 

[81].  A mathematical model that does not account for cell proliferation was completed 

on a system shown to increase stem cell osteoblastic differentiation and growth [31, 83-

85].  According to the simulation, cells in the scaffold experienced shear stresses from 

0.0001 to 0.001 dynes/cm2.  These shears are low compared to others reported in the 

literature and were shown to only penetrate 70 μm into a 1.2 mm diameter scaffold.  

Analysis of oxygen content revealed that oxygen levels were sufficient for cell growth, so 

any differences in cell behavior observed could be attributed to the shear stresses in the 

system.  Mathematical models of bioreactor systems such as this one should be 

completed on bioreactor systems to add insight into the mechanisms behind cell behavior 

in the systems.  Shear has been shown to influence osteoblastic differentiation, but it is 

unknown exactly what magnitude of shear stress cells are exposed to in many bioreactor 

systems.  Modeling should be used as a tool to determine these values and yield 

information to explain the phenomena behind increased stem cell growth and osteoblastic 

differentiation.  Detailed math models, experiments isolating shear stress and mass 

transport and monitoring of oxygen and nutrient concentrations are all tools to determine 

what effect bioreactor shear stress and mass transport have on stem cells.  Short term 

experiments exposing osteoblasts or stem cells to shear stress in monolayer have 

provided insight on the cell signaling pathways affected by shear stress, but analysis in 

perfusion systems must also be completed to determine the effect of long term shear 

stress.  Determining this effect will allow for a greater understanding of perfusion 
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systems and lead to more effective optimization of these systems and potentially a more 

effective introduction of these systems into clinical bone tissue engineering. 

Table 3.3:  Comparison of shear stresses reported in bioreactor studies 

Reported Shear Stress 
(dynes/cm2) 

Effects on osteoblastic differentiation Reference 

Not exceeding 1.0 Significant acceleration of late osteoblastic 
differentiation (calcium deposition and 
osteopontin) in rat MSCs throughout 16 days of 
culture 

[20] 

0.2-0.3 Significant increase in calcium deposition in 0.3 
dynes/cm2

 compared to 0.2 dynes/cm2 (porosity 
changes from 75% to 50%) over 15 days in rat 
MSCs 

[57] 

0.05 Greater calcium deposition after 16 days of 
culture of rat MSCs 

[18] 

0.1-0.3 Increasing shear stress by increasing viscosity 
2x and 3x increased calcium deposition of rat 
MSCs 4 and 7 fold after 16 days 

[17] 

0.1 Using hASCs perfusion culture increased 
expression of collagen, bone sialoprotein and 
osteopontin compared to static 

[70] 

0.007-0.1 Increasing perfusion rate increased cell number 
distribution and protein production of hMSCs 
over 5 weeks 

[10] 

<0.05 Lower calcium content as compared to spinner 
flask using hMSCs 

[22] 

1.6 BMSCs cultured for twenty days exposed to 
flow every other day for 5, 30, or 120 minutes 
showed greatest expression of late osteoblastic 
markers after 30 min 

[39] 

0.05-0.15 Holding flow rate constant while raising shear 
from 0.05 to 0.15 dynes/cm2 increased 
mineralization and accelerated osteoblastic 
differentiation of human BMSCs 

[80] 
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3.5 Bioreactors for Cell Seeding 

This review has mainly focused on bioreactor systems for the long term culture of bone 

tissue engineering constructs; however the use of bioreactors for cell seeding represents 

another important use of these systems.  Cells seeded on tissue engineering constructs are 

often loaded by directly adding a cell suspension to the scaffold.  Though this method is 

simple and thus widely used, it can result in low seeding efficiencies and non 

homogenous seeding distributions [7, 9, 91].  Seeding efficiency can be improved by 

placing porous scaffolds in a mixing cell solution.  Spinner flask systems have been used 

for this purpose however perfusion bioreactor seeding systems have shown to further 

improve seeding efficiency [7-9, 19, 83, 91-94].  Bone marrow stromal cell and 

chondrocyte loading efficiency have been shown to be 20% higher using a perfusion 

system as compared to static and spinner flask loading and significantly more uniformly 

distributed [9].  Using another bioreactor system that has been discussed in this review, 

the flow perfusion culture bioreactor, oscillatory flow was used to seed preosteoblastic 

cells on polystyrene matrices and foams as well as PLLA scaffolds [7].  Dynamic seeding 

yielded higher seeding efficiencies under most culture conditions.  Even more relevant to 

bioreactor bone tissue engineering, perfusion seeding yielded higher cell attachment after 

exposure to shear when compared to statically loaded cells exposed to shear.  This has 

important ramifications for bioreactor systems as most perfusion systems are statically 

seeded and then loaded into a bioreactor.  Perfusion seeding may increase seeding 

efficiency and reduce risk of contamination by decreasing the amount of time the 

scaffolds are handled outside the bioreactor system.  Further studies indicate that flow 

rate used in dynamic seeding of PLLA scaffolds influences scaffold cellularity with lower 
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flow rates yielded higher cellularity [8].  The exact nature of this relationship will likely 

vary with bioreactor type, scaffold material and porosity, and cell loading concentration, 

thus it should be customized for each seeding perfusion bioreactor.  The use of perfusion 

bioreactors for cell seeding represents another aspect of bone tissue engineering that 

bioreactor systems can improve upon.  Continued experimentation in this area could lead 

to a bone tissue engineering strategy in which cells are loaded onto scaffolds in bioreactor 

systems and cultured long term in the same system, maximizing efficiency and 

minimizing contamination risk. 

3.6 Commercial Bioreactor Systems 

Despite the hurdles to developing a bioreactor system for bone tissue engineering some 

bioreactor systems are currently on the market or in the process of commercial 

development.  Several of these systems are summarized in Table 3.4.  Some of the 

products listed in Table 3.4 are not specifically designed for bone tissue engineering; 

however these systems could potentially be used for a bone application.  Others have 

been used for bone tissue engineering and have been reported in the literature including 

the gradient container, and perfusion containers [82, 86, 87, 95-98].  Following culture of 

BMSCs seeded on β-TCP scaffolds in the Minucell and Minutissue perfusion container 

system higher expression of ALP was observed throughout a four week study as 

compared to a static control [87].  Osteocalcin was also shown to increase in this system 

as well as in vivo subcutaneous bone growth [86].  Results from studies utilizing rotating 

wall bioreactors marketed by Synthecon have also been published in the literature [25, 

99, 100].  Human BMSCs seeded on porous silk scaffolds were shown to produce 

homogenous bone like constructs after five weeks of culture in the Synthecon rotating 
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wall bioreactor [100].  Studies like these completed using commercially available 

systems are highly valuable as these studies have increased clinical relevance as 

commercial systems can be purchased by multiple labs and have already begun to be 

mass produced.  Development, testing, and experimentation on commercial systems 

should be continued as currently these systems are not FDA approved for clinical use.  

Companies motivated by commercial use will have incentive to seek regulatory approval 

on bioreactor systems.  Thus bioreactor systems can be developed beyond what is done in 

academic labs.   
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Table 3.4:  List of companies with commercial bioreactor systems 

Company Product Description Website 

Aastrom Developing bioreactor system for stem 
cell expansion 

www.aastrom.com 

Histogenics Developing NeoCart® autologous 
engineered neocartilage which utilizes 
bioreactor system 

www.histogenics.com 

New Brunswick Bioreactor systems for scale up of 
mammalian cells 

www.nbsc.com 

Minucell and 
Minutissue 

Various bioreactor systems for 3D 
tissue culture including gradient 
container, container tissue factory, 
and perfusion culture container 

www.minucells.de 

Synthecon Produce many batch systems 
including the NASA developed 
Rotating Cell Culture System and a 
Perfused Culture System 

www.synthecon.com 

Pluristem 
Therapeutics 

Patented PluriX™ 3D Bioreactor for 
expansion of marrow stromal cells 

www.pluristem.com 

FiberCell™ 
Systems Inc. 

Manufacture Hollow Fiber bioreactors 
that can be used for endothelial cell 
and other mammalian cell culture 

www.fibercellsystems.
com 

Biovest 
International 

AutovaxIDTM automated cell culture 
system for use in mammalian cell 
culture 

www.biovest.com 

Wyle Labs and 
Celdyne 

Hydrodynamic focusing bioreactor 
developed by NASA for cell 
expansion and culture 

www.wyle.com 

 

3.7 Conclusions and Future Directions 

A significant volume of work has been reported to support the use of bioreactor systems 

for bone tissue engineering.  Spinner flasks and rotating wall bioreactors can be readily 

implemented for culture of three dimensional constructs and these systems have shown 

some promising results, but the inability of these systems to greatly enhance nutrient 
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transfer throughout a scaffold limits the degree of improvement over static culture.  

However, use of these systems should be continued at least into the near future as 

implementation of these systems is more readily achieved than more complicated 

perfusion systems.  Experiments utilizing perfusion systems have shown very promising 

results including induction of osteoblastic differentiation without dexamethasone [14, 29] 

and growth of cells on a scaffold custom designed for a bone defect [15].  Despite these 

successes more progress needs to be made in order for perfusion bioreactor systems to be 

used in a clinical setting.  Researchers should focus on the clinical strategy for 

implementing their bioreactor system including improving ease of use, minimizing 

failure rates, and optimizing cell proliferation and differentiation (Figure 3.4).   

 

Figure 3.4:  Clinical roadmap for bone tissue engineering bioreactors 

This focus should include the entire strategy including cell type (readily available cells 

sources such as MSCs should be focused on), biomaterial (non-toxic biodegradable 

scaffolds), and bioreactor components (FDA approved).  Attention to these items will 

allow for more rapid transference of bioreactor systems to a clinical setting.  Furthermore 
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research should be conducted in a linear manner with experiments focusing on 

demonstrating effectiveness in a clinical setting.  Despite the plethora of work completed 

on perfusion bioreactor systems, minimal work has been reported utilizing perfusion 

bioreactor cultured bone tissue engineering constructs in an animal defect model.  Given 

the promise and amount of research conducted on many bioreactor systems a defect 

experiment must be the next step to utilize perfusion bioreactors in a clinical setting.  

Once these studies are completed researchers should focus on commercializing their 

bioreactor system and overcoming regulatory hurdles to begin clinical use.  The potential 

associated with these systems is great, but significant additional progress must be made.  

Ideally a bioreactor based bone tissue engineering strategy would start with the extraction 

of a stem cell population from a patient.  This population would then be expanded in a 

bioreactor system then uniformly seeded on a biodegradable, biocompatible three 

dimensional scaffolds in the bioreactor system.  The construct would be cultured within 

an environment that would cause the stem cells to rapidly proliferate and undergo 

osteoblastic differentiation with the bioreactor system monitoring oxygen content and 

automatically changing media when necessary.  After a short but sufficient culture time 

this construct would be removed and directly implanted in the patient where it would 

foster osteoinduction and osteoconduction for rapid repair of the defect site.  The scaffold 

would biodegrade leaving only regenerated bone tissue where there was once an injury.  

With an increased amount of relevant animal studies and development of a clear strategy 

bioreactor systems could play a key role in a tissue engineering treatment for bone 

defects and bring this strategy to clinical reality.  
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Chapter 4:  Bioreactors to Influence Stem Cell Fate:  Augmentation of 

Mesenchymal Stem Cell Signaling Pathways via Dynamic Culture 

Systems 

4.1 Introduction 

Mesenchymal stem cells (MSCs), a multipotent stem cell population present in bone 

marrow as well as other tissue including adipose, and can be readily differentiated in 

vitro into osteoblasts, chondrocytes, and adipocytes as well as tenocytes and myoblasts 

[5, 6, 101].  Therefore these cells are a promising therapeutic cell source for regenerative 

medicine therapies to replace and repair these tissues.  Therapies involving MSCs include 

direct transplantation of an MSC population, growth factor loaded scaffolds for MSC 

recruitment, and implantation of scaffolds containing an in vitro cultured MSC 

population [102-105].  Successful in vitro culture of MSCs requires an understanding of 

the signaling pathways that cue both the proliferation and guided differentiation of these 

cells.  During differentiation chemical, biological, and mechanical cues induce these cells 

to follow a specific pathway dictating if the cell remains multipotent or differentiates into 

a specific cell type.  These cues signal the release and uptake of cytokines, hormones, and 

growth factors which induce dynamic signaling pathways and mediate cell fate.  Key 

signaling cascades include mitogen activated protein kinase (MAPK), Wnt, and 

transforming growth factor beta (TGF-β) are mediated by growth factors including bone 

morphogenic protein 2 (BMP-2), transforming growth factor β2 (TGF-β2), and fibroblast 

growth factor (FGF).  Release of these growth factors is modulated by the environment of 

the cell including surrounding cell types, physical culture parameters, factors present in 
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the media, and mechanical stimuli [62, 69, 106-109].  Thus the cell environment must be 

regulated during in vitro stem cell culture.  Bioreactor systems represent an important 

tool to regulate this environment.  Bioreactors provide controlled mechanical stimuli to 

the cell as well as regulating the cell culture medium.  In that way they provide a level of 

control of cell culture parameters perhaps not possible in static culture.   

Bioreactors, extensively used in the culture of MSCs, include simple systems such as 

spinner flask and rotating wall bioreactors and more complicated systems including 

perfusion and dynamic loading bioreactors [10, 15, 17, 18, 20, 28-30, 48, 58, 110-113].  

While spinner flasks and rotating wall bioreactors fail to provide full control of culture 

parameters, perfusion and dynamic loading systems have been demonstrated to be very 

effective in MSC culture.  These systems have been shown to enhance both MSC 

chondrogenesis and osteogenesis as well as increase proliferation of these cells.  By 

perfusing media through a porous scaffold bioreactors can provide homogenous nutrient 

and oxygen concentrations to cells.  This ability makes these systems a key part of an in 

vitro culture strategy as statically cultured constructs often suffer from lack of nutrient 

deprivation and hypoxia leading to cell death.  This review will focus on another 

advantage of these systems:  the potential to mediate cell signaling pathways to direct 

MSC proliferation and differentiation.  In vitro these signaling pathways can be 

potentially triggered by environmental cues including mechanical stress and oxygen 

content which can be controlled using bioreactor systems.  Thus this review will attempt 

to answer the following questions: What aspects of dynamic culture affect MSC 

differentiation pathways?  How can bioreactors be used to augment these pathways? 
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4.2 Bioreactor Systems for MSC Culture 

Many different bioreactors systems exist for the culture of mesenchymal stem cells 

including spinner flask [11, 22-24, 42, 43, 46], rotating wall [24, 42, 47, 52, 114], and 

perfusion [10, 15, 16, 18, 27, 29, 80, 112, 113, 115] bioreactor systems (Figure 4.1).  

Recent reviews have described the role of shear stress for bone tissue engineering [110, 

111] as well as detailing these systems [116-118].  All of these systems feature culture of 

MSCs in a three dimensional environment.   

Spinner flask culture consists of MSC containing scaffolds either suspended or free 

floating in a flask of culture media (Figure 4.1A).  The media is then circulated 

throughout the flask using a stir bar.  Rotating wall bioreactors feature scaffolds placed 

between two concentric cylinders in culture media (Figure 4.1B).  While the inner 

cylinder remains stationary the outer cylinder rotates, moving the media in a circulatory 

manner.  These systems have been shown to increase MSC proliferation and osteoblastic 

differentiation [11, 22]; however these systems lack the ability to regulate oxygen and 

shear stress throughout a scaffold.  This is because these systems focus primarily on 

media mixing while exhibiting a small amount of shear stress to the outer regions of 

scaffolds.  Media mixing ensures a homogenous oxygen gradient in the bulk media, but 

non-homogenous concentrations can result throughout the scaffold.  Perfusion bioreactor 

systems have the ability to yield a more tight control over scaffold exposure to oxygen 

and shear stress.  The basic perfusion bioreactor design features media pumped from a 

media reservoir through a tubing circuit via a pump (Figure 4.1C).  Within the tubing 

circuit there is a growth chamber containing the scaffolds.  In many perfusion bioreactor 

designs a porous scaffold is used and is press fit into the growth chamber [15, 20, 27].  
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Media is then directly perfused through pores in the scaffold.  An alternative type of 

perfusion bioreactor uses a modular design in which scaffolds are packed into a growth 

chamber [112, 113, 119-121].  In these designs a collection of smaller scaffolds is 

cultured in a growth chamber and then can be implanted as one larger construct.   

 

Figure 4.1:  Schematic of three commonly used tissue engineering bioreactor systems.  
The spinner flask (a) and the rotating wall bioreactor (b) focus on mixing media around 
scaffolds while provided some mechanical stimulation.  The perfusion bioreactor (c) 
provides more direct stimulation to cells by perfusing media directly through a cell 
containing scaffold. 
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Perfusion bioreactor systems have been very effective for the culture of MSCs, being 

demonstrated to increase proliferation [13, 21, 112] , osteogenesis [15, 18, 20], and 

chondrogenesis [122].  These observed results are attributed to the ability of the systems 

to increase nutrient transport including oxygen and expose the cells to mechanical 

stimulus.  When the effect of these two stimuli were independently evaluated shear stress 

and mass transport were each shown to have an effect on human mesenchymal stem cell 

(hMSC) growth and osteoblastic differentiation [80].  In this study shear and mass 

transport could be decoupled by changing media viscosity.  In this way it was shown that 

increasing shear from 0.05 to 0.15 dynes/cm2 caused hMSCs to express higher levels of 

late osteoblastic markers osteopontin (OPN) and osteocalcin (OC) at 28 days.  Higher 

flow rates (while keeping shear constant) also led to higher levels at low levels, but 

became inhibitory at 9 mL/min.  This demonstrates that MSCs cultured in perfusion 

systems respond to flow rates in two ways, through both changes in nutrient transport and 

shear stresses.  Because of the multitude of factors influencing differentiation in 

bioreactor systems the exact parameters influencing MSC differentiation may be difficult 

to discern.  However, such studies decoupling these parameters can lead to a greater 

understanding of MSC culture in bioreactor systems.    

4.3 Bioreactors to Mediate Shear Stress 

Another powerful mechanism by which bioreactor culture can augment stem cell 

signaling and fate is through exposure to mechanical stresses [103].  Shear has a dramatic 

effect on MSC differentiation and bioreactors have the capability to regulate shear in 

three dimensional constructs [110, 111].  A notable demonstration of this is the ability of 

bioreactor systems to direct osteoblastic differentiation of MSCs without any chemical 
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osteogenic supplements [14, 29].  Typical osteogenic induction media consists of 

chemical supplements including the glucocorticoid steroid dexamethasone.  However 

based on alkaline phosphatase (ALP) and osteopontin levels dynamic culture can be a 

strong inducer of MSC osteoblastic differentiation than dexamethasone [29].  As a 

possible mechanism human MSCs exposed to 12 dynes/cm2 of shear stress show an 

upregulation of ALP expression dependent on p38 and extracellular signal-related kinase 

(ERK) activation [36].  These two signaling mechanisms of the mitogen activated protein 

kinase (MAPK) pathway described in detail later in the review may provide a mechanism 

for shear stress regulation of MSC osteoblastic differentiation.  In addition to the 

presence and magnitude of shear, the particular shear regime may also influence stem cell 

fate [39, 40].  When rat bone marrow stromal cells (BMSCs), containing a heterogenous 

population of MSCs, were differentiated into immature osteoblasts and exposed to a 

continuous shear stress of 2.3 dynes/cm2 the cells underwent a rapid phosporalization of 

ERK and p38.  When this shear was delivered intermittently the phosporalization was 

delayed.  Synthesis of prostaglandin E2 (PGE2) however was increased with intermittent 

flow, hypothesized to be a result of signaling molecules being permitted to accumulate 

during breaks in the flow regime.  Following just 24 hrs of stimulation, cells expressed 

higher levels of osteoblastic differentiation markers 13 days later; however the flow 

regime did not affect these markers.  Thus shear may have a powerful effect on MSC 

differentiation after just a short regime, and the nature of the shear regime could have an 

outcome on the differentiation pathways, especially if this regime in enacted over a long 

period of time.  Shear stress also upregulated cyclooxygenase-2 (COX-2) expression 

[40].  COX-2 regulates PGE2 production.  This in turn can then regulate the BMP 
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signaling pathway through binding to cell surface receptor prostaglandin E receptor 4 

(EP4) [123].  Thus osteoblastic differentiation can be upregulated by fluid shear stress 

through regulation of the BMP signaling pathway.   

MSC chondrogenic differentiation is also highly influenced by exposure to shear stresses 

[115, 124-126].  Similar to osteoblastic differentiation chondrogenic differentiation is 

also regulated by MAPK activation [127, 128].  While both dynamic loading and shear 

upregulate chondrogenic markers, blocking ERK1/2 and p38 activation diminished the 

effects on most of these markers.  Shear induced chondrogenic differentiation is also 

regulated through COX-2 to regulate PGE2 production via c-Jun N-terminal protein 

kinase (JNK2) and c-jun [129].  JNK as well as ERK MAPK signaling cascades have 

been shown to influence Runx2 activation in chondrocytes exposed to dynamic loading 

[130].  Dynamic culture systems present the opportunity to leverage these effects on 

chondrogenic differentiation pathways to optimize production of MSC derived 

chondrocytes.  Under fluid flow of 1 dyne/cm2 chondrocyte production of type II 

collagen greatly increased and the tensile strength of the cartilage constructs was 

improved [131].  Mechanical loading of MSCs during chondrogenesis increased amount 

of collagen markers [132].  It is important to point out that optimal leverage of these 

pathways in bioreactor culture will not be a trivial matter as many different factors 

influence these pathways.  Oxygen content in combination with shear [133], variation of 

shear throughout constructs, influence of supplements and growth factors in the media 

[132], and cell-substrate interactions [134] all will modify cell response.  Thus tissue 

engineers must carefully consider differentiation pathways along with shear and oxygen 

regimes to tightly control stem cell fate.  Bioreactors must then be designed to 
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accommodate osteoinductive and osteoconductive scaffolds, to utilize growth factors and 

supplements, and to deliver shear and oxygen in a controlled manner for the direction of 

MSC differentiation. 

4.3.1 Shear Stress Mediated Signaling 

In order to fully leverage the role of shear stress in dynamic culture systems, the signaling 

mechanisms that depend on these stresses must be understood.  While the role of 

mechanical forces in hMSC tissue engineering and regenerative medicine has been well 

observed, the signaling pathways involved in converting mechanical stress to 

biochemical signals in dynamic cultures systems is studied far less frequently.   

4.3.1.1 Shear Stress Mediated MAPK Signaling 

A primary signaling pathway influenced by shear stress is mitogen activated protein 

kinases (MAPKs) which are highly involved in the differentiation of MSCs and include 

the ERK 1/2, JNK, and p38 pathways (Figure 4.2).  The mechanisms of MAPK signaling 

have been extensively reviewed elsewhere [135-141].  Briefly the general mechanism 

consists of three kinase molecules that bridge the cellular signal from the cell surface 

deep into the cytoplasm and nucleus.  Signaling from the cell surface, usually in the form 

of growth factors including the TGF- β/BMP family, bind to a receptor tyrosine kinase 

(RTK).  The binding causes a conformational change that allows the receptor to self-

phosphorylate.  Adaptor proteins bind to these phosphorylated tyrosines and in turn 

activate a GTPase such as Ras [142].  This GTPase phosphorylates the first member of 

the MAPK pathway, a MAPK Kinase Kinase (MAPKKK).  This MAPKKK in turn 
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phosphorylates a MAPKK who then phosphorylates the MAP kinase itself be it ERK 1/2, 

p38, or JNK.  This MAPK then phosphorylates its downstream targets.   

 

Figure 4.2:  Demonstration of signaling influenced by culture conditions in a perfusion 
system.  Shear stress and controlled oxygen tension provide stimulus to cells growing on 
three dimensional scaffolds.  This in turn influences HIF (left) and MAPK (right) 
signaling pathways. 

The ERK, JNK, and p38 pathways are all activated in osteogenic differentiation of MSCs 

[143, 144] and can be impacted via shear stress.  Signaling via these three pathways is 

also activated during TGF-β induced chondrogenesis, and inhibition of any of the 

pathways resulted in partial or complete inhibition of chondrogenesis [145-147].  Another 
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aspect crucial to augmenting MAPK signaling pathways is the specific time of activation 

along the MSC differentiation progression.   

While ERK 1/2 remains relatively active during a substantial portion of the 

differentiation process, the JNK and p38 pathways are more specific [148].   The JNK 

pathway is activated much later in hMSC differentiation and is associated with matrix 

deposition [148].  A recent study demonstrated that the JNK pathway inhibits early and 

late osteogenic differentiation [149].  In osteoblasts, the BMP/TGF-β activation of the 

p38 and ERK 1/2 pathways occurs within the first few hours, whereas the JNK pathway 

was activated later [150].  The p38 pathway was shown to up-regulate osteogenic genes 

such as ALP and Osterix (Osx) but down-regulate OC, a late osteoblastic marker, 

indicating it is inhibitory to late osteoblast maturation [142, 151, 152].  Future studies 

should focus on better understanding the different activation timings of different signal 

pathways involved in MSC differentiation.  In this way shear could potentially be 

delivered in a temporal manner to best stimulate this signaling pathway for osteoblastic 

differentiation.   

4.3.1.2 Mechanotransduction in Mesenchymal Stem Cells 

In vivo bone and cartilage are constantly exposed to mechanical forces and the 

transmission of these signals is known as mechanotransduction [153-156].  Channel 

proteins including calcium ion channels, G-Proteins imbedded in cell membrane, and 

integrins all have a significant role in mechanotransduction [157].  Mechanistically, 

mechanical shear created by fluid flow has been shown to promote osteogenesis via the 

ERK 1/2 pathway through up-regulation of Runx2.  Fluid flow up-regulated expression 
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of β1 integrins via a signaling pathway involving activating nuclear factor kappa B (NF-

KB) indicating a possible pathway for fluid-induced mechanotransduction [158].  In 

another study fluid shear was shown to upregulate MAP3k8, a MAPKKK as well as 

growth factor interleukin 1-beta.  This indicates that not only are mechanical stresses 

involved in pathway activation, but also in the upregulation of the proteins these 

pathways depend on [159].  Oscillatory fluid flow was also show to cause an influx of 

calcium that corresponded to enhanced differentiation and proliferation of MSCs as well 

as promote osteogenic genes in osteoblasts themselves.  This indicates that calcium 

signaling, which could be mediated by a mechanosensitive protein channel, also plays a 

role in MSC differentiation and function [160-162].  A role for focal adhesions in MSC 

differentiation has also been demonstrated.  When focal adhesion kinase function was 

inhibited, both Runx2 and osterix function was significantly impaired and the hMSCs 

were prevented from undergoing osteogenesis [163].  Focal adhesions are important 

“signaling hubs” for mechanotransduction, and this role in osteogenesis suggests that 

they may serve a similar function in MSCs.  As MSCs are more and more frequently 

cultured in dynamic culture systems the specific mechanisms of in vitro 

mechanotransduction must be understood to better more effectively culture and 

differentiate these cells.   

4.3.1.3 Wnt Signaling as a Regulator of Stem Cell Fate 

Wnt signaling has been identified as a key signaling pathway to determine MSC 

differentiation or proliferation (Figure 4.3) [164-166].   
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Figure 4.3:  Overview of canonical Wnt signaling pathway.  Wnt proteins bind to a 
receptor of the frizzled family which in turn causes the recruitment of Disheveled 
forming a receptor complex.  LRP is a protein believed to stabilize the complex.  This 
receptor complex causes the disassembly and inactivation of a protein complex, which 
degrades β-Catenin, by binding to Axin, a protein crucial to the degradation complex.  
This causes a buildup of β-catenin and accumulation in the nucleus where the molecule 
impacts gene transcription.   

Wnt signaling is carried out through a diverse number of pathways and molecules; 

however there are two general classifications that Wnt signaling is divided into.  If the 

pathway creates its effect through the accumulation of β-Catenin in the cell, and thus the 

nucleus, the signaling is referred to as canonical signaling.  If the Wnt signal protein uses 

a different pathway it is categorized as non-canonical.  Wnt signaling begins with the 

binding of a Wnt protein to cell-surface receptors which are a part of the Frizzled (FRZ) 

family of proteins.  The major role canonical Wnt signaling has is to maintain cell 
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potency, especially regarding stem cells.  Differentiation of any kind is inhibited in a rate 

dependent manner with increased levels of canonical Wnt signaling, which promotes 

cellular proliferation as well as reduces cellular apoptosis [165-167].  MSCs in the 

process of differentiating are more resistant to the inhibitory effects of canonical 

signaling because signal pathways and transcription factors related to osteo/chondrogenic 

differentiation downregulate and inhibit canonical signaling.  Sox9 inhibits activation of 

B-catenin promoters and promotes the molecule’s degradation [168].  Runx2 has a 

similar effect [169].  JNK, p38, and ERK1/2 signaling induced by TGF-B down regulates 

canonical Wnt signaling as seen by an increase in B-catenin after MAPK inhibition. 

Unlike canonical Wnt signaling, non-canonical Wnt signaling does not use β-catenin as 

its method of affecting gene transcription and has been shown to directly promote both 

osteogenesis and chondrogenesis [166].  Mechanistically, this difference is likely due to 

the differences in signal cascades used.  For example several non-canonical Wnts have 

been shown to activate the JNK and p38 pathways as well as activate Rho; all of which 

are important in TFG-β/BMP signaling.  Non-canonical Wnt signaling diverges from the 

canonical pathway at Disheveled where in this case it activates the JNK pathway instead 

of events leading to the accumulation of β-catenin [137].   Non-canonical Wnt 4a 

promotes osteogenesis through the activation of the p38 pathway [170].  Non-canonical 

Wnt signaling has been shown to be upregulated by fluid shear in osteoblasts [171], 

however little work has done to study Wnt signaling in MSCs grown in bioreactor 

systems.  Investigation of this key pathway could lead to another avenue to direct MSCs 

to proliferate or differentiate in bioreactor systems. 



 
 

52 
 

4.3.1.4 Downstream Targets Influenced by Dynamic Culture 

While stimuli in dynamic culture affect different steps along signaling pathways, 

downstream targets are typically analyzed by tissue engineers as a metric to determine 

study outcomes.  Understanding of these downstream targets and how they relate to 

signaling pathways is key to understanding the mechanisms influencing dynamic culture 

mediated signaling pathways.  The activity and upregulation of several key transcription 

factors including Runx2 and Osx for osteoblasts and Sox9 for chondrocytes are vital to 

MSC commitment down a specific lineage.  Runt-related transcription factor 2 (Runx2), 

also known as cbfa1, is the “master control” for osteogenesis as it up-regulates 

extracellular matrix (ECM) proteins as well as other downstream transcription factors 

such as osterix.  In the nucleus, the SMAD complex associates with Runx2 to form a new 

transcription complex that is essential for both BMP and TGF-B induced osteogenesis 

(Figure 4.4) [172].   
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Figure 4.4:  A simplified diagram of signal pathway convergence at downstream nuclear 
targets.  It is important to note that these figures depict only the specific interactions 
explained in this paper and that there are numerous other proteins involved in these 
complex as well as multiple combinations of these complexes.  

The major downstream targets of another pathway mediated by mechanical forces, the 

JNK pathway, are AP-1 proteins, namely C-jun [135, 137].  The SMAD and JNK 

signaling pathways converge at AP1-binding promoter sites where C-jun and C-fos 

associate with SMAD proteins to mediate TGF- β and BMP induced gene transcription 

[142, 173].  AP-1 proteins C-fos and C-jun have also been shown to be capable of 

directly interacting with Runx2 to regulate gene transcription as well [174].  Downstream 

of Runx2 is Osx a transcription factor that becomes active later in the osteogenic 

differentiation pathway [175].  It was demonstrated that inhibition of the ERK 1/2 

pathway did not inhibit Runx2 expression but did inhibit Osx expression, however this 

could simply be that this MAPK pathway phosphorylates Runx2 promoting it and thus its 
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downstream targets, including Osx [151].  Inhibition of the p38 MAPK pathway was 

shown not to inhibit mineralization but it did significantly downregulate Osx [151].  Osx 

was the only transcription factor related to osteogenic differentiation that was 

downregulated in response to p38 inhibition [176].  Osterix is a substrate of p38, and that 

phosphorylation of the transcription factor improves its ability to recruit co-activators 

[177]. 

In cartilage development SRY-type high mobility group box 9, or Sox9, is the major 

transcription factor for the chondrogenic lineage, upregulating lineage specific genes 

such as aggrecan and collagen II [162, 178, 179].  SMAD complexes facilitate Sox9-

dependent transcription in a similar manner to Runx2, by associating with the 

transcription factor and a cofactor, in this case CBP/p300, in order to regulate gene 

expression [180].  The p38 pathway has been shown to promote Sox9-dependent 

transcription by facilitating the formation of the SMAD/Sox9/p300 complex via one of its 

downstream substrates, MSK1 who plays a role in remodeling chromatin [181].  This 

indicates that the p38 pathway facilitates complex formation by affecting the exposure of 

DNA binding sites rather than direct interaction with the complex itself.  While 

examination of these downstream targets such as Sox9, Runx2, Osx as well as markers 

and growth factors including BMP-2, TGF-β, ALP, OPN and OCN, are typically assayed, 

upstream signaling mechanisms must also be understood to determine how dynamic 

culture is affecting MSC differentiation.   
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4.4  Bioreactors to Mediate Oxygen Content 

Though shear is often the focus of dynamic culture studies, oxygen is also a powerful 

mediator of mesenchymal stem cell fate [182-188].  In their undifferentied state in the 

bone marrow mesenchymal stem cells are maintained in an environment of 

approximately 7% oxygen tension [189].  Chondrocytes reside in an avascular 

environments with oxygen tensions from 1-3% [190].  The oxygen tension of the native 

environment of bone is higher at approximately 12%, but can drop significantly during 

fracture [191, 192].  However mesenchymal stem cells are cultured in an in vitro 

environment of 20% oxygen tension with any lower oxygen tension typically referred to 

as hypoxia.  When MSCs are cultured in three dimensional scaffolds the oxygen tension 

becomes much more complex.  An oxygen gradient can form as cells on the outer layers 

of the scaffold consume oxygen, leaving cells in the inner regions of the scaffold with an 

anoxic or hypoxic environment.  In three dimensional culture oxygen content can begin 

to significantly drop after just hundreds of microns.  In scaffolds with a minimum 

diameter of just 5 mm, central oxygen concentrations dropped to 0% after just 5 days of 

culture [21].  This drop in oxygen content led to massive cell death of the pre-osteoblast 

cell line being cultured.  Bioreactor culture was then used to mitigate these transport 

insufficiencies and cell viability improved.  This highlights a critical need of bioreactor 

systems to regulate oxygen content.  However the role of oxygen is greater than a 

required nutrient; it can act as signaling molecule to affect stem cell fate.   

Despite strong evidence that oxygen tension can regulate stem cell proliferation and 

differentiation, regulation of oxygen content throughout three dimensional of a scaffold is 

difficult.  Bioreactor culture can be used to create a regulated oxygen environment for the 
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maintenance or differentiation of mesenchymal stem cells.  In a modular bioreactor 

system equipped with a probe to measure oxygen, a 20% oxygen content was used for the 

adipogenic differentiation of hMSCs, while a 5% oxygen content was used for 

chondrogenic differentiation [121].  Compared to the opposite oxygen concentrations, 

this oxygen regime proved to increase the expression of both chondrogenic and 

adipogenic markers.  Bioreactors such as this could be used as a powerful tool to control 

stem cell fate.  Even within bioreactor cultured constructs oxygen content can vary 

throughout scaffolds, thus careful monitoring throughout the scaffold may be necessary.  

As an alternative to continuous oxygen monitoring mathematical models can be 

developed to predict oxygen content throughout scaffolds [84].  Mathematical models for 

oxygen distribution throughout scaffolds could then be combined with oxygen 

monitoring to offer tight control in bioreactor systems.  One bioreactor using an oxygen 

monitoring system has been able to culture hMSCs to produce a large construct with bone 

forming potential [16].  Though this bioreactor did not actively control oxygen in 

addition to actively monitoring it the technology exists to create a bioreactor to actively 

monitor and control oxygen content [16, 84, 193, 194].   

4.4.1 Signaling Mediated by Oxygen Concentration 

Examples of the influence of oxygen content on mesenchymal stem cell fate are quite 

prevalent.  When rat MSCs were cultured in 5% oxygen compared to the standard 20% 

oxygen the cells proliferated more rapidly.  In addition the 5% oxygen cultures exhibited 

an increase in common osteoblastic markers including alkaline phosphatase (ALP), and 

calcium content.  When implanted in vivo these cells cultured in low oxygen content led 

to a greater amount of in vivo bone formation [195].  In a study culturing human 
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mesenchymal stem cells under 2% oxygen proliferation was greatly increased [196].  In 

addition to proliferation increases an increase of mRNA Oct-4, a stemness gene, 

expression was noted with hypoxia.  This increase was concurrent with an increase in 

hypoxia inducible factor 2α (HIF-2α) indicating a possible mechanism by which oxygen 

regulates stem cell fate.  Though these results were obtained in two-dimensional culture, 

similar results were acquired when the hMSCs were exposed to 2% oxygen in three 

dimensional culture [197].  In a recent study culture in 1% oxygen was shown to increase 

expression of stemness genes Oct4, Nanog, Sall4 and Klf4 of hMSCs compared to 20% 

[198].    Interestingly the osteogenic potential was increased when cultured under 1% 

oxygen conditions in induction media, but chondrogenic and adipogenic capacity were 

reduced.  In another study utilizing hMSCs 3% oxygen increased the proliferative 

lifespan of hMSCs, but was shown to reduce their differentiation potential [199].   

In addition to osteoblastic differentiation oxygen concentration mediates MSC 

chondrogenic differentiation.  Cells expanded in 2% oxygen compared to 20% have been 

shown to have greater chondrogenic potential than osteoblastic [200].  Similar results are 

ascertained when comparing 3% oxygen tension to 20% tension cultured MSCs [201].  

As a possible mechanism for increased chondrogenesis of MSCs HIF-1α was evaluated 

[202].  After rat MSCs were cultured under 2% oxygen and induced to undergo 

chondrogenesis, differentiation was enhanced in the 2% cultured cells.  However, when 

HIF-1α was knockdowned using siRNA no upregulation of chondrogenesis was 

observed.  The shift to chondrogenesis over osteogenesis was thought to occur via p38 

mitogen activated protein kinase [203].  In bioreactor culture mechanical forces via 

dynamic shear or mechanical loading also play and important role [133]. However when 
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compared directly to each other oxygen content played a greater role than dynamic 

compression as MSCs cultured at 5% oxygen in agarose gels showed a greater tendency 

toward chondrogenesis than cells cultured under dynamic compression in 20% oxygen 

tension [133].  These findings are important in dynamic culture where both mechanical 

forces and oxygen regulation could be regulated concurrently. 

Even beyond the ability for oxygen content to control stem cell proliferation oxygen 

content may have a role in cell organization within a construct and cell subpopulations.  

In vivo chondrocytes are organized into three zonal subpopulations the superficial, middle 

and deep [204].  Chondrocyte subpopulations in these zones have distinct phenotypes and 

can respond differently to substrate properties and growth factors [164, 205].  Zonal 

phenotype can also be retained by oxygen content [206].  Though this study was 

completed on adult chondrocytes it is possible oxygen may play a role in MSC 

chondrogenic differentiation into zonal subpopulations and proper oxygen maintenance 

could yield a greater deal of phenotype control leading to a more functional cartilage 

construct.  

It is important to point out that aside from mediating signaling mechanisms bioreactor 

maintenance of oxygen in 3D scaffolds is necessary to sustain stem cell phenotype.  In a 

recent study using human mesenchymal stem cells exposure to oxygen tensions less than 

1% for just 48 hrs led to a long term downregulation of osteoblastic markers including 

Runx2, osteocalcin, and type 1 collagen [191].  Thus even temporary lack of oxygen can 

cause permanent loss of bone forming potential.  If this lack of oxygen is combined with 

a lack of nutrients, massive cell death will occur [207].  Thus proper maintenance of 
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oxygen concentrations is crucial to maintain stem cell viability and phenotype.  Further 

maintenance above minimum levels may lead to an increased control of stem cell fate.   

4.4.1.1 Oxygen Regulation of Stem Cells via HIF 

Hypoxia-inducible factor (HIF) is the major transcription factor for a cellular response to 

hypoxia.  Like other cell types, hypoxia causes the activation of HIF in MSCs [202].  HIF 

is made of two subunits: β and α.  While HIF-β exists in stable amounts in both the 

nucleus and cytosol, HIF-α, which resides in the cytosol normally, is degraded under 

normoxia.  HIF-α is allowed to stabilize in hypoxic conditions and translocate into the 

nucleus where it can bind to HIF-β.  Once dimerized, HIF recruits coactivator proteins 

and facilitates the transcription of a wide variety of genes (Figure 5.2) [208].   

A recent study has yielded a possible mechanism for the reduction in osteoblastic 

differentiation potential observed in cells exposed to hypoxia.  When hMSCs were 

cultured under 1% hypoxia under osteogenic induction conditions, osteoblastic 

differentiation of human MSCs was downregulated compared to cells cultured at 20% 

oxygen [209].  Hypoxia was shown to decrease expression of Runx2, which then led to 

downstream reduction of osteoblastic genes including osteocalcin, osteopontin, collagen 

Type I alpha 1, bone sialoprotein (BSP), and alkaline phosphatase.  This downregulation 

was shown to be mediated by HIF-1α via TWIST, a downstream target.  TWIST was 

discovered to bind to the Runx2 P2 promoter, suppressing transcription of Runx2.  This 

in turn inhibits expression of Runx2 downstream targets.  The same group further 

investigated HIF-TWIST and found that though osteoblastic differentiation was 

downregulated during hypoxia, MSC proliferation and phenotype maintenance were 
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increased [210].  When cultured under 1% oxygen tension hMSCs exhibited a more 

efficient expansion profile.  The differentiation potential of these cells was maintained 

even at late passages, while cells cultured in 20% oxygen exhibited a decreased 

differentiation potential.  In addition hMSCs grown under hypoxia had both an increased 

differentiation potential and bone repair capacity when implanted into an in vivo mouse 

model.  This increased differential potential was shown to be regulated through p21 by 

transcription factor E2A.  P21 activation leads to cellular senescence and was shown to 

be downregulated by HIF-1α via TWIST in response to a hypoxic environment.  These 

two studies provide evidence for a mechanism by which oxygen content regulates stem 

cell fate.  While a low oxygen environment inhibits osteoblastic differentiation, it 

increases proliferation and stem cell phenotype maintenance.  In addition to osteoblastic 

differentiation cells under hypoxia were shown to better differentiate into adipocytes as 

well after culture in 5% oxygen compared to 20% oxygen [211].  This was due to a 

variety of genetic changes that maintained an undifferentiated state.   

Though HIF can inhibit osteogenesis it can have a stimulatory effect on chondrogenesis.  

Sox9 is a target of HIF regulation and chondrogenesis was shown to be significantly 

enhanced when MSCs were exposed to hypoxic condition [202, 212].  Hypoxia (2% 

oxygen) triggered the activation of the p38 pathway and inhibition of it inhibited HIF-α 

stabilization [202].  Activation of the JNK pathway has also been shown to be required 

for HIF-dependent signaling and transcription, indicating a role for MAPKs in the 

response of MSCs to oxygen tension [213].  When HIF- α function was silenced by 

siRNA, the increased upregulation of chondrogenic genes such as proteoglycan and 

collagen II due to hypoxia was absent [202].    
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HIF offers a mechanism by which oxygen can mediate stem cell fate.  In bioreactors with 

the ability to regulate oxygen content, regimes could be developed to foster proliferation 

followed by osteogenic or chondrogenic differentiation.  In this manner bioreactor 

systems could be made even more effective for the culture of three dimensional MSC 

containing constructs. 

4.5 Conclusion and Future Directions 

Dynamic culture of MSCs has expanded greatly in the last ten years and bioreactor 

culture is now widely used.  In addition bioreactor design has advanced considerably 

including bioreactors to measure oxygen content [16], culture anatomically shaped grafts 

[15], and develop prevascular networks [121, 214].  Bioreactor culture creates a more 

efficient means to culture MSCs and provides for the differentiation to chondrocytes and 

osteoblasts in an environment more similar to native tissue.  The signaling cascades 

covered in this review provide a mechanism for this differentiation.  However, despite the 

volume of work on stem cell signaling mechanisms there still is research to be done on 

how these pathways are affected in dynamic culture systems.  This knowledge could be 

improved by a greater emphasis on experiments designed to characterize these pathways 

in clinically relevant situations.  Much of the work regarding signaling pathways has been 

completed with cell lines and two-dimensional culture, while emphasis in the tissue 

engineering community is placed on primary cells grown in clinically relevant situations 

including bioreactors and biocompatible three dimensional scaffolds.  However many 

tissue engineering experiments are designed to be outcome oriented and do not evaluate 

mechanisms and pathways in great detail.  Since cell-substrate interactions and dynamic 

culture can have a profound effect on signaling mechanisms, evaluating these 
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mechanisms in situations relevant to tissue engineering is paramount to understanding 

ways to leverage these mechanisms to create in vitro engineered tissue.  Thus greater 

communication and collaboration between labs with expertise evaluating MSC signaling 

and those developing new bioreactor culture systems should be undertaken to design the 

proper experiments to evaluate how bioreactor culture is augmenting these signaling 

pathways.  In this manner a relationship between oxygen content, shear, and stem cell 

differentiation could be developed.  Following this development, advanced bioreactor 

systems with the ability to temporally regulate oxygen content and mechanical stimuli 

could be used to augment these signaling pathways and optimize creation of in vitro 

engineered tissue.   
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Chapter 5:  Tubular Perfusion System for the Long Term Dynamic 

Culture of Human Mesenchymal Stem Cells2 

5.1  Introduction 

In vitro culture techniques of three dimensional scaffolds have limitations that must be 

overcome in order to increase the feasibility of cell based tissue engineering strategies.  

The central limitation in static culture is insufficient transport of oxygen and other 

nutrients to regions more than a few hundred microns from the scaffold surface, which 

leads to non-homogenous cell distribution and extracellular matrix production [21, 25, 

28, 215, 216].  Bioreactor systems overcome these barriers by increasing nutrient transfer 

to cells via dynamic culture.  Furthermore, mechanical stimulation through fluid shear 

stresses has been shown to be influential on bone differentiation and mineralization [20, 

27, 32].  Previous studies have demonstrated bioreactor systems to be an effective means 

to culture cells for bone tissue engineering purposes [10, 17, 18, 20, 22, 27, 29, 30, 42, 

111, 217].  Several different types of bioreactor systems have been investigated, 

including spinner flasks [22-24], rotating wall bioreactors [24, 25], and perfusion systems 

[10, 14, 20-22, 29, 30, 60, 217].  Spinner flask and rotating wall bioreactor systems are 

effective at creating a homogenous media solution on the exterior of the scaffold, but do 

not effectively perfuse media into the scaffold.  Perfusions systems have been 

demonstrated to effectively perfuse media throughout the scaffold and have been shown 

to upregulate osteoblastic markers and increase calcium deposition.  In a study utilizing a 

                                                 
 
2As published in Yeatts, A.B. and J.P. Fisher, Tubular perfusion system for the long-term dynamic culture 
of human mesenchymal stem cells. Tissue Eng Part C Methods, 2011. 17(3): p. 337-48. 
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perfusion bioreactor flow rate was shown to increase both the calcium matrix deposition 

and the rate of late osteoblastic differentiation as shown by osteopontin expression [20].  

In a subsequent study dextran was used to increase fluid viscosity, thus increasing fluid 

shear while keeping flow rate constant.  Results of this study revealed calcium deposition 

increased with shear indicating the stimulatory effects of the bioreactor culture were 

largely due to fluid shear stresses [17].  In a different study the effects of both mass 

transport and shear stress on human bone marrow stromal cells were evaluating using a 

similar means to modify the viscosity.  This study revealed that cell growth and 

differentiation in the bioreactor system were enhanced by both mass transport and shear 

stresses [80]. 

Perfusion systems typically enhance the flow of media to the center of the scaffold, but 

require custom made parts and specific scaffold design in order to successfully perfuse 

media into the scaffold, which can make them difficult to fabricate and use.  To this end 

we have developed a new tissue engineering bioreactor, the tubular perfusion system 

(TPS) that creates a more effective environment for cell culture.  In the TPS design, 

human mesenchymal stem cells (hMSCs) are encapsulated in alginate beads which are 

tightly packed in a tubular growth chamber.  Though it is more frequently used for 

cartilage tissue engineering [106, 108, 109, 218], alginate is used as a scaffold because of 

its ability to be dissolved with a calcium chelating agent and the ease of which it can be 

formed into spherical scaffolds [219].   Alginate has previously been shown to support 

proliferation and osteoblastic differentiation of marrow stromal cells [220].  In addition 

alginate has been used for bone tissue engineering purposes including supporting 2D 

osteoblastic differentiation of marrow stromal cells, delivery of BMP-2 transfected bone 
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marrow stromal cells, the delivery of antibiotics and MSCs to bone injury sites, and 

mineralization of hMSCs in RGD modified microspheres [221-224].  Mesenchymal stem 

cells are used as a promising cell source for bone tissue engineering [225].  The packed 

scaffold design in the growth chamber is based on the packed or fixed bed bioreactor 

commonly used for the bulk production of recombinant proteins by mammalian cells 

[226, 227].  The tubular growth chamber design is more commonly used for the tissue 

engineering of vascular grafts, where vascular tissue growth is directed around the 

outside of a scaffold or the walls of a growth chamber [228-231].  This system differs 

from other perfusion systems where media is pumped directly through a porous scaffold 

sealed in a growth chamber.  The system also differs in design from bioreactors used in 

vascular grafts as cell growth occurs inside the scaffolds rather than the outside of a 

scaffold or along the growth chamber wall.  To our knowledge this tubular packed 

scaffold design has not been previously used for bone tissue engineering purposes.  In the 

TPS bioreactor media is perfused through the growth chamber, exposing the cells to shear 

stress.  This could potentially yield to a greater perfusion of nutrients into the scaffold 

than dynamic culture systems that focus on media mixing, while avoiding the technical 

difficulties such has high pressure, scaffold interconnectivity requirements, and leaking 

that can be associated with other perfusion systems.  This system also provides for a 

potential clinical application as following extended culture the alginate can be dissolved 

leaving only cells and their extracellular matrix.  The goal of this study is to (1) 

effectively develop this bioreactor system, (2) demonstrate its ability to support the 

growth and differentiation of hMSCs and (3) evaluate the effects of flow rate on late 

osteoblastic differentiation and matrix production. 
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5.2 Materials and Methods 

5.2.1 Human Mesenchymal Stem Cell Culture 

Human mesenchymal stem cells (p≤5) from a single donor were purchased from Lonza 

(Walkersville, MD).  As this is an initial study, single donor cells were used to minimize 

variability associated with a primary cell population.  Cells were cultured prior to the 

study in control media consisting of DMEM (Gibco, Carlsbad, CA) supplemented with 

10% fetal bovine serum (Gibco), 1.0 % v/v penicillin/ streptomycin (Gibco), 0.1 mM non 

essential amino acids (Gibco), and 4 mM L-glutamine (Gibco) using protocols set forth 

by the manufacture and previously described [69, 232].  Cells were cultured on tissue 

culture polystyrene flasks with media changes every three days according to the 

manufacture’s specifications.  Cells were stored in a cell culture incubator at 37º C and 

5% CO2 and passaged every 6-7 days using trypsin/EDTA (Lonza).  Osteogenic media 

was formulated as described in the literature by supplementing control media with 100 

nM dexamethasone (Sigma, St. Louis, MO), 10mM β-glycerophosphate, and 173 μM 

ascorbic acid (Sigma) [69, 232, 233]. 

5.2.2 hMSC Encapsulation in Alginate 

Alginate solutions of 2.0% w/v were prepared as previously described by adding alginic 

acid sodium salt from brown algae (Sigma), into 0.15M NaCl (Sigma), and 0.025M 

HEPES (Sigma) in deionized water [106, 108, 109].  The alginate solution was then 

sterilized via autoclave.  hMSCs were removed from tissue culture flasks using 

trypsin/EDTA and pelleted via centrifugation at 500 xg for five minutes.  The cell pellet 

was resuspended in the alginate solution at a density of 1.25-2.5 x 106 cells/mL.  The 
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alginate cell solution was added drop wise through an 18 gauge needle into a stirred 

solution of 0.1 M calcium chloride (Sigma) which immediately crosslinked the alginate 

to form beads.  Beads were allowed to stabilize for 15 minutes and cultured in six well 

plates in control media for 24 hours.  On study day 0 bioreactor groups were loaded into 

the bioreactor while control groups were placed in new osteogenic or control media.  

Control group cells were cultured in five milliliters of media at five beads per well for the 

duration of the study with media changes every three days for all groups.   

5.2.3 Bioreactor Design 

The bioreactor system consists of a tubular growth chamber and media reservoir 

connected via a tubing circuit (Figures 5.1 and 5.2).  Media flow was driven by an L/S 

Multichannel Pump System (Cole Parmer, Vernon Hills, IL) at 3 mL/min for short term 

studies and at either 3 mL/min or 10 mL/min for the long term study.  The entire tubing 

circuit is partially assembled outside the hood and sterilized via autoclave.  The circuit 

consists of platinum cured silicone tubing (Cole Parmer) for all areas except the area that 

passes through the pump which is composed of Pharmed BPT tubing (Cole Parmer) 

chosen for its high mechanical durability.  Tubing is connected using silver ion lined 

microbial resistant tubing connectors (Cole Parmer) to reduce the risk of bacterial 

contamination.  The growth chamber consists of a length of platinum cured silicone 

tubing (Cole Parmer) with an inner diameter of 6.4 mm, an outer diameter of 11.2 mm 

and a wall thickness of 2.4 mm.  The platinum cured silicone tubing was chosen for its 

low chemical leachability, minimal protein binding, and high gas permeability to allow 

for the easy exchange of carbon dioxide and oxygen.  The growth chamber was 13 cm in 

length and was packed with thirty cell seeded alginate beads using a sterile spatula.  
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Growth chamber tubing connectors were modified by adding 60 mesh stainless steel 

screens (Fisher Scientific, Pittsburgh PA) to restrict bead movement.  Following loading 

the autoclaved tubing was fully assembled inside a cell culture hood and then placed in a 

cell culture incubator at 37º C and 5% CO2.  Fifty mL of osteogenic media was loaded 

into separate 125 mL Erlenmeyer flasks for each growth chamber topped with rubber 

stoppers.  Media is withdrawn and replaced from the reservoir through two tubes that 

penetrate the stopper and changed every three days by moving the bioreactor into a sterile 

culture hood, removing the media in the reservoir, and replacing it with fresh media.  

This provides for a change of 85% of the media.  Beads are removed from the bioreactor 

by moving the entire bioreactor system into the hood, disconnecting one tubing circuit 

and flushing beads out of the growth chamber with phosphate buffered saline (PBS).   

 

 

Figure 5.1:  Image of the entire bioreactor system.  Note entire system is stored in cell 
culture incubator. 
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Figure 5.2:  Schematic of the bioreactor system (top).  Media is stored in the reservoir 
and perfused in and around the alginate beads (bottom) by the peristaltic pump. 

5.2.4 Experimental Setup 

On study day 0 bioreactor groups were loaded into the bioreactor while control groups 

were placed in osteogenic or control media.  Control group cells were cultured in 5 mL of 

media at 5 beads per well for the duration of the study with media changes every three 

days for all groups.  For all groups 5 beads were used for each replicate and 3 replicates 

were taken for each sample.  In the TPS bioreactor different experimental groups and 

timepoints were cultured in different growth chambers while replicates were cultured in 

the same growth chamber.  Short term proliferation and differentiation studies were 

conducted for eight days with time points on days 1, 4, and 8.  Cell count data was not 

taken on day 1 but instead was taken on day 12 to provide more extended cell 

proliferation data.  For all short term studies a group consisting of hMSCs cultured in the 
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TPS bioreactor at a 3 mL/min flow rate was compared to hMSCs cultured in alginate in 

static conditions in osteogenic and control media.  For long term studies time points were 

taken at days 14 and 28 to evaluate late osteoblastic differentiation.  Experimental groups 

consisted of hMSCs cultured in the bioreactor at both 3 mL/min and 10 mL/min flow 

rates.  These groups were compared to a static osteogenic control as the goal of this study 

was to evaluate the effect of flow rate on late osteoblastic differentiation. 

5.2.5 Mathematical Model of the Tubular Perfusion System 

In order to determine flow velocities and calculate shear stresses a two-dimensional 

steady state Navier-Stokes model of the tubular perfusion system was developed using 

COMSOL Multiphysics Version 3.5 (COMSOL, Burlington MA).  Initial flow into the 

growth chamber was modeled assuming fully developed flow.  Walls of alginate beads 

were modeled as no slip and media was assumed to have a dynamic viscosity of 0.78 

centipoise and a density of 0.993 grams/cm3 [234].  Boundary shear stresses were 

calculated using the formula  ߬ ൌ  ሻ where μ is the dynamic viscosity of theݕ߲/ݒሺ߲ߤ

media, v is the velocity of fluid at the bead surface and y is the height of the boundary 

layer.  The Sherwood number was calculated according to the standard equation for 

forced convection around a solid sphere with a diffusion coefficient of 2.56 x 10-9 m2/sec 

[235-237].  Diffusion of oxygen through alginate scaffolds was calculated using a 

COMSOL model with an oxygen diffusion coefficient in media and alginate of 2.56 x 10-

9 and 2.08 x 10-9 m2/sec respectively [237].  hMSC cell respiration was modeled using 

Michaelis-Menten kinetics with an oxygen consumption rate of 0.012 μmol/106 cells/hr, 

and a saturation constant of 0.011 mol/m3 [84].  For static culture media oxygen 

concentration was fixed at 0.21 mM at the media air interface and oxygen transport was 
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modeled through the well and the bead [238].  The ratio of air interface to bead surface 

area in the static model was modeled to reflect the ratio that exists in in vitro culture.  

Based on the Sherwood number indicating convective transport dominates diffusive 

transport the bioreactor beads were modeled as having a homogenous saturated oxygen 

concentration at the exterior.  Boundary conditions in static culture model consisted of 

insulation at the three walls of the well plate and a fixed concentration of 0.21 mM at the 

media air interface.  A continuity boundary was used for the alginate beads.  All figures 

are shown at steady state. 

5.2.6 hMSC Isolation from Beads 

At each time point hMSCs were isolated from the beads by incubating the beads for 25 

minutes at 37º C in 4 mL 0.025-0.1M ethyldiaminetetraacetic acid (EDTA) (Sigma) 

[109].  The cell solution was placed in a 15 mL falcon tube and centrifuged at 8000 xg 

for 8 minutes to form a cell pellet.  The pellet was then resuspended in PBS. 

5.2.7 DNA Quantification 

DNA was extracted at each time point using the following procedure previously 

described in the literature [239].  Isolated cell pellets were resuspended in 200 uL of PBS 

isolated using a DNeasy Tissue Kit (Qiagen, Valencia CA) following standard protocols 

to produce 400 uL of eluate.  Double stranded DNA was then quantified by mixing 100 

uL of DNA eluate with 100 uL of diluted Quant-iT PicoGreen dsDNA reagent 

(Molecular Probes, Carlsbad, CA), incubating for five minutes in the dark and measuring 

fluorescence using an M5 SpectraMax plate reader (Molecular Devices, Sunnyvale, CA) 

with excitation/emission of 480/520 nm.  All samples were preformed in triplicate (n=3).   



 
 

72 
 

5.2.8 Cell Counts 

hMSCs were isolated from beads.  Cell samples were removed, mixed with trypan blue 

(Sigma), and counted on a standard hemocytometer.  Four counts were made for each 

sample (n=4). 

5.2.9 Live Dead Assay 

Cell viability was assessed using a live dead assay following standard protocols as 

described previously [239].  Beads were first soaked in PBS for 60 minutes to remove 

FBS and media.  Dead controls were soaked in 70% methanol (Sigma) instead of PBS.  

Beads were then placed in 48 well plates and incubated in 2 μm ethidium homodimer and 

4 μm calcein AM (Molecular Probes) for thirty minutes.  Fluorescent images were then 

taken of the entire bead using a fluorescent microscope (Axiovert 40 CFL with filter set 

23, Zeiss, Thornwood, NY) equipped with a digital camera (Diagnostic Instruments 11.2 

Color Mosaic, Sterling Heights, MI).  Live dead images of cross sections were not taken. 

5.2.10 Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) 

RNA was extracted using an RNeasy mini plus kit (Qiagen) following standard protocols.  

The isolated RNA was then reverse transcribed to cDNA using a High Capacity cDNA 

Archive Kit (Applied Biosystems, Foster City, CA).  The expression of bone 

morphogenetic protein-2 (BMP-2, Taqman Assay ID: Hs00154192_m1), osteocalcin 

(OCN, Hs01587813_g1), osteopontin (OPN, Hs00960641_m1) and alkaline phosphatase 

(ALP, Hs00758162_m1) was analyzed with glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH, Hs00960641_m1) as an endogenous control gene for all samples.  The 
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sequences are propietary.  Gene expression assays (Applied Biosystems) were combined 

with the cDNA to be analyzed and Taqman PCR master mix (Applied Biosystems).  The 

reaction was performed on a 7900HT real time PCR System (Applied Biosystems) using 

thermal conditions of 2 minutes at 50°C, 10 minutes at 95°C, and 40 cycles of 15 seconds 

at 95°C and 1 minute at 60°C.  The relative gene expression level of each target gene was 

then normalized to the mean of the GAPDH in each group.  For ALP the day 1 control 

media groups was used as a calibrator and for OPN, OCN, and BMP-2 the day 14 

osteogenic media group was used as a calibrator.  Fold change was calculated using the 

ΔΔCT relative comparative method as described previously [218, 240].  Samples were 

completed in triplicate and standard deviations are reported (n=3). 

5.2.11 Histological Analysis 

Alginate beads were collected and fixed in 4% paraformaldehyde (Sigma) and 0.1 M 

sodium cacodylate (Sigma) buffer containing 10mM CaCl2 at pH 7.4 at 4° C for 4 hours.  

Following fixation, the beads were placed in cassettes and washed with 0.1M sodium 

cacodylate buffer and 10mM CaCl2 at pH 7.4 at room temperature for 24 hours.  The 

beads were then dehydrated for histological processing by ethanol washes followed by 

two Citrisolv (Fisher Scientific) washes.  The samples were then embedded in paraffin 

(Fisher Scientific) and sectioned to 5 µm thickness sections and placed on glass slides.  

Sections were oven dried at 64° C for 2 hours, deparaffinized in Citrisolv and rehydrated 

in ethanol.  Von Kossa staining was preformed to visualize mineralization using a 

Nuclear Fast Red (Poly Scientific, Bay Shore, NY) counterstain using standard protocols. 
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5.2.12 Statistical Analysis 

All samples were completed in triplicate (n=3).  Data was analyzed using single factor 

ANOVA followed by Tukey’s Multiple Comparison Test assuming normal data 

distribution with a confidence of 95% (p < 0.05).  Mean values of triplicates and standard 

deviation error bars are reported on each figure as well as relevant statistical 

relationships.   

5.3 Results 

5.3.1 Functionality of Bioreactor System 

Throughout all experimental trials the bioreactor system was shown to be free of leaks 

and contamination.  The current system can accommodate up to 4 independent tubing 

circuits and growth chambers.  This allows for easy analysis of cells as 1 chamber can be 

removed without affecting the remaining chambers.  Tubing connections were completed 

using silver ion coated polyvinylidene fluoride fittings which provide a secure yet highly 

customizable means to connect components of the system.  The bioreactor system was 

quickly setup and scaffolds were easily removed for analysis.  A two dimensional model 

of the growth chamber was completed and revealed the average shear stress at the bead 

surface to be 0.98 ± 0.08 dynes/cm2 with a 3 mL/min flow rate and 2.98 ± 0.22 

dynes/cm2 with a 10 mL/min flow rate (Figure 5.3a).  In order to determine the effect of 

bioreactor culture on nutrient mass transfer the Sherwood number was calculated to be 

22.71 and 13.34 with 10 mL/min and 3 mL/min flow rates respectively, representing the 

ratio of convective to diffusive mass transfer.  Diffusion models indicate that oxygen 

concentrations in the TPS bioreactor do not fall below 0.15 mM while static cultured 
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constructs fall to 0.03 mM (Figure 5.3b).  Oxygen concentrations in static cultured beads 

fall to the minimum at the farthest distance from the media air interface while the 

homogeneity of the surrounding media causes the bioreactor minimum concentration to 

occur at the center of the construct.   
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(c)  

 

Figure 5.3:  (a) Steady state COMSOL model of tubular perfusion system.  Beads are 
shown as white circles.  Streamlines and color map represent velocity in cm/sec.  
Dimensions of growth chamber and beads are in meters.  Model represents middle 
section of tubular perfusion system growth chamber at a 3 mL/min flow rate.  (b) Steady 
state oxygen concentrations throughout alginate scaffold in static (--) and bioreactor (__) 
plotted along bead diameter.  Concentrations of oxygen are plotted along the center of the 
scaffold from the inferior (D=0 mm) to the superior end (D=4 mm).  (c) Overall image of 
bead diffusion model.  Dashed line represents cross section graphed in (b).  Color map 
represents oxygen concentration in mM.   

5.3.2 Short Term Culture 

To demonstrate the effectiveness of the bioreactor system for short term culture alginate 

beads containing an encapsulated population of hMSCs were cultured for 8 days with live 

dead images taken of the entire bead on day 8 (Figure 5.4) and nearly all cells appeared 

viable.   
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(a) (b) (c) 

   

Figure 5.4:  Live dead images of beads taken from day 8 of dead control (a) osteogenic 
control (b) and 3 mL/min flow bioreactor (c). 

Cell count data showed a significant increase in cell growth in the bioreactor as compared 

to day 4 controls (p < 0.05), (Figure 5.5).  Average day 4 cell number in the bioreactor 

beads was 67,300 ± 8,400 cells/bead while the osteogenic control only had 20,400 ± 

6,100 cells/bead.  Significant increase in cell growth was also observed on days 8 and 12 

as compared to the osteogenic control (p < 0.05).   
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Figure 5.5: Cell count data taken on days 4, 8 and 12 in static controls (osteogenic and 
control media) and 3 mL/min flow in bioreactor.  Cell counts indicate an elevated level of 
cells on day 4, 8, and 12 in the bioreactor over control groups.  Cells not cultured in the 
bioreactor show minimal proliferation over the study period.  The symbol (*) indicates 
statistical significance within a timepoint (p < 0.05).   

DNA quantification indicated cell proliferation in the bioreactor throughout the study 

(Figure 5.6).  By day 8 the bioreactor group had increased 3.41 ± 0.58 fold from its day 1 

population numbers, greater than that observed in the controls.  This data demonstrates 

the effectiveness of the TPS bioreactor at supporting cell growth. 
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Figure 5.6:  Fold change of DNA content of cells in static control, static osteogenic 
control, and bioreactor (3 mL/min) based on DNA quantification from pico green.  Fold 
changes are based on day one DNA amounts.  DNA amount indicates cell proliferation in 
the bioreactor throughout study. 

Quantitative RT-PCR analysis was used to observe the gene expression of early 

osteogenic marker ALP on days 1, 4, and 8 (Figure 5.7).  Results indicate a significant 

increase of ALP mRNA expression as compared to static control media bead on all days 

for both the static osteogenic control and the bioreactor flow group (3 mL/min), 

indicating the hMSCs are undergoing osteogenic differentiation in both groups (p < 

0.05).  On day 1 the static osteogenic group underwent a 5.6 ± 0.7 fold change in ALP 

expression as compared to the static control, while the bioreactor group underwent a 3.0 

± 0.4 fold change.  By day 4 the bioreactor group showed a significantly higher 5.3 ± 0.5 

fold day 4 expression increase than the 4.0 ± 0.6 fold increase of the static group (p < 

0

1

2

3

4

5

6

1 4 8

D
N

A
 F

o
ld

 C
h

a
n

g
e

Day

Control

Osteogenic Control

Bioreactor 3 mL/min



 
 

81 
 

0.05).  On day 8, the osteogenic group had a slightly elevated expression over the 

bioreactor group, a 7.6 ± 0.7 fold change compared to 6.7 ± 0.7 fold change.  Results 

indicate both bioreactor and static osteogenic groups are undergoing osteoblastic 

differentiation. 

 

Figure 5.7:  Quantitative RT-PCR analysis after 1, 4, and 8 days for ALP, an early 
osteogenic marker.  Static osteogenic control and bioreactor are normalized to static 
control media samples.  Results demonstrate higher day 1 expression of the osteogenic 
control as compared to the bioreactor on day 1, but greater expression on day 4 in the 
bioreactor group.  Results indicate that the bioreactor system supports osteogenic 
differentiation of hMSCs.  The symbols (*, #) indicates statistical significance within a 
timepoint (p < 0.05).   

5.2.3 Long Term Culture 

In order to determine the long term effects of the bioreactor system, cells were cultured in 

alginate beads in the TPS bioreactor for 28 days.  Two different flow rates were used, 3 
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mL/min and 10 mL/min to evaluate the effect flow rate has on late osteoblastic 

differentiation.  RT-PCR analysis of BMP-2, osteopontin, and osteocalcin was completed 

on days 14 and 28 (Figure 5.8).  Results demonstrate a significantly increased expression 

of osteocalcin for both bioreactor groups as compared to static osteogenic control on day 

28 (p < 0.05), (Figure 5.8a).  Similar expression of osteocalcin was observed on day 14 

for both static culture and the 3 mL/min flow rate group, but the 10 mL/min group 

showed a 6.2 ± 0.7 fold increase over the static group.  On day 28 osteocalcin expression 

levels increased 78.1 ± 3.1 fold as compared to the day 14 control, while the 3 mL/min 

group increased 34.1 ± 1.7 fold.  The static group increased 3.3 ± 0.3 fold from day 14 to 

day 28.  This data indicates that flow rate has a significant effect on late term osteoblastic 

differentiation with higher flow rates having a greater effect than lower flow rates.  

Osteopontin gene expression data showed significant differences between all groups for 

both time points (p < 0.05).  On Day 14 the 10 mL/min group had a 8.5 ± 0.3 fold 

expression change compared to the day 14 static control and the 3 mL/min group had a 

2.5 ± 0.6 fold increase.  On day 28 significant increases of 132.4 ± 31.8 and 41.2 ± 10.5 

fold for the 10 mL/min and 3 mL/min groups respectively on day 28 were observed.  

BMP-2 expression was also evaluated on both time points and shown to be elevated in all 

bioreactor groups as compared to the osteogenic control.  BMP-2 expression also 

increased with increasing flow rate as the 10 mL/min flow rate had higher BMP-2 

expression levels for all time points.  On day 28 BMP-2 shows approximately a 2 fold 

increase in the 10 mL/min group as compared to 3 mL/min, similar to the fold increase of 

osteopontin and osteocalcin between those groups on day 28. 
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(c) 

 

Figure 5.8:  Quantitative RT-PCR analysis after 14 and 28 days for (a) osteocalcin 
expression, (b) osteopontin expression and (c) BMP-2 expression.  Data is normalized to 
day 14 static control.  All groups were cultured using osteogenic media.  Osteocalcin 
expression is significantly higher in 10 mL/min group than all other groups on day 14.  
On day 28 the 10 mL/min group has higher osteocalcin expression than the 3 mL/min 
group and both groups show a significant increase over the static control (a).  
Osteopontin expression is significantly higher in the bioreactor groups on day 14 and day 
28 as compared to the static control with the 10 mL/min group having the highest levels 
at both time points (b).  BMP-2 expression levels differ between all groups on both day 
14 and day 28 with the 10 mL/min group consistently having the highest expression level 
and the static control having the lowest (c).  The symbols (*, #) indicates statistical 
significance within a timepoint (p < 0.05).   

To visualize any macroscopic effects of bioreactor culture images of the cell containing 

scaffolds were taken prior to analysis on day 28 (Figure 5.9).  White deposits can be seen 

on the surface of scaffolds removed from 3 mL/min bioreactor group (3.9c).  In the 10 

ml/min flow group the cells scaffold construct largely dissolved prior to the final 

timepoint, indicating that the flow may be too high to sustain tissue formation.  In the 
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osteogenic control group minimal white deposits are observed and the scaffold appears 

less rigid, as the alginate dissolves over time (Figure 5.9b).  Alginate beads were then 

dissolved for 30 minutes in 0.025 M EDTA and imaged.  Photographs reveal that the 

alginate is completely dissolved in the control leaving only small amounts of visible 

material (Figure 5.9d).  In the osteogenic control small fragments remain approximately 2 

mm in diameter (Figure 5.9e).  In the 3 mL/min bioreactor group, larger more intact 

structures are observed with diameters of approximately 4 mm (Figure 5.9f).   

 
Figure 5.9:  Images of scaffolds cultured for 28 days in static control media (a), static 
osteogenic media (b) and the bioreactor after 28 days of culture at 3 mL/min (c).  Note in 
the bioreactor group white deposits can be seen on the surface of the scaffold and the 
scaffold has maintained its shape.  Static groups do not have white deposits and scaffold 
appears much less rigid.  Beads did not remain intact in the 10 mL/min group and were 
not photographed.  Beads were then dissolved for 30 minutes in 0.025M EDTA.  Images 
of scaffolds cultured in static control media (d) static osteogenic media (e) and bioreactor 
culture (3 mL/min) (f) after 28 days and 30 minutes in 0.025M EDTA.  Alginate scaffold 
can no longer be observed in control media sample.  In osteogenic control group small 
macroscopic formations remain.  In bioreactor group larger more intact cell scaffold 
constructs are observed approximately 4 mm in diameter.  Scale bars represent 5 mm. 

(a) (b) (c) 

(d) (e) (f) 
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Von Kossa staining was completed to visualize calcium deposition in the scaffolds.  

Images of alginate beads on day 14 demonstrate calcium deposition is restricted to the 

outside portion of the bead on day 14 (Figure 5.10a-c).  Calcium deposits appear to be in 

greater concentration in the 10 mL/min bioreactor group as compared to osteogenic static 

group.  Day 28 images reveal mineralization is considerably higher in the 3 mL/min 

bioreactor group as compared to the static osteogenic group and static control group.  

Cells can be seen completely surrounded by a calcium matrix.  The osteogenic control 

also has formed a mineralized matrix, but it appears to much less dense than the 

bioreactor group. 
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(i) 

 

Figure 5.10:  Von Kossa staining of alginate beads after 14 days of culture in static 
osteogenic culture (a,d), 3 mL/min bioreactor culture (b,e) and 10 mL/min bioreactor 
culture (c,f) at 2.5x objective (a,b,c) and 40x objective (d,e,f).  Calcium deposits (black) 
appear to be confined to the perimeter of the bead in all groups, but darker in the 

(a) (b) (c) 

(d) (e) (f) 

(g) (h)  
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bioreactor groups, with the greatest amount of deposition observed in the 10 mL/min 
bioreactor group.  Following 28 days of culture Von Kossa staining reveals 3 mL/min 
bioreactor culture (h) shows darker staining indicating increased calcium deposits 
compared to the static osteogenic control (g).  Beads did not remain intact in the 10 
mL/min group and Von Kossa staining was not completed on day 28.  Scale bars 
represent 1000 μm (a,b,c) and 100 μm (d-h).  Red box denotes size and approximate 
location of all 40x objective images in relation to the entire bead (i).  Image is of 3 mL 
bioreactor groups after 28 days at 2.5x objective (left) and 40x objective (right).  Scale 
bars represent 1000 μm and 100 μm respectively. 

5.4 Discussion 

Our first objective of this study was to effectively develop this bioreactor system.  

Following completion of this study a tissue engineering bioreactor system was 

successfully designed and fabricated to create a facile method for the dynamic culture of 

human mesenchymal stem cells in three dimensional scaffolds.  The TPS bioreactor has 

several key advantages over existing bioreactor systems.  Many perfusion bioreactor 

systems are composed of customized components that require custom manufacture [10, 

27, 30, 53, 81].  The TPS bioreactor is composed entirely of off the shelf components 

making the system easy to manufacture and modify.  The TPS bioreactor is easily 

reproducible allowing for more standardized experimentation and greater opportunity for 

clinical use which would require consistency [241].  The system may be easily modified 

to accommodate larger or smaller scaffold numbers and sizes through adjustment of 

growth chamber and media reservoir size.  Media flow rate in this system may be 

accurately adjusted between 0.16 and 47.00 mL per minute.  This large flow rate range 

will allow for experimentation on the effect of flow rate on cell proliferation and 

differentiation.  The bioreactor system is fully autoclavable to allow for easy sterilization.  

Bacterial contamination is a significant problem faced by perfusion bioreactor systems 

and efficient sterilization will reduce this risk [226].  Furthermore this sterilization 
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method allows for easy reuse of tubing components.  Mathematical modeling revealed 

the TPS bioreactor exposed the surface of the beads to shear stresses and subsequent 

calculations indicated that mass transfer in the TPS bioreactor is dominated by 

convection rather than diffusion.  Diffusion models indicated minimum oxygen 

concentrations to be over 5 fold higher in bioreactor culture as compared to static culture.  

Oxygen concentrations similar to those calculated for static culture were shown to reduce 

the osteoblastic differentiation of rat osteoblasts [242].  Oxygen concentrations in the 

TPS bioreactor remain high throughout the alginate constructs as a homogenous oxygen 

concentration exists at the surface of the beads.  Diffusion still dominates transport which 

could result in low interior oxygen concentrations, especially if a different material or a 

higher cell seeding density is used.  Bone growth requires aerobic growth conditions and 

though the TPS bioreactor improves oxygen transport over static culture continued 

investigation should be completed to improve oxygen transport [182].  As an example of 

the potential for hypoxic conditions Volkmer et al demonstrated that oxygen 

concentration in 9 mm static bone tissue engineering constructs dropped to 0% at the 

center of the scaffold and 4% at the edge of the scaffold after five days of static culture, 

indicating diffusion is insufficient for oxygen transport.  Perfusion culture was able to 

mitigate this effect [21].  Furthermore increased flow in bioreactor systems has been 

shown to increase oxygen content in media exiting the growth chamber [235].  Thus it is 

concluded that the TPS bioreactor both exposes the cell containing beads at the surface of 

the construct to shear stresses and provides for transport of oxygen and nutrients to cells 

in the scaffolds. 
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Our second objective of the study was to demonstrate the ability of the TPS bioreactor to 

support the growth and differentiation of hMSCs.  Based on results from this study, the 

TPS bioreactor was shown to be effective in the culture of human mesenchymal stem 

cells.  Over early time points bioreactor culture was shown to support proliferation of the 

cells.  Bioreactor culture was shown to support osteogenic differentiation, but did not 

have a significant effect on the mRNA expression of early osteoblastic marker ALP.  

This is consistent with bioreactor studies that report minimal effects of flow on ALP 

expression [28].  Other studies report increased amounts of ALP expression with flow 

rate, indicating that specific parameters such as the shear stresses experienced by the cells 

could influence ALP expression [20, 23].  Based on the mathematical analysis the 

average shear stresses at the surface of the beads in this study were 0.98 ± 0.08 and 2.98 

± 0.22 dynes/cm2 for the 3 mL/min and 10 mL/min flow group, respectively.  This model 

provides an estimate for surface shear stresses, though several assumptions are made in 

the creation of the model.  First it is assumed that all the alginate beads are spherical in 

shape with a fixed diameter, when in reality there is some minor observed variation 

between the exact size and shape of a bead.  Second the beads are stacked in an ideal 

manner in the model, whereas there are often changes in the alignment of the beads in the 

TPS bioreactor.  Finally both the fluid flow and diffusion model are completed in two 

dimensions.  Additional math models should be completed in future work to determine if 

fluid shears affect cells on the interior portions of the scaffold as current models only 

describe shear on the exterior portion of the bead.  Fluid shear stresses of 1.6 dynes/cm2 

have been shown to upregulate osteopontin expression, while shear stresses of 12 and 20 

dynes/cm2 have been shown to increase ALP expression [36, 38, 39].  In long term 
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bioreactor culture, shear stresses of 0.15 dynes/cm2 have been shown to increase 

osteocalcin expression [80].  Shear stresses in this system are in the range to enhance 

osteoblastic differentiation but it is hypothesized that in the TPS bioreactor encapsulation 

of the hMSCs in the alginate leads to only a portion of the cell population being exposed 

shear stresses as opposed to cells seeded on the surface of a porous scaffold.  Thus shear 

stresses could be too low to influence early osteoblastic differentiation, but high enough 

to affect late term differentiation and matrix deposition.   

Our final objective was to evaluate the effects of flow rate on late osteoblastic 

differentiation and matrix production.  Expression of osteocalcin and osteopontin, both 

late term markers of osteoblastic differentiation was shown to be significantly 

upregulated in bioreactor culture as compared to a static osteogenic control.  The 10 mL 

per minute group showed higher expression of osteocalcin than 3 mL/min group on day 

14, indicating that 14 days is sufficient for the higher flow rate to begin influencing the 

osteoblastic differentiation.  By day 28 both flow groups showed significant increases in 

expression as compared to the static control, with the 10 mL/min group having over a two 

fold increase in expression levels as compared to the 3 mL/min group.  Similar results are 

seen in osteopontin signal expression levels.  This result is significant as though 

upregulation of late osteogenic markers has been previously demonstrated in perfusion 

bioreactors, our bioreactor uses a unique design in which cells are encapsulated in bulk 

scaffolds and media is not perfused directly through the pores of the scaffolds [53, 59].  

Thus it is noteworthy that such dramatic increases in late term osteogenic signals are 

observed.  Significant upregulation of BMP-2 was also observed during the long term 

study in the bioreactor groups.  BMP-2 is an early osteoblastic marker that has been 
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shown to enhance to stem cell differentiation and promote osteogenesis in a scaffold [66-

68].  As cells in the TPS bioreactor are already expressing high levels of late osteogenic 

markers, indicating terminal osteoblastic differentiation is occurring, the increased BMP-

2 production observed with increasing flow may be effective in enhancing bone growth 

following implantation of the construct from the bioreactor system.  Further investigation 

is necessary to completely elucidate the effect flow rate has on BMP-2 expression in this 

system and the effect this has on differentiation. 

The clinical relevance of hMSCs cultured in alginate in the TPS bioreactor is two fold.  

First the alginate beads could be removed from the bioreactor and directly implanted into 

bone defects that do not have a load bearing requirement.  For example certain types of 

craniofacial bone fractures heal poorly due to lack of neighboring bone and patients often 

have reported long term sequelae even after currently available treatments [243-246].  

Second the alginate beads cultured in the TPS bioreactor could be loaded into a load 

bearing carrier scaffold after cultivation for implantation into load bearing defects such as 

long bones.  This carrier scaffold would be constructed of a hard synthetic material such 

as poly(propylene fumarate), could be fabricated using stereolithography and would 

feature a hollow interior to load the beads [62].  Alternatively future work will investigate 

the use of cylindrical or spherical synthetic scaffolds in the system.  It is thought that 

these scaffold materials would also function in the system, though additional modeling 

and investigation would be necessary to account for changes in the flow dynamics.  

Alginate is used in the system as cells can easily be encapsulated, avoiding complications 

occurring with the loading of some large 3D synthetic scaffolds.  The alginate can also be 

easily dissolved allowing for creation of tissue without the presence of a scaffold [108, 
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109, 218].  This could lead to the production of a section of engineering tissue that could 

be extracted and implanted into a patient.  Based on results, a longer culture period would 

be required to see these results, but in images taken at day 28, macroscopic differences 

could be seen between static and flow cultured constructs.  White nodules can be seen on 

the periphery of scaffolds removed from the bioreactor, while minimal formations were 

observed in static osteogenic control groups.  After dissolution of the scaffold, 

extracellular matrix depositions of nearly the same size as the original cell-scaffold 

construct were observed in the bioreactor group.  These depositions were larger and more 

intact than the osteogenic static control.  Despite the higher expression of osteogenic 

markers the 10 mL/minute flow rate was shown to be too high for successful long term 

culture in the TPS bioreactor as much of the cell-scaffold construct broke apart prior to 

the final time point.  This would indicate that though the 10 mL/min flow rate stimulated 

the osteoblastic differentiation of the cells, it was too high to support the macroscopic 

growth of tissue.  Thus an optimal flow rate likely exists between 3 mL/min and 10 

mL/min, in which matrix deposition is enhanced but scaffold dissolution does not occur 

too quickly.  Late term differentiation was confirmed by visualizing the production of 

calcium by completing Von Kossa staining.  Higher amounts of calcium deposits were 

observed throughout the scaffold in the bioreactor groups as compared to the controls.  

On day 28 uniform dense mineralization is observed while day 14 mineralization appears 

to be restricted to the edges of the scaffold in all groups.  The upregulation of late 

osteoblastic markers observed in tandem with macroscopic differences in bead 

appearance and Von Kossa staining indicate significant differences in late osteoblastic 

differentiation between static and bioreactor cultured cells. 
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5.5 Conclusions 

In order to enhance the clinical relevance of cell based tissue engineering utilizing three 

dimensional scaffolds, in vitro culture techniques must be improved.  We have developed 

a bioreactor system that can enhance the in vitro proliferation of human mesenchymal 

stem cells and the differentiation of these cells into osteoblasts.  This system could be 

utilized to produce clinically relevant tissue amounts through extended in vitro culture.  

The findings in this study reveal that dynamic culture supports proliferation of hMSCs 

and enhances late osteoblastic differentiation.  Other bioreactor systems have been 

developed but the TPS bioreactor utilizes a unique design, allowing for an alternative 

way to dynamically culture cells. 

  



 
 

95 
 

Chapter 6:  Human Mesenchymal Stem Cell Position within Scaffolds 

Influences Cell Fate During Dynamic Culture3 

6.1 Introduction 

Tissue engineering exists as a promising treatment for bone injuries that fail to heal 

through endogenous repair mechanisms however in vitro culture of three dimensional 

tissue engineering constructs remains a challenge.  Bioreactor systems are an important 

technology to improve this in vitro culture and increase the feasibility of cell based tissue 

engineering strategies.  Many different bioreactors systems have been previously studied 

for  bone tissue engineering including spinner flasks [22, 24, 42, 43], rotating wall 

bioreactors [42, 47], and perfusion systems [15, 17, 27].  In this study we utilize a tubular 

perfusion system (TPS) bioreactor, a simple, modular bioreactor system, which has 

previously been demonstrated to enhance proliferation and late osteoblastic 

differentiation of human mesenchymal stem cells (hMSCs) [112].    

In traditional static culture of three dimensional scaffolds nutrient gradients arise leading 

to non homogenous cell growth and differentiation [21].  Bioreactor systems enhance cell 

culture through the creation of a dynamic environment that delivers oxygen and nutrients 

to cells while exposing them to shear stress.  Advantages to using bioreactors for the 

culture of three dimensional scaffolds are two fold.  First through increased nutrient 

transfer bioreactor systems can support increased cell growth.  Cell death can be observed 

on the interior of scaffolds as little as 200 μm from the scaffold surface [21, 25, 28, 215, 

                                                 
 
3As published in Yeatts, A.B., et al., Human mesenchymal stem cell position within scaffolds influences cell 
fate during dynamic culture. Biotechnol Bioeng, 2012. 
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216].  This cell death occurs as oxygen and other nutrients do not diffuse into scaffolds 

quickly enough to replace those being used in cell respiration.  Lack of oxygen (hypoxia) 

and lack of nutrients limit both the ability of cells to survive and to differentiate, which 

leads to a nonhomogeneous cell and matrix distribution [182].  Bioreactor culture has 

been used to overcome these limitations [111, 118].  Second, bioreactors typically expose 

cells to fluid shear stress, an important stimulus for hMSC osteoblastic cell differentiation 

[16, 18, 28, 29, 38, 39, 80, 89, 110, 111].   

While bioreactors can regulate shear stress and oxygen concentration to some extent, it is 

possible exposure varies between cells in different regions of the scaffold.  Differing 

oxygen and shear levels could influence stem cell proliferation and differentiation.  While 

shear is commonly thought to stimulate osteoblastic differentiation, the role of oxygen is 

less clear.  Low oxygen and nutrient levels lead to significant cell death [207] however 

hMSCs cultured at 2% oxygen levels had increased proliferation and differentiation 

levels compared to  hMSCs cultured at 20% oxygen [196].  Other studies found low 

oxygen levels to have inhibitory effects on osteoblastic differentiation [182, 191, 242, 

247].   

Based on the influence of oxygen and shear on stem cell development we investigate in 

this study how spatial positioning of hMSCs within a scaffold influences cell fate.  To 

this end the study first aims to evaluate the effect of shear stress on osteoblastic 

differentiation in the TPS bioreactor.  Second the study aims to evaluate the effect of 

dynamic culture on the proliferation of human mesenchymal stem cells as a function of 

radial distance in the scaffold.  The final aim of the study is then to compare osteoblastic 
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differentiation of cells present on the exterior annulus of the scaffold to cells on the 

interior annulus.   

6.2 Materials and Methods 

6.2.1 Human Mesenchymal Stem Cell Culture 

Human mesenchymal stem cells (Lonza, Walkersville MD) were expanded prior to the 

study in control media consisting of DMEM (Gibco, Carlsbad, CA) supplemented with 

10% fetal bovine serum (Gibco), 1.0 % v/v penicillin/ streptomycin (Gibco), 0.1 mM non 

essential amino acids (Gibco), and 4 mM L-glutamine (Gibco) using protocols set forth 

by the manufacture and previously described [69, 112, 113, 232].  hMSCs were expanded 

on tissue culture polystyrene flasks with media changes every three days according to the 

manufacture’s specifications.  Cells were stored in a cell culture incubator at 37º C and 

5% CO2 and passaged every 6-7 days using trypsin/EDTA (Lonza).  Osteogenic media 

was formulated as described in the literature by supplementing control media with 100 

nM dexamethasone (Sigma), 10mM β-glycerophosphate, and 173 μM ascorbic acid 

(Sigma) [69, 232]. 

6.2.2 Alginate Bead Fabrication and Cell Seeding 

Alginate beads were fabricated as described previously in the literature [108, 109].  

Alginate solution (Sigma, St. Louis MO) was sterilized via sterile filtration then mixed 

with a cell pellet containing hMSCs.  Beads were seeded at a concentration of 4 x 106 

cells per mL.  This solution was added dropwise by syringe to a 0.10 M calcium chloride 

solution, in which the alginate was ionically crosslinked into beads.  A 20 gauge syringe 
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was used to create large beads and beads for shear stress study while a 30 gauge syringe 

was used to create small control beads.  The solution was stirred for 15 minutes.  The 

calcium chloride solution was then removed and the beads rinsed in control media.  

Beads were then transferred to six well plates for control groups or TPS bioreactor 

growth chambers for experimental groups.   

6.2.3 Identification of Discrete Bead Layers 

In order to develop a calibration curve for annuli isolation beads were immersed in 3 mL 

of 0.025 M EDTA.  Cross sectional areas were measured at five minute time points using 

Image J software (NIH, Bethesda MD) based on an image taken of a bead with an 

Axiovert 40 CFL with filter set 23, (Zeiss, Thornwood, NY) equipped with a digital 

camera (Diagnostic Instruments 11.2 Color Mosaic, Sterling Heights, MI).  A calibration 

curve was constructed in order to determine the dissolution time to divide the scaffold 

into two annuli equal in radius.  The calibration curve had an R2 value of 0.98.  Based on 

the calibration curve 18 minutes was determined as the dissolution time to achieve two 

equal radii as the dissolution value was 49.4 ± 4.9 % at 18 minutes. 

6.2.4 hMSC Isolation from Discrete Bead Layers 

In order to isolate beads from specific annuli beads were placed into a twelve-well plate 

and 1.0 mL of 0.025 M EDTA was added.  Beads were dissolved for 18 min as 

determined by the calibration curve.  EDTA, now with suspended cells, was removed and 

placed into a centrifuge tube (Figure 6.1).  The well was washed with 1.0 mL of 

phosphate buffered saline (PBS).  Beads were moved to a new well containing 1.0 mL of 

0.025 M EDTA for the next dissolution.  Centrifuge tubes were spun at 5000 xg for 5 
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minutes to isolate the cell pellet.  To isolate cells from entire scaffold 0.025 M EDTA 

was added and beads were entirely dissolved and pellets isolated as previously described. 

 

 

Figure 6.1:  Schematic of cell removal from annuli of alginate beads.  Diameters of small 
beads and inner annulus are equal. 

6.2.5 Bioreactor Design 

Bioreactor culture was completed in the TPS bioreactor as described previously [112, 

113].  Briefly a tubing circuit comprised primarily of platinum-cured silicone tubing 

(Cole Parmer, Vernon Hills, IL) and PharMed BPT tubing (Cole Parmer) for the section 

that passes through the pump connected a growth chamber to a media reservoir (Figure 

6.2).  The entire tubing circuit was sterilized via autoclave.  The growth chamber was 

composed of platinum-cured silicone (ID of 1/4'') and contained the tightly packed 

alginate scaffolds.  Media was pumped through the recirculating system using a 

peristaltic pump (Cole Parmer) at 1.0 mL/min for annuli studies and 3.0 mL/min for shear 

stress studies.  The entire system was placed in an incubator at 37oC for the duration of 
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the study.  Forty mL of osteogenic media was loaded into separate 125 mL Erlenmeyer 

flask reservoirs for each growth chamber topped with rubber stoppers.  Media was 

withdrawn and replaced from the reservoir through two tubes that penetrate the stopper 

and changed every three days.  

 

Figure 6.2:  Schematic of TPS bioreactor.  Bioreactor consists of media reservoir, growth 
chamber, and pump.  Enlargement of this growth chamber can be seen with (a) small 
beads (2 mm diameter)  and (b) large beads (4 mm diameter).   

6.2.6 Modification of Shear Stress 

In order to analyze shear stress in the system 70,000 MW dextran (Sigma) was added to 

the media.  Dextran was chosen as a thickening agent as it has previously been shown to 

not affect hMSC proliferation and differentiation [80, 90].  The shear stress study 
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consisted of three groups all cultured in osteogenic media.  The first group with zero 

shear was cultured in static culture.  The second group was cultured in the TPS bioreactor 

at 3 mL/min in media supplemented with 3% dextran yielding a media viscosity of 1.66 ± 

0.05 mPA · S.  The third group was cultured in the TPS bioreactor at 3 mL/min in media 

supplemented with 9% dextran yielding a media viscosity of 4.21 ± 0.03 mPA · S.  

Surface shear stress was then calculated using a two-dimensional steady state Navier-

Stokes model of the tubular perfusion system developed using COMSOL Multiphysics 

Version 3.5 (COMSOL, Burlington MA) [112].   

6.2.7 Experimental Setup 

In order to determine the effect of shear stress on hMSC osteoblastic differentiation a 

shear stress study was completed using the entire 4 mm bead.  This study consisted of 3 

groups, a static group and two bioreactor groups with dextran added as a thickening agent 

to change shear while not affecting nutrient transfer.  The samples were analyzed for late 

osteoblastic marker osteopontin (OPN) at days 14 and 21 and osteogenic signaling 

protein bone morphogenetic protein-2 (BMP-2) on days 1, 4, 8, 14, and 21.   

In order to determine hMSC growth and osteoblastic differentiation in relation to radial 

position the cells were isolated from the outer 2 mm radius (outer) and inner 2 mm radius 

(inner) of alginate beads.  These beads were cultured in the TPS bioreactor and compared 

to a static control.  In addition small beads equal to the inner bead size were cultured in 

the TPS bioreactor and static culture as a control.  All samples were cultured in 

osteogenic media.  These samples were analyzed at days 1, 7, 14, and 21 for ALP and 
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mineralization and at days 7, 14, and 21 for proliferation and late osteoblastic 

differentiation using marker osteopontin. 

6.2.8 Live Dead Assay 

Five beads each cultured in control media were dissolved for 18 min as determined 

previously in order to isolate cells from discrete layers.  After each time point, beads 

were immediately removed from the EDTA solution and immersed in  live dead solution 

containing 2 μM ethidium homodimer and 4 μM calcein AM (Invitrogen, Carlsbad, CA) 

for thirty minutes.  Fluorescent images were then taken using a fluorescent microscope 

(Axiovert 40 CFL with filter set 23, Zeiss, Thornwood, NY) equipped with a digital 

camera (Diagnostic Instruments 11.2 Color Mosaic, Sterling Heights, MI) for the 

live/dead assay, as described previously [112, 113].  

6.2.9 DNA Quantification 

DNA was extracted at each time point and quantified using pico green as previously 

described [112].  Cell pellets were isolated from the two annuli as well as from small 

beads cultured as a control.  Isolated cell pellets were resuspended in PBS and DNA 

isolated using a DNeasy Tissue Kit (Qiagen, Valencia CA) following standard protocols.  

Double stranded DNA was then quantified using Quant-iT PicoGreen dsDNA reagent 

(Molecular Probes, Carlsbad, CA), incubated for five minutes in the dark and 

fluorescence measured using an M5 SpectraMax plate reader (Molecular Devices, 

Sunnyvale, CA) with excitation/emission of 480/520 nm.  All samples were performed in 

triplicate (n=3).   
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6.2.10 Histomorphometric Analysis 

At each timepoint beads were collected and fixed in 4% paraformaldehyde (Sigma-

Aldrich) and 0.1 M sodium cacodylate (Sigma-Aldrich) buffer containing 10mM CaCl2 at 

pH 7.4 for 4 hours at room temperature.  Following fixation, the beads were placed in 

cassettes and washed with 0.1 M sodium cacodylate buffer and 10 mM CaCl2 at pH 7.4 at 

room temperature for 24 hours.  The beads were then dehydrated for histological 

processing by ethanol washes followed by two citrisolv (Fisher) washes.  The samples 

were then embedded in paraffin (Fisher) and sectioned to 5 µm thickness sections and 

placed on glass slides.  Sections were taken from the same position in each sample for 

histomorphometric analysis.  Sections were oven dried at 64° C for 2 hours, 

deparaffinized in citrisolv and rehydrated in ethanol.  Von Kossa staining was performed 

to visualize mineralization using a Nuclear Fast Red (Poly Scientific, Bay Shore, NY) 

counterstain using standard protocols.  For histomorphometric analysis images the entire 

sample were taken using the Axiovert 40 CFL microscope equipped with a digital 

camera.  Images were divided into inner and outer annuli for large beads using diameter 

measurements.  Using Image J 1.44p (NIH, Bethesda MD) images were converted to 

binary where the dark Von Kossa stain represented mineralized area.  Black area was 

calculated as percent of total area to represent mineralization percent.  

6.2.11 Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) 

Cell pellets were isolated as described previously.  RNA was extracted using an RNeasy 

mini plus kit (Qiagen) following standard protocols.  The isolated RNA was then reverse 

transcribed to cDNA using a High Capacity cDNA Archive Kit (Applied Biosystems, 
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Foster City, CA).  The expression of bone morphogenetic protein-2 (BMP-2, Taqman 

Assay ID: Hs00154192_m1) (only shear study), osteopontin (OPN, Hs00960641_m1) 

(all studies) and alkaline phosphatase (ALP, Hs00758162_m1) (only for annuli study) 

was analyzed with glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 

Hs00960641_m1) as an endogenous control gene for all samples.  The sequences are 

propietary.  Gene expression assays (Applied Biosystems) were combined with the 

cDNA to be analyzed and Taqman PCR master mix (Applied Biosystems).  The reaction 

was performed on a 7900HT real time PCR System (Applied Biosystems) using thermal 

conditions of 2 minutes at 50°C, 10 minutes at 95°C, and 40 cycles of 15 seconds at 95°C 

and 1 minute at 60°C.  The relative gene expression level of each target gene was then 

normalized to the mean of the GAPDH in each group.  Fold change was calculated using 

the ΔΔCT relative comparative method as described previously [218, 240].  Samples 

were evaluated in triplicate and standard deviations are reported (n=3). 

6.2.12 Statistical Analysis 

All samples were completed in triplicate (n=3).  Data was analyzed using single factor 

ANOVA followed by Tukey’s Multiple Comparison Test assuming normal data 

distribution with a confidence of 95% (p < 0.05).  Mean values of triplicates and standard 

deviation error bars are reported on each figure as well as relevant statistical 

relationships.   
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6.3 Results 

6.3.1 Effect of Shear Stress on Late Osteoblastic Differentiation and BMP-2 Expression 

An investigation was completed to determine the effect of shear on osteoblastic 

differentiation.  Osteogenic signaling protein BMP-2 was analyzed at days 1, 4, 8, 14 and 

21 (Figure 6.3a).  On days 1, 4, and 8 a weak correlation was observed between shear 

stress and BMP-2 expression.  Specifically on day 4 BMP-2 fold change increased an 

average of 0.19 per dyne/cm2.  On day 8 the fold change was 0.44 per dyne/cm2.  By day 

14 a strong correlation began to emerge between shear stress and BMP-2 expression.  

Specifically BMP-2 fold change increased 0.95 per dyne/cm2.  By day 21 this correlation 

was stronger with an average fold change of 1.64 per dyne/cm2.  Following this analysis 

late osteoblastic marker osteopontin was evaluated to determine the effect of shear on late 

osteoblastic differentiation.  As OPN expression was not observed at early timepoints, it 

was analyzed at day 14 and 21.  By day 14 the fold change of OPN increased 0.46 per 

dyne/cm2 (Figure 6.3b).  This trend strengthened by day 21 when a fold change of 1.26 

per dyne/cm2 was observed.  These results demonstrate a strong time dependent effect of 

shear stress.  Following this study, an investigation was completed to analyze the effect 

of hMSC radial position in scaffolds on hMSC osteoblastic differentiation and 

proliferation.   
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a) 

 
b) 

 
Figure 6.3:  RT-PCR analysis for BMP-2 (a) and osteopontin (b) mRNA expression 
versus shear stress for timepoints 1, 4, 8, 14, and 21 (a) and 14 and 21 (b).  Day 1, 4, and 
8 BMP-2 data is normalized to day 1 zero shear, day 14 and 21 BMP-2 and OPN data is 
normalized to day 14 zero shear.  Expression levels of BMP-2 and osteopontin are 
dependent on shear stress with higher shear stresses correlating to greater expression 
levels.  The magnitude of this increase becomes stronger at later timepoints. 
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6.3.2 hMSC Proliferation in Discrete Layers 

Based on live dead staining of entire bead, inner annuli, and small bead nearly all cells 

were viable throughout the alginate beads after 1 day of culture.  Dead cells were not 

observed (Figure 6.4).   

 
 

 
 

Figure 6.4:  Live Dead Images of entire bead (top), inner annuli (middle), and small bead 
(bottom) after one day of bioreactor culture.  Scale bar represents 1000 μm.  Note small 
bead and inner annuli are approximately the same size and half that of the entire bead.  
Cells appear viable in all groups throughout the bead. 
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On day 7 proliferation remained comparable in all groups except for bioreactor cultured 

small beads which had significantly higher (p < 0.05) levels of DNA (Figure 6.5).  By 

day 14 a sharp decrease in proliferation could be observed in the inner annulus of control 

beads while the highest proliferation continues to be observed in the bioreactor small 

beads.  On day 21 significantly (p < 0.05) higher proliferation was observed in bioreactor 

cultured beads as compared to control beads of the same size.  DNA concentration in the 

outer and inner annuli of bioreactor cultured beads was 3.82 ± 0.31 and 3.33 ± 0.58 

ng/mm3 respectively.  This was significantly higher (p < 0.05) compared to the outer and 

inner annuli of statically cultured beads which were 1.59 ± 0.34 and 1.24 ± 0.22 ng/mm3 

respectively.  Bioreactor small beads had the highest DNA amount at 5.55 ± 0.82 

ng/mm3.  Statically cultured small beads had a lower DNA amount at 3.15 ± 0.64 

ng/mm3.  This amount is lower but statistically similar (p > 0.05) to bioreactor cultured 

large beads. 
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Figure 6.5:  DNA amount normalized to scaffold volume for days 7, 14, and 21.  On day 
seven similar proliferation is observed in all groups except bioreactor small bead.  By day 
14 control inner exhibits decreased proliferation.  On day 21 note significantly higher 
DNA amounts in bioreactor cultured large beads as compared to static cultured large 
beads.  The symbols (*, &) represent statistical significance within a timepoint (p < 0.05).  
Groups with symbol * or & are statistically different from all groups except those groups 
with the same symbol.  Groups with the same symbol are statistically similar to each 
other.   

6.3.3 hMSC Differentiation and Matrix Production in Discrete Layers 

ALP was used as a marker of early osteoblastic differentiation.  The earliest peaks in 

ALP expression were observed in the control beads indicating they may be differentiating 

more rapidly than bioreactor cultured beads (Figure 6.6).  By day 21 the highest 

expression levels were observed in the inner annuli of bioreactor cultured beads with a 

fold change of 5.85 ± 0.41 as compared to day one control inner.  The inner annuli of 

control beads also exhibited high expression levels with a 3.54 ± 0.08 fold change 
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compared to the same group.  Interestingly low expression was observed in the bioreactor 

outer and bioreactor small groups with expression levels of 0.34 ± 0.04 and 0.82 ± 0.06 

respectively.  

 

Figure 6.6:  Quantitative reverse transcriptase polymerase chain analysis for days 1, 7, 
14, and 21 for early osteoblastic marker ALP.  Values are normalized to day one control 
large bead inner.  All groups are cultured in osteogenic media.  On day 21 ALP 
expression levels are significantly higher in bioreactor large bead inner cells than all 
other groups.  The symbols (*, #) indicate statistical significance from all other groups 
within a timepoint (p < 0.05).  Groups with symbol * or # are statistically different from 
all groups except those groups with the same symbol.  Groups with the same symbol are 
statistically similar to each other.   
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fold change of 12.31 ± 1.47 as compared to day 7 control inner.  The outer annuli of the 

bioreactor cultured beads exhibited a significantly (p < 0.05) lower fold change of 4.55 ± 

0.32.  Control groups exhibited low day 21 levels of 1.45 ± 0.41 and 1.37 ± 0.54 for the 

outer and inner annuli respectively.  The control small group was slightly but statistically 

significantly higher (p < 0.05) at a fold change of 1.65 ± 0.33.  The bioreactor small 

group was significantly higher (p < 0.05) at a fold change of 7.21 ± 1.24.   

 

Figure 6.7:  RT-PCR analysis for days 7, 14, and 21 for late osteoblastic marker 
osteopontin.  Values are normalized to day seven control large bead inner.  All groups are 
cultured in osteogenic media.  On day 21 expression levels are significantly greater in 
bioreactor inner than all other groups.  The symbols (*, #, &, +) indicate statistical 
significance from all other groups within a timepoint (p < 0.05).  Groups with symbol *, 
#, + or & are statistically different from all groups except those groups with the same 
symbol.  Groups with the same symbol are statistically similar to each other.   
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To analyze mineralized matrix production, another marker of late osteoblastic 

differentiation Von Kossa staining was quantified using a histomorphometric analysis 

(Figure 6.8).   

 

Figure 6.8:  Percent mineralization based on histomorphometric analysis of Von Kossa 
stain of beads on days 1, 7, 14, and 21.  Highest mineralization can be observed on day 
21 in the inner annuli of bioreactor cultured beads.  The outer annuli of bioreactor 
cultured beads and statically cultured small beads exhibit high mineralization on day 21.  
The symbols (*, #, +) indicate statistical significance within a timepoint (p < 0.05).  
Groups with symbol *, #, or + are statistically different from all groups except those 
groups with the same symbol.  Groups with the same symbol are statistically similar to 
each other.   
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levels of mineralization were also observed in the outer annuli of bioreactor cultured 

beads with 53 ± 25% mineralization.  The control small exhibited similar levels of 

mineralization at 53 ± 22% mineralization.  Low levels of mineralization were observed 

in the large control beads with only 19 ± 6% and 6 ± 4% mineralization area for the outer 

and inner sections respectively.  Surprisingly the bioreactor small beads also had low 

levels of mineralization with 11 ± 9% mineralization.  Representative images in Figure 

6.9 illustrate these trends. 

 Bioreactor Large 
Bead 

Control Large 
Bead 

Bioreactor Small 
Bead 

Control Small 
Bead 

Day 
1 

  

Day 
7 

  

Day 
14 

  

Day 
21 

  
Figure 6.9:  Representative images of bioreactor cultured large beads, statically cultured 
large beads, bioreactor cultured small beads, and statically cultured small beads.  Scale 
bar represents 1000 µm. Note increased calcium staining on day 21 and the highest 
overall percentage of calcified area in the bioreactor large bead on day 21. 
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6.4 Discussion 

The overall goal of this study was to determine how external culture conditions including 

shear stress and nutrient transfer affect hMSCs proliferating and differentiating in the 

TPS bioreactor as compared to static controls.  The first part of the study focused on the 

role of shear stress in the osteoblastic differentiation of bioreactor cultured beads.  Shear 

stress is commonly thought to induce osteoblastic differentiation in perfusion systems 

[16, 18, 28, 29, 38, 39, 80, 89, 110, 111].  Shear can be isolated from mass transport in a 

perfusion system using a thickening agent to change media viscosity.  In this manner 

increasing shear has been demonstrated to increase mineralization in rat BMSCs [17] and 

upregulate osteoblastic differentiation in hMSCs [80].  Though increasing flow rate was 

previously shown to upregulate osteoblastic markers in the TPS bioreactor, shear stress 

was not isolated and specifically investigated [112].   In addition the TPS bioreactor 

utilizes bulk hydrogels rather than porous scaffolds used in previous bioreactor shear 

studies.  Thus the direct effect of surface shear stress on encapsulated cells was 

previously unknown.  It was discovered that increasing shear in the system led to an 

increase in late osteoblastic marker osteopontin and osteogenic signaling protein BMP-2 

(Figure 6.3).  Interestingly the effect of shear on osteopontin expression was temporal in 

nature with a greater correlation occurring at day 21 than on day 14.  Though shear has 

previously been observed to upregulate osteoblastic differentiation of hMSCs, to our 

knowledge this is the first observation of a temporal correlation of this effect in a 

bioreactor system.  This result was also observed when analyzing BMP-2 expression as 

minimal correlation is observed at days 1, 4, and 8, but a strong correlation is observed 

on day 21.  Following previous work, shear stresses were calculated at the surface of the 
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bead equaling 1.63 ± 0.13 dynes/cm2 for the 3% dextran media and 4.13 ± 0.34 

dynes/cm2 for the 9% dextran media [112].  Flow rate through the bead can be related to 

the permeability of alginate (1.2 ± 0.1 x 10-12 cm2) [248] using Darcy’s law in 

permeability [236, 248]  where ܲ݁ݕݐ݈ܾ݅݅ܽ݁݉ݎ ൌ   ሺܳܮݑሻ ൫ܣሺ∆ܲሻ൯⁄  where ܳ is flow rate, 

 is the surface area of the ܣ ,is the diffusion length ܮ ,is dynamic viscosity of the media ݑ

bead, and ܲ߂ is change in pressure across the bead.  Using the pressures in the system 

calculated from the COMSOL model [112] and assuming bead homogeneity, flow rate 

through a 4 mm cross section of the large bead was calculated to be approximately 3 x 

10-7 ml/min.  As shear is proportional to the change in velocity and the flow rate in the 

bead (3 x 10-7 mL/min) is 107 lower than the flow rate at the surface (3 mL/min), we can 

conclude that shear stresses will be reduced by similar amounts on the interior portions of 

the bead assuming a no slip condition at the surface.  Therefore we speculate the effects 

of shear stress likely result from cells in the inner core of the bead responding to 

paracrine signals released from cells on the surface of the bead, however prolonged 

exposure of cells in the core of the bead to these small shear stresses could also impact 

cellular responses. 

In the second part of the study the role of the cellular position in a scaffold as it relates to 

cell proliferation was investigated.  The objective of this part of the study was to 

determine if nutrient transfer limitations were occurring and what role the TPS bioreactor 

had on these limitations.  Nutrient and oxygen levels must be kept at sufficient levels 

throughout a three dimensional construct in order for cells to remain viable.  The effect of 

oxygen concentration on hMSC proliferation has been previously investigated [207].  It 

was reported that hMSCs can survive low oxygen levels for up to 48 hours, but if the low 
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oxygen levels are combined with nutrient deprivation, significant cell death occurs.  

Based on proliferation data in this study it can be concluded that hMSCs in large (4 mm 

diameter) static cultured scaffolds are proliferating at lower rates than cells in bioreactor 

culture (Figure 6.5).  This was likely caused by a deprivation of nutrients and oxygen to 

cells in these scaffolds.  Day 21 DNA amount is over twice as high in bioreactor groups 

as compared to static control groups.  The decrease in proliferation was most significant 

in the inner annuli of statically cultured large beads in which nearly a 50% drop in DNA 

amount is observed from day 7 to 21.  These results are further supported when the small 

bead control is taken into account.  Just as dynamic culture mitigates diffusion 

limitations, increasing the surface area to volume ratio of scaffolds through decreased 

size also mitigates this limitation.  Thus small (2 mm diameter) static control beads had 

increased proliferation as compared to large statically cultured beads.  Bioreactor cultured 

small beads had the highest levels of proliferation.  These results highlight the need for 

bioreactor systems for the culture of tissue engineering constructs to avoid cell death 

resulting from hypoxia. 

Finally, in vitro osteoblastic differentiation was analyzed as another key aspect of a cell 

based tissue engineering strategy.  The objective of this final part of the study was to 

determine if scaffold radial position influenced hMSC osteoblastic differentiation.  It is 

hypothesized that radially dependent differentiation will be influenced by two factors, 

shear stress (as discussed earlier) and oxygen content.  The effect of oxygen content on 

stem cell osteoblastic differentiation is conflicted in the literature as increased 

proliferation and differentiation of hMSCs have been reported upon exposure to low (2% 

oxygen) conditions [196].  A similar result has been observed in rat MSCs as cells 
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cultured under 5% oxygen conditions increased in proliferation and differentiation as 

compared to 20% oxygen conditions.  However it has been demonstrated previously that 

low oxygen concentrations can inhibit bone formation and in vitro osteoblastic 

differentiation [182, 191, 242, 247].  In hMSCs it was observed that even short term (48 

hr) hypoxia caused a down regulation in several osteoblastic factors and markers [191].  

In a study with rat osteoblasts sufficient oxygen was found as a requirement for bone 

growth as hypoxic conditions (2% oxygen) resulted in a downregulation of ALP and 

osteocalcin as well as an 11 fold decrease in mineralized bone [242].  Knowledge of the 

culture environment is critical as divergent cellular pathways of MSC differentiation and 

proliferation have previously been reported in the literature [101, 249, 250].  MSCs may 

directed down a specific pathway by physical factors in their environment [250].  Wnts 

have been demonstrated to be crucial in the modulation of these pathways [101, 165] and 

may be regulated via other signaling pathways including BMP-2 [166].  BMP-2 has been 

shown to enhance to stem cell differentiation and promote osteogenesis [66-68] and was 

measured in the first part of the study because of its strong association with bone 

formation.   

This work supports findings that static culture of large constructs leads to reduced 

osteoblastic differentiation as large bead static control groups failed to express elevated 

levels of late osteoblastic marker osteopontin (Figure 6.7).  These groups also produced 

low levels of mineralization further indicating an inhibition of osteoblastic differentiation 

in these groups.  It is likely the observed decrease in proliferation in large control groups 

also results in less mineralization.  These findings demonstrate the critical need for 

sufficient oxygen and nutrient transport during the three dimensional culture of hMSCs. 
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Interestingly low levels of mineralization were observed in the bioreactor cultured small 

beads.  These beads exhibited the highest levels of proliferation, but mineralization levels 

were similar to that of large control beads.  In addition osteopontin levels and 

mineralization percent were higher on the interior annulus of bioreactor cultured beads 

than the exterior annulus.  The combination of these results with the observed increases 

in proliferation of cells in the exterior annulus of large beads and small beads of 

bioreactor cultured scaffolds could indicate the hMSCs being directed toward a 

proliferative pathway when more directly exposed to shear stress at the scaffold surface.  

In this manner the scaffold position could be altering the time course of differentiation by 

promoting a longer proliferation stage rather than differentiation and subsequent 

mineralization.  Though the bioreactor smalls bead are not significantly mineralized in 21 

days, osteopontin expression begins to rise on day 21 indicating these cells are 

undergoing late osteoblastic differentiation.  This effect could result from two factors or a 

combination thereof.  First, oxygen levels and shear vary throughout the scaffold [112] 

and the oxygen content and shear levels could be optimal for proliferation closer to the 

surface of the scaffold and differentiation closer to the center.  Second the higher level of 

mineralization observed on the interior of bioreactor cultured large beads could result 

from signaling molecules released by cells on the exterior portions of scaffolds.  We 

speculate exposure to shear stress may be inducing these cells to release factors that 

signal cells on the interior portion of the scaffolds to differentiate, while the cells directly 

exposed to shear and higher nutrient concentration follow a proliferative pathway.  These 

results demonstrate the ability of the TPS bioreactor to both promote an osteoblastic 
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differentiation pathway or a proliferative pathway prior to osteoblastic differentiation 

depending on culture conditions. 

This study demonstrates the critical need for bioreactor systems in three dimensional cell 

culture.  Reduced proliferation and differentiation were observed in 4 mm statically 

cultured constructs and the ability of the TPS bioreactor to mitigate these results in three 

dimensional scaffolds was demonstrated.  Osteoblastic differentiation and shear results 

demonstrate shear stress to induce a temporal and potentially indirect effect on hMSC 

osteoblastic differentiation.  Bioreactor systems provide a complex environment and 

when evaluated on a cellular level can deliver an array of culture conditions to cells 

cultured in the same macro environment.  This can lead to a multitude of outcomes on the 

individual cell level.  Thus while bioreactor systems are vital to provide sufficient 

nutrients to prevent cell death they must be thoroughly evaluated to identify optimal 

culture conditions for the desired differentiation level prior to implantation. 

6.5 Conclusions 

This study demonstrated shear stress as a potent and temporal stimulus of hMSC 

osteoblastic differentiation within bulk scaffolds.  Mineralization and proliferation levels 

were decreased in statically cultured constructs highlighting a need for bioreactor 

systems.  In addition it was discovered that hMSC spatial position within scaffolds had an 

effect on both the osteoblastic differentiation and proliferation of these cells.  These 

results could be used to tailor a flow and shear regime for either expansion or 

differentiation of a stem cell population to dictate the desired outcome of in vitro culture 
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Chapter 7:  Formation of an Aggregated Alginate Construct in a 

Tubular Perfusion System4 

7.1 Introduction 

A significant challenge in the implementation of cell based tissue engineering strategies 

remains the inability to successfully culture large constructs in vitro.  One approach to 

overcoming this difficulty is a bottom up approach to creating a tissue engineering 

construct.  In the traditional tissue engineering approach a polymer scaffold is 

constructed in its final shape and seeded with cells.  The cells are then cultured in vitro to 

allow for proliferation and matrix deposition throughout the scaffold.  This approach is 

limited by the scaffold size and cell density that will allow for homogenous growth and 

matrix production throughout the scaffold.  For example, central oxygen concentration of 

cells cultured in scaffolds 9 mm by 5 mm were shown to drop to 0% after just five days 

of culture [21].  Bioreactor culture was shown to mitigate this effect, however central 

oxygen concentration of the same constructs cultured in a perfusion bioreactor were only 

4%.  This work underscores the difficulty of culturing larger, clinically relevant three 

dimensional scaffolds in vitro using a traditional top down tissue engineering approach. 

In a bottom up tissue engineering approach small scale tissue engineering building blocks 

are created.  These tissue building blocks are then assembled into a large tissue 

engineering construct [251].   For example, using endothelial cell coated collagen gel 

constructs a modular tissue engineering approach has been used to create a multicell 

                                                 
 
4 As published in Yeatts, A.B., C.N. Gordon, and J.P. Fisher, Formation of an aggregated alginate 
construct in a tubular perfusion system. Tissue Eng Part C Methods, 2011. 17(12): p. 1171-8. 
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microvascularized tissue engineering construct [214].  These endothelial coated gels 

contained an encapsulated hepatoma cell line and following perfusion culture in a 

bioreactor system the individual modules assembled to form a construct with 

interconnected channels [252, 253].   

The goal of this work is to create an engineered tissue aggregated from many small 

alginate beads that are cultured individually prior to aggregation.  This will allow for the 

in vitro development of tissue engineering constructs on size scales not easily possible 

with previous culture methods.  The system involves the culture of human mesenchymal 

stem cells (hMSCs) in alginate beads in the tubular perfusion system (TPS) bioreactor.  

The tubular perfusion system uses an elegant bioreactor design in which alginate 

scaffolds are tightly packed in a tubular growth chamber and media is pumped through 

the growth chamber from a reservoir by a peristaltic pump.  The TPS bioreactor has been 

shown to support the growth and osteoblastic differentiation of hMSCs as well as 

enhance late osteoblastic differentiation and calcium matrix production [112].  hMSCs 

are utilized in this study as a promising cell source for both bone and cartilage tissue 

engineering as they can be isolated from the bone marrow and readily differentiated into 

both osteoblasts and chondrocytes [6, 112].  The hMSCs are encapsulated in alginate, a 

natural biomaterial derived from algae that is frequently utilized in cartilage tissue 

engineering [108, 109, 218, 219] as well as some bone tissue engineering applications 

[221-224].  Alginate is composed of mannuronic acid and guluronic acid chains [219].  

When a divalent ion such as calcium is added to an alginate solution the calcium binds 

between guluronic acid blocks of the alginate chain ionically crosslinking the alginate 

chains and gelling the alginate solution [254].  Thus cells can be easily encapsulated in an 
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alginate hydrogel by mixing an alginate cell solution and adding the solution dropwise 

into a calcium chloride solution.  The size of these beads can be controlled by changing 

the size of the needle.  The beads can then be dissolved through the addition of a calcium 

chelating agent such as ethyldiaminetetraacetic acid (EDTA) which sequesters the 

crosslinking calcium ions.  This makes alginate advantageous for in vitro experimentation 

as cells can easily be removed and analyzed. 

In this work these properties are utilized to create an aggregated construct where cells are 

cultured in smaller beads which are joined to form a single, mechanically intact large 

construct.  The objectives of this study are to first develop this aggregated construct in the 

TPS bioreactor.  Following this the mechanical properties of the construct will be tested.  

Finally, hMSCs will be encapsulated in the construct and the viability of these cells will 

be demonstrated throughout the creation of this construct. 

7.2 Materials and Methods 

7.2.1 Bioreactor Design 

Dynamic culture is completed in the TPS bioreactor as previously described [112].  

Briefly, the bioreactor system consists of a tubular growth chamber and media reservoir 

connected via a tubing circuit which consists of platinum cured silicone tubing (Cole 

Parmer, Vernon Hills, IL) for all areas except the area that passes through the pump 

which is composed of Pharmed BPT tubing (Cole Parmer) (Figure 7.1).  Media flow was 

driven by an L/S Multichannel Pump System (Cole Parmer) at 3 mL/min.  Following 

loading with cell containing beads the tubing was fully assembled inside a cell culture 

hood and then placed in a cell culture incubator at 37º C and 5% CO2.  Fifty mL of 
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osteogenic media was loaded into separate 125 mL Erlenmeyer flasks for each growth 

chamber topped with rubber stoppers.  Media is withdrawn and replaced from the 

reservoir through two tubes that penetrate the stopper and changed every three days. 

 

 

Figure 7.1:  Schematic of TPS bioreactor (left) and enhanced view of growth chamber 
(right).  Aggregated alginate constructs are formed in the growth chamber. 

7.2.2 Fabrication of Aggregated Alginate Constructs (AACs) 

Alginate solutions of 2.0% w/v were prepared as previously described by adding alginic 

acid sodium salt from brown algae (Sigma, St. Louis, MO), into 0.15M NaCl (Sigma), 

and 0.025M HEPES (Sigma) in deionized water [106, 108, 109].  Alginate beads were 

fabricated by dropwise addition of this solution into a stirred solution of 0.1 M calcium 

chloride (Sigma).  The beads were stirred for 15 minutes using a magnetic stir bar and stir 

plate set to 60 rotations per minute.  The beads were then removed from the calcium 

chloride solution and rinsed in a phosphate buffered saline (PBS) solution for 15 minutes.  
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Bead size was varied by changing the needle gauge size.  Gauges of 16, 18, 20, 27, and 

30 were used.  To make aggregated constructs beads were loaded into a growth chamber 

to make an aggregated construct approximately 2 cm in length.  A 0.025M solution of 

ethyldiaminetetraacetic acid (EDTA) (Sigma) was flowed through the growth chamber at 

1.8 mL/min for five minutes.  Allowing the EDTA to flow through the growth chamber 

for five minutes permits all the beads to be in full contact with the EDTA solution, and 

causes the alginate beads to expand in size and overlap.  Following this step, the EDTA 

solution was replaced with a 0.5 M solution of calcium chloride.  This solution was 

flowed into the TPS for 5 minutes at 1.8 mL/min to remove EDTA, then perfused 

through the growth chamber at 10 mL/minute for 20 minutes to form aggregated 

constructs by ionically crosslinking the alginate chains with the calcium ions.  The five 

minute calcium chloride step is important to wash all remaining EDTA, while the 20 

minute calcium chloride step distributes calcium ions to all beads.  Aggregated alginate 

constructs were then removed from the TPS bioreactor for experimentation. 

7.2.3 Measurement of Tensile Mechanical Strength 

Prior to mechanical testing the dimensions of the AACs were measured using calipers 

and the mass of the sample measured using an Ohaus Analytic Plus analytical balance.  

Constructs were placed using forceps into custom fit clamps attached to the clamps 

provided by the manufacture and the tensile strength measured using a Tensilon RTF-

1310 mechanical tester outfitted with a 50N load cell and MSAT0002 materials testing 

software.  The AAC samples were stretched with a constant crosshead speed of 1.0 

mm/min, with the software constantly recording the stress and strain.  The test ended with 

sample fracture.  Young’s modulus, tensile strength, and yield strength of the AACs were 
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calculated.  The Young’s modulus was calculated as the slope of the initial linear portion 

of the stress-strain curve.  The ultimate tensile strength was identified as the maximum 

stress reached by each sample.  The tensile strength at 0.2% yield was calculated by 

locating the intersection of the stress-strain curve and a line with the Young’s modulus 

slope at 0.2% strain offset [255].  

7.2.4 Measuring Rate of Bead Dissolution 

To determine the dissolution rates of beads in EDTA beads were fabricated as described 

previously in the methods using an 18 gauge needle.  Initial bead size was then measured 

by calculating the cross sectional area using Image J software (NIH, Bethesda MD) of a 

bead based on a image taken with an Axiovert 40 CFL with filter set 23, (Zeiss, 

Thornwood, NY) equipped with a digital camera (Diagnostic Instruments 11.2 Color 

Mosaic, Sterling Heights, MI).  Alginate beads were loaded into TPS growth chamber 

and perfused with EDTA with concentrations ranging from 0.008M to 0.1M at 1.8 

mL/min.  At each time point, five beads were removed from the bioreactor and 

photographed.  Cross sectional areas were normalized to initial cross sectional areas to 

determine bead dissolution at each time point. 

7.2.5 Human Mesenchymal Stem Cell Culture 

Human mesenchymal stem cells (p≤5) from a single donor were purchased from Lonza 

(Walkersville, MD).  Single donor cells were used to minimize variability associated with 

a primary cell population.  Cells were cultured prior to the study in control media 

consisting of DMEM (Gibco, Carlsbad, CA) supplemented with 10% fetal bovine serum 

(Gibco), 1.0 % v/v penicillin/ streptomycin (Gibco), 0.1 mM non essential amino acids 
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(Gibco), and 4 mM L-glutamine (Gibco) using protocols set forth by the manufacture and 

previously described [69, 112, 232].  Cells were cultured on tissue culture polystyrene 

flasks with media changes every three days according to the manufacture’s specifications.  

Cells were stored in a cell culture incubator at 37º C and 5% CO2 and passaged every 6-7 

days using trypsin/EDTA (Lonza).  Osteogenic media was formulated as described in the 

literature by supplementing control media with 100 nM dexamethasone (Sigma), 10mM 

β-glycerophosphate, and 173 μM ascorbic acid (Sigma) [69, 233]. 

7.2.6 hMSC Encapsulation in Alginate 

Alginate solutions were sterilized via sterile filtration.  hMSCs were removed from tissue 

culture flasks using trypsin/EDTA and pelleted via centrifugation at 500 xg for five 

minutes.  The cell pellet was resuspended in the alginate solution at a density of 1.25-2.5 

x 106 cells/mL.  The alginate cell solution was added drop wise through a 20 gauge 

needle into a stirred solution of 0.1 M calcium chloride (Sigma) which immediately 

crosslinked the alginate to form beads.  Beads were allowed to stabilize for 15 min and 

were loaded into the bioreactor.  Cells were cultured in control media for use in live dead 

staining and osteogenic media in order to differentiate the hMSCs into osteoblasts and 

determine if calcium is produced as measured using Von Kossa staining.  Control media 

was used for live dead and metabolic activity assays to observe the growth process when 

cells are not differentiating.  Media was changed every three days. 

7.2.7 Metabolic Activity 

hMSCs were encapsulated in alginate beads at 100,000 cells per bead.  After stabilizing 

for 24 hours in control media in static culture, beads were exposed to either 35 minutes of 
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control media with FBS (control group), 5 minutes of 0.1 M calcium chloride, 5 minutes 

of 0.025 M EDTA, and 25 minutes of 0.5 M calcium chloride (AAC treatment group), or 

35 minutes of 70% methanol (Sigma) (dead control group).  Metabolic activity was then 

assessed using a dimethylthiazolyldiphenyltetrazolium bromide (MTT) based in vitro 

toxicology kit (Sigma) as previously described [239].  Briefly 200 μL of 5 mg/mL of 

reconstituted MTT was added to each well with 2 mL of control media with 10% FBS.  

Beads were then incubated for 150 minutes to allow for the formation of formazan 

crystals.  Crystals were dissolved in 2 mL of MTT solubilization solution (Sigma) and 

allowed to dissolve out of alginate beads overnight.  200 μL of supernatant was then 

transferred to a 96 well plate to record the optical density in triplicate at 570 nm using an 

M5 SpectraMax microplate reader (Molecular Devices, Sunnyvale, CA). 

7.2.8 Live Dead Assay 

Cell viability was assessed using a live dead assay following standard protocols as 

described previously [239].  Viability tests were completed on three groups.  In the 

control group cells were cultured in static culture in control media.  In the AAC group 

cells were cultured in the bioreactor at a 3 mL/min flow rate for 10 days.  AACs were 

formed from bioreactor cultured beads and removed from the bioreactor.  In the final 

group the AAC was cultured in a static culture plate to determine if the hMSCs could 

remain viable for 24 hours.  AACs were either soaked in PBS to remove FBS and media 

for 30 minutes or moved to six well plate for 24 hour culture.  Control beads were also 

first soaked in PBS for 30 minutes to remove FBS and media.  Beads and AACs were 

then placed in well plates and incubated in 2 μm ethidium homodimer and 4 μm calcein 

AM (Invitrogen, Carlsbad, CA) for thirty minutes.  Fluorescent images were then taken 
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using a fluorescent microscope (Axiovert 40 CFL with filter set 23, Zeiss, Thornwood, 

NY) equipped with a digital camera (Diagnostic Instruments 11.2 Color Mosaic, Sterling 

Heights, MI).  AACs cultured in well plate were removed 24 hours later and stained 

following the same procedures as other groups. 

7.2.9 Histological Analysis 

Experimental hMSCs were cultured in individual alginate beads in osteogenic media in 

the TPS bioreactor for 21 days.  On day 21, alginate beads were aggregated into AACs 

and were collected and fixed in 4% paraformaldehyde (Sigma) and 0.1 M sodium 

cacodylate (Sigma) buffer containing 10 mM calcium chloride at pH 7.4 at 4° C for 4 

hours.  Following fixation, the beads were placed in cassettes and washed with 0.1 M 

sodium cacodylate buffer and 10mM calcium chloride at pH 7.4 at room temperature for 

24 hours.  The beads were then dehydrated for histological processing by ethanol washes 

followed by two Citrisolv (Fisher Scientific) washes.  The samples were then embedded 

in paraffin (Fisher Scientific) and sectioned to 5 µm thickness sections and placed on 

glass slides.  Sections were oven dried at 64° C for 2 hours, deparaffinized in Citrisolv 

and rehydrated in ethanol.  Von Kossa staining was performed using standard protocols 

to visualize mineralization with a Nuclear Fast Red (Poly Scientific, Bay Shore, NY) 

counterstain. 

7.2.10 Statistical Analysis 

All samples were completed in triplicate (n=3).  Data was analyzed using single factor 

ANOVA followed by Tukey’s Multiple Comparison Test assuming normal data 

distribution with a confidence of 95% (p < 0.05).  Mean values of triplicates and standard 
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deviation error bars are reported on each figure as well as relevant statistical 

relationships.   

7.3 Results 

7.3.1 Formation and Dissolution of Alginate Beads 

Alginate beads were fabricated to consistently different sizes using needle gauges of 16, 

18, 20, 27, and 30 (Table 7.1).  By using a needle gauge of 30 an average bead diameter 

of 2.15 ± 0.07 mm was obtained.  Sixteen gauge needles resulted in average bead 

diameters of nearly twice this magnitude with an average diameter of 3.90 ± 0.09 mm. 

Needles with gauges in between these two resulted in bead diameters inside this range 

with each gauge needle producing beads significantly different in diameter from all other 

gauges (p<.05).  Based on these results beads of discrete diameters can be fabricated 

using different needle sizes.   

Table 7.1:  Alginate bead cross sectional area.  Data are reported as mean ± standard 
deviation.  All groups are statistically different (p<0.05).   

Needle Gauge Bead Diameter (mm) 

16 3.90 ± 0.09 

18 2.97 ±  0.02 

20 2.65 ±  0.07 

27 2.46 ±  0.06 

30 2.15 ± 0.07 

 

Dissolution curves of beads were then generated using 0.1 M, 0.05 M, 0.025 M, and 

0.008 M concentrations of EDTA.  This analysis was performed with 2.97 mm diameter 

beads.  Results of bead dissolution experiments revealed that 0.008 M EDTA did not 
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dissolve alginate beads over the thirty minute experiment (Figure 7.2).  Cross sectional 

area was shown to increase slightly over the time points.  For groups dissolved in 0.025 

and 0.050 M EDTA bead size initially increased but decreased over later time points until 

complete dissolution in the 0.05 M group and near complete dissolution in the 0.025 M 

group.  The 0.025 EDTA group increased to 127% of original bead diameter after 5 

minutes before dissolving to 11% of original area after 30 minutes.  The 0.05 M group 

increased to 108% its original diameter before completely dissolving after 30 minutes.  

The 0.100 M was shown to completely dissolve in 10 minutes without an increase at the 

5 minutes timepoint.  These observed results in 0.025 M and 0.05 M EDTA likely occur 

as EDTA decreases the crosslink density of the alginate causing the bead to grow in size 

before the bead is dissolved. 
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Figure 7.2:  The dissolution of alginate beads at varying EDTA concentrations at 
1.8mL/min flow rate.  Bead sizes are reported as cross sectional areas in relation to initial 
area. 

7.3.2 Mechanical Properties of Aggregated Alginate Constructs 

The initial increase in size of beads in the 0.025 M EDTA group was used to develop a 

protocol to make aggregated alginate constructs.  Using this protocol these constructs 

were successfully created and shown to be easily transported and manipulated (Figure 

7.3).   
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Figure 7.3: Image of aggregated alginate construct.  Owing to the simplicity of the 
design, the construct can be easily moved and manipulated.  Scale bar represents five 
millimeters.   

Mechanical testing of these constructs revealed that smaller diameter beads resulted in 

stronger aggregated constructs (Figure 7.4).  Aggregated constructs made from beads 

with 2.15 mm diameters had a Young’s modulus of 85.6 ± 15.8 kPa, a tensile strength of 

3.24 ± 0.55 kPa and a yield strength of 1.44 ± 0.27 kPa.  These values were statistically 

similar (p>0.05) to constructs made from beads with 2.46 mm diameter.  Increase of bead 

diameter slightly to 2.65 mm resulted in a relatively large and statistically significant 

change (p<0.05) in mechanical properties producing constructs with a Young’s modulus 

of 39.2 ± 10.6 kPa, a tensile strength of 0.85 ± 0.25 kPa and a yield strength of 0.52 ± 

0.15 kPa.  These mechanical properties were statistically similar (p>0.05) to constructs 

made from beads with 2.97 mm and 3.90 mm diameters though beads with the largest 

diameter, 3.90 mm, exhibited the weakest mechanical properties.  These samples had a 

Young’s modulus of 18.2 ± 5.6 kPa, a tensile strength of 0.45 ± 0.04 kPa and a yield 
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strength of 0.27 ± 0.03 kPa.  AAC fracture was typically observed on the periphery of 

beads aggregated together, however no other preferential breaking point was noted.   
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(c) 

 
Figure 7.4: Mechanical properties of aggregated alginate construct including Young’s 
Modulus (a), tensile strength (b) and yield strength (c).  Note 2.15 and 2.46 mm groups 
are statistically greater than other groups but statistically similar to each other.  All other 
groups are statistically similar.  The symbols (*, #) indicates statistical significance (p < 
0.05).   

7.3.3 hMSC Viability and Calcium Deposition in Aggregated Alginate Constructs 

Results of MTT assay indicate AAC treatment has no effect on the metabolic activity of 

encapsulated hMSCs (Figure 7.5).   
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Figure 7.5:  Metabolic activity of cells in alginate bead in control media, AAC treatment, 
and dead control.  Dead control is significantly lower than control bead and AAC 
treatment, which are statistically similar.  The symbol (*) indicates statistical significance 
(p < 0.05).   

Cells in alginate beads exposed to AAC treatment had statistically similar metabolic 

activity to control hMSCs.  Both these groups had significantly greater metabolic activity 

than hMSCs in beads exposed to methanol as a dead control.  Microscopic images of the 

AAC reveal that hMSCs are homogenously distributed throughout the construct (Figure 

7.6).   
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Figure 7.6:  Image of cell containing AAC.  Cells can be observed throughout construct.  
Scale bar represents 1000 μm. 

Upon live dead staining images reveal that the majority of these cells are viable after ten 

days of culture and AAC formation (Figure 7.7).  Live dead images of cells 24 hours after 

AAC treatment reveal that cells remain viable following the treatment.   
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(a) (b) (c) 

(d) (e) (f) 

Figure 7.7:  Live dead stain of AAC (a,d) after 10 days of individual bead TPS culture 
and formation.  Live dead stain of AAC after 10 days of individual bead TPS culture and 
24 hours of static culture following AAC treatment (b,e) Live dead staining of control 
(c,f) after ten days of static culture.  Cells appear viable in all groups.  Scale bar 
represents 1000 μm (a,b,c) and 200 μm (d,e,f). 

Following demonstration that hMSCs are viable in AACs, beads were cultured for 21 

days in osteogenic media to demonstrate if calcium production was occurring as 

previously observed and if this calcium deposition would remain present throughout the 

AAC treatment [112].  Images of AAC sections stained using Von Kossa staining 

indicate that hMSCs produce calcium while being cultured prior to AAC formation and 

that AAC treatment does not eliminate these calcium deposits (Figure 7.8).  Calcium is 

stained black in these images and can be seen surrounding cells in AACs.   
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(a) (b) 

Figure 7.8:  Von Kossa staining of AAC formed after 21 days of in vitro TPS culture of 
individual beads in osteogenic media at 20x objective (a) and 40x objective (b).  Images 
show cells (pink) at the juncture of two beads in the AAC surrounding by calcium 
deposits (black).  Scale bars represent 100 μm. 

7.4 Discussion 

A tissue engineering treatment option for bone, cartilage and skeletal muscle represents a 

promising alternative to current clinical options.  Despite the promise of tissue 

engineering, several significant hurdles exist.  A central limitation is the culture of three 

dimensional tissue engineering constructs in vitro.  In static culture, nutrients and oxygen 

are replenished via diffusion.  A nutrient gradient develops where cells on the exterior 

portions of scaffolds receive sufficient nutrients, while cells on the interior of scaffolds 

are deprived of nutrients and are exposed to hypoxic conditions [111, 182].  In a study 

analyzing oxygen concentration in three dimensional scaffolds, a preosteoblast cell line 

was seeded on demineralized bone matrix scaffolds at 5 x 104 cells/scaffold [21].  These 

scaffolds were 9 mm in diameter and 5 mm in height and cultured in static and dynamic 

conditions.  In static culture central oxygen concentrations dropped quickly, below 10% 

in just two days and to 0% in just five days.  Cell death was observed in areas where the 

central oxygen concentration was low.  Dynamic culture in a bioreactor significantly 
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improved oxygen transport and though central oxygen concentrations dropped to 4% cell 

death was not observed.  Here we create aggregated constructs as large as 6 mm in 

diameter and 30 mm in height seeded at 3 x 106 cells/scaffold.  Prior to scaffold 

aggregation the individual alginate beads are cultured in the TPS bioreactor to enhance 

the growth of cells in the scaffolds.  Following aggregation the cells will no longer be 

cultured in the TPS bioreactor and are ready for implantation into a defect.  By not 

attempting to culture such a large construct in vitro this method avoids nutrient transfer 

limitations, a major obstacle to three dimensional cell culture.  To the best of our 

knowledge this is the first time an aggregated alginate scaffold has been created from 

many smaller cell containing scaffolds in a bioreactor system.  Cells were viable 

throughout the scaffold as these constructs were rapidly fabricated. 

A modular tissue engineering approach previously has been used to create a perfusable 

cell containing construct [214], a cardiac sheet like construct [256],  and dermal 

equivalent tissue [257].  Previously used modular techniques have relied either on cell 

aggregation or a more complex approach such as tissue printing.  Here we use a new 

approach where individual alginate beads are assembled together prior to implantation.  

This approach creates a controlled aggregated construct within a bioreactor system 

quickly with no major fabrication steps. 

The method for fabricating these aggregated scaffolds was developed following analysis 

of alginate bead dissolution curves in EDTA, where it was discovered that alginate beads 

first increase in diameter prior to dissolution.  When using EDTA concentrations ranging 

from 0.008-0.05 M this initial expansion occurs over a sufficiently long period to 

manipulate beads prior to dissolution.  The goal of this experiment was to find an optimal 
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EDTA concentration that could be used to form aggregated alginate constructs.  Results 

indicated that dissolution in 0.025 M EDTA would be optimal as this concentration 

resulted in the largest initial increase in bead diameter.  It should be noted that these 

dissolution curves may not me applicable to dissolution of alginate beads in other 

systems as bead size can vary significantly due to swelling [258].  This swelling results 

from ion exchange between the calcium crosslinking ions and monovalent ions in the 

environment of the bead [259, 260].  In order to fabricate the AACs, the alginate beads 

were tightly packed in the tubular growth chamber and were perfused with 0.025 M 

EDTA for 5 minutes to allow for expansion.  Following this expansion, exterior edges of 

the beads overlapped with one another.  Beads were then perfused with calcium chloride 

to ionically crosslink the overlapping edges, creating one aggregated construct from 

many beads.   

Mechanical testing of this aggregated construct was then completed.  Beads with 

different initial sizes were used in the study.  AACs composed of beads with initial 

diameters of 2.15 and 2.46 mm had significantly higher Young’s Moduli, Ultimate 

Tensile Strength and Yield Strength than AACs composed of beads with initial diameters 

of 2.65, 2.97, and 3.90.  Young’s modulus, Ultimate Tensile Strength, and Yield Strength 

all decreased with increasing bead size.  It is hypothesized that this occurs as beads with 

larger diameters are not able to pack as closely and create a less dense aggregated 

construct.  Compression testing was not completed on the construct the primary goal was 

to measure the strength of bead aggregation.  Alginate compression testing has been 

previously reported in the literature [261, 262]. 



 
 

141 
 

Previous studies to determine the mechanical strength have shown large variations based 

upon the specific alginate polymer used; however our results revealed AACs have tensile 

properties in the lower range of alginates tested and Young’s Moduli similar to 

previously described results [263].  This demonstrates AACs to be of sufficient strength 

for the engineering of tissue such as cartilage [108, 109, 204, 264], non load bearing bone 

[220, 221], skeletal muscle [265], and other tissues that are commonly engineered using 

alginate.  Specifically AACs provide an advantage over typical alginate constructs, as 

individual alginate beads can be cultured in a bioreactor and then fabricated into one 

large construct.  Thus a large construct will be created without nutrient transfer problems 

that occur in statically cultured large constructs.  Metabolic activity assays indicate that 

the AAC treatment does not have a negative effect on the metabolic activity of hMSCs 

encapsulated in alginate beads.  This result is expected as the AAC treatment utilizes 

chemicals that are widely used in alginate bead fabrication and usage [108, 109, 264].  

This result was further confirmed by live dead staining which indicated cells in AACs 

were viable immediately and 24 hours after AAC fabrication.   

In a prior study utilizing the TPS bioreactor hMSCs were shown to express much higher 

levels of osteogenic markers osteocalcin and osteopontin than static controls [112].  In 

addition to this mineralization was shown to be greatly increased throughout the 

bioreactor cultured beads.  A goal of this study was to determine if this mineralization 

would remain following AAC treatment.  Von Kossa staining for calcium was performed 

to examine this.  This stain revealed that hMSCs in the AACs had deposited calcium and 

this calcium remained present throughout the AAC treatment.  In vitro calcium 
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deposition indicates that the hMSCs are able to differentiate into osteoblasts after 21 days 

and this calcium deposition remains present following AAC treatment.   

The clinical strategy for use of this construct is to first extract bone marrow from the 

patient and isolate the mesenchymal stem cells.  These stem cells will then be 

encapsulated in the alginate beads and cultured in the TPS bioreactor.  When the tissue is 

ready to be implanted into the defect site the beads will be aggregated in the bioreactor, 

removed and the construct implanted into the patient.  This follows the same strategy as 

traditional tissue engineering however will allow for the production of larger cell 

containing constructs than previously possible. 

7.5 Conclusions 

Through the course of this study a protocol has been developed and evaluated for the 

fabrication of a cell containing tissue engineering construct from many smaller scaffolds 

in a bioreactor system.  Results demonstrate this construct can be elegantly fabricated and 

has mechanical properties similar to traditionally fabricated alginate scaffolds.  This 

aggregated alginate construct has many potential applications including non load bearing 

bone, cartilage and skeletal muscle tissue engineering.  By allowing cells to proliferate in 

smaller beads within the TPS bioreactor prior to aggregation, a large tissue engineering 

construct is created ready for implantation into a defect site. 
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Chapter 8:  Tubular Perfusion System Culture of Human Mesenchymal 

Stem Cells on PLLA Scaffolds Produced Using a Supercritical Carbon 

Dioxide Assisted Process5 

8.1 Introduction 

Despite recent advances, commonly used techniques for the treatment of bone defects 

have significant disadvantages and cell based tissue engineering (TE) represents a 

promising alternative treatment [2, 3].   An objective of TE is to create interactions 

between an artificial component and cellular components to ensure tissue regeneration. 

The artificial component needs to support cellular growth and three dimensional 

organization, which requires the coexistence of micro and nano-structures, mimicking the 

extracellular matrix (ECM).  In this study micro-structure is defined as scaffold features 

with a size scale between 1 and 1000 μm and nano-structure is defined as scaffold 

features between 1 and 200 nm.  The cells growing in a structural environment similar to 

their natural medium are driven to colonize the polymeric structure and to differentiate; 

thus, the porosity of scaffolds must have a specific size for the type of tissue to be 

replicated [61, 62, 266].  In addition to the micro-structure, the nano-structure is 

necessary to ensure the roughness of the pore walls that provide for cell adhesion, 

growth, migration, and differentiation [51]. 

                                                 
 
5As published in Pisanti, P., A.B. Yeatts, S. Cardea, J.P. Fisher and E. Reverchon.  Tubular Perfusion 
System Culture of Human Mesenchymal Stem Cells on PLLA Scaffolds Produced Using a Supercritical 
Carbon Dioxide Assisted Process. Journal of Biomedical Materials Research Part A, 2012. 
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Several techniques have been proposed in the literature to obtain TE scaffolds [267], 

including solvent casting, particulate leaching [69, 268], freeze drying [267, 268], phase 

separation [269], rapid prototyping [62, 107, 270], foaming [270, 271], sintering, or a 

combination of these techniques. 

Solvent casting is relatively simple and it is possible to obtain controlled porosity and 

interconnection between pores using this method. However, post-treatments to eliminate 

the residual solvent and long processing times are necessary.  Electrospinning and similar 

techniques can yield nano-structures, but are limited to primarily two dimensional 

products and the scaffolds exhibit low mechanical strength.  Gas foaming can be used to 

fabricate highly porous polymer foams without the use of organic solvents but the 

samples obtained lack a nano-structure. 

As an alternative to overcome the limitations of these methods the adoption of 

supercritical carbon dioxide (SC-CO2) based techniques has been proposed.  These 

techniques take advantage of specific properties of gases at supercritical conditions 

including modifiable solvent power, high diffusivities, and solvent elimination [272-274].  

However, the general limitation of supercritical and non-supercritical techniques is the 

absence of nano-structure in scaffolds.  Therefore, in this work a new supercritical CO2 

based process is used that, in contrast to other techniques, allows for the reproduction of 

micro and nano-structure.  Termed supercritical gel drying it has no limitations in the size 

and shape of the structures that can be produced [275-277].  Supercritical gel drying can 

be combined with porogen leaching in a process that consists of four steps: 
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1. Formation of a PLLA solution in an organic solvent, loaded with a solid, 

water soluble, leaching agent. 

2. Formation of a gel by thermally induced phase separation. 

3. Drying of the gel using SC-CO2, forming a supercritical solution between 

the supercritical fluid and the organic solvent and flushing it away. 

4. Porogen leaching in distilled water. 

To the best of our knowledge this work represents the first time scaffolds fabricated by 

this technique have been tested for a cellular response.   

In addition to the key role of scaffold micro and nano-structure in hMSC proliferation 

and osteoblastic differentiation, the environment in which the cells are cultured also has a 

dramatic impact.  hMSCs have been shown to respond to both mechanical stresses in the 

surrounding environment leading to an enhancement of osteoblastic differentiation [111, 

118].  Thus, bioreactor culture is advantageous for three dimensional bone tissue 

engineering constructs.  In this study scaffolds are cultured in the tubular perfusion 

system (TPS) bioreactor.  In this bioreactor system, scaffolds are loaded into a tubular 

growth chamber and media is perfused through the growth chamber using a pump.  This 

system has previously been demonstrated to enhance hMSC osteoblastic differentiation 

using alginate scaffolds [112], but has not previously been used for synthetic 

microporous scaffold culture.  

Therefore this study aims to use the PLLA structures produced by supercritical gel drying 

with porogen leaching to culture human mesenchymal stem cells (hMSCs) and analyze 

cell response to this artificial environment.  Different micropore size ranges were tested 
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using the same nano-structure to select the most suitable range for hMSC culture in these 

scaffolds in the TPS bioreactor.  To this end, the objectives of this study are first to 

evaluate hMSC response to PLLA scaffolds fabricated using supercritical gel drying with 

porogen leaching, second to demonstrate cell viability on these scaffolds cultured in the 

TPS bioreactor, and finally to evaluate the cellular response to dynamic culture and pore 

size.  

8.2 Materials and Methods 

8.2.1 Scaffold Preparation 

Scaffolds were prepared according to the following procedure.  Poly(l-lactic acid) 

(PLLA) L210 (MW 210000) with an inherent viscosity ranging between 2.6 and 3.2 dl/g 

(0.1% in chloroform, 25°C) was purchased from Boehringer Ingelheim (Ingelheim, 

Germany).  A solution of PLLA 15% w/w in dioxane (Sigma Aldrich, St. Louis, MO)  

was prepared and 99.8% pure ethanol (Sigma Aldrich) as the non-solvent was added at 

dioxane/ethanol ratio of 1.7.  The solution was stirred and heated at 60°C until it became 

homogeneous.  Scaffolds with different average microporosity were produced through 

the addition of D-fructose (m.p. 119–122°C) (Sigma Aldrich) particles with average 

diameters of 100, 250 and 500 µm.   

The solution was enriched with the leaching agent (fructose), homogenized, and poured 

into steel cylindrical containers with the diameter of 4 mm and the height of 3.5 cm.  The 

solution was then compressed to 10 bar in order to obtain uniform contact between the 

leaching agent particles and the polymer and produce interconnected pores.  The solution 
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was then incubated at -18 °C for 1 hour to obtain a gel that was subsequently dried using 

SC-CO2 (99% purity) (SON, Società Ossigeno, Napoli, Italy).  

The drying vessel was filled from the bottom with SC-CO2 up to the desired pressure 

using a high pressure pump (Milton Roy-Milroyal B, Pont-Saint-Pierre, France).  

Optimized supercritical CO2 extraction conditions of the solvent from the polymeric gel 

(200 bar and 35 °C) were selected and extraction was completed in 4 hours [277].  A 

depressurization time of 10 minutes was used to bring the system to atmospheric 

pressure. 

The dried samples were cut to obtain plug scaffolds of 4 mm in diameter and 5 mm 

height.  To avoid the shrinkage of the nano-structure of the surface, the samples were cut 

using a blade previously immersed in liquid nitrogen.  The samples were then soaked in 

distilled water to remove porogen, sterilized in 70% ethanol and rinsed with PBS.   

8.2.2 Mechanical Tests 

Compressive mechanical properties of the scaffolds were measured using an INSTRON 

4301 (Instron Int. Ltd, High Wycombe, UK).  The compressive modulus is defined as the 

initial linear modulus on the stress-strain curves.  Cylindrical samples with a diameter of 

4 mm and a thickness of 5 mm were compressed at a crosshead speed of 1 mm/min.  

Seven specimens were tested for each sample (n=7). 

8.2.3 Solvent Residue Analysis 

Dioxane residue was measured by a headspace (HS) sampler (model 7694E, Hewlett 

Packard, Palo Alto, CA) coupled to a gas chromatograph (GC) interfaced with a flame 
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ionization detector (GC-FID, model 6890 GC-SYSTEM, Hewlett Packard). Dioxane was 

separated using two fused-silica capillary columns connected in series by press-fit: the 

first column (model Carbowax EASYSEP, Stepbios, Italy) connected to the detector, 30 

m length, 0.53 mm i.d., 1 μm film thickness and the second (model Cp Sil 5CB 

CHROMPACK, Stepbios, Italy) connected to the injector; 25 m length, 0.53 mm i.d., 5 

μm film thickness. GC conditions were the one described in the USP 467 Pharmacopoeia 

with some minor modifications (oven temperature from 45°C to 210°C for 15 min). The 

injector was maintained at 135°C (split mode, ratio 4:1), and Helium was used as the 

carrier gas (5 mL/min). Head space conditions were: equilibration time, 30 min at 95°C; 

pressurization time, 0.15 min; and loop fill time, 0.15 min. Head space samples were 

prepared in 20 mL vials, filled with internal standard DMI (3ml) and 500mg of NaCL and 

water (0.75 ml) in which samples of PLLA scaffold were suspended. 

8.2.4 Scaffold Porosity 

The porosity (ε) represents the “void space” of the scaffold and was calculated from the 

density of the scaffold 



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



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The scaffold density was determined by measuring its dry volume and weight. 

8.2.5 Experimental Setup 

Following scaffold fabrication and characterization, cellular studies were completed.  The 

first short term study aimed to evaluate proliferation and osteoblastic differentiation of 
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hMSCs cultured on the scaffolds in a dynamic culture environment.  Six experimental 

groups were used including scaffolds with pore sizes of 100 μm, 250 μm, and 500 μm 

cultured in both static (six well plates) and dynamic (TPS bioreactor) conditions.  In 

addition two monolayer control groups were completed, a control cultured in control 

media and a control cultured in osteogenic media.  Timepoints were taken at days 1, 4, 8, 

and 12 and samples analyzed for alkaline phosphatase (ALP) protein and 

deoxyribonucleic acid (DNA) content.  Following this, a long term study was completed.  

The same six experimental groups were used and monolayer control groups were not 

used.  Timepoints were taken at days 1, 8, 16, and 24 and samples were analyzed for ALP 

and bone morphogenic protein-2 (BMP-2) gene expression.  In addition to visualize cells 

histological staining was completed and SEM images were taken.   

8.2.6 Human Mesenchymal Stem Cell Culture 

hMSCs were purchased from Lonza (Walkersville, MD) and were expanded on tissue 

culture polystyrene flasks in control media composed of high glucose DMEM (Gibco, 

Carlsbad, CA) with 4 mM L-glutamine (Gibco), 0.1 mM nonessential amino acids 

(Gibco), 1.0% penicillin/streptomycin (v/v) (Gibco), and 10% mesenchymal stem cells 

qualified FBS (Gibco) as described previously [69, 112, 113, 232].  Media was changed 

every 3-4 days, according to manufacture specifications.  Cells were stored in a cell 

culture incubator at 37 °C and 5% CO2 and passaged into a new flask every 7 days (p < 

6) using trypsin/EDTA (Lonza).  To obtain the osteogenic media, 100 nM β-

dexamethasone (Sigma-Aldrich), 10 mM β-glycerophosphate (Sigma-Aldrich), and 50 

mg/L ascorbic acid (Sigma-Aldrich) were added to the control media [69, 112, 113, 232].   



 
 

150 
 

8.2.7 hMSC Seeding on PLLA Scaffolds 

Sterilized and rinsed scaffolds were soaked in DMEM supplemented with 10% fetal 

bovine serum for 4 hours.  hMSCs were removed from tissue culture and pelleted.  The 

cell pellet was then resuspended at a density of 1.2 x 107 cells/mL to prepare the solution 

for seeding.  Scaffolds were removed from DMEM and seeded with 10 µL of the solution 

(1.2 x 105 cells/scaffold) via pipetting directly on the scaffold surface.  The scaffolds 

were then put in the incubator for 4 hours without media to allow cell attachment on the 

scaffolds surface.  In order to measure attachment efficiency cells not attached to scaffold 

were removed after four hours and mixed with trypan blue (Sigma-Aldrich) and counted 

on a standard hemocytometer.  Four counts were made for each sample (n=4).  

Attachment efficiency was then calculated by the following formula:  ݕ݂݂ܿ݊݁݅ܿ݁ܧ ൌ

௎௡௔௧௧௔௖௛௘ௗ ஼௘௟௟௦

்௢௧௔௟ ஼௘௟௟௦ ஺ௗௗ௘ௗ ௧௢ ௌ௖௔௙௙௢௟ௗ
.  On study day -1 (cell seeding day), all cell seeded scaffolds 

were cultured in static into six well plates using control media for 24 hours, to facilitate 

the cell adhesion.  On study day 0 dynamically cultured scaffolds were loaded into the 

TPS growth chambers while six static scaffolds were placed in osteogenic media in each 

well of six well plates.  In addition, two control groups were performed: monolayer 

hMSCs grown on tissue culture polystyrene six well plates in control media and 

monolayer of hMSCs grown on tissue culture polystyrene six well plates in osteogenic 

media.  Control group cells, used to demonstrate the osteoblastic differentiation of seeded 

samples, were cultured in 5 mL of media, for the duration of the study with media 

changes every three days for all groups.   
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8.2.8 Bioreactor for Dynamic Culture 

The bioreactor system consists of a tubular growth chamber and media reservoir 

connected via a tubing circuit as described previously [112, 113].  Media flow was driven 

by an L/S Multichannel Pump System (Cole Parmer, Vernon Hills, IL) at 0.3 mL/min for 

all studies.  The tubing circuit was sterilized via autoclave and consisted of platinum 

cured silicon tubing (Cole Parmer) for all areas except the one that passes through the 

pump which was composed of Pharmed BPT tubing (Cole Parmer) chosen for its high 

mechanical durability.  The growth chamber was packed with cell seeded PLLA scaffolds 

using a sterile spatula.  The TPS bioreactor was then kept in the incubator for the duration 

of the study with media changes every three days. 

8.2.9 Scanning Electron Microscopy (SEM) 

PLLA scaffolds were analyzed using two scanning electron microscopes.  In the first part 

of the work, scaffolds were cryofractured using liquid nitrogen and then were sputter 

coated with gold (Agar Auto Sputter Coater mod. 108 A, Stansted, UK) at 30 mA for 180 

s (SEM mod.  LEO 420, Assing, Italy) to analyze cell and pore size and the overall 

scaffold structure. 

Following cell culture, the scaffolds were analyzed to evaluate cell adhesion, diffusion, 

and proliferation inside the PLLA structures.  Scaffolds were soaked 12 hours in 4% 

paraformaldehyde to fix the biological material on the polymeric surface, then were dried 

for 24 hours at room temperature.  The samples were then sputter coated with carbon at 

30 mA for 180 s and then analyzed by SEM (SU-70 Hitachi). 
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8.2.10 Protein Assays 

Protein was extracted using the M-PER (Pierce, Rockford, IL) mammalian protein 

extraction reagent, following standard protocols [69, 278].  A p-nitrophenyl phosphate 

liquid substrate system (pNPP) (Sigma-Aldrich) was used to analyze intracellular ALP 

concentrations from the extracted protein. The extracted protein sample was suspended in 

PBS and added to 100 μL of pNPP and incubated at room temperature for 30 min in the 

dark. The absorbance was read using a M5 SpectraMax plate reader (Molecular Devices, 

Sunnyvale, CA) at 405 nm by the PicoGreen assay. Data were normalized to scaffold 

weight and DNA. All samples were analyzed in triplicate (n=3). 

8.2.11 DNA Quantification 

Deoxyribonucleic acid (DNA) was isolated from samples to normalize the alkaline 

phosphatase (ALP) assay and to relate to cell proliferation [69, 278].  Cell pellets or 

scaffolds were resuspended in 200 μL of PBS.  Scaffolds were mechanically agitated 

following resuspension and the supernatent was retreived.  DNA was isolated using a 

DNeasy Tissue Kit (Qiagen, Valencia CA) following the kit standard protocols into 400 

μL of eluate. DNA was then quantified by mixing 100 µL of DNA eluate with 100 μL of 

diluted Quant-iT PicoGreen dsDNA reagent (Molecular Probes, Carlsbad, CA), 

incubating for 5 minutes in the dark and measuring fluorescence using an M5 

SpectraMax plate reader with excitation/ emission of 480/520 nm. All samples were 

analyzed in triplicate (n = 3). 
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8.2.12 Gene Expression 

RNA was isolated using trizol (Invitrogen, Carlsbad, CA) and mechanical agitation and 

purified  using an RNeasy mini plus Kit (Qiagen, Valencia, CA) following standard 

protocols [69, 278].  Then isolated RNA was reverse transcribed to cDNA using a High 

Capacity cDNA Archive Kit (Applied Biosystems, Foster City, CA). The expression of 

bone morphogenetic protein-2 (BMP-2, Taqman Assay ID: Hs00154192_m1) and 

alkaline phosphatase (ALP, Hs00758162_m1) was analyzed with glyceraldehyde-3-

phosphate dehydrogenase (GAPDH, Hs00960641_m1) as an endogenous control gene for 

all samples.  Gene expression assays (Applied Biosystems) were combined with the 

cDNA to be analyzed and Taqman PCR master mix (Applied Biosystems). The reaction 

was performed on a 7900HT real time PCR System (Applied Biosystems) using 

conditions of 2 min at 50°C, 10 min at 95°C, and 40 cycles of 15 sec at 95°C and 1 min at 

60°C. The relative gene expression level of each target gene was, then, normalized to the 

mean of the GAPDH in each group. Fold change was calculated using the ΔΔCT relative 

comparative method. Samples were analyzed in triplicate and standard deviations were 

reported (n=3). 

8.2.13 Histological Analysis 

PLLA scaffolds were collected and fixed in 4% paraformaldehyde (Sigma) and 0.1 M 

sodium cacodylate (Sigma) buffer, containing 10mM CaCl2 (Sigma) at pH 7.4 at 4° C for 

4 hours. After, fixing, the scaffolds were placed in cassettes and washed with 0.1M 

sodium cacodylate buffer and 10mM CaCl2 at pH 7.4 at room temperature, for 24 hours. 

The scaffolds were then dehydrated for histological processing washing with ethanol, 
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followed by two Citrisolv (Fisher Scientific) washes. The samples were then embedded 

in paraffin (Fisher Scientific) and sectioned to 5 μm thickness sections and placed on 

glass slides. Sections were oven dried at 64° C for 2 hours, deparaffinized in Citrisolv 

and rehydrated in ethanol. Hematoxylin and Eosin (H&E) staining was performed to 

visualize the cells using standard protocols. 

8.2.14 Statistical Analysis 

All samples were performed in replicates (n = 3-7). Data were analyzed first using 

ANOVA single factor analysis and then using Tukey multiple comparison test to 

demonstrate differences between groups assuming a normal data distribution with a 

confidence of 95% (p < 0.05). Mean values of triplicates and standard deviation error 

bars are reported on each figure as well as relevant statistical relationships. 

8.3 Results 

8.3.1 Scaffold Fabrication 

PLLA scaffolds were readily and reliably fabricated with micro and nano-structure in a 

short time (8hr) to set specifications.  Following porosity analysis of PLLA samples, all 

samples had porosity values higher than 90% as reported in Table 8.1. 
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Table 8.1: Effect of leaching agent size on porosity and compressive modulus of gel 
dried PLLA scaffolds.  Means ± standard deviation presented (n = 9) 

Average 
fructose 

particles size 
range [µm] 

Polymer 
Concentration [%] 

Compressive 
Modulus [kPa] 

Porosity [%] 

100 15 120 ± 1 95.5 ± 0.2 

250 15 117 ± 0 96.0 ± 0.2 

500 15 100 ± 1 96.3 ± 0.1 

 

Porosity values were 95.5 ± 0.1%, 96.0 ± 0.2% and 96.3 ± 0.1% for the 100, 250 and 500 

μm pore size scaffolds respectively. Micropores were successfully produced using 

porogens of 100 μm, 250 μm and 500 μm in average diameter.  The size difference in 

these pores can be observed in SEM images (Figure 8.1).   
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a) 

 
b) 

 
c) 

 
Figure 8.1:  3D PLLA scaffolds structures obtained with pore sizes of (a) 100 μm, (b) 
250 μm, and (c) 500 μm. 

In addition to this microporous structure, a nano-structure is formed by a continuous 

network of nanofilaments originating during the gelation step.  Nanofilaments located on 
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the wall of a micropore with a diameter of approximately 200 nm are observed in Figure 

8.2. 

 

Figure 8.2:  Nanofilaments on the walls of a micropore in a PLLA scaffold. 

The compressive modulus of these samples was then determined to demonstrate 

sufficient mechanical strength for bone tissue engineering.  The compressive modulus 

was found to range between 100 ± 1 and 120 ± 1 kPa for the scaffolds tested (Table 8.1).  

Specifically, scaffolds with 100 µm pore size had a higher modulus of 120 ± 1 whereas 

the 500 µm pore size scaffolds had a lower modulus of 100 ± 1.  The 250 μm pore size 

modulus had a compressive modulus more similar to that of the 100 μm pore size at 117 

± 0 kPa.   

A solvent residue analysis was then performed, to verify the successful elimination of the 

solvent from the scaffolds.  For all samples tested, a residue solvent value was found, 

which approached the detection limit of the instrument of 5 ppm. 
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8.3.2 hMSC Growth and Osteoblastic Differentiation 

After a four hour incubation, approximately 70% of the total cells seeded were attached 

to the scaffolds based on cell counts, indicating hMSCs readily adhere to the PLLA 

scaffolds.  SEM images indicated that by day 8 cells had spread and infiltrated scaffolds 

(Figure 8.3).   
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a) 

 
b) 

 
c) 

 
 

Figure 8.3:  SEM images of hMSCs growing on PLLA scaffolds following 8 days of 
static culture.  Cells aggregates can be observed growing homogenously on (a) 100 μm 
(b) 250 μm, and (c) 500 μm synthetic scaffolds.  
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hMSCs can be observed covering pores demonstrating continued cell adhesion to the 

samples.  This observation can also be made in histological sections in which the cells are 

stained using hematoxylin and eosin (Figure 8.4).  In all groups cells appear both lining 

and infiltrating the pores of the scaffolds by day 8.   
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a) d) 

 

b) e) 

 

c) f) 

 

Figure 8.4:  Hematoxylin and Eosin staining of 100 μm (a,d), 250 μm (b, e), and 500 μm 
(c, f) PLLA scaffolds after 8 days of static (a-c) and dynamic culture (d-f).  Cells have 
infiltrated pores of scaffolds in all groups by day 8.  Scale bar represents 100 μm. 

Following an investigation of cell adhesion, DNA quantification was completed to 

determine the proliferation of seeded cells (Figure 8.5).  In order to account for any 

seeding difference all values were normalized to the respective day 1 sample.  Through 
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12 days both the monolayer control groups proliferated at a steady rate with a day 12 

increase of 5.56 ± 1.5 μg/μg and 14.28 ± 7.30 μg/μg fold for the control media and 

osteogenic media groups, respectively.  Cell growth varied between static and dynamic 

culture and pore size; however, all day 12 samples maintained at least 70% of the cell 

number from day 1.  The lowest day 12 relative cell numbers were observed in the 250 

μm statically cultured group with a DNA decrease of 0.70 ± 0.24 μg/μg fold compared to 

day 1.  Slightly higher proliferation was observed in the 500 μm static groups with a day 

12 increase of 1.14 ± 0.45 μg/μg fold.  The highest day 12 proliferation of the static 

groups was the 100 μm pore size with an increase of 2.94 ± 0.67 μg/μg fold compared to 

day 1.  Interestingly the 100 μm had the lowest day 12 relative cell number among the 

TPS cultured group with a decrease of 0.75 ± 0.21 μg/μg fold compared to day 1.  The 

500 μm TPS cultured group had a nearly 2 fold higher proliferation with an increase of 

1.49 ± 0.35 μg/μg fold.  The highest day 12 scaffold proliferation was observed in the 

250 μm bioreactor groups with an increase of 3.69 ± 2.84 μg/μg fold. 
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Figure 8.5:  Fold change of DNA content normalized to day one based on DNA 
quantification from pico green.  The symbol (*) denotes statistical significance within a 
timepoint (p<0.05). 

Following quantification of proliferation, intracellular ALP protein was measured as a 

marker of early osteoblastic differentiation (Figure 8.6).  On day 4 statically cultured 

groups and the monolayer osteogenic control showed slightly elevated levels as 

compared to day 1 levels.  The 100 μm, 250 μm and 500 μm statically cultured groups 

exhibited ALP values of 0.11 ± 0.05, 0.20 ± 0.16, and 0.22 ± 0.20 μM 4-nitrophenol/μg 

DNA, respectively.  These values represent an approximate 2 fold increase from day 1 

numbers for the 100 μm and 500 μm scaffolds and approximately a 4 fold increase for the 

250 μm scaffolds.  The osteogenic control also increased approximately 3 fold, while the 

bioreactor cultured groups and control media group maintained ALP levels close to day 1 

values.  By day 8, the statically cultured scaffolds decreased back to approximately day 1 
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levels while the bioreactor cultured scaffolds and the osteogenic control increased 

significantly.  The 100 μm, 250 μm, and 500 μm had ALP values of 0.50 ± 0.26, 1.67 ± 

0.87, and 1.00 ± 0.57 μM 4-nitrophenol/μg DNA respectively.  The osteogenic control 

also exhibited an increase to 1.17 ± 0.54.  This represented an approximate 13 fold 

increase compared to day 1 numbers.  Bioreactor groups also increased from day 1 

numbers with fold changes of approximately 4, 11, and 6 for the 100 μm, 250 μm, and 

500 μm groups respectively.  The control group remained at baseline level as expected.  

By day 12, dynamically cultured scaffold groups returned to a lower ALP level while the 

osteogenic control decreased, but to a level higher than other groups. 

 

Figure 8.6:  Intracellular alkaline phosphatase protein normalized to DNA.  Note 
increased day 8 ALP amounts in bioreactor groups and osteogenic control.  Day 8 250 
μm pore size bioreactor group is statistically different from all static scaffold groups and 
monolayer control group.  All other day 8 groups are statistically similar.  The symbols 
(*, #) denote statistical significance within a timepoint (p<0.05). 
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ALP was also analyzed in the long term study at the mRNA level (Figure 8.7a).  All 

groups underwent a peak at day 8 but no significant differences were detected between 

the groups at this day.  This could be due to an earlier peak of ALP mRNA in these 

groups.  In addition to ALP, osteogenic signaling molecule BMP-2 (Figure 8.7b) was 

analyzed at days 1, 8, 16, and 24.  BMP-2 expression levels on day 1 were elevated in the 

bioreactor groups as compared to the statically cultured scaffolds.  This trend continued 

on Day 8, where the 500 μm and 250 μm bioreactor cultured scaffolds exhibited 

statistically significant increased fold changes of 13.65 ± 1.67 and 6.93 ± 0.96 

respectively.  On day 16 BMP-2 expression levels increased with increasing pore size and 

with dynamic culture.  Static cultured samples exhibited fold changes of 0.29 ± 0.02, 0.62 

± 0.07, and 0.72 ± 1.2 respectively for the 100 μm, 250 μm, and 500 μm groups.  TPS 

cultured scaffolds exhibited higher BMP-2 expression levels with fold changes of 1.40 ± 

0.28, 3.73 ± 1.01, and 6.04 ± 0.28 for the 100 μm, 250 μm, and 500 μm pore sizes 

respectively.  On day 24, the significantly higher expression levels were observed in the 

250 μm and 500 μm bioreactor cultured groups.  Lower BMP-2 expression levels 

continued to be observed in the 100 μm bioreactor group and the statically cultured 

groups including no BMP-2 being detected in the 500 μm statically cultured group. 
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a) 

 

b) 

 

Figure 8.7:  Quantitative reverse transcriptase polymerase chain reaction analysis on 
days 1, 8, 16, and 24 of (a) alkaline phosphatase and (b) bone morphogenetic protein-2.  
All groups are normalized to day 1 100 μm static.  In ALP data note no relevant 
significant difference between groups.  In BMP-2 data note statistically significant 
increases of expression levels in 250 μm and 500 μm bioreactor groups on days 8, 16, 24.  
The symbols (*, #) indicate statistical significance from all other groups within a 
timepoint (p < 0.05).  The abbreviation ND refers to no gene detected within 40 cycles.   
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8.4 Discussion 

The objectives of this study were to evaluate hMSC response to PLLA scaffolds 

fabricated using supercritical gel drying, to demonstrate cell viability on these scaffolds 

cultured in the TPS bioreactor, and to evaluate the cellular response to dynamic culture 

and pore size.  In order to accomplish these objectives PLLA scaffolds were first 

fabricated using supercritical gel drying with porogen leaching; thus producing gels 

characterized by high porosity and distinct nano-structure [277].  The nano-structure was 

formed by a continuous network of nanofilaments formed during the gelation step in 

micro-structure derived from porogen leaching.  This nano-structure is fundamental to 

guide cell adhesion, proliferation and migration [279].  Nano-structure of 50 and 24 nm 

was shown to reduce the adhesion of hMSCs compared to 200 or 1500 nm [280].   In 

addition to affecting proliferation and adhesion surface topography can affect hMSC 

differentiation and matrix production [281, 282].  Comparing titanium scaffolds without 

surface texture to those that do hMSCs produced significantly more mineralization and 

collagen on the scaffolds with surface topography [281].  Thus surface nano-structure is 

important to support hMSC attachment and proliferation as well as differentiation.  

Because of the well documented effects of scaffold nano-structure, this study focuses 

primarily on the effect of bioreactor culture and microporosity with this nano-structure 

present.   

Solvent residue analysis was performed on PLLA scaffolds to verify the successful 

elimination of the solvents from the polymeric gels; for all PLLA scaffolds, a residue 

solvent value lower than 5 ppm was found, lower than the limits of USP 467 
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Pharmacopeia (380 ppm for Dioxane).  Mechanical testing indicated these scaffolds to 

have compressive moduli from 100-120 kPa. 

Following fabrication and characterization of scaffolds, hMSC attachment to scaffolds 

and long term viability was tested.  Efficient seeding was accomplished with a seeding 

efficiency of over 70%.  SEM and histological images indicated cells were readily able to 

infiltrate the scaffolds and attach to the nano-structure lining the pores.  DNA 

quantification indicated the majority of the hMSC population remained viable throughout 

the twelve day study.  In statically cultured scaffolds the highest proliferation was 

observed on the 100 μm pore size scaffolds.  It is hypothesized that this scaffold provided 

for closer cell interactions leading to increased cell proliferation.  Cell density is a potent 

regulator of hMSC proliferation rate with low cell densities leading to reduced 

proliferation due to poor cell communication and high cell densities leading to reduced 

proliferation due to contact inhibition [240, 283].  Smaller pores permit for closer cell 

interactions[284], thus it is hypothesized in larger pore scaffolds cell-cell distance may 

have been too great for optimal proliferation, thus leading to the modest proliferation in 

the 500 μm static culture group and the slight decrease in cell number in the 250 μm 

group.  Another potent regulator of cell proliferation is nutrient transport and waste 

removal.  Nutrient transfer and waste removal are limited to hundreds of microns, thus 

culturing three dimensional scaffolds in a static environment can lead to nutrient 

gradients and non-homogenous cell distributions [21, 111].  In the bioreactor the 250 μm 

and 500 μm pore size groups exhibited the higher proliferation levels compared to static 

cultures of the same pore sizes.  It is hypothesized that in dynamic culture these pore 

sizes group allowed for greater infiltration of media flow into the scaffold, resulting in 
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higher proliferation from increased nutrient transport.  The highest proliferation was 

observed in the monolayer control groups, however monolayer culture of hMSCs lacks a 

scaffold to support the cells upon in vivo implantation.  Furthermore upon reaching 

confluence in monolayer proliferation would no longer continue. 

In addition to cell proliferation, osteoblastic differentiation was evaluated.  ALP was used 

as an early osteoblastic marker and BMP-2 was evaluated as an important osteogenic 

signalling molecule.  Statically cultured samples exhibited elevated ALP levels on day 4 

indicating these samples may be undergoing differentiation more rapidly than bioreactor 

cultured samples.  Only small differences were observed for different pore sizes of 

statically cultured groups with slightly higher day 4 levels observed in the 250 μm and 

500 μm groups.  Though bioreactor cultured samples did not exhibit a peak in ALP 

expression until day 8, the peak had a higher magnitude than the statically cultured 

samples.  It was also much more dependent on pore size as no significant differences 

were observed between pore sizes of statically cultured constructs but with higher ALP 

levels again in the 250 μm and 500 μm groups in dynamically cultured constructs.  It is 

hypothesized that dynamic culture magnifies the cellular response to pore size by 

stimulating the cells via fluid shear stress.  Fluid shear stress has been widely 

demonstrated to enhance osteoblastic differentiation [20, 80, 89, 110, 111], and it is 

hypothesized that a greater percent of cells in larger pore size scaffolds are directly 

exposed to fluid shear stresses.   ALP mRNA levels peaked at day 8, but did not show 

significant differences between groups.  It is hypothesized this is because ALP mRNA 

peaked previous to day 8 in order to stimulate downstream protein production.  BMP-2 

expression levels follow a similar trend as ALP protein levels with higher levels in the 
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bioreactor samples as compared to static controls.  In addition, BMP-2 expression was 

shown to be dependent on pore size in dynamic culture with larger pore sizes 

corresponding to higher expression levels after day one.  This further demonstrates the 

ability of the bioreactor culture to enhance osteogenic signal expression.  Pore size and 

porosity have previously been shown to be powerful mediators of hMSC osteoblastic 

differentiation through facilitation of autocrine and paracrine signalling pathways [69].  

Previous studies have analyzed the effect of pore size in vitro including findings that pore 

sizes greater than 500 μm increased osteogenic signal expression as compared to 180-300 

μm pore sizes [107].  Larger pore size (500 μm compared to 200 μm) has also been 

demonstrated to increase cell proliferation [11].  It is hypothesized that this effect is due 

to increased nutrient transport throughout the scaffolds with larger pore sizes [11, 62, 

107].  Though the effect of pore size has been fairly widely investigated in static culture, 

relatively few studies have investigated the effect in dynamic culture.  Focusing on 

porosity rather than pore size, it has previously been demonstrated that osteoblastic 

differentiation of rat BMSCs was influenced by scaffold geometry in a perfusion system 

[57].  A more recent study found that though scaffold pore size influenced osteoblastic 

differentiation in static culture, bioreactor culture was detrimental to both proliferation 

and differentiation of hMSCs [285].  This was not found to be true in this as study as 

proliferation and differentiation tended to increase during bioreactor culture.  The 

difference could be due to the difference in bioreactor design.  In the study demonstrating 

decreased hMSC proliferation, the flow perfusion system used was a direct perfusion 

system forcing media through the pores of the scaffold.  Depending on the pore size, 

overall porosity and interconnectivity of a scaffold, this method can result in high shear 
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stresses on cells lining the pores of the scaffold.  In the tubular perfusion system, media is 

perfused in and around the scaffolds, thus the magnitude of shear stresses placed on cells 

is much less than forced perfusion systems of the same flow rate.  Despite media not 

being directly perfused through the scaffolds tubular perfusion system culture still was 

able to increase both proliferation and osteoblastic differentiation.   Based on these 

results, it can be concluded that scaffold micro-structure greatly influences hMSC 

proliferation and differentiation in perfusion culture and scaffold geometry and flow rates 

must be tailored in tandem to optimize culture conditions.   

8.5 Conclusions 

This work demonstrated that 3D PLLA scaffolds could be produced by supercritical gel 

drying with porogen leaching and possessed mechanical strength for use as bone tissue 

engineering scaffolds.  hMSCs were able to adhere, proliferate, and differentiate into the 

scaffold structure in both static and dynamic culture.  Effects of the architecture of the 

scaffold were magnified in dynamic culture leading to increased proliferation and 

osteoblastic differentiation.  Thus, we conclude that PLLA scaffolds produced by 

supercritical gel drying with porogen leaching are effective scaffolds for bone tissue 

engineering using hMSCs and can be cultured in the tubular perfusion system to enhance 

hMSC proliferation and differentiation. 
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Chapter 9:  In Vivo Bone Regeneration Using Three Dimensional 

Tubular Perfusion System Bioreactor Cultured Constructs  

9.1 Introduction 

Cell based tissue engineering of three dimensional constructs is limited by the ability to 

culture these constructs in vitro.  During this culture oxygen transport and waste removal 

are limited to as little as hundreds of microns [21, 216, 286].  This leads to the 

development of a nutrient gradient which can lead to a non homogenous cell distribution.  

Bioreactors can be used as a culture tool to improve in vitro cell culture [110, 111, 117, 

118].  Bioreactor systems have frequently been used in bone tissue engineering 

applications with designs including spinner flask [23, 24], rotating wall [42, 52, 114], and 

perfusion [14, 17, 20, 23, 29, 58, 78, 217] bioreactor systems.  In this study we utilize a 

tubular perfusion system (TPS) bioreactor which consists of a packed scaffold design.  In 

the system scaffolds are tightly packed in a tubular growth chamber and media perfused 

through the growth chamber using a pump.  TPS culture has previously been shown to 

enhance the proliferation and differentiation of human mesenchymal stem cells (hMSCs) 

[112]. hMSCs are used as a cell source in this study as they are readily extracted from 

bone marrow and have the potential to form bone in vivo [5, 287].   

Bioreactor systems are frequently used in the in vitro culture of MSCs, however in vivo 

studies involving perfusion bioreactor systems are relatively few in number.  In 

subcutaneous models bioreactor cultured human bone marrow stromal cells were shown 

to generate bone like tissue in mice [16].  In a bone defect model bone marrow stromal 

osteoblasts were shown to have the greatest ability to form bone in a rat critical size 
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cranial defect when cultured for one day in flow perfusion culture however these 

differences were not statistically significant [78].   

In this study we evaluate the ability of TPS cultured hMSC containing constructs to aid in 

bone regeneration in a rat femoral condyle defect.  Two different scaffold types will be 

evaluated in this study, a synthetic electrospun poly(lactic-co-glycolic acid) (PLGA)/ 

poly(ε-caprolactone) (PCL) scaffold and a natural bulk alginate scaffold.  PCL scaffolds 

have previously been used to support MSC bone grafts for in vivo bone regeneration [12].  

In this study PLGA is added to the PCL to accelerate degradation and scaffolds were 

fabricated using a new method to create cylindrical electrospun scaffolds.  In addition to 

the PLGA/PCL scaffolds, alginate, a natural polysaccharide is used as a scaffold.  hMSCs 

cultured in alginate scaffolds in the TPS bioreactor have previously been shown to 

undergo enhanced osteoblastic differentiation and improved mineralization as a result of 

bioreactor culture [112, 286] however in vivo testing has not previously been completed.  

This study aims to evaluate the effect statically and TPS cultured hMSCs have on bone 

regeneration in a rat femoral condyle defect and to compare bone in growth and 

regeneration between the two scaffold types.   

9.2 Materials and Methods 

9.2.1 Human Mesenchymal Stem Cell Culture 

Human mesenchymal stem cells (Lonza) were expanded prior to the study in control 

media consisting of DMEM (Gibco) supplemented with 10% fetal bovine serum (Gibco), 

1.0 % v/v penicillin/ streptomycin (Gibco), 0.1 mM non essential amino acids (Gibco), 

and 4 mM L-glutamine (Gibco) using protocols set forth by the manufacture and 
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previously described [69, 112, 113, 232, 286].  hMSCs were expanded on tissue culture 

polystyrene flasks with media changes every three days according to the manufacture’s 

specifications.  Cells were stored in a cell culture incubator at 37º C and 5% CO2 and 

passaged every 6-7 days using trypsin/EDTA (Gibco).  hMSCs (p=4) were then seeded 

on scaffolds and cultured in osteogenic media formulated as described in the literature by 

supplementing control media with 100 nM dexamethasone (Sigma), 10mM β-

glycerophosphate, and 173 μM ascorbic acid (Sigma) [69, 232]. 

9.2.2 Alginate Bead Fabrication and Cell Seeding 

Alginate beads were fabricated as described previously [108, 109].  Alginate solution 

(Sigma, St. Louis MO, USA) was sterilized via sterile filtration then mixed with a cell 

pellet containing hMSCs.  Beads were seeded at a concentration of 4 x 106 cells per mL 

or approximately 80,000 cells/bead.  This solution was added dropwise via a 30 gauge 

needle to a 0.10 M calcium chloride solution, in which the alginate was ionically 

crosslinked into beads.  The solution was stirred for 15 minutes.  The calcium chloride 

solution was then removed and the beads rinsed in control media.  This created beads of 

approximately 3 mm in diameter, which could be press fit into the 3 mm diameter defect.  

Beads were then transferred to 24 well plates for control groups or TPS bioreactor growth 

chambers for experimental groups.  All groups were cultured for 10 days in osteogenic 

media which was changed every three days.  Beads for no cell groups were fabricated 

following a similar manner without cellular incorporation and were also cultured in 

osteogenic media.   
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9.2.3 PLGA/PCL Scaffold Fabrication 

The polymers used for electrospinning, poly(lactic-co-glycolic acid) (PLGA, Purasorb® 

PDLG 5010) and poly(ε-caprolactone) (PCL from LACTEL® Absorbable Polymers, 

inherent viscosity range: 1.0 – 1.3 dl/g) were purchased from Purac Biomaterials BV 

(Gorinchem, The Netherlands) and DURECT Corporation (Pelham, AL, USA), 

respectively.  The electrospinning solution was prepared by dissolving PLGA/PCL (3:1 

weight ratio) in TFE/HFIP (9:1 volume ratio) at a concentration of 20% w/v.  The 

experimental 3D scaffolds were fabricated using a modified electrospinning technique.  

Briefly, the electrospinning process was implemented by Esprayer ES-2000S (Fuence 

Co., Ltd, Japan) under an optimal condition.  The prepared solution was loaded into a 

syringe and fed into the nozzle at the tip of the syringe with a speed of 25 µl/min.  A high 

voltage of 15 kV was applied at the nozzle to generate a stable polymer jet.  A grounded 

bath filled with 100% ethanol was positioned 14 cm under the nozzle for fiber deposition.  

As ethanol is a wetting agent for both PLGA and PCL, the resulted PLGA/PCL fibers 

formed a loosen cotton ball shape in the ethanol bath.  Every 5 minutes, the 2 μm 

diameter fibers were collected and inserted into a Teflon mold with 3 mm in diameter and 

3 mm in depth.  Subsequently, they were washed thoroughly in MilliQ water and freeze-

dried for 3 days.  Prior to the cell culture and animal experiment, all scaffolds were 

sterilized by γ-irradiation (Isotron, Ede, The Netherlands). 

9.2.4 hMSC Seeding on PLGA/PCL Scaffolds 

hMSCs were removed from tissue culture flasks and resuspended in media at a 

concentration of 1.25 x 106 cells/mL.  Concentrated cell solution was added to the 
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scaffold resulting in the seeding of 250,000 cells/scaffold.  Scaffolds were briefly 

exposed to vacuum and put in a rotary seeder for 3 hours.  Scaffolds were then moved to 

a 24 well plate.  Unseeded cells were captured via centrifugation and reseeded on 

scaffolds.  Following an additional 2 hour incubation, control media was added to 

scaffolds.  Cell containing scaffolds were incubated overnight and moved to 24 well 

plates or TPS bioreactor growth chambers.  All groups were cultured in osteogenic media 

which was changed every three days.  Scaffolds for no cell groups were fabricated 

following a similar manner and placed in 24 well plates in osteogenic media without the 

seeding of a cell population. 

9.2.5 Bioreactor Design 

Dynamic culture was completed in the TPS bioreactor as described previously in the 

literature [112, 113, 286].  Briefly a tubing circuit comprised primarily of platinum-cured 

silicone tubing (Cole Parmer, Vernon Hills, IL) and PharMed BPT tubing (Cole Parmer) 

for the section that passes through the pump connected a growth chamber to a media 

reservoir (Figure 9.1a).  The entire tubing circuit was sterilized via autoclave.  The 

growth chamber was composed of platinum-cured silicone tubing (ID of 1/4'') and 

contained the tightly packed scaffolds.  Media was pumped through the recirculating 

system using a peristaltic pump (Cole Parmer) at 1.0 mL/min.  The entire system was 

placed in an incubator at 37oC for the duration of the study.  Forty mL of osteogenic 

media was loaded into separate 125 mL Erlenmeyer flasks reservoirs for each growth 

chamber topped with rubber stoppers.  Media was withdrawn and replaced from the 

reservoir through two tubes that penetrate the stopper and changed every three days.  
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9.2.6 Surgical Procedure for Femoral Condyle Defect  

Thirty two 7-11 week old nude rats (Charles River Labs) were used in the study.  The 

animal experiment was approved by the animal ethics committee of the Radboud 

University Nijmegen Medical Centre.  All surgeries were performed under general 

inhalation anesthesia (Isoflurane®) and sterile conditions.  Pre-operative, Rimadyl® (5.0 

mg/kg) and Morphine® (1.0 mg/kg) were administered to reduce postoperative pain. 

Subsequently, each animal was immobilized supine with the knee joint in a maximally 

flexed position and the hind limbs were shaved, washed and disinfected with 10% 

Povidone-iodine.  

A mid-line longitudinal para-patellar incision was made.  The knee joint capsule was 

incised longitudinally, and by lifting the patellar ligament gently and moving it laterally, 

the knee joint became fully exposed.  This maneuver was facilitated by a slight extension 

of the knee.  At the femoral inter-condylar notch, a cylindrical hole defect (2.5 mm in 

diameter and 3 mm in depth) was prepared parallel to the long axis of the femur, using a 

dental bur (Elcomed 100,W&H Dentalwerk Burmoos, Austria) with low rotational drill 

speeds (1200 rpm) and continuous external cooling with saline (Figure 9.2a).  
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a) 

 
b) 

 
c) 

 
Figure 9.1:  Image of TPS system (a) with tightly packed PLGA/PCL scaffolds (b) and 
alginate beads (c) 
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Implanted scaffolds were placed bilaterally into the predrilled bony defects, resulting in 

two implants per rat.  PLGA/PCL scaffolds were rinsed in saline and one scaffold was 

press fit into each defect (Figure 9.2b-c).  Alginate scaffolds were rinsed in calcium 

chloride and saline and 2 beads were placed in each defect (Figure 9.2d).   

a) b) 

c) d) 

Figure 9.2:  Image of femoral condyle defect (a) with a cylindrical PLGA/PCL scaffold 
being press fit into the defect (b), defect filled with PLGA/PCL (c) and alginate scaffolds 
(d) 

After insertion of the implants, the soft tissue layers were closed with resorbable sutures 

(Vicryl® 4.0, Ethicon Products, Amersfoort, the Netherlands) and the skin with Vicryl® 

3.0, (Ethicon Products, Amersfoort, the Netherlands).  To reduce post-operative pain, 

Temgesic® (0.02mg/kg) was administered subcutaneously for 2 days postoperatively.  

After 3 and 6 weeks rats were sacrificed using carbon dioxide and condyles were 

retrieved and fixed in formalin.   
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9.2.7 Histomorphometric Analysis 

Samples were decalcified in EDTA, dehydrated using graded ethanol washes, and 

embedded in paraffin.  5 μm sections were sectioned transversely using a microtome (RM 

2165; Leica).  Sections were mounted on glass slides and stained with hematoxylin and 

eosin (HE) stain using standard protocols.  Images of stained sections were acquired by 

optical light microscopy (Axio Imager Microscope Z1; Zeiss, Göttingen, Germany).  10x 

images on entire defect region were analyzed quantitatively by defining a region of 

interest (ROI) to the size (2.5 mm diameter) of the original defect using Adobe 

Photoshop (Figure 9.3).  ROI images were then evaluated using an image analysis system 

(Leica Qwin; Leica) to select and measure bone area and distance of bone in growth.   

 

Figure 9.3: Schematic illustrating method to measure bone area.  A region of interest was 
defined to the size of the original 2.5 mm diameter defect.  After this region of interest 
was created bone area was identified and measured   

9.2.8 Statistical Analysis 

Five replicate defects were created for each group and timepoint (n=5) with the exception 

of two groups in which animals were lost during surgery (n=3,4)  Images were analyzed 

in triplicate (n=3).  Data was analyzed using single factor ANOVA followed by Tukey’s 

Multiple Comparison Test assuming normal data distribution with a confidence of 90% 
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(p < 0.10).  Mean values of triplicates and standard deviation error bars are reported on 

each figure as well as relevant statistical relationships.   

9.3 Results 

9.3.1 Scaffold Properties Following Culture 

PLGA/PCL scaffolds were fabricated using a new method to produce a cylindrical design 

that could be press fit into the defect (Figure 9.2b-c).  Scaffolds were fabricated to be 

cylinders 3 mm in diameter and 3 mm in length.  Scaffolds maintained size and shape 

following 10 days of culture.  Two alginate scaffolds could be placed into the defect also 

resulting in a scaffold filled defect (Figure 9.2d).  Both these scaffold types could be 

manipulated using forceps.   

9.3.2 Bioreactor Culture and Surgery 

Both PLGA/PCL and alginate scaffolds were successfully cultured in the TPS bioreactor.  

Samples were easily loaded into the tubular growth chamber.  Scaffold implantation was 

without complication.  A defect 2.5 mm wide and 3 mm deep was successfully created 

using a frontal approach as not to penetrate the medullary space.  Although a non critical 

size defect, this defect did not naturally heal following 21 days.  Two animals were lost in 

surgery unrelated to scaffold implantation.  Soft tissue covered defect within days and by 

day 21 no noticeable inflammation was observed.  No gross observation could be made 

on bone regeneration between groups. 
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9.3.3 Bone Growth Following Implantation of PLGA/PCL Scaffolds 

Light microscopy analysis using histological images indicated some regeneration of the 

defect following 21 days of culture (Figure 9.4).  PLGA/PCL scaffolds containing no 

hMSC population exhibited minimal bone regeneration largely originating from the 

original bone on the edge of the defect (Figure 9.4c).  Increased bone regeneration was 

observed in cell containing scaffolds with bone regeneration occurring both at the edge 

and center of scaffolds (Figure 9.4a-b).  Bone could be observed mineralizing within 

PLGA/PCL scaffolds (Figure 9.5).  By day 42 PLGA/PCL scaffold area has been reduced 

through scaffold degradation and largely replaced with newly formed bone (Figure 9.4d-

f).  Differences in bone in growth between implant groups were less apparent than on day 

21.   Blood vessels are observed penetrating the PLGA/PCL scaffold in all groups (Figure 

9.5).  There appears to be minimal tissue response to PLGA/PCL scaffolds as there is not 

a significant presence of inflammatory cells. 

Histomorphometric analysis of new bone growth area within the PLGA/PCL implanted 

defects indicated that on Day 21 new bone area was significantly (p < 0.10) higher in rats 

implanted with cell containing scaffolds than those implanted with acellular scaffolds 

(Figure 9.6).  Defects implanted with scaffolds containing TPS bioreactor cultured 

constructs had the highest overall new bone area with 1.23 ± 0.37 mm2 at 21 days of the 

PLGA/PCL groups.  This was higher but statistically similar (p > 0.10) to statically 

cultured hMSC containing PLGA/PCL scaffolds which had 0.99 ± 0.40 mm2 of bone area 

in the original defect site.  Both these groups had a statistically significant (p < 0.10) 

increase in new bone area as compared to defects implanted with a PLGA/PCL scaffold 

that did not contain cells.  New bone area in this group was 0.50 ± 0.28 mm2.  Total 
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defect area was 4.9 mm2 however because the native bone in this region is trabecular and 

bone marrow was not quantified, a fully healed defect would have a bone area less than 

4.9 mm2.  By day 42 all groups had increased amount of bone area as compared to day 21 

PLGA/PCL scaffolds.  Defects implanted with bioreactor cultured PLGA/PCL scaffolds 

again had a higher level of bone area in the original defect site with 1.72 ± 0.41 mm2 of 

new bone area as compared to day 42 static and no cell groups.  This was significantly 

higher (p < 0.10) than defects implanted with PLGA/PCL scaffolds that did not contain 

hMSCs which had a new bone area of 1.19 ±0.32 mm2.  Defects implanted with statically 

cultured hMSC containing scaffolds had a new bone area of 1.26 ± 0.40 mm2 this was 

statistically similar (p > 0.10) to other PLGA/PCL treatment groups at this timepoint. 
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a) b) 

c) d) 

e) f) 

Figure 9.4:  Images of Hematoxylin and Eosin stained defect implanted with PLGA/PCL 
scaffolds after 3 weeks (a-c) and 6 weeks (d-f) of in vivo implantation.  Prior to 
implantation scaffolds were cultured in vitro in the TPS bioreactor with an hMSC 
population (a, d), in static culture with an hMSC population (b, e), or in static culture 
with no cell population (c, f).  Scale bar represents 500 µm.  PCL=PLGA/PCL Scaffold, 
NB=New Bone, OB=Original Bone, BM=Bone Marrow 
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a) b) 

c) d) 

e) f) 

Figure 9.5:  Magnified images of Hematoxylin and Eosin stained defect implanted with 
PLGA/PCL scaffolds after 3 weeks (a-c) and 6 weeks (d-f) of in vivo implantation.  Prior 
to implantation scaffolds were cultured in vitro in the TPS bioreactor with an hMSC 
population (a, d), in static culture with an hMSC population (b, e), or in static culture 
with no cell population (c, f).  In images (a,b) note mineralization formation and blood 
vessel infiltration within PLGA/PCL scaffold.  In image (c) note mineralized bone 
formation around the edge of the scaffold.  Bone in growth continues to penetrate 
scaffold after 42 days (d-f).  Note minimal tissue response to material.  Scale bar 
represents 50 µm.  PCL=PLGA/PCL Scaffold, NB=New Bone, MB=Mineralized Bone, 
BV=Blood Vessel 
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Figure 9.6:  New bone area occurring in original defect area following implantation of 
PLGA/PCL scaffold as calculated by histomorphometric analysis.  The symbol (*) 
indicates statistical significance within a timepoint (p < 0.10) 

9.3.4 Bone Growth Following Implantation of Alginate Scaffolds 

Light microscopy analysis of defects implanted with alginate scaffolds revealed limited 

bone growth in the center of the scaffold after 21 days (Figure 9.7a-c).  Bone 

regeneration primarily occurred at the periphery of the defect.  It should be noted that 

observed gaps between tissue and alginate often result as a histological artifact as alginate 

shrinks following dehydration.  Some cartilage like tissue indicated by round cells in 

lacunae can be observed in the defect (Figure 9.8a).  Observation of bone growth within 

alginate is limited however as bone alginate contact at the edge of the defect is observed 

(Figure 9.8b).  In alginate groups containing no cells little bone alginate contact is 
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observed and alginate is largely absent of tissue invasion (Figure 9.7c).  By day 42 

increased bone growth is observed within the defect site and is observed in greater 

amounts in defects implanted with cell containing alginate scaffolds (Figure 9.7d-f).  

New bone can be observed lining the alginate scaffolds and some new bone can be 

observed inside remaining alginate.  The scaffolds have dissolved and fractured into 

smaller pieces by day 42 allowing for greater bone in growth.  Bone can be observed 

lining the edges and penetrating into alginate scaffolds (Figure 9.8d-e).  Blood vessels are 

observed on the periphery of alginate scaffolds, but are not frequently observed within 

the alginate (Figure 9.8d).  Less direct bone alginate contact was observed in alginate 

scaffolds implanted without an hMSC population (Figure 9.8f).   

Histomorphometric analysis of bone growth in alginate scaffolds indicates significantly 

higher (p < 0.10) new bone area in defect sites implanted with cell containing alginate 

scaffolds than those without cells (Figure 9.9).  Defects implanted with TPS cultured 

alginate scaffolds had a new bone area of 0.83 ± 0.26 mm2.  This was statistically similar 

(p > 0.10) to defects which were implanted with statically cultured hMSC containing 

constructs which had a new bone area of 0.82 ± 0.27 mm2.  Both of these groups had 

significantly higher (p < 0.10) new bone area than defects implanted with statically 

cultured no cell alginate constructs which had a new bone area of 0.39 ± 0.12 mm2.  By 

day 42 increased bone area was observed in all groups as compared to day 21 alginate 

scaffolds and significant differences in bone area did not exist between the groups.  The 

highest overall new bone area was observed in the statically cultured cell containing 

scaffolds with a new bone area of 1.37 ± 0.31 mm2.  Bioreactor cultured scaffolds were 
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statistically similar with a new bone area of 1.27 ± 0.44 mm2.  Defects implanted with 

alginate without a cell population had the lowest new bone area with 0.89 ± 0.17 mm2. 
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a) b) 

c) d) 

e) f) 

Figure 9.7:  Images of Hematoxylin and Eosin stained defect implanted with alginate 
scaffolds after 3 weeks (a-c) and 6 weeks (d-f) of in vivo implantation.  Prior to 
implantation scaffolds were cultured in vitro in the TPS bioreactor with an hMSC 
population (a, d), in static culture with an hMSC population (b, e), or in static culture 
with no cell population (c, f).  Scale bar represents 500 µm.  A=Alginate Scaffold, 
NB=New Bone, OB=Original Bone, BM=Bone Marrow, ST=Soft Tissue, C=Cartilage, 
GP=Growth Plate 
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a) b) 

c) d) 

e) f) 

Figure 9.8:  Magnified images of Hematoxylin and Eosin stained defect implanted with 
alginate scaffolds after 3 weeks (a-c) and 6 weeks (d-f) of in vivo implantation.  Prior to 
implantation scaffolds were cultured in vitro in the TPS bioreactor with an hMSC 
population (a, d), in static culture with an hMSC population (b, e), or in static culture 
with no cell population (c, f).  In (a) note some bone formation which may result from 
endochondral ossification.  In (b) note some bone alginate contact, while no direct bone 
contact in (c).  In six week samples (d,e) note direct bone alginate contact as well as some 
bone formation within alginate scaffolds.  In no cell sample (f) limited bone alginate 
contact was observed and no bone formation was observed within the scaffold.  Scale bar 
represents 50 µm.  A=Alginate Scaffold, NB=New Bone, ST=Soft Tissue, C=Cartilage, 
BV=Blood Vessel 
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Figure 9.9:  New bone area occurring in original defect following implantation of 
alginate scaffolds as calculated by histomorphometric analysis.  The symbol (*) indicates 
statistical significance within a timepoint (p < 0.10) 

9.4 Discussion 

Bioreactor systems have frequently been used to improve in vitro culture of mesenchymal 

stem cells for bone tissue engineering purposes [16, 17, 20, 57].  The tubular perfusion 

system bioreactor utilized in this study has been previously shown to increase 

proliferation and enhance differentiation of hMSCs in alginate scaffolds as compared to 

static cultured controls [112, 286].  However, these in vitro findings do not necessarily 

correlate to improved in vivo bone regeneration [288] .  In this study we compare the 

repair of a non critical size femoral condyle defect in nude rats following implantation of 
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two different scaffold materials, PLGA/PCL and alginate.  Each of these scaffolds were 

cultured with and without a hMSC population.  This cell population was cultured both 

under static and dynamic conditions to determine the effect of TPS bioreactor culture on 

in vivo repair capacities of hMSCs.  Based on previous studies, hMSCs cultured in 

alginate scaffolds are viable after 10 days of bioreactor culture and have proliferated 

[112, 286].  After 10 days of osteogenic induction these cells have begun differentiating 

into osteoblasts but have not begun mineralizing in vitro [112, 286].  Both alginate and 

PLGA/PCL scaffolds had not undergone significant dissolution or degradation following 

ten days of in vitro and could be manipulated with forceps and easily implanted in the 

defect.  

 In PLGA/PCL scaffolds greater amounts of bone formation after 3 weeks were observed 

in cell containing scaffolds as compared to scaffolds without a cell population.  This bone 

formation was highest in bioreactor cultured PLGA/PCL scaffolds.  In cell containing 

groups new bone could be observed forming on the interior of PLGA/PCL scaffolds 

while in acellular scaffolds bone formation was primarily restricted to the exterior 

portions of the scaffold.  This could indicate either increased bone formation directly 

from the implanted hMSC population, or an ability of this cell population to recruit native 

cells to the defect area.  Mineralization can be observed in these scaffolds indicating 

formation of bone through an intramembranous ossification process.   

By day 42 differences between groups are less obvious as this non critical bone defect 

has largely healed absent the PLGA/PCL scaffold area.  The implanted scaffolds are 

visually reduced in area indicating significant scaffold degradation after 42 days.  New 
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bone area was significantly higher in bioreactor cultured PLGA/PCL scaffolds than no 

cell scaffolds, possibly due to increased bone formation within scaffolds in this group.   

Tissue response to the PLGA/PCL scaffolds appeared to be minimal on both day 21 and 

42 as inflammatory cells were not frequently observed.  Blood vessel infiltration into the 

defect, both on the periphery and interior of the PLGA/PCL scaffold was frequently 

observed.  This is a significant observation as sufficient vascularization is a required for 

successful regeneration of a bone defect.   

Similar to PLGA/PCL scaffolds increased new bone area was observed in alginate 

scaffolds which contained an encapsulated cell population compared to empty alginate 

scaffolds.  However, compared directly to PLGA/PCL scaffolds, new bone area was 

lower at day 21 in alginate scaffolds.  In addition light microscopy analysis indicated that 

bone was not frequently observed in the center of alginate scaffolds and rather was 

localized to the edge of the defect.  Based on this observation it appears that the 

implanted hMSC population is not generating bone in these scaffolds.  In addition new 

bone is unable to penetrate intact alginate scaffolds.  However, increased bone growth is 

observed when comparing cell implanted scaffolds to acellular alginate scaffolds.  Based 

on this observation it appears that the implanted hMSCs may be able to recruit cells from 

the native bone tissue to repair the defect.  Unlike the PLGA/PCL scaffolds little 

difference was observed between bioreactor and statically cultured scaffolds.  It is 

hypothesized that in bulk alginate scaffolds native tissue is only able to contact the cell 

population close to the surface of the scaffolds.  Since only the cell population close to 

the surface is contributing to bone regeneration, bioreactor culture does not have an effect 

as cells closer to the surface can receive nutrients in both static and dynamic culture.  
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Though bioreactor culture increases the growth and osteoblastic differentiation of these 

hMSCs in vitro, following 10 days of in vitro culture these differences do not transfer 

into increased amounts of in vivo bone formation.  Thus scaffolds must be able to support 

tissue and blood vessel infiltration to support the implanted cell population upon in vivo 

implantation.  However by 42 days elevated new bone formation was still observed in 

cell containing alginate scaffolds and some bone formation was observed inside alginate 

scaffolds of cell containing groups.  This demonstrates an ability of the implanted cell 

population to improve the bone formation through 42 days.  In cell groups this new bone 

could be observed in direct contact with the alginate scaffolds.  Negative tissue response 

to these scaffolds was also minimal as the area surrounding the defect did not appear 

inflamed in response to the alginate.  Unlike the PLGA/PCL scaffolds vessel infiltration 

was not frequently observed inside the alginate scaffolds.  Though vessels were often 

observed on the periphery of the defect, vessels did not seem to have the ability to 

penetrate the bulk alginate scaffolds.  This lack of vessel infiltration could explain the 

reduced amount of bone formation in the center of the scaffold.  Some cartilage 

formation was observed in the defect site indicating bone formation may be following an 

endochondral like pathway, however it could not be determined if the implanted cell 

population or scaffold had an influence on intramembranous versus endochondral bone 

formation. 

 Based on the results of this study it appears though beneficial for in vitro hMSC culture, 

bioreactor culture is only beneficial for in vivo bone growth under certain conditions.  In 

alginate scaffolds that do not appear to be rapidly infiltrated by the host vasculature 

bioreactor culture does not have an influence on in vivo bone formation.  This highlights 
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the need for a scaffold type that promotes rapid in vivo vascularization to maintain an 

implanted cell population.  In contrast PLGA/PCL scaffolds were able to support 

vascular invasion and a greater amount of new bone formation was observed within these 

scaffolds as compared to the alginate scaffolds.  In this case elevated levels of bone 

formation were observed as a result of bioreactor culture.  Thus tubular perfusion system 

culture can be used to enhance in vivo bone regeneration using hMSCs, but scaffold type 

must support tissue infiltration to maximize this effect. 

9.5 Conclusions 

In this study we demonstrate the efficacy of using a tubular perfusion system bioreactor 

for the culture of hMSCs to aid in in vivo bone regeneration and repair.  hMSCs enhanced 

bone regeneration in both alginate and PLGA/PCL scaffolds, however bioreactor culture 

was only shown to have a positive effect in PLGA/PCL scaffolds.  This demonstrates the 

ability to utilize bioreactor systems for bone tissue engineering and the need for scaffold 

systems that can maintain a cell population following implantation.    
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10.  Summary 

The overall goal of this work was to develop and evaluate a new bioreactor system for 

bone tissue engineering.  Human mesenchymal stem cells were used as a cell source and 

three different scaffold materials were evaluated in the system.  The motivation for this 

work was to enhance the clinical relevance of cell based tissue engineering utilizing three 

dimensional scaffolds by improving in vitro culture techniques.   

In the first part of the work a new bioreactor system was developed that was shown to 

enhance the in vitro proliferation of human mesenchymal stem cells in alginate beads and 

the differentiation of these cells into osteoblasts.  Results of this study revealed that 

dynamic culture supports proliferation of hMSCs and enhances late osteoblastic 

differentiation of these cells.   

Following this the second study evaluated shear stress in the TPS bioreactor as an 

important regulator of stem cell fate as well as the ability of hMSC scaffold position to 

affect differentiation.  This study demonstrated shear stress as a potent and temporal 

stimulus of hMSC osteoblastic differentiation within bulk alginate scaffolds.  

Mineralization and proliferation levels were decreased in statically cultured constructs 

which highlighted a need for bioreactor systems to improve in vitro culture.  In addition it 

was discovered that hMSC radial position within scaffolds had an effect on both the 

osteoblastic differentiation and proliferation of these cells.  These results could be used to 

tailor a flow and shear regime for either expansion or differentiation of a stem cell 

population to dictate the desired outcome of in vitro culture. 
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In the next chapter of research an advanced implantation technique was developed for 

alginate scaffolds cultured in the TPS bioreactor.  Through the course of this study a 

protocol was developed and evaluated for the fabrication of a cell containing tissue 

engineering construct from many smaller scaffolds in a bioreactor system.  Results 

demonstrated the construct can be elegantly fabricated and has mechanical properties 

similar to traditionally fabricated alginate scaffolds.  The scaffold, designated an 

aggregated alginate construct, has many potential applications including non load bearing 

bone, cartilage, and skeletal muscle tissue engineering.  Through this method of culturing 

a large scaffold as individual small bead building blocks a large tissue engineering 

construct could be created ready for implantation into a defect site. 

In the next chapter the utility of the bioreactor was demonstrated by using a synthetic 

PLLA scaffold.  These scaffolds were fabricated by a new supercritical gel drying with 

porogen leaching process to create scaffolds with both a nano and microstructure.  

hMSCs were able to adhere, proliferate, and differentiate within the scaffold structure in 

both static and TPS culture.  Effects of the architecture of the scaffold were magnified in 

dynamic culture leading to increased proliferation and osteoblastic differentiation. 

In the final chapter of the work the efficacy of using the tubular perfusion system 

bioreactor for the culture of hMSCs to aid in in vivo bone regeneration and repair was 

demonstrated.  hMSCs enhanced bone regeneration in both alginate and PLGA/PCL 

scaffolds.  This work demonstrated the ability to utilize bioreactor systems for bone tissue 

engineering and the need for scaffold systems that can maintain the cell population 

following implantation.   
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These studies have demonstrated the effectiveness of the tubular perfusion system 

bioreactor for the culture of hMSCs for bone tissue engineering.  This bioreactor was 

shown to increase the proliferation and osteoblastic differentiation of these cells which 

were dependent on both shear stress and cell radial position in the scaffold.  This system 

was also demonstrated to be effective when using synthetic scaffolds including PLLA 

and PLGA/PCL to support the hMSC population.  Finally, hMSC containing scaffolds 

cultured in the TPS bioreactor were implanted in a bone defect and results of this study 

demonstrated the efficacy of using this system for in vivo bone regeneration. 



 
 

199 
 

11.  Future Work 

This work highlighted the need for the effective use of bioreactor systems in cell based 

tissue engineering strategies.  Though the TPS bioreactor was shown to be effective, 

design improvements could be made to further increase its utility.  As discussed in 

Chapter 2, bioreactor systems can be automated to minimize difficultly of use.  

Significant hurdles in implementing a cell based tissue engineering strategy will include 

expense and manpower required to culture cells in vitro and risk of contamination.  

Bioreactor system automation could mitigate these two obstacles, streamlining the cell 

culture process.   

Results from Chapter 9 revealed another area of future work to explore with the system.  

Though in vivo bone growth was improved using stem cells, histology images indicated 

that especially in alginate scaffold bone growth within scaffolds was limited.  This 

highlighted the fact that in vitro stem cell differentiation and mineralization do not 

translate to in vivo bone generation unless the in vivo environment can support the 

implanted cell population.  This requires a scaffold that can support infiltration from the 

host vasculature.  To further improve in vivo vascularization an endothelial cell 

population could be cocultured in the TPS bioreactor to create a prevascular network that 

could integrate with the host vasculature.  By developing a prevascular network, or 

improving vascularization through the use of growth factors essential nutrients can be 

delivered to the implanted cell population to enhance regeneration of a bone defect. 
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A final future direction for this research is the scaling up of the bioreactor system to 

create larger tissue engineering bone grafts.  As a small animal study was completed 

through the course of this study, the TPS bioreactor can be scaled up to produce 

constructs that could fill a large animal bone defect model.  The system design is 

scalable, so a size increase should not present too many difficulties.  The completion of a 

critical size large animal defect model is essential to continue to demonstrate the 

effectiveness of the system for a bioreactor based bone tissue engineering strategy. 
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