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Plasma-neutral interactions are considered for a centrifugally confined plasma,

such as the Maryland Centrifugal eXperiment (MCX), wherein a crossfield plasma

rotation inhibits plasma escape along the magnetic field. Interactions along the

magnetic field are considered first. Analytic and numerical solutions from a simple

one-dimensional isothermal model are obtained. It is shown that for perfect recycling

the neutral density at the wall is exponentially smaller than the central plasma

density for strong centrifugal confinement compared to the case of no confinement

for which the neutral wall density equals the central plasma density. The exponential

factor is effectively exp (−M2
s /2), where Ms is the sonic Mach number of the rotation

speed. The effective neutral penetration depth along the field, of the same order as

the crossfield penetration depth in the zero confinement limit, increases significantly

in the strong confinement case. From the one-dimensional cold-ion calculation, the

ratio of the neutral densities at the end-wall to the side-wall, N||/N⊥, is much larger

than unity for weak confinement. But when Ms is about 3, the two densities are

about equal and the inequality reverses beyond that.



We next extend an existing MHD numerical code to include the neutral fluid,

allowing two dimensional study. Slab geometry has been used with a reasonable

force model for the confinement mechanism. We found that when the rotation Mach

number is about 3.7, N||/N⊥ = 1. The experimental relevant interaction parameter,

nN , is also shown to be peaking at the side-wall rather than the end-wall when

confinement is strong. A preliminary study in MCX geometry is also carried out

giving first results for more realistic 2D structures.

Finally, an analytical study of momentum confinement time due to dissipative

processes at the insulator is commenced. The momentum loss along the field line

to the insulating end-wall might be a concern. Classical Hartmann theory suggests

that the MCX results would not be obtainable. By including the Hall effect in the

Hartmann problem, an analytical solution is found and has the potential to increase

the momentum confinement time by factor of
√

ǫ/η where ǫ = c/ωpiL and η is

resistivity normalized to 4πLV a/c2.
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Chapter 1

Introduction

1.1 Motivation

In the centrifugal scheme for fusion plasma confinement[1], a plasma in a

shaped axial magnetic field is made to rotate crossfield with the idea that the plasma

can be confined axially due to the component of the centrifugal force along the

shaped field (see Fig. 1.1). This idea is recently being actively investigated in the

Maryland Centrifugal eXperiment (MCX)[2, 3, 4, 5] (see Fig. 1.2 for its implemen-

tation). The success of this scheme depends greatly on the efficiency of maintaining

the required supersonic azimuthal flow: if the flow is subsonic, not only is axial

confinement poor, but the plasma is linearly unstable to the interchange mode since

the latter mode is stabilized by large velocity shear[6, 7, 8].

In an ideal plasma, once the rotation has been set up by an initial radial cur-

rent, no more torque is required to maintain the plasma rotation. However, on the

longer dissipative time scales, viscosity and friction slow down the plasma and a ra-

dial current drive with circulating input power is necessary for maintaining the flow.

An accounting of momentum losses is essential to assess the feasibility of centrifu-

gal confinement as a fusion system. In a recent MCX investigation[3], momentum

confinement time has been measured to be (100− 200µs). This time is much longer

than ideal instability growth times, supporting the idea that the plasma is possibly
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Figure 1.1: Schematic diagram explaining the basic concept of centrifugal confine-

ment. The plasma is being rotated (by a radial E-field, not shown her) across the

strong external mirror B-field. The parallel-to-field component of the centrifugal

force then confines the plasma in the mid-plane region.

Figure 1.2: Schematic diagram of the implementation of Maryland Centrifugal eX-

periment(MCX). The mirror field, which is provided by the coils surrounding the

chamber, ends at the insulating end plate. The E-field, which is used to drive the

rotation, is maintained by a voltage difference between central axial conductor and

the outer conducting chamber. Note that only the upper half of the system is shown.

2



stable to the interchange. The time, however, is much shorter than the classical

crossfield plasma viscous damping time scale(8000µs). One explanation is that the

dominant drag is due to the charge-exchange(CX) interaction between plasma ions

and the neutral particles emergent from the boundary region. Charge exchange

loss processes are generally important in small fusion experiments on account of

the smaller size and low temperature with the attendant higher fraction of neutral

density in the plasma interior; thus, this is likely the explanation. In the MCX

experiment, it is imperative to obtain an understanding of the neutral density dis-

tribution to ascertain whether friction due to CX is the explanation of the mentioned

time scales discrepancy. This is particularly so because another potent loss mecha-

nism in MCX could be residual turbulence from weakly unstable interchange modes.

It is difficult to get a direct measurement of the latter and present experiments can-

not rule out this possibility as a loss mechanism. A more precise understanding of

neutral distributions would also put bounds on the residual turbulence. Studies of

the edge physics in fusion devices have been of great interest in recent years (see

[9, 10] for reviews and references). It has been know that edge/neutral effects are

imporant[11, 12, 13]. A number of numerical codes have been developed, for exam-

ple UEDGE[14] (fluid approach) and DEGAS[15] (kinetic approach). Various one

dimensional fluid models of plasma-neutral equilibrium systems have also been de-

veloped for different configurations and parameter regimes, see for example [16, 17].

However, a plasma-neutral equilibrium study in a centrifugal confinement system is

still lacking. Thus, the main part of this dissertation is to investigate the neutral

density distribution in such system.
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Our main motivations in studying neutrals in a centrifugally confined plasma

is to understand how it affects the azimuthal rotation mechanism. We are very

interested in understanding whether the frictional forces, due to the charge-exchange

interactions between plasma and neutrals, would downgrade the rotation efficiency.

Suppose now we model the local strength of the dragging force on a plasma system

by a parameter µ. One would find that the way µ affect the plasma rotation is

very different depending on the spatial dependence of µ. The dominant dragging

mechanism depends on whether the strong µ region is connected to the plasma core

through a strong magnetic field or not. Also, the momentum confinement times due

to the two different mechanisms are very different. More explicitly, we take MCX as

an example. If µ is large only around the side-wall, the core rotation would only be

affected through fluid collision drag. However, if µ is large at the end-wall instead,

the core crossfield flow would be hindered by both of the fluid collision drag and the

magnetic field line strength, in a combinational manner. Hartmann was the first to

describe this latter mechanism in 1937[18], when he studied liquid metal flow across

magnetic field. In order to push a Hartmann flow, breaking the frozen-in condition

is crucial. In the classical Hartmann case, this breaking occurs because there is non-

zero resistivity. However, we found that, by including the Hall effect in Ohm’s law,

an even more prominent breaking of frozen-in is possible (due to the normalized Hall

parameter is larger than the resistivity by order of magnitude). Thus, an estimation

of this non-frozen-in effect in confinement time is extremely important.
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1.2 Outline of Dissertation

The aim of this dissertation is to gain more understanding of the neutral

distribution in a centrifugal confined plasma as well as the momentum confinement

time due to the drag forces.

In Chapter 2, we give semi-analytical fluid models and solutions to one-

dimensional plasma-neutral equilibria. Both the crossfield and parallel-to-field with

various confinement strengths are studied. These give a baseline to our full un-

derstanding of the two-dimensional system. In general, the problem is at least

2-dimensional in a shaped field. A two dimensional analytic solution is, however,

not straightforward. Goldston and Rutherford[19] have provided a one dimensional

analytic solution for plasma and neutral density profiles for the crossfield problem.

We review their calculation and also give a modified version which includes the den-

sity dependence of the classical crossfield diffusion coefficient. Our main focus in

Chapter 2 is to study the analogous problem along the B-field line, including the

centrifugal force physics. An understanding of each problem separately can then

help in the understanding of the full 2D problem. Our aim is to assess the role of

centrifugal confinement, which dominantly alters the density profile along the field.

We find as our main result that the neutral density at the wall boundary decreases

exponentially with increasing confinement strength (i.e., the rotation speed). We

also find that the neutral penetration length increases with strong confinement, due

to the reduced plasma density around the boundary.

However, a study of neutral penetration in centrifugally confined plasmas must

5



take into account the effects of centrifugal force as well as the interplay between

parallel and perpendicular plasma particle losses. In Chapter 3, we study plasma-

neutral equilibria of MCX by “MHD-plus-neutral” numerical simulations in two-

dimension. The model system is a slab geometry with a centrifugal confinement

modeling force. The main focus is how the centrifugal confinement strength changes

the neutral distribution in two-dimension. An estimation of the critical rotation

Mach number is obtained at which point the dominant neutral density region shifts

from end-plate to the side-wall. A preliminary MCX simulation is carried out in

Appendix E which gives some interesting results which is not available in the slab

geometry.

In Chapter 4, we consider how Hartmann flow would affect the MCX-like

rotation. We firstly review the classical Hartmann problem. Then we extend the

problem to include Hall effect and solve it analytically. We also assess and compare

the momentum confinement time in each case.

Finally, we conclude the dissertation in Chapter 5.

1.3 Physics Overview and Approaches

In the following, we give a qualitative introduction of the main physical phe-

nomena that we address and the approach we use to handle them in this dissertation.

In studying the neutral penetration of a system, we need to understand what the

sources of the neutral particles are. In MCX, apart from the pre-fill pressure, the

neutral sources are the end-wall and the side-wall (see Fig. 1.2). Since plasma-
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solid/boundary interactions is a very complicated subject, as a first study, we would

only consider neutral particle recycling of the same species as the plasma, ionization,

charge-exchange (CX) interaction and recombination. Readers who are interested

in other physical phenomena, for example the physical or chemical sputtering (and

control) of impurities, sheath/presheath physics, target design, radiative power loss,

should consult Post and Behrisch[20], Wesson[21] and Stangeby[16]. Fig. 1.3 shows

what happens when a solid surface is placed inside a plasma. This solid surface

acts as a sink of charged particles. (Indeed, a sheath is formed on the solid sur-

face and Langmuir[22] is among the first to study it. Bohm[23] provides a sheath

boundary condition which demands the plasma flow entering the sheath at least

at sound speed.) After the charged particles recombine at the surface, since the

newly formed neutral particle is weakly bounded to the surface, it will re-enter the

system[16]. There are two possible fates for this neutral particle. First, it could be

ionized very quickly at the boundary region by colliding with an electron. Second,

it could undergo a resonant process called CX interaction with the plasma ion[19].

The relatively hot plasma ion receives an electron from the neutral and becomes

a neutral particle while the original colder neutral particle becomes an ion. Be-

cause the energy change involved in the two particles exactly cancel, it is a resonant

process and believed to be important in plasma-wall equilibria. The CX-generated

neutral particle is more energetic than the original neutral particle. It allows the

neutral particle to go deeper into the system and therefore a deeper neutral pene-

tration. Fig. 1.4 shows the process pictorially. Of course, at a certain point inside

the plasma, almost all of the neutral particles would be ionized due to the core’s

7



high temperature. The plasma would then diffuse out to the wall again. Fig. 1.5

shows schematically the particles recycling in a plasma-wall system.

Figure 1.3: Recycling of particles. A solid surface tends to be a plasma sink.

Charged particles are absorbed by the surface and recombine. A neutral parti-

cle then re-enter the system. Perfect recycling is required in a steady state without

external particle source.

In order to have an accessible and intuitive understanding of the plasma-

neutral equilibrium, we will approach the problem from a fluid point of view1. (For

kinetic theories and sheath physics, see [22, 24, 25]2). The MHD equations are mod-

ified to reflect the ionization, recombination and CX interaction. Ionization and

recombination appear as source and sink terms in the plasma continuity equation.

CX interaction not only allows the neutral particle penetrate deeper into the core,

it also acts as a frictional force for the faster moving species of the two. There-

fore, a CX terms is added to the plasma momentum equation. We also put the

1Throughout this study, we will assume temperature is constant.
2See[26, 27], for recent controversy on the understanding of sheath and the fluid-sheath bound-

ary conditions.
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Figure 1.4: Charge-exchange process: Relatively high temperature ion receives an

electron from a neutral particle at the edge region and becomes a neutral. The

newly born neutral particles is more energetic than the original neutral allowing it

to penetrate deeper into the plasma.

Figure 1.5: Schematic of the main physics in the plasma-neutral particle equilibrium.

Plasma recombine and recycle to neutral at the boundary while neutral particles re-

enter the system through charge-exchange interaction and are ionized to refuel the

plasma.

9



plasma and neutral in an equal footing. In other words, we will treat the neutral

as a separate fluid. The whole system then conserve total number of particles and

momentum internally (apart from any loss due to specific boundary conditions). In

using the fluid approach, we assume that the neutral charge-exchange mean free

path, λ ∼ vN/ 〈σcxvi〉ni ∼ vi,th/ 〈σcxvi〉ni, where 〈σcxvi〉ni is the CX rate and vN

and vi are the neutral and ion speeds respectively, is much smaller than any macro-

scopic scale length, L. It is known that the neutral penetration length l0 is about

vi/ni

√

〈σcxvi〉 〈σionvi〉. Thus, if we use L ∼ l0, the fluid assumption criteria is trans-

lated to the condition 〈σcxvi〉 / 〈σionvi〉 >> 1, where 〈σionvi〉ni is the ionization rate.

In the current operation temperature of MCX, 〈σcxvi〉 / 〈σionvi〉 & 1, which means

that the fluid assumption criteria is only marginally satisfied.

The major difficulty of a plasma-wall simulation is to determine a set of self-

consistent boundary conditions for the equations. In a one-dimensional parallel-to-

field analysis, the boundary condition is more or less known. The Bohm criteria[23]

gives the plasma flow condition and the conditions for other quantities follows. In

the crossfield calculation, the boundary conditions are not very well known[16]. Yet,

a relatively small plasma density at the boundary should be a reasonable assumption

because it is expected that the plasma particles recombine at the relatively lower

temperature walls. Based on this assumption, the analytical calculation in Chapter

2 uses nw = 0 as a boundary condition. Unfortunately having plasma density

vanish in the full two-dimensional simulation is not a choice as it implies an infinite

Alfvén speed. Thus, we develop a recombination layer(RL) method, which ensure

a relatively small (but not too small) boundary density at the wall, for the two-

10



dimensional simulation in Chapter 3. In principle, the parameter of the RL could

be adjusted in such a way that the wall plasma density agrees with experimental

data.

For a full MCX geometry analysis, we need to understand more about the

boundary conditions because field lines are tilted at some parts of the boundary[28,

29]. Also the Hartmann flow physics enforces a relatively thin boundary layer with-

out considering Hall physics. These are difficult to deal with numerically in the

present stage. Yet, in Appendix E, we provide a preliminary simulation result, by

bypassing these questions.
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Chapter 2

Theories on One Dimensional Equilibria

In this chapter, we consider both of the crossfield and along the field one-

dimensional plasma-neutral equilibria for a centrifugally confined plasma. The cross-

field neutral penetration problem was considered by Lehnert[30, 31, 32] wherein

he discussed the long and short neutral mean free path limits. Goldston and

Rutherford[19] provide a simple analytical model for it in the short neutral mean free

path limit. In section 2.1, we review Goldston and Rutherford’s crossfield calculation

and provide a modification to their theory by assuming the diffusion coefficient D⊥

is strictly classical. That is, we consider D⊥ proportional to plasma density n rather

than being constant. Our main focus in this chapter is the parallel-to-field neutral

penetration under the influence of confinement force. In section 2.2, we will tackle

the plasma-neutral equilibrium problem in the parallel-to-field direction. Both the

no-confinement and confinement cases are considered. In the confinement case, it

is shown that the centrifugal confinement force can be represented by a gravity-like

force pulling the plasma toward the core along the field. This allows us to model

the confinement force in 1D. Numerical studies have been carried out for the finite

confinement case. We also solve the asymptotic solution in the strong confinement

limit.
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2.1 Crossfield Equilibria

In this section, we study the plasma-neutral equilibria in the cross-field direc-

tion, as a complement to the parallel direction calculation. In the crossfield direction,

the plasma thermal pressure is mainly balanced by the magnetic pressure. This is

the celebrated idea of magnetic confinement. The neutral pressure (and therefore

neutral charge-exchange) is relatively small for moderate plasma density. That is,

the charge-exchange drag is secondary when considering plasma momentum. For

the plasma flow, it is determined by the induction equation with the aid of the

resistive ohm’s law, in steady state:

∂x(uxBz) = η∂xxBz , (2.1)

where x is the crossfield coordinate, z is the dominant B-field direction. Because we

have conducting boundary condition, the magnetic flux has to be conserved. This

conservation is guaranteed. It is because the B-flux brought outward by the plasma

diffusion is canceled by the resistivity inward B-flux diffusion. On the other hand,

neutral is not affected by the B-field directly. The neutral pressure is balanced by

the charge-exchange (CX) drag.

Goldston and Rutherford[19] have developed a simple theory for this problem.

They treat the plasma diffusion coefficient as a constant while keeping the inverse

density dependence for the neutral diffusion coefficient. This dependence is due to

the CX interaction. Simple analytic solutions for the plasma and neutral densities

and the neutral penetration depth have been obtained in their treatment. We will

present it in the next section. We will see that the penetration depth in the cross-field

13



direction is of the same order as that in the parallel direction . It also shows that the

ratio of boundary neutral density to the core plasma densities is equal to the ratio

of the diffusion of the plasma to that of the neutral. Note that this behavior is not

unique to the crossfield balance. A simple extension to the treatment of Goldston

and Rutherford by including the density variation in the classical plasma diffusion is

also presented and similar conclusion to the original treatment is obtained, although

detailed solution profiles are different.

2.1.1 Goldston and Rutherford Calculation Review

In this section, we present Goldston and Rutherford’s quantitative treatment[19]

on the penetration of neutral into plasma. Their starting equations are

∂n

∂t
= D

∂2n

∂2x
+ αinN

∂N

∂t
=

∂

∂x

(

DN
∂N

∂x

)

− αinN ,

(2.2)

where t is time, x is the crossfield spatial coordinate, n and N are the plasma

and neutral densities respectively and αin is the ionization rate. D is the constant

plasma diffusion coefficient. DN = T/Mαcxn, where αcxn is the charge-exchange

rate, is the neutral diffusion coefficient due to charge exchange. In this calculation,

Goldston and Rutherford assume “perfect recycling” of particles. That is to say

that whenever an ion hits the wall, it becomes a neutral particle by recombining

with an electron and return back to the system. Using this assumption, and the

boundary conditions Ncore = nw = 0, they obtain the following ordinary differential
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equation

∂n

∂x
=

(

αi

4DN,corencore

)1/2
(

n2

core − n2
)

. (2.3)

An analytic solution for Eq.(2.3) is given by,

n(x) = ncore tanh(x/x0)

N(x) = Nwsech2(x/x0)

x0 =

(

4T

Mαiαcxn2
core

)1/2

Nw

ncore

=
D

2DN,core

.

(2.4)

First, it can be seen that the profile scale length, that is also the neutral penetration

depth, x0 is of the order of
√

T/Mαiαcxn2. Second, the ratio of the neutral wall

density to the plasma core density Nw/ncore is inversely proportional to their diffu-

sion coefficient. It will be seen that the above two points are indeed also applicable

to the parallel direction.

2.1.2 Modified Goldston Calculation

In the last section, we presented Goldston’s solution for the neutral penentra-

tion in the cross-field direction, taking account of the plasma density dependence in

the neutral diffusion coefficient but not in the plasma diffusion coefficient. In this

section, we would like to present a small extension of Goldston’s calculation to in-

clude the plasma density variation in the plasma diffusion. It shows that the neutral

penetration length in this modification is of the same order as original calculation.

The only change is the details of the solution profiles.
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We start with the same set of equations but with diffusion coefficient changed,

Dn′ +DNN
′ = 0 (2.5)

(Dn′)′ = −αinN, (2.6)

where the prime denotes derivatives respect to x, D = n(ηT/B2) ≡ nSn and DN =

(T/Mαcx)/n ≡ SN/n with constants Sn and SN . By carrying out some algebra

similar to the last section, again, demanding that n′
core = 0 and Ncore = 0, we find

(n̂2)′′ =
2

3
(n̂4 − n̂), (2.7)

where densities and lengths have been rescaled with ncore and l0 =
√

SN/αin2
core =

√

T/Mαiαcxn2
core respectively. By carrying out simple variable transformations,

Eq.(2.7) can be solved analytically with solution

ln(
1 − n̂

1 − n̂w

) − 1

2
ln(

1 + n̂ + n̂2

1 + n̂w + n̂2
w

) +
√

3 tan−1

[ √
3(n̂− n̂w)

2 + n̂ + n̂w + 2n̂n̂w

]

= −x̂ (2.8)

where n̂w is the normalized plasma density at the wall assumed to be given as a

boundary condition. For illustration purpose, we take n̂w = 0 as the boundary

condition here. The neutral wall density can be found to be

N̂w =
Sn

3SN

n̂2

core , (2.9)

or

Nw

ncore
=

Dcore

3DN,core
. (2.10)

Once again, it illustrates that the ratio of the neutral wall density to the plasma core

density is inversely proportional to their respective diffusion coefficient. The factor

3 reflects the detail power dependence of the coefficients on the plasma density. It
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is found that the first term on the LHS of Eq.(2.8) is dominant over the second and

the third term when n̂ is greater than 0.2. Therefore, we could approximate the

solution as, in the dimensional form

n =
(

1 − e−x/l0
)

ncore . (2.11)

Note that the analytic solution Eq.(2.8) is only applicable when the system size is

much larger than l0 so that Ncore vanishes. However, we will see in Chapter 3 that

this is not the case for MCX because the width of the system is about 20 − 30 cm

while l0 is about 5 cm. Therefore, in order to have a tool to justify our 2D simulations

result, we better to have a way to find the 1D solution for a moderate size system.

It turns out that we can find a high order non-linear differential equation in n by

combining Eqs.(2.5) and (2.6) without imposing any boundary condition at this

stage, we then have

(n3)′ =
3SN

2αi

[

(n2)
′′

n

]′

, (2.12)

in dimensional form. We would like to emphasize that this equation contains the

same physics as the solution Eq.(2.8). The only difference is that Eq.(2.8) is obtained

after imposing the infinite system size conditions, including Ncore = 0 and n′
core = 0

while Eq.(2.12)’s boundary conditions are yet to be imposed. Once we get n(x),

the solutions for other quantities follow as, by assuming perfect recycling condition,

nu = −NU ,

u =
ηn′T

2C
(2.13)

N =
(nu)′

αin
(2.14)
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U = −nu
N

(2.15)

B =
√

2(C − nT ) , (2.16)

where C ≡ B2
core/2 + ncoreT . We will return to Eqs.(2.12)-(2.16) when we validate

the 2D numerical code in Chapter 3.

2.2 Parallel-to-field Equilibrium

The governing equations for a plasma and neutral fluid are,

∂n

∂t
+ ∇ · (nu) = αiNn (2.17)

∂Mnu

∂t
+ ∇ · (Mnuu) = −T∇n + J ×B − αcxMNn(u − U) (2.18)

+αiMNnU (2.19)

∂N

∂t
+ ∇ · (NU) = −αiNn (2.20)

∂MNU

∂t
+ ∇ · (MNUU) = −T∇N + αcxMnN(u − U) (2.21)

−αiMNnU , (2.22)

where n and u are the plasma density and velocity respectively and N and U are the

corresponding quantities for the neutrals. The products αin and αcxn are the ioniza-

tion and charge-exchange (CX) rates respectively. The last two terms in Eqs.(2.19)

and (2.22) represent momentum exchange between plasmas and neutrals[33]. The

ideal gas law is assumed to be true for the plasma and neutral kinetic pressures,

namely p = nT and pN = NT respectively. Here, we assume isothermal conditions

for simplicity. Perfect recycling of neutrals, nwuw = −NwUw at the boundaries will

be assumed. The immediate consequence of this is that the system conserves the to-
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tal number of particles, that is
∫

(n+N) d3x is constant. The above system should

be closed by the Maxwell equations for B, with J ≡ ∇× B. However, in what fol-

lows we assume that the magnetic field is very strong and thus, to lowest order, B is

just the vacuum, potential field. Then, only the B component of Eq.(2.19) is used

and J is not required for the parallel balance. Azimuthal symmetry will be assumed

in the following discussion. Note the equations we are using (apart from geometry)

have effectively identical physical terms to the numerical code UDEGE[14] except

we always solve the full neutral momentum equation and do not use an effective

diffusion coefficient. However, no isothermal assumption is used in UEDGE. Our

focus here is the centrifugal confinement, which has not been studied.

2.2.1 Derivation of Equations and Normalization for Equivalent 1-D

Problem

We begin by deriving equations for the two fluids for dynamics along the

shaped magnetic field. The field is assumed to be purely poloidal and axisymmetric,

thus

B = −∇θ ×∇ψ , (2.23)

where θ is the azimuthal angle and ψ is the flux function. The flows are parallel to

the field and E×B drifts are across the field. Thus, the flow u and the electrostatic

potential in steady state are related by

∇φ = u ×B . (2.24)
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By noting that B · ∇φ = 0, we have φ = φ(ψ). The flow can be expressed as

u = u‖b̂+ uθθ̂ where uθ = rφ′(ψ) θ̂, with r as the radial coordinate. By taking the

b̂ component of Eq.(2.19), in equilibrium, we have

B∂l(Mnu2
‖/B) = −T∂ln− αcxMnN(u‖ − U‖) + αiMNnU‖ + (Mn/2)∂lu

2
θ , (2.25)

where l is the distance along the B-field line. The last term of Eq.(2.25) is the cen-

trifugal confinement force. It constitutes a force in the r direction with a component

along the field line. In other words, the force only exists when there is a curvature

in the field line. The neutrals are oblivious to the field line. We will use field line

geometry for the neutrals also as, later, we will use a straight field model. We then

have a set of equations, which is essentially 1-D along the field. In steady state, this

set is

∂l(nu) = αiNn , (2.26)

B∂l(Mnu2/B) = −T∂ln− αcxMnN(u − U) + αiMNnU +Mng , (2.27)

∂l(Nu) = −αiNn , (2.28)

∂l(MNu2) = −T∂lN − αcxMnN(U − u) − αiMNnU , (2.29)

where the function g ≡ (u2
θ/2)′, and the primes denote derivatives with respect to

the distance l along the field lines. We have also simplified the parallel flow variables

by removing their subscripts. This system of four equations is for the four unknowns

n, N , u and U .

We can now normalize the system to its natural units. By normalizing the

densities to the plasma core density ncore, time rate of change to the core ionization
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rate αincore, and length to the scale

l0 = (T/Mαiαcxn
2

core)
1/2 , (2.30)

we have

(nu)′ = Nn , (2.31)

α̂n′ = −α̂nN(u− U) +NnU + nĝ , (2.32)

(NU)′ = −Nn , (2.33)

α̂N ′ = α̂nN(u − U) −NnU , (2.34)

where we have ignored the inertia terms. Note that the only two free parameters

are now α̂ ≡ αcx/αi and ĝ ≡ ∂ζ(u
2
θ/2), where we denote ζ as the normalized length

l/l0, with the velocity normalized to u0 ≡ αincorel0 = (T/Mα̂)1/2 = α̂−1/2cs. The

prime denotes derivative with respect to ζ . It is of interest to note that the scale

length l0 originates from the CX and ionization interactions. Indeed l0 equals the

geometric average of the CX and ionization mean-free-paths, i.e. l0 ∼ (λcxλi)
1/2

where λcx ∼ cs/nαcx and λi ∼ cs/nαi. The numerical value of l0 in MCX is about

3 cm for a plasma with density 1020 m−3 and temperature 15 eV. Also for MCX,

uθ = α̂1/2Ms. In that case, the effective gravitational field ĝ ∼ α̂M2
s /ζB, where

ζB is the normalized length scale of curvature of the B-field lines. It should also

be noted that the validity for fluid theory depends on the assumption that the CX

scale length is much smaller than the smallest macroscopic scale length. Thus,

λcx ∼ cs/nαcx << l0. This is satisfied if α̂1/2 ≫ 1. In what follows, we will assume

that α̂ >> 1, to justify the fluid limit. Where appropriate, we will assess the failure

of the fluid limit(DEGAS and UEDGE code[15, 14]).
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2.2.2 Baseline case: No Centrifugal Confinement

In this section, we will consider the simple case where there is no centrifugal

confinement, i.e. ĝ = 0. This is a baseline of the more general confinement system.

The system is then simplified to

(nu)′ = Nn , (2.35)

n′ = −nN(u − U) (2.36)

(NU)′ = −Nn , (2.37)

N ′ = −nN(U − u) , (2.38)

where we have used α̂≫ 1. This set of equations describes a plasma-neutral system

in which the two species interact through ionization and CX drags parallel to the

magnetic field. It is the counterpart of the crossfield system as given in Goldston

and Rutherford[19]. Adding Eq.(2.35) and (2.37) and assuming perfect recycling at

the wall, we get

nu+NU = 0 . (2.39)

Adding Eq.(2.36) and (2.38) we get

n+N = 1 , (2.40)

where we have assumed the the neutral density at the center of the plasma, Ncore

vanishes. Using the last two equations, with Eq.(2.38), we have

N ′ = −NU . (2.41)
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Taking the derivative of both sides once more and using Eq.(2.37), we have a non-

linear differential equation for N ,

N ′′ = N(1 −N) . (2.42)

Integrating and using the boundary conditions that N and N ′ vanish at large ζ , we

have

N ′ = −
(

N2 − 2

3
N3

)1/2

, (2.43)

and,

N =
3

2
sech2

[

ζ

2
+ sech−1

(

2Nw

3

)1/2
]

, (2.44)

where ζ is the normalized distance measured from the wall and Nw is the neutral

density value at the wall. Note also that we are only interested in the N ′ ≤ 0

solution. In order to solve the system completely, we still need a boundary condition

at the wall. There are two commonly used choices, namely n(0) = 0, which is usually

used in low temperature (T ≤ 10 eV) “diffusion”-like regime, and the equality form

of the Bohm criterion[16] for higher electron temperature, namely that the plasma

flow at the wall equals sound speed, which corresponds to uw = −α̂1/2 in our units.

For simplicity, we will use n(0) = 0 in this section and the use of the Bohm condition

will be presented in Appendix A.1. Indeed, it can be shown[16] that for a system

with strong CX drag the latter boundary condition is consistent with n(0) << 1. For

the choice of n(0) = 0, we have Nw = 1 from Eq.(2.40). Thus N(ζ) is now known.

Fig. 2.1 shows the resulting plasma and neutral density profiles. The calculation

in this section is parallel to that of Ref.[19]. The N and n profiles we obtain are

qualitatively similar to the crossfield problem of Goldston and Rutherford[19] except

23



0 2 4 6 8 10
ζ

0

0.5

1

N
or

m
al

iz
ed

 D
en

si
ty

n
N

Figure 2.1: Normalized plasma and neutral densities profiles along the field for no

centrifugal confinement. Distance along the field line, ζ , is normalized to l0, the

neutral penetration depth. Perfect recycling wall is assumed at l = 0

1 ≫ N(0)/ncore in the crossfield case. The neutral penetration depth, however,

differs between the cases only by a factor close to unity. For the Goldston and

Rutherford calculation[19], N(0)/ncore ≈ D/2DN ≪ 1 where D and DN are the

crossfield diffusion coefficients for the plasma and neutrals, respectively. If we take

this result as a general principle and apply it to the parallel calculation, the density

ratio in the parallel case should be of order unity because the plasma diffusion

mechanism is exactly the same as that of the neutral in the parallel direction, namely

due to the drag between the two species.
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2.2.3 Finite Centrifugal Confinement

In this section, we extend the result of the above baseline case by including

the gravitational confinement term. The system, for α̂ >> 1, is then governed by

(nu)′ = Nn , (2.45)

n′ = −nN(u − U) + ng̃ (2.46)

(NU)′ = −Nn , (2.47)

N ′ = nN(u− U) , (2.48)

where g̃ ≡ ĝ/α̂ = (l0/2)∂lM
2
s = (1/2)∂ζM

2
s . Again, with perfect recycling condition

at the wall, we can simplify the system to the following three equations

n′ +N ′ = ng̃ , (2.49)

N ′ = Γ(n+N) , (2.50)

Γ′ = nN , (2.51)

with three unknowns n, N and Γ ≡ nu. In general, g̃ = g̃(ζ) and a general solution

is difficult. We thus assume for simplicity that the function g̃ takes the Dirac delta

functional form:

g̃(ζ) = g̃0 δ(ζ − ζ1) , (2.52)

where g̃0 is a constant and ζ1 is some distance from the wall. We will assume that

ζ1 is of order unity. In MCX, ζ1 could be of order 2 − 4. This particular form of

g̃ means that the rotational flow profile is a step function in which the flow change

from zero to a finite size at ζ = ζ1. This prescription for g̃ introduces a discontinuity
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in n but not in N and Γ. Integrations of Eq.(2.49) in the two regions separated by

ζ1 yield

N + n =















1, for ζ ≥ ζ1

Aw, for ζ ≤ ζ1

, (2.53)

where Aw ≡ nw +Nw is a constant. Note that since n is discontinuous at ζ1 while N

is continuous, n +N is double-valued at ζ = ζ1. By differentiating Eq.(2.50), with

the help of Eqs.(2.53) and (2.51), we arrive at

N ′′ =
d

dN

(N ′)2

2
=















N(1 −N), for ζ ≥ ζ1

NAw(Aw −N), for ζ ≤ ζ1

, (2.54)

Integrating once with respect to N , we have

N ′ =















− [N2 − (2/3)N3 + C>]
1/2

, for ζ ≥ ζ1

− [A2
wN

2 − (2/3)AwN
3 + C<]

1/2
, for ζ ≤ ζ1

, (2.55)

where C> and C< are constants and N is assumed to be monotonically decreasing

from the wall. Also note that N ′ and N ′′ are discontinuous at ζ = ζ1. For ζ1 ≤

ζ , the system and boundary conditions are identical to that of Sec.2.2.2 (the no

confinement case). Thus, the solution for ζ1 ≤ ζ can be written down immediately

from Eq.(2.44) as

N(ζ ≥ ζ1) =
3

2
sech2

[

ζ − ζ1
2

+ sech−1

(

2N1

3

)1/2
]

, (2.56)

where Nw in Eq.(2.44) has been replaced by N1, the undetermined neutral density

at ζ = ζ1. The solution for ζ ≤ ζ1 upon integrating Eq.(2.55) is

−
∫ N

Nw

dN

[A2
wN

2 − (2/3)AwN3 + C<]1/2
= ζ(N) , (2.57)
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with the condition

−
∫ N1

Nw

dN

[A2
wN

2 − (2/3)AwN3 + C<]1/2
= ζ1 , (2.58)

that must be applied so that N(ζ1) = N1, defined earlier. Our goal now is to express

C<, N1 and Aw in terms of Nw so that Eq.(2.58) can be used to solve for Nw. Once

this is done, the system is solved.

To proceed, we need jump conditions at ζ1. We divide Eq.(2.49) by n , integrate

both sides from ζ1 − δ to ζ1 + δ, and take the limit δ → 0. These yield

[lnn] = g̃0 , (2.59)

where [f ] represents the difference between the limiting values of f at ζ = ζ1, that

is f+ − f−. This relation translates to

n− = n+e
−g̃0 . (2.60)

Combining the above relation with Eq.(2.53) at ζ = ζ+, ζ−, we have

N1 =
Awe

g̃0 − 1

eg̃0 − 1
. (2.61)

From Eq.(2.50) and Eq.(2.53), we have N ′
+ = Γ1 and N ′

− = Γ1Aw, which gives

N ′
− = N ′

+Aw (2.62)

Substituting Eq.(2.55) in Eq.(2.62), we obtain

C< =
2

3
Aw(1 − Aw)N3

1 . (2.63)

Now we are left with finding the relation between Nw and Aw. This can be deter-

mined by using the boundary condition at ζ = 0. For example, if nw = 0, we have
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Aw = Nw according to Eq.(2.53) and the system can be solved by using Eq.(2.61)

and (2.63) in Eq.(2.58) to obtain (numerically) Nw. By probing the values of Nw

with different values of g̃0 this way, we can obtain the relation between the neutral

density at wall and the strength of the centrifugal confinement on the plasma. We

first do some asymptotic limits and then present the numerical solution.

2.2.4 Strong Confinement Limit

Although we cannot solve the finite confinement system analytically, an ap-

proximate solution can be obtained in the strong confinement regime, i.e. ĝ0 >> 1.

We do this here and discuss ĝ0 << 1 in the Appendix A.2. We will assume that

ζ1 is of O(1). The right-hand-side of Eq.(2.58) is thus of order unity. We expect

N1 . N . Nw; and also expect nw, Nw << 1 (and thus Aw << 1) for g̃ >> 1. Thus,

for this ordering, the integrand is of order N−2
w , and the integral is of O(1/Nw) >> 1.

Thus, there cannot be a balance. The only way a balance is possible is if the integral,

of order
∫ N1

Nw
dN/N2, itself yields a smaller result, since the RHS is O(1). This can

happen if N1 is very close to Nw, i.e., N1 ≈ Nw, in which case N is approximately

constant in [0, ζ1]. If we make this ansatz, we find that the integrand approximates

as

(

A2

wN
2 − 2

3
AwN

3 + C<

)−1/2

≈
(

A2

wN
2 − 2

3
AwN

3 +
2

3
AwN

3

1

)−1/2

=

[

A2

wN
2

(

1 − 2

3

N3 −N3
1

AwN2

)]−1/2

≈ (AwN)−1 ,

(2.64)
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where we have used C< ≈ (2/3)AwN
3
1 according to Eq.(2.63). By using the above

approximation in Eq.(2.57), we can perform the integral and find

N(ζ ≤ ζ1) ≈ Nwe
−Awζ . (2.65)

Also, from Eq.(2.50) and (2.53), we have

N ′(ζ ≤ ζ1) = AwΓ . (2.66)

We immediately get from the Eq.(2.65) and (2.66) that,

Γ ≈ −N , (2.67)

for ζ ≤ ζ1. Using the Bohm boundary condition, that is, uw = −α̂1/2, and Eq.(2.67),

we have

nw ≈ Nw

α̂1/2
. (2.68)

Using Eq.(2.61) at large g̃0 limit, Eq.(2.65) at ζ = ζ1 with Awζ1 << 1 and Aw =

Nw(1 + 1/α̂1/2) obtained from Eq.(2.68) and (2.53), we arrive at

Nw

α̂1/2
≈ e−g̃0 −N2

wζ1(1 +
1

α̂1/2
) , (2.69)

Taking once again the approximation, Nwζ1 ≪ 1, the second term in the bracket

can be ignored compared with the LHS, we obtain an quadratic equation in Nw,

namely

ζ1N
2

w +
Nw

α̂1/2
− e−g̃0 ≈ 0 . (2.70)

For 1 << α̂e−g̃0 , we have

Nw ≈ e−g̃0/2

ζ
1/2

1

, (2.71)
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while for the more realistic case α̂e−g̃0 ≪ 1, we have

Nw ≈ α̂1/2e−g̃0 . (2.72)

in the leading order. The scaling in Eq.(2.71) can also be obtained with the nw = 0

boundary condition. Thus, we obtain Nw as exponentially decreasing with increas-

ing g̃0. For ζ < ζ1, N ≈ Nw. The ansatz N ≈ Nw is checked by noting that

(N3
w −N3

1 )/NwN
2
1 ≈ 3(1 + 1/α̂1/2)Nwζ1 << 1. Eqs.(2.71) and (2.72) agree with the

numerical results obtained directly from Eq.(2.49)-(2.51) (see Fig. 2.4). It can also

be shown that Nw/n− . α̂1/2.

We note that in the strong confinement limit, nw gets very small and λcx

exceeds the scale of the magnetic curvature. Thus, fluid theory for neutrals fails.

[The ratio of λcx/(scale size) in our units is about (ncore/nw)/α̂1/2ζ1 which is larger

than unity.] In effect, the pressure term (T∇||N) is overestimated. However, we find

N to be very flat which is what is expected from kinetic theory (see DEGAS[15]).

Thus, the qualitative conclusions on N(ζ) profile are reasonable and adequate for

our purposes.

2.2.5 Numerical Results

For present experiments, the MCX parameters are uθ ≈ 100 km/s with a

mirror ratio of about 7 effected on an axial scale of less than a meter. Plasma tem-

perature is estimated to be about 30 eV. For these parameters, g̃0 can be calculated

to be ≈ 1.7. Since g̃0 is of order unity, we solve our equations numerically to get a

reasonable comparison with experiment. Fig. 2.2 shows the plasma and neutral den-
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sity profiles calculated numerically using Eqs.(2.49)-(2.51) with two different values

of g̃0. The confinement force is defined as g̃0 multiplied by a normalized Gaussian

with width of order unity and ζ1 = 10. The solution is obtained by the commercial

differential equation solver, Mathematica (Trademark)[34]. The first point to note

is the decrease in Nw as confinement increases. This agrees with the notion that

Nw is proportional to the ratio of the diffusion of plasma towards the wall to the

diffusion of the neutrals towards the core. In this case, because of the confinement

being increased, the plasma diffusion is decreased which in turn reduces Nw since

the neutral diffusion stays the same. However, it is more interesting to observe that

the neutral penetration length is larger in the case of stronger confinement, as the

dashed curve indicate. This can be understood from our simple model: the neutral

penetration scale length l0 = (T/Mαiαcxn
2
core) ∝ 1/ncore is larger for strong confine-

ment because the effective ncore (that is the density to the left of the delta function)

is lower by an exponential factor. In Fig. 2.3, we show the neutral drag resisting

the plasma from hitting the wall for the same two confinement strengths. There is

a qualitative difference between the two cases. For the stronger confinement case,

there is a small bump in the neutral drag deep inside the plasma. This happens

because the neutrals penetrate deeper.

In Fig. 2.4, we show the numerical and analytic asymptotic solutions for

lnNw vs g̃0 with two different boundary conditions: (i) nw = 0 and (ii) the Bohm

equality, uw equals sound speed. The numerical solutions represented by circular

and triangular points are obtained by solving Eqs.(2.49)-(2.51) given that g̃(ζ) =

g̃0(1/2π)1/2 exp [−(ζ − 10)2/2], with boundary conditions (i) and (ii) respectively.
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Figure 2.2: Numerical solutions of the normalized plasma and neutral densities

versus parallel length for the case of centrifugal confinement. A gaussian profile is

assumed for effective confinement force, centered at ζ = 10. Two different strengths

of confinement, g̃0, are shown. The penetration length for the neutrals is increased

in the higher confinement case due to the decrease in plasma density around the

wall.
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Figure 2.3: Neutral drag on the plasma, −nN(u − U) for the two cases shown

in Fig. 2.2. The small bump for the higher confinement case results from greater

neutral penetration.

We see that the asymptotic solutions given by Eq.(2.71) (dash-line) and (2.72) (solid

line) are excellent approximations to the corresponding numerical results for large

g̃0. In any case, the Nw is decaying exponentially with g̃0 for large g̃0. Here, we

can also justify the use of the simplified system Eqs.(2.49)-(2.51), which is obtained

under the assumption that the inertia term can be ignored. Indeed, Fig. 2.4 also

shows that the numerical solution (dots) given by the “full system”, Eqs.(2.26)-

(2.29), with boundary condition (ii), agrees very well with the solution given by the

simplified equations (triangular points). This shows that Nw is not sensitive to the

inertial terms.
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Figure 2.4: Log-linear plot for normalized neutral density vs confinement strength.

The circles are the numerical solution with the nw = 0 boundary condition. The

triangles are for the Bohm equality boundary condition, i.e. uw equals sound speed.

Solid line and dash line are for the asymptotic solutions with the Bohm equality

boundary conditions for the two different limits, 1 << α̂e−g̃0 (which corresponds to

nw = 0 in the limit α̂ → ∞) and 1 >> α̂e−g̃0 , respectively. The squares are for the

numerical solution of the full system Eqs.(2.26)-(2.29) with Bohm equality boundary

condition. Asymptotic decay rates for large g̃0 are shown to be 0.50 and 1.0 for the

two different boundary conditions respectively. Also note that decay rate for weak

confinement (small g̃0 region) has also been calculated for the 0 ≤ g̃0 ≤ 0.001 (Not

shown here). The result agrees with the approximation given by Eq.(A.14).
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2.3 Summary and Conclusion

Plasma-neutral interactions along the magnetic field are considered for a cen-

trifugally confined plasma wherein a crossfield plasma rotation inhibits plasma es-

cape along the magnetic field. Analytic and numerical solutions from a simple

one-dimensional isothermal model are obtained. It is shown that for perfect recy-

cling the neutral density at the wall is exponentially smaller than the central plasma

density for strong centrifugal confinement compared to the case of no confinement

for which the neutral wall density equals the central plasma density. Eqs.(2.71) and

(2.72) show the exponential factors in the limits, α̂e−g̃0 ≫ 1 and α̂e−g̃0 ≪ 1, respec-

tively, where α̂ is the ratio of the CX to ionization cross-sections and g̃0 corresponds

to M2
s /2 where Ms is the sonic Mach number of the rotational speed.

The effective neutral penetration depth along the field, of the same order as the

crossfield penetration depth in the zero confinement limit, increases exponentially

in the strong confinement case. This penetration length increase is due to the

decrease in local plasma density (and thus CX interaction) which allows more fast

moving neutrals to reach the outer core. However, kinetic theory has to be used

for quantitative description when plasma density becomes too small so that λcx is

larger than macroscopic scales.

Our results suggest that the neutral density at the MCX insulator may be

smaller or larger than the neutral density at the radial walls, depending on parame-

ters. The neutral density at the insulator scales as α̂1/2e−M2
s /2ncore, while crossfield

neutral density scales[19] as Dncore/(2l
2
0γi) [using Eq.(2.4) with some algebra] where

35



l0 is defined in Eq.(2.30), γi ≡ αincore is the ionization rate and D is probably

dominated by non-classical effects. In principle, D is the crossfield classical particle

diffusion coefficient. If we use this classical result and l0 ≈ 5cm for MCX, N||

and N⊥ are equal if Ms =
[

2 ln
(

2l20γiα̂
1/2/D

)]1/2
. Thus, the critical Ms ≈ 4.6 for

T = 30 eV, B = 0.2 Tesla and n = 1014 cm−3. MCX generally operates for Ms in

the range 2 to 3.5. Thus, our result indicates that MCX is presently running in the

high end-wall neutral density region, assuming classical diffusion. However, since D

is likely to be larger, the general operation may span both the cases of high end-wall

neutral density and high side-wall neutral density.
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Chapter 3

Two Dimensional Simulation

In this chapter, in order to find the plasma-neutral equilibria, we will model

the MCX system in two dimensions, i.e. in the (x, z)-plane. Since MCX is an

azimuthally symmetric device, investigating the equilibrium states in the two non-

trivial dimensions as our next step should present us with a reasonably good ap-

proximation to the real system. It should also be noted that these two dimensions

are fundamentally different from the plasma physics point of view and this make it

interesting for investigation.

To motivate, assuming the case without confinement, in the parallel to B-field

direction (i.e. z-direction), plasma can move in the sonic/subsonic scale. Indeed,

due to the existence of the end wall (which is perpendicular to the B-field lines)

which acts as a sink of plasma particles (see [16]), the plasma will hit the wall with

sound speed (i.e., the Bohm criteria). As it approaches the end wall, the plasma

density will drop in the l0 length scale defined in previous chapter. In terms of mo-

mentum consideration, the recycled neutral particles will undergo charge-exchange

interactions with the plasma and this is the dominant force which balances the

plasma thermal outward pressure originated from the density gradient. We can also

think of it as the thermal pressure balances between the plasma and neutrals. It

can be seen by adding the momentum equations of the two species together. That
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is exactly the reason why the neutral density at the end wall without confinement

is of the same order as the plasma core density. However, for the perpendicular to

B-field direction (we call it x-direction), the plasma pressure is mainly balanced by

the Lorenz force J×B, rather than the charge-exchange with the neutrals. This ac-

tually is the celebrated idea of plasma magnetic confinement. In this situation, the

neutral pressure and the charge-exchange interaction is minimal (comparing with

the plasma pressure). The neutral density is therefore very small.

Now let us consider the case that we have the centrifugal confinement (i.e.,

turn on the plasma rotation in a mirror field) and the confinement occurs somewhere

away from the end wall, that is, away for a distance larger than l0. In the z-direction,

the force balance is different. There is the centrifugal force which pulls the plasma

toward the core (or away from the end wall). In the core, the plasma density

increases. The main plasma gradient occurs where the confinement force is and the

pressure it produces is balanced by this force, which indeed drives this gradient.

However, in the region between the end wall and the confinement force effective

location, the plasma density is being lowered. Now when plasma gets close to the

wall, its density drops, as in the no-confinement case. However, the gradient is

much smaller now. In this region, neutral thermal pressure balances with plasma

pressure (because there is no other “dominant” force available). But due to the

fact that the plasma gradient is being smaller, the neutral gradient should also be

smaller. In turn, the neutral density at the wall need not be large to maintain such

a pressure. This is exactly what Eq.(2.71) tells us. Indeed, we will show that the

neutral density at the end wall drops with confinement strength, exponentially. In
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the x-direction, two things changes comparing with the no-confinement case. The

first being directly due to the confinement force having a x-component. However,

this could be assumed to be small if cs ≪ VA. The second change is that the core

plasma density is increased. Due to the fact that the side wall neutrals density N⊥

is proportional to ncore to some power, N⊥ would also increases.

Therefore, we now come to an very interesting scenario. Without confinement,

in 1D, N‖ ∼ ncore and N⊥ ≪ ncore. What would change in 2D? Would there be any

neutral “re-distribution”, because neutrals are not affected by B-field directly? Fur-

thermore, when the confinement is on, N// drops (exponentially with Mach number

square), ncore increases and thus N⊥ increases. Would N⊥ > N// at some point as

Ms increases? What about the interaction parameter nN distribution? Would the

prominent frictional dissipation region change from the end plate to the side wall?

How does it change the rotational momentum confinement time scale? Before we

can answer these questions, we first need to solve the two dimensional equilibrium

problem numerically. Scape-off-layer[16] modeling of Tokamak devices have been

studied for long[35], however, edge investigation on centrifugal confinement device

is still lacking. Thus, the effort in this chapter is to attain a basic understanding of

such device. Note also that instability analysis will not be considered here. Huang

et al.[7, 36, 37, 38, 39] studied the stabilization of this system by shear flow ex-

tensively. Lehnert[40] investigated the neutral effects on the ballooning and flute

modes. Tokar[41] recently described the self-sustained oscillations analytically in a

plasma-wall system.

In the remainer of this chapter, we discuss our numerical model, validation of
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the code and simulation results for a simplified MCX geometry.

3.1 The Numerical Model

We solve the 2D plasma-neutral system numerically with a two-fluid model by

treating the neutrals as a separate fluid1. A detailed description of the algorithm

used can be found in Guzdar[44]. The governing equations are as follows:

∂n

∂t
+ ∇ · (nu) = αinN − αrn

2 (3.1)

∂N

∂t
+ ∇ · (NU) = −αinN + αrn

2 (3.2)

∂ (nMu)

∂t
+ ∇ · (nMuu) = − 2T∇n−∇

(

B2

8π

)

+
B

4π
· ∇B

− αcxnNM (u− U)

+ (αinN − αrn
2)MU

+ ngẑ

+ µ∇ · (nM∇u)

(3.3)

∂ (NMU)

∂t
+ ∇ · (NMUU) = − T∇N + αcxnNM (u− U)

+ (αrn
2 − αinN)MU

+ µN∇ · (NM∇U)

(3.4)

∂B

∂t
= ∇× (u× B) +

c2η

4π
∇2B , (3.5)

where the products αin, αrn and αcxn are the ionization, recombination and charge-

exchange (CX) rates respectively. The term ngẑ is a model for the centrifugal con-

finement force. The origin of this term is the combined effect of a mirror magnetic

1Some researchers treat the neutral species with a diffusion model[42, 43]
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field and the azimuthal rotation. Details of derivation of this term can be seen

in Chapter 2. Thus, in this chapter, by adding the centrifugal confinement model

term, we replace the external magnetic mirror field by an external strong B-field in

z-direction. The constants µ and µN are the ion and neutral viscosity coefficients

respectively. All the others are usual notation. The equations are now normalized.

B-field is normalized to some reference B0, length is normalized to system width a,

plasma density is normalized to some n0. Thus the velocity is normalized to the

Alfvén speed, VA,0 = (B2
0/4Mπn0)

1/2
, time is normalized to a/VA,0, α’s are normal-

ized to VA,0/an0, µ’s are normalized to aVA,0 and η is normalized to 4πaVA,0/c
2. The

normalized equations are

∂n

∂t
+ ∇ · (nu) = αinN − αrn

2 (3.6)

∂N

∂t
+ ∇ · (NU) = −αinN + αrn

2 (3.7)

∂ (nu)

∂t
+ ∇ · (nuu) = − 2T∇n+ ∇

(

B2

2

)

+ B · ∇B

− αcxnN (u− U)

+ (αinN − αrn
2)U

+ ngẑ

+ µ∇ · (n∇u)

(3.8)

∂ (NU)

∂t
+ ∇ · (NUU) = − T∇N + αcxnN (u −U)

+ (αrn
2 − αinN)U

+ µN∇ · (N∇U)

(3.9)

∂B

∂t
= ∇× (u× B) + η∇2B . (3.10)
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As one can note in the above equations, we limited ourselves to the isothermal

assumption with the temperature of the ions, electrons and neutrals the same. In the

actual simulation, we also assume αcx, µ and µN to be constant. Spatial dependences

of αi and αr, however, are allowed (The reason for this will be made clear when we

will discuss boundary condition.) For the purpose of our present chapter, we are

only interested in the equilibrium state in a two dimensional slab geometry, that

is, the (x,z)-plane with y the symmetric direction. The equilibrium state is found

by relaxation. We input a certain “trivial” initial condition and allow time for the

numerical result to reach steady state.2. The time scale for reaching equilibrium

from an arbitrary initial condition is the B-flux relaxation time.

3.2 The Wall Boundary Conditions

It is necessary to specify the boundary conditions before we proceed. It is

especially important for problems involving walls. We need to specify the boundary

conditions for all the variables, n,N,p = nu,P = NU and B for, both the insulating

end-wall and conducting side-wall.

Before proceeding to discuss the side-wall and parallel-wall boundary condi-

tions in details, we shall explain the method we used to simulate the boundary. In

the simplest case, for the cross-field boundary (side-wall), we imposed the following

conducting hard-wall boundary conditions:

2Note that it is recently found by Guzdar et al.[45] that there is possible bifurcation when

there is rotation up to certain Mach number which might explain the experimentally observed

“HO-transition”[5].
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Antisymmetric condition: p, P, Bx

Symmetric condition: n, N , Bz.

As we known, these boundary conditions preserve mass and magnetic flux. To con-

serve particles, we need antisymmetric boundary condition for P also. However,

imposing these hard-wall boundary conditions result in a trivial solution with flat

density profiles and zero flows. From a physics point of view, a much smaller plasma

density at the wall compared with the core density is expected (due to higher recom-

bination rate at the lower temperature wall). Therefore, one could fix the boundary

n to a small value to reflect this physics. This can be done by imposing boundary

conditions on the other variables consistent with the asymptotic form of the cross-

field components of Eqs.(3.6)-(3.10). However, it is found that doing so produces

a lot of noise in the resultant simulation profiles and thus fixing n to a prescribed

value is not a satisfactory condition numerically. After a series of trials and errors

with different sets of boundary conditions, we finally found a way to allow a small

plasma density at the wall without fixing it to a certain value by introducing a

“recombination layer” (RL). We will introduce this method in the next subsection.

Then, we will continue to discuss the end-wall and side-wall boundary conditions in

more details.

3.2.1 The Recombination Layer: Spatial dependence of αr

Around the material wall, we should expect a lot of recombination to occur

because of its lower temperature compared with the interior plasma. We define
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a recombination layer (RL) as a layer at the surface of the wall in which the re-

combination coefficient αr that appears in Eqs.(3.6)-(3.9) becomes “large”. The

recombination layer proposed here is a convenient and physically intuitive way of

creating the necessary density gradient in the cross-field direction. In order to have

a consistent picture for both the end-wall and side-wall, we also allow a similar spa-

tial dependence on αr for the end-wall (although for parallel dynamics an RL is not

needed for numerical reasons).

There are two parameters that we need to set for the recombination layer(RL):

the width and the height. In order not to interfere with the scale length of the

plasma-neutral structure [i.e. l0 in Eq.(2.30)] and other macroscopic length scale,

we would like to have a small RL width relative to l0. On the other hand, we also

want to have a numerically reasonable number of grid points which can resolve such

a RL width. To establish a standard for systematic investigations, we would like to

fix the width for all the simulations. We choose (RL Width)≈ l0/8 to l0/4. In a

typical plasma device, in the core of the plasma, the value of αr is extremely small

compared with αi or αcx. Therefore, the interior value of αr in our simulations is

zero. Inside the RL, αr starts to take off and attain a maximum at the wall. For

illustration, considering only the one dimensional variation of αr across the B-field,

we have

αr(x) =















0 , for x ≤ xRL

αr,0tanh [k2(x − xRL)2] , for xRL ≤ x ≤ xw

(3.11)

where the constant k is chosen in such a way that the value of αr just reaches a

value significantly close to αr,0 at the wall (xw) and (xw − xRL) is the RL width.
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The remaining parameter for the RL is αr,0. It is found that simulation results

do not change significantly after αr,0 increases beyound a certain level. In partic-

ular, the boundary value of n in cross-field simulation decreases with increasing

αr,0 initially and roughly saturates as αr,0 increases further. This can be seen from

Fig. (3.1). In practice, increasing αr,0 indefinitely would generate numerical insta-

bility, thus we choose to fix the value of αr,0 = 5 as a standard value. The neutral

boundary density is shown in Fig. (3.2). As a final remark for this subsection, the

value of αr(x, z) in two dimensional simulation is shown in Fig. (3.3).
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Figure 3.1: Normalized plasma boundary density, n(xRL) vs. recombination layer

strength, αr,0 in one dimensional cross-field simulation. Note that n value is chosen

at xRL( start of RL) rather than xw.
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Figure 3.2: Normalized neutral boundary density, N(xRL) vs. recombination layer

strength, αr,0 in one dimensional cross-field simulation. Note that N value is chosen

at xRL( start of RL) rather than xw.

3.2.2 The Insulating End-Wall

At the electrically insulating end-wall, at which the B-field is almost normal

to the material surface, it is well known that the Bohm condition[16] should be

used for the outward plasma flow, that is setting uz to sound speed. (Note that we

will make a little modification on this point when we introduce the recombination

layer.) By specifying the flow boundary condition this way, the plasma density

at the wall would be adjusted self-consistently by the system. Thus, we could

extrapolate the boundary values of n from the interior points. In order to attain

steady state without having particle sources, we would like to set perfect recycling

condition for the outgoing plasma flux and incoming neutral flux, that is Pz = −pz.

Again, the neutral density is then determined self-consistently by the equations and
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Figure 3.3: Recombination coefficient, αr as a function of x and z. It shows the

recombination layer at both of the side-wall and end-wall. Note x and z variables

are not in the same scale. System size in z-direction is much longer than that in
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extrapolation is an appropriate condition. Since the normal component of the B-

field is continuous for any boundary, ∂zBz = 0 is set at the end-wall. Assuming no

surface current at the end-wall, Bx vanishes there. We are left with px and Px at the

end-wall. The usual treatment for these two variables (when the B-field is exactly

normal to the wall), is to set them to be zero, that is the no-slip boundary condition.

Yet, there are still other researchers who refer putting the parallel-to-surface flow

to be free-slip (∂zux = 0) instead. Indeed, these two boundary conditions would

not have any real significance in almost the entire spatial domain if the surface flow

is relatively small (compared to sound speed). We decide to have free-slip for ux

but no-slip for Ux. The reasons for our choice are as follows. First, we would only

consider small cross-field flow in this chapter, which is caused by the relatively small

classical diffusion. As mentioned above, in this case, no-slip and free-slip boundary

conditions would not give any significantly different results in almost the entire

domain. Second, the boundary conditions we choose seem to be more self-consistent.

It is because we have assumed that once the plasma ions hit the wall (or the sheath),

they would not come back as plasma ions, but as neutral particles. Therefore, there

is no way for the plasma ion to communicate the “wall information” with the plasma

ions behind it through the direct plasma-plasma interactions (the viscosity term in

MHD equation), which is the basis of the no-slip wall boundary condition. Thus, we

think a free-slip boundary condition for the plasma is more suitable for this picture.

However, the situation of the neutral particles is different. There is no reason to

believe that the cross-field momentum of the plasma ion after it hits the wall would

be conserved through the newly recycled neutral particle. Since the wall is fixed, a
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no-slip boundary condition for the neutral particle might be more appropriate. It

is to be noted that until this point, all the boundary conditions for the end-wall

seem to be perfectly set. However, in order to attain consistency with the side-wall

boundary we describe in the next paragraph, we will use the recombination layer as

described in the last subsection. We also modify the boundary condition for uz. We

will not fix it to be sound speed, but allow it to be adjusted self-consistently and

enforce the condition uz ≤ cs only. We summarize the boundary conditions at the

z-wall here:

Antisymmetric condition: Px, Bx

Symmetric condition: ux, Bz

Extrapolation: n, N

Bohm equality condition: pz ≤ ncs, Pz = −pz

3.2.3 The Conducting Side-Wall

We now discuss the boundary condition at the conducting side-wall. Let us

take a look at the cross-field component (x-component) of the induction equation

Eq.(3.10),

∂x (uxBz) = η∂2
xBz. (3.12)

It implies,

uxBz = η∂xBz, (3.13)

where the constant of integration vanishes because ux,core = 0 and ∂xBz|core = 0

due to symmetry. Since we expect the plasma classically diffuses outward, ux > 0

for x > xcore = 0. The cross-field flow convects the Bz-flux outward with it as
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can be seen from the LHS of the above equation. Since the side-wall is assumed to

be perfectly conducting, no B-flux can penetrate into it. The result of the plasma

diffusion is the accumulation of Bz around the side-wall and a positive x-gradient of

Bz is developed. This gradient would then diffuse the Bz-flux inward to the plasma

core (RHS of the above equation) and would eventually balance the outward Bz-flux

brought about by the plasma flow.

There are two main components for the above scenario to work. The first is

that there exists an outward flow and the second is the conducting wall that does

not allow any B-flux penetration. We will discuss these cases one by one. For the

flow, it is found that imposing a negative plasma density gradient ensures classical

outward diffusion. It is also consistent with our intuition that the plasma density

should drop as the plasma approaches the wall. The plasma density gradient can be

achieved by enforcing a large ion-electron recombination rate around the boundary.

That is, we will impose a recombination layer discussed in the previous subsection

at the boundary. For the conducting wall condition, we set ux = 0 at the boundary

to prevent any loss of Bz-flux. It means that the diffusing flow is to be stopped as

it reaches the boundary3

From Eq.(3.13), for ux = 0, we have ∂xBz = 0. Also, to conserve particles,

3One can also prevent the loss of flux by putting a flux source at the boundary which exactly

cancels the outward convecting flux, WITHOUT having to set the “hardwall” (ux = 0) condition.

However, simulations show that applying this automatically kills the plasma flow at the boundary.

Thus, this boundary condition is almost the same as having the hardwall condition, while being

more difficult to be achieved exactly.
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Px = 0 is set because px = 0 at the wall. Again, Bx = 0 because normal component

of B has to be continuous and there is no B-field inside a conductor. We adapt no-

slip condition for uz and Uz. To summarize the boundary condition at the side-wall,

we write

Antisymmetric condition: p, P, Bx

Symmetric condition: n, N , Bz

A recombination layer (αr is “large” around the wall) is also imposed.

3.3 Code Validation: One Dimensional Results Comparisons

In this section, we would like to compare the one dimensional analytical re-

sults with the numerical simulations results. This procedure serves the purpose of

validating both of the analytical calculations and the numerical code. It is especially

important to verify that the recombination layer boundary conditions we described

in the last section are not changing the physics in the plasma core. We would then

have confidence in two dimensional simulation results carried out by the code in

later sections.

To be more specific, for the numerical simulation, we will do the cross-field

and parallel-to-field simulations separately. That is, the simulations will also be one

dimensional. This can be done by setting periodic boundary condition for the “non-

interesting” direction. All other boundary conditions are the same as described in

the last section. Also the factor of 2 in the plasma pressure term in Eq.(3.8) will be

taken out for the purpose of this section because cold ion approximation has been

taken in the analytical calculations.
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Figure 3.4: Comparisons of analytical [Sect. 2] and simulation results for the case

without confinement. The left plot shows the plasma and neutral densities. The

right plot shows the plasma flow. Wall is located at z = 5. Recombination layer

starts at z = 4.95(shown by vertical dash-line). In units of the numerical code,

T = 0.01, αi = αcx = 0.5 and average of total density < n + N >= 1. Neutral

penetration length l0 is about 0.2.
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Fig. (3.4) shows the comparisons for parallel-to-field calculations. In the unit

of the numerical code, T = 0.01, αi = 0.5, αcx = 0.5, Lz = 2.5 (for half space in

z), the average of total particles density, i.e. < n + N > is unity. Based on these

parameters, the neutral profile scale length is l0 = (T/Mαiαcxn
2
core)

1/2 ≈ 0.2 (note

that M = 1 in the code units). The recombination layer width is 0.05, starting from

z = 4.95. The left plot in Fig. (3.4) shows the plasma and neutrals densities for the

analytical [see Eq.(2.44)] and the simulation results. For the analytical calculation,

the only boundary condition we imposed is the Bohm equality, i.e., the plasma

flow equals sound speed at the wall. By Eq.(A.2), Nw is about 0.558 when uw

equals sound speed. The first observation is that the two methods in calculating the

profiles are in good agreement. The difference should be attributed to the fact that

the numerical code contains more physics than that of the analytical calculation.

They are the inertial terms and viscosity. The second point to note is that the

neutral penetration length agrees with l0. The right plot of Fig. (3.4) shows that

the agreement between the plasma flows calculated from the two methods is even

better. Note that the flows are normalized to sound speed (and the Bohm equality

boundary condition is shown explicitly.)

For the cross-field direction, due to symmetry, a half-space in x simulation suf-

fices. Thus, the domain size is 0.5 by definition (note that length in the numerical

code is normalized to the system size in the cross-field direction, a). Other physical

parameters are the same as that of the parallel-to-field case. It should be noted

that the system size in this direction is comparable to the “natural” neutral pen-

etration length (≈ 0.2). However, the analytical solution Eq.(2.8), which assumes
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the system size to be infinite, cannot be blindly applied here and used to compare

with the simulation result. An alternative to using Eq.(2.8) is to numerical solv-

ing the Eq.(2.12), which is the origin of Eq.(2.8) without assuming infinite domain

size. Therefore, shooting method is applied to Eq.(2.12) with the same domain as

the numerical code. It is necessary to describe more clearly on how the boundary

conditions are set for the shooting method. Eq.(2.12) is a third order nonlinear

differential equation, thus we need three boundary conditions. The first two are

nshooting(0) = nsimulation(0) and n′
shooting(0) = 0. The third one is to “shoot” the

solution by adjusting n′′
shooting(0) such that nshooting(xRL) = nsimulation(xRL). After

solving for nshooting(x), we can get all the other quantities with the input constant

C = nsimulation(0)T+Bsimulation(0)2/2 from the simulation by using Eq.(2.13)-(2.16).

Fig. 3.5 shows that the plasma density profiles almost exactly match, even extending

inside the RL until n reaches a very small value. Fig. (3.6) shows the N , ux, Ux

and Bz profiles. It is evident that the simulation gives very reasonable results in

the interior region (x < xRL). Whether the data points inside the RL reflect the

real physics which is not considered in the simple analytical model is an interest-

ing topic. However, we could only have a better understanding of it until we have

experimental data at the vicinity of the material wall.

3.4 Simulation Results

We now turn to the two dimensional simulation results, with and without

the centrifugal confinement. The numerical model is described in Sect. 3.1. The
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Figure 3.5: Comparison of simulation and numerical modified Goldston (NMG)

calculation, Eq.(2.12) for plasma density along the crossfield direction. The NMG

result is obtained by shooting method. For details see the text.

physical system to be simulated is a two dimensional slab geometry in the (x, z)-

plane. The aspect ratio is chosen to emulate the aspect ratio of the MCX. Thus

we have Lz/Lx = 10. A strong external B-field is pointing along the z-direction.

As already discussed, the end-wall (at z = 10) is an insulator and the side-wall (at

x = 0.5) is a conductor. Due to symmetry, simulation carried out in the half-space

domain, i.e. 5 ≤ z ≤ 10 and 0 ≤ x ≤ 0.5, is sufficient for our purpose. Boundary

conditions are described in Sect. 3.2. Parameters used are shown in Appendix F

except when written explicitly otherwise.
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Figure 3.6: Same as Fig. 3.5, except that N , ux, Ux and Bz are plotted.
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3.4.1 Plasma neutral system without confinement

The first 2D configuration we investigate is the one without centrifugal con-

finement force. It is essentially a plasma-neutral system in a box, with a strong

straight B-field parallel to the side-walls, connected to the end-walls. It is of inter-

est to see whether our conjecture on the neutral “re-distribution” occurs. That is

we would like to study if neutral density at the side-wall increases (and in turn the

ratio N⊥/N‖ increases) due to the 2D dynamics. The idea behind this re-equilibria

is based on the fact that there presumably exists a neutral gradient between the

two regions, and neutrals are not bounded by B-field. Thus, a neutral at the end-

wall is “freely” moved to the side-wall. Yet, the neutral density at the end-wall has

to be maintained to balance the plasma parallel-to-field pressure. The result is an

increased neutral density at the side-wall, while the end-wall neutral density does

not change much. It should be noted that while the neutral density at the side-wall

increases, the change in the momentum balance in the crossfield is minimal. This

is because the neutral pressure force is only a secondary force in the crossfield mo-

mentum equation and the primary competition is between the plasma and magnetic

pressures.

We now test the conjecture proposed above, namely,

(

N⊥

N‖

)

1D

≤
(

N⊥

N‖

)

2D

. (3.14)

In order to check this, we set up three simulations. They are i) 1D parallel-to-field,

ii) 1D crossfield and iii) 2D simulations. The corresponding box sizes and other

parameters are the same for all simulations. We then compare the two sides of the
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above inequality4. Before showing the test result, we would like to present sample

2D simulation profiles for n and N in Figs. 3.7 and 3.8. The first observation is

that the plasma density drops when approaching the walls, on a scale that agrees

with l0 (The neutral density also increases when approaching the walls in this scale).

The second point to note is the difference in the neutral densities at the end- and

side-walls. It is shown that without confinement, the side-wall neutral density is

still much small than the end-wall density in 2D simulations. The third point is

that the neutral density is almost one dimensional. There is a large gradient in the

z-direction but very small gradient in the x-direction. Cross-sectional plots along

the x-direction indeed shows a neutral density gradient, yet it is too small to be seen

in the 2D profiles. All the three observations on the 2D simulation agree with the

one dimensional behaviors (both crossfield and parallel-to-field) in the corresponding

direction qualitatively. This reveals that separate one dimensional descriptions of

the neutral densities might still be good approximation in 2D. We will come back

4It should be note that in order to have a meaningful comparison of the ratios, we should

show that the increase in N⊥ is not due to the increase in the core plasma density, ncore. In

other words, we want to show that the increase in N⊥ is due to the 2D dynamics. However,

since in our simulations, we fix the average total density < n + N > instead of ncore. ncore is

not guaranteed to be the same in different simulations. One might think that normalizing all the

neutral densities with respect to ncore (in each simulations) suffices. It is only true for N‖ because

this is proportional to ncore linearly. From the last chapter, we know that N⊥ depends on ncore

nonlinearly. In order to eliminate the effect of ncore on N⊥, we examined Ñ⊥ = N⊥/nw
core where

w is integer from 0 to 5. Results shows that Ñ⊥ is always larger in the 2D cases than that in the

corresponding 1D cases. The results shown in the main text is for w = 1 for simplicity.
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to this point when we discuss the 2D simulations with confinement.

Now let us return to the second point above. Although the side-wall neutral

density is still much smaller than the end-wall density, it does increased compared

with the 1D crossfield case. Fig. 3.9 shows the comparison of the neutral density

ratios N⊥/N‖ [the two sides of Eq.(3.14)] for various η (which controls D⊥). It

shows that the 2D ratios are significantly larger than the 1D ratios for all η. In

particular, when η approach zero, the y-intercept of the 1D ratios almost vanishes

while there is residual N⊥ in 2D. We attribute this residual N⊥ to the 2D dynamics.

As final note for this section, the leftmost plot of Fig. 3.18 shows the neutral flow

with η = 0.005. It can be seen that there is significant crossfield neutral flow from

the end-wall to the side at about z = 9.5 (Note that while the velocity is being

shown, because neutral density is large at end-wall, neutral flux is also significant).

This gives another evidence of the 2D effect on the side-wall neutral density.

3.4.2 Plasma neutral system with various confinement strengths

In this section, we study the 2D simulation result with different confinement

strengths. In other words, g in Eq.(3.7) is allowed to be non-zero. In order to model

the centrifugal confinement force, we define g as a Gaussian function in z. The

functional form of g is

g(z, x) = g0H(x) exp
[

−(z − z1)
2
]

, (3.15)

where g0 is a parameter indicating the confinement strength, z1 is the mid-point

between the mid-plane and the end-wall and H(x) ≡ 1 − αr(x, zcore)/αr(xw, zcore)
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Figure 3.7: 2-D plasma density profile without confinement. x is the cross-field

direction and z is the parallel to field direction. Due to symmetry in x and z direc-

tions, simulation is carried out only the half-domain of both of x and z directions.

Walls are located at z = 10 and x = 0.5.
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Figure 3.8: Same simulation as Fig. 3.7 but with neutral density profile plotted.
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Figure 3.9: Comparison of the normalized neutral wall density ratio, N⊥/N‖, be-

tween the 2D simulation and the separated 1D results [see Eq.(3.14)]. No centrifugal

confinement is applied.
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takes care of the recombination layer region. This form of g gives quite a realistic

model of the confinement force provided by a mirror field with azimuthal rotation.

See Appendix B for details and connection between g0 and the rotation Mach number

Ms. Note also that in order to emulate the MCX mirror field curvature closely, the

confinement force scale in Eq.(3.15) is set to 1. The value of g0 in the simulations

ranges from 0 to 0.16 corresponding to the rotation Mach numbers from Ms = 0

to about 3.7. It is found that the code starts to become unstable when g0 > 0.18.

Therefore, we only present the result up to g0 = 0.16 (i.e. Ms = 3.7).

Figs. 3.10 to 3.12 show the plasma density contours for Ms = 0, 2.7 and 3.7

respectively. It can be seen that for these parameters, the plasma is transitioning

from an unconfined to a well-confined regime. Core plasma density is also increased

by about 3-fold. Figs. 3.13 to 3.15 show the corresponding neutral density contours.

Three interesting points are noted. First, N||,w is decreased dramatically. It is ex-

pected from the 1D theory presented in Chapter 2. Second, the neutral penetration

length is increased as Ms increases. As explained in Chapter 2, the decrease in

plasma density around the wall region increases the “effective” neutral penetration

length l0 =
√

T/Mαiαcxn2.

Third, the side-wall neutral density is smaller than the end-wall neutral den-

sity for small Ms, but the opposite happens when Ms increases. Indeed, we could

estimate the Ms,crit at which point N||,w and N⊥,w are equal, from the 1D theory

presented in Chapter 2. Appendix C shows the calculations and we found

Ms,crit =

[

2 ln

(

3B2

√
αcxαiηn2

core

)]1/2

. (3.16)
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For the parameters that we used for the 2D simulation, Ms,crit is found to be about

3.1 if ncore = 3 is picked (The value of ncore is chosen to be about what the 2D

simulation shows when the transition happens). Fig. 3.16 shows the neutral wall

densities, N⊥ and N‖, versus Ms. It shows that the transition occurs at about

Ms = 3.6 which is a little larger than the estimation given above but not far off.

The direction of the discrepancy can be explained as follows. It should be noted

that we used the cold ion assumption in 1D theory and therefore Ms,crit is restricted

by this assumption. However, in the 2D simulation, ions have the same temperature

as the electrons and neutral gas. In order words, we should expect a larger loss of

plasma particles and therefore a larger neutral end-wall density in the 2D simulation.

In order to make the transition, a larger confinement force and thus Ms is needed

in the 2D simulation5. We would like to make a final note of Ms,crit. If this is a

good approximation even for a 2D simulation, it implies that the 2D dynamics can

be largely described by the combination of the crossfield and parallel-to-field 1D

calculation. It greatly enhances our understanding of the 2D system.

Figs. 3.17 and 3.18 show the vector plots of the plasma and neutral flows

(u and U) at different values of Ms. For the plasma flow, it does not seem to

be a lot different for the different confinement cases. The only change is the flow

hitting the wall decreases. The reason is that we have set uz ≤ cs and the flow is

created by the recombination layer. When there is lesser outflow tendency because

of higher confinement, the flow speed decrease is expected. The neutral flow vector

5One might adjust Ms,crit by multiplying it by
√

2 as cs ∝
√

T . It gives M ′
s,crit = 4.4 and there

the 2D simulation result is bounded by these two estimation.
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plots show that, as mentioned earlier, when there is no confinement (left-most plot

in Fig. 3.17), a significant neutral side-ward neutral flow is seen. However, it is

interesting to see that this side-ward flow becomes smaller as confinement increases

(middle and right-most plots in Fig. 3.17). This can be explained by the fact that

as confinement increases, the neutral gradient between the end-wall and side-wall

regions decreases. In that case, smaller and smaller neutral flow is required to

balanced the pressure gradient. Another point to note is the increased neutral flow

inward across the B-field in the lower region for the higher confinement cases. It is

another way to see the the neutral side-wall density is increased as Ms increases.
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Figure 3.12: Plasma density for Ms = 3.7
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Figure 3.15: Neutral density for Ms = 3.7

3.5 Experimental Implication

An important quantity in our model is the product nN , which might be useful

in experimental measurement. This is the interaction parameter in our model.
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Figure 3.16: Plots of neutral wall densities, N// and N⊥, which are measured at

(xcore, zRL) and (xRL, zcore) respectively, versus confinement strength (i.e. modeled

rotational Mach number). Confinement is imposed through an additional ng-term

defined by the gaussian function g(z, x) = g0H(x) exp [−(z − z1)
2], to the momen-

tum equation in z-direction, where H(x) ≡ 1 − αr(x, zcore)/αr(xw, zcore), z1 is mid-

point between the mid-plane and end-wall. The Mach number can be converted

from g0 by using Eq.(B.8). We have used T = 0.04, αi = 0.5 and αcx = 0.5.
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Figure 3.17: Vector plots of plasma flow for different confinement strengths. Left:

Ms = 0, Middle: Ms = 2.7, Right: Ms = 3.7
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Figure 3.18: Vector plots of neutral flow for different confinement strengths. Left:

Ms = 0, Middle: Ms = 2.7, Right: Ms = 3.7
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It indicates the strength of ionization and CX (also recombination) interactions.

Therefore, ionization measurements (e.g. through radiation measurement) might

be affected by this parameters greatly. Figs. 3.19-3.21 show the contour plots of

the interaction parameters for different values of Ms. It shows that the dominant

interaction region shifts from the end-wall to the side-wall as confinement get better.

Fig. 3.22 shows the values of the interaction parameters at the end-wall n||,wN||,w

and side-wall n⊥,wN⊥,w versus Ms. It is shown that the dominant interaction region

transition (from the end-wall to the side-wall) occurs at Ms ≈ 2.8. If nN is really

a good parameters for the ionization rate, we should expect some signature in the

experimental measurements.
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Figure 3.21: Interaction parameters nN for Ms = 3.7

3.6 Conclusion

We have extended an existing plasma MHD code to a 2D isothermal plasma-

neutral fluid code. It is used to study the centrifugally confined plasma, in particular
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walls versus confinement strengths. Simulation details are the same as Fig. (3.16).
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MCX. A reasonable artificial force term in the plasma momentum equation is used

to model the confinement force. Boundary conditions are carefully taken care of

and well tested, to deal with the wall boundaries. Close to realistic parameters

are used. Result shows that neutral density “re-distribution” occurs significantly

when confinement is weak. Simulation also shows that within realistic operation

range of MCX, neutral wall-density could be higher in the end-wall or in the side-

wall, depending on Ms. Transition between high and low end-wall neutral density

regime is occurs for Ms at about 3.7. It is observed that even in 2D configuration,

the system behaves as if it is a semi-1D system. One may conclude that parallel-

to-field and crossfield balances are only related directly through the core plasma

density level. This can be seen from the fact that the Ms,crit estimated using 1D

results is not far off from the 2D calculation (considering the fact that cold ion

approximation is used in the 1D calculations). However, it must be noted that

this decoupling may be linked with the simple slab geometry that we are using. In

real MCX geometry, 2D dynamics should play a bigger role. Yet, if our model is

a good approximation, the interaction parameter nN should be a good indication

of ionization/CX rate. Therefore, comparisons with experimental measurements

on such rates should greatly benefit both the code improvement and experimental

understanding.

74



Chapter 4

Hartmann Physics in Centrifugally Confined Plasma

In the previous two chapters, we have developed a simple theory and a two-

dimensional numerical code for studying the neutral and plasma interaction in MCX.

In particular, we obtained the neutral distribution. However, in these calculations,

there is no real azimuthal flow which is the basic ingredient for centrifugal confine-

ment. Rather, we modeled the centrifugal confinement by a gravity-like force along

the B-field. As we have pointed out, this provides a qualitative understanding of

the system. However, the MCX mirror field shape is different from the slab ge-

ometry we have assumed. Detailed difference in the flow pattern is expected. We

therefore would like to simulate the MCX system with mirror field geometry and

the azimuthal flow implemented. This also allows a better estimation of the mo-

mentum confinement time. However, it turns out that we need to have a better

understanding of the Hartmann problem[18] before proceeding to direct simulation

of the MCX with azimuthal flow.

The Hartmann problem is the problem of magnetized flow past a material

surface with B-field lines cutting the surface (see Jackson[46]). There is an incom-

patibility between the frozen-in theorem and no-slip or conducting wall boundary

conditions in this problem. The classical Hartmann results suggest that it would

be very difficult to drive the MCX azimuthal flow, as has been pointed out by
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Huang[47]. Also in the classical Hartmann solution, very thin boundary layers in

the uθ and Bθ profiles exist around the wall. To straighten this out numerically

in the MCX regime is very difficult because multiple length scales are involved.

Therefore, a simple analysis of the nature of the Harmtann problem is required be-

fore proceeding. This chapter extends the basic studies started by Huang[47]. In

particular, it reports on the importance of the Hall effect on Hartmann flow.

In general, the viscosity on a plasma fluid has spatial dependence, which might

due to the variation of plasma and neutral densities. More explicitly, we take MCX

as an example. Fig. 4.1 shows the dominant azimuthal flow in MCX. This rotational

flow is across the strong external mirror B-field which ends at the insulating end-

wall. If µ is large only around the side-wall, the core rotation would only be affected

through fluid collision drag. However, if µ is large at the end-wall instead, the core

crossfield flow would be hindered by both of the fluid collision drag and the magnetic

field line strength, in a combined manner1. Hartmann was the first to describe this

later mechanism in 1937[18] when he studied liquid metal flow across magnetic field.

After that, different geometries and boundary conditions system were studied. In

particular, two dimensional boundary layer analysis of rectangular channel flow was

studied by Hunt[51]. Wilhelm and Hong[52] solved analytically a cylindrical plasma

system with azimuthal flow. For numerical study of a MCX-related circular annulus

channel flow, see Huang[47].

1There is another concern called Alfven ionization[48] for the limitation of flow in plasma.

However, this is out of our scope. Interested reader may consult Lehnert’s paper[49] and recent

MCX experimental results[50].
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Figure 4.1: In MCX, the dominant azimuthal rotation across the strong external

field which ends at the insulating end-plate. Hartmann physics is a therefore a

concern.
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Figure 4.2: A one dimensional classical Hartmann flow of a liquid metal between

insulating plates. In this example, current in the (negative) x-direction is used to

drive the flow in y-direction across a strong external B-field in the z-direction.
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However, care has to be taken when applying the original Hartmann solution

to a fusion grade plasma instead of liquid metal. There are three main reasons for

the concern in the original Hartmann assumptions. First, the no-slip flow boundary

condition assumption is not clearly known for a plasma. Second, the assumption of

constant viscosity is questionable for a plasma, in particular in the wall boundary

region. Third, resistivity but not Hall physics was considered in the original problem.

For the first point, we think that if plasma-neutral interaction is large around

the wall, no-slip condition for the plasma is also arguably reasonable when no-slip

condition is applied to the neutrals. Thus, we would also take the no-slip condition

throughout this chapter. For the second point, we will point out in Appendix D that

the variation in the viscosity, for example due to change in plasma density, should

not be overlooked in discussing boundary flow problem. The main discussion of

this chapter will focus on the third point. In the following section, we would like

to review the classical Hartmann in the simplest possible geometry. That is a one-

dimensional system (variation in z) in which a net total current in the x-direction

drives a plasma flow in the y-direction across an strong external B-field in the z-

direction between two insulating plates extending infinitely in the (x, y)-plane (see

Fig. 4.2). (For two dimensional channel geometries in liquid metal applications see

[53]). Then we will add the Hall physics to this problem and solve it analytically.

We will see how the Hall effect could help to increase the momentum confinement

time.
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4.1 Classical Hartmann Problem Review

4.1.1 Flow Across a Homogeneous Magnetic Field and the Solution

In this section, we review the classical Hartmann problem. It suffices to illus-

trate the Hartmann physics in a simple geometry. In this geometry, both x and y

are symmetric directions, that is variables are only dependent on z and we will look

for steady state solution with flow in y direction only. The flow is driven by external

current in the x direction (For a similar calculation using mechanical force in the

y-direction to drive the flow, see Jackson[46]. The scaling of the results are the

same in both cases.) The liquid metal is bounded by two insulating walls (infinitely

extended in (x, y)-plane) located at z = −L/2, L/2. The system is assumed sym-

metric about z = 0. A strong external B-field is applied along z. Flows are no-slip

at the boundaries. The fluid is assumed to be incompressible. With resistivity and

viscosity, the system follows, in steady state,

∇p =
1

c
J × B + µ∇2u (4.1)

∇× E = 0 (4.2)

E = −1

c
u× B + ηJ (4.3)

J =
c

4π
∇× B (4.4)

∇ · B = 0 (4.5)

where the inertial term in Eq.(4.1) vanishes because the flow direction (y) is sym-

metrical. From Eq.(4.5) and the fact that ∂x = ∂y = 0, we have

Bz = B0 , (4.6)
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From Eq.(4.4), we have

J = − c

4π

(

B′
yx̂− B′

xŷ
)

, (4.7)

where the prime denotes derivative respect to z. Taking ŷ · ∇× (4.3) and using

Eq.(4.2) and (4.7), we have

B0u
′
y = −ηc

2

4π
B′′

y . (4.8)

Now taking the y component of Eq.(4.1), we have

B0

4π
B′

y = −µu′′y . (4.9)

Now Eqs.(4.8) and (4.9) form a system of equations for the two unknowns uy and

By. From Eq.(4.7), we have Jz = 0. Since we are looking for ux = 0 solution, the x

component of Eq.(4.1) gives Jy = 0 and thus Eq.(4.7) gives B′
x = 0. Since Bx(0) = 0

due to symmetry, Bx = 0 everywhere. Also, Eq.(4.3) shows that the E-field only has

an x component. However, with Eq.(4.2), we know that Ex must be a constant. To

summarize, the only non-vanishing quantities are uy(z), By(z), Jx(z), Ex = E0 and

Bz = B0. Eq.(4.8) and (4.9) determine uy and By and then Jx can be determined

by Eq.(4.7). Ex = E0 is determined by the x-component of Eq.(4.3), namely,

E0 = Ex = −1

c
uyBz + ηJx , (4.10)

while Bz = B0 is a parameter of the system.

Eq.(4.7) gives Jx = −(c/4π)B′
y with Bx = 0 shown before. Consider the total
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force density in the y-direction given by the integral,

−
∫ L/2

−L/2

1

c
JxB0 ŷdz = −2B0

c

∫ L/2

0

Jxdz ŷ

=
B0

2π
[By(L/2) −By(0)] ŷ

=
B0

2π
By(L/2)ŷ ,

(4.11)

where the first and third equalities are due to symmetry about z = 0. It shows that

the boundary condition on By determines the driving force for the flow (as well as

the total current in the x-direction) in the system2. Before proceeding, we would

like to normalize the equations. B-field is normalized to B0, length is normalized

to L, flow is normalized to Va = B2
0/4πn0M , where n0M is the mass density of the

liquid, J is normalized to cB0/4πL, E is normalized to VaB0/c, η is normalized to

4πLVa/c
2 and µ is normalized to n0MLVa. The normalized equations are

u′y = −ηB′′
y (4.12)

B′
y = −µu′′y (4.13)

Jx = −B′
y (4.14)

Ex = −uy + ηJx (4.15)

where the prime denote derivative respective to ζ ≡ z/L. The only two free param-

eters are η and µ. We impose the following boundary conditions:

By(±1

2
) = ±K

uy(±1

2
) = 0 ,

(4.16)

2Note that we could have a mechanical force term Fy added to the momentum equation,

Eq.(4.1), to drive the flow and specify By(L) = 0. However, we would like to make an ana-

log with MCX’s driving mechanism, in which the total driving current is non-zero, specifying a

non-zero By(L) is more suitable in this chapter.
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where K is a constant indicating the strength of the driving (surface) current. (We

could have set K = 1 because the equations are linear, but we would like to em-

phasize that K is much smaller than unity (i.e. By << B0) in most applications.)

Note also that the system is assumed to be symmetric about z = 0. Solution can

be easily obtained for uy and By from Eq.(4.12) and (4.13),

By(ζ) = K
sinh(Haζ)

sinh(Ha/2)

uy(ζ) = K

√

η

µ

cosh(Ha/2) − cosh(Haζ)

sinh(Ha/2)
,

(4.17)

where Ha ≡ 1/
√
µη (In dimensional unit Ha =

√

B2
0L

2/µηc2, yet Ha is still dimen-

sionless.) is the Hartmann number. The solution for Jx and Ex follows:

Jx(ζ) = −KHa
cosh(Haζ)

sinh(Ha/2)

Ex = −K
√

η

µ
coth(Ha/2)

(4.18)

Fig. 4.3 show the classical Hartmann solution for By/K, uy/K and Jx/K along ζ .

Parameters used are η = 0.01, µ = 0.04 and thus Ha = 50.

4.1.2 Observations and Implications

There are several points to note on the analytic solution given in Eq.(4.17)

and (4.18). First, the Hartmann number is typically very large in a plasma device

due to the largeness of B0 and smallness of µ and η, for example, for MCX, Ha is of

the order of 104. Second, very thin boundary layers exist. It is explicitly shown in

Fig. 4.3. They are called Hartmann layers and its width can be deduced from the

analytic solution as 1/Ha =
√
ηµ. Next, the maximum flow occurs at ζ = 0 as

uy,max ≈ K

√

η

µ
, (4.19)
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Figure 4.3: A solution of classical Hartmann problem for the normalized By/K,

uy/K and Jx/K along ζ . (µ, η, ε) = (0.04, 0.01, 0) is used. The Hartmann

number Ha is therefore 50.
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for large Ha. For fusion plasmas, η is very small. It means that it is very difficult to

drive a crossfield flow in such plasmas. We define the momentum confinement time

as

τmom ≡ uy,max

K
. (4.20)

(Note that 2K for the denominator should be used if τmom is strictly defined as

“momentum per unit force”, accounting for the fact that there are two driving

current terms, one from the top and one from the bottom boundaries. Yet, we

prefer to skip the factor of 2 for simplicity.) The classical Hartmann momentum

confinement time is then

τmom,η =

√

η

µ
=
τmom,µ

Ha
, (4.21)

where τmom,µ ≡ 1/µ is the confinement time due to classical viscous damping. (Note

that the momentum confinement time is normalized to the Alfvenic time τa ≡

L/Va according to our normalization). If MCX parameters are used, this classical

Hartmann momentum confinement time is found to be about 2 µs, which is not in

agreement with current experimental data.

The final remark is that the Hartmann layer is typically very thin. Using MCX

parameters, it could be as small as lH ∼ 10−3 cm. There are two concerns. Firstly,

lH is much smaller than the ion skin depth c/ωpi, which is about 2 cm. Secondly,

for fixed external current(fix K), the total current across the plasma is fixed. But

since Hartmann solution restricts almost all these current to be localized within the

Hartmann layer, it produces a large current sheet. Both of the above two points

brings up the consideration of the the Hall effect. We will consider it in the next
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section.

4.2 Analytical Solution for the Resistive-Hall Hartmann Problem

Since we notice that there is a large crossfield current within the Hartmann

layer, the Hall term, which is ignored in the last section might be important. In this

section we would solve the same system as in the last section analytically with the

Hall terms added. The only modification to the system, Eqs.(4.1)-(4.5), is Eq.(4.3).

We write the new system as follows:

∇p =
1

c
J ×B + µ∇2u (4.22)

∇×E = 0 (4.23)

E = −1

c
u× B + ηJ +

1

n0ec
J ×B − ∇pe

n0e
(4.24)

J =
c

4π
∇×B (4.25)

∇ · B = 0 . (4.26)

Incompressibility, symmetry about z = 0 and ∂x = ∂y = 0 still hold. Carrying out

similar procedures, we have the normalized equations, for u and B,

u′y = −ηB′′
y + εB′′

x (4.27)

u′x = −ηB′′
x − εB′′

y (4.28)

B′
y = −µu′′y (4.29)

B′
x = −µu′′x , (4.30)

where ε ≡ c/ωpiL is the Hall parameter and it is the new Hall physics we add in this

section. The system above solves for Bx, By, ux and uy. The assertion Bz = B0 is
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still correct according to Eq.(4.26). The current density J and electric field E can

be determined using Eq.(4.24) and Eq.(4.25) after obtaining u and B. By defining

the variables,

ũ ≡ uy + iux

B̃ ≡ By + iBx ,

(4.31)

and the parameters η̃ ≡ η + iε, where i =
√
−1 is the purely imaginary number, we

reduce Eqs.(4.27)-(4.30) to the system

ũ′ = −η̃B̃′′

B̃′ = −µũ′′ .
(4.32)

These appear as exactly the same form as Eqs.(4.12) and (4.13). Since we still

assume that the driving current is in the x-direction only and the flows are no-

slip at the boundaries, we have the boundary conditions, B̃(±1/2) = ±K and

ũ(±1/2) = 0. The solution is readily obtained by referencing to the last section.

After decomposing the solution into components, we have

ux(ζ) = KIm

{√

η̃

µ

[cosh(Q/2) − cosh(Qζ)]

sinh(Q/2)

}

uy(ζ) = KRe

{√

η̃

µ

[cosh(Q/2) − cosh(Qζ)]

sinh(Q/2)

}

Bx(ζ) = KIm

{

sinh(Qζ)

sinh(Q/2)

}

By(ζ) = KRe

{

sinh(Qζ)

sinh(Q/2)

}

,

(4.33)

where Q = 1/
√
µη̃. It can be shown that when ε = 0, this solution is reduced to the

classical Hartmann solution. There are two main points to be noted in this solution

when comparing it with the classical Hartmann solution, Eq.(4.17).

First, flow in the x-direction and current density in the y-direction are gener-

ated. The origin of the secondary flow can be understood as follows. From Eq.(4.24),
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the Hall term produce an y-component because of the Jx and Bz. However, Ey can

only be a constant because of Eq.(4.23). Therefore, the variational part of the y-

component of the Hall term has to be balanced by the first two terms on the RHS

of Eq.(4.24). This results in the generation of Jy and ux.

Second, the Hartmann number is essentially modified by replacing η with

η̃ = η+ iε. Fig. 4.4 and 4.5 show sample plots of a solution. Comparing these plots

with Fig.4.3 we found that the Hartmann layer is broadened and uy(0) is larger, for

the same η and µ. Therefore, ε indeed increases the “effective” resistivity in some

way. Since the resistive-Hall Hartmann solution given above is quite complicated

for analysis of the Hall effect. We will take the non-resistive limit, η = 0, in the

next section.

4.2.1 The Non-resistive (Hall-only) Limit

Note that the Hall-Hartmann solution have been investigated for a while in the

liquid metal community for different geometries, for example [54], however, as far

as the author know, no one has discussed the solution of non-resistive (“Hall-only”)

Hartmann flow problem. In this section, we give the solution for this case. By

solving the Eqs.(4.27)-(4.30) with η = 0 [or taking the η = 0 limit for the solution
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Figure 4.4: A solution of the Resistive-Hall Hartmann problem for the normalized

By/K, uy/K and Jy/K along ζ . (µ, η, ε) = (0.04, 0.01, 0.01) is used. Hartmann-

Hall number Q = 1/
√

µ(η + iε) is therefore 39 − 16i.
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Figure 4.5: A solution of the Resistive-Hall Hartmann problem for the normalized
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Eq.(4.33)], we obtain the Hall-only solution:

Bx =
2K

cosh q − cos q
[cosh(q/2) sin(q/2) sinh(qz) cos(qz)

− sinh(q/2) cos(q/2) cosh(qz) sin(qz)]

By =
2K

cosh q − cos q
[cosh(q/2) sin(q/2) cosh(qz) sin(qz)

+ sinh(q/2) cos(q/2) sinh(qz) cos(qz)]

ux =
2Kqε

cosh q − cos q
{− [cosh(q/2) sin(q/2) + sinh(q/2) cos(q/2)]

× [cosh(qz) cos(qz) − cosh(q/2) cos(q/2)]

− [cosh(q/2) sin(q/2) − sinh(q/2) cos(q/2)]

× [sinh(qz) sin(qz) − sinh(q/2) sin(q/2)]}

uy =
2Kqε

cosh q − cos q
{[cosh(q/2) sin(q/2) − sinh(q/2) cos(q/2)]

× [cosh(qz) cos(qz) − cosh(q/2) cos(q/2)]

− [cosh(q/2) sin(q/2) + sinh(q/2) cos(q/2)]

× [sinh(qz) sin(qz) − sinh(q/2) sin(q/2)]} ,

(4.34)

where q = 1/
√

2µε. We will discuss the solution qualitatively in the next section.

4.2.2 Implication and Discussion

As we have seen earlier when we discuss the solution for the resistive-Hall case,

we see from the solution, Eq.(4.34) that the flows and B-field are two-dimensional

rather than single dimension as in the classical Hartmann solution. Another point

to note is that the Hall term contributes “harmonicity” to the solution, i.e., the

oscillations given by the sine and cosine terms on top of the hyperbolic sine/cosine

terms. Graphical solutions for the case (µ, η, ε) = (0.04, 0, 0.01) are shown
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in Fig. 4.6 and 4.7. The oscillatory behaviors, which are absent in the classical

Hartmann solution, is obvious. Also, the Hartmann layer width with Hall physics

is of the order of LH,ε ∼ 1/q ∼ √
µε. This point is very important in fusion device.

It is because in a fusion grade plasma, ǫ >> η, that means the Hartmann layer is

broadened when we consider the Hall effect. Thus, we have

LH,ε

LH,η

∼
√

ε

η
>> 1 . (4.35)

An even more important quantity to observe is the core flows that can be attained

for a given driving current K. The core flow in y is given by

uy(0) = εqK
sinh(q/2) + sin(q/2)

cosh(q/2) + cos(q/2)

≈ εqK , for q >> 1 .

(4.36)

Thus, the momentum confinement time is, for large q,

τmom,ε = εq =

√

ε

2µ
. (4.37)

Therefore, if ε >> η, the momentum confinement with Hall effect being considered

is much larger than the classical Hartmann confinement time. More explicitly, we

have

τmom,ε

τmom,η

=

√

ε

2η
>> 1 . (4.38)

The factor of 2 in the denominator in Eqs.(4.37) and (4.38) can be explained by the

fact that half of the momentum is transferred to the flow in the x-direction when

Hall effect is operative. To see this, we calculate ux(0) for large q. We have

ux(0) = εqK
sinh(q/2) − sin(q/2)

cosh(q/2) + cos(q/2)

≈ εqK , for q >> 1 ,

(4.39)
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which is the same as uy(0). In short, the Hall effect broadens the Hartmann layer

and increases the momentum confinement time compared to the classical Hartmann

result, by a factor of
√

ε/η. For MCX, this factor is about 20. For fusion grade

plasma, this could be 103 to 104.

We will make the last remark here. It should be noted that the origin of the

difficulty in driving the (classical or not) Hartmann flow is the “almost” frozen-in

condition. When a plasma is being forced (by a current or mechanical force) to flow

across a strong B-field, the B-field would try to “freeze” the plasma in place and

hinder the flow. It is well known that resistivity can break this frozen-in condition.

The larger the flow can be for a given driving current for a larger resistivity. In this

section, we have demonstrated that even without resistivity, it is still possible to

break the frozen-in condition when the Hall effect is considered.

4.3 Summary

In this chapter, we reviewed a one dimensional classical Hartmann problem

in which a resistive liquid metal flows (in y), across a strong external B-field, B0

(along z), driven by current (in x). It is found that when the Hartmann number

Ha =
√

B2
0L

2/µηc2, where L is the system size, µ is the viscosity coefficient and

η is the resistivity, is large, it is very difficult to drive the flow. In other words,

the momentum confinement time is very short compared with the case without the

external B-field. The Hartmann momentum confinement time is inversely propor-

tional to Ha. Also a Hartmann boundary layer exists with width also inversely
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Figure 4.6: A solution for the Non-resistive Hartmann problem for the normalized

By/K, uy/K and Jy/K along ζ . (µ, η, ε) = (0.04, 0, 0.01) is used. Hall number

q = 1/
√

2µε is therefore 35.
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Figure 4.7: A solution for the Non-resistive Hartmann problem for the normalized

Bx/K, ux/K and Jx/K along ζ . (µ, η, ε) = (0.04, 0, 0.01) is used. Hall number
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proportional to Ha. Due to the existence of a current within the thin Hartmann

layer, we extended the original calculation by retaining the Hall terms in the electron

momentum equation. An analytic solution is found. It shows that the role of the

Hall physics is essentially represented by replacing the resistivity η by η+ iε, where

ε = c/ωpiL is the Hall parameter, in the original solution. Since ε ≫ η in fusion

grade plasma, if this solution is applicable to a plasma also, we expect the Hall ef-

fect should be dominant and that the momentum confinement time would be much

longer while the Hartmann layer would be broadened. Table 4.1 compares the mo-

mentum confinement times for current operating parameters of MCX and a fusion

grade plasma, due to the viscous damping, resistive-Hartmann and Hall-Hartmann

physics. One should also note that in the Hall-Hartmann solution, a flow(current)

perpendicular to both of the external B-field and the original flow(current) is cre-

ated, and its size is comparable to the original flow for large “effective” Hartmann

number. If we take a large inner radius limit in MCX, the geometry would be the

same the one we considered here. That is, (x, y, z) corresponds to (r, φ, z). The

implication on MCX is that, the secondary flow due to Hall effect might be radially

inward or outward depending on whether the driving current is radially outward or

inward. In a plasma-neutral system, this net divergence of plasma, in steady state,

should be compensated by the neutral flux into the core. Yet, a full MCX analysis

in this regard is out of the scope of the present study. Finally, it is found that the

“frozen-in” condition can be broken without resistivity, by merely including the Hall

effect.
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Mom. Conf. Time MCX Fusion Parameters

τcl.vis. (Viscous) 28 ms 4.4 × 104 s

τH,η (Ressistive) 1.7 µs 0.8 µs

τH,ε (Hall) 26 µs 22 ms

Table 4.1: Momentum confinement times for MCX and fusion grade plasma due

to different physics. First row: Classical viscous damping. Second row: Resistive

Hartmann flow. Third row: Hall Hartmann flow.
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Chapter 5

Conclusion

In Chapter 2, plasma-neutral interactions across the field line and along the

magnetic field line are considered for a centrifugally confined plasma. The main

focus is the parallel confinement in a system wherein a crossfield plasma rotation

inhibits plasma escape along the magnetic field. Analytic and numerical solutions

from a simple one-dimensional isothermal model are obtained. It is shown that for

perfect recycling the neutral density at the wall is exponentially smaller than the

central plasma density for strong centrifugal confinement compared to the case of

no confinement for which the neutral wall density equals the central plasma density.

Eqs.(2.71) and (2.72) show the exponential factors in the limits, 1 << α̂e−g̃0 and

1 >> α̂e−g̃0, respectively, where α̂ is the ratio of the CX to ionization cross-sections

and g̃0 corresponds to M2
s /2 where Ms is the sonic Mach number of the rotational

speed.

The effective neutral penetration depth along the field, of the same order as the

crossfield penetration depth in the zero confinement limit, increases exponentially

in the strong confinement case. This penetration length increase is due to the

decrease in local plasma density (and thus CX interaction) which allows more fast

moving neutrals to reach the core edge. However, kinetic theory has to be used for

quantitative description when plasma density becomes too small so that λcx is larger
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than macroscopic scales.

Our results suggest that the neutral density at the MCX insulator may be

smaller or larger than the neutral density at the radial walls, depending on parame-

ters. The neutral density at the insulator scales as α̂1/2e−M2
s /2ncore, while crossfield

neutral density scales[19] as Dncore/(2l
2
0γi) [using Eq.(2.4) with some algebra] where

l0 is defined in Eq.(2.30), γi ≡ αincore is the ionization rate and D is probably

dominated by non-classical effects. In principle, D is the crossfield classical particle

diffusion coefficient. If we use this classical result and l0 ≈ 5cm for MCX, N||

and N⊥ are equal if Ms =
[

2 ln
(

2l20γiα̂
1/2/D

)]1/2
. Thus, the critical Ms ≈ 4.6 for

T = 30 eV, B = 0.2 Tesla and n = 1014 cm−3. MCX generally operates for Ms in

the range 2 to 3.5. Thus, our result indicates that MCX is presently running in the

high end-wall neutral density region, assuming classical diffusion. However, since D

is likely to be larger, the general operation may span both the cases of high end-wall

neutral density and high side-wall neutral density.

In Chapter 3, we have extended an existing plasma fluid code to a 2D isother-

mal plasma-neutral fluid code. It is used to study the centrifugally confined plasma,

in particular MCX. A reasonable artificial force term in the plasma momentum

equation is used to model the confinement force. Boundary conditions are carefully

taking care of and well tested, to deal with the wall boundaries. Close to realis-

tic parameters are used. Result shows that neutral density “re-equilibrate” occurs

significantly when confinement is weak. Simulation also shows that within realistic

operation range of MCX, neutral wall-density could be higher in the end-wall or

in the side-wall, depending on Ms. Transition could occurs for Ms between 3 to 4.
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If our model is a good approximation, the interaction parameter nN should be a

good indication of ionization/CX rate. Therefore, comparisons with experimental

measurements on such rates should greatly benefit both of the code improvement

and experimental understanding.

In order to understand how frictional force is limiting the momentum con-

finement time, in Chapter 4, we reviewed a one dimensional classical Hartmann

problem. It describes a resistive liquid metal flows (in y), across a strong external

B-field, B0 (along z), driven by current (in x). It is found that when the Hartmann

number Ha =
√

B2
0L

2/µηc2, where L is the system size, µ is the viscosity coefficient

and η is the resistivity, is large, it is very difficult to drive the flow. In other words,

the momentum confinement time is very short compared with the case without the

external B-field. The Hartmann momentum confinement time is inversely propor-

tional to Ha. Also a Hartmann boundary layer exists with width also inversely

proportional to Ha. Due to the existence of a current within the thin Hartmann

layer, we extended the original calculation by retaining the Hall terms in the elec-

tron momentum equation. Analytic solution is found. It shows that the role of the

Hall physics is essentially represented by replacing the resistivity η by η+ iε, where

ε = c/ωpiL is the Hall parameter, in the original solution. Since ε >> η in fusion

grade plasma, if this solution is applicable to a plasma also, we expect the Hall ef-

fect should be dominant and that the momentum confinement time would be much

longer while the Hartmann layer would be broadened. One should also note that

in the new solution, a flow(current) perpendicular to both of the external B-field

and the original flow(current) is created, and its size is comparable to the original
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flow for large “effective” Hartmann number. If we take a large inner radius limit in

MCX, the geometry would be the same the one we considered here. That is, (x, y,

z) corresponds to (r, φ, z). The implication on MCX is that, the secondary flow

due to Hall effect might be radially inward or outward depending on whether the

driving current is radially outward or inward. Finally, it is found that the magnetic

field line can be broken without resistivity, by merely considering the Hall effect.

In order to have a more complete physics picture, some future studies should

be done. First, we need to investigate whether kinetic theoretical analysis[24, 25]

is necessary in the one-dimensional analytic and two-dimensional numerical[15] cal-

culations. Kinetic theory might be needed because in the boundary region, espe-

cially when confinement is strong, the plasma density drop resulting in long charge-

exchange and ionization mean free paths. If these interaction scales are comparable

or longer than the macroscopic scale length(s), e.g. system sizes or the distance

from the wall to the B-field curvature region, fluid theory in principle should fail.

Although, previous experiences from other researchers[16] suggest that fluid theory

still gives reasonably good results in these “illegal” regimes, care has to be taken.

Second, the 2D simulations we have done is in a slab geometry. Our results

show that even in such a 2D configuration, the behavior in two perpendicular direc-

tions are almost decoupled. However, we should expect more interesting dynamics

in the mirror field geometry that is actually operating in MCX. For a full MCX

geometry analysis, we need to understand more about the boundary conditions be-

cause field lines are tilted at some parts of the boundary. Also the Hartmann flow

physics enforces a relatively thin boundary layer without considering Hall physics.
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These are difficult to deal with numerically in the present stage. Yet, in Appendix

E, we provide a preliminary MCX simulation result, by bypassing these questions.

Our Hartmann problem investigation reveals that Hall effects might be im-

portant and even constructive to the MCX momentum confinement time. However,

a secondary flow in the radial direction might be a concern. Some questions have

to be asked. Would the secondary flow destroy the confinement? Would a reverse

driving current save the situation? Does steady state even exist as net divergence

of plasma is predicted. Could neutral recycling be the solution? These are all inter-

esting questions. A full system analysis with neutral physics should be considered

with both analytical and numerical methods.
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Appendix A

Parallel-to-field Plasma-Neutral Equilibria Asymptotic Calculations

A.1 1D Solution with Bohm equality as the boundary condition

In this section, we will solve the same problem as in Sect.2.2.2, but we now

change the boundary condition from nw = 0 to one that fixes the plasma flow

uw to the (negative) sound speed (or uw = −α̂1/2 condition in the present unit

system). This is the equality form of the well-known Bohm criteria[16]. All the

equations starting from Eq.(2.35) to Eq.(2.44) are still correct but the value of Nw

in Eq.(2.44) is not unity any more for a finite uw. In Sect.2.2.2, nw = 0 effectively

means uw goes to (negative) infinity for a finite flux hitting the wall. Thus our goal

here is to find Nw given finite uw. From Eqs.(2.39)-(2.41), we have N ′ = nu . Thus,

we have at the wall, by using Eq.(2.40) again,

Nw = 1 − N ′
w

uw

. (A.1)

By taking a derivative of Eq.(2.44) w.r.t. ζ at ζ = 0 and substituting it in Eq.(A.1),

we get a third order polynomial equation for Nw, namely,

2/(3u2

w)N3

w + (1 − 1/u2

w)N2

w − 2Nw + 1 = 0 . (A.2)

Note that the only acceptable values of Nw should be between 0 and unity for a

cold ion system which we have assumed throughout the present article. For large α̂
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which we have assumed throughout, Nw and nw can be approximated as

Nw ≈ 1 − 1

(3u2
w)1/2

= 1 − 1

(3α̂)1/2
,

nw ≈ 1

(3α̂)1/2

(A.3)

for α̂ >> 1. This result has been verified, for example, numerically solving Eqs.(2.49-

(2.51) gives Nw = 0.874 and nw = 0.126 for α̂ = 20. From this approximation, we

can deduce that the plasma particle flux hitting the wall would be, in real units,

|Γw| ≈ ncorecs(3α̂)−1/2, which suggests a decrease in plasma flux when the drag due

to CX cross-section increases, that is α̂(≡ αcx/αi) increases. As pointed out by

Stangeby [16], when considering the plasma dynamics in the “elastic collision zone”

(no ionization occurs within which), this result should be expected. What we added

here is the importance of the relative cross-section of CX and ionization. Note also

that when α̂→ ∞, this result is the same as the one shown in Sect.2.2.2 with nw = 0

as boundary condition.

A.2 Weak Confinement Approximation with Bohm Equality Bound-

ary Condition

In this section, we will find an approximate solution for Nw in the weak

confinement regime, g̃0 << 1 with the Bohm equality boundary condition, that

is uw = −α̂1/2, imposed. Assuming ζ1 ∼ O(1), for small g̃0, this would imply

N1 ∼ O(1). Let’s assume this is the case, to be checked later. From Eq.(2.61), we

have, for g̃0 << 1,

N1 ≈ Aw − 1 − Aw

g̃0

. (A.4)
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Since we assume that N1 is of order unity, we now let

1 − Aw = γg̃0 , (A.5)

where γ is of order unity. Therefore we have

N1 ≈ 1 − γ − γg̃0 ≈ 1 − γ . (A.6)

From Eq.(2.63), we have

C< ≈ 2

3
γg̃0(1 − γ)3 . (A.7)

It can be seen from Eq.(2.55) that the term C< can be neglected, because both Nw

and N1 are order of unity but C< is proportional to g̃0. Therefore, for ζ < ζ1, we

have

N ′ ≈ −
(

A2

wN
2 − 2

3
AwN

3

)1/2

. (A.8)

We now express nw in terms of Nw by imposing the boundary condition. With

Eq.(2.50) and (2.53), we have

nw =
N ′

w

Awuw
= − N ′

w

Awα̂1/2
. (A.9)

Now using Eq.(A.8) with the above equation and assuming nw << Nw which will

be checked later, we arrive at

nw ≈ Nw

(3α̂)1/2
, (A.10)

and therefore, with Eq.(2.53),

Aw = βNw , (A.11)

where β ≡ 1 + 1/(3α̂)1/2. Integrating Eq.(A.8) from ζ = 0 to ζ = ζ1, we have

N1 ≈
3

2
Awsech2

(

1

2
ζ1Aw + tanh−1

√

1 − 2

3β

)

. (A.12)
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Since Aw = 1 − γg̃0, we can expand the hyperbolic secant function in the above

equation by taking the term proportional to g̃0 to be small. Defining

fζ1 ≡ tanh
[

ζ1/2 + tanh−1(1 − 2/3β)1/2
]

, (A.13)

and using N1 ≈ 1 − γ, we could finally get, up to the first order of g̃0,

Nw =
1

β

[

1 − g̃0

2
(3f 2

ζ1 − 1)

]

, (A.14)

Therefore, the assumption that γ and N1 is of order unity is checked, if ζ1 ∼ O(1).

Numerical results from Eq.(2.58) for small g̃0 agree with this calculation to within

4%.
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Appendix B

Normalized Equation for the NMCX in 1D parallel direction

For a convenient reference on how to scale the parameters in the NMCX,

we would like to renormalize the equation in the code’s normalization rather the

normalization presented in this paper. We start with re-stating Eq.(2.25) here again,

B∂l(Mnu2

‖/B) = −∂lp− αcxMnN(u‖ − U‖) + αiMNnU‖ +
Mn

2
∂lu

2

θ . (B.1)

The normalized version is

B(nu2

‖/B)′ = −sT̂ n′ − α̂cxnN(u‖ − U‖) + α̂inNU‖ +
n

2
(u2

θ)
′ , (B.2)

where variables are normalized as densities to n0, length to L0, flow speed to Alfven

speed VA, B to B0 and s ≡ p/nT , T̂ ≡ T/MV 2
A = (cs/VA)2 , α̂cx ≡ αcxn0L0/VA and

α̂i ≡ αin0L0/VA. Now Eq.(B.2) is exactly what it appears in the Fortran code (with

slap geometry), when we replace the last term above by ng. That means we have

(u2
θ)

′

2
=

1

2

(

cs
VA

)2
(

M2

s

)′
=
T̂

2

(

M2

s

)′
= g , (B.3)

where Ms is the sonic Mach number of the rotation dependent on l, or

∫ lb

la

g dl =
u2

θ(lb) − u2
θ(la)

2
. (B.4)

To make a connection with the result of the calculation by Ellis et al. [2] without

considering neutrals interactions, we retain only the pressure and artifical confinment
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terms in Eq.(B.2) and the equation becomes

(lnn)′ =
g

sT̂
=
M2

s
′

2s
. (B.5)

Note that s = 2 in [2] and the results agree, that is

n = noe
M2

s /4 . (B.6)

Let us return to the Fortran Code equation, that is Eq.(B.2) with (B.3) substitution.

In a mirror field, the bending of the B-field is localized and thus the function g (or

Ms) should also be localized in the parallel direction. To model the mirror field, we

assume g is a gaussian with the peak located at the midpoint of the bending region

of the B-field line. Mathematically,

g = g0 exp
[

−k2 (l − l1)
2
]

, (B.7)

where the number k and l1 model the scale and location of the the bending field

respectively. Fig.B.1 shows an example of such a confinement force and the corre-

sponding flow profile according to Eq.(B.3) by taking an integration of g along l.

We are now ready to obtain the numerical value of g0 used in the simulation. From

Eq.(B.3), integrating ĝ from l = 0 to lcore which can be assumed to be infinite, we

have

g0 =
k√
π

(

u2
θ,∞

2
−
u2

θ,0

2

)

=
kT̂

2
√
π
M2

s,∞ . (B.8)

The last equality above is obtained if we assume no-slip boundary condition for the

azimuthal flow. For example, if Ms,∞ = 3, T̂ = 0.04 and k = 1, g0 ≈ 0.1.
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Figure B.1: Modeling of the centrifugal confinement force in simulations: Plots of

the model confinement force and the corresponding rotational speed sqaure, as a

function of distance along the B-field line.
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Appendix C

Estimation of Ms,crit by combining the 1D solutions in crossfield and

along the field directions

We would like to estimate at what value of the neutral wall densities at the

end-wall and the side-wall equal, from the analytical results. Since we have, from

Chapter 2, for large confinement (large Ms),

N||,w ≈ α̂1/2e−M2
s /2ncore (C.1)

and

N⊥,w ≈ αcxη

3B2
n3

core . (C.2)

By definition, Ms,crit occurs at

N⊥,w

N||,w

= 1 , (C.3)

therefore, it is easily to get

Ms,crit =

[

2 ln

(

3B2

√
αcxαiηn2

core

)]1/2

. (C.4)
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Appendix D

Possible Density-Variation Effect on Hartmann Problem

In this appendix, we show that the Hartmann number or the limitation on

the core flow and momentum confinement time are affected by the viscosity at the

boundary rather than its value at the core. This is important when Hartmann

physics is used to describe a plasma in which there is a large density variation from

the core to the wall.

We see from Chapter 4 that the viscosity µ plays an essential role in slowing

down crossfield flow, in the Hartmann problem. Both of the Hartmann number and

momentum confinement time are proportional to 1/
√
µ. However, it should also

be noted that µ is only operative in the Hartmann layer region. It is because only

the term µ∇2u in the momentum equation1 involves µ and that the flow is almost

constant outside the Hartmann layer. Therefore, the solution given in Eq.(4.19)

should also be good if we replace µ by µw, the value of viscosity at the boundary,

that is

uy,c ≈ K

√

η

µw

. (D.1)

In the followings, we explain the above claim more explicitly. Consider only the clas-

sical Hartmann problem presented in Chapter 4. The force balance in the Hartmann

1The distinction between µ∇2
u and ∇· (µ∇u) is not important as long as µ is about a constant

across the Hartmann layer
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layer in this case, normalized according to Chapter 4, is

Jx = µu′′y . (D.2)

While in the core region, both sides of the above equation does not contribute any

force. Therefore, to specify the Hartmann number or its momentum confinement

time, we only need to know the viscosity in the boundary region.

From Chapter 2 and 3, we know that, in general, plasma density n is a function

of spatial distance from the wall. As it gets closer to the wall, the plasma density

gets smaller. In particular, in a centrifugally confined plasma, the ratio of the

plasma wall density to the plasma core density is proportional to exp(−M2
s /4) (see

Appendix B and [2]), where Ms is the azimuthal rotation sonic Mach number. On

the other hand, if we use the viscosity coefficient according to Braginskii[55], we

find that µ is proportional to n2. If we also consider the neutral charge-exchange

interaction, µ should roughly proportional to nN . Therefore, we would expect µ is

a function of space and usually becomes smaller in the boundary region when n gets

smaller.

Concluding the last two paragraphs, we deduce that the Hartmann problem is

indeed irrelevant if the plasma density is small enough at the boundary. However,

since we could not solve the Hartmann problem for a plasma system with spatial

dependent density analytically. In the following, we assume that the spatial de-

pendence of the plasma density is prescribed and that the force balance in the z

direction is irrelevant to the crossfield momentum balance (That is we essentially

ignore any particle and momentum balance in the z direction but assume a density
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variation along z). We could then estimate the core plasma flow and momentum

confinement time in this case.

We re-state the one-dimensional classical Hartmann configuration here. Two

insulating infinite plates are placed at ζ = −1/2, 1/2 (z = −L/2, L/2). A strong

external magnetic field is applied in the z-direction. The total driving current flowing

in the negative x-direction per unit length in y is 2Ks which drives a plasma flow in

the y-direction. In this system, the only component of E-field is in the (negative)

x-direction. In steady state, we have,

∇× E = 0 . (D.3)

Since E = Exx̂, we deduce that Ex is a constant. We assume Ohm’s law is an

accurate description for the system as in the classical Hartmann problem,

E = −u × ẑ + ηJ . (D.4)

It is found that the usual Hartmann result is still valid, that is, when Ha ≫ 1, J

vanishes at the core, as long as µ is slowly varying in the Hartmann layer scale.

Thus, in the core region, we have

Ex ∼ −uy,c . (D.5)

On the other hand, at the edge, we have (ignoring uz),

Ex ∼ ηJx,w . (D.6)

From Eq.(D.5) and (D.6), we arrive at

uy,c ∼ −ηJx,w (D.7)
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It is known that almost all the current density of the plasma are located inside the

very thin Hartmann layer close the wall. Since the total current per unit length in

y is 2Ks, we have

2Ks ∼ −2Jx,wlH , (D.8)

where lH is the Hartmann layer width given by L/Ha where L is the size of the

system in z and Ha is the Hartmann number. Using Eq.(D.7) in (D.8), we obtain

uy,c ∼
ηK

lH
. (D.9)

It is very important to note, for constant current Ks and resistivity η, the core flow

uy,c is determined by lH which is a property defined by the edge parameters. To see

the last part of this statement, we can investigate the force balance in the y-direction

at the edge region. In the edge region, the flow changes from zero to a certain value

(uy,c) in a very short scale and therefore dragging force from the viscosity is very

large. This dragging force is balanced by the Lorentz force produced by the thin

current sheet Jx,w cross B force. Mathematically,

Jx,w ∼ µwu
′′
y

∼ µwuy,c/l
2
H .

(D.10)

Note that the assumption that the viscosity is almost a constant in ∼ O(lH) around

the wall has been used. Using Eq.(D.7) in (D.10), we have

lH ∼ √
µwη . (D.11)

It shows that lH decreases as µw decrease. Also, we obtain Eq.(D.1) as claimed.

Using the model with the viscosity given by η1 from Braginskii[55], we have

µ ≡ µ̃n2 and thus µw ∼ µ̃n2
w. (Note that making µ dependent on n does not violate
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the requirement that µ should be almost a constant around the wall as long as the

length scale of n profile is much larger than lH). In short, from Eq.(D.9) and (D.11),

we have

uy,c ∼
1

nw

√

η

µ̃
K . (D.12)

This essentially is the same equation that we derived in Chapter 4, but the point

here is to clearly state the dependence of the density at the wall when density profile

in the larger scale is a concern.

To estimate the momentum confinement time, we use the dimensional unit

from now on. We also define an average fluid density nave as

nave ≡
1

L

∫ L/2

L/2

ndz . (D.13)

The core flow is then,

uy,c ≈
4πKs

cB0

√

τµ,w

τη
Va (D.14)

where τη = 4πL2/ηc2, τµ,w = naveML2/µw and Va ≡
√

B2
0/4πnaveM . Note from

Eq.(D.11) that LH ∝ nw which is small, thus, uy ≈ uy,c in almost all the region

except the thin Hartmann layer. Redefine momentum confinement time to

τmom =

∫

nMuydz

f
, (D.15)

where f is the force density KsB0/c in the y-direction. We have the modified

Hartmann momentum confinement time,

τmom,η ∼ Muy,corenaveL

f
(D.16)

= τa

√

τµ,w

τη
, (D.17)
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where τa ≡ L/Va = L
√

4πMnave/B0 and

τµ,w ≡
√

L2naveM

µw

(D.18)

=
nave

nw

√

L2naveM

µave

(D.19)

=
nave

nw
τµ,ave . (D.20)

Therefore, the momentum confinement time is proportional to the ratio of average

density to the wall density, which could be significant. Note that in a system with

significant density variation in the z-direction in a large length scale ( i.e Ln ≫ lH),

Eq.(D.1) would not change, as long as the change in density is induced by mecha-

nisms not related to the Ohm’s law and the momentum in the y-direction. At least

this is true for the 1D MCX model presented in Chapter 2 with an artificial grav-

ity directing in z. For MCX, geometry effect would certainly enter the calculation

above. How much it would affect the result has to be investigated.
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Appendix E

Preliminary Simulation in MCX Geometry

In this appendix, we attempt to solve the plasma-neutral system in the MCX

geometry by extending the methods we used in Chapter 3 and “bypassing” the

Hartmann physics. The works appear in this appendix is supposed to be preliminary

due to the ignorance of some known physics and the limited simulation results at

this stage.

In Chapter 3, we carry out 2D simulations in a slab geometry while modeling

the centrifugal confinement using a gravity-like force term in the plasma momentum

equation. However, there are major differences in that system and an authentic

MCX geometry. First, the gravity force in the slab geometry only emulate the

parallel-to-field component of the centrifugal force. Thus, it underestimates the

perpendicular loss of plasma. Second, due to the charge-exchange interaction, the

neutral rotates with the plasma to a certain extent. Since neutral is not bounded by

the B-field, this rotation generates centrifugal force which is almost entirely in the

radial direction. This force on the neutral is not considered in the slab geometry

model. Third, in chapter 3, the simulation results show “semi-1D” behavior in the

slab geometry. However, it is questionable that it would be the case in the MCX

geometry because a mirror field is intrinsic 2D. Therefore, an analysis in the full

MCX geometry would reveal more interesting behaviors.
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In order to obtain a full MCX geometry analysis, there are two major points

to be noted. First, we need to understand more about the boundary conditions

because some of the mirror field lines end at the boundaries at angles other than

90-degree, when we keep using a rectangular box as the simulation domain. Second,

in the MCX simulation, plasma flow in the azimuthal direction should be large

(compared to sound speed). That also means that Hartmann flow problem might

be important. If that is the case, a relatively thin boundary layer is generated. That

is numerically expensive to resolve. One might suggest to include the Hall physics to

broaden the Hartmann layer as we have shown in Chapter 4. Indeed, this is a good

suggestion and should be done. However, to accurately simulate the Hall physics is

also expansive and difficult numerically.

To overcome the boundary conditions problem[28, 29], in a quick way, we

extend the idea of recombination layer used in Chapter 3 here. Fig. E.1 shows the

contour of the recombination coefficient αr we used. The red lines are the external

mirror B-field. We essentially assume the external mirror field is almost unchanged

during the simulation and that recombination rate are relative high outside the “Last

Flux Surface” (LFS)1. By LFS, we mean that this is the most exterior/interior field

line that is not ending at the side walls. By doing so, we remove the question of

determining the boundary conditions for tilted field lines. It is because the plasma

density at those region are very small, the boundary conditions are not important

anymore. For the Hartmann problem, the only quick fix is not to consider it! We do

1Note that the maximum value of αr is smaller than that we used in chapter 3 because of

stability issue
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this by using free-slip boundary condition at the end-wall, i.e. ∂z(nuθ) = 0, where n

is the plasma density and uθ is the plasma azimuthal flow velocity. However, we still

keep the no-slip boundary condition for the neutral azimuthal flow, that is making

NUθ antisymmetric, where N is the neutral density and Uθ is the neutral azimuthal

flow. Since there is CX drag acting on the plasma by the neutral, the Hartmann flow

physics is not totally be eliminated. Yet we found that boundary scale length of uθ

is very long compared to the Hartmann layer width. The azimuthal flow is driven by

Figure E.1: Contour plot of recombination coefficient αr in the MCX simulation.

Red curves are the external mirror B-field. Recombination rate is then assumed to

be high outside the “Last Flux Surface”

current. That is we set the rBy(zw) to be a constant and extrapolate the boundary
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values. This condition is obtained easily by setting the total radial current passing

through the plasma be a constant and assuming azimuthal symmetry. Fig. E.2

shows the plasma density contour plots for the rotation Mach numbers at 0.8, 1.9

and 2.3. It is shown that plasma confinement is achieved as expect. Fig E.3 and E.4

show the corresponding neutral density and the product nN contour plots of the

three simulations. Results suggest that the neutral density is decreasing at the end-

wall and increasing at the side-wall as Mach number increases. Also, the dominant

interaction region is shifting from the end-wall to the side which is along the outer

LFS. It is in agreement with the result given by Chapter 3 except that the interior

LFS is not a dominant interaction region. This can be explained by the fact an

outward centrifugal force on the neutral is in effect due to the neutral azimuthal

flow. However, different results from Chapter 3 can be seen when we look at the

neutral flow vector plots. Fig. E.5 shows the 2D structures of the neutral flow.

There are significant crossfield flow in front of the end-wall in all Mach numbers. It

shows exactly how the neutral at the end-wall escapes to the low density region at

the right-upper portion region and then approaches the core region along the side

wall. Also the neutral up stream (toward mid-plane) flow is seen to be increasing as

Mach number increases. The reason for this is still under investigation and thought

to be related to the decreasing plasma/neutral density there. Indeed, the lowering

of the plasma density there is now suspected to be the cause of numerical instability

when high Mach number is attempted. Another even more important quantity

that we can only explore now is the magnitude of CX frictional force acting on the

plasma in the azimuthal direction. This is the value nN(uθ − Uθ which is also the
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Figure E.2: Contour plots of plasma density distribution at different Mach numbers.

Left: 0.8, middle: 1.9, right: 2.3. The red curve lines are the external mirror B-field

lines. Centrifugal confinement is clearly demonstrated.
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Figure E.3: Contour plots of neutral density distribution at different Mach numbers.

Left: 0.8, middle: 1.9, right: 2.3. The red curve lines are the external mirror B-field

lines. The end-wll neutral density is decreasing as the confinement gets better.
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Figure E.4: Contour plots of interaction parameter nN distribution at different

Mach numbers. Left: 0.8, middle: 1.9, right: 2.3. The red curve lines are the

external mirror B-field lines. The dominant interaction region is shifting from the

end-region to the side which, in this case, is along the LFS.
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Figure E.5: Neutral flow vectors plots at different Mach numbers. Left: 0.8, middle:

1.9, right: 2.3. The red curve lines are the external mirror B-field lines. It shows

the 2D flow structures in the mirror field geometry.
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RHS (negative) term appears in the plasma momentum equation, Eq.(3.7). Fig. E.6

shows the contour plots of this quantity at different Mach numbers. It is found

that the frictional force, although is decreasing as Mach number increases, is not

negligible in the current parameter range. It is found that when we try to increase

Figure E.6: Charge-exchange frictional force on plasma in the azimuthal direction,

nN(uθ −Uθ), at different Mach numbers. Left: 0.8, middle: 1.9, right: 2.3. The red

curve lines are the external mirror B-field lines. The frictional force is found to be

decreasing and concentrating on the end-wall for this range of Mach numbers.

the Mach number further, numerical instability starts to appear. It is suspected that

the plasma density at the interior region decreases so much that it goes negative

and the code cannot handle this situation. However, a concrete explanation and

resolution is still under investigation.
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Appendix F

Simulation Parameters

In this appendix, we present the values of the physical parameters used in

the 2D simulation. These values are determined according to some observations

and assumptions of the MCX experimental parameters while being restricted by the

computational resources available. Table F.1 shows the values of the physical pa-

rameters assumed for MCX. Table F.2 compares the normalized physical parameters

assumed for MCX and those used in the 2D simulations.

Parameters Assumed MCX values

B-field 0.2 Tesla

ncore 1020 m−3

Lx 0.2 m

Temperature 15 eV

αcx 10−14 m3 s−1

αi 10−14 m3 s−1

Table F.1: Physical parameters assumed for MCX
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Normalized Parameters Assumed MCX values 2D Sim.

B-field 1 1

ncore 1 1

Lx 1 1

Temperature 0.008 0.04

αcx 0.46 0.5

αi 0.46 0.5

∗Kinematic viscosity, ν 1.7 × 10−5 0.005

∗Resistivity, η 2 × 10−4 0.005

*According to Braginskii[55]

Table F.2: Comparison of the normalized physical parameters assumed for MCX

and those used in the 2D simulations
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