SRC TR 87-130

Efficient Enumeration of Maximal
and Maximum Independent Sets of
an Interval Graph and a
Circular-Arc Graph

by

S. Masuda, K. Nakajima,
T. Kashiwabara, and T. Fujisawa

Efficient Enumeration of Maximal and Maximum Independent Sets

of an Interval Graph and a Circular-Arc Graph*

by

Sumio MASUDA

Electrical Engineering Department and Systems Research Center
University of Maryland
College Park, Maryland 20742
on leave from
Department of Information and Computer Sciences
Osaka University
Toyonaka, Osaka 560, Japan

Kazuo NAKAJIMA

Electrical Engineering Department,
Institute for Advanced Computer Studies,
and Systems Research Center
University of Maryland
College Park, Maryland 20742

Toshinobu KASHIWABARA and Toshio FUJISAWA

Department of Information and Computer Sciences
Osaka University
Toyonaka, Osaka 560, Japan

* This work was supported in part by National Science Foundation grants MIP-84-51510 and
CDR-85-00108, and in part by a grant from AT&T Information Systems.

Efficient Enumeration of Maximal and Maximum Independent Sets

of an Interval Graph and a Circular-Arc Graph

by

Sumio Masuda, Kazuo Nakajima, Toshinobu Kashiwabara and Toshio Fujisawa

Abstract

We present efficient algorithms for generating all maximal and all maximum independent
sets of an interval graph and a circular-arc graph. When an interval graph is given in the form
of a family of n intervals, the first and second algorithms produce all maximal and all maximum
independent sets, respectively, in O (n -logn +(the size of an output)) time. When a circular-arc
graph is given in the form of a family of n arcs on a circle, the third algorithm generates all
maximal independent sets in O (n -logn +(the size of an output)) time. In the same situation, the
fourth algorithm enumerates all maximum independent sets in O (n®+(the size of an output))

time. The first three algorithms are optimal to within a constant factor.

Key words. circular-arc graph, enumeration, graph algorithm, independent set,

interval graph, time complexity

1. Introduction

Let G = (V, E) be a graph. Two distinct vertices u« and v in V are said to be adjacent
to each other if (u,v) € E; otherwise they are said to be independent from each other. A subset
X of V is called an independent set of G if any two vertices in X are independent. An
independent set X of G is called a mazimal independent set (abbreviated to an MLIS) if no
proper superset of X is an independent set of G, and it is called a mazimum independent set
(abbreviated to an MMIS) if its cardinality is the largest among all independent sets of G . It is
well known that the problem of finding an MMIS is NP-hard for general graphs 1,86].

Let F be a finite family of nonempty sets. We call a graph G = (V, E) an intersection
graph for F and F an intersection model of G if there is a one-to-one correspondence between
V and F such that two vertices in V are adjacent to each other if and only if the corresponding
sets in F' have a nonempty intersection. If F is a family of intervals on the real line, G is called
an interval graph. If F is a family of arcs on a circle, G is called a circular-arc graph.

Interval graphs are not only interesting in their own right in graph theory but also use-
ful in many practical applications [12,19,22,23]. Therefore, various algorithms for interval
graphs have been developed [3,5,8,9,11,13,15-17]. Furthermore, as a generalization of interval
graphs, circular-arc graphs have widely been studied in recent years [2,7,10,13,14,16,18,21].

In this paper, we consider the problems of generating all MLIS’s and all MMIS’s of an
interval graph and of a circular-arc graph. In the past, research efforts have been directed
mainly at the problem of finding a “single’”” MMIS for these classes of graphs. Gavril [8] pro-
posed the first polynomial time algorithm for finding an MMIS of an interval graph. He also
developed an O(n?%) time algorithm for finding an MMIS of a circular-arc graph [10], where n is
the number of vertices in a given graph. Later, Gupta, Lee and Leung [13] developed an

O (n-logn) time algorithm for an interval graph and an O (n?® time algorithm for a circular-arc

graph. They also showed that their algorithm for an interval graph is optimal to within a

constant factor. Recently, Asano, Asano and Imai 3] presented an O(n -logn) time algorithm
for finding a maximum weight independent set of an interval graph when each vertex is assigned
a real number as its weight. More recently, Masuda and Nakajima [18] developed an O (n -logn)
time algorithm for finding an MMIS of a circular-arc graph. Since every interval graph is a
circular-arc graph, their algorithm is also optimal to within a constant factor. All of the above
algorithms except Gavril’s interval graph algorithm assume that an input graph is given by its
corresponding intersection model.

On the other hand, Leung [16] considered the problems of generating all MLIS’s of an
interval graph and of a circular-arc graph. Based on the Gupta-Lee-Leung algorithms [13], he
obtained an O (n?+p;) time algorithm for an interval graph and an O (n2+8¢) time algorithm
for a circular-arc graph, where §; and B, denote the total sum of the cardinalities of the MLIS’s
of a given interval graph and a given circular-arc graph, respectively.

In this paper, we present faster algorithms for finding all MLIS’s of an interval graph
and of a circular-arc graph. We also consider the problems of generating all MMIS’s of these
classes of graphs. More specifically, we first give an O (n "logn +8;) time algorithm for finding all
MLIS’s of an interval graph, where 3; is as defined above. Next, we develop an O (n -logn +6;)
time algorithm for generating all MMIS’s of an interval graph, where §; denotes the total sum of
the cardinalities of the MMIS’s of a given interval graph. We then show an O (n -logn +8¢) time
algorithm for finding all MLIS’s of a circular-arc graph, where 8, is as defined above. Finally,
we present an O (n%+6¢) time algorithm for generating all MMIS’s of a circular-arc graph, where
6o denotes the total sum of the cardinalities of the MMIS’s of a given circular-arc graph. The

first three algorithms are shown to be optimal to within a constant factor.

2. Definitions for Interval Graphs

Let F = {I,, I,, ..., I, } be a family of closed intervals on the real line R. Each interval
I; € F is specified by its left and right endpoints and such endpoints are assigned real numbers,
called coordinates. The endpoints are located on R in ascending order of their coordinates from
left to right. For each interval I;, let I; (resp., r;) denote the coordinate of its left (resp., right)
endpoint, that is, I; = [I;, r;]. Without loss of generality, we assume that all endpoints of the
intervals in F are distinct. For two distinct intervals I; and I in F, we say that they intersect
with each other if there exists a real number m such that [; <m <r; and l; <m <r,. The inter-
val graph for F, which we denote by G;(F), is defined as follows :

G;(F)=(V, E), where
V={v,vg ...,9,}, and
E = {(v,v;)|I; and I; intersect with each other}.

A family of n intervals F is said to be canonical if the coordinates of the endpoints of
the intervals in F are distinct integers between 1 and 2n. For example, Fig. 1(a) depicts a
canonical family of intervals, where the intervals are drawn as nonoverlapping horizontal line
segments for clarity. On the other hand, the family of intervals shown in Fig. 1(b) is not canon-
ical. Note, however, that these two families correspond to the same interval graph which is
shown in Fig. 1{c). When a noncanonical family of n intervals F is given, using a regular sort-
ing algorithm [1], one can construct in O (n-logn) time a canonical family of intervals F' such
that G;(F) = G;(F").

Two distinct intervals I; and I, in F are said to be independent from each other if they
do not intersect with each other. A subfamily X of F is called an independent interval family
(abbreviated to an JIF) if any two intervals in X are independent from each other. An IIF, X
of F is called a marimal independent interval family (abbreviated to an MLIF) if no proper

superfamily of X is an IIF of F, and it is called a mazimum independent interval family

(abbreviated to an MMIF) if its cardinality is the largest among all IIF’s of F. For example,
{1, Is, Ie}, {11, Is, I7} and {I,, I, I;} are the MMIF’s of the family of intervals of Fig. 1(a), and
the other MLIF’s are {I,, I}, {I,, I¢} and {I,, I;}.

It is clear from the definition of G;(F) that two intervals I; and I, in F are independent
if and only if the corresponding vertices in G;(F) are independent. This implies that the
MLIF’s (resp., MMIF’s) of F and the MLIS’s (resp., MMIS’s) of G;(F) are in one-to-one
correspondence. Therefore, it suffices to find all MLIF’s (resp., MMIF’s) of F in order to gen-
erate all MLIS’s (resp., MMIS’s) of G;(F). In Sections 3 and 4, we will present optimal algo-

rithms for generating all MLIF’s and all MMIF’s, respectively, of F.

3. Enumeration of Maximal Independent Sets of an Interval Graph

Let F = {I,, I, ..., I, } be a canonical family of intervals. For each interval I; € F, let
L; denote {I, € F | r, <l;}. Furthermore, we define XL; as the set of all MLIF’s of L; and YL,
as (X U{l;}|X € XL;}. In particular, if L; = ¢, then XL; = {4} and YL; = { {I;} }. Con-
sider the family of intervals of Fig. 1{a) again, where for example, Lz= {I;} and
Ly ={I,, I3 Iy 1,}; and since XL, = { {1}, Is}, {I}, I}, {Io} }, YL = { {1y, Is I7}, {I,, 14, 14},
{1y, 17} }.

Let END (F) denote {I; € F | there is no interval I, € F such that r; <l}. We begin
with the following theorem.

Theorem 1. The set of all MLIF'sof FF is | | YL;.
I, € END(F)

Proof. (“C” part) Let X = {I,;, 1

Fgr Ifl:} with l_,~1<r,-1<1j2<r1-2< RN <I-’.k<rjl: be an
MLIF of F. The maximality of X implies that I;, € END(F). It also implies that
X -{I,,} € XL;, if k1 and that XL; = {¢} if k=1. Thus, X € YL, in any case, and hence

Xe U Y.
I, € END(F)

(“2” part.) Let I, be an interval in END(F) and X be an arbitrary IIF in YZ;. By
definition, X - {I;} € XL;. Assume that X is not an MLIF of F. Then, there exists an interval
I, € F such that X U {I;} is an IIF of F. Since I; € END (F) and I, is independent from I,,
I, € L;. Therefore, X - {I;} U {I;} is an IIF of L;, which contradicts the fact that X - {I;} is
an MLIF of L;. Thus, X is an MLIF of F. [J

For 1= 1,2,....2n, we call the point with coordinate ¢ as point +. We define PRE; as
{I, €eF|rj<i and there exists no interval I € F such that r;<{ <r,<¢} for
t=1,2,...,2n 2n+1. It should be noted that PRE, = ¢ and PRE,,,, = END (F). The following
lemma is useful in determining XL, ’s efficiently.

Lemma 1. For j=12,..,n, XL; = J{YL |}, € PRE,}}.

Proof. For each integer j such that L; = ¢, the above equality trivially holds. We
show below that the same equality also holds for any integer j such that L; £ ¢.

(“C” part) Let X ={I; I,

l}]2) .

o I} owith 1 <l < <l be an MLIF of L,.
Because of the maximality of X, pr c PRE,J. Furthermore, X - {ij} € Xpr’ and thus
X € YLJ-p. Therefore, X € |) {YLs | I € PRE,]}, and hence XL; C | {YL,; | I € PRE,]}.

(“2” part) Let I be an interval in PRE and X be an IIF in YL,. By definition,
X -{I,} € XL;. Assume that X ¢XLJ-. Then, there exists an interval I, € L; such that
Xu{L}isanlIF of L;. Since [, € PRE,], r, <lg, and hence I, € L. Thus, X - {L}U{[} Is
an IIF of L,, which contradicts the fact that X - {I; } € XL,. Therefore, X € XL;, and hence
XL; 2 U {YL | € PRE,}. O

Let ¢ be an integer such that 1< <2n and I; be the interval in F which has point ¢ as
one of its endpoints. If point i is the left endpoint of I;, PRE;,, = PRE; (see Fig. 2(a)); other-
wise, PRE;,; = (PRE; - PRE; }U {I;} (see Fig. 2(b)). Based on this relationship, one can succes-

sively determine PRE; for i=1,2,...2n 2n+1. The detailed operations for this are described in

Algorithm 1 which is shown below.

In the algorithm, we first construct a graph G, which consists of a single vertex w,. We
then scan the endpoints of the intervals from left to right and construct a digraph G; = (V;, E;)
for i1=1,2,..,2n, where V; consists of w, and the vertices w; which correspond to the intervals
I; such that I; <7, and the edges in E; are generated in such a way that the directed paths in
G; from vertex wo to a vertex w; correspond to the IIF’s in YL;. During the construction of

G;, we determine a set PRECEDE, ,; as {w,} if PRE;,, = ¢ and as {w; | I; € PRE;,,} otherwise.

Algorithm 1.
Vo A{wo}, Eo+— ¢, Go+ (Vo E¢). PRECEDE, + {w}.
2. for ¢ « 1 until 2n do
a) Let I, be the interval which has point ¢ as one of its endpoints.

b) if point ¢ is the left endpoint of I; then
(1) Create a new vertex w; .
(2) Vi — ViU {w;}, E; «— E,,U{(z—w;)|z € PRECEDE;}, G; «— (V;, E;).
(3) PRECEDE;,, «— PRECEDE; .
¢) if point ¢ is the right endpoint of I; then
(1) ‘/s - I/l'-ly El' — El'—l! Gl' - (‘/l; Et)
(2) PRECEDE;,, «— (PRECEDE; - PREC’EDE,J) U {w, }.

3. @~ {{L,1L, - I,}| thereis a directed path [wo,w, , Wy -, %,,] In Gg, such that
w,, € PRECEDE 3, .}

4. output @.0O

Suppose that a point ¢ is the left endpoint of some interval I;. When we visit such a
point during the execution of Step 2, PRECEDE; has already been determined so as to represent
the corresponding intervals in PRE;, and graph G;_, has been constructed in such a way that
the directed paths from w, to the vertices in PRECEDE; correspond to the IIF’s in
U {YL | Ik € PRE;}. Recall that XL; =|J{YL« |l € PRE;} from Lemmal and
YL, = {X U{l;}| X € XL;} by definition. Therefore, in the graph G; which is constructed at
Step 2.b) (2), the directed paths from wq to w; correctly represent the lIF’s in YL;.

When we visit the right endpoint ¢ of some interval, we determine PRECEDE; ,, based

on the aforementioned relationship between PRE; and PRE; ;. Since G; = G;_;, the graph still

maintains the correspondence between the directed paths from w, to each vertex
w, € PRECEDE;,, and the IIF’s in YL;. As noted before, PRE,, ,, = END(F). Therefore, from
Theorem 1, we will eventually obtain the set of all MLIF’s of F by generating all directed paths
in G,, from wy to the vertices in PRECEDE,, .,.

Consider the family of intervals {/,, I, ..., I;} shown in Fig. 1(a). Figs. 3(a), (b), (c), (d),
and (e) show graphs Gy, G, Gi G4 and Gy, respectively, which are constructed by Algo-
rithm 1. Then, @ = { {1y, Is, I}, {1y, Is, I7}, {11, 14, I}, {11, I8}, {12, Is}, {Io, I} } is obtained
by generating all directed paths in G4 from v, to the vertices in PRECEDE |5 = {ws, wg, wq}.

The main difference between our algorithm and Leung’s [16] is in the way to collect the
information needed for the generation process. In fact, with a slight modification, his generation
procedure could be used in our algorithm in place of Steps 3 and 4. However, since we have
already constructed the graph G,, in Step 2, we can easily enumerate all MLIF's of F by
finding all the maximal paths in G,, rather than using Leung’s list manipulation method {16].

The following procedure searches the graph G,, in a DFS-like manner, but the method
of marking vertices is different from that used in the usual depth-first search algorithm (see,
e.g., Aho, et al. [1]). In this procedure, when we backtrack from vertex z to z, we mark z
“old” and each vertex w such that (z —w) € E;, “new”. This method enables us to find later,

if any, directed paths which contain a path from z to w that does not pass through z.

Procedure 1.

2

. Create an empty stack STACK. Q « ¢. Mark all vertices in Vy, “new’.
2. Add wyinto STACK. CP « ¢.

while STACK is not empty do
a) z « the top element of STACK .
b) if there is an edge (z —»w) € E,, such that w Is marked “new”
then add w into STACK. CP « CP U {w}.
else execute the following statements (1) to (3).
(1) if ¢ € PRECEDE,, ,, then @ «— Q U {{l; |w; € CP}}.
(2) for each vertex w such that (z —w) € E,, do mark w “new”.

(3) Mark z “old” and delete it from STACK. CP « CP -{z}. O

We now analyze the time complexity of Algorithm 1. Let 8;(F) denote the total sum of
the cardinalities of all MLIF’s of F, or equivalently, the total sum of the cardinalities of all
MLIS’s of G;(F). Furthermore, let 4 denote the total sum of the numbers of vertices on the
directed paths in Gy, = (V,,, E,,) from wg to the vertices in PRECEDE,, .,.

Lemma 2. |E,, |= O(7) and vy= O (8;(F)).

Proof. It is clear that v = O (8;(F)) from the description of Algorithm 1. As can be
seen from the construction method of G,,, for any directed edge (z—w) € E,,, there is a
directed path from wy to z if 254w, and a path from w to a vertex in PRECEDE,,,, if
w ¢PREOEDE2,,+1. Therefore, there is a directed path from w, to a vertex in PRECEDE,, .,
which passes through (z —w). This implies that | E,, | <~. O

We are now ready to show the following lemma and theorem.

Lemma 3. The time complexity of Algorithm 1 is O (8;(F)).

Proof. The time required to execute Step 1 is clearly O (n). The vertices and edges once
added to the graphs G;’s are not removed later. Furthermore, the vertices once deleted from
the sets PRECEDE;’s will never be added to them again. Since | PRECEDE; |=|E; | - | E;; |
for i=102,..2n, S2*f!| PRECEDE,; | = | Eg, | + | PRECEDE,, ;1| < n+ | Ey, |. Thus, Step 2
can be performed in O(n+| Eq, |) time. It is easy to verify that Procedure 1 determines @ in
O(n+|Es, | +7) time. Thus, from Lemma 2, Step 3 of Algorithm 1 can be carried out in
O (n+B;(F)) time. Finally, Step 4 can be executed in O(8;(F)) time.

We know that |E,, |= O(8;(F)) from Lemma 2. Furthermore, n <g;(F) since, for
each interval I; € F, there is at least one MLIF of F which contains I;. Therefore, the overall
time complexity of Algorithm 11is O (8,(F)). O

Theorem 2. For any family of n intervals F', all MLIS’s of G;(F) can be generated in

O (n logn +8;(F)) time. This time complexity is optimal to within a constant factor.

Proof. As claimed in the preceding section, we can construct, in O(n-logn) time, a
canonical family of intervals F' such that G;(F)= G;(F'). We know from Lemma 3 that the
application of Algorithm 1 to the resultant family of intervals requires O (8;(F)) time. There-
fore, we can generate all MLIS’s of G;(F)in O (n-logn +8;(F)) time.

It is clear that the generation of all MLIS’s requires Q(3;(F)) time. The interval graph
G;(F) has an MLIS whose cardinality is equal to n if and only if any two intervals in F are
independent from each other. Since testing whether any two intervals are independent or not

requires Q(n ‘logn) time [20], Algorithm 1 is optimal to within a constant factor. O

4. Enumeration of Maximum Independent Sets of an Interval Graph

Let F = {Iy, Iy ..., I,} be a canonical family of intervals. We define o; to be
Maz {| X | | X € YL;} for j=12,..,n and oF) to be the cardinality of an MMIF of F. Note
that oF) = Maz {a; |I; € F}. For i=12,.,a(F), we define S; as {I; EF |a; = 1}. As an
example, consider the family of intervals of Fig. 4. In this particular case, a; = as = a3 =1,
a, = ap = 2, and ag = a; = 3. Therefore, §| = {1, I, I3}, So = {I4, Is} and S3 = {I¢, I1}.

Suppose that each interval I; € F is assigned an integer as its weight. For an IIF, X of
F, we denote by weight (X) the sum of the weights of the intervals in X. For this weighted
case, an algorithm developed by Asano, Asano, and Imai[3] can be used to find
Maz {weight (X)| X is an IIF of L;} for j=1,2,..,n. Since the weight of every interval is one in
our case, their algorithm finds Maez { | X | | X € XL,;} = a; -1 for j=1.2,..,n. By modifying
their algorithm, we can obtain a procedure which partitions F into S, S, ..., So(r). In the fol-
lowing procedure, a variable M is used to maintain the value of Maz{a; |r, <t} for

i=12,.,2n. It should be noted that the final value of M becomes ofF').

10

Procedure 2.
M « 0.

2. for i « 1 until 2n do
a) Let I; be the interval which has point ¢ as one of its endpoints.
b) if point ¢ is the left endpoint of I; then a; « M+L
¢) if (point ¢ is the right endpoint of I;)and (M <c;) then M «—o;.

for i — 1 until M do S; < ¢.
for each interval /; € F do §o < 54 U {;}.0

The following lemma is obvious from the description of the procedure.

Lemma 4. The time complexity of Procedure 2 is O(n). O

Assume that we have already partitioned F into Sy, Sy, ..., SofF) by applying Pro-
cedure 2 to F. For i=12,....a(F), we define XM; to be the set of all MMIF’s of U,f’(;,) Si.

Clearly, our goal here is to find XM;. We have the following lemma and its subsequent corol-

laries.

Lemma 5. Forany IIF, X of F, | X N S; | <1for t= 1,2,...,a(F).

Proof. Assume that | X NS, | >2 for some integer ¢ such that 1<¢ <a(F). Let I; and
I, with I; <l; be two elements of X nS,. From the definition of S, there exists an IIF, Y of
L; such that |Y | = ¢ —1. Since I; and I, are independent, we have l; <r; <l <r. This
implies that Y U V{Ij} is an IIF of L, with ¢ elements, and hence ay 2¢+1. This contradicts
the assumption that I, € S,. Therefore, | X N5 | <1ifori=12,.,aF). O

Corollary 1. For any MMIF, X of F', | X NS |=1fori= 1,2,...,a(F).

Proof. It is clear from Lemma 5 and the fact that | X |=«(F). O

Corollary 2. Let ¢ be an integer such that 1<i{<a(F). For any IIF, X in XM;,
| X |=a(F)-{+1.

Proof. Let Y be any MMIF of F. Since ¥ N (Uf(:,.) S) is an IIF of U,f’f__pt) S, , we have
|X|=]1Yn (Uk"(:F,) S.)| = a(F) - i+1 from Corollary 1. On the other hand, Lemma 5 implies

that | X | < a(F)-i+1. Therefore, | X | =o(F)-4+1.0

11

Corollary 3. Let X be an IIF of U,‘“g.-) S, for some integer ¢ such that 1<i<o(F). If
| X | = a(F)-1+1, then X € XM;.

Proof. This corollary clearly holds from Corollary 2. O

Lemma 5 and the above corollaries lead to the following theorem.

Theorem 3. XMy r)={{[;}|1; € Sor)}- And, for i= oF)-1,a(F)-2,.,1, XM;
—{YU{[}|Y €XM,, I; €S and ry<Min {} | I, €Y} }.

Proof. The first equality of the theorem clearly holds from Corollaries 2 and 3. Let ¢ be
an integer such that 1<i<afF)-1 and let X = {11'1’ Iy oo IJ}} with
I <rj <lj,<rj,< - <lj<r; be any F in XM It is obvious that
rj < Min{l, | I, €X -{I; } } and that i <e; <a; < <a;,<o(F). We know from Corol-
lary 2 that k = | X | = «(F)-{+1 and from Lemma 5 that |X NS, | <1 for ¢= t,0+1,..,0F).
Therefore, «; =1, that is, I; €35; and X -{I;} is an IIF of Uq"’(:‘.)ﬂ S,. Since
| X - {l; } | =a(F)~1{, we have X - {I;)} € XM;, by Corollary 3. Thus, X belongs to the set
defined by the right hand side of the second equality of Theorem 3.

On the other hand, let X be any element of XM;,,. If there is an interval I; € §; such
that r; <Min {1, | I, € X}, then X U {[;} is an IIF of U;*(:F,) S,. Since |X |= o(F)-+{ from
Corollary 2, | X U {[;} | = a(F)-¢+1. Therefore, X U {I;} € XM; from Corollary 3. 00

For i= o(F),e(F)-1,...,1, let S; be defined as {I; € S; | there exists an IIF in XM;
which contains I;}. From Theorem 3, S;(p)= Sor) and S = {I; € S; | there is an interval
I, € 8;,, such that r; <4} for i= o(F)- Lo(F)-2,..1.

We now describe an algorithm for generating all MMIF’s of F. In the algorithm, a
digraph G; = (V;, E;) is constructed for i= ofF),a(F)-1,.,1. It has a unique vertex wq and
the vertices which correspond to the intervals in S;(p) U S(',(p)_l U---US;, and the edges are

determined in such a way that its maximal paths correspond to the IIF’s in XM;.

12

Algorithm 2.
Sap) — Sar) Vary— {w; | I; € Syr)}-
Var) — {wo} U Vary, Ear)— {(wo—=w;) | I; € Sory}, Gor) — (Var) Eair)).
for « « 1 until o(F) do
Sort the intervals in S; in descending order of the coordinates of their left endpoints.

4. for i « o(F)-1step -1 until 1 do
a) I, « the interval in S/, whose left endpoint has the largest coordinate.
b) S —{I; €8 |ri<l,}, Vi —{w; |; €S}, E —¢.
c¢) for each element I; € S, do E; « E' U {(w —w;) | w € S,y and r; <l }.
d) Vi <Viu UV, B <« E,UE, G «(Vi, E).
5. @ «{ {va’ I PR Iqa(F)} | there is a directed path [wo,wa,w%,...,wqw)j
Yo ur) € vi}

6. output @.0O

in G, such that

As noted before, XM, is the desired set of all MMIF’s of F. Therefore, in order to prove
the correctness of the algorithm, it suffices to show that, for i = o(F),a(F)-1,...,1, the directed
paths in G; from wq to the vertices in V;' correspond to the IIF’s in XM;. This can in fact be
done by an easy induction proof on the value of ¢ using Theorem 3. Thus, Algorithm 2 gen-
erates all MMIF’s of F.

We provide here a simple example to show how Algorithm 2 works. Consider the family
of intervals {I,, I, ..., I7} of Fig. 4 again. Since a(F) =3 and S3 = {[,, I}, graph G; is con-
structed as shown in Fig. 5(a) in Step 2. During the first execution of the for-loop in Step 4,
the value of ¢ is determined as 7 and §, becomes {I,, I;}. After the graph G, of Fig. 5(b) is
constructed, ¢ changes in value to 5 and S, = {I,, I} is found during the second execution of
the for-loop. Since G, is constructed as shown in Fig. 5(¢c), @ is determined as { {I;, I, I¢},
{I,, 1, I}, {1y, Is, Is}, {11, Is, In}, {2, Is, Lo}, {12, Is, I1} }-

Let 6;(F) denote the total sum of the cardinalities of all MMIF’s of F, that is, the total
sum of the cardinalities of all MMIS’s of G;(F).

Lemma 6. The time complexity of Algorithm 2 is O (n +6;(F)).

Proof. It takes O (| S,r)|) time to execute Steps 1 and 2. Step 3 can be carried out in

13

O(n) time by using a bucket sort algorithm [1]. Each execution of Step 4 requires
o(] Vil |+ E;/ | +18; |) time for i=o(F)-1,(F)-2,..,1 since the intervals in S;,; have
already been sorted in descending order of the coordinates of their left endpoints. It is easy to
see that 2201 | V) | < B[S | =n - | Syr)| and that SR E | =|E.| - | Ear)l-
Thus, the total time required for Step 4 is O(n+ | E;|). Using Procedure 1, we can execute
Step 5 in O(n+ | E; | +~) time, where 4 denotes the total sum of the numbers of vertices on the
directed paths in G, from w, to the vertices in V| . Clearly the final step can be performed in
O (6;(F)) time. Since it can be shown that |E,|= 0(7) and v= O (6;(F)) (see the proof of
Lemma 2), the overall time complexity of Algorithm 2 is O (n +6,;(F)). O

Theorem 4. For any family of n intervals F, one can generate all MMIS’s of G;(F') in
O (n logn +6;(F)) time. This time complexity is optimal to within a constant factor.

Proof. As claimed before, one can construct in O (n-logn) time a canonical family of
intervals F' such that G;(F)= G;(F'). The applications of Procedure 2 and Algorithm 2 to
the resultant family of intervals require O(n +6;(F)) time in total due to Lemmas 4 and 6.
Therefore, all MMIS’s of G;(F) can be generated in O (n‘logn+6;(F)) time. Using the same
argument as in the second part of the proof of Theorem 2, we can conclude that this time com-

plexity is optimal to within a constant factor. O

5. Definitions for Circular-Arc Graphs

Let § = {A,, Ay, ..., A, } be a family of arcs on a circle ¢. Each endpoint of the arcs in
S is assigned a real number, called a coordinate. The endpoints are located on the circumfer-
ence of C in ascending order of their coordinates in the clockwise direction. Without loss of
generality, we assume that (i) all endpoints of the arcs in § are distinct, and (ii) no single arc in
S covers the entire circle C by itself.

For simplicity, we call the point with coordinate ¢ as point ¢. Suppose that an arc

14

A; € S5 begins at point ¢ and ends at point k in the clockwise direction. Then, we call points ¢
and k the head and tail, respectively, of A;. For j=12,..,n, let h; and ¢t; denote the coordi-
nates of the head and tail, respectively, of A;. If h; <t;, then A; is called a forward arc; other-
wise it is called a backward arc. For example, the family of arcs shown in Fig. 6(a) contains
three backward arcs Ag, A7 and Ag.

For an arc A; € S and an endpoint ¢ of another arc in §, we say that A; contains point
¢ if points h;, ¢, and t; appear on the circumference of C in this order in the clockwise direc-
tion. For two distinct arcs A; and A; in S, we say that they intersect with each other if one of
them contains at least one endpoint of the other arc; otherwise A; and A; are said to be
tndependent from each other. The circular-arc graph for S, which we denote by G, (9), is
defined as follows :

Go(S)={(V, E), where
V={v,vy ...,,}, and
E = {(v,v;)| A; and A; intersect with each other}.
As an example, we show in Fig. 6(b) the circular-arc graph for the family of arcs of Fig. 6(a).
Note that any two backward arcs in S intersect with each other. Thus, the set of vertices
corresponding to the backward arcs forms a clique in the graph G¢(5).

S is said to be canonical if (i) h;’s and ¢;’s for j=1,2,.,n are all distinct integers
between 1 and 2n, and (ii) point 1 is the head of some arc. For instance, the family of arcs
shown in Fig. 6(2) is canonical. Similarly to the case of interval graphs, when § is not canoni-
cal, using a regular sorting algorithm [1], one can construct in O (n logn) time a canonical fam-
ily of arcs §' such that Go(S) = G (S).

A subfamily X of S is called an independent arc family (abbreviated to an JAF) if any
two ares in X are independent from each other. An IAF, X of S is called a mazimal indepen-

dent arc family (abbreviated to an MLAF) if no proper superfamily of X is an IAF of S, and it

16

is called a mazimum independent arc family (abbreviated to an MMAF) if its cardinality is the
largest among all IAF’s of S. For example, the family of arcs shown in Fig. 6(a) has three
MMAF’s, {A,, A3, A4}, {A1, As, As} and {A3 A4, A7}, Clearly, the MLAF’s (resp., MMAF’s) of
S and the MLIS’s (resp., MMIS’s) of G(S) are in one-to-one correspondence. In Sections 6 and
7, we will present efficient algorithms for generating all MLAF’s and all MMAF’s, respectively,

of S.

6. Enumeration of Maximal Independent Sets of a Circular-Arc Graph

Let § = {4,, Ay, ..., A, } be a canonical family of arcs on a circle C. We denote by FAg
and BAg the families of all forward and backward arcs, respectively, in S. Leung [16] proposed
an algorithm for generating all MLAF’s of S. And he gave an O(n?+84(S)) time implementa-
tion, where 8, (S) denotes the size of an output, that is, the total sum of the cardinalities of the
MLAF’s of §. In this section, we present a more efficient implementation of his algorithm. In
fact, our implementation is optimal to within a constant factor. We first show Leung’s algo-

rithm below.

Algorithm 3. [16)
Q —¢.
Partition $ into FAs and BAs.
Generate all MLAF’s of FAg.

for each MLAF, X of FA; do
if there exists no arc A; € BAg such that X U {A4;} is an IAF then @ « @ U {X}.

5. for each arc A; € BAg do
Q « @ U{X | X is an MLAF of S which contains 4; }.

6. output ¢. 0O

L

Let 8, (FAg) denote the total sum of the cardinalities of all MLAF’s of FAs;. We start

with the following lemma.

Lemma 7. B,(S) 2 Bo(FAg).

16

Proof. For any MLAF, X of FAg, there exists at least one MLAF of § which contains
X. Let Y be such an MLAF of S. Then, it is clear that X is the unique MLAF of FAs; which
is contained by Y. Therefore, 8¢ (S) > Bc(FAs). O

Steps 1 and 2 of Algorithm 3 take O(1) and O(n) time, respectively, to execute. It is
obvious that the circular-arc graph for FAs, Go(FAg), is an interval graph. In fact, we can con-
struct in O (n) time a canonical family of intervals F® such that G,(F®) = G (FAs). This can
be done by mapping the arcs in FAg onto the real line R in such a way that the endpoint with
the i-th smallest coordinate is assigned integer i as its coordinate on R. Thus, by applying
Algorithm 1 to FS, we can execute Step 3 in O (n +8¢(S)) time due to Lemmas 3 and 7. Recall
that, during the execution of Algorithm 1, we obtain a digraph, which we will refer to as G*5.
This graph has vertex w, and the vertices which correspond to the arcs in FAg. It also contains
a directed edge (w; —w;) for 1<j5k <n if and only if t; <hy and there is no arc A, € FAg
such that ¢; <h, <t, <h;. This graph will be utilized again in Step 5.

In order to execute Step 4, we first sort the backward arcs in ascending order of the
coordinates of their tails. Since § is canonical, this sorting can be done in O(n) time by a
bucket sort algorithm [1]. Suppose that BAg = {4;, Aj, - Aj} with ¢; <¢; < <t;,. For

t=12..2n, we determine INDEX (¢) as follows :

INDEX (i) { =0 (1<i<y),
= Maz {h,-q |1<¢<p} (t,-p <t < by P= 1,2,...,k - 1),
~ Mar (b, |1Sq<k) (4 < <2n)

For example, for the family of arcs of Fig. 6(a), BAs = {Ag, A7, Ag} and ;=2 < t4=3 < tg=7.
Since h,=14, hg=12 and hg=16, we have INDEX(1)=0, INDEX(2)= INDEX(3)="""-
= INDEX (6) = 14, and INDEX (7) = INDEX (8) = - - - = INDEX (16) = 16.

For an IAF, X = {A A"z’ ey A;q} of FAg, we call the coordinate of the head (resp., tail)

"l’

17

of arc A; (resp., A,-q) the starting (resp., ending) coordinate of X and denote it by sc (X) (resp.,

ec (X)). Lemma 8 follows directly from the definitions.

Lemma 8. For an IAF, X of FAg, there exists an arc A; € BAg such that X U {4;} is
an IAF if and only if INDEX (sc (X)) > ec(X). O

It takes O(n) time to compute INDEX (1) for every integer ¢ such that 1<i<2n. And,
for every MLAF, X of FAg, both sc(X) and ec(X) can be determined in O (8y(FAg)) time,
which is bounded by O (B8;(5)) due to Lemma 7. Therefore, based on Lemma 8, we can execute
Step 4 of Algorithm 3 in O (n +8¢(S)) time. It is clear that Step 6 of Algorithm 3 requires only
O (Bc(S)) time. In the remainder of this section, we will describe an efficient implementation of
Step 5.

For each arc A; € S, NEXTSET;, NEXTLIST; and NEXT; are defined as follows.
NEXTSET; is the set of arcs {4; € FA; | A; is independent from A;, t; <h;, and there is no
arc A, € FAg such that t; <h, <t, <hy}. NEXTLIST; is the list in which the arcs in NEXTSET;
are stored in ascending order of the coordinates of their tails. NEXT; is the first element of
NEXTLIST; if NEXTSET; 5 ¢; otherwise it is defined as X\. For the family of arcs of Fig. 6(a),
for example, NEXTSET,= {Ay, A3}, NEXT,=A;; NEXTSET,= ¢, NEXT,=X; and
NEXTSETg = {A,, Ag}, NEXTg= A,

Lemma 9. T}, | NEXTSET; | < Bc(S).

Proof. For two arcs A; and A, in S, if A, € NEXTSET;, then there exists at least one
MLAF of § which contains both A; and A,. Furthermore, for any other arc A; in NEXTSET;,
there is no MLAF that contains both A, and A, since they intersect with each other. These
imply that, for each arc A; € S, there are at least | NEXTSET; | MLAF’s which contain A;.
This completes the proof. O

If NEXTSET; is found for every arc A; € S, then it is easy to determine NEXTLIST;’s

and NEXT;’s. Using a bucket sort algorithm (1], this can be done in O (n+B¢(S)) time due to

18

Lemma 9. Furthermore, once NEXT; and NEXTLIST; are found for every arc A;, one can exe-
cute Steps 5 of Algorithm 3 in O(n+8¢(S)) time by using a procedure given by Leung [16].
Thus, the only remaining problem is to efficiently find NEXTSET; for every arc A;.

For two arcs A; and A, in FAg, if t; <h;, they are independent from each other. This
implies that 4, € NEXTSET; if and only if the digraph G° has an edge (w; —w,). Therefore,
we can determine NEXTSET; for every forward arc A; in O (n +8¢(S)) time.

Suppose that BAg = {A,-l, Ajy ooy Aj*} with by <t;, < - <t For 1= 1,2,...,k, the fol-
lowing procedure first discards all forward arcs A, such that h <t; since they intersect with

A;. Let FAs denote the set of all the remaining forward arcs. The procedure then finds an arc

4

A, whose tail has the smallest coordinate among all arcs in FAs . I A, intersects with Aj,
there is no forward arc which is independent from A, and hence NEXTSET; = ¢. On the
other hand, if 4, does not intersect with 4;, we know that A, € NEXTSET; . In this case, the

procedure finds all arcs in FAg that contain the tail of A, and are independent from A; .

Procedure 3.
Sort the arcs in FAg in ascending order of the coordinates of their tails.
FAg « FAs.
for each arc A; € BAs do NEXTSET; « ¢.
for ¢ — 1 until ¥ do
a) FAg — FAs —{A, € FAs |h, <t;}.
b) if FAs ¢ then ,
(1) Find an arc A, such that ¢, = Min {t, | A, € FAs }.
(2) if t, <h; then
NEXTSET;, «— NEXTSET; U {4,} U {4, € FA5 |k, <t, <t;<h;}. O

Lo

In order to execute this procedure efliciently, we maintain the arcs in FAs by means of
two kinds of data structures. The first one is a doubly-linked list DLIST which stores all arcs in
FAg in ascending order of the coordinates of their tails. The second one is a segment tree T

whose root corresponds to interval [1, 2n]. (We refer the reader to Bentley and Wood [4] for the

19

definition of and basic operations on a segment tree.) Initially, for each arc A; € FAg, a seg-
ment I; = [h;, t;] is created and inserted into Ts. Each node v of Ts represents an interval I”
and is associated with a set of segments $” which cover I*. We maintain $° in the form of a
sorted list in which the segments are stored in ascending order of the coordinates of their right
endpoints, that 1s, the coordinates of the tails of the corresponding arcs. For example, Fig. 7
shows the segment tree for the segments which correspond to the forward arcs in the family of
arcs of Fig. 6(a).

Step 1 of Procedure 3 can be carried out in O (n) time by a bucket sort algorithm [1]. In
Step 2, we can insert, in O (n -logn) time, all the segments that correspond to the arcs in FAg ,
into the segment tree Ts by the method developed by Bentley and Wood[4]. Thus, Step 2
including the insertions of the elements into DLIST requires only O(n -logn) time. Step 3 takes
O (n) time to execute. We show below that Step 4 can be executed in O (n ‘logn +8¢(5)) time.

To execute Step 4.a), we visit the endpoints of the arcs in FAs one by one in ascending
order of their coordinates. More specifically, in the case of ¢=1, we scan points 1,2, ..., ¢;
and remove from FAg all arcs whose endpoints are encountered. In the case of i >2, we visit
points £; .1, t; 42, oo b, -1 and remove all the unnecessary arcs. Thus, each endpoint is visited
at most once. Each time we find an arc A; which is to be removed from FAg , we can delete it
from DLIST in O (1) time and I; from Ts in O (logn) time. Therefore, the total time required
for Step 4.2) is O (n -logn).

Each execution of Step 4.b)(1) requires only O(1) time since the desired arc A, 1s the
first element of DLIST. Recall here that, for each node v of Tg, the segments in S° are previ-
ously sorted in ascending order of the coordinates of the tails of the corresponding arcs. Thus,
for i=12,..,k, we can carry out Step 4.b)(2) in O (logn + | NEXTSET; |) time by searching Ts

in the manner described in Bentley and Wood[4]. Therefore, the total time required for Step 4

20

of Procedure 3 is O (n-logn +T/; | NEXTSET; |), which is bounded by O (n logn+8¢(S)) due
to Lemma 9.

Since the other steps of Procedure 3 require O (n -logn) or less time, its overall time com-
plexity is O(n-logn +8¢(S)). Therefore, for the reasons mentioned before, we can execute
Step 5 of Algorithm 3 in O (n logn +8¢(S)) time.

We have already shown that the other part of Algorithm 3 can be executed in
O (n-logn +8¢(S)) time. Therefore, we have the following lemma and theorem.

Lemma 10. The time complexity of Algorithm 3 1s O (n ‘logn +8¢(S)). O

Theorem 5. For any family of n arcs S, one can generate all MLIS’s of G,(S) in
O (n-logn +8¢(S)) time. This time complexity is optimal to within a constant factor.

Proof. As claimed in the preceding section, one can construct in O(n-logn) time a
canonical family of arcs §° such that Gg(S)= G4(S'). Thus, from Lemma 10, all MLIS’s of
G¢(S) can be generated in O(n logn +8¢(5)) time. It is obvious that every interval graph is a

circular-arc graph. Therefore, for the same reason as mentioned in the second part of the proof

of Theorem 2, our algorithm is optimal to within a constant factor. O

7. Enumeration of Maximum Independent Sets of a Circular-Arc Graph

Let S = {A,, Ay ..., A, } be a canonical family of arcs on a circle C'. For a subset 5",
we denote by oS’) the cardinality of an MMAF of s" and by 6.(S") the total sum of the car-
dinalities of all MMAF’s of §'. Furthermore, for each backward arc A;, we define o, to be
Maz {| X | | X is an IAF of S which contains A;}. Let AD; be the set of arcs in § which inter-
sect with A;. Then, it is easy to see that af= oS - {A;} - AD;)}+1. Thus, we have the follow-

ing algorithm for generating all MMAF’s of §.

21

Algorithm 4.
Q «—¢.
Determine «(S) and o FAs).
if o(S) = a(FAs) then generate all MMAF’s of FAs and add them to Q.
for each backward arc A; € BA; do determine o}

for each backward arc A; € BAg such that a;=0a(S) do
a) Q; « theset of all MMAF’s of S - {4;} - AD;.
b) @ —Q U{X U{A;}|X €Q;}.

6. output @.Q0O

AR

We now explain how we execute Algorithm 4 in O (n?+64(S)) time. Since the Masuda-
Nakajima algorithm [18] finds an MMAF of S in O(n) time, o(S) can be determined in O (n)
time in Step 2. As explained in the preceding section, we can construct in O{n) time a canoni-
cal family of intervals F¥ such that G;(F°) = G¢(FAs). Therefore, Procedure 2 can be used to
determine a(FAg) in O(n) time due to Lemma4. If ofS) = a(FAs), all MMAF’s of FAg are
MMAF’s of § and they are generated in Step 3. Such generation can be done by applying Algo-
rithm 2 to F®, which requires O(|FAg | +6o(FAs)) time from Lemma 6. For each arc
A; € BAg, a family of arcs § - {A;} - AD; does not contain any backward arcs. Thus, as is the
case for FAg, such a family of arcs can be treated as a family of intervals, and hence Pro-
cedure 2 can determine o in O(n) time. Furthermore, if o;'= a(S) for a backward arc A;, we
can find @; in O(n+6c(S - {A;}- AD;)) time by using Algorithm 2. Therefore, Steps 4 and 5
can be executed in O (n?+64(S)) time. Consequently, we have the following theorem.

Theorem 6. For any family of n arcs S, one can generate all MMIS’s of Go(S) in

O (n2+B(S)) time. O

8. Conclusion
In this paper, we have presented algorithms for enumerating the maximal and maximum
independent sets of an interval graph and a circular-arc graph. The algorithms are optimal to

within a constant factor except the one for generating all maximum independent sets of a

22

circular-arc graph. An optimal algorithm for this case remains to be found. It is also interesting

to consider the same generation problems for other classes of graphs.

References

1]

[10]

[11]

12]

A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, MA, 1974.

A. Apostolico and S. Hambrusch, “Finding Maximum Cliques on Circular-Arc Graphs,” to
appear in Information Processing Letters.

T. Asano, T. Asano and H. Imai, “Partitioning a Polygonal Region into Trapezoids,” J. of
the Association for Computing Machinery, Vol. 33, pp. 290-312, 1986.

J. L. Bentley and D. Wood, “An Optimal Worst Case Algorithm for Reporting Intersec-
tions of Rectangles,” IEEE Trans. on Computers, Vol. C-29, pp. 571-576, July 1980.

K. S. Booth and G. S. Lueker, “Testing for the Consecutive Ones Property, Interval
Graphs, and Graph Planarity Using PQ-Tree Algorithms,” J. on Computer and System
Sciences, Vol. 13, pp. 335-379, 1976.

M. R. Garey and D. S. Johnson, Computers and Intractability - A Guide to the Theory of
NP-Completeness, W. H. Freeman and Co., San Francisco, CA, 1979.

M. R. Garey, D. S. Johnson, G. L. Miller and C. H. Papadimitriou, “The Complexity of
Coloring Circular Arcs and Chords,” SIAM J. on Algebraic and Discrete Methods, Vol. 1,
pp. 216-227, 1980.

F. Gavril, “Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by
Cliques, and Maximum Independent Set of a Chordal Graph,” SIAM J. on Computing,
Vol. 1, pp. 180-187, 1972.

F. Gavril, “Algorithms for a Maximum Clique and a Maximum Independent Set of a Circle
Graph,” Networks, Vol. 3, pp. 261-273, 1973.

F. Gavril, “Algorithms on Circular-Arc Graphs,” Networks, Vol. 4, pp. 357-369, 1974.

M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New
York, NY, 1980.

U. I. Gupta, D. T. Lee and J. Y.-T. Leung, “An Optimal Solution for the Channel-
Assignment Problem,” IEEE Trans. on Computers, Vol. C-28, pp. 807-810, 1979.

23

[13]

14]

15)

16

[17]

18]

[19]

[20]

[21]

[22]

23]

U. I. Gupta, D. T. Lee and J. Y.-T. Leung, “Efficient Algorithms for Interval Graphs and
Circular-Arc Graphs,” Networks, Vol. 12, pp. 459-467, 1982.

W.-L. Hsu, “Maximum Weight Clique Algorithms for Circular-Arc Graphs and Circle
Graphs,” SIAM J. on Computing, Vol. 14, pp. 224-231, 1985.

J. M. Keil, “Finding Hamiltonian Circuits in Interval Graphs,” Information Processing
Letters, Vol. 20, pp. 201-206, 1985.

J. Y.-T. Leung, “Fast Algorithms for Generating all Maximal Independent Sets of Interval,
Circular-Arc and Chordal Graphs,” J. of Algorithms, Vol. 5, pp. 22-35, 1984.

G. S. Lueker and K. S. Booth, “A Linear Time Algorithm for Deciding Interval Graph Iso-
morphism,” J. of the Association for Computing Machinery, Vol. 26, pp. 183-195, 1979.

S. Masuda and K. Nakajima, “An Optimal Algorithm for Finding a Maximum Independent
Set of a Circular-Arc Graph,” to appear in SIAM J. on Computing, 1987.

T. Ohtsuki, H. Mori, E. S. Kuh, T. Kashiwabara, and T. Fujisawa, ‘“One-Dimensional
Logic Gate Assignment and Interval Graphs,”’ IEEE Trans. on Circuits and Systems,
Vol. CAS-26, pp. 675-684, 1979.

M. I. Shamos and D. Hoey, “Geometric Intersection Problems,”” Proc. of the 17th Annual
IEEE Symposium on Foundations of Computer Science, Long Beach, CA, 1976, pp. 208-
215.

A. Tucker, “An Efficient Test for Circular-Arc Graphs,” SIAM J. on Computing, Vol. 9,
pp. 1-24, 1980.

O. Wing, S. Huang, and R. Wang, “Gate Matrix Layout,” IEEE Trans. on Computer-
Aided Design, Vol. CAD-4, pp. 220-231, July 1985.

O. J. Yu and O. Wing, “Interval-Graph-Based PLA Folding,” Proc. of the 1985 IEEE
International Symposium on Circuits and Systems, Kyoto, Japan, June 1985, pp. 1463-
1466.

24

L]
e
Te}
@ B Gl x
-|.7 [Jo]
-yt S ©
0 ﬂ - —
S
re T2 L
g N [\
-
- .
st D= @
5 S |
| ity e bbbttty A N 1N
N
-------- fe) [S I I———
o~ t -
— ~ ~
| Gt s ettt i© a
o™ S o S
I' Gy
........ ~ - R =2
- -oommnenn ©0 &——meeee ©
L 1w L et o~
................ g ~r R b DLt [o
—
g 1m S SRR wn
L e 4N
....................... 1= i ettt £ 30

(b) A noncanonical family of intervals.
(¢) The corresponding interval graph.
25

Fig. 1. (a) A canonical family of intervals.

*——=e ® =

———o }PREi =PRE;4

o— 2]

——o 9

*————9
PRE,. e
@

PRE;-PRElj [H -
PREH.] i

(b)

Fig. 2. The relationship between PRE; and PRE;,,.
(a) The case in which point ¢ is the left endpoint of I;.
(b) The case in which point i is the right endpoint of I.

28

(a) G PRECEDE;=({wp). (b) G, PRECEDE3={wp}. (c) G3.PRECEDE,={wy).

o
WO w1 w2
W
2 W W,
"3 7. Y%
(d) G,. PRECEDEg={w}. (e) Gyy. PRECEDE;5={w, Wg, Wo).

Fig. 3. Generation of all MLIF’s of the family of intervals of Fig. 1(a).

27

Fig. 6. (a) A canonical family of arcs.
(b) The corresponding circular-arc graph.

29

[1,16]

[1.8] [8.16]
[1.4] [4.8] [8.12) [12,16]
B -l Alalls
24 (46l (e8]} [B10F, [10.21% 117 14] °(14,16]
23 | s} \ 7 | 88l \fonly \reasly | el |
[1,2] (341 (5,60} [7.8] [sq0} ¢ mad (334 i [15.6]

'\@ :‘@ ‘.‘ \

1 2 3 4 5 6 7 8 9 0 1 12 13 1w
. I] * . [2 .
~————o
I3 .- 34

5 16

Is

Fig. 7. The segment tree for the forward arcs in the family of arcs of Fig. 6(a).

' 80

®

