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Chapter 1

Introduction and Literature Review

Objective of Research

This thesis is motivated by the technological development of the world’s most powerful

lasers, which can be focused to intensities ≳ 1018 W/cm2, and are also known as ultraintense

lasers. As the intensity of these lasers reach ever higher regimes (due to not only advances in

technology but also establishment of programs for constructing petawatt laser facilities), oppor-

tunities for experimentally testing new physics have emerged along with a need for laser diag-

nostics that have not kept up with the growth in laser output. Relativistic Thomson scattering

(RTS), also known as nonlinear Thomson scattering, is a phenomenon that occurs readily in ul-

traintense laser facilities, specifically due to the scattering of free electrons by a low frequency

(e.g., 800 nm infrared) laser at focus, and have recurrently been proposed as a viable diagnostic

for laser intensity. It therefore follows that the objective for the research discussed in this thesis

is to experimentally explore the feasibility of using RTS as an intensity gauge, and in doing so,

also perform novel measurements of RTS that have not previously been accomplished.

1.1 High Power Laser Facilities

Since the invention of the laser, first conceptualized in 1958 [5] and demonstrated in 1960

[6], followed by methods for generating shorts pulses down to the nanosecond (ns) regime, where

1 ns is equal to 10−9 seconds (s), via Q-switching [7] (1963) and later the picosecond (ps) regime,
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with 1 ps being equal to 10−12 s, via modelocking [8] (1964), the record for the peak focused in-

tensities would grow at an exponential rate analogous to Moore’s law [9]. It eventually hit a

plateau, as shown in Fig. 1.1, as a result of the difficulty in amplifying short pulses without un-

desired effects, such as damage to optics [10]. The plateau was finally broken in 1985 following

the invention of chirped pulse amplification (CPA) [11], originally based on neodymium-doped

glass (Nd:Glass) [12, 13], that allowed short pulses to be amplified by first temporally stretch-

ing the pulse, effectively reducing their peak intensity before being amplified by a gain medium,

and finally compressed without damage to optics. This method was later applied to titanium-

doped sapphire (Ti:Sapphire) crystals [14] and, with the invention of Ti:Sapphire Kerr lens mode

locking (KLM) [10, 15], pulse durations were brought down to the fs regime. These technolo-

gies enabled broad commercial development of intense lasers as well as global construction of

nationally and multi-nationally funded laboratories housing the world’s most powerful lasers.
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Figure 1.1: Plot of record peak intensities over time. This an updated replotting of Fig. 1.3 in [9].
The red dots include demonstrated peak intensities [3, 16–23], of which today CoReLS holds the
record (1023 W/cm2). The blue dot corresponds to intensity seen at the center of momentum frame
of a relativistic electron beam during the SLAC E144 experiment [24–26]. The first open red
circle corresponds to the intensity of the ELI-NP facility, which has current record demonstrated
peak power [27], if it was focused to a 1 µm spot (not yet demonstrated). The second red circle
corresponds to the ZEUS laser, which has begun operation and promises peak intensities of 1023

W/cm2.

New record intensities enable new frontiers in physics research. In the early beginnings of

the laser, experiments were conducted on the transitions between electronic bound states of atoms

and molecules. Shortly after the invention of ultrashort pulse lasers, peak intensities reached

levels large enough to ionize atoms and molecules with low frequency photons via multiphoton

processes, and the field of strong field laser physics emerged to study dynamics of ionization

and molecular disassociation at ultrafast time scales [28–31]. For example, molecular nitrogen

ionizes at an electron appearance intensity of I ≈ 2 × 1014 W/cm2, based on a model which

is discussed in section 2.3.9. Furthermore, new frontiers in nonlinear optics opened up to study
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harmonic generation from such lasers [32, 33]. At intensities sufficient to accelerate an electron to

relativistic speeds in a single cycle, new experiments become possible in exploring the properties

of the relativistic electrons scattered by the laser, including the radiated light known as relativistic

Thomson scattering (RTS), which is the focus of this thesis with a literature review provided in

sections 1.3 and 1.5. This regime of so-called relativistic intensities occur at I ≈ 2×1018 W/cm2,

corresponding to a normalized vector potential, discussed later in section 2.3.1, of a0 = 1.

At ultrarelativistic intensities, where I ≫ 1021 W/cm2, it would be possible to test for

radiation reaction [34, 35], Unruh radiation [36], and theories in quantum electrodynamics (QED)

associated with positron-electron pair production [37–41] by an intense field. Radiation reaction

is the phenomenon in which a charged particle emitting radiation experiences non-negligible

recoil as a result of energy and momentum conservation in the radiation process. Unruh radiation

is a generalization of Hawking radiation, which we briefly explain here. In 1975, Hawking

predicted that particles accelerated by the strong gravitational fields of a black hole at the event

horizon can radiate like a blackbody as a result of quantum mechanical effects, a process that

led to the famous idea of black hole evaporation [42]. Unruh later generalized this process for

particles undergoing any form acceleration [43]. Although these phenomena are theoretical and

have not been directly observed, it is believed that ultraintense lasers may be able to produce

conditions necessary to create Unruh radiation, due to the violent accelerations imparted by the

lasers upon electrons.

Pair production can be understood from the Dirac sea model, in which space is occupied by

an infinite sea of electrons obeying the Pauli exclusion principle having energy states consistent

with the negative solutions in the equation: U = ±
√

(pc)2 + (mec2)2. According to Euler and

Heisenberg [44, 45], an electric field, E0, on the order of or larger than the Schwinger critical
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electric field Es = m2c3

eh̄
distorts the energy spectrum in space, as shown in Fig. 1.2, such that

an electron with energy −mec
2 has a substantial probability ≈ exp(−πEs/E0) to tunnel into the

energy level corresponding to an electron with energy mec
2. This transition results in an electron

being created and leaves a ”hole” in the Dirac sea which behaves physically like an electron

with positive charge. Modern physics considers this hole as a particle called the positron. The

Schwinger electric field is defined as the field required to accelerate an electron to a kinetic

energy equal to to its rest mass, mec
2, over a distance equal to the reduced Compton wavelength,

λ̄c = h̄
mec

≈ 382 femtometers (fm), where 1 fm is equal to 10−15 m and the reduced Compton

wavelength is equal to the Compton wavelength, λc, divided by 2π. This condition is achieved at

an electric field strength of 1.3× 1018 V/m and an intensity of ≈ 1029 W/cm2.

Figure 1.2: Diagram illustrating the Schwinger effect. Energy diagrams over space show the
energy levels corresponding to an electron at rest, mec

2, as well as an electron occupying the first
negative solution to U = ±

√
(pc)2 + (mec2)2, namely U = −mec

2. When a static electric field
is applied over space, the energy spectrum in space is distorted so that an electron occupying the
−mec

2 energy level may tunnel through the forbidden region into the mec
2 energy level. This

diagram is based on Fig. 1 in [44, 45].

Although pair production has been observed in the SLAC E-144 experiment at a laser in-

tensity of only ∼ 1018 W/cm2 [26], this relied on the use of a relativistic electron beam in which

the observed laser field strength is enhanced in the electron rest frame. In order to generate the
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Schwinger electric field in the laboratory frame, it would be necessary for laser peak intensities

to increase by at least 6 orders of magnitude compared to what is available today. The previ-

ously mentioned research areas in the relativistic and ultrarelativistic regimes are certainly not

exhaustive of all of the possibilities created by ultraintense lasers. A number of publications,

such as the 2022 Multi-Petawatt Physics Prioritization (MP3) Workshop report [46], the 2019

Brightest Light Initiative Workshop report [47], the 2018 consensus study report by the National

Academies of Sciences [9], as well as review papers on the field of ultraintense lasers [10, 48, 49]

have cataloged the many research opportunities and applications enabled by ultraintense lasers, to

include laser wakefield generation, light source generation, high energy density science, radiation

therapy, and manufacturing.

Pulsed lasers are characterized by their peak power, Ppk, which is roughly equal to the

pulse energy, U , divided by the pulse duration ∆t. When focused, pulsed lasers reach high peak

intensities, Ipk, roughly equal to the peak power divided by the area of the beam profile at the

focal plane, approximated as a circular disc with a radius equal to the beam waist, w0.

Ipk ≈
Ppk

πw2
0

≈ U

∆tπw2
0

(1.1)

Ultraintense laser pulses typically have ∆t on the order of tens of fs (1 fs = 10−15 s) in duration.

Although the shortest duration are lasers pulses are on the order of ∼ 40 attoseconds (1 as =

10−18 s = 10−3 fs), these lasers are typically weak. Relativistic intensities (Ipk ≳ 1018 W/cm2)

are achievable for Ppk ∼ 10 TW (U ∼ 0.5 J) lasers, where 1 TW is equal to 1012 W, that are

tightly focused (e.g., f/3 or w0 ∼ 2 µm) and for ∼ 100 TW (∼ 5 J) lasers that are focused

with a more relaxed geometry (e.g., f/10 or w0 ∼ 20 µm). Petawatt class lasers (1 PW = 1015
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W = 103 TW) are able to take peak intensities to ∼ 1020 W/cm2 and beyond. Manufacturing

of ultraintense lasers are lead by the companies Thales Group and Amplitude Laser, providing

entire laser systems as well as components for home-made ultraintense lasers. Figure 1.3 shows

the geographical distribution of high-peak-power lasers as of 2023.
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Figure 1.3: Plots of ultra-intense laser facilities worldwide. Shown are a) geographic locations of
and b) the peak power vs. pulse energy with contours of constant pulse duration of laser systems
from the dataset obtained from the ICUIL world map [1]. This dataset includes an up-to-date
list of laser systems known to ICUIL either in excess of 10 TW peak power or capable of being
focused to at least 1019 W/cm2.
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The highest peak powers today are achieved by lasers that have a duration ∼ 20 fs and

pulse energies ∼ 100 J. Although the most energetic lasers have pulse energies on the order of

a MJ, such as the National Ignition Facility (NIF) at the Lawrence Livermore National Labora-

tory (LLNL) or the Laser MégaJoule (LMJ) at the Centre D’etudes Scientifiques et Techniques

D’aquitaine (CESTA) in France, the energies of these lasers are spread out over an order of a

few nanoseconds, reaching peak intensities of only ∼ 500 TW. As of writing (2023), the current

record holder for highest demonstrated peak power is the Center for Relativistic Laser Science

(CoReLS), Institute for Basic Science in the Republic of Korea, having demonstrated in 2020 a

pulse intensity of over 1023 W/cm2 [23] with a laser reportedly operating at 2.7 PW peak power

on target (67% of the full 4 PW power that that the system is capable) and focused using an f/1.1

off-axis parabolic mirror (OAP) to a beam diameter full-width at half-maximum (FWHM) of 1.1

µm. The record holder for highest demonstrated peak power is the Extreme Light Infrastructure

- Nuclear Physics (ELI-NP) facility in Romania, Europe, at just over 10 PW reported in March,

2019 [27].

It is expected over the next decade that there will be further technological advancement

towards 100 PW lasers and beyond [49]. A number of 10 PW lasers are currently in development

around the world, as well as a 25 PW laser being planned for construction in Rochester, NY

[50, 51] and a 100 PW laser in Shanghai, China, as can be seen in the lists of petawatt class lasers

in Tables 1.1 and 1.2. Plans to reach exawatt (1 EW = 103 PW = 1018 W) class lasers and beyond

have also been discussed [48, 49].
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Table 1.1: Petawatt class lasers (including ones being planned or developed) in the North American and Asian regions, from the ICUIL
world map [1] as of 2023. The list is organized geographically.

Laser Status Facility Location Peak
Power
[PW]

Pulse
Energy
[J]

Pulse
Duration
[fs]

BELLA Operational LBNL Berkeley, CA, US 1 42.2 40
Titan Operational LLNL-JLF Livermore, CA, US 1 300 700 to

20000
MEC In Development SLAC Portola Valley, CA, US 1 150 150

Z-Petawatt In Development SNL Albequerque, NM, US 1 650 500
Texas Petawatt Operational UTex Austin, TX 1.11 186 167

ZEUS In Development UMich Ann Arbor, MI, US 3 80 25
EP-OPAL Planned LLE Rochester, NY, US 25 500 20

RRCAT PW Operational RRCAT Indore, IN 1 25 25
TIFR-H PW Planned TIFR-H Hyderabad, IN 1 30 25

CAEP 4.9 PW Operational CAEP Mianyang, CN 4.9 90.1 18.6
Xtreme Light - III Operational IOP Beijing, CN 1.16 32.3 27.9
SIOM 1.76 PW Operational SIOM Shanghai, CN 1.76 37 21
SEL 100 PW Planned SEL Shanghai, CN 100 1500 15

Shenguang II UP PW Operational SIOM Shanghai, CN 1 1000 1000 to
10000

SIOM 5 PW In Development SIOM Shanghai, CN 5 1500 15
SULF 5.4 PW Operational SULF Shanghai, CN 5.4 130 24

SULF (Upgrade) In Development SULF Shanghai, CN 10 300 30
CoReLS PW Operational CoReLS Gwangju, KR 4.2 83 19.6
LFEX 2 PW Operational ILE-j Osaka, JP 2 1000 1000 to

20000
J-KAREN-P Operational KPSI Kizugawa, JP 1 30 30
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Table 1.2: Petawatt class lasers (including ones being planned or developed) in the European region, from the ICUIL world map [1] as
of 2023. The list is organized geographically.

Laser Status Facility Location Peak
Power
[PW]

Pulse
Energy
[J]

Pulse
Duration
[fs]

Vulcan (Upgraded) Planned RAL Didcot, UK 20 400 20
Vulcan Operational RAL Didcot, UK 1 500 500
Orion Operational AWE Aldermaston, UK 1 500 500

VEGA 3 Operational CLPU Salamanca, ES 1 30 30
PETAL Operational CESTA Le Barp, FR 1.15 1000 500

F2 Operational APOLL Saclay, FR 1 15 15
F1 In Development APOLL Saclay, FR 10 150 15

ATLAS-3000 In Development CALA Garching bei München, DE 3 60 20
PENELOPE Operational HZDR Dresden, DE 1 150 150

DRACO Operational HZDR Dresden, DE 1 45 30
Laser 3 HAPLS Operational ELI-Cz Dolnı́ Břežany, CZ 1 30 30
Laser 4 ADBC In Development ELI-Cz Dolnı́ Břežany, CZ 10 1800 150

Laser 2 Amos (stage 2) In Development ELI-Cz Dolnı́ Břežany, CZ 1 18 20
HF - 2 PW arm In Development ELI-Hu Szeged, HU 2 34 17

CETAL Configuration 1 Operational INFLPR Bucharest, RO 1 25 25
HPLS Operational ELI-NP Măguerele, RO 10 250 25

PEARL Operational IAP Nizhny Novgorod, RU 1.5 15 10
PEARL-10 In Development IAP Nizhny Novgorod, RU 5 150 30

XCELS 15 PW Planned XCELS Nizhny Novgorod, RU 15 400 25
Femta-Ray Decomissioned VNIIEF Sarov, RU 1 70 70
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1.2 The Need for in situ Laser Diagnostics

As discussed in section 1.1, ultraintense lasers open up a variety of new tests in physics

and other applications. There will be many experiments that rely on diagnostics of the focused

intensity itself for scientific verification and reproducibility. Furthermore, laser diagnostics goes

hand-in-hand with laser control and optimization, in order to enable user facilities to provide

high-quality and predictable beams. Laser intensity characterization methods, however, have not

kept pace with the advances in laser peak power. High power laser systems also present new

challenges to control and optimization, as they tend to suffer more from effects that distort the

beam profile, through what is known as spatiotemporal distortions, causing a deviation from the

ideal (e.g., Gaussian) and resulting in significant reductions in peak intensity, as discussed in

[52, 53]. Current intensity characterization methods, being limited by the damage thresholds of

detectors, rely on either sampling a small fraction of the main beam to produce a diagnostic beam

for subsequent analysis at a diagnostics bench or performing measurements of the main beam

operating at low powers, neither of which are guaranteed to both reproduce the beam exactly at

focus and capture effects that scale with the full power intensity.

An in situ intensity gauge would provide a means to characterize the behavior of the full

power laser at focus. While a full reconstruction of the beam at focus would provide a wealth of

information, for many experiments, measurement of the peak intensity would suffice as evidence

of having achieved desired intensity thresholds. An ideal in situ intensity gauge would be capable

of operating single-shot, simultaneously with the physics experiment without intrusion, and thus

monitor the shot-to-shot fluctuations and drifts in the laser parameters over time, complementary

with the physics measurements being carried out.
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1.3 Relativistic Thomson scattering (RTS) as an Intensity Gauge

There are a number of proposed methods for direct characterization of focused intensity,

including the measurement of radiation produced by free electrons scattered by the laser, a phe-

nomenon known as relativistic Thomson scattering (RTS) [54–60], which is the topic of this

dissertation. All three measurements can be applied to the case where gas molecules are ion-

ized by the laser radiation, liberating electrons from their parent ions. While electron beams

may also be used for producing RTS [61–64], such methods focus on the generation of high

frequency photons, add a layer of experimental complexity involving the use of particle accel-

eration schemes, and are thus not explored in this dissertation. Instead, this dissertation focuses

on electrons produced from ionization of molecules and atoms from a low-density gas by the

laser. The interaction is therefore treated as a single particle, with an effectively negligible initial

velocity, interacting classically with an electromagnetic wave (typically IR, e.g., λ0 ≈ 800 nm).

The resulting particle motion produces harmonic light in the visible band predominantly from the

second harmonic (e.g., λRTS ≳ 400 nm).

This remaining parts of this section provide a brief review of theoretical papers on RTS

radiation produced in intense field conditions, including proposals for using RTS as an intensity

diagnostic. In 1962, Vachaspati derived expressions for the fundamental and second harmonic

RTS differential cross section and showing that at high intensities, the second harmonic has a

magnitude comparable to the fundamental [54]. In 1970, Sarachik and Schappert wrote a com-

prehensive classical treatment of relativistic Thomson scattering radiation, produced by intense

lasers. Their paper derived analytical expressions for the electron motion and radiated angular

distribution of power and frequency of generated harmonics, as functions of the intensity, for the
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case of the plane wave approximating the conditions at peak of a laser pulse. Later, during 2004

- 2015, papers presenting numerical calculations of the electron trajectory, angular distribution,

and spectra using a Gaussian temporal and spatial envelope would emerge [56–58, 60], revealing

the spectrum broadening and ponderomotive scattering effects associated with a real laser pulse.

In 2012, Paredes calculated the angular distribution of the second and third harmonic by convolv-

ing the plane wave results from Sarachik and Schappert of varying intensities with a Gaussian

spatial profile [59], an approach that - although neglects ponderomotive effects - provides insight

on how the laser corona modifies the plane wave angular distribution, while having the advan-

tage of primarily being an analytical approach. These theoretical approaches, while illustrative

of many important ideas, would need to be refined and carried out using parameters consistent

with experiment in order to support experimental validation of an intensity gauge.

1.4 Coordinate System

Before moving on, we define the coordinate system, illustrated in Fig. 1.4 which will

be used throughout this thesis. We are interested in a laser with propagation vector k whose

magnitude is the wavenumber, k = 2π
λ

, where λ is the wavelength. We adopt the convention such

that k is oriented along the z axis. Furthermore, we consider a linearly polarized wave, such that

the electric field, E, is oriented along the x axis and the magnetic field, B, is oriented along the y

axis.

For a given position in space defined by the vector r, the vector crosses the unit sphere at
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point P and has a corresponding unit vector, r̂, given by:

r̂ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ (1.2)

where x̂, ŷ, are the ẑ unit vectors along the positive x, y, and z axes respectively, θ is the polar

angle relative to the positive z axis, and ϕ is the azimuthal angle which rotates about the z axis

relative to the half-plane containing the positive x axis in the x-z plane.

Figure 1.4: Diagram showing the coordinate system used in this thesis. Shown is a sphere whose
pole is oriented along the z axis, with θ being the polar angle, and ϕ being the azimuthal angle
relative to the half-plane containing the positive x axis in the x-z plane. The orientation of the
laser propagation vector, k, in this coordinate system is also established, along with the electric
and magnetic fields, E and B respectively. The unit vectors r̂ defined in Eq. 1.2, as well as θ̂ and
ϕ̂, defined in Eq. 1.3 and 1.4, are also shown.
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We also define the unit vectors θ̂ and ϕ̂ based on the convention in [65] as:

θ̂ = cos θ cosϕx̂+ cos θ sinϕŷ − sin θẑ (1.3)

ϕ̂ = − sinϕx̂+ cosϕŷ (1.4)

The vectors θ̂ and ϕ̂ may be understood to be the vectors tangent to the surface of the sphere

at point P , with θ̂ oriented towards the negative z axis, and ϕ̂ oriented perpendicular to the z

axis according to the right hand rule (with the positive z axis being the thumb, and ϕ̂ being the

curled fingers). Analogous to geography, if the intersection between the positive z axis and the

unit sphere is called the ”north pole” and that between the negative z axis and the unit sphere is

called the ”south pole”, then θ̂ is always oriented ”south” wherever P is on the unit sphere, while

ϕ̂ is always oriented ”east”. One can see that these vectors also satisfy θ̂ × ϕ̂ = r̂.

The differential solid angle, dΩ, is defined from θ and ϕ using the standard expression:

dΩ = sin θdθdϕ (1.5)

so that the total solid angle Ω for θ from θ1 to θ2 and ϕ from ϕ1 to ϕ2 is defined via a double

integral:

Ω =

∫∫
dΩ =

∫ ϕ2

ϕ1

∫ θ2

θ1

sin θdθdϕ (1.6)

It is common to consider the total solid angle associated with a cone with half-angle θHA, which

is simply a special case of Eq. 1.6 where ϕ is integrated from 0 to 2π and θ is integrated from 0
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to θHA:

Ωcone =

∫ 2π

0

∫ θHA

0

sin θdθdϕ = 2π (1− cos θHA) (1.7)

If there is some quantity, say power per unit steradian, dP
dΩ
(θ, ϕ), which depends on θ and

ϕ, and we are interested in the power radiated over a solid angle, Ω, defined by θ from θ1 to θ2

and ϕ from ϕ1 to ϕ2, then we simply integrate dP
dΩ
(θ, ϕ) over the solid angle:

P =

∫ ϕ2

ϕ1

∫ θ2

θ1

dP

dΩ
(θ, ϕ) sin θdθdϕ (1.8)

Lastly, we provide some cautionary notes. In general, the solid angle may be computed with

respect to an arbitrary direction n̂, in which case we define a polar angle, θn̂, and azimuth angle

ϕn̂ relative to n̂ and perform calculations of dΩ and Ω accordingly. However, this calculation

requires a change between two spherical coordinate systems, such as the one carried out for

a specific case in section 5.2, which is complicated and not carried out in this thesis. Also,

the notation r will be used for defining the electron position, whereas the notation x relative

to the origin and unit vector n̂ being defined as the unit vector pointing from the electron to

the observer position (see Fig. 1.5). The polar coordinates, θ and ϕ, will typically refer to the

observer position, rather than the electron.

17



Figure 1.5: Plots showing the physical picture of relativistic Thomson scattering. An electron
sees an electromagnetic plane wave a) and experiences a force that causes the electron to move
along a path shown in the blue dotted lines in b). The motion of the electron produces radiation
that propagates along in the direction n̂ and is observed at a position x from the origin.

1.5 Experimental Measurements of RTS

Overall, there have not been very many experiments attempting to resolve the details of

relativistic Thomson scattering radiation, nor explore its viability as an in situ intensity char-

acterization diagnostic. Prior to Sarachik and Schappert’s paper, Thomson scattering had been

observed in plasma experiments and used, for example, to determine the electron temperature via

the Doppler shifted spectrum of the fundamental harmonic (see Peacock 1969 [66]). One of the

earliest accounts of observing the second harmonic of relativistic Thomson scattering in the lab

was the experiment conducted by Englert and Rinehart in 1983 [67], taking coincidence mea-

surements of second harmonic photons emitted perpendicular to the beam of a 1 ps, Nd:Glass,

1060 nm pulsed laser at 1.7× 1014 W/cm2 counter-propagating with an electron beam at 500 and

1600 eV. The first experiment to resolve the angular distribution of RTS harmonics was done by
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Chen et al in 1998 [68] using 1053 nm wavelength, 400 fs laser pulses focused to an intensity of

∼ 3 × 1018 W/cm2 into helium gas, producing electrons through photoionization. These mea-

surements were taken for the second and third harmonics over a range of values in ϕ (defined as

in section 1.4) from 0◦ to 180◦, for two fixed values of θ, namely 90◦ and 51◦.

In 2018, our group performed a commissioning experiment measuring the spectra of the

second harmonic of RTS using the VEGA-2 laser at the Centro de Láseres Pulsados (CLPU) fa-

cility in Spain, which was a linearly polarized, 800 nm, Ti:Sapphire chirp-pulse amplifier (CPA)

type laser with 30 fs pulses, focused to a range of intensities from ∼ 1018 - 1019 W/cm2 with an

f/13 off-axis parabola (OAP) [69]. This was, to our knowledge, the first such RTS measurement

using a laser of this class. We later followed up with another experiment in 2019, again using

the VEGA-2 laser, to measure the angular distribution of RTS over varying values of θ, and ob-

served the existence of a dip in radiation intensity, for second harmonic light. A third experiment

in 2022 was done using the VEGA-3 laser to quantify the location of the dip as a function of

laser intensity in a range of 1018 to 1020 W/cm2, alongside experiments investigating alternative

in situ approaches to intensity characterization including ion and electron detection. During this

same period period from 2018 to 2022, the Peatross group and collaborators at Bringham Young

University had made angular distribution measurements of RTS (over a range of values in ϕ for

θ = 90◦) with detectors resolving the radiated polarization along ϕ̂ and θ̂ separately, correspond-

ing respectively to the electron’s transverse and longitudinal motion relative to the propagating

beam [70, 71].
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Chapter 2

Physics of Relativistic Thomson Scattering

2.1 Overview

This chapter will be devoted to explaining the physical behavior of free electrons as they

interact with incident electromagnetic radiation. The mathematical expressions throughout this

chapter will be in SI units as opposed to Gaussian. Equations taken from sources using Gaussian

(cgs) units have been converted into SI as explained in Appendix C. We will discuss two regimes

of Thomson scattering - linear Thomson scattering (LTS) and nonlinear, relativistic Thomson

scattering (RTS) - with a focus on how RTS may be exploited as an intensity gauge for relativistic

intensities.

The distinction between linear and nonlinear, relativistic Thomson scattering can be seen

by taking the limits in which v/c ≪ 1 and v/c → 1 respectively, where v is the electron speed,

and c is the speed of light in vacuum. At low intensity, the magnetic force on the electron can be

ignored, because |ev×B|≪ |eE|, where E and B are the electric and magnetic fields respectively.

The electron oscillates in phase with the electric field with speed v ≪ c, and emits (dipole)

radiation, at the incident laser frequency. At high intensity, v → c, so that the magnetic force must

be included and the electron motion becomes more complicated. Relativistic speeds also lead to

strong Doppler effects which modify the frequency spectrum of the emitted radiation. In this

discussion, we consider incident radiation that is linearly polarized and generated by Ti:Sapphire

lasers with a central wavelength of 800 nm. This chapter will be primarily focused on the electron
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response to an infinite plane wave, but will also explore the case where the wave has a Gaussian

temporal profile representing a pulse. The effects of a nonuniform intensity distribution due to a

focused beam is left for Chapter 7 to discuss.

2.2 Linear Thomson scattering

2.2.1 Equations of motion

We begin with the the Lorentz force equation for an electron with charge −e (where e is

positive with value of 1.602 176 634×10−19 C as defined by the current SI standard, and C is the

coulomb):
(2.1)F = −e(E+ v ×B).

For an electromagnetic wave propagating in vacuum, E/B = c, where E = |E|, B = |B|. We

write the right hand side of Eq. 2.1 in the more suggestive form

F = −eEÊ− eEβ
(
v̂ × B̂

)
= FE + FB, (2.2)

where Ê, B̂, and v̂ are unit vectors in the directions of E, B, and v respectively and β = v/c.

The Lorentz force is separated into an electrical component, FE ≡ −eEÊ, and a magnetic

component, FB ≡ −eEβ
(
v̂ × B̂

)
, whose magnitudes are |FE|= eE and |FB|≤ eEβ. It can be

shown that for low intensities (I ≪ 1018 W/cm2 or equivalently), β ≤ 0.01. The motion of the

electron remains nonrelativistic.

For an infinite plane electromagnetic wave with angular frequency ω propagating in the ẑ

direction, with the electric field polarized in the x̂ direction, the electric force on the electron can

21



be written as:
(2.3)FE = −eE0 cos(kz − ωt)x̂,

where E0 is the electric field amplitude of the wave, k = 2π/λ is the wavenumber. Here, we

assume the electron is stationary when it encounters the wave and consequently its z coordinate

stays fixed over time. We also assume that the electron is born during time t = 0 at z = 0,

although in general, there may be a transverse drift that depends on the laser phase the electron

sees during birth. For an electron born at the peak of the pulse, this drift is 0. For nonrelativistc

motion, the Lorentz factor γ = 1/
√

1− β2 is approximately 1, so that F = dp
dt

≈ ma, where

p = γmv ≈ mv is the momentum, and a = dv
dt

is the acceleration. Equation 2.3 can then be

rewritten as:

a(t) = −eE0

me

cos(kz − ωt)x̂ (2.4)

and then integrated over time to determine the electron position and velocity:

v(t) = − eE0

meω
sin(ωt)x̂. (2.5)

r(t) =
eE0

meω

[
1

ω
cos (ωt)

]
x̂, (2.6)

Equations 2.6 and 2.5 tells us that the electron motion is harmonic and undergoes dipole oscilla-

tion.

The electromagnetic waves radiated by a nonrelativistic electron, as observed at some po-
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sition x relative to the electron, is described by:

Erad(x, t) = − e

4πϵ0c

[
n̂× (n̂× β̇)

R

]
ret

(2.7)

where n̂ is the observation direction unit vector, β̇ = a/c is the acceleration normalized to c, R

is the distance from the electron to the observer, and the subscript ret indicates that the quantities

in brackets, are to be evaluated at the retarded time, tret = t − R/c. Equation 2.7 is determined

by taking the nonrelativistic limit of Eq. 2.66 (see section 2.3.4 for an outline of the derivation

based on Jackson [72]). Other texts, such as Griffiths (see Eq. 11.74 in [65]) also derive the

same result. Since we are considering an observer far away, we can approximate the quantities n̂

and R as constant over time, so that the retarded time, tret is just t shifted by a constant and we

may as well drop the ret subscript. Equation 2.7 is more intuitively understood by defining the

observation angle θx̂ subtended by n̂ from x̂, so that Eq. 2.7 can be written as:

Erad = − e

4πϵ0cR
β̇ sin θx̂ϵ̂ (2.8)

where β̇ is the magnitude of β̇, and ϵ̂ is the polarization unit vector which is in the plane defined

by the component of β̇ perpendicular to n̂ (see Fig. 2.1).
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Figure 2.1: Diagrams illustrating the linear Thomson scattering radiation pattern. Shown are a)
the Cartesian axes along with the observation direction n̂, together with x̂ defines the angle θx̂ and
polarization vector ϵ̂, b) the polarization direction defined by component of β̇ ⊥ n̂, and c) a 3D
diagram of the radiated power distribution as well as electric field vectors for various values of θx̂.
The strength and polarization of radiated light in the far-field and nonrelativistic approximation
is determined solely by the component of β̇ ⊥ n̂, and does not consist any contribution by the
component of β̇ ∥ n̂.

The radiation pattern is that of an oscillating dipole (the electron is essentially an antenna),

whose power is given by:

(2.9)
dP

dΩ
=

e2

16π2ϵ0c3
|v̇|2 sin2 θx̂.

after substitution of v(t) with Eq. 2.5, giving the expression for the donut pattern. The strongest

emission occurs in the direction perpendicular to the direction of dipole oscillation and van-

ishes along the direction of the dipole oscillation. If v̇ is taken to be along the x axis, we may

write our expression in terms of the polar coordinates θ and ϕ defined in section 1.4, that is

sin2 θx̂ = 1− sin2 θ cos2 ϕ, so that the radiation pattern oriented relative to the laser polarization

and propagation vectors is as shown in Fig. 2.2.
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Figure 2.2: The donut shaped pattern of the scattered power oriented with respect to the laser
for an oscillating dipole. The oscillating dipole is located at the origin (Eq. 2.9), and the dipole
motion is oriented along the laser E field. A unique point on the surface defines corresponds
to a unique direction, and the distance between that point and the origin represents the relative
emitted power (also color coded).

The power scattered per electron per unit steradian for Thomson scattering can also be

obtained from the Thomson Scattering differential cross section [73],

(2.10)
dσT
dΩ

= r20(1− sin2 θ cos2 ϕ),

where r0 = e2/4πϵ0mec
3 ≈ 2.82 fm is the classical electron radius. To do so, we simply multiply

dσT

dΩ
by the incident power flux per unit area Pin/A:

(2.11)
dPT

dΩ
=
Pin

A

dσT
dΩ

.

Since dσT

dΩ
does not depend on the input power, the emitted power scales linearly with Pin.

2.3 Nonlinear (relativistic) Thomson scattering

As mentioned in Chapter 1, a classical treatment of Thomson Scattering in the relativistic

regime for plane waves was formulated in 1970 by Sarachik and Schappert [55], which forms the
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cornerstone of the theory of relativistic Thomson scattering in this thesis. The book by Gibbon

[74] provides an alternate perspective on the same topic which is also a source of many of the

analytical formulas for electron motion in this chapter. The equations for the radiation by a point

charge moving in an arbitrary motion at relativistic speeds comes primarily from Jackson [72],

which we will also refer to.

2.3.1 The normalized vector potential

Before discussing the details of relativistic Thomson scattering, it is useful to define a

parameter that scales with the laser electric field strength, which tells us when the accelerated

electrons are relativistic. We can derive such a parameter, which is typically called a0, through

the following analysis. We start with the canonical momentum, pcan, for a system with an electron

interacting with an electromagnetic field:

(2.12)pcan = p− eA.

Here, p is the kinetic momentum, and A is the vector potential. In the case of plane electro-

magnetic wave propagating in the ẑ direction, A, which is a function of kz − ωt, depends on

the particle’s position only through the variable z. Hence, one can see from either the Euler-

Lagrange equation (dpcan,k
dt

= ∂L
∂qk

) or Hamilton’s equations of motion (dpcan,k
dt

= − ∂H
∂qk

) that the x

and y components of pcan are conserved. The respective components in the quantity −eA can be

thought of collectively as a ”potential momentum,” and those of A as the potential momentum

per unit charge (see section 10.1.4 in [65]).

To simplify our analysis, we ignore the z components in Eq. 2.12, since the transverse

motion of the electron becomes relativistic before the longitudinal component does. We analyze

the situation in which pcan = 0 (which means there are only oscillations and no drift) and can
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solve for the kinetic momentum (p = eA). Since the electric field is linearly polarized, both p

and A only have x components and we may simply write:

(2.13)p(t) = eA(t).

In the next step of our analysis, we note that the motion of the electron becomes relativistic

when the momentum approaches mec. Letting p = γmec leads to

p

mec
= γβ =

β√
1− β2

∼ 1. (2.14)

Solving for β shows that this condition means β ∼ 0.71 and γ ∼ 1.4 which we will take to be

the onset of relativistic motion. We could also instead consider the condition where the kinetic

energy is equal or greater than the rest mass, or (γ−1)mec
2 ≳ mec

2 which gives γ ≳ 2, however,

this is not significantly different from the momentum condition and involves a higher speed.

Finally, we are interested in the situation where the motion of the electron, on average, is

relativistic, therefore we define a parameter, a20, to be twice the time average of the square ratio

of p to mec:

a20 ≡ 2

〈[
p(t)

mec

]2〉
= 2

e2 ⟨A(t)2⟩
m2

ec
2

=

(
eA0

mec

)2

, (2.15)

where we have taken the vector potential to be harmonic, i.e., A(t) = A0 cos(ωt). The parameter

a0 = eA0/mec is known as the ”normalized vector potential.” We note that many sources cite a0

in Gaussian units, where there is an extra factor of c2 in the denominator of the expression for a20

in Eq. 2.15.

We are interested in expressing a0 in a form that can be more readily applied to lasers. To
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do this, we start by writing the electromagnetic radiation intensity in terms of A0:

I = ⟨|S|⟩ =
〈

1

µ0c
|E|2

〉
=

ω2

µ0c
A2

0 ⟨cos2(ωt)⟩ =
ω2

2µ0c
A2

0. (2.16)

The normalized vector potential can then be rewritten as:

(2.17)a0 ≈ 0.855×
√
I[1018 W/cm2]× λ[µm].

For our wavelength of interest at 800 nm, one achieves an a0 value of 1.00 when I ≈ 2.14 ×

1018 W/cm2. This produces an RMS value for β (βrms ≡
√
⟨β2⟩) of ∼ 0.58 (from rewriting the

right hand side of Eq. 2.15 in terms of β and solving for βrms). For the purposes of this thesis,

we will take a0 ≳ 1 to be the condition in which the electron is classified as relativistic.

2.3.2 Electron Motion in the Lab Frame

When the parameter a0 ≳ 1, the condition β ≪ 1 no longer holds. The magnetic compo-

nent in the Lorentz force, FB = −ev×B then becomes comparable with the electric component.

It turns out that this magnetic force leads to a longitudinal (along k) acceleration component that

is periodic with a frequency double that of its transverse oscillation, leading to, a forward motion

of the electron that is modulated with an angular frequency of 2ω(1) where ω(1) is the electron

transverse oscillation angular frequency.

The trajectory of the relativistic electron can be solved numerically by treating the Lorentz

force equation as a differential equation, which is accurate up to intensities of around 1022 after

which the effects of radiation reaction (which is the modification of the electron trajectory due

to recoil from radiating photons with energies ∼ mec
2) appear. The Lorentz force equation,

F = dp
dt

= −e(E + v × B), is a differential equation in the sense that electron momentum and
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the velocity are related via p = γmv, and that the electric and magnetic fields are functions of

the electron’s position, r in space and in general may have an explicit time dependence - i.e.,

E = E(r, t) and B = B(r, t) - which is related to the velocity via dr
dt

= v. These relations hold

for any fixed value for time, t, so that the variables r, v, p, γ are all functions of time.

As a simple example, we take the fields to be infinite plane waves. This is an approximation

applicable for focused lasers at the peak of the pulse, although for tightly focused lasers or short

pulses, a more detailed model is required. We define the fields as:

E = E0 cos(kz − ωt+ δ0)x̂ (2.18)

B =
E0

c
cos(kz − ωt+ δ0)ŷ (2.19)

where the relation B0 = E0/c was used and introduced an initial phase parameter δ0. Further-

more, the electric field amplitude can be written in terms of the normalized vector potential using

eE0 = a0ω0mc so that the Lorentz force equation becomes:

dp

dt
= −a0ω0mc(x̂+ β × ŷ) cos(kz − ωt+ δ0) (2.20)

We next normalize the variables to their associated natural constants as follows, such that

the values of the variables do not differ by many orders of magnitude, which is useful for avoiding
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issues related to rounding errors during numerical computation:

r′ = kr ⇒ x′ = kx, y′ = ky, z′ = kz (2.21)

t′ = ωt (2.22)

p′ =
p

mc
(2.23)

dp′

dt
=

1

ωmc

dp

dt
(2.24)

v′ =
v

c
= β (2.25)

In terms of the normalized variables, we have the following complete equations of motion:

dr′

dt′
=

p′

γ
(2.26)

dp′

dt′
= −a0(x̂+ β × ŷ) cos(z′ − t′ + δ0) (2.27)

Carrying out the cross product, β × ŷ = −βzx̂+ βxẑ, we find that the force in the ŷ direction is

always, 0. For simplicity, we may take the initial position and velocity of the electron along ŷ to

be zero, so that we only need to be concerned with the components along x̂ and ẑ. The equations

of motion can then be represented as a system of ordinary-differential-equations (ODE) with the

x and z components of the position and momenta as variables:

dX

dt′
(t′) = f(t′,X(t′)) (2.28)

where
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X(t′) =



x′(t′)

z′(t′)

p′x(t
′)

p′z(t
′)


(2.29)

dX

dt
(t′) =



dx′

dt
(t′)

dz′

dt
(t′)

dp′x
dt
(t′)

dp′z
dt
(t′)


(2.30)

and

f(t′,X(t′)) =



p′x(t
′)

γ(t′)

p′z(t
′)

γ(t′)

−a0
(
1− p′z(t

′)
γ(t′)

)
cos(t′ − z′(t′) + δ0)

−a0 p
′
x(t

′)
γ(t′)

cos(t′ − z′(t′) + δ0)


(2.31)

with γ(t′) =
√
1 + p′x(t

′)2 + p′z(t
′)2.

Given a set of initial conditions:

X(0) =



x′(0)

z′(0)

p′x(0)

p′z(0)


=



a0

0

0

0


(2.32)

δ0 = 0 (2.33)

the system of ODEs may be solved using a numerical method. The results shown in this section

are solved using MATLAB’s ODE89 method. The code is provided in Appendix C.2.

Shown in Fig. 2.3 is the numerically computed path traversed by the electron due to the

electromagnetic wave, along with the forces and momenta at select points in time. In space, the

electron trajectory contains sharp cusps at the end of its excursions. Analogous to simple har-

monic motion, the acceleration is the strongest and the speed is the slowest at these endpoints,

whereas the speed is maximum (and acceleration 0) at the half-way crossings between the end-

points. We define this inertial reference frame as the ”laboratory” frame, or ”lab” frame for short.
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Figure 2.3: Plots of the electron path of motion in space for a0 = 1 from solving the Lorentz force
differential equation for an infinite plane wave, with force components and momentum at various
times superimposed. See Eq. 2.28-2.33. Plotted on top of the path are select positions along with
the a) electric, magnetic, and total Lorentz forces and b) the momentum at those positions. As
will be discussed later, the electron oscillates with a transverse excursion amplitude of kxexc = a0
if born at the peak of the field δ0 = 0 at rest. The electron at rest at (kz, kx) = (0, 1) is initially
accelerated by the electric force along x and gains a velocity which results in a magnetic force
pushing the electron forward. At the halfway crossing (kx = 0), the electromagnetic wave is 0
and the electron is at maximum speed, after which there is a net force which point in a direction
opposing the electron momentum, slowing the electron down until it comes to a stop at kx = −1.
The electron then follows a mirrored path to complete the second half of the cycle, returning to
kx = 0 at some offset in kz from the initial position. Two cycles are shown in the plots.

The electron position, momentum, and force over time are shown in Fig. 2.4 for one

interaction period. The motion is periodic, with the z component completing two periods per

single period in the x component. The z component exhibits a lurching motion, containing both
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a linear and periodic component in time. In the frame, the electron never moves backwards along

z. From the plots of the z component variables, we can expect second harmonic radiation to be

generated along with the fundamental. The shape of the curves deviate from perfect first and

second harmonic sinusoids, which would lead to radiation at other frequencies and is discussed

in more detail in section 2.3.4.

Figure 2.4: Plots of electron motion in the lab frame due to interaction with a plane electro-
magnetic wave over a single cycle. Shown are the x and z components of the electron position,
momentum, and experienced Lorentz force for an electron born at the peak of the wave with
a0 = 1.

Analytical expressions for the electron motion for an infinite plane wave (see the derivations

in [74] and [55]) provide another perspective on the physics and reveal additional details. For a
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linear polarized wave with the electric field along x̂ and propagation vector along ẑ:

pz
mc

=
a20
2
{1− cos [2(kz − ωt)]} (2.34)

px
mc

= −a0 sin(kz − ωt) (2.35)

kz =
a20
4
{sin [2(kz − ωt)]− (kz − ωt)} (2.36)

kx = −a0 cos(kz − ωt) (2.37)

The excursion amplitude, xexc, being proportional to a0 is seen in Eq. 2.37. In other words,

kxexc = a0 ⇒ xexc =
a0
2π
λ (2.38)

where λ is the laser wavelength in the lab frame. The forward lurching motion (along z) has

a periodic excursion which also depends on a0, which can be determined as follows. After the

electron has interacted with one laser cycle, the phase, η ≡ kz − ωt, that the electron sees would

have changed by −2π (see Fig. 2.5). The electron would have lurched forward (from setting

η = −2π on the right hand side of Eq. 2.36) by an amount such that:

kzexc =
a20
4
2π ⇒ zexc =

a20
4
λ (2.39)

This occurs over an elapsed time (from plugging kzexc in Eq. 2.39 into ωt = kz + 2π) equal to:

ωTRTS =

(
a20
4

+ 1

)
2π ⇒ TRTS =

(
a20
4

+ 1

)
T (2.40)

where TRTS is the electron interaction period and T is the laser period in the lab frame.

34



Figure 2.5: Plots of the electron position and electromagnetic wave profile at various snapshots
in time for a0 = 1. The times are given by a) t = 0, b) t = TRTS , and c) t = 2 × TRTS , where
TRTS corresponds to an electron oscillation period and given by Eq. 2.40. Annotations indicate
the phase at adjacent wave crests, differing by 2π. After one electron oscillation period, the
phase front moves by a distance corresponding to c∆t (or ω∆t in kz space), where ∆t = TRTS .
Meanwhile, the electron moves forward by a distance corresponding to ∆z (or k∆z in kz space),
where ∆z = zexc in Eq. 2.39.
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Figure 2.6: Plots of the electron position and electromagnetic wave profile at various snapshots in
time for a0 = 3/2. This is the same type of plot as Fig. 2.5, but shows that the electron excursion
increases at a larger a0 value.

To put the excursion lengths and oscillation periods into context, these values given in

Table 2.1 for various values of a0 assuming an 800 nm infinite plane wave. This table shows

that xexc ≪ w0 and zexc ≪ zR up to a0 ∼ 5 for f/3 focusing geometry (where w0 ∼ 1.5 µm

and zR ∼ 10 µm if diffraction limited). At larger a0, the plane wave model which these values

are based upon breaks down. If the focusing geometry is relaxed (larger f/#) or non-diffraction

limited pulses are considered, bothw0 and zR get larger so that the electron born at the peak of the

field remains well-contained within the high intensity region. We may estimate the total electron

interaction time, ∆tRTS, with a pulse of duration ∆t (typically ∆t ∼ 30 fs FWHM) by using

eq. 2.40, with T replaced by ∆t. The drifting electron interacts with the pulse over a stretched

amount of time compared to the laser period seen at a fixed point in space. As an extreme case,
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for a0 = 100, zexc ≫ xexc owing to the quadratic dependence of zexc on a0, meaning the electron

”surfs” with the laser pulse at a speed close to c.

Table 2.1: Values of the transverse excursion amplitude, xexc, the longitudinal periodic excursion
length, zexc, and the electron interaction cycle, TRTS, for various values of a0 and intensity, I . See
Eq. 2.38 to 2.40. The electromagnetic wave is a λ = 800 nm infinite plane wave (with oscillation
period T = 2.7 fs). Also shown are the effective interaction time, ∆tRTS, for a 30 fs square pulse
(see previous paragraph).

a0 I [1018 W/cm2] xexc [µm] zexc [µm] TRTS [fs] ∆tRTS

0.1 2e-2 1e-2 2e-3 3 30
1 2 0.1 0.2 3 40
2 9 0.3 0.8 5 60
3 20 0.4 2 9 100
4 30 0.5 3 10 150
5 50 0.6 5 20 200

10 2e2 1 20 70 800
100 2e4 10 2e3 7e3 8e4

2.3.3 Electron Motion in the Drift Frame

The average motion of the electron is a constant drift along the laser propagation direction,

with a velocity known as the drift velocity. This drift velocity can be determined by averaging the

analytical equations over an interaction cycle and written in terms of a0. We begin by rewriting

Eq. 2.36 in a more suggestive form where kz can be separated from ωt:

kz =
a20

4 + a20
{sin[2(kz − ωt)] + ωt} (2.41)

After one cycle, the phase term in Eq. 2.41 averages to 0 so that the sinusoidal term is vanishes,

resulting in the following expression of the average drift velocity:

vD ≡
〈
z

t

〉
=

a20
4 + a20

c (2.42)
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Here, ω/k = c was identified as the phase velocity of the propagating wave equivalent to the

speed of light.

We define the ”drift frame” to be the inertial reference frame following the average drift

velocity of the electron. The electron path in the drift frame can be obtained by a Lorentz trans-

form to a reference frame moving at vD. Defining the normalized drift velocity βD = vD/c, the

Lorentz transform consists of the following equations:

t(D) = γD(t− βDz) (2.43)

z(D) = γD(z − βDt) (2.44)

where t(D) and z(D) are the t and z coordinates in the drift frame respectively and γD = 1/
√

1− β2
D

is the Lorentz factor associated with βD. The superscript (D) notation is to distinguish the time,

position, and the resulting velocity in the drift frame from the average drift velocity denoted by

subscript D. The x coordinate remains unchanged in the drift frame, however it evolves with

respect to t(D). Shown in Fig. 2.7 is a plot of the Minkowski diagram and a plot of the electron

path in space in both the lab (blue) and drift (red) frames. The lab frame curves were produced

from the ODE solutions of the lab frame motion described in section 2.3.2, while the drift frame

curves were obtained by applying the Lorentz transform to the lab frame curves.

A change in inertial frames also necessitates a transform of the laser wavelength and fre-

quency. The laser frequency in the average drift frame, ω(D)
0 , is related to that in the lab frame,

ω0, via [72, 75]:

ω
(D)
0 =

√
1− βD
1 + βD

ω0 =
1√

1 +
a20
2

ω0 (2.45)
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A derivation of this expression is discussed in section 2.3.5. The wavenumber k transforms in the

same manner. The wavelength, λ, and observed period T transforms via a multiplication by the

reciprocal factor in Eq. 2.45. Applying this correction, one can plot the motion in kz vs. ωt as it

applies for k and ω in the average drift frame.

Figure 2.7: Plots showing the transformation of the lab frame electron motion to the average drift
frame. Shown are a) the Minkowski diagram showing the electron motion (due to an electromag-
netic wave with a0 = 1) along the propagation direction z over time in the lab (blue) and drift
frame (red) as well as a) the electron path of motion in the lab and drift frames. In the drift frame,
the red dotted line is a plot using the k and ω values of the lab frame. The solid red line (labeled
as ”Doppler Correction”) corresponds to the path using the k and ω values in the average drift
frame (Eq. 2.45).
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Analytical expressions for the electron motion in the drift frame are given by [74]:

pz
mc

= − a20

4

√
1 +

a20
2

cos [2(kz − ωt)] (2.46)

px
mc

= −a0 sin(kz − ωt) (2.47)

kz =
a20

4
(
1 +

a20
2

) sin [2(kz − ωt)] (2.48)

kx = − a0√
1 +

a20
2

cos(kz − ωt) (2.49)

The electron trajectory in the drift is the well-known modified figure-8 given by the equation:

16(kz)2 = (kx)2

[
a20

1 +
a20
2

− (kx)2

]
(2.50)

which can be determined by eliminating the phase term kz − ωt in eq. 2.48 and 2.49. In this

reference frame, the electron passes through the center of the figure-8 twice per cycle while

moving forward, and passes along the outside edges of the figure-8 loops twice per cycle while

moving backward, as shown in Fig. 2.8a. As a0 increases, so does the the size of the figure-8 and

the proportion of its width relative to its height, as shown in Fig. 2.8b. While in kx vs. kz space

the figure-8 reaches a limiting size as a0 → ∞, the physical size of the figure-8 would grow

without bound as a0 → ∞ since the wavelength λ in the drift frame also increases monotonically

with a0 (as discussed previously, the values of k and ω are smaller in the drift frame compare to

their analogs in the lab frame due to the Doppler effect). The width and height of the figure-8,
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given by

zexc
xexc

=
a20

4
(
1 +

a20
2

)
 a0√

1 +
a20
2

−1

=
a0√
2 + a20

√
2

4
(2.51)

however, does reach a limiting ratio (as plotted in Fig. 2.8c), namely
√
2
4

≈ 0.354.

Over one oscillation period in the drift frame, the electron’s z position is unchanged. Only

the time has changed by a period T (D)
RTS consistent with ω(D)

0 T
(D)
RTS = 2π ⇒ TRTS = T (D). This

also means that the electron oscillation period and the laser period are the same in the drift frame.

Figure 2.8: Detailed plots of the drift frame figure-8 motion. Shown are a) the electron motion in
the drift frame due to an infinite plane electromagnetic wave at various points along the path with
its momentum indicated, b) the figure-8 path of the electron at various values of a0, and c) the
longitudinal to transverse excursion amplitude ratios at various values of a0 indicating the change
in the shape of figure-8. The width of the figure-8 relative to its height changes the fastest near
a0 = 1 and the ratio approaches an asymptotic value of

√
2/4 at large a0.

The motion in the drift frame can be computed from Eq. 2.46 to 2.49 by treating Eq. 2.48,

as a transcendental equation in the variable kz with ωt fixed. A transcendental equation needs to

be solved for each value in time, which can be done using a numerical solver to determine kz. The
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solution to kz may then be plugged into the other equations from Eq. 2.46 to 2.49 to determine

the full set of solutions. The force may also then be computed by numerically differentiating pz

and px with respect to time. Figure 2.9 shows the results of the approach described.

Figure 2.9: Plots of electron motion in the average drift frame due to interaction with a plane
electromagnetic wave over a single cycle. Shown are the x and z components of the position,
momentum, and experienced force in the drift frame, computed by numerically solving Eq. 2.46
to 2.46 and numerical differentiating the momentum. The values k and ω have been Doppler
shifted from their lab frame counterparts via k → k/

√
1 + a20/2 and ω → ω/

√
1 + a20/2. A

phase shift of π had been added to Eq. 2.46 to 2.46 so that the x position begins at the full
excursion at t = 0.

2.3.4 Radiation and Harmonic Generation

We are interested in the general (relativistic) expressions of the radiation produced by an

accelerating electron. We begin by outlining key steps of the derivation taken by Jackson [72] to
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reach the desired expressions. We start with the inhomogenous Maxwell Wave Equations:

1

c2
∂2E

∂t2
−∇2E = −

(
1

ϵ0
∇ρ+ µ0

∂J

∂t

)
(2.52)

1

c2
∂2B

∂t2
−∇2B = µ0∇× J (2.53)

where ρ is the charge density per unit volume and J is the current density per unit area. Solutions

to the inhomogeneous equations correspond to radiation produced by free charges described by

ρ and J, while solutions to the homogenous equations correspond to radiation external to said

charges. In terms of the potentials Φ and A, which are related to E and B via E = −∇Φ − ∂A
∂t

and B = ∇×A, these wave equations become:

∇2Φ− 1

c2
∂2Φ

∂t2
= − ρ

ϵ0
(2.54)

∇2A− 1

c2
∂2A

∂t2
= −µ0J (2.55)

where the potentials satisfy the Lorentz Gauge:

1

c2
∂Φ

∂t
+∇ ·A = 0 (2.56)

Solutions for Φ and A in Eq. 2.54 and 2.55 can be found be finding the Green’s function,

G(x,x′, t, t′), which is the impulse response function satisfying:

∇2G(x,x′, t, t′)− 1

c2
∂2G

∂t2
(x,x′, t, t′) = δ3(x− x′)δ(t− t′) (2.57)
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The solutions for Φ and A can then be written as:

Φ(x, t) =
1

ϵ0

∫∫∫∫
G(x,x′, t, t′)ρ(x′, t′)d3x′dt′ (2.58)

A(x, t) = µ0

∫∫∫∫
G(x,x′, t, t′)J(x′, t′)d3x′dt′ (2.59)

The charge and current densities for an electron modeled as a point particle with charge −e, and

whose position in time is given by r(t′) and velocity by v(t′), can be written in terms of delta

functions tracking the position of the particle:

ρ(x′, t′) = −eδ3[x′ − r(t′)] (2.60)

J(x′, t′) = −ev(t′)δ3[x′ − r(t′)] (2.61)

These may be plugged into Eq. 2.58 and 2.59. With the appropriate expression for G(x,x′, t, t′),

which is derived in Jackson [72] but glossed over in this thesis, the resulting potentials are known

as the Liènard-Wiechert potentials given by:

ΦLW(x, t) =
1

4πϵ0

[
−e

(1− β · n̂)R

]
ret

(2.62)

ALW(x, t) =
µ0

4π

[
−eβ

(1− β · n̂)R

]
ret

(2.63)

where x is the observer position, t is the observer time, n̂ and R are the unit vector and distance

respectively from the electron position to the observer position, and the subscript ret indicates

that the bracketed quantities are to be evaluated at the retarded time, tret = t − R/c, relative to

observer time. These variables are illustrated in Fig. 2.10.
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Figure 2.10: Diagram illustrating the vectors involved in describing an electron in relativistic
motion and its observed radiation. The electron is located at the head of vector r from origin O
with normalized velocity and acceleration vectors β and β̂ respectively at time tret. The electron
radiates light in the direction n̂ over a distance R to observation point P located at the head of
vector x from the origin O. The radiation travels at the vacuum speed of light, c, and reaches
point P at time t = tret +R/c.

The electric and magnetic fields can be obtained from the Liènard-Wiechert potentials from

the definitions [72] [76], ELW = ∇ΦLW − ∂ALW

∂t
and BLW = ∇×ALW:

ELW(x, t) = − e

4πϵ0

[
n̂− β

γ2(1− β · n̂)3R2

]
ret

− e

4πϵ0c

 n̂×
{
(n̂− β)× β̇

}
(1− β · n̂)3R


ret

(2.64)

BLW(x, t) =
1

c
[n̂× ELW]ret (2.65)

The fields are separated in terms of their static (∝ 1/R2) and radiated components (∝ 1/R).

In experiments, detectors would be located far from the electrons so that the static field become
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negligible, and we are interested in the radiated components:

Erad(x, t) = − e

4πϵ0c

 n̂×
{
(n̂− β)× β̇

}
(1− β · n̂)3R


ret

(2.66)

Brad(x, t) =
1

c
[n̂× Erad]ret (2.67)

Equations 2.66 and 2.67 show that the fields produced by relativistic electrons depend not just on

the acceleration, but also the direction and magnitude of the velocity. Furthermore, the direction

of strongest radiation is not perpendicular to β̇, as was the nonrelativistic case, but in a direction

that is beamed towards β, which is discussed further in section 2.3.6.

For an observer far away compared to the spatial extent of the electron motion (e.g., con-

fined over a small region in space with linear dimension ≲ 1 mm), the vector n̂ can be considered

constant and equal to the normalized observation vector x/|x|, assuming the origin O is situated

within the confined region of electron motion. Equations 2.66 and 2.67 provide an expression for

the observed instantaneous Poynting vector, S(t), which, when written in terms of only Erad has

a magnitude

|S(x, t)|= 1

µ0c
E2

rad(x, tret) (2.68)

where Erad(x, t) is the radiated electric field magnitude. The Poynting vector represents the

power radiated per unit area. To convert to power radiated per unit solid angle, the electric field
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is to be multiplied with R:

dPrad

dΩ
(n̂, t) =

1

µ0c
[RErad(x, tret)]

2

=
e2

16π2ϵ0c

∣∣∣∣∣∣
n̂×

{
(n̂− β(tret))× β̇(tret)

}
(1− β(tret) · n̂)3

∣∣∣∣∣∣
2

(2.69)

The energy radiated per unit solid angle is then:

dUrad

dΩ
(n̂) =

∫ ∞

−∞

dPrad

dΩ
(n̂, t)dt (2.70)

The radiated spectrum (in units of energy radiated per unit angular frequency per unit solid angle)

is given, via Parseval’s theorem, by the square of the Fourier transform of RErad(x, tret) over the

time variable t:

d2Urad

dωdΩ
(n̂) =

cϵ0
π

∣∣∣∣∫ ∞

−∞
R(tret)Erad(x, tret) exp (iωt) dt

∣∣∣∣2 (2.71)

=
e2

16π3ϵ0c

∣∣∣∣∣∣
∫ ∞

−∞

n̂×
[
(n̂− β(tret))× β̇(tret)

]
(1− β(tret) · n̂)2

exp [iω(tret − n̂ · r(tret)/c)] dtret

∣∣∣∣∣∣
2

(2.72)

=
e2ω2

16π3ϵ0c

∣∣∣∣∫ ∞

−∞
n̂× (n̂× β(tret)) exp [iω(tret − n̂ · r(tret)/c)] dtret

∣∣∣∣2 (2.73)

Here, a change of variable to the retarded time, tret = t − R(tret)/c, was made along with the

far-field approximation R ≈ |x|−n̂ · r(tret). This leads to dtret(1 − n̂ · β(tret)) = dt and a

subsequent canceling out of one of the powers of (1− n̂ · β(tret)) in the denominator along with

the conjugate complex exponential factors containing constant phase |x|. Furthermore, Eq. 2.73
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is derived from Eq. 2.72 using integration by parts. Lastly, the spectrum per unit wavelength

interval is converted from the spectrum per unit frequency interval via the relationship between

the intervals dλ = 2πcdω/ω2, so that:

d2U

dλdΩ
=

ω2

2πc

d2U

dωdΩ
(2.74)

The purpose of the preceding exercise was twofold:

1. To logically present the expressions from which the radiated angular distribution pattern

and spectra may be calculated;

2. To show that the instantaneous radiation, in general, depends on both β and β̇ (Eq. 2.66);

The radiated spectrum depends on the harmonic composition of β and β̇ modified with the

Doppler effect associated with the term −n̂ · r(tret)/c in the complex exponential of the Fourier

integral of Eq. 2.73.

The values of β and β̇ can be computed from the numerical values of the momentum, p, us-

ing β = p/γ(p)mc2, followed by numerical differentiation (β̇ = dβ/dωt). The resulting values

are shown in Fig. 2.11 for the lab frame and Fig. 2.12 for the drift frame, along with their Fourier

transforms. The Fourier transforms are plotted in terms of frequency relative to the fundamental

frequency f (1) of the electron interaction cycle for the inertial reference frame analyzed. We use

the notation f (n) to specify the nth harmonic frequency, where n is an integer ≥ 1. As discussed

in the previous sections, the fundamental frequency, relative to the electromagnetic wave fre-

quency in the lab frame, f0, is f (1) = f0/(a
2
0/4 + 1) for the lab frame and f (1) = f0/

√
1 + a20/2

for the drift frame. On top of periodic behavior occurring at the fundamental frequency (n = 1)
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for the x component and double the fundamental (n = 2) at the z component, there are higher

order odd harmonics for the x component and even harmonics for the z component. The widths

of the peaks in the Fourier transform plots are inversely proportional to the total integrated time

in the Fourier integral, which for the plots shown are 20 cycles for the lab frame and 10 cycles

for the drift frame.
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Figure 2.11: Plots showing the components of electron motion in the lab frame involved in describing its radiation along with their
Fourier transforms. Shown are the x and z components of β and β̇ vs. time (top row) for an electron interacting with a plane electro-
magnetic wave in the lab frame with a0 = 1, and their corresponding Fourier transforms (bottom row). The Fourier transforms were
taken for 20 cycles of RTS electron motion. Here, f (1) corresponds to the electron interaction frequency, which is related to the electro-
magnetic wave frequency, f0, via f (1) = f0/(a

2
0/4 + 1).
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Figure 2.12: Plots showing the components of electron motion in the drift frame involved in describing its radiation along with their
Fourier transforms. Shown are the x and z components of β and β̇ vs. time (top row) for an electron interacting with a plane electro-
magnetic wave in the drift frame with a0 = 1, and their corresponding Fourier transforms (bottom row). The Fourier transforms were
taken for 10 cycles of RTS electron motion. Here, f (1) corresponds to the electron interaction frequency in the drift frame, which is
related to the electromagnetic wave frequency in the lab frame, f0, via f (1) = f0/

√
1 + a20/2.
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To show that the the x and z components of β and β̇ indeed consist of integer harmonics, Fig. 2.13 is presented, which shows the

Fourier decomposition of Fig. 2.11 and the resulting reconstructed curves.

Figure 2.13: Fourier decomposition of the electron motion. Shown are the x and z components of β and β̇ in the lab frame, reconstructed
from weighted summation of sinusoids. Also plotted are the individual sinusoidal components, weighted based on the results of Fourier
transforms from Fig. 2.11. Phase shifts of ±π/2 or ±π were manually tweaked to produce curves whose crests match in time with Fig.
2.11.
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The reason behind the higher harmonics in the motion is equations of motion depending

on sinusoidal functions of the phase kz − ωt rather than just time, which results in, for example,

kz appearing in both sides of the equation kz =
a20

4+a20
{sin [2(kz − ωt)] + ω2} ≡ fz(kz) (Eq.

2.41). The entire expression, fz(kz), can be recursively plugged into kz to produce a composite

of sinusoidal functions which repeat ad infinitum, i.e., fz(fz(...f(kz)))), so that:

kz =
a20

4 + a20
{sin[2(

a20
4 + a20

{sin[2(

...

a20
4 + a20

{sin [2(kz − ωt)] + ωt}

...

− ωt)] + ωt}

− ωt)] + ωt} (2.75)

The higher harmonic components existing in β and β̇ implies that the radiated light would

also exhibit such harmonics. As an example, we compute Eq. 2.73 using the results for β in the

lab frame for two directions: n̂ ∥ E and n̂ ⊥ E. This results in the following simplifications for

the term inside the Fourier integral:

n̂ ∥ E ⇒ n̂× (n̂× β) = −βzẑ (2.76)

n̂ ⊥ E ⇒ n̂× (n̂× β) = βxx̂− βzẑ (2.77)
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where we continue to use the coordinate system such that the electric field polarization is ∥ x̂

and the direction of the wave propagation is ∥ ẑ. These expressions state that light radiated ∥ E

consists of only radiation from the βz motion of the electron, whereas light radiated ⊥ E contain

both the contributions from the βz and βx motion, which is expected. The radiation spectra for

both directions are plotted in Fig. 2.14 for a0 = 1.

Figure 2.14: Plots of radiated spectra along select directions for an electron interacting with an
infinite plane electromagnetic wave. The directions are ∥ E and ⊥ E. The electromagnetic wave
has a0 = 1, wavelength λ0 = 800 nm, and frequency f0 = 375 THz. These spectra are computed
using Eq. 2.73 for electron motion over 10 cycles in a) frequency space and b) wavelength space.

It is apparent from the plots that the radiated spectrum consists of Doppler shifted bands

of the electromagnetic wave frequency. The width of the bands are inversely proportional to the

number of cycles of the electron oscillation, of which 10 cycles were used. A more realistic

situation consisting of a 30 fs Gaussian shaped pulse envelope is presented in Fig. 2.15, which
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entails defining the fields of the electromagnetic wave

E = E0 cos(kz − ωt+ δ0) exp

[
−(kz − ωt)2

τ 2

]
x̂ (2.78)

B =
E0

c
cos(kz − ωt+ δ0) exp

[
−(kz − ωt)2

τ 2

]
ŷ (2.79)

where τ 2 = ∆t2FWHM/(2 ln 2) with ∆tFWHM being the full width at half-maximum of the inten-

sity profile, set to 30 fs. There are ≈ 10 cycles within this pulse in which the electron experiences

≥ 0.5I0, where I0 is the peak intensity.
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Figure 2.15: Plots showing the results of electron motion due to a Gaussian temporal pulse.
Shown are a) the electric field (375 THz carrier frequency, 800 nm central wavelength) with a
Gaussian temporal profile (30 fs intensity FWHM) as well as its intensity temporal envelope, b)
the electron motion due to the pulse (with peak intensity corresponding to a0 = 1), c) the velocity
components, and d) the radiated spectra in the directions ∥ E and ⊥ E. The blue dashed lines
show the length scale of the electron drift relative to the pulse for a0 = 1.

The important main difference between the spectra produced by the 30 fs Gaussian pulse

with that by the infinite plane wave over 10 cycles is that for the Gaussian pulse, the peaks of the

harmonics are less red-shifted, however the onset towards longer wavelengths remain more-or-

less unchanged. The can be explained from the fact that the Gaussian pulse is comprised of lower

intensity components outside of the peak of the envelope.

The next step would be to take into account the intensity distribution in space for a focused
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laser pulse, which is a lot more involved. That exercise is left for Chapter 7. For our purposes

here, inclusion of the intensity distribution would primarily add lower intensity contributions to

the spectrum, resulting in more energy in the wavelength regions around the central wavelength,

λ0, of the electromagnetic wave and its harmonics, and less proportional energy in the red-shifted

regions. This leaves the wavelength of the red onset, λr, of the harmonics to be a possible

diagnostic of the laser peak intensity, over an intensity range in which the harmonics are not

overlapped as a result of the red shift. This is developed in the section that follows.

2.3.5 Relativistic Doppler Shift

In this section, we derive the expressions for the Lorentz transform of the laser frequency

from the lab frame to the electron’s average drift frame, followed by a Lorentz transform of

the frequency radiated by the electron in the drift frame back into the lab frame. Consider an

observer moving at a speed v relative to a source radiating light at frequency f in the source

frame, as shown in Fig. 2.16. In the observer frame, the light is traveling towards the observer at

the speed of light, c, while the source is traveling away at speed v.

Figure 2.16: Diagram clarifying the derivation of the relativistic Doppler effect, showing an
observer moving at a speed v directly away from a source. The source radiates wave fronts
traveling at speed c with a period ∆t′ in the observer frame. Over this period, the observer travels
a distance of v∆t′.

The distance between adjacent crests, i.e., the wavelength, seen by the observer is then
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given by:

λ′ = c∆t′ + v∆t′ (2.80)

where ∆t′ is the time difference between adjacent crests radiated by the source as seen in the

observer frame. The frequency observed is then given by:

f ′ =
c

λ′
=

1

(1 + β)∆t′
(2.81)

The time difference between adjacent crests in the source frame is ∆t = 1
f

and is related to ∆t′

via a Lorentz transform (i.e., time dilation)

∆t′ = γ∆t =
γ

f
(2.82)

so that the relationship between the frequencies in the two frames is given by:

f ′ =
1

1 + β

f

γ
=

√
1− β

1 + β
f (2.83)

Plugging in βD =
a20

4+a20
for β in Eq. 2.83 results in the relationship for the frequencies between

the lab frame and the average drift frame of the scattered electron:

ω
(0)
D =

ω
(0)
L√

1 +
a20
2

(2.84)

where ω(0)
D and ω(0)

L are the angular frequencies of the laser in the drift and lab frame respectively.

This expression is consistent with [55].
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In the average drift frame, the electron oscillates at multiple harmonics of the drift frame

electromagnetic wave frequency, producing radiation given by ω(n)
D = nω

(0)
D , where ω(n)

D is the

emitted frequency of the nth harmonic, with n being an integer. For an observer in the drift frame

far away, the electron may be considered a stationary point-source radiator. When transforming

back into the lab frame, we take into consideration, in general, a direction of observation, θ.

Consider an observer moving at a speed v at an angle θ relative to the line connecting the observer

and the source, as shown in Fig. 2.17.

Figure 2.17: Diagram clarifying the derivation of the relativistic Doppler effect for an arbitrary
direction, showing an observer moving at a speed v in a direction with an angle θ relative to the
line connecting the source and observer. The source radiates spherical wave fronts traveling at
speed c with a period ∆t′ in the observer frame. Over this period, the observer travels a distance
of v∆t′, and the change in distance to the source decreases by an amount v cos θ∆t′.

Assuming that the observer is far away so that θ remains unchanged over the time period

∆t′ in which the source in the observer’s frame radiates adjacent crests, the wavelength observed

is given by:

λ′ = c∆t′ − v cos θ∆t′ (2.85)
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so that the observed frequency is:

f ′ =
c

λ′
=

1

(1− β cos θ)∆t′
(2.86)

The time period ∆t′ is dilated relative to that of the source, so that ∆t′ = γ∆t = γ/f . This

implies that:

f ′ =
1

(1− β cos θ)

f

γ
=

√
1− β2

1− β cos θ
f (2.87)

For the case of transforming from the electron drift frame to the lab frame, we replace f ′ with

ω
(n)
L , f with ω(n)

D , and β with βD =
a20

4+a20
, while θ remains as the angle that the detector makes

relative to the laser propagation direction in the lab frame. After simplification, and using ω(n)
D =

nω
(0)
D along with Eq. 2.84, we obtain:

ω
(n)
L = ω

(n)
D

√
1 +

a20
2

1 +
a20
2
sin2

(
θ
2

) =
nω

(0)
L

1 +
a20
2
sin2

(
θ
2

) . (2.88)

This equation shows that in the lab frame, the radiated nth harmonic frequency decreases with

a0 at a rate which depends on the angle θ (with the exception of θ = 0, where there is no

red shift). The angular dependence in the observed radiation may be visualized in the diagram

of periodic wave fronts emitted by a moving source shown in Fig. 2.18. The wave fronts are

compressed in the direction of motion, and stretched in the direction away from the motion, with

intermediate values for directions with components transverse to the motion. In the case of RTS

by an infinite plane wave, no Doppler shift occurs in the direction along the particle motion

because the blue shift associated with the compressed wave fronts are canceled out with the red

shift in the observed electromagnetic wave frequency in the drift frame.
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Figure 2.18: Diagram illustrating the directional dependence of the Doppler effect. Shown are
phase fronts traveling at c emitted periodically by a source moving at 0.5c, denoted by the dots
which are located the positions during which their corresponding wavefront (indicated with a
connecting vertical line) was emitted.

By rewriting 2.88 in terms of wavelength and intensity (instead of frequency and a0), the

wavelength of the nth harmonic emission as a function of I is given by:

(2.89)λ(n) =

[
Ir0λ

2
0(1− cos θ)

2πmec3
+ 1

]
λ0
n
.

Here, the wavelengths λ0 and λ(n) correspond to the laser and RTS emitted in the nth harmonic

respectively, both in the lab frame. There is a one-to-one correspondence between the emitted

wavelength and the laser intensity. Solving Eq. 2.89 for I , we obtain:

(2.90)I(λ(n), θ;n) =
2πmec

3

r0λ20(1− cos θ)

(
n
λ(n)

λ0
− 1

)
.

Calculations of the spectrum for a Gaussian temporal pulse, as shown in Fig. 2.19, show how the

onset wavelength, λr, shifts with the intensity. The calculated spectra were found to be consistent

with Eq. 2.90, as shown in Fig. 2.20. As the intensity increases, the harmonics as well as the
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laser band will eventually overlap, and an onset wavelength would no longer be observed. By

going to small angles of θ, however, it may be possible to observe the onset wavelength at higher

intensities up to around 1020 W/cm2 for θ ≈ 25◦. Measuring the intensity using the second

harmonic spectrum is explored in Experiment 1 (Chapter 4).

Figure 2.19: Plots of spectra, calculated for a 30 fs intensity FWHM Gaussian temporal pulse
and observed in the direction θ = 90◦ and ϕ = 0◦ at various intensities. The red arrows in each
spectrum indicate the onset wavelength, λr, for the second harmonic. The red dashed vertical
lines indicate the laser band of a Ti:Sa laser.
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Figure 2.20: Plot of onset wavelength as a function of intensity for various values of observation
angle θ. The curves are based on Eq. 2.90. The data points are results from numeric calculations
of the spectra (see, for example, Fig. 2.19).

2.3.6 Radiation Pattern (Numerical)

An electron undergoing relativistic Thomson scattering produces an emission pattern which

is a modified form of linear Thomson scattering. Due to relativistic aberrations, the donut-shaped

emission pattern of linear Thomson Scattering becomes distorted so as to be more forward scat-

tered the stronger the incident laser intensity, as a consequence of a phenomenon known as rel-

ativistic beaming. Relativistic beaming is the phenomenon where the radiation generated by a

particle moving at relativistic speed is ”beamed” towards the direction of motion and is com-

monly found in experiments involving relativistic electron beams such as synchrotrons [61]. In

the case of this thesis topic, where the electron born at rest and subsequently accelerated by an

intense field, the radiation pattern is produced from oscillating combined with forward drifting
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motion of the electron integrated over time, which leads to a milder overall forward distortion

compared to a relativistic particle beam.

To get a sense of how the electron motion contributes to the emission pattern, we will begin

with the instantaneous electric field radiated by an electron whose β and β̇ are confined in the

same plane, as is the case for our typical example of an electron interacting with an infinite plane

wave, as well as the observation direction n̂. From Eq. 2.66 (|Erad|∝

∣∣∣∣∣ n̂×
[
(n̂−β)× ˙β

]
(1−β·n̂)3R

∣∣∣∣∣), we may

define the following angles formed between the vectors (see Fig. 2.21):

θ1 ≡ ̸ (n̂,β), θ1 ∈ [0, 2π] (2.91)

θ2 ≡ ̸ (β̇,β) (2.92)

α1 ≡ ̸ (n̂− β,−β) (2.93)

α2 ≡ ̸ (n̂− β, β̇) (2.94)

such that θ1 ranges from 0 to 2π, α1 is always inside of the triangle formed by n̂, n̂ − β, and β

and α2 is defined separately for Case 1 (0 ≤ θ1 ≤ π) and Case 2 (0 ≤ θ1 ≤ π) in Fig. 2.21, while

θ2 remains the same for both cases.

Figure 2.21: Diagram of showing the definitions of the angles θ1, θ2, α1, and α2 based on the
vectors β, β̇, and n̂ for two cases concerning the value of θ1 for the convention used in this
section.
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Since we are interested in |Erad|, we can make the simplification:

|Erad|∝

∣∣∣∣∣ (n̂− β)× β̇

(1− β · n̂)3R

∣∣∣∣∣ = |β̇||(n̂− β)|
(1− β cos θ1)3R

|sinα2| (2.95)

From the law of cosines, |n̂−β|=
√
1 + β2 − 2β cos θ1. The expression for α2 was determined,

for the two separate cases, as:

α1 =


π − θ2 − cos−1

(
β−cos θ1√

1+β2−2β cos θ1

)
(Case 1 : 0 ≤ θ1 ≤ π)

−π + θ2 + cos−1

(
β−cos θ1√

1+β2−2β cos θ1

)
(Case 2 : π ≤ θ1 ≤ 2π)

(2.96)

When these results are plugged into Eq. 2.95, |Erad(θ1; β, |β̇|, θ2)| becomes a function of θ1, with

β, |β̇|, and θ2 as fixed parameters:

|Erad|∝


| ˙β|

√
1+β2−2β cos θ1

(1−β cos θ1)3R

∣∣∣∣sin [π − θ2 − cos−1

(
β−cos θ1√

1+β2−2β cos θ1

)]∣∣∣∣ Case 1

| ˙β|
√

1+β2−2β cos θ1
(1−β cos θ1)3R

∣∣∣∣sin [−π + θ2 + cos−1

(
β−cos θ1√

1+β2−2β cos θ1

)]∣∣∣∣ Case 2

(2.97)

Figure 2.22 shows the radiation patterns plotted as polar functions of θ1 = ̸ (n̂,β), with β

directed towards 0◦, for various values of β and θ2 = ̸ (β̇,β), with |β̇| and R fixed using Eq.

2.97. We can see that the result of increasing β is a distortion and enhancement of the radiation

toward the direction of β.
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Figure 2.22: Polar plots of the instantaneous radiation distribution of |Erad| as a function of
θ1 = ̸ (n̂,β) (with β directed towards 0◦). The plots are based on Eq. 2.97 for various fixed
values of β and θ2 = ̸ (β̇,β). The values of R and |β̇| are fixed throughout.

The next logical step would be to plot |Erad| for various points on the path of an electron

undergoing RTS. This is done for a0 = 2 in Fig. 2.23. This figure shows that there is generally

little radiation produced at the cusps, where the pattern resembles the classic dipole, compared

to the radiation produced near (but not at) the 0 crossings, where the momentum is large and |β̇|

is nonzero. The direction of strong beaming may be approximated by multiple quantities, one of
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which being the minimum electron pitch angle:

tan θp,min =
px,max

pz,max

=
4

a0
(2.98)

and the other being the pitch angle of the RMS electron oscillation to the longitudinal drift mo-

tion:

tan θp,avg =

√
p2x

pz
=

√
8

a0
(2.99)

Figure 2.23: Plots illustrating the instantaneous RTS radiation pattern for various points along the
electron path. Shown are a) the path of motion of an electron interacting with an infinite plane
wave with a0 = 2 along with momentum vectors at various points along the path labeled by their
normalized time coordinate t′ = ωt, and b) the angular distribution of the instantaneous radiated
electric field magnitude relative to the electromagnetic wave propagation direction, 0◦, for the
select points indicated in a).

The radiation patterns shown can be interpreted as distorted dipole patterns. In an ex-

periment, what’s measured is signal integrated over the entire time interval during which RTS

takes place. Equation 2.70 allows the total radiated energy distribution per unit steradian to be
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calculated. Written in terms of β, β̇, and n̂, we have:

dUrad

dΩ
(n̂) =

e2

16π2ϵ0c

∫ ∞

−∞

∣∣∣∣∣∣
n̂×

[
(n̂− β)× β̇

]
(1− β · n̂)3

∣∣∣∣∣∣
2

ret

dt (2.100)

=
e2

16π2ϵ0c

∫ ∞

−∞

∣∣∣n̂×
[
(n̂− β(tret))× β̇(tret)

]∣∣∣2
(1− β(tret) · n̂)5

dtret (2.101)

The calculation of Eq. 2.101 can be carried out numerically for arbitrary motion described by

time series of values in β and β̇. We present a calculation done for RTS due to an infinite plane

wave. First, we write the equation in terms of the Cartesian components of n, β, and β̇ (nx,

ny, nz, etc.). Next, we write the Cartesian components of n in terms of a 50 × 50 grid over a

sphere based on a rectilinear grid in the spherical coordinates θ and ϕ, as explained in Appendix

A.1. The integration is performed by adding the contributions to each grid point from every time

step over a time interval consisting of 10 electron oscillations (ω∆tret = 2π(1 +
a20
4
)× 10). The

results are shown in Fig. 2.24 for RTS motion due to a range of a0 values from 0.1 to 10. A

distortion of the dipole pattern is apparent at a0 = 0.5 and becomes more forward-concentrated

as a0 increases.
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Figure 2.24: Plots of the directionally-resolved total radiated energy distribution per unit solid angle. The direction is parameterized in
spherical coordinates. Shown are the distribution around a sphere as well as over rectilinear θ-ϕ space for each a0 value: a) 0.1, b) 0.5,
c) 1, d) 2, e) 5 and f) 10. The electromagnetic wave is an infinite plane wave propagating towards ẑ that is linearly polarized with the
electric field along x. As a0 increases, the overall distribution, to include what would have otherwise been the poles along the electron
dipole motion at nonrelativistic a0 (≪ 1), becomes distorted and concentrated towards the propagation direction.
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What was calculated from Eq. 2.101 is the total radiated energy per unit solid angle that

includes all frequencies. In order to isolate the radiation to the visible band where the second

harmonic emits, we may take a numerical approach by performing an integration of the energy

spectrum per unit solid angle over the desired frequency band, i.e., computing:

d2Urad

dΩ
(n̂, ω)

∣∣∣∣∣
ω2

ω1

=

∫ ω2

ω1

d2Urad

dωdΩ
(n̂)dω (2.102)

where ω1 and ω2 corresponds to the lower and upper limits of the desired band of angular frequen-

cies and can be defined in terms of the lower and upper limits in wavelength, λ1 = 2πc/ω2 and

λ2 = 2πc/ω1. Either of Eq. 2.71 to Eq. 2.73 can be used as the expression for d2Urad

dωdΩ
. We present

results of calculations using Eq. 2.73 in Fig. 2.25 performed over a wavelength band from 400

to 700 nm (2.7 rad/fs to 4.7 rad/fs) with 500 uniform angular frequency steps in between.
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Figure 2.25: Plots of the directionally-resolved radiated energy distribution in the 400 to 700 nm band per unit solid angle. The
distribution was calculated using Eq. 2.73, for radiated by 10 cycles of electron oscillation (2001 times steps) from RTS interaction with
an infinite plane wave for a0 equal to a) 0.1, b) 0.5, c) 1, d) 2, e) 5, and f) 10. The integration over the frequency band was done over
500 uniform angular frequency steps from 2.7 rad/fs to 4.7 rad/fs.
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The results show that the second harmonic emits in a pattern resembling a pincer closing on

its tips as a0 increases, along with an overall forward concentration of energy. The computation

time required to produce these results begin to become a limiting factor due to the fact that

solving
∫ ω2

ω1

d2Urad

dωdΩ
dω involves calculating a double integral, one over time, and the other over

angular frequency.

2.3.7 Radiation Pattern (Analytical)

An alternative to calculating the second harmonic angular distribution for an electron in-

teracting relativistically with an infinite plane wave would be to use the analytical expressions

derived by Sarachik and Schappert (Eq. 4.23 in [55] or Eq. 2 in [59]), which states that the

average radiated power per unit steradian of the nth harmonic is proportional to a function of a0:

dP (n)

dΩ
=

e2c

8ϵ0λ20
f (n)(a0, θ, ϕ) (2.103)

The radiation pattern is encoded into the function f (n)(a0, θ, ϕ), which describes the angular

pattern as it is modified by the parameter a0, and has the expression:

f (n)(a0, θ, ϕ) =

(
n2

M2(a0, θ)

)(
a20n

2

M4(a0, θ)

)[1−

(
1 +

a20
2

)
cos2 α

M2(a0, θ)

 (F n
1 (a0, θ, ϕ))

2

−
a0 cosα

[
cos θ − a20

2
sin2(θ/2)

]
2M2(a0, θ)

F n
1 (a0, θ, ϕ)F

n
2 (a0, θ, ϕ)

+
a20 sin

2 θ

16M2(a0, θ)
(F n

2 (a0, θ, ϕ))
2

]
(2.104)
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where

M(a0, θ) = 1 +
a20
2
sin(θ/2) (2.105)

and cosα = sin θ cosϕ is the directional cosine from x̂. Furthermore, the function F n
s (a0, θ, ϕ)

is written as a summation of products of Bessel functions:

F n
s (a0, θ, ϕ) =

∞∑
l=−∞

Jl

(
na20 sin

2(θ/2)

4M(a0, θ)

)[
J2l+n+s

(
a0n cosα

M(a0, θ)

)
+ J2l+n−s

(
a0n cosα

M(a0, θ)

)]
(2.106)

We note that Eq. 2.104 disagrees with [59] in that the leading factor (before the left square

bracket) has an extra factor n2

M2(a0,θ)
(written separate in the equation to stress this point). The

original paper [55] states that the leading factor is A(ω2
L)

n2

M4(a0,θ)
where A(ω2

L) =
e2ω2

La
2
0

32π2ϵ0c3
and

ωL is the radiated angular frequency in the lab frame which is related to the laser frequency ω0

via ωL = nω0/M(a0, θ). The assumption in [59] was that ωL = ω0 without any transformation

or multiplication by n.

The infinite summation of Bessel functions in Eq. 2.106 may be approximated as a trun-

cated sum, since the arguments of the Bessel functions are bounded. At very high orders, the

Bessel functions evaluated at any value within the bounds become vanishingly small. Computing

the angular distributions using analytic formulas require much less computing time compared to

numerical integration over the two variables t and ω. Figures 2.26 to 2.28 show the computed

angular distributions of average radiated power per unit steradian at various a0 values for the first,

second, and third harmonics.
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Figure 2.26: Plots of the analytical directionally-resolved average radiated power distribution per unit solid angle of the first harmonic
(n = 1). The distribution was calculated from the Sarachik analytical expression (Eq. 2.104) for an electron interacting with an infinite
plane wave for values of a0 equal to a) 0.1, b) 0.5, c) 1, d) 2, e) 5, f) 10.
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Figure 2.27: Plots of the analytical directionally-resolved average radiated power distribution per unit solid angle of the second harmonic
(n = 2). The distribution was calculated from the Sarachik analytical expression (Eq. 2.104) for an electron interacting with an infinite
plane wave for values of a0 equal to a) 0.1, b) 0.5, c) 1, d) 2, e) 5, f) 10.
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Figure 2.28: Plots of the analytical directionally-resolved average radiated power distribution per unit solid angle of the third harmonic
(n = 3). The distribution was calculated from the Sarachik analytical expression (Eq. 2.104) for an electron interacting with an infinite
plane wave for values of a0 equal to a) 0.1, b) 0.5, c) 1, d) 2, e) 5, f) 10.
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2.3.8 Radiation Pattern Dip

There may be a number of reasons why the numerical calculations (Fig. 2.25) for 400 - 800

nm do not agree exactly with the analytical expressions (Fig. 2.27) for n = 2. For one, the 400 -

800 nm band will include contributions from harmonics higher than 2 as the intensity increases.

In particular, at a0 ≈ 1, the third harmonic will begin to cross the 400 nm mark at θ = 180◦ based

on Eq. 2.90. There may also be errors in the implementation of the calculations in code as well

as assumptions in the mathematical expressions that have been overlooked. A more thorough

analysis of the radiation pattern is beyond the scope of this thesis.

Here we focus on specific details in the angular distribution that agree in both calculations

and which may be useful for characterizing the laser intensity. One such detail is the location of

the pole located in the E-k plane which shift forward with increasing intensity. When the angular

distribution is plotted vs. θ in the E-k plane (ϕ = 0), the pole shows up as a ”dip”, as shown in

Fig. 2.29, whose location θmin decreases with intensity. Over an intensity range parameterized

by a0 = 1 (2.1 × 1018 W/cm2) to a0 = 2 (8.5 × 1018 W/cm2), the value of θmin varies linearly

from roughly 70◦ to 60◦. This motivates experimental measurements of the angular distribution at

various intensities on the order of 1018 W/cm2. Experiments conducted to test this are discussed

in Chapters 5 and 6.
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Figure 2.29: Plots of the RTS angular distribution in the E-k plane calculated numerically and
analytically, with their dip locations compared. The a) numerical calculations are conducted for
the 400 - 700 nm band while the b) analytical expressions were calculated using the Sarachik and
Schappert results for n = 2. The location in θ of the dip, θmin as a function of a0 for both cases are
plotted c) along with linear fits. The fit to the numerical data has a slope of −13.77(2.5)◦ and θmin-
axis intercept of 86.41(3.9)◦, while for the fit to the analytical data, the slope is −11.67(0.5)◦ and
θmin-axis is 82.73(0.77)◦. The values give in parentheses are the 95% confidence half intervals.

2.3.9 Ionization and Electron Birth Conditions

Producing free electrons at the focus of the laser, whose initial velocities are small (nonrel-

ativistic) compared to their typical velocities when scattered, can be accomplished in a few ways,

including ionization directly by the laser from gas molecules as well as preionization through a

means such as thermionic emission followed by acceleration onto the laser focus to nonrelativis-
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tic speeds. The simplest of these methods to implement is ionization by the laser, requiring only

a gas nozzle connected to a pulsed gas source. The ionization by the laser can be modeled using

the Barrier Suppression Ionization (BSI) model [74], where the Coulomb potential of the nucleus

of the atom is distorted by the laser field such that the peak potential of the barrier falls below the

bound electron’s energy level, as shown in Fig. 2.30.

Figure 2.30: Diagram showing barrier suppression ionization for nitrogen. Barrier suppression
ionization occurs when the Coulomb field is distorted so that the energy at peak of the barrier
located at xmax, falls below the energy of the bound electron, −Uion.

The potential energy experienced by an electron in a Coulomb potential and a constant

electric field E0 is given (in cgs) by:

V (x) = − Ze2

4πϵ0x
− eE0x (2.107)

The location of the peak of the barrier is obtained from differentiating V (x) with respect to x,
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setting the V ′(x) to 0, and solving for x:

xmax =

√
Ze

4πϵ0E0

(2.108)

Ionization occurs when there is a critical field strength, Ec, potential at the peak of the barrier is

equal to the electron’s ionization energy, Uion, in other words, V (xmax) = Uion so that

Ec =
πϵ0U

2
ion

Ze3
(2.109)

The appearance intensity can then be defined in terms of the ionization energy of the electron and

ionization state of the atom:

Iapp =
1

µ0c
E2

c ≈ 4× 109
(
Uion

eV

)4

Z−2 W/cm2 (2.110)

Among the gas species available, nitrogen and argon are both relatively affordable and have more

than one electron shell allowing for high maximum appearance intensities, and are therefore

suitable for early experiments. Values of the appearance intensities of Nitrogen and Argon are

shown in Table 2.2.
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Table 2.2: Table of ionization energies and appearance intensities for atomic nitrogen and argon.

Nitrogen Argon
Z Uion [eV] Iapp [W/cm2] Uion [eV] Iapp [W/cm2]
1 14.5 1.8e14 15.8 2.5e14
2 29.6 1.2e16 27.6 9.3e15
3 47.5 1.8e17 40.7 9.9e16
4 77.5 2.3e18 59.8 8.2e17
5 97.9 9.2e18 75.0 3.2e18
6 552.1 1.3e22 91.0 9.9e18
7 667.1 3.9e22 124.3 4.7e19
8 143.5 1.1e20
9 422.5 1.0e22
10 478.7 2.1e22

The appearance intensities of nitrogen and argon have spacings which are large (no more

than two per decade) and increases with ionization stage. The consequence of this is that there

may not be electrons which appear near the peak of the laser, depending on the peak intensity

of the laser. Figure 2.31 shows a plot of three Gaussian temporal pulse intensity profiles, with

peak intensities of 1018, 1019 and 1020 W/cm2, along with the appearance intensities of nitrogen

and argon. It can be seen that the first three ionization stages for both gas species occur early in

the laser pulse. As the laser peak intensity increases, higher stage electrons eventually begin to

ionize near the peak, however, as the intensity gets even higher, those electrons too will ionized

early in the pulse.
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Figure 2.31: Plot showing the appearance intensities at various ionization stages of nitrogen and
argon. Three intensity profiles consisting of Gaussian envelopes (30 fs intensity FWHM) over
time at different peak intensities of 1018 W/cm2, 1019 W/cm2, and 1020 W/cm2 are also plotted to
roughly illustrate the ionization time relative to the peak of the pulse.

The moment in time when an electron is born determines its dynamics. Generally speaking,

an electron may be born at any time relative to the peak of the laser pulse. This affects its chances

of being scattered away from the axis due to the ponderomotive force, which will be discussed

in more detail in Chapter 7. This would leave mostly electrons which were born near the central

axis to interact at the peak. Furthermore, electrons are typically not ionized exactly at the peak

of a laser cycle, but slightly earlier, as shown in Fig. 2.32. This results in transverse momenta

added to an electron before it arrives at the peak of the cycle, causing a drift (due to effectively

a nonzero value for δ0 in the equations of motion, e.g., 2.27). Since the offset from the peak is

typically small, the drift due to the laser phase of birth is expected to be minor. It is, however, an

effect worth noting since it may exacerbate the effect of ponderomotive scattering
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Figure 2.32: Zoomed-in plots of the instantaneous intensity temporal profile of a Gaussian pulse
plotted against various nitrogen appearance intensities. The Gaussian profiles are 30 fs intensity
FWHM in duration, have a 800 nm central wavelength (375 THz central frequency) and peak
intensities of a) 2× 1018 W/cm2 and b) 3× 1018 W/cm2 along with the appearance intensities of
nitrogen near this range.

The Barrier Suppression Ionization model for an atom is sufficient for the purposes of

this thesis, however we briefly acknowledge here studies of more precise models. For one, the

ADK model [77–79] takes into account quantum tunneling of an electron due to a finite barrier

potential, resulting in a nonzero probability of ionization for electrons at intensities lower than

Iapp predicted from BSI. There are also models that use more accurate potentials, such as a

”soft” Coulomb potential which have convergent values at x = 0, as well as potentials describing

molecules, such as the enhanced ionization model for linear diatomic molecules. One would also

have to consider the distribution of molecular orientations relative to the field polarization.
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Chapter 3

Overview of Experiments using VEGA at CLPU

The three experiments discussed in this thesis took place at the Centro de Láseres Pulsados

(CLPU) in Salamanca, Spain, during 2018 - 2022, and utilize the same VEGA laser system. This

chapter is dedicated to providing an overview of this system as well as a ”birds eye view” of

the experiments and their key parameters. Details of the experiments, including design, layout,

procedures, results, and analysis are provided in their respective chapters (Chapters 4 to 6).

3.1 The VEGA Laser System

The VEGA laser system at CLPU [3] is a laser manufactured by Amplitude and contains

three beamlines and uses a chirp-pulse amplifier (CPA) scheme with Ti:Sapphire as the gain

media for the amplification of short pulses that are sent in from an oscillator. The spectrum of

this laser system therefore follows the typical Ti:Sapphire curve characterized by a 800 nm center

wavelength and 70 nm bandwidth. The first of the three beamlines, named VEGA-1, is used

primarily for testing and diagnostics by the laser crew, while the other two beamlines, VEGA-2

and VEGA-3, are designed for users of the facility. VEGA-2 provides a peak power of 200 TW

(at 30 fs) at 10 Hz while VEGA-3 provides a peak power of 1 PW (at 30 fs) at up to 1 Hz. Tt

the time of our the recent experiment in March of 2022, the stability of VEGA-3’s pulse energy

while running at full power and 1 Hz was not yet realized; however, stability for single-shot mode

was guaranteed at full power.

As shown in Fig. 3.1, the VEGA system consists of a dual CPA and cross-polarization wave
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(XPW) front end for initial amplification of the seed pulses and contrast-enhancement, followed

by amplification and compression stages for each beamline at the backend.

Figure 3.1: Schematics of the main components of the VEGA laser system [3]. Image courtesy
of the SPIE digital library and Centro de Láseres Pulsados.

Figure 3.2a shows a more detailed schematic of the VEGA laser system in the laser bay.

The laser bay provides a variety of laser diagnostics including, but not limited to: measurements

of the pulse energy, pulse duration, and spectrum. Measurement of the pulse energy (Fig. 3.2b)

is done before and after the attenuator (Fig 3.2c) by capturing leaked portion of the main beam

through back-polished output mirrors using Gentec-eo XLE4 pyroelectric sensors as well as a

Basler ace camera. These diagnostics provide shot-to-shot measurement of the laser pulse energy

during live runs. The pulse energy arriving at the target chamber is calculated from known trans-

mission losses calibrated from measurements of the pulse energy at target chamber compared

with the energy measurements before the compressor at the amplifier.
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Figure 3.2: Diagrams of the VEGA laser system and its diagnostics in the CLPU laser bay. Shown are a) schematics of the physical
layout of the laser bay [80], b) the component layout of an amplifier applicable to both the VEGA-2 and VEGA-3 beamlines, c) diagram
of the 4-wedge attenuator (mounted on scissor arms) used to reduce beam power, and d) diagram of the input optics at the metrology
bench [3]. Image courtesy of Centro de Láseres Pulsados.

86



After amplification, the beams are sent to their respective compressors to reduce their tem-

poral duration down to ∼ 30 fs. Measurement of the properties of the compressed pulses are

conducted at a metrology bench (Fig. 3.2d) at attenuated energies (1 − 4 mJ with the 4-wedge

attenuator lowered) using removable mirrors to divert the beams from their otherwise primary

paths to the target area. These diagnostics are conducted at the beginning of each day as they

cannot be used simultaneously with live shots to the target area. At the metrology bench, the

beam sizes are reduced from 100 mm (VEGA-2) and 220 mm (VEGA-3) down to 24 mm using

telescopes prior to being sent to various diagnostics. The diagnostics include a Wizzler (which

measures the temporal pulse shape and pulse spectrum) [81], a Sequoia (which measures the

pulse contrast), a Bonsai autocorrelator (which measures the pulse duration), a PHASICS (which

measure the wavefront), and two charge-coupled device (CCD) cameras (which measures the

near-field, NF, and far-field, FF, profiles). The Wizzler measurements represent the vacuum pulse

duration, having accounted for dispersion due to the beam’s transmission through a glass window

as it exits from the chamber as well as through air.

The backend of VEGA-2 and VEGA-3 are maintained in vacuum at ∼ 10−5 mbar to mit-

igate beam dispersion and distortion from scattering. The compressed beams are sent into the

target area in the adjacent room as large collimated beams (specifically 11 cm an 22 cm in diam-

eter for VEGA-2 and VEGA-3 respectively) with supergaussian distributions (or roughly a top

hat) later to be focused using off-axis parabolic (OAP) mirrors.
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3.2 Experimental Campaigns on RTS at CLPU

3.2.1 The Target Area

Three RTS experiments were conducted at CLPU. The first two experiments in 2018 and

2019 utilized the VEGA-2 beam whilst the the third experiment in 2022 utilized the VEGA-3

beam. A long focal length (130 cm) OAP was used with the VEGA-2 beam to focus the beam

into the target chamber, which is a cylindrical chamber with a 1.2 m inner diameter and 0.6

height, as shown in Fig. 3.3.

Figure 3.3: Diagram of the VEGA-2 beamline in the target area. The incoming beam from the
laser bay is reflected into a chamber containing two turning mirrors and an off-axis parabola
(OAP), which focuses the beam into the target chamber. The interior of these chambers were
accessed from the top which were covered and sealed before pumping into vacuum. CAD model
courtesy of Centro de Láseres Pulsados.

The VEGA-3 beamline is focused by an OAP with focal length of 250 cm into a rectangular

target chamber with internal dimensions of 1.5 cm × 1.5 cm × 0.5 cm, as shown in Fig. 3.4. Each
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chamber is pumped down to a background pressure of 10−5 mbar prior to firing of the laser. The

parameters associated with the laser and target chamber during the experiments are summarized

in Table 3.1.

Figure 3.4: Diagrams of the VEGA-3 target chamber. The incoming laser beam was focused
from a separate chamber containing an OAP (not included in diagrams). Lateral to the laser axis
are four chamber doors which swing open and allow access to the interior. The colors of the
flanges (type ISO-K) are codes for their sizes (from largest to smallest): Indigo (DN400), Blue
(DN250), Red (DN200), Light Green (DN160), Pink (DN100), Yellow (DN63), Cyan (DN40),
and Dark Green (DN25). The DN200 (red) flange, being ∼ 20 cm in diameter, on the opposite
side of the incoming laser provides sufficient clearance for the expanding laser after focus to pass
through. CAD model courtesy of Centro de Láseres Pulsados.
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Table 3.1: Summary of experimental parameters of the laser.

Experiment 1 Experiment 2 Experiment 3
Year 2018 2019 2022
Campaign Durationa 14 days 22 days 31 days
Wavelength (Bandwidth) 800(70) nm
Pulse Durationb,c 30 fs
Beamline VEGA-2 VEGA-3
Entrance Beam Diameter 11 cm 22 cm
OAP Focal Length 130 cm 250 cm
f/# 13 11
Focused Beam Diameterc 22 µm 11-13 µm
Repetition Rate 10 Hz 1 Hz / Single Shot
Energy Ranged 1− 2.7 J 1.2− 3.4 J 2− 20 J
Peak Intensity Rangee,f 1− 7× 1018 2− 6× 1018 1− 10× 1019

Chamber Dimensions 1.2 m (ID) × 0.6 m (H) 1.5 m × 1.5 m (LW) × 0.5 m (H)
Background Pressure 10−5 mbar
a Including setup time, b Nominal, c Full-width at half maximum, d On target, e Estimated, f In units of W/cm2.

3.2.2 RTS Detectors and Gas Source

In the first experiment, measurements of the second harmonic spectrum where conducted

using a pair of microscope objectives looking at the focus. One objective was oriented along the

electric field polarization (θ = 90, ϕ = 0) and the other along the magnetic field polarization

(θ = 90, ϕ = 90◦). Thea measurements were taken for various laser pulse energies to observe

how the Doppler shifted spectrum changes vs. laser peak intensity. In the second and third

experiments, the detectors used each consisted of a lens imaging the laser focus from a distance

of ∼ 13 cm onto a fiber optic cable. These detectors were mounted on an arc-shaped apparatus

on a motorized rotation stage, allowing rotation of the positions of the detectors about the ŷ

axis (parallel to the magnetic field polarization). In the first two experiments, the RTS light was

captured through a gated spectrometer with a gate window of 5 ns. In the third experiment, a

transition was made to using the streak camera, which for a 0.5 ns gate after accounting for fiber
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dispersion. Figure 3.5 show the detectors in their mounting apparatus for the three experiments.

Figure 3.5: Diagrams of detectors from a) experiment 1, b) experiment 2, and c) experiment
3. The detectors from experiment 1 were long working distance, infinity-corrected microscope
objectives which imaged the focal region into free-space, to later be focused with a lens. The
detectors from experiment 2 were fiber-optic based collection systems mounted along an arc-
shaped apparatus designed to rotate about the B axis and collect light over various directions
along a sphere. The detectors from experiment 3 were fiber-optic collection systems mounted on
an arc oriented along the E-k plane of the laser, which also rotate about the B axis. More details
of the detectors are described in the chapters respective to each experiment. Credit: a) CLPU
for CAD model of components, b) Andrew Longman for the design and CAD model of the arc
assembly, c) Lester Putman for the final design and CAD model of the side arc components.

The gas source for the three experiments generally consisted of molecular nitrogen that was

puffed into the chamber via a pulsed gas nozzle. In the first experiment, the nozzle was connected

directly to the regulator behind a gas cylinder via a tube. Due to the small size of the tube, this

setup resulted in a small drift in the backing pressure as the gas was leaked during shots. This

was addressed in later experiments using a reservoir chamber back-filled with gas as the backing

source for the gas nozzle. A summary of the parameters associated with the detectors as well as

gas source is shown in Table 3.2.
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Table 3.2: Summary of experimental parameters of the detectors and gas source.

Experiment 1 Experiment 2 Experiment 3
Detection Optics Microscope Objectives Lens and Fiber Optics
Object Distance 20 mma 13 cm
Numerical Aperture 0.28 0.05
Collection Half-Angle 16◦ 3◦

Readout Device Gated Spectrometer Streak Camera
Gate Windowb 5 ns 0.35 ns

Angular Range
θ
ϕ

90◦ 30◦ − 150◦ 25◦ − 120◦

ϕ = 0◦, 90◦ ϕc
Arc = 0◦, 50◦ ϕ = 0◦

Gas Species Molecular Nitrogen
Pulse Duration 4 ms
Backing Source Regulated Cylinder Reservoir Chamber
Backing Pressure 10 mbar 200 mbar 800 mbar
Pressure at Focusd 10−3 mbar 10−3 mbar 10−2 mbar
Molecular Densityd,e 3× 1013 cm−3 3× 1013 cm−3 3× 1014 cm−3

a Same as focal length, b Duration during which signal is acquired, c Refers to azimuthal position on the arc, d

Estimated, e Assuming ideal gas.
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Chapter 4

Experiment 1: Second Harmonic Spectrum

Introduction

The premise behind this experiment was to take a spectrum of RTS radiation in the second

harmonic and analyze its properties as a function of the laser peak intensity. From the expres-

sion for the frequency of radiated RTS based on the Doppler effect in [55], we have derived an

expression [69] of the peak intensity as a function of the onset wavelength, λ(n)r , given below:

Ipk(λ
(2)
r , θ) =

2πmec
3

r0λ20(1− cos θ)

(
2λ

(2)
r

λ0
− 1

)
(4.1)

where me is the electron rest mass, c is the vacuum speed of light, r0 is the classical electron

radius, λ0 is the laser wavelength, and θ is the polar angle of observation direction relative to

the laser propagation direction. This expression assumes that the peak of the laser pulse may be

approximated as a plane-wave. Radiation produced from regions in the laser outside of the peak

would contribute to wavelengths λ(2)RTS < λ
(2)
r in the spectrum, so that λ(2)r is associated solely

with the peak intensity.

The experimental approach involved using two long working distance (∼ 34 mm), infinity-

corrected microscope objectives, to image the focal region from two separate directions orthogo-

nal to the propagation direction of the laser, specifically one along the electric field polarization,

namely x̂, and the other along the magnetic field polarization, ŷ. Light from the imaged region

was sent through free-space and, using mirrors, routed out of the chamber to be refocused onto
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readout devices. When refocused onto a camera sensor, the focal region’s spatial structure was

visualized. Additionally, the spectral measurements were achieved by refocusing the light onto

the entrance slit of a spectrometer consisting of an intensified charge-coupled device (ICCD)

camera with a gate time of 5 ns.

4.1 VEGA-2 Laser Focal Region

The focus is produced using a f/13 geometry; the incoming 11 cm diameter beam is focused

into the target chamber by a 130 cm focal length parabolic mirror onto a spot with a ∼ 22 µm

FWHM diameter. The spatial characteristics of the focus is estimated using a wedge to pick

off a fraction of the beam, as shown in the left on Fig. 4.1, while the beam is operating at

low power, and then imaging the reference focus using a Mitutoyo Plan Apo near-infrared (NIR)

microscope objective [82] onto a Blackfly PGE 23S6M [83] monochrome complementary-metal-

oxide-semiconductor (CMOS) camera sensor. The Blackfly camera has a sensor format of 1/1.2”

(more specifically, an area of 11.13 mm × 7.03 mm), a pixel size of 5.86 µm × 5.86 µm, and a

pixel array of 1920× 1200 (horizontal × vertical) pixels.
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Figure 4.1: Diagram of the experimental layout around the focal region. The VEGA-2 beam is
focused onto a spot above the gas nozzle, and imaged with two microscope objectives orthogonal
to the propagation vector k, one along the electric field polarization, E, the E||-objective and
another orthogonal to the electric field polarization, the E⊥-objective (or equivalently, along the
magnetic field polarization B), which is discussed in more detail in section 4.4. A motorized
wedge with low reflectivity is moved into the path of the main beam in order to redirect a small
fraction of the laser light onto a secondary focus, of which a NIR microscope objective oriented
along the propagation of the reflected beam was used to image the laser focal distribution at
various offsets from the focal plane. CAD model courtesy of Centro de Láseres Pulsados.

4.1.1 Spatial Calibration

The spatial calibration of this imaging system was conducted by Andrew Longman during

the experiment preceding the RTS experiment, which we summarize here and report the results.

Focal images were captured directly at the laser focus with a Chameleon charge-coupled device

(CCD) camera. The Chameleon has a resolution of 1296 × 964 with 3.75 µm pixels (square

sides) and provides a direct measurement of the spatial distribution of the laser. However, unlike

the imaging system measuring the reflected beam off the wedge, the Chameleon has low pixel

resolution, was more at risk of damage as a result of direct exposure to the unattenuated beam,
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and could not be used in vacuum. Its purpose was to provide a spatial reference from which the

”wedge” imaging system can be calibrated, while also serving as a wide-view diagnostic of the

laser position. Schematics of the two imaging setups are shown in Fig. 4.2, along with example

images of the focal spot captured by the Chameleon and Blackfly.

Figure 4.2: Diagram of the focal spot imaging and spatial calibration system. Shown are schemat-
ics of a) the laser focal spot imaged by the Chameleon (CHMLN) CCD camera and b) the laser
focal spot reflected by a wedge (W) and mirror (M) and imaged at the imaging focal plane (IFP)
by an infinity correct microscope objective (MO) and transported to and refocused by a lens
(L) onto a Blackfly (BFLY) CCD camera. The captured image is a magnified representation of
the laser focal spot at the laser focal plane (LFP). Translating the microscope objective long the
imaging axis translates the imaging plane along the reflected beam, corresponding to a translation
along the real laser by an equal amount. The images used for the calibration analysis are shown
and were taken during a preceding experiment on 06/06/2018.

A set of images were captured by scanning both imaging systems along their respective

imaging axis and the 5 images having the smallest focal spot were chosen from each imaging
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system for comparison. The width of the focal spot in each image was determined by plotting the

average profile horizontally and vertically and finding their FWHM, and are shown in Table 4.1.

Table 4.1: Measurements of the FWHM of the horizontal (H) and vertical (V) average profiles
of the subset of focal spot images with the smallest spot sizes captured by the direct and wedge
imaging systems (5 images from each imaging system). The mean (standard deviation) of the
horizontal and vertical FWHM values for each imaging system are shown in bold. The pixel
sizes of the readout cameras are given, although only the Chameleon specifications were used for
the calibration

Imaging System Readout Camera FWHM (H) [px] FWHM (V) [px]

Direct
Chameleon

(3.75 µm square pixels)

7 6
8 6

10 7
9 6
9 7

8.6 (1.0) 6.4 (0.5)

Wedge
Blackfly PGE 23S6M

(5.86 µm square pixels)

49 56
55 69
51 62
47 60
49 56

50.2 (2.7) 60.6 (4.8)

Given that the FWHM measurements from both imaging systems are measurements of the

same object (the laser focal spot), their measurements are an equivalence relation which allow

for the spatial calibration, CW,sc, of the wedge imaging system in pixels per µm to be computed

for the horizontal and vertical measurements using the equation

CW,sc [px/µm] =
∆W,FWHM

∆D,FWHM

1

3.75
(4.2)

where ∆W,FWHM is the measured FWHM in pixels from the wedge imaging system and ∆D,FWHM

is the measured FWHM in pixels from the direct imaging system. Averaging the results from the
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horizontal and vertical measurements, the calibration is calculated to be

CW,sc = 2.0± 0.3 px/µm (4.3)

The uncertainty in the calibration was rather large (17%), suggesting that a better method of cal-

ibration was warranted. In later experiments, a 1951 United States Air Force (USAF) resolution

test pattern was used for the spatial calibration. For the 2018 experiment discussed in this chapter,

however, the calibration previously summarized was the only one available.

4.1.2 Spatial Distribution

Using the spatial calibration, images of focal spot captured by the wedge imaging system

can be plotted in spatial dimensions. Figure 4.3 show the focal spot imaged at various offsets

from the focal plane as a result of translation of the microscope objective along the optical axis.
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Figure 4.3: Focal scan images captured by the NIR microscope objective coaxial with the wedge-
reflected beam at various offsets, z, relative to the best focus, z = 0. See Fig. 4.1 for the
schematic. Images were captured with the laser at low energy in vacuum, where background
pressures ∼ 10−5 mbar. The laser has a clean profile before focus (z < 0) but becomes distorted
after focus, possibly due to scattering with the background gas, which, within a cylinder with
volume πw2

0 × zR, where w0 ∼ 20 µm is the beam waist and zR ∼ 1 mm is the Rayleigh length,
amounts to ∼ 105 molecules, or due to aberration in the collection optics.

In order to characterize the focal spot at best focus, the image is processed with background

subtraction and noise filtering, as shown in Fig. 4.4. First, a background value is obtained by

taking the 480× 300 (horizontal × vertical pixel) regions at the four corners of the raw image as

the representative background and determining the average signal value, which was 2236 counts
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with a standard deviation of 341 counts. Next, a median filter was applied to the image, where

each pixel was replaced by the median of the 3 × 3 local region around the pixel. The result of

the median filter was the removal of hot pixels. The location of the laser spot center, (xc, yc) was

determined to be (962, 593) where x ranges from 1 to 1920 and y ranges from 1 to 1200.
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Figure 4.4: Plots showing the image processing steps taken of the focal spot images to produce
the final intensity map. Shown are plots of the focal spot at best focus (z = 0) at different stages
of image processing: a) and b) raw image, c) and d) background subtracted image, and e) and
f) median filtered image. In a) the raw image, the boxes with white dashed border indicate the
regions used for calculating the background value, while the box with the white dotted border
corresponds to the cropped regions shown in plots c) and d). The boxes with the dash-dot border
in images a), c) and e) correspond to the cropped region shown in b), d), and f) to show the
result of hot pixel removal after using the median filter. The hot pixels in a) and c) are not visible
unless the figure is sufficiently zoomed in and may not be representative of the data due to image
downscaling.
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The spot size was estimated from the processed image, as shown in Fig. 4.5, by averaging

the results of two methods. The first method involves calculating the average signal as a function

of radial distance from the spot center. The calculation was done by using the image data, which

represents the signal strength in a grid of x and y Cartesian coordinates, to interpolate the data

into a grid of polar coordinates, (r, θ), and averaging over the θ dimension for each value of r.

The full-width at half-maximum (FWHM) was calculated by taking the maximum signal value

at r = 0, dividing by 2 to get the half-maximum, and determining the value of r where the signal

is closest to the half-maximum, which was determined to be 21 px, and then multiplying by 2 to

get a FWHM value of 42 px. The second method involves taking horizontal and vertical lineouts

(one dimensional arrays) across the center of the spot of the image (the white dashed lines in

Fig. 4.5a), performing a 10th order median filter where each data point in the lineout array was

replaced by the median of the 10 local values around the data point. The purpose of the 10th

order median filter was to smooth out the signal, particularly at the peak. The peak values of the

median filtered arrays were then extracted and divided by two to obtain the half-max values, and

the intersection locations of the horizontal lines defined by the half-max values with the median

filtered arrays were determined. For each lineout, there are two intersections, one on opposite

sides of the peak. The difference between the locations of the two intersects defines the FWHM.

The horizontal lineout produced a FWHM of 44 px while the vertical lineout produced a FWHM

of 43 px. The mean of the FWHM values determined from the different approaches is 43 px with

a standard deviation of 0.8 px. Using the spatial calibration of 0.51± 0.04 µm/px, the FWHM of

the 43 px focal spot would be 22± 2 µm
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Figure 4.5: Plots showing the processed focal spot image and the characterization of the spot size.
Shown are a) the processed focal spot image in a log scale, b) the average signal vs. radial distance
from the spot center (peak of the distribution), along with the cumulative distribution function
(CDF) and derivative (scaled to fit the plot), c) the horizontal lineout and d) the vertical lineout
across the spot center. The white dashed lines in a) mark the locations where the horizontal
and vertical lineouts were sample. The white dotted circle in a) marks the location of the first
radial node, rairy,0, determined from the average value of the set of nodal positions denoted by
the vertical red dotted lines in b), c), and d). The black horizontal dashed lines in b), c), and
d) demarcate the max and half-max values, while the black vertical dashed lines demarcate the
locations of the half-max.

The focal spot is not a Gaussian distribution, but contain airy rings due to diffraction from

focusing a top hat distribution by the parabola. Indeed, there is a lack of azimuthal symmetry due

to aberrations, and the first radial node is prominent primarily in the left half (x− xc ≤ 0) of the
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image. As a simple estimation, the central spot can be defined by the circular region consisting of

the peak up to the first radial node, which we call rairy,0, determined as the mean of the result of

three approaches. The first approach is carried out by determining the first local minimum from

the average signal vs. radius, as shown in Fig. 4.5b, which coincides with the inflection point of

the cumulative distribution, F (r), defined by the integral:

F (r) ≡
∫ r

0

f(r′)r′dr′ (4.4)

where f(r′) is the average signal at radial position r′. The first local minima also coincides with

the condition that f ′(rairy,0) = 0, f ′(r < rairy,0) < 0, and f ′(r > rairy,0) > 0, where f ′(r) is the

first derivative of f(r) with respect to r. In other words, at the local minima, the slope of f(r)

changes from negative to positive as r increases. The first local minimum was found to be at 46

px. The second approach involves determining the first local minimum of the horizontal lineout

towards the side where there is a prominent airy ring, namely x− xc < 0, which was found to be

42 px in magnitude. The third approach is the same as the second approach but using the vertical

lineout, which also determined a value of 42 px. The results of the three approaches results in a

mean of 43 px with a standard deviation of 2 px. Using this as the value for rairy,0, we integrate

the signal over the circular region with radius rairy,0 centered at (xc, yc), which is indicated in Fig.

4.5a by the circle with a white dotted border, and divide this value by the integral of the signal

over the entire image, which tells us the fraction of the total energy at the focal plane contained

in the focal spot. The integral over the central spot was 2.38× 107 cts, while the integral over the

entire image was 6.93× 107 cts, implying that ∼ 34% of the energy is in the central spot.
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4.2 VEGA-2 Temporal and Spectral Characteristics

The VEGA-2 laser’s pulse width and spectrum were characterized by the Wizzler as de-

scribed in section 3.1. While the details of the measurements fluctuated each day, such as the

intensity at the shoulders in the temporal measurements or the skewing of the spectrum, the over-

all characteristics of these measurements stayed the same: The duration of the main pulse is ∼ 30

fs and the spectrum has a bandwidth of ∼ 70 nm with a central wavelength of ∼ 790 nm. An

example of the Wizzler measurements is show in Fig. 4.6.
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Figure 4.6: Plots of the Wizzler reconstructed temporal profile, phase, as well as measured spec-
trum. Shown in the top row are: a) temporal intensity and phase profile vs. time and b) spectral
intensity and spectral phase vs. wavelength. In the bottom row are zoomed-in plots of: c) inten-
sity and phase and d) spectral phase. For a), the dots indicate the data points measured by the
Wizzler, while the curves are interpolated traces (cubic method for the temporal intensity profile,
and linear method for the phase) over the data points. A shown in c), the shoulders have intensi-
ties which are ∼ 1 − 5% of the peak, while the phase is relatively flat throughout the main peak
of the temporal pulse pulse, varying over a range of ∼ 0.1π radians, as is the case for the two
shoulders shown in the phase plots offset by ±π. The spectral phase in d) likewise varies over a
range of at most about 0.1π radians. These measurements were obtained by the Wizzler in the
laser bay on 07/13/2018.

4.3 Indirect Estimation of VEGA-2 Intensity

The images of the laser focal spot show the laser energy distribution (fluence) measured in

the focal plane by a camera. Combining this knowledge with the pulse duration and pulse energy
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on target, which provided to us by the user facility, we may estimate the peak intensity as well as

the intensity distribution at focus using a simple by approximate method. This method requires

the assuming that the spatial distribution of the laser is separable from the temporal distribution.

A simple formula of the peak intensity and intensity distribution may be derived from the above

assumptions and diagnostics.

We begin by considering the intensity distribution at the focal plane of the laser, whose

intensity in spatial position (x, y) at time t is given by I(x, y, t). We assume that the spatial and

temporal variables can be separated, i.e.,

I(x, y, t) = I0f(x, y)g(t) (4.5)

where I0 is the peak intensity, f(x, y) is the spatial distribution and g(t) is the temporal distri-

bution, both of whose integrals over infinity are convergent to a finite number. Defined in this

manner, both f(x, y) as well as g(t) are equal to unity at the spatial and temporal peaks of the

pulse, namely, f(x0, y0) = 1 and g(t0) = 1 for (x0, y0) being the location of the spatial peak and

t0 being the time of the temporal peak. The fluence, F (x, y), is then given by:

F (x, y) =

∫ ∞

−∞
I(x, y, t)dt = I0f(x, y)

∫ ∞

−∞
g(t)dt (4.6)

Integrating the fluence, F (x, y), over all space results in the total laser pulse energy, U , at the

focal region.

U =

∫ ∞

−∞

∫ ∞

−∞
F (x, y)dxdy =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy

∫ ∞

−∞
g(t)dt (4.7)
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Assuming that the focal distribution is contained within the image, and the background has

been sufficiently removed, we may take the value of f(x, y) outside of the image to be 0, so that

the first integral may be approximated as a sum over the image pixels normalized to the counts at

the peak of the distribution:

∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy ≈

N,M∑
i,j

f(xi, yj)Apix ≡
CsumApix

Cpk

(4.8)

where N and M are the horizontal and vertical dimensions of the image respectively, i and j are

the horizontal and vertical image indices respectively, xi and yj are the spatial locations repre-

sented by the pixel at index values i and j respectively, and Apix is the spatial area represented by

a pixel of the focal plane. We define Csum as the sum over the counts over the entire image and

Cpk as the value of the counts at the peak of the distribution in the image.

The time integral,
∫∞
−∞ g(t)dt, is equal to some effective time Teff , and depends on the shape

of the pulse. For a gaussian temporal shape with pulse duration full-width at half-maximum

(FWHM) of ∆t, the effective time Teff =
√
π/ln 2 × ∆t/2 ≈ 1.064∆t. Plugging these results

into Eq. 4.7, we obtain:

U = I0
CsumApixTeff

Cpk

(4.9)

Solving for I0 and relabeling as I Impk , we arrive at the result:

I Impk =
UCpk

CsumApixTeff
(4.10)

Here, an expression for the peak intensity is given in terms of the pulse energies U , which are

values measured by at laser bay and calibrated for the target area (accounting for beam transport
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losses), the effective pulse duration Teff , which may be determined by a short pulse temporal

diagnostic (in our case, the Wizzler), and parameters which are calculated from the spatially-

calibrated and background-subtracted focal spot image: Cpk, Csum, and Apix.

The value of Cpk is determined by averaging the values of nine pixels in a 3 × 3 block of

pixels near the peak of the focal spot image (see central figure in Fig. 4.3). Csum is simply the total

counts summed over the focal spot image, and Apix the area at the focal plane represented by a

camera pixel in physical units (Apix = 1/C2
W,sc = 0.26±0.04 µm2 as discussed in section 4.1.1).

The value of Teff is determined by integrating over the Wizzler pulse profile, and multiplying by

a rescaling factor ∆t/∆tW, where ∆t is the nominal pulse width, and ∆tW = 25.2 ± 0.4 fs is

the pulse duration measured by the Wizzler. The rescaling is due to the fact that the pulse width

measured using an autocorrelator in the target area is larger by ∼ 20%, namely ∆tAC = 31.0±0.4

fs.

Of the quantities in Eq. 4.10 only the energy, U , was deliberately varied during the ex-

periment. While there may be drifts in the pulse duration, the variation is slow compared to the

variation of U over subsequent runs. For estimation purposes, we take ∆t = 31 fs, and calculate

the value for I Impk /U to be 1.9× 1018 W/cm2/J. This value may be plugged into Eq. 4.5 to obtain

an expression for the intensity distribution at the temporal peak (t = t0):

I(x, y, t0) = I Impk f(x, y) =
(
1.9× 1018 W/cm2/J

)
× Uf(x, y) (4.11)

Figure 4.7 show surface and contour plots of Eq. 4.11 normalized to the energy from the pro-

cessed focal spot image at best focus in a linear and log scale.
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Figure 4.7: Plots of the intensity per unit pulse energy based on the processed focal spot image
at best focus. The intensity was calculated based on Eq. 4.11. Shown are a) 3D surface plot in
linear scale, b) 3D surface plot in log scale, c) contour plot in linear scale, and d) contour plot in
log scale. The colormap values in all plots are in units of 1018 W/cm2/J.

4.4 Microscope Objectives for RTS Detection

The two microscope objectives used for capturing RTS light are the Mitutoyo 10× Plan Apo

[84] and the Motic 10× Plan Apo [85], both designed for the visible band and having the same

focal length (fobj = 20 mm), working distance (dwk = 34 mm), and numerical aperture (NA =

0.28). They are high-quality off-the-shelf objectives classified as plan apochromats, which are

designed to have flat fields and be corrected for aberrations, both spherical and chromatic. The
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imaging at infinity allows flexibility in designing the length of the optical path. Upon refocusing

into a detector using a lens, the magnification can be calculated via M = flens/fobj, where flens is

the focal length of the refocusing lens. In the case of this experiment, flens = 30 cm, resulting in a

magnification of 15. The numerical aperture of of 0.28, is equivalent to a θacc = 16.3◦ acceptance

half-angle (NA = sin θacc). With a small depth of field of 3.50 µm, the laser focus may be imaged

while mitigating the collection of background light.

4.5 Imaging Beam Paths

The light captured by the microscope objectives follow paths determined by mirrors. The

light from the E⊥ objective is taken up along ŷ and then parallel to, but offset from, k out of the

chamber through a port above the exit port of the laser beam. The light from the E|| objective

is taken to the side, then parallel to k out through a port at an oblique angle. The imaging paths

inside the chamber are shown in Fig. 4.8. Outside of the chamber, light from the E⊥ objective

is either reflected sideways using a flip mirror and focused onto a camera sensor (Andor DV440-

BU2-2492) or sent to the input optics array for the spectrometer (Oriel MS260i). Light from the

E|| objective is either sent to its own imaging camera a cooled, low-noise CMOS camera (Zyla

4.2 MP PLUS), or redirected upwards using a flip mirror, and then towards the spectrometer. The

imaging paths outside of the chamber are shown in Fig. 4.9.
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Figure 4.8: Annotated photo of the internal layout of the VEGA-2 target chamber. Shown are the
VEGA-2 laser beam, the focal region where RTS light is produced and captured, and the image
beam paths captured by the E⊥ and E|| objectives. To mitigate the capturing of scattered light in
the chamber, black-anodized aluminum foil was used to shield the imaging beam paths as well
as cover the reflective surfaces in the background of the objectives’ fields of view.

Figure 4.9: Annotated photo of the layout outside of the VEGA-2 target chamber. Shown are
the imaging beam paths of the E⊥ and E|| objectives and their corresponding readout cameras as
well as spectrometer. The beam paths are shielded with dark material (construction paper, cloth,
and anodized aluminum foil) from ambient light in the room.
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4.6 Scattered Light Mitigation

Scattered light from the laser beam off of components inside the vacuum chamber is a

major concern for this experiment due to the intense laser beam and relatively weak RTS signal.

Multiple reflections of the beam off of surfaces in the chamber can turn the chamber into a big

”light bulb.” Furthermore, outside of the chamber, there is ambient lighting. The choice of using

microscope objectives as well as a temporally gated spectrometer are already themselves means

to reduce the collection of background light, however, these factors alone are insufficient, and

thus additional measures were taken, as listed below.

• The optical paths of the imaged light were shielded end-to-end using black-anodized alu-

minum foil.

• Portions of the vacuum chamber were covered in black-anodized aluminum foil in order to

reduce the reflectivity off of these surface areas.

• An improvised beam dump, built from black-anodized aluminum foil, was set up behind

the exit port of the main beam in order to redirect the beam and confine the scattering inside

a separate chamber.

4.7 Alignment of Detection Optics

In order to align the two microscope objectives used for RTS detection (right on Fig. 4.1), a

needle tip (Fig. 4.10) mounted on a linear motorized stage is used as a reference of the location of

the laser focus. The linear stage facilitates moving the needle into the focal location for alignment,

and out of the focal region during the live laser shots. Light from a diode laser is used to illuminate
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the tip. The microscope objectives, which are mounted on xy linear translation stages, are moved

to bring the illuminated tip into view and into focus. As the chamber is pumped into vacuum,

there is a drift in the alignment, therefore real time adjustment of the stages were performed to

keep the tip in view and then optimize after the vacuum has reached a steady state.

Figure 4.10: Photo of the alignment tip at the focal region with the RTS detection microscopes
and brass gas nozzle. The microscopes were mounted on translation stages which allowed for
adjustment in their position to find the focal region referenced by the illuminated tip while the tip
is in the operating position.

4.8 Gas (Electron) Source

The electrons were produced from laser ionization of nitrogen gas that was puffed into

the chamber via a Parker Series 9 Pulsed Valve (model 9S2-A1-P3-9B06) [86] connected to a

conical gas nozzle (shown in Fig. 4.10), which was measured by Carlos Salgado using an optical

microscope at CLPU to have a 0.8 mm orifice. The laser was focused at a distance ∼ 2 mm
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above the gas nozzle mouth. The pulsed valve was backfilled using a gas cylinder, connected to

a regulator and pressure gauge to control and monitor the backing pressure. The pulsed valve

was turned on ∼ 2.5 ms prior to the laser pulse and stayed open for 4 ms with each trigger. The

regulator was set to output ∼ 10 mbar, and needed to be reset after every several shot batches in

order to compensate for drift. The gas pressure at focus, after the nozzle opens and releases the

gas puff, would necessarily be smaller than the backing pressure of 10 mbar and larger than the

background pressure of 10−5 mbar.

As an estimation of the gas density at focus, we assume that the backing pressure follows

the ideal gas law, which states that:

ρ0 =
Pgas

kBT
(4.12)

where ρ0 is the molecular density, Pgas is the gas pressure, kB = 1.38 × 10−23 m2kgs−2K−1 is

the Boltzmann constant, and T is the temperature taken to be 300 K. The gas density at a point

in space away from the opening of the nozzle would fall off as a function of the distance. We ap-

proximate this fall off using using a Lorentzian function developed empirically from Monte-Carlo

simulations for a collisionless gas based on the kinetic model, which is described in Appendix F

section F.1. This function is given by:

ρgas(∆R) =
ρ0(

∆R
Rf

)2
+ 1

(4.13)

where ∆R is the distance from the orifice and Rf ≈ 0.32 ± 0.08 mm is the fall off length scale

determined from the simulations, with the uncertainty given by the 95% confidence interval from

the fits to the simulation results. Figure 4.11 shows the relative gas density as a function of
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distance based on Eq. 4.13.

Figure 4.11: Plot of predicted gas density per unit reservoir density as a function of position
from the nozzle. This is based on Eq. 4.13, which is determined from Monte Carlo simulations
described in Appendix section F.1. The shaded region includes the 95% confidence interval for
the best fit parameter of Rf .

At 2 cm from the nozzle, Eq. 4.13 predicts that the gas density is on the order of a factor

of ∼ 10−4 to 10−3 of the backing density. Since the the pressure and density of an ideal gas are

linearly proportional, this would correspond to a density of 1012 to 1013 cm−3 (or 10−3 to 10−2

mbar) at the laser focus. Table 4.2 shows the molecular density at various pressures. A molecule

will experience a laser intensity depending on the precise location of the molecule within the

laser distribution. At sufficient intensities, a nitrogen molecule may donate up to 10 electrons,

so that one may approximate roughly that the electron density is on the order of 1013 to 1014 at

the peak of the laser. However, the ionization and scattering dynamics of the electrons due to the

laser may result in complex distributions deviating from this approximation.
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Table 4.2: List of molecular densities, ρmol, at various gas pressures Pgas, assuming an ideal gas.

Pgas ρmol [1/cm3]
1 atm (≈ 1 bar) 2.4× 1019

10 mbar 2.4× 1017

10−3 mbar 2.4× 1013

10−5 mbar 2.4× 1011

4.9 Image Readout

As previously mentioned, images captured by the E⊥ and E|| objectives were refocused

from infinity using lenses of focal lengths of 300 mm onto camera sensors, respectively the An-

dor DV440-BU2-2492 and Zyla 4.2 MP PLUS, with an overall magnification of 15× for both

imaging paths. The Zyla camera has a scientific Complementary Metal-Oxide-Semiconductor

(sCMOS) sensor with 6.5 µm square pixels and a resolution of 2048× 2048, implying a field-of-

view region of 877 µm × 877 µm. The Andor camera has a CCD sensor with 13.5 µm square

pixels and a resolution of 2048× 512 of which the software at the time only reads a 1024× 255

sub-field, implying a field-of-view region of 922 µm × 230 µm.

Due to obstructions in the transport optics for the E|| objective, likely as a result of the beam

path exiting the chamber through a port at an oblique angle and through a bellows, visibility of

the focal region was limited, as shown in Fig. 4.12a of the imaged region of the chamber interior

illuminated by laser scattering. Nevertheless, with the use of a BG39 optical filter (Fig. 4.12b),

which cuts of wavelengths above 650 nm while passing through visible wavelengths below 650

nm, the laser beam was visible and confirmed by changing the orientation of the OAP mirror and

observing a shift in the imaged location of the beam, as shown in Fig. 4.12c-e.
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Figure 4.12: Images of the focal region captured during live shots by the E|| objective under
varying conditions. The images were read out by the Zyla 4.2 MP Plus camera (15× overall
magnification) for shots at full laser energy (2.67 J on target), integrated over 10 s during the
firing of the shot batches. The illuminated window a) is shown for unfiltered light comprising
of scattered laser radiation inside the chamber. A BG39 filter, b), was then added to filter the
laser light (Wizzler spectrum shown) and capture light primarily from plasma recombination and
second harmonic RTS. The shot number was also scaled up from c) 20 shots 2 Hz to d) 100
shots at 10 Hz. The parabola orientation was adjusted and corresponding images were captured
at different parabola settings e) and f). Each image was processed with a background subtraction
followed by a median filter and the colorbar values correspond to net counts.
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The imaging system for the E⊥ objective did not suffer the same obstructions as that for

the E|| objective, thereby the light produced by the laser beam can be clearly seen, as shown in

Fig. 4.13. Although there were no clear single shot images, there are images from multi-shot

runs that show distinct streaks, likely correlating with individual shots and provides observations

of the pointing stability. There appeared to be a drift in the laser pointing correlated more with

time of the shot and less so with the shot number. For example, comparing the 5-shot (0.5 Hz)

image in Fig. 4.13a with the 100 shot (10 Hz) image in Fig. 4.13f, where both images were

captured over 10 s, the overall excursion is comparable. Adding optical filters which cut off laser

radiation while allowing visible (BG39) or near-infrared (RG850) radiation allow the radiation

produced by the laser to be more clearly seen and show that there is radiation at both the visible

and infrared.
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Figure 4.13: Images of the focal region captured during live shots by the E⊥ objective at various conditions. The images are shown in
a) and c)-f) while b) shows a plot of the filter transmission curves and laser spectrum. Initially, images were captured at a) low energy
(2.4 mJ on target), low repetition rate, moderately-low gas pressure (∼ 40 mbar), and no filter, then c) double the energy. Images were
also captured using d) a BG39 filter. At a later day, images were captured at full energy (2.67 J on target), low pressure (∼ 10 mbar), e)
without and f) with an RG850 filter. Note that the imaging system was continuously adjusted, therefore image f) has a stronger signal
than e) likely due to better imaging optimization.
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Figure 4.14 show examples of images captured during the live shots and cropped over the

region around the laser radiation. These images were each generated by averaging over 5 images,

each image being an accumulation of a run (100 shots at 10 Hz), for a total of 500 shots. The cam-

eras’ shutters stayed open during each run and, having no gating capability, captured essentially

all of the light generated from the focal region during the laser interaction; therefore, the signal

on represented on the images are dominated by plasma recombination. Figure 4.14a, specifically,

shows a structure containing multiple overlapped beams, indicating a pointing instability whose

total excursion, h = 66 µm, is about 4.4 times the beam width, b = 15 µm.

Figure 4.14: Cropped taken during the live shots emphasizing the location of the laser beam. The
images shown were integrated over 500 shots and captured by the a) E⊥ objective and b) E||
objective. In a), L = 526 µm, h = 66 µm, b = 15 µm. In b), L = 85 µm, h = 41 µm.

4.10 Spectrum Measurement

The spectrometer was an Oriel MS260i [87], based on the Czerny-Turner [4] optical design

with a 0.25 m focal length (see Fig. 4.15), and output to an intensified CCD camera (Andor iStar
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DH 720-25U-03 ICCD), which allowed for temporally gated measurement of light from either

the E⊥ objective or the E|| objective for any given run. The ICCD is discussed in more detail in

section 4.10.5. The incoming light from the microscope objective was focused onto the adjustable

entrance slit of the spectrometer using a 2 inch diameter lens. An optical filter may be placed in

front of the slit to cut down on the scattered laser light at around 800 nm, in order to allow the RTS

light in the visible band to be resolved without saturating the camera. The spectrometer houses

a triple grating assembly, allowing three gratings to be installed and selected during operation

via motorized rotation, with an angular separation of ∼ 120◦ between gratings. The gratings

installed in the spectrometer were ruled gratings produced by Richardson Gratings consisting of

150 lines/mm [88], 1200 lines/mm [89], and 2400 lines/mm [90], all of which were designed

for the visible (and some UV) band. The selected grating disperses incoming light into multiple

spectral orders, one of which is captured and collimated with a mirror and sent through an exit

port and onto the ICCD camera for acquisition, effectively passing a spectrum band determined

by the field of view of the readout camera and the grating setting. Light from spectral orders not

sent to the output port are absorbed within the spectrometer. Slight rotation of the triple grating

assembly allowed offset of the central wavelength.
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Figure 4.15: Diagrams of the Oriel MS260i spectrometer showing a) exterior photo and b)
schematics of internal optics, which is based on the Czerny-Turner design [4]. The input light
goes through a micrometer-adjustable slit (widths ranging from closed to 5 mm), redirected by
a turning mirror and then focusing mirror onto a diffaction grating selected from a triple grating
assembly [88–90]. The dispersed light is finally collimated by a focusing mirror and sent through
an exit port. Essentially, the illuminated slit is reimaged via a 0.25 m focal length system at the
output with a spectral dispersion. Diagrams adapted from [87].

4.10.1 Physics of Diffraction Gratings

While diffraction gratings come in different varieties (for example there are transmissive

and reflective gratings, both of which have various groove shapes and densities), the physical

principles behind their function are the same. Diffraction gratings consist of spatially periodic

reflective or transmissive elements through which light emitted from them result in an interfer-

ence pattern that varies with the light wavelength. Take for example the blazed grating (Fig.

4.16a), also known as the echelette grating, which is the class of diffraction gratings used in Oriel

MS260i spectrometer during the experiment [91] (Fig. 4.16b), a type of reflective grating whose

ruling pattern resembles a series of steps with a spatial periodicity of length, d.
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Figure 4.16: Diagram of a) the ray geometry of a blazed diffraction grating and b) photo of the
physical diffraction gratings used in the experiment. Shown in the ray diagram are two parallel
rays incident on a blazed diffraction grating at an angle θin relative to the grating normal, landing
on adjacent rulings a distance d apart equal to the ruling period, and reflecting off at an angle θout
with an overall path difference of ∆r1,2. The photo shoes the triple diffraction grating assembly
in the Oriel MS260i spectrometer with the 150 lines/mm (model 74077) grating surface in view.

Consider broadband parallel light rays from the source incident at an angle θin relative to

the grating normal, landing on the grating surface profile at separate rulings and points spaced

sequentially a distance, d, apart. These light rays arrive at the same relative points to each ruling

(e.g., at the horizontal centers of each ruling, or a quarter of a period from the left, etc.). These

rays reflect off of the grating surface at some outgoing angle, θout. They interfere constructively

when the path difference between two adjacent rays, ∆r1,2, from the source to the observer is

equal to an integer multiple, m, of the wavelength of light, λ, in other words, ∆r1,2 = mλ. In

this example, the observation point is taken to be far from the diffraction grating. Taking the

convention where an angle referenced counterclockwise relative to the grating normal is positive,

while an angle referenced clockwise is negative, the constructive interference condition results in
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the well-known grating equation:

d(sin θin + sin θout) = mλ (4.14)

In a spectrograph, the incoming rays are collimated and therefore all have the same unique value

of θin, while the outgoing dispersed radiation will have values of θout determined by their wave-

length and spectral order, m. For outgoing directions close to the grating normal, the small angle

approximation can be made (sin θout ≈ θout) so that the relationship between θout and λ is linear.

More generally, θout may not be small, and the dispersed light is projected onto a plane whose

normal is at an angle, θobs, from the normal of the grating, so that the position, xobs, along the

observation plane depends on tan(θout − θobs), therefore the relationship between λ and xobs

involves higher order terms in xobs from a Taylor expansion.

A more detailed description of the light produced from a diffraction grating requires a

more mathematically rigorous treatment using the Fresnel-Kirchhoff diffraction integral. Without

getting into the full derivation (which the reader may find in [92]), the Fresnel-Kirchhoff integral

describes the monochromatic field, U(P ), at an observation point P after the field has passed

through an aperture represented by a planar surface A, containing the origin O, from a point

source at P0, as shown in Fig. 4.17. The Fresnel-Kirchhoff integral may also be used to describe

the field reflected off of a mirror represented by A by simply taking the reference point P to be

on the same semi-space as P0. We define a Cartesian coordinate system centered at origin O with

unit vectors x̂, ŷ, and ẑ, the coordinates of P0 to be (x0, y0, z0), and that of P to be (x, y, z).

Furthermore, the planar surface A has a unit normal vector n̂ along ẑ and a point Q on A is

defined with coordinates (ξ, η, 0).
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Figure 4.17: Diagrams showing the coordinate system used in the Fresnel-Kirchoff integral from
two perspectives. Shown in a) includes a point source P0 emits radiation which passes through
an aperture defined by surface A and is observed at point P . Alternatively, if the surface A is
reflective, the Fresnel-Kirchhoff integral is applicable if P is located in the same semi-space as P0

(gray point with dotted lines). Shown in b) is a top view clarifying the relative positions of points
P0, P , and O, which are not necessarily all colinear, as well as θin and θout for a transmitting
system. The diagrams are not drawn to scale.

In the limit where the dimensions of A is small compared to the distances from any point

on A (say Q) to P0 and P , and where the angles made by lines PO and P0O with PP0 is not too

large, the Fresnel-Kirchhoff integral takes on a simple form:

U(P ) = C

∫∫
A
F (ξ, η) exp [ik(rin + rout)] dS (4.15)

Here, the integral is taken over the surface A and the quantities rin and rout are the distances of

P0Q and PQ, respectively, where Q is the point on the surface over which the surface integral
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is evaluated and dS is the differential surface area element. The function F (ξ, η) is a complex

transmission function, which accounts for the losses (real part) and phase shifts (imaginary part)

after the light has interacted with the media at surface A. For a transmitting medium, this accounts

for medium thickness and index of refraction, while for a reflective medium, this accounts for

the reflectivity as well as offsets from the plane defined by A. The quantity k = 2π/λ is the

wave vector magnitude and C is a constant which depends on the locations of P0 and P and

the wavelength λ. In physical terms, Eq. 4.15 states that the field at point P is equal to the

total contribution of waves from all the paths taken from point source P0 to A and from A to

observation point P while accounting for the material effects on light due to A.

If we denote r′in and r′out to be the lengths of line segments P0O and PO respectively, we

may rewrite rin and rout in terms of the coordinates of Q (ξ, η), in the aperture, as well as the

coordinates of P (x, y, z) and P0 (x0, y0, z0):

r2in = r
′2
in − 2(x0ξ + y0η) + ξ2 + η2 (4.16)

r2out = r
′2
out − 2(xξ + yη) + ξ2 + η2 (4.17)

Due to the small dimensions of the aperture, we may expand 4.17 over the variables ξ/r′in, ξ/r′out,

η/r′in, and η/r′out to obtain:

rin ∼ r′in −
x0ξ + y0η

r′in
+
ξ2 + η2

2r′in
− (x0ξ + y0η)

2

2r
′3
in

(4.18)

rout ∼ r′out −
xξ + yη

r′out
+
ξ2 + η2

2r′out
− (xξ + yη)2

2r
′3
out

(4.19)

For the purposes of this thesis, the quadratic and higher order terms in ξ and η are ignored.
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Keeping the linear terms in ξ and η, from eq. 4.19, the Fresnel-Kirchhoff integral (Eq. 4.15) may

be rewritten as:

U(p, q) = C

∫∫
A
F (ξ, η) exp [−ik(pξ + qη)] dξdη (4.20)

where

p ≡ x

r′out
+
x0
r′in

(4.21)

q ≡ y

r′out
+
y0
r′in

(4.22)

and the factor exp[ik(r′in + r′out)] had been absorbed into the constant C.

For a diffraction grating with N rulings spaced distance d apart and oriented along ŷ, the

rulings are centered at the coordinates (ξ0, η0), (ξ0 + d, η0), ..., (ξ0 + (N − 1)d, η0), as shown in

Fig. 4.18a. We set y = 0 and y0 = 0 ⇒ q = 0 to consider only light which travel perpendicular

to the orientation of the rulings. The dispersion, therefore, is along x̂, so that

p = sin θout − sin θin. (4.23)

The Fresnel-Kirchhoff integral becomes a summation over the N integrals of each ruling:

U(p) = C

N−1∑
n=0

exp(−ikpnd)
∫∫

A′
F (ξ, η) exp(−ikpξ′)dξ′dη′ (4.24)

= U (0)(p)
1− exp(−iNkdp)
1− exp(−ikdp)

(4.25)

where A′ is the surface of a single ruling, (ξ′, η′) are the coordinates along this surface. The

choice of ruling does not matter, since it was assumed that points P and P0 are far from the

128



diffraction grating compared to the linear dimensions of A. Using the first ruling for example

(Fig. 4.18b), the primed coordinates may be related to the un-primed coordinates via ξ′ = ξ− x0

and η′ = η − η0. The function U (0)(p) ≡ C
∫∫

A′ F (ξ
′, η′) exp(−ikpξ′)dξ′dη′ represents the

single ruling diffraction pattern and depends on the pattern of the rulings. A blazed grating, for

example, will have surface offsets from A′ which are accounted for as phase shifts due to the

imaginary part of F (ξ′, η′).

Figure 4.18: Diagrams of the coordinate system used in the Fresnel-Kirchoff integral applied to
a diffraction grating. See Eq. 4.25. Shown in a) is a diffraction grating with N rulings and in b)
is the coordinate system for a single ruling representing the integral expression for U (0)(p). The
centers of individual rulings are indicated by red dots. The points P and P0 are drawn assuming
y = y0 = 0, while Q is a point anywhere on the grating. The figures are not drawn to scale (in
a realistic setup, P and P0 would be much further away from the grating, and the grating ruling
density would be much higher than what is illustrated).

The intensity, I(p) is then given by:

I(p) = |U(p)|2= I(0)(p)

(
sin(Nkdp/2)

sin(kdp/2)

)2

(4.26)
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where I(0)(p) ≡ |U (0)(p)|2. We focus our attention on the second factor in Eq. 4.26, which we

write as in terms of a function H(N,X) such that

H(N,
kdp

2
) ≡

(
sin(Nkdp/2)

sin(kdp/2)

)2

(4.27)

The peaks of this distribution occurs when kdp/2 = mπ, which is equivalent to the grating

equation (Eq. 4.14). The offset in adjacent peaks is ∆p = λ/d. The integer N appearing in the

argument of the sine function in H(N, kdp/2) determines the width of the peaks, as well as the

number of smaller, secondary peaks between the primary peaks, as shown in Fig. 4.19a.

Figure 4.19: Plots of H(N, kdp/2) for a) two different values of N and b) two wavelengths
differing by δλ. The expression for H(N, kdp/2) is given in Eq. 4.27, while in b) the value of
δλ is determined from Eq. 4.30 with m = 1 and N = 10. Plot a) shows the inverse relationship
between N and the peak width and the presence of secondary peaks proportional to N . Plot b)
shows the Rayleigh criterion for order m = 1, as well as better line separation at m = 2. The
line separation between different wavelengths, in fact, increases with m.

The locations of the minima are given by p = m′λ/(Nd) (m′ an integer not divisible by
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N ). The distance between each primary peak to its adjacent minima is therefore

δp =
λ

Nd
(4.28)

while the width of a primary peak is equal to 2δp. When the wavelength is varied by a small

amount, δλ, the distribution is shifted by an amount

δpλ =
|m|δλ
d

(4.29)

Letting δp = δpλ be the condition in which the two adjacent lines of wavelength λ and λ + δλ

are just resolved (i.e. the Rayleigh criterion - see Fig. 4.19b for an example with m = 1), we

determine the following expression for the spectral resolution for a diffraction limited system:

δλ =
λ

|m|N
(4.30)

Eq. 4.30 states that the spectral resolution is better for shorter wavelengths and larger number

of grating rulings (both of which reduce the peak width at a given wavelength) and for higher

magnitude order numbers (which increases the dispersion). In practice, N is limited by the

size of the diffraction grating and collimating optics, while |m| is limited by the fact that the

intensity in single ruling diffraction pattern generally falls off at higher orders. Typically, modern

diffraction gratings are designed to maximize efficiency for a range of spectral orders and reduce

efficiency in others.
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4.10.2 Spatial Calibration

In order to understand the spatial properties measured by the spectrometer, a calibration in

the number of pixels per unit length at the slit, both along the slit length as well as the slit width,

was conducted. This was done with the 1200 lines/mm grating and carried out by placing a strip

of grid paper, whose square boxes are 1 mm in width, along the length of the entrance slit, as

illustrated in Fig. 4.20a, as close to the slit as possible via masking tape. The grid paper strip

was illuminated with a 635 helium-neon (HeNe) laser source, and the resulting images, for slit

widths set at 1 mm and 2 mm, were captured by the spectrometer readout camera, appearing in

a region along x from 565 to 615 pixels (in a 1024 wide by 255 high image), as shown in Fig.

4.20b. The vertical and horizontal profiles (summed over the rows and columns respectively)

for the grid paper images captured for two different slit settings are shown in Fig. 4.20c and d.

Analysis of the locations of the troughs (local minima) in the vertical lineouts, summarized in

Table 4.3, determined the spatial calibration to be 63 px/mm. The full length of the visible slit in

the camera image is therefore 4.0 mm.
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Figure 4.20: Diagrams showing the calibration of the entrance slit to the spectrometer. Shown
are a) photo of the micrometer-adjustable slit module for the Oriel MS260i spectrometer with an
illustration of a strip of 1 mm square grid paper (not to scale with the photo), b) images captured
by the Andor iStar DH 720-25U-03 ICCD readout camera with the grid paper strip illuminated
with a 635 nm HeNe laser and the slit widths set at two different widths, c) vertical profiles
(summed over the rows) of the images shown in b), and d) horizontal profiles (summed over
columns) of the images shown in b). The 1200 lines/mm grating set to a central wavelength of
635 nm was used.
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Table 4.3: Table of the y-pixel locations of the troughs (local minima), ymin, in the vertical profiles
of the imaged 1 mm grid paper strip along with the differences between adjacent troughs, ∆ymin.
The imaged grid paper is shown in Fig. 4.20. The outliers are indicated in red, possibly owing to
the strip not being fully flat at the top end. Excluding the outliers, the average of the remaining
set of values of ∆ymin is 63 px/mm with an standard deviation of 3 px/mm.

Narrow Slit Wide Slit
ymin [px] ∆ymin [px] ymin [px] ∆ymin [px]

34
86

149
209

52
63
60

34
80
149
210

46
69
61

The spatial calibration of the slit width was performed by varying the slit width using the

micrometer adjustment, illuminating the slit with a continuous-wave (CW) laser light, capturing

the image, and determining the width of the horizontal profile, defined in two ways: the full-width

at half-maximum (∆x0.5) and the full-width at 10% maximum (∆x0.1), as shown in Fig. 4.21.

The micrometer reading, wmic, was not zeroed to the slit width, therefore the real width value,

wreal, was taken in reference to the ”Closed” position shown in Fig. 4.21a, which shows a narrow

line due to limited machine tolerance, backlash, and possible damage to the slit. Linear fits to

the expressions a∆x + b and a∆x using the images in Fig. 4.21b-d were performed, where a

and b are fitting parameters, and ∆x is equal to either ∆x0.5 or ∆x0.1. The expressions represent

fits without and with the y-intercept, b, forced to 0. The fit results are displayed in Fig. 4.22 and

Table 4.4.
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Figure 4.21: Images of the laser-illuminated entrance slit captured by the spectrometer readout
camera at varying slit widths and their horizontal profiles. The ”closed” slit, a), shows a line due
to the limited machine tolerance of the slit assembly, but is taken to have effectively 0 width.
The real slit width, wreal is equal to the micrometer reading, wmic, plus 270 µm due to the
micrometer not being zeroed to the slit width. The slit was open fully wide in e). 635 nm laser
was used to illuminate a) through d), while a 530 nm laser was used to illuminate e). The 1200
lines/mm grating was used with a central wavelength set equal to the nominal laser wavelength
used for illumination. The horizontal profiles were obtained by summing over each column,
and subtracting the background (which was taken to be the average of the column sums from
x = 275 to x = 500). The full-widths at half maximum, ∆x0.5 and the full-widths at 10%
maximum, ∆x0.1, of the profile peaks are given.
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Figure 4.22: Plot of the data and linear fits to the slit width, wreal, based on the micrometer
reading as a function the width of the horizontal profile, ∆x, from the slit image captured by the
spectrometer readout camera. The data comprises of profile widths measured at half maximum
(∆x = ∆x0.5), represented in red, and 10% maximum (∆x = ∆x0.1), represented in blue. The
solid data points were used in their respective fits, while the open data points represent the ∆x
measurement when the slit is in the ”closed” configuration. For each set of data points, fits with
and without the y-intercept set to 0 were carried, with the results summarized in Table 4.4. The
vertical dotted lines represent the measured results of the slit when it is open wide (see Fig.
4.21e), where the micrometer setting was not recorded.

Table 4.4: Table of the fit results of the horizontal spatial calibration of the spectrometer based
on the slit width. See Fig. 4.22. The values in parentheses in the column for a represent the
half width of the 95% confidence interval. Parameters without parenthetical values attached have
95% confidence intervals of 0. The values after ± in the column for 1/a are the propagated
uncertainties from the column for a using the 95% confidence intervals.

Model a [µm/px] b [µm] 1/a [px/mm]
wreal = a∆x0.5 + b 27.78 47.78 34
wreal = a∆x0.5 30.15 (3.1) N/A 33±3.4

wreal = a∆x0.1 + b 25 -105 40
wreal = a∆x0.1 21.2 (3.8) N/A 47±8.5

136



The fit results show a considerable difference in the parameter a between using ∆x0.5 as

opposed to ∆x0.1 when the y-intercept is forced to 0, and a small difference when the the y-

intercept is not forced to 0. The parameter b, on the other hand, varies substantially depending on

whether the ∆x0.5 or ∆x0.1 values were used. Both linear models work well down to slit widths

as small as 270 µm, but eventually break down as the slit approaches fully-closed. The wide open

slit (Fig. 4.21e) was predicted to be ∼ 1.3 mm using the fit based on ∆x0.5 and ∼ 1.5 mm using

the fit based on ∆x0.1 where the y-intercept was not forced to zero in both cases.

Finally, it should be noted that these fits predict horizontal calibration values (1/a in

px/mm) which are smaller than the vertical calibration value of 63±3 px/mm obtained from

the grid paper, which is expected since the Oriel MS260i spectrometer has a specified 1.1 hori-

zontal and 1.6 vertical magnification (a ratio of 0.6875). Using this ratio and the vertical spatial

calibration, we should expect the horizontal calibration, 1/a, to be 43±2 px/mm, which agrees

with the fits using ∆x0.1.

The final topic on the spatial calibration is the orientation of the laser propagation axis as

it is imaged onto the slit. Fig. 4.23a and b together show a collapsed optical diagram of the

imaging system capturing the laser focal region and relaying it to the spectrometer slit. Due to

the combination of lenses used to relay the image from the objective to the slit, the final image of

the laser axis has orientations which are shown in Fig. 4.23c and d, where the propagation vector,

k⊥, from the E⊥-objective is perpendicular to the slit, and the propagation vector, k||, from the

E||-objective is parallel to the slit.
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Figure 4.23: Diagrams illustrating the orientation of the laser and field polarizations as they are
images onto the entrance slit. Shown are a) the infinity-corrected microscope objective capturing
light from the laser focus, b) the lens focusing the light from the microscope objective onto the
spectrometer slit, imaging with a magnification of ∼ 15, and c)-d) the entrance slit with the
orientations of the laser axis imaged onto the slit by the c) E⊥ objective (k⊥) and d) E|| objective
(k||). The lengths of the red arrow-tipped lines are not representative of the scale of the real
images of the laser focal region at the slit.

4.10.3 Wavelength Calibration

The wavelength calibration of the spectrometer for the desired grating (150 lines/mm [88])

at various central wavelengths, λc, were performed by collecting mercury (Hg) spectra from a

UV lamp (generic brand UV-C U-60) as well as room lights, as shown in Fig. 4.24.
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Figure 4.24: Spectrum images (1024 wide by 255 high) of mercury emission lines from a) - c) a
UV lamp at various central wavelength, λc, settings of the spectrometer and of d) the room lights.
The lines labeled ”A” through ”H” were identified with strong emission lines found in the tables
of strong emission lines in the NIST Handbook of Basic Atomic Spectroscopic Data [2] and have
their x [px] coordinate listed in Table 4.5. The images were offset horizontally in order to align
the common Hg lines vertically.

The pixel positions of select lines measured from the Hg spectra (where the spectrum im-

ages were 1024 pixels across) were matched with the wavelengths of strong emission lines from
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the tables of strong emission lines in the NIST Handbook of Basic Atomic Spectroscopic Data

[2], as shown in Table 4.5.

Table 4.5: Table of the pixel positions, x, of select Hg emission lines measured by the spectrom-
eter, their corresponding wavelengths from the NIST tables of strong lines [2], λN.

Line
A B C D E F G H

λN [nm]
NIST Hg Lines 253.7 296.7 313.2 365 404.7 435.8 546 614.9

Source λc [nm] x [px]

UV Lamp
254 nm 535.5 623 703 763 811 979
530 nm 154 244 325 385 432 600
600 nm 73.5 98 175.5 236.5 288.5 451

Room Lights 600 nm 233 280 450 552

Linear fits (Fig. 4.25) were done for each data set to the equation λi = p1xi + p2, where λi

are the line wavelengths from the NIST tables in nm, xi are the x position in px, and p1 and p2

are fitting parameters.
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Figure 4.25: Plots of the NIST tabulated wavelengths as a function of the measured pixel po-
sitions, x, of mercury (Hg) strong lines, at various central wavelengths, λc. The measurements
were spectrometer images of the Hg strong lines obtained from the UV lamp (green, yellow, and
red solid circles) and room lights (blue open circles) along with their linear fits (dot-dashed lines
for the UV lamp and dashed line for the room lights). The NIST tabulated wavelengths are also
represented with horizontal dotted lines labeled from A-H. See Table 4.5 for the data point values
and Table 4.6 for the fit results.
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Table 4.6: Results of the linear fits to the NIST wavelengths, λi, as a function of measured
x pixel positions, xi, for a given central wavelength setting, λc. The fit equation is given by
λi = p1xi + p2, where p1 and p2 are the fitting parameters. The equation may also be written in a
more physically intuitive form as λi = λc + δxλ(xi − x0), where δxλ and x0 were re-parameterized
from p1 and p2. The entry in red indicates an outlier for the fit value of λc − p2 (and therefore p2)
and was ignored in the determination of the final values of δxλ and x0.

Source λc [nm] p1 p2 λc − p2
UV Lamp 254 0.658± 0.006 −97.5± 4.5 351.5± 4.5
UV Lamp 530 0.651± 0.004 152.8± 1.5 377.2± 1.5
UV Lamp 600 0.658± 0.013 248.6± 3.3 351.4± 3.3

Room Lights 600 0.657± 0.017 251.5± 6.7 348.5± 6.7
Mean 0.656± 0.006 N/A 350.5± 2.9

δxλ ≡ 1/p1
x0 ≡

(λc − p2)/p1
1.524± 0.014 534± 7

The results of the fits are shown in Table 4.6. The parameter p1 represents the slope of the

linear fit; its reciprocal, δxλ ≡ 1/p1, is the calibration in the wavelength dispersion in units of

pixels per nm, which was found to be 1.524 ± 0.014 px/nm. The parameter p2 is related to the

centering of the image for a given central wavelength, λc. The quantity p2 − λc is expected to be

the same if the setting of λc rotates the diffraction grating by the correct amount corresponding

to λc, however, it was found that for λc = 530 nm, this offset was off by 26.7 nm relative to the

other settings (red text on Table 4.6). This discrepancy, along with the fact that the RTS data was

taken exclusively at λc = 600 nm, was the reason this value was treated as an outlier and not

included in the determination of the mean value of p2−λc. The quantity x0 ≡ (λc−p2)/p1 is the

x position, in pixels, where the measured wavelength is equal to the central wavelength setting

for any given λc, and was found to be 534± 7.

The best fit parameters give the following relation between the wavelength and pixel num-

ber:

λ[nm] = p1xpx + p2 =
xpx − x0

δxλ
+ λc =

xpx − 534

1.524
+ λc (4.31)
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where xpx is the horizontal pixel number of the spectrum image. The uncertainty in λ may be

estimated by adding the uncertainties in xpx, δxλ and x0 in quadrature, and noting that xpx − x0 is

at most x0:

σλ[nm] =

√(
σxpx

δxλ

)2

+

(
σx0

δxλ

)2

+

(
(xpx − x0)σδxλ

(δxλ)
2

)2

(4.32)

≤
√

0.43× σ2
xpx

+ 31.5 (4.33)

An uncertainty in xpx of, for example, 10 px therefore corresponds to σλ ≤ 8.6 nm, while

knowing xpx perfectly results in σλ ≤ 5.6 nm. Comparing the residuals between the calibrated

wavelengths and the NIST tabulated wavelengths, however, we find that the average error is only

1.1 nm when ignoring the outliers, as shown in Table 4.7.

Table 4.7: The residuals between the calibrated wavelengths, λ, and NIST tabulated wavelengths,
λN, defined by ∆λ ≡ λ−λN. The entries in red text correspond to outliers due to an issue related
to the offset not correctly corresponding to the central wavelength at 530 nm. The absolute
value of the residuals, |∆λ|, not including the outliers, were averaged to determine the typical
experimental uncertainty in the wavelength, |∆λ|avg, from the calibration.

Line
A B C D E F G H

λN [nm]
NIST Hg Lines 253.7 296.7 313.2 365 404.7 435.8 546 614.9

Source λc [nm] ∆λ [nm]

UV Lamp
254 nm 1.3 -0.8 -0.1 -0.4 -0.04 -0.01
530 nm 27 27 28 28 27 27
600 nm 1.1 0.7 -0.2 0.09 3.1 -0.5

Room Lights 600 nm -2.2 -2.5 -1.1 -3.1
|∆λ|avg [nm] 1.1
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4.10.4 Recombination Spectra

Plasma recombination spectra for helium (He), argon (Ar), and nitrogen (N2) ionized by

the VEGA-2 laser were measured and are shown in Fig. 4.26. The He spectra was captured

during a preceding campaign using the same laser system, target chamber, and spectrometer.

The calibrated wavelengths of various lines were compared with the wavelengths in the NIST

tables and found to agree within 3.5 nm at most and 2.1 nm on average, as shown in Table 4.8.

This is larger than the value of 1.1 nm for |∆λ|avg determined from the Hg data, but within the

uncertainty, σλ, from error propagation (Eq. 4.33). This serves as a validation for the wavelength

calibration from the Hg data for the error tolerance predicted by error propagation.

The spectra shows that, among the three species of gas available, nitrogen is most suitable

for producing and measuring second harmonic RTS radiation. Nitrogen’s recombination spectra

consists of strong lines around 380 to 450 nm and weak emission from 450 to 550 nm. Above

550 nm, recombination lines were not observed, providing a clean region up to 750 nm (where

the laser light and 1st harmonic RTS would begin to appear) over which the Doppler shifted RTS

radiation may be analyzed. Helium, on the other hand, has a strong line at 587.5 nm, while argon

has lines which are observed from 375 nm up to 525 nm, as well as weaker lines from 650 nm

and above. Furthermore, continuum emission was observed for both He and Ar throughout the

375 to 750 nm band, whereas for N2, such emission from 550 to 750 nm was not evident.
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Figure 4.26: Recombination spectra of a) helium (w/ 1% nitrogen mix), b) argon, and c) nitrogen.
The images were captured using the 150 lines/mm grating with λc = 600 nm, and are plotted on a
log scale. The helium spectrum was captured during a previous experiment using a lens imaging
in the E⊥ direction and mirrors. The various He emission lines used for validating the calibration
are indicated by the labels ”A” through ”F” (see Table 4.8). The argon spectrum was captured
during the RTS experiment using the E⊥ objective. The nitrogen spectrum was captured using
the E|| objective. The argon and nitrogen spectra were background subtracted. The horizontal
axis is the wavelength from the mercury lines calibration (eq. 4.31).
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Table 4.8: Summary values for the selected helium (He) recombination lines measured by the
spectrometer. See Fig. 4.26. The values include: 1) the NIST tabulate wavelengths, λN, 2)
x pixel position, x, 3) Hg calibrated wavelength, λ (from Eq. 4.31), 4) residual in calibrated
wavelength, ∆λ ≡ λ− λN, and 5) the average error, |∆λ|avg.

Line
A B C D E F

λN [nm] 447.1 468.5 501.6 587.5 667.8 706.5
x [px] 299 332 381 511 634 691
λ [nm] 445.8 467.5 499.6 584.9 665.6 703.0
∆λ [nm] -1.3 -1.0 -2.0 -2.6 -2.2 -3.5

|∆λ|avg [nm] 2.1

4.10.5 Temporal Gating

The temporal gating is facilitated by the built-in intensifier tube (Fig. 4.27a) integrated

inside the ICCD camera [93] (Fig. 4.27b) attached to the output of the spectrometer, where

the dispersed spectrum image is sent. The intensifier tube consists of an input window, where

incoming light enters and hits a photocathode. Photoelectrons are generated at the photocathode,

which are accelerated toward a microchannel plate (MCP). The voltage across the MCP amplifies

the electron signal through an electron multiplication process. The electrons generated at the

MCP then hit a phosphor screen, leaving a fluorescent afterimage that is captured by a CCD

camera sensor which is coupled to the phosphor via a fiber optic bundle. The ICCD camera is

controlled via the Andor Solis software, which provides options for delay and gate width. The

temporal gating is ultimately controlled by the time duration of the applied voltage across the

MCP, in a manner analogous to the flash duration in high speed photography. By delaying and

reducing the gate duration, the light signal can be temporally filtered to isolate emission produced

primarily by RTS, as shown in Fig. 4.27c.
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Figure 4.27: Diagrams of illustrating the intensified CCD camera and its gating operation. Shown
are a) the image intensifier tube, b) the intensified CCD camera system containing the image
intensifier, and c) timeline of the relative timing of the opening of the gas nozzle, laser arrival at
focus, and time duration observe by the gated spectrometer. Diagrams a) and b) were adapted
from [93].

The RTS signal was found in time by starting with a large gate width to capture the plasma

recombination light, and then over a series of shots, reducing the gate width and adjusting the

delay until a broadband signal is captured window 5 ns gate window. Fig. 4.28 shows the captured

spectrum for various gate durations, τgate, around the arrival of the laser pulse, while Fig 4.29

shows that for varying delay shifts, ∆tdelay, at τgate = 5 ns.
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Figure 4.28: RTS spectra (background-subtracted) taken using the E⊥ objective over subsequently smaller gate durations, τgate. The
images were captured with U = 2.67 J and the signal strength are plotted in a log scale. After achieving the smallest gate duration of 5
ns, an acquisition was taken for 100 shots (last image). For τgate = 1 ms and 100 ns, the plasma recombination lines can be observed.
For τgate ≤ 25 ns, the plasma recombination light (380 to 550 nm) vanish for the Nshots = 10 data, but reappear as Nshots is raised to
100 shots, possibly owing to the overall increase in signal as well as the accumulated jitter and drift in the timing between the ICCD
gate and laser pulse arrival time. The large patch of light from 750 to 850 nm comes from the scattered laser light. The y dimension on
the images corresponds spatially to the displacement along the E polarization. The fact that the plasma recombination signal extends
further out in y on the images than does the RTS is evidence that the ionization occur at lower intensities (including the fringes of the
laser pulse) than that needed to generate an observable RTS signal, as expected physically.
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Figure 4.29: RTS spectra taken using the E⊥ objective with τgate = 5 ns over various gate delay offsets, ∆tdelay as well as a background
spectrum. The images were taken for U = 2.67 J and integrated over 100 shots. The background spectrum (bottom right image) was
taken by turning the pulsed nozzle off so that only the scattered laser radiation can be seen. The RTS radiation and scattered laser light all
but vanishes for ∆tdelay = 5 ns, leaving primarily the plasma recombination. For ∆tdelay = −2 ns, the RTS signal is better optimized, as
the plasma recombination is more filtered out. We note, however, that this optimization does not remain throughout all of the subsequent
acquisitions, and eventually the recombination light does leak back in, owing perhaps to a drift in the ICCD gate trigger and pulse arrival.

The spectral data measured for varying values of τgate and ∆tdelay show that the second harmonic RTS can be captured, albeit not

without some contamination of plasma recombination light as well as scattered laser light. There is nevertheless a clean region from 550

to 700 nm over which the RTS spectrum can be observed and analyzed.
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4.11 Results and Analysis

During the experiment, multiple spectrum images were captured over several shot batches

at relativistic pulse energies. On 07/11/2018, measurements from the E⊥-objective was taken at

full pulse energy (2.67 J on target) and ∼ 10 mbar backing pressure. On 07/13/2018, measure-

ments were taken from the E||-objective were taken at three pulse energy settings (0.99, 1.73,

and 2.67 J on target) and ∼ 10 mbar backing pressure. While images without the use of a BG39

filter were captured for the E⊥-objective, the filter was later implemented, via placement in front

of the spectrometer slit, in order to cut down on the capture of scattered laser light. Each shot

batch consisted of 100 shots, and background images (gas nozzle turned off) were also taken

over several shot batches whenever parameters (energy, and placement of BG39) were changed.

Spectrum images, averaged over 5 shot batches (5 × 100 shots) and background subtracted, are

shown in Fig. 4.30.
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Figure 4.30: Spectrum images captured during the live laser shots by the E⊥-objective (a-b) on 07/11/2018 a) with and b) without the
use of a BG39 filter. Spectrum images captured by the E||-objective (c-f) on 07/13/2018 at different energies with the use of a BG39
filter, plotted in the chronologically order in which the data was taken. In all cases, the spectrometer slit width was open to 500 µm.

151



There are several observations that can be made from the spectrum images. The first is that,

for the E⊥ objective at the highest laser energy (2.67 J), the Doppler shifted second harmonic is

strong and overlaps with the fundamental emission at the laser band. The second is that when

the BG39 filter is applied, the Doppler shifted second harmonic signal at highest laser energy

goes to background at around 650 − 700 nm. The third is when the energy is reduced (to 1.73

J and 0.99 J), the RTS signal along with the wavelength of the Doppler shifted tail diminishes.

Finally, it can be seen throughout the spectrum images the presence of plasma recombination

light, which contaminate the RTS signal. For the E⊥-objective in particular, where the image

of the laser is such that the propagation direction of the laser is orthogonal to the input slit, the

plasma recombination light extends further out spatially (in this case, x) from the laser axis.

To determine a quantitative result for the onset wavelength, λ(2)r , the spectral images were

first averaged over their vertical dimension to produce a spectral profile at each wavelength. The

resulting spectral profiles from the E||-objective spectral images are shown in Fig. 4.31.
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Figure 4.31: Plots of spectral profiles of the spectrum images for three values of pulse energy: a)
2.67 ± 0.08, b) 1.73 ± 0.05, and c) 0.99 ± 0.03 J and d) plasma recombination light with BG39
transmission curve. The spectral profiles correspond to the right column of Fig. 4.30 reordered
from highest to lowest pulse energy.

After column averaging, λ(2)r was determined by combining two approaches. In the first

approach, λ(2)r was determined by picking the longest wavelength extending from the second

harmonic that goes to background, indicated by the red arrow. The second approach involves

fitting a rational polynomial, f(λ) = a+ b/(λ+ c) with a, b, and c being fitting parameters, over

the region indicated by the shaded blue and finding the intercept of this function with background,

indicated by the dash-dotted vertical lines. The final estimates of λ(2)r are the average of the two

approaches. For the high energy case of 2.67 J in Fig. 4.31a, the fact that λ(2)r coincides with

the tail of the BG39 transmission curve suggests that this method predicts, at best, a lower bound

of the peak intensity. Using Eq. 4.1, with θ = 90◦ and λ0 = 790 nm, the corresponding peak
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intensities for the various pulse energies used on target, U , are calculated and summarized in

Table 4.9.

Table 4.9: Summary of the results of the second harmonic spectrum onset wavelength determined
versus pulse energy on target, U . The uncertainty in U is based on a fluctuation of ∼ 2.65%
reported by the laser bay. The ”Label” columns indicate the corresponding subplots in Fig. 4.30
and 4.31. The onset wavelength from using the two methods of the rational polynomial fit, λ(2)r

(fit), and the intercept of the signal with background, λ(2)r (bg), are provided separately. Their

average and standard deviation is given in the ”λ(2)r (σ
λ
(2)
r
)” column. The final calculated peak

intensity using Eq. 4.1 is given in the ”IRTS
pk ” column.

Label1 Label2 U [J] λ
(2)
r (fit)
[nm]

λ
(2)
r (bg)
[nm]

λ
(2)
r (σ

λ
(2)
r
)

[nm]
IRTS
pk [W/cm2]

c a 2.67± 0.08 N/A 700 700 (0) (6.8± 0.7)× 1018

d c 1.73± 0.05 474 481 472 (9) (1.7± 0.4)× 1018

e b 0.99± 0.03 463 472 482 (9) (1.9± 0.4)× 1018

f N/A 2.67± 0.08 640 625 632.5 (7.5) (5.3± 0.6)× 1018

1 See Fig. 4.30, 2 See Fig. 4.31

4.11.1 Comparison with Indirect Method

As a sanity check, we compare the intensities, IRTS
pk , determined from λ

(2)
r against the

method used for estimating the peak intensities, I Impk , based on using the focal spot images, as

described in section 4.3. Using ∆t = 30 fs, the estimated peak intensities for the corresponding

pulse energies U for RTS spectra are I Impk = (2.2 ± 0.4, 3.9 ± 0.6, 6.0 ± 1.0) × 1018 W/cm2.

Fig. 4.32 shows the values of IRTS
pk (data points) compared with those of I Impk , plotted as a linear

function of the laser energy U , at two values of ∆t (30 fs and 60 fs).
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Figure 4.32: Plot comparing the predicted peak intensities from measurement of the second har-
monic spectrum onset wavelengths (data points) to the peak intensities estimated from the focal
spot images. The peak intensities calculated from the focal spot image assume a 30 fs (blue-
solid) and 60 fs (red-dashed) pulse duration. The dot-dash indicates the uncertainty in the peak
intensity from the focal spot image assuming the camera spatial calibration is known exactly (i.e.,
uncertainty in Apix is 0). The shaded yellow indicates the uncertainty with the uncertainty in Apix

is taken into account. The data point represented by the green triangle was chronologically after
the data points represented by the black dots.

4.12 Discussion and Conclusion

Given the uncertainties in IRTS
pk and I Impk , the two methods are in general agreement. The

data points with U = 0.99 and 2.67 J statistically agree with I Impk with ∆t = 30 fs, while U =

1.73 J is in better agreement with ∆t = 60 fs. There are several contributions to this. First,

the RTS spectra is contaminated with plasma recombination light, making determination of λ(2)r

difficult. Second, the pulse width was known to drift by as much as a factor of 2 based on

past experiments by another group using the same laser. This is corroborated by the fact that
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the intensities predicted by the RTS spectra tends to decrease over time, as the order in which

the data was taken was 2.67, 0.99, 1.73, and 2.67 J (the last in this list represented by the green

triangle) over several hours. There was not a means to monitor the laser pulse duration during this

experiment, and the laser was therefore not re-optimized after the initial optimization done at the

beginning of the day. Changing the pulse energy typically requires re-optimization of the pulse

duration for peak performance. It is evident that the method using RTS is capable of detecting

changes in the peak intensity whereas the indirect method does not. Real-time monitoring of

the laser characteristics is necessary for the indirect method to be viable for determining peak

intensity.

Capturing RTS spectrum to use as an intensity gauge at (θ, ϕ) = (π/2, 0) is useful between

1018 to 1019 W/cm2. At some point ∼ 1019 W/cm2, the harmonics begin to overlap, making it

difficult to determine λ(2)r as we have done here. Based on Eq. 4.1, the overlap between the

harmonics may be offset to higher intensities by observing the radiation at smaller θ. This would

run into issues, however, when the angle gets too small, as the laser itself would be collected

by the detector. For the microscope objectives used in this experiment, for example, the full

diameter of front face of the objective is 34 mm, which subtends a 32.5◦ half angle when placed

at its working distance. In order to have a, say, 10◦ clearance from the laser axis for the laser

pulse after focus, the minimum angle at which the objective’s axis can be placed is 42.5◦. To

observe at shallower angles, it would be necessary to work with detectors with smaller numerical

apertures. Downsides of going to smaller numerical apertures include the reduction of collected

light and a longer depth-of-field.
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Chapter 5

Experiment 2: Angular Distribution

Introduction

The premise behind measuring the RTS angular distribution stems from the idea that the

angular emission pattern is expected to change with laser intensity. The overall emission would

be more forward scattered, as expected, due to the forward component of electron motion that

increases with the laser field strength and due to the effects of relativistic beaming. This would be

true for electrons experiencing the peak of the field if the plane wave model derived by Sarachik

and Schappert [55] is applicable to the real laser. Electrons outside of the peak of the field would

still be expected to experience a higher intensity if the overall intensity distribution increases

with the laser energy, however, ponderomotive scattering [58, 60] of the electron due to the laser

gradient would need to be considered. Short of developing a full model of RTS scattered by a

realistic laser, an experiment measuring the angular distribution could nevertheless still be carried

out to probe an answer from nature.

In this chapter, we discuss the initial experiment in measuring the RTS angular distribution

using 0.05 numerical aperture (NA), fiber-based light detectors mounted in a rotation stage to

achieve angular variation while keeping the detectors at a constant radial distance from the focus.

The light captured by the fiber is routed out of chamber and coupled into a spectrometer, as in the

first experiment, consisting of an intensified charge-coupled device (ICCD) camera featuring a 5

ns minimum temporal gate. The RTS light is produced from free electrons ionized by a puff of
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gas from a flared gas nozzle oriented from the side. Schematics of the main features are shown

in Fig. 5.1.

Figure 5.1: Diagram of experimental layout, with the target chamber viewed from the top. Rel-
ativistic Thomson scattering is produced at the focus of the VEGA-2 laser within a gas jet. The
scattered radiation is captured by a fiber-based detector at an angle θ relative to k, rotating along
the E-k plane, and sent to a spectrometer with a gated intensified CCD camera. Figure is not to
scale.

5.1 VEGA-2 Characteristics

As in the first experiment, the VEGA-2 beam of 11 cm diameter of a roughly supergaussian

distribution (see Fig. 5.2a) of the near-field measurement) was focused in an f/13 geometry

using an f = 130 cm off-axis parabolic mirror. The temporal intensity profile remained roughly

Gaussian with small shoulders with a ∼ 30 fs FWHM. The spectrum, on the other hand, as shown

in Fig. 5.2b, is more strongly weighted towards the lower end of the ∼ 755 to 825 nm distribution

compared to the first experiment (see Fig. 4.6), but maintaining a strong subpeak at ∼ 760 nm.

This skewing in the spectrum relative to that from 2018 was observed throughout 10 days from
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11/12/2019 to 11/26/2019.

Figure 5.2: Plots of diagnostic measurements of the VEGA-2 beam from the laser bay metrology
bench. Shown are the a) near-field beam profile, reduced in size with a non-aberrating telescope
before captured with a camera, and b) the spectrum from the Wizzler, both at the metrology bench
after the compressor. The near-field image has structure due to imperfections in the transport
optics, and therefore only provides a general shape of the true profile. These measurements were
taken on 11/26/2019.

The focal spot was imaged directly using an infinity-corrected microscope objective mounted

on a pair of linear translation stages allowing for translation transverse and longitudinal to the

beam. The image is routed outside of the chamber using a motorized mirror and focused onto

a camera sensor. These components are shown in Fig. 5.3. The stages have a sufficiently long

travel distance to move the microscope objective and mirror away from the beam path during the

full power shots.
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Figure 5.3: Annotated photo of the interior of the vacuum chamber containing experimental
components, including the focal spot imaging system. The focal spot imaging system consists
of an objective microscope and mirror mounted on motorized translation stages. The direction
of the propagating beam is indicated, along with the E and B polarizations at the focus, around
where the detectors and gas nozzle are centered.

The spatial calibration of the focal spot imaging system is accomplished using an United

States Air Force (USAF) test pattern placed in the field of view and illuminated with a 850

nm diode, as shown in Fig. 5.4a. One can see that there is a spatial distortion of the image,

however, since the image focal spot is confined within a small region of the image, as shown in

Fig. 4.3b, it suffices to use the first illuminated pattern line closest to the central spot and along

the horizontal line centered on the central spot y = 0 (see the lineout curve on Fig. 5.4c) as

the fiducial. This illuminated line is 62.5 µm based on the known data for group 3, element 1

(G3E1) having 8 line pairs per mm. It measured 142 pixels across (in a 1920 px wide by 1200

px high image), resulting in calibration a of 0.44 µm/px. Assuming this calibration holds also

in the y direction, the focal spot image is plotted in Fig. 5.4d in physical dimensions. As in the
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first experiment, the distribution in the focal plane contains an approximately Gaussian central

spot surrounded by a ring-shaped diffraction structure, but with imperfections resulting perhaps

from the nonuniform structure in the near-field profile and aberrations in the beam transport and

focusing optics. One can see a modulation structure in the azimuthal coordinate having 3 lobes

over 2π. Furthermore, the laser light extends further than the imaging system allows, as can be

seen in the log scale images of the background light having a sudden falloff, likely from clipping

in the imaging system.
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Figure 5.4: Images showing the focal spot and spatial calibration method. Shown are a) the
USAF test pattern and b) focal spot image color-coded in a log scale; c) plot of the horizontal
lineout centered on the focal spot (i.e., along white dashed line in a); and d) image of the focal
spot image plotted in physical coordinates in linear scale. The white circles indicate the same
region in the image containing the main focal spot distribution for comparison between images.

5.2 The All-Around Radiation Collector (AARC)

Measurement of the photon emission rates in various angles around the sphere required

development of a new diagnostic. This diagnostic requires the directions, parameterized by the

spherical-coordinate variables θ and ϕ, to be variable. Here, θ is the polar angle such that the
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pole θ = 0 is located along the k direction relative to the focus and ϕ is the azimuthal angle

such that (θ = 90◦, ϕ = 0) corresponds to the x̂ direction, or direction of E polarization and

(θ = 90◦, ϕ = 90◦) corresponds to the ŷ direction, or the direction of B. While there are different

ways to achieve this, a preferred design would be simple to calibrate and operate, cover a wide

range of angles, be compact so as to allow other components to be used around the focus without

obstruction, and be compatible with different types of detectors. These features were built into

the design of our apparatus, which we call the All Around Radiation Collector (AARC), whose

CAD drawing is shown in Fig. 5.5.

Figure 5.5: Models of the AARC showing an isometric (left) and front (right) view. The AARC
was designed by Andrew Longman and machined at the University of Alberta.

The AARC consists of pieces of aluminum structure, in the shape of an arc machined to

different lengths and consists of 5/8 inch slots separated by 10◦ that allow for the mounting of

detectors consisting of 1/2 inch optics. Each arc piece is designed to attached to a mounting base,
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so that each detector is oriented looking towards the laser focus at a uniform distance from the

focus (∼ 14 cm, determined by the arc piece’s radius of curvature). The arc piece fits into a 25

mm wide slot machined to a tight tolerance in the mounting base. The base itself is in the shape

of a disc and mounted on a motorized rotation stage (Standa 8MR191V) which rotates about an

axis perpendicular to the chamber floor and parallel to B. The motorized rotation stage allows the

detectors mounted in the arc to scan through different values of θ and ϕ, which can be calculated

from the angular position of the rotation stage and the angular position of the slot occupied by

the detector.

The AARC pieces were machined by first cutting out the arc shapes (inner radius 143 mm,

outer radius 163 mm) with a water jet out of a 1 inch thick plate made of high grade hardened

aluminum. Each piece was then fitted a jig and mounted on a Haas 5-axis CNC rotary table,

which finished the shape of the piece and ream the holes for the detector slots. The diameter of

the 5/8 inch detector slots had a tolerance that was over-specified by 2 thou to allow for expansion

of brass inserts. The tolerance of each dimension was on the order of 1 thou.

Since the rotation of the AARC is about ŷ whereas the definitions of θ and ϕ are relative

to the pole directed along ẑ, a conversion is necessary from a detector mounted at arc position,

ϕArc, with AARC rotation angle, θArc. The relationship is given by:

θ =

∣∣∣∣atan2(√cos2 ϕArc cos θ2Arc + sin2 ϕArc, cosϕArc sin θArc

)∣∣∣∣ (5.1)

ϕ = atan2 (sinϕArc, cosϕArc cos θArc) (5.2)

where atan2 is the four-quadrant inverse tangent function (defined over the range −π to π) given

in terms of the ordinary inverse tangent (defined over the range −π/2 to π/2) by:
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atan2(y, x) =


tan−1(y/x) (x ≥ 0)

π − tan−1(y/x) (x < 0, y ≥ 0)

−π − tan−1(y/x) (x < 0, y < 0)

(5.3)

The mapping between (θArc, ϕArc) and (θ, ϕ) is illustrated in Fig. 5.6.

Figure 5.6: Plot of the mapping between (θArc, ϕArc) and (θ, ϕ). The green contours represent the
paths each mounted detector (fixed values of ϕArc from 0◦ to 90◦ at 10◦ intervals) traverses when
the AARC is rotated to an angle θArc equal to θ at ϕArc = 0◦. Fixed values of θArc are traced out
by the dotted white lines. The red circles indicate detector positions used in the experiment.

5.3 Fiber Optic Detectors

Our detectors, as shown in the diagram in Fig. 5.7, each consists of an AC127-019-A

(f = 19 mm) doublet lens of 1/2 inch diameter [94] inside an S-Mount filter holder (Edmund

Optics 63-952) [95] that is threaded onto a 5/8 inch diameter cylindrical brass housing with
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a HASMA SMA adapter [96] and an SMA fiber optic cable (M114L02) [97] attached at the

opposite end. The fiber optic cable has a 600 µm core and a 0.22 numerical aperture. This

detector is designed to image the focus ∼ 13 cm from the lens onto the aperture of the optical

fiber located on the imaging plane behind the lens. A visible band, interference shortpass filter,

with a cutoff wavelength of 725 nm is placed in front of the lens to reject scattered laser light. A

3D printed shim of a length calibrated to maximize the detector efficiency is placed between the

filter holder and the HASMA adapter to keep the fiber aperture at the right distance.

Figure 5.7: Exploded diagram of the fiber-based detection optics. Shown are a shortpass filter,
doublet lens, filter holder, and fiber optic input. The brass housing, fiber shim, and HASMA
adapter are not shown.

5.3.1 Coupling to Spectrometer

The light captured by the fiber adapter was coupled out of the vacuum chamber and then

into a spectrometer (Oriel MS260i) with a gated intensified CCD camera (Andor iStar DH 720-

25U-03 ICCD). The spectrometer grating was rotated to reflect light from ∼ 200− 900 nm onto

the camera sensor, which has a horizontal (vertical) pixel resolution of 1024 (255), producing an

image whose horizontal pixel position is linearly proportional with the wavelength (≈ 1.5 nm per

pixel). The ICCD camera has a 5 ns gate, which serves as a temporal filter that removes plasma

recombination light occurring during the few hundred ns following laser ionization.
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Figure 5.8: Photos of a) the fiber connected to a vacuum fiber feedthrough, b) bare fibers coupled
into the spectrometer input via a 3D printed mount. Diagram, c) of the two coupled fibers into
the spectrometer with a plot of the spectral responses of various components, including the total
response.

5.3.2 Wavelength Calibration

The wavelength calibration is done, as in the first experiment, by capturing room lights into

the spectrometer, this time using the two fiber lines. The 150 lines/mm grating was used and set

to a 500 nm central wavelength. From the room light spectrum, as shown in Fig. 5.9, the pixel

locations of four peaks are selected and compared with the NIST tables of strong mercury (Hg)
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emission lines at 404.6, 435.8, 546, and 614.9 nm, producing a calibration equation (for a 1024

pixel wide image) given by:

λ[nm] = 196.59 + 0.6657× xpx (5.4)

Figure 5.9: Spectrometer image of the mercury (Hg) room room lights captured by two optical
fiber lines from the detectors mounted in the AARC. One fiber contributes to the signal in the
image above y = 50 px, while the other fiber contributes to the signal below y = 200 px. The
difference in signal strength is due to one fiber oriented downwards and away from the room
lights, while the other fiber oriented horizontally and towards the room lights.

5.3.3 Alignment of Detection Optics

To facilitate the centering of the AARC, an alignment pin with a cone-shaped end is placed

using a magnetic mount at the center of the base of the stage so that the tip of the cone end

is located at the center of curvature of the arc pieces. The rotation stage is mounted on two

linear translation stages (PI VT-80 series with 150 mm travel), allowing translation of the AARC

parallel as well as perpendicular to the laser beam, in a plane parallel to the chamber base. The

focal plane is found using an imaging system looking at the best focus of the laser beam. The

translation stage of the AARC that is longitudinal to the laser is moved so that the best focus of
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the alignment pin overlaps with the best focus of the laser. A glass bead pre-adhered to the tip is

illuminated by a 400 nm blue diode laser, similar to what’s shown in Fig. 5.10a, through a beam

traveling the reverse path of the imaging system, and the translation stage transverse to the laser

beam is moved so that the signal from the illuminated bead is optimized. For the fiber detectors,

this signal is shown in the spectrometer as a spot centered around 400 nm, as in Fig. 5.10b. The

home position of the rotation stage is established using two irises placed diametrically apart.

Figure 5.10: Photo, a), of the AARC assembly with a blue diode laser illuminating the glass bead
mounted on the alignment tip, and b) the signal of the illuminated bead captured by the fiber
detectors and spectrometer system.
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5.4 Scattered Light Mitigation

After the focus, the beam was sent through a port into a beam dump chamber, as shown in

Fig. 5.11. The beam dump chamber consists of a 5×3 array of 2” square neutral density (ND)

filters of optical density (OD) 5, mounted on an aluminum frame to form a 10”× 6” rectangular

filter. The ND filters were glued to the frame using Torr-seal and the gaps between the filters were

filled with NOA 88 optical adhesive using a syringe and UV cured at 365 nm. The mounted filter

set was oriented at Brewster’s angle relative to the laser to minimize the proportion of reflected

laser light at the filter’s front surface. The transmitted laser light travels through the filter twice,

the second path occurring after reflecting off of the aluminum frame. The result is attenuated

laser light that gets scattered within the beam dump chamber, whose walls are covered with black

aluminum foil secured with Kapton tape. This beam dump arrangement helps reduce the amount

of scattered laser light that end up being transmitted into the detectors.

Figure 5.11: Photos of a) the beam dump consisting of an array of ND filters glued to an alu-
minum frame and b) the beam dump chamber with the beam dump mounted at Brewster’s angle
relative to the beam. Credit: Andrew Longman for the original design of the beam dump frame.
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5.5 Gas (Electron) Source

To introduce the nitrogen gas used to produce electrons from laser ionization in focal re-

gion, we used a pulsed gas nozzle connected to a reservoir chamber back-filled with nitrogen,

both shown in Fig. 5.12. The gas pulse duration was ∼ 4 ms, producing a quasistatic gas cloud

at the focus during the short (∼ 30 fs) duration of the laser pulse including the prepulse (∼ ps).

The reservoir chamber ensured that the backing pressure of the gas nozzle remained constant

over subsequent pulses. The gas nozzle is mounted on a motorized translation stage to allow the

distance from the laser focus to be varied. For the results discussed in this paper, a pressure of

200 mbar was maintained in the reservoir chamber and the mouth of the nozzle was located at a

distance of 4.5 cm from the focus, leading to an estimated ∼ 10−3 mbar, at the laser focus based

on simulations modeling the gas nozzle using MolFlow, which predicts ∼ 10−5 mbar at focus

per mbar backing pressure. After each gas pulse, the focal region equilibriates to the background

chamber pressure of ∼ 4.6× 10−6 mbar before the next pulse.

Figure 5.12: Photo of a) the gas nozzle and b) the reservoir chamber. Credit: Andrew Longman
for the original design of the gas nozzle system.
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5.6 Experimental Procedure

The AARC was scanned over a range of angles from θ = 40◦ to 140◦, in increments of 10◦,

for the primary detector mounted in the E⃗ − k⃗ plane, capturing, for each angle, a spectrometer

image from the accumulation of 256 laser shots fired at 1 Hz with the gas nozzle pulsing at each

shot. Background images were also captured under the same conditions for a limited set of angle

positions by keeping the gas nozzle closed during the laser shots and data acquisition. Two sets

of scans were conducted: one for a laser pulse energy of 3.4 J at the focus and another for 1.9 J.

5.7 Analysis

5.7.1 Image Processing

The first part of analysis involves processing the image to produce the best representative

spectrum. This includes 1) hot spot removal, 2) background subtraction, and 3) image rotation.

An example of the process is shown in Fig. 5.13, which is explained in the paragraphs below.

172



Figure 5.13: Spectrometer images showing the image processing steps. The raw signal, a), is
applied a hot spot filter producing c). The raw background, b) is also applied the same hot spot
filtering technique, and the average over all backgrounds in a set is shown in d). The signal
image is then subtracted by the averaged background image, resulting in e), and then rotated and
re-cropped, f).

Starting with the raw signal and background images, examples shown in Fig. 5.13a and b,

the first step of image processing involves removal of ”hot spots,” which are pixels on the camera

sensor that consistently read anomalously high counts. This could be due to damage to the pixels

themselves, or the inherent pattern noise of the pixels. Whichever the case, a map of such pixels

can be obtained by correlating the set of background images to locate pixels whose counts were

above the threshold of 2000 and appeared in every background image in the set. This map is

then used on each individual raw image (including signal and background) to find and remove

the mapped hot spots by replacing each hot spot with the average of the set of pixels within the
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3× 3 region around the hot spot with counts < 2000. This is then followed up by locating pixels,

for each image, whose counts are greater than a threshold of 3000 and removing those hot spots

in the same below-threshold, 3 × 3 pixel region averaging method. Finally, we deal with the

individual hot spots that are between 2000 and 3000 counts but did not appear in every image.

We found one such hot spot and eliminated it from our calculations. An example of the resulting

hot spot filtered image is shown in Fig. 5.13c, where upon a close inspection, it can be seen than

many pixels whose values were previously > 3000 in Fig. 5.13a have been replaced with values

closer to their surrounding pixels.

In the next stage of image processing, an average background for each image set, like that

shown in Fig. 5.13d for the 3.4 J, ϕArc = 0◦ set, is generated from the set of background images

(also hot spot filtered) by performing a simple average on each pixel. Averaging over the set

of backgrounds gets rid of fluctuations between individual backgrounds, which would otherwise

affect the final result, due to the low signal-to-noise levels of the RTS signal. Each signal image

in a set is subtracted by the averaged background image. This is followed by a subtraction of the

residual background, which was a small bias in the regions outside of the signal distribution. The

result is a background subtracted image, of which an example is shown in Fig. 5.13e.

The final stage of image processing involves rotating the background subtracted images

by 1◦ in order to square up the spectral distributions, using the cubic interpolation method for

the imrotate() function in MATLAB. Additionally, we crop the image produced by the rotation

function back to the original dimensions of 1024 × 255. An example of the rotated image is

shown in Fig. 5.13f.
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5.7.2 Region of Interest

The spectral images, having signal extending from 400 to 725 nm, provides flexibility in

choosing the wavelength band for calculating the angular distribution. The plasma recombination

spectra obtained in Experiment 1 (Chapter 4) had shown that there are plasma recombination in

the range around 400 to 500 nm. We observe in the spectra captured by the fibers that there is

signal extending as far towards the infrared as ∼ 700 nm, petering out at the longer end. The

wavelength band from 601 − 650 nm was therefore chosen for its lack of plasma recombination

light and presence of Doppler shifted RTS signal.

The selection of 601 − 650 nm as the wavelength band to be analyzed requires a determi-

nation of a region of interest (ROI) from which to calculate a representative value for the number

of emitted photons at each angle of measurement. In the case of the spectrometer images, the

ROI was simply defined as a box of pixels centered on the RTS signal and wavelength band. The

height of the box was determined by analyzing the distribution of the signal strength along the

y coordinate, with the goal of sampling the signal while avoiding background. The height was

chosen to be 10 pixels, which provides the largest sampling of the signal without sampling into

the regions of the distribution where the signal strength drops off substantially. The width of the

box was determined by the pixel range corresponding to the 601 − 650 nm band based on the

wavelength calibration. Figure 5.14 shows the ROI annotated over a spectrum image.
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Figure 5.14: Cropped image of the RTS spectrum captured by the fiber mounted at ϕArc = 0.
The region of interest used for calculating the signal strength as the AARC is rotated is indicated
in the white box.

From each image, we take the mean of the pixels in the region of interest as the value

representing the photon emitted at the corresponding angle. For the uncertainty in this value,

we considered two sources: 1) statistical uncertainty, i.e., the square root of the total number of

counts divided by the number of pixels in the ROI, and 2) the fluctuation of the ROI mean when

we shift the ROI horizontally by about ±10 nm, quantified by the standard deviation. It turns

out that the statistical uncertainty is at least two orders of magnitude smaller than the fluctuation

from the wavelength shift. To obtain a final uncertainty, we averaged over the set uncertainties

obtained from the ROI of each set of images (each set containing acquisitions at all angles for the

same laser pulse energy). This uncertainty is used for all data points, as it is a representative of

the real uncertainty that includes scattered light, residual hot spots, etc., and which we expect to

be uniform.

5.8 Results

The feature of interest in the angular distribution is the angular location of the dip, we

call θmin, appearing between 60◦ and 90◦. Theoretically, this dip corresponds to the hole of the

donut-shaped distribution from Thomson scattering bending forward as a result of relativistic

distortions as the laser intensity increases. Since the experimental data had an angular resolution
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of 10◦ and contain signal contributed by substantial noise sources, it is difficult to determine a

value of θmin. Figure 5.15 shows the angular distribution data obtained from the spectrometer

images along with parabolic fits to select data points and fitting metrics. One can see that the

general shape of the distributions show the existence of dips between 60◦ and 90◦.

In an attempt to model the dip, the range of data points around where the dip is apparent

were fitted to parabolas. The parabolic fits were performed by minimizing the χ2 value between

the data and the model, M(θi) ≡ A(θi −B)2 +C, by varying the parameters, A, B, and C in the

model, and choosing the best fit values. The formula for χ2 is given by:

χ2 =
∑
i

(SRTS(θi)−M(θi))
2

σ2
S

(5.5)

where SRTS(θi) is the relative RTS signal measured at θi and σS is the uncertainty in the RTS

signal (taken to be uniform across all θi). The value of θmin is equal to the parameter B from the

model which minimizes the χ2 value and corresponds to the parabola vertex. Using the vertices

of the parabolic fits as an estimation of θmin as shown in Fig. 5.15c, there is a trend towards

smaller angles at higher pulse energies. Values of χ2 are shown in 5.15d and the corresponding p

values in 5.15e.
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Figure 5.15: Plots showing the results of the angular distribution measurement. Shown are the
angular distribution data (blue dots w/ error bars) for pulse energies of a) 1.9 J and b) 3.4 J on
target along with fitted parabolic curves (dashed lines) over various selected data points (open
circles). Plots of the c) parabola vertex representing θmin along with a trendline fit over all data
points, d) the χ2 value of the parabolic fits, and e) the p value for the given χ2 value and degrees
of freedom (number of data points - 3). The colors for c) to e) are coded to match the parabolas
in a) and b).

The variability of the parabolas from the different choices of data points used for fitting

illustrate the difficulty in interpreting the data and quantitatively extracting a precise value for

θmin. For the 1.9 J data set, the parabola fitting all data points from 40◦ to 110◦ (red) predicts the

lowest value of θmin being 74.5◦. If we assume that the data points at 70◦ and 100◦ are outliers

and exclude them in the fit, the resulting parabola (purple) predicts a larger value of θmin at 79.6◦.

The remaining three parabolas assume that the dip is defined more locally, with a smaller range
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of θ used for fitting. For the 3.4 J data set, two parabolic fits were performed, one which fits over

the well-defined parabolic shape from 40◦ to 90◦ (red) and the other which includes an additional

data point at 100◦ (green) implying that the data point at 90◦ may be an outlier. The predicted

values of θmin for the red and green parabolas for the 3.4 J data set are, respectively, 72.5◦ and

76.4◦.

5.9 Discussion

Our experimental data show promising qualitative agreement, although quantitatively, we

cannot use this data to determine the value of θmin to an accuracy from which the peak intensity

can be determined. There are a number of issues that, if addressed in the future, would help make

our method a robust quantitative characterization of the laser intensity.

The first issue is the lack of a complete set of background images. Taking background im-

ages after each signal image would allow us to track any changes in the background signal over

time. Taking background images over different angles would allow us to map out the real back-

ground anisotropy. The same can be said about taking a measurement of the plasma anisotropy

in the absence of RTS light.

The second issue is the presence of random noise, which results in hot pixels that are not

consistent across all images, a number of which are due to cosmic rays. While our hot spot

filter removed hot spots whose counts exceed our set threshold, which we determine to be the

smallest threshold we can use before clipping real signal, hot spots whose counts falling below the

threshold remain. At low count values, it becomes difficult to discern real signal from unwanted

noise.
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The third issue, which is closely related to the second issue, is the presence of scattered

light. Reducing scattered light would improve our signal to noise ratio and unwanted signal con-

tamination. The scattered light can be filtered from the detectors spatially, temporally, spectrally,

or through some combination.

The fourth issue is the low angular resolution (every 10◦) of our data set. This raises the

question of whether it is appropriate to determine a value of θmin based on the behavior of the data

that includes a large range of θ around where θmin appears to be or if it is necessary to examine the

trend more locally and over a smaller range of θ. A better angular resolution and greater density

of data points would allow us to better judge the overall behavior of the distribution around the

dip, whether data points are outliers or indeed real RTS structure, and more precisely quantify

θmin.

5.10 Conclusions

We propose improvements to our detector setup as well as experimental ideas to address

some of the previously mentioned issues. One improvement we can make is to switch from us-

ing the gated ICCD with the spectrometer to using a streak camera, which would improve the

temporal resolution from 5 ns to an order of 100 ps. This would allow us to sample light during

a shorter time period encapsulating the RTS event, and reduce light from plasma recombination.

Another improvement is to mount an arc piece sideways in order to allow detection from multiple

directions in the E⃗ -⃗k plane. Having multiple simultaneous detectors capturing data would im-

prove data acquisition efficiency, resulting in the ability to achieve better angular resolution and

statistics over the limited laser time typically allotted during campaigns. During the experiment,
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we may also take measurements while using a pulse that is stretched by, for example, introducing

a chirp via rotating the compressor grating. A stretched pulse would reduce the peak intensity

of the beam and therefore the RTS light as well, while retaining plasma recombination light.

This allows us to map the background anisotropy, which includes any changes in the detector

efficiency associated with the geometry.
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Chapter 6

Experiment 3: High Resolution Angular Distribution

Introduction

The goal of this experiment was to address the issues encountered in Experiment 2 (Chapter

5) by taking RTS angular distribution data at finer angular steps, larger sample sizes, and better

signal-to-noise conditions. In addition, this experiment is done alongside measurements of the

electron ejection distribution as well as the ions produced, although the RTS emission remains

the focus of this thesis. Given that the rotation stage (Standa 8MR191V) holding the AARC has

angular resolutions of 0.01◦ degrees per motor step, while the numerical aperture of the fiber

detectors correspond to a 3◦ collection half-angle, angular resolutions ∼ 5◦ is possible. The

primary concern is the limited time available to conduct the measurements.

The decision therefore was made to focus only on the angular distribution in the E-k plane.

The AARC was modified to hold multiple detectors at ϕ = 0, to allow for larger coverage and

more sampling along the E-k plane. Related to this emphasis on larger sampling was the decision

to send the light into a streak camera as opposed to a spectrometer. This was due to the fact

that only at most two fibers could be coupled into the spectrometer in the previous experiment,

whereas it was possible to couple four fibers into the streak camera. Furthermore, the streak

camera provided temporal resolution of the signal, allowing the gate window to be reduced below

500 ps so as to filter out plasma recombination light much more effectively. The spectral selection

was handled using optical filters transmitting from 600-650 nm. A diagram of the experimental
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layout is shown in Fig. 6.1.

Figure 6.1: Diagram of the experimental layout for the 2022 RTS experiment. The AARC mod-
ified so that it was flipped on its side, hence the name side arc, such that the detectors were
aligned within the E − k plane, is used to capture RTS light produced from electrons ionized
from a pulsed nitrogen gas by the VEGA-3 laser. The detectors comprised of fiber optic cables
which routed the light outside and reimaged using a lens onto a streak camera for temporal gat-
ing.

6.1 VEGA-3 Characteristics

The VEGA-3 laser was chosen as part of the push for the higher intensities required for the

electron and ion experiments planned in parallel with the RTS experiment, while maintaining a

long focal length geometry for comparing the RTS results with previous experiments. As already

mentioned in Chapter 3, the VEGA-3 beamline consisted of a 22 cm collimated beam which

is focused using a 250 cm focal length OAP (f/11 geometry) down to a 11 − 13 µm diameter

FWHM. A schematic of the beam in the target area is shown in Fig. 6.2. Characterization of this

beam is done in the metrology bench (see section 3.1) as well as images of the focal spot at low
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powers in the target chamber, as was done in the previous experiments for the VEGA-2 laser.

During this experiment, an autocorrelator to measure the pulse duration was also provided in the

target area, by taking a leaked portion of the beam from the OAP chamber and taking it outside

to the autocorrelator device.

Figure 6.2: Top view of the CAD model of the VEGA-3 target area. Shown is the VEGA-3 beam
entering after being transported from the laser bay and then hitting turning mirrors before being
focused by an off axis parabolic mirror into the target chamber. CAD model courtesy of Centro
de Láseres Pulsados.

6.1.1 Focal Scan

Images of the focal spot was captured in a manner similar to the procedure carried out

in the first experiment (Chapter 4). A wedge was used to reflect an attenuated portion of the

beam onto a reference focal plane. A 20× Mitutoyo Plan Apo near-infrared (NIR) microscope
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objective was used to image the reflected focal distribution onto a camera at various offsets for

best focus. The 20× objective was used for imaging as opposed to the 10× objective (used in

the first experiment) since the 20× objective was undamaged, whereas the 10× objective was

damaged likely due to unprotected exposure to the VEGA laser. The 10× objective was reserved

for alignment of the laser to the AARC, which will be discussed in section 6.4. Figure 6.3 shows

a schematic including the two focal spot imaging systems and Fig. 6.4 shows a series of images

of the focal scan captured by the 20× objective.

Figure 6.3: Schematic (not drawn to scale) of the two focal spot imaging systems. The main
imaging system consisted of a 10× microscope objective (MO-10X) imaging around the main
focal plane (FP-M), whose beam was transported out of the chamber with mirrors (M) and fo-
cused with a lens (L) onto a camera sensor (CAM-M). The wedge imaging system consisted of
a 20× microscope objective (MO-20X) imaging around the reference focal plane produced by
the wedge (FP-W), whose beam was transported and focused on to a separate camera sensor
(CAM-W). In the main imaging system, the microscope objective and mirror were mounted on
a translation stage that moved the assembly into and out of the main beam for measurement and
live shots. In the wedge imaging system, a wedge is moved into and out of the main beam path
for measurement and live shots.
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Figure 6.4: Images of the focal spot captured by the wedge imaging system at various offsets
from the plane of best focus. The images are normalized to the peak pixel value out of all images
in the set and plotted are the log10 of the values, showing the relative order-of-magnitude fall off
from the peak.

The spatial calibration was based on measurements of the lines in various elements on a

United States Air Force (USAF) 1951 test pattern, images shown in Fig. 6.5. Each image contains

multiple elements in a group, of which one element was used for sampling the horizontal and

vertical lineouts (red dotted lines) whose values are shown in Fig. 6.6. Threshold values between

1 × 104 to 1.8 × 104 counts, in 0.8 × 104 increments, were used for determining the line edge

positions, which are used to calculated the line widths (in pixels) shown in Fig. 6.7. Aggregating

these values through averaging, as shown in Table 6.1, an overall calibration of 7.2 ± 0.5 pixels

per µm was determined for the wedge imaging system. The code for performing the calibration

analysis as well as a detailed example of the calibration steps is given in appendix D.1.
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Figure 6.5: Images (labeled Im1 to Im4) of various groups and elements of the USAF test pattern
used. In each image, a horizontal as well as a vertical dotted red line are shown, indicating
locations of lineouts (Fig. 6.6) taken for calibration analysis.

Figure 6.6: Plots of the lineouts sampled from the images of the USAF test pattern images. See
Fig. 6.5. The dotted horizontal lines indicate the bounds of the threshold values (1×104−1.8×104

in 0.8× 104 increments) used for determining the locations of the pattern line edges.
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Figure 6.7: Plots of the pattern line widths calculated from taking the difference between the
locations of the pattern line edges determined from their intersections with various threshold
values (within the horizontal dotted lines in Fig. 6.6). The known line widths of each pattern
element are given in parenthesis.

Image Element
Horizontal
[px/µm]

Vertical
[px/µm]

1 G6E2 7.3 (0.3) 7.2 (0.3)
2 G6E6 7.3 (0.5) 7.1 (0.4)
3 G7E1 7.2 (0.4) 7.2 (0.5)
4 G7E6 7.1 (0.8) 7.4 (0.8)

Overall 7.2 (0.5) 7.2 (0.6)

Table 6.1: Spatial calibration results determined from each lineout. The pixels per line values
from Fig. 6.7 are divided by their corresponding element line widths to obtain calibrated values
in units of px/µm. The samples over all threshold values for each element are aggregated and
their average (standard deviation) are given.

6.1.2 Temporal and Spectral Measurements (Wizzler)

The temporal profile and spectrum of the VEGA-3 compressed pulse measured by the Wiz-

zler in the laser bay metrology bench (see section 3.1) is shown in Fig. 6.8. The measurements

show very similar characteristics as the VEGA-2 pulse in terms of pulse width and spectral band-
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width and central wavelength. An autocorrelator was also set up in the target area near the OAP to

measure the pulse duration closer to the target and is discussed in more detail in the next section,

section 6.1.3.

Figure 6.8: Plots of a) the reconstructed temporal pulse shape and phase and b) the spectrum
measured from the VEGA-3 laser by the Wizzler at the laser bay metrology bench. See section
3.1 for a description of the metrology bench. A zoomed in plot of the temporal profile and phase
c) is shown including a phase curve offset by −2π to show the phase variation for one of the
the smaller peaks. A cubic interpolation was used to connect the intensity data, while a linear
interpolation was used to connect the phase data.
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6.1.3 Energy and Temporal Measurements (Live Shots)

During the live shots, the energy and pulse duration were both monitored. The energy

was monitored using the calibrated pyroelectric energy meters in the laser bay (see section 3.1).

This energy was then multiplied by 0.89 to account for transmission losses at the laser bay to

the target chamber. The pulse duration was monitored using an autocorrelator near the OAP,

which measures a picked off portion of the beam and taken out of the vacuum chamber. The

autocorrelator measurements of the pulse duration averaged over each run, as well as the laser

energies on target (last shot of the run) are reported in the Figures 6.9, 6.10, 6.11, and 6.12

for nominal pulse energies of 2, 6, 10, and 30 J respectively. The autocorrelator measurements

have not been corrected for dispersion due to the exit port window and glass filters, therefore

do not represent the pulse duration in the vacuum chamber (which require further analysis to be

discussed).
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Figure 6.9: Laser energy (last shot of run) and autocorrelator-measured pulse duration data (aver-
aged over each run) for each run number for the runs operating at 2 J nominal energy, 8 shots per
run at 1 Hz. Also shown are corresponding histograms of the datasets distributed over 25 bins.

191



Figure 6.10: Laser energy (last shot of run) and autocorrelator-measured pulse duration data
(averaged over each run) for each run number for the runs operating at 6 J nominal energy, 8
shots per run at 1 Hz. Also shown are corresponding histograms of the datasets distributed over
25 bins.
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Figure 6.11: Laser energy (last shot of run) and autocorrelator-measured pulse duration data
(averaged over each run) for each run number for the runs operating at 10 J nominal energy, 8
shots per run at 1 Hz. Also shown are corresponding histograms of the datasets distributed over
25 bins.
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Figure 6.12: Laser energy and autocorrelator-measured pulse duration data for each run number
for the runs operating at 30 J nominal energy, single-shot. Also shown are corresponding his-
tograms of the datasets distributed over 25 bins.

In order to correct for the dispersion effects on the pulse due to the exit port window, which

was 5 mm in thickness, as well as the sets of neutral density (ND) filters placed in front of

the autocorrelator at various nominal energies, we first determine the second order group delay

dispersion (GDD), denoted as ∂2ϕ
∂ω2 , from the autocorrelator-measured pulse duration based on the
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following relationship between pulse duration, ∆t, and GDD:

∆t = ∆tTL

√√√√1 +

(
4 ln 2 ∂2ϕ

∂ω2

∆t2TL

)2

(6.1)

Here, ∆tTL refers to the pulse duration of the transform-limited pulse if dispersion was com-

pletely removed (i.e. GDD=0).

Assuming a ∆tTL = 28.3 fs unchirped pulse (based on the pulse duration measured by the

Wizzler - see section 6.1.2), the GDD,
(

∂2ϕ
∂ω2

)
ac

, corresponding to the autocorrelator-measured

pulse duration can be determined by setting ∆t = ∆tac and solving for ∂2ϕ
∂ω2 . The duration of

the pulse in vacuum, ∆tvac, and before passing through glass to reach the autocorrelator can be

determined by assuming that its corresponding GDD,
(

∂2ϕ
∂ω2

)
vac

, follows

(
∂2ϕ

∂ω2

)
vac

=

(
∂2ϕ

∂ω2

)
ac

−∆
∂2ϕ

∂ω2
(6.2)

where ∆ ∂2ϕ
∂ω2 is the change in dispersion due to the total glass thickness traversed by the pulse,

and is related to the glass thickness Lglass by

∆
∂2ϕ

∂ω2
= (GVD)× Lglass (6.3)

where GVD is the group velocity dispersion. For fused silica, the GVD is equal to 36.70 fs2/mm.

The rationale behind eq. 6.2 is that light traversing through glass, where its speed is inversely

proportional to frequency, can only gain a net positive chirp. The value of
(

∂2ϕ
∂ω2

)
vac

can then be

plugged into eq. 6.1 to determine ∆tvac. The results of this calculation are shown in Table 6.2.
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Table 6.2: Table summarizing the measured energy, measured pulse duration, and corrected pulse
duration. Included are the average (standard deviation) of the measurements of energy on tar-
get, Utarget, and autocorrelator-measured pulse duration, ∆tac, for each of the nominal energies,
Unominal, along with the number of runs, Nruns, as well as the total glass thickness traversed
by the pulse in reaching the autocorrelator (including exit port window and ND filters) and the
corresponding change in second-order group delay dispersion (GDD), ∆ ∂2ϕ

∂ω2 (see eq. 6.3). Also
shown are the predicted values of the pulse in vacuum ∆tvac calculated by shifting the GDD at
the autocorrelator by −∆ ∂2ϕ

∂ω2 (see eq. 6.1 and 6.2, as well as Fig 6.13). Uncertainties shown after
the ± symbol were derived from taking the standard error in ∆tac (standard deviation divided by√
Nruns) as the uncertainty and propagating to their values via the corresponding equations.

Unominal [J] 2 6 10 30
Nruns 207 128 97 203

Utarget [J] 1.9 (0.05) 5.78 (0.05) 9.01 (0.07) 20.48 (0.20)
∆tac [fs] 37.67 (10.24) 28.37 (3.24) 33.24 (6.89) 72.68 (15.43)(
∂2ϕ
∂ω2

)
ac

[fs2] 254± 22 20± 58 178± 27 683.3± 24

Lglass [mm] 5.0 8.3 9.6 9.0
∆ ∂2ϕ

∂ω2 [fs2] 183.5 304.6 352.3 330.3
∆tvac [fs] 29.1± 1.0 39.7± 8.0 33.1± 2.8 44.7± 3.6(
∂2ϕ
∂ω2

)
vac

[fs2] 70.3± 22 −384.3± 58 −174.3± 27 353± 24

The effects of dispersion due to the window can be understood as moving along the ∆t

versus GDD curve defined by eq. 6.1 and is illustrated in Fig. 6.13. Since the curve is not one-to-

one, one may in principal choose either side (positive or negative GDD) as the starting point for

∆tac. In our case, the positive side was chosen since we expect the the vacuum pulse to be close

to optimally compressed, since the laser operators have precalibrated the grating positions at each

operating energy, and choosing the negative side would result in larger values in both ∆tvac and(
∂2ϕ
∂ω2

)
vac

.
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Figure 6.13: Plot of the ∆t versus GDD curve along with measured and corrected values of pulse
duration. See Eq. 6.1 for the curve, which assumes a 28.3 fs unchirped pulse. The values include
those the pulse duration and GDD at the autocorrelator (AC) and predicted values in vacuum
(Vac.) shown in Table 6.2.

6.1.4 Peak Intensity Estimation

The peak intensity can be estimated from the values of Utarget, ∆tvac, and the spatially

calibrated focal spot images using the method described in section 4.3. This was done by first

computing the peak intensity per unit power, I Impk /(U/∆t), which can then be easily scaled to the

peak intensity for a given set of values of Utarget and ∆tvac via multiplication by Utarget/∆tvac.

The data acquired at the nominal energy of 30 J was done on 03/28/2022, and a set of 3 focal spot

images at best focus were taken at lower power. The data acquired at the nominal energies of 2,

6, and 10 J were all done on the same day (03/30/2022), and a set of 10 focal spot at best focus

were taken at low energy. The values of I Impk /(U/∆t) from each focal spot image was computed
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and averaged for each day. The results of the analysis are shown in Table 6.3 and plotted in Fig.

6.14.

Table 6.3: Values involved in the estimate of the peak intensity using the focal spot images, and
measured energy and pulse duration. The uncertainty in I Impk /(U/∆t) is defined as the standard
deviation in the mean from the computed I Impk /(U/∆t) values in each of the 3 and 10 images
taken on 03/28/2022 (30 J) and 03/30/2022 (2, 6, and 10 J) respectively. The standard deviation
in Utarget was used as the uncertainty in propagating to the uncertainty in I Impk , since the standard
deviation is a better estimate of the overall error in Utarget than the standard deviation in the mean.

Unominal [J] 2 6 10 30
I Impk /(U/∆t) [e5 W/cm2/J/s] 2.67± 0.20 2.65± 0.77

Utarget [J] 1.9 (0.05) 5.8 (0.05) 9.0 (0.07) 20.5 (0.20)
∆tvac [fs] 29.1± 1.0 39.7± 8.0 33.1± 2.8 44.7± 3.6

I Impk [e19 W/cm2] 1.7± 0.2 3.9± 0.5 7.2± 0.9 12.2± 1.3

Figure 6.14: Plot of the estimated peak intensity (left vertical axis) versus energy on target as well
as the pulse duration (right vertical axis) versus energy on target. The estimated pulse duration
over the range of energies used while varying by as much as 15 fs (∼ 54%) does not show a
strong correlation with energy, thus the estimated peak intensity scaled roughly linearly with the
energy.
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6.2 The Side Arc

In order to mount the detectors in the E-k plane, a new design of the arc piece was neces-

sary while using the same rotary base and motorized stages. The new design’s imaging focus also

needed to be centered at the same reference point as the original arc. Therefore, the new design

needed to have the detectors mounted at the correct height, radial distance from focus, and orien-

tation. Furthermore, the machining tolerances needed to be within acceptable error (the pointing

accuracy needed to be within the 3 mm detector field of view). While outsourcing the machining

work to a third party with a 5-axis CNC was originally considered, there were many concerns

associated with the third party not fully understanding the design application that would lead to

longer turnaround times, costs, and inadequate tolerances. After extensive discussion with the

machinist, Lester Putnam, at the Institute for Physical Science and Technology (IPST), the final

design, shown in Fig. 6.15, was developed and machined in-house at the University of Maryland

using a 3-axis CNC and manual rotary table.
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Figure 6.15: CAD images of the side arc assembly mounted on the rotary base in isometric view
and side view. The nylon-tipped set screws on the top plate were originally 4-40 and had been
modified to 8-32 last minute as a result of set screw availability. The securing screws for the riser
are 1/4”-20. Credit: Lester Putnam for the final design and model of the side arc assembly and
for the original idea of using V-grooves.

This new assembly consists of an arc with 90◦ V-shaped grooves cut in the radial direction

relative to the center point of the arc to allow the mounting of up to 5 detectors spaced 10◦ apart.

The shape of the V-grooves orient the detectors towards the same center point (with an error

on the order of 1 mm) via two edges of contact with the 5/8” cylindrical detector housings. A

top plate is affixed over the arc, providing a fixture for nylon-tipped 8-32 set screws to hold the

detectors in place from the top. Each detector slot on the side arc has a front flat surface for

registering the edge of the detector housing to achieve the same detector distance from the arc

center. The detector’s radial distance is constrained by the filter holder attached in front of the

5/8” cylinder, which has a slightly larger diameter than 5/8”. The side arc is mounted over a riser

designed to position the side arc vertically at the correct height. Optional shims are available to

place in between the side arc and riser for varying the height by 0.5 to 1.5 mm in steps of 0.5

mm, depending on the shim thickness and number of shims used. Two alignment pins determine
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the orientation of the arc relative to the riser. The riser is mounted on the rotary base, with

its orientation at this contact surface determined by registering one side of the riser’s flat side

surface with that of the flat side of the groove on the arc rotary base. The riser’s radial position

is determined by a protrusion at the back from the bottom of the riser being in contact with the

outer edge of the rotary base.

6.3 Fiber Optic Detectors

The fiber optic detectors largely remained unchanged from the 2019 experiment (see sec-

tion 5.3). The main differences were in the specific models of fiber optic cables and optical

filter combinations used. Inside the vacuum chamber, vacuum compatible fibers from Thorlabs

(MV64 UHV, 0.22 NA, 600 µm core, SMA to SMA) 2 m in length were used. These fibers were

not jacketed, therefore aluminum foil was wrapped as protection against abrasion during rotation

of the side arc. Outside of the vacuum chamber, jacketed fibers from Thorlabs (UM22-600, 0.22

NA, 600 µm core, SMA to Flat-Cleaved) 2 m in length were used, with the SMA end connected

to the vacuum feedthrough and the bare flat-cleaved end coupled to the streak camera. In each

detector, a 600 − 650 nm (FWHM) interference filter was added on top of the shortpass 725 nm

filter, their transmission curves shown in Fig. 6.16. Based on the transmission data, which was

provided by the manufacturer, the combined filter would provide at least 10−5 attenuation outside

of 500− 700 nm and at least 10−10 attenuation above 775 nm.
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Figure 6.16: Transmission curves of a) the shortpass 725 nm filter, b) the bandpass 600-650 nm
filter, and the combined (shortpass 725 nm and bandpass 600-650 nm) filter set plotted in log
scale. The transmission curve data was representative data obtained from the manufacturer and
there may be slight differences from the curves for the filters used in the experiment.

6.4 Alignment of Detectors

6.4.1 Fiber Alignment to AARC Center

In order to work as intended, the fiber detectors must all be viewing towards the focal point

over all angles of data collection. This is facilitated by the machining of the AARC components

such that the mounted detectors are looking at the center point of the AARC, which is referenced

using a bead epoxied onto the conical tip machined into a ½” rod mounted on a kinematic mag-

netic base. An imaging system consisting of a long focal length camera lens viewing the bead

was used for alignment, as shown in Fig. 6.17.
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Figure 6.17: Photo of the setup used for detector alignment. A Blackfly PGE-23S3M camera
with a Navitar zoom lens mounted was focused on the alignment bead. Directly opposed was
a fiber based detector, which was back-illuminated. The profile of the projected light from the
back-illuminated fiber detector at the plane of the bead marks the field of view (see Fig. 6.19,
6.20 and 6.22).

First, the imaging system was used to characterize the deviation of the bead from the rota-

tional axis as the AARC rotary base was rotated over 360 degrees, as shown in Fig. 6.18. This

deviation was found to be 1 bead diameter (about 250 µm) at best, and 2-3 bead diameters (500-

750 µm) at worst. It was verified that the largest excursion of the bead within the image (bead

appearing furthest to the left and furthest to the right) corresponds to angular difference of 180

degrees.
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Figure 6.18: Images of the bead at maximum excursion to the left and right of the image out of a
set of images captured every 10◦ over a full rotation of the rotary base. The vertical line indicates
the same pixel x position, 1150, on both images. On average, the full excursion is on the order of
one bead diameter (∼ 250 µm) .

The deviation is caused by an off centering of the tip due to the play in the M6 screw in

the through holes of the magnetic base and AARC rotary base. There are also other machine

tolerances in the mounting of the conical tip that contributes to this offset. Nevertheless, using

the bead will allow the laser focus to be aligned within 750 microns of the rotational axis at

worst and within 250 microns when a more careful mounting of the tip is performed. A careful

mounting would entail centering the through holes by eye viewing from the top before placement

of the M6 bolt, and ensuring proper technique is utilized to minimize excessive shifting of the

components from the tightening of the bolt. This deviation is tolerable given that the field of view

of the fiber detectors is 3 mm in diameter, if we can ensure that each detector’s field of view is

centered at the bead.

While the V-shaped grooves carved into the side arc were done to tight tolerance, it may

have not been enough, and the centering of the individual fiber detectors relative to the center

of the AARC needed to be checked. To accomplish this, the optical fibers are back illuminated,

and an imaging system captures the projected illumination at the focal plane of the bead from
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opposite to the detector. The projected illumination marks the fiber detector field of view and is

centered around the bead when the detector is properly aligned.

Figure 6.19: Photos showing the profiles of the back illuminated light from the fibers at different
locations. Left: Back illuminated fiber light from multiple detectors near the plane of the bead.
The light from the different detectors are somewhat overlapped. Right: The back illuminated
fiber light just as it leaves the detector. Note that light from the detector on the left is a ring due
to the narrow range of angular modes coupled at the opposite end, but the exit surface is filled,
which is also the case when projected into the plane at the bead.

It was found that the different detectors mounted on the Side AARC do not all project back

illuminated spots that were centered around the bead.

Figure 6.20: Images of the bead (in focus) and projection of the back illuminated fiber light for
each of the four detectors mounted at different positions on the side AARC. The detector at -20
deg (and possible +10 deg) appear well-centered. For reference, the shutter time for these images
is 0.5 ms.

Fortuitously, extra space around the V-grooves lateral to and above the cylindrical housings
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allow the detectors to be shimmed to adjust pitch and yaw. A simple method for shimming can

be done by folding aluminum foil into steps, like a ladder, and placing it between the bottom of

the aluminum housing and V-groove. Placing the steps of the shim behind the vertical axis of the

8-32 set screw creates a downward pitch. Placing the shim diagonally across a V-groove allow

slight adjustment in the yaw. This was primarily a trial-and-error process, and once the desired

alignment is established, the detector and shim were kept in place, and periodically rechecked by

back illumination for alignment.

Figure 6.21: Photos of the aluminum foil shims at different stages of the application process for
ever-so-slight pointing adjustment of the detector tward the desired direction. A small piece of
aluminum foil, about 2” in length was folded up in a staircase pattern to provide sub-millimeter
sized steps and then wrapped around the detector’s aluminum housing before affixing onto the
side arc.

The imaging system is mounted in a fixed position separate from the AARC assembly. This

process is therefore easily repeated for a subsequent detector by rotating the AARC to align the

next detector to the same imaging system. After applying shims to the misaligned detectors, these

detectors are now centered around the bead.
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Figure 6.22: Images of the alignment tip (bead missing) and projected back illuminated fiber
light after these detectors have been shimmed. In these images, the shutter time was reduced to
0.1 ms (from 0.5 ms in Fig. 6.20). The bead had been knocked off.

The single detector holders are mounted separate from the AARC assembly, but neverthe-

less are intended to also have their fields of view centered at the laser focus (or equivalently the

bead) from the same radial distance as the side AARC detectors. Features of the AARC can be

used as references for positioning the single detector radially and azimuthally, while imaging of

the back illumination projected at the bead can be used to position the single detector in height

as well as orient its yaw. The freedom to adjust the single detectors independently through their

height and rotation adjustments eliminate the need to use shims.
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Figure 6.23: Images showing two types of detector holders. Left: A single detector holder. It is
mounted on a ½” post inserted in a post holder, which is mounted on top of a 1.5” post with a
bottom pedestal. The front face of the V-groove registers the radial distance. Right: A close up
of the side AARC showing the front flats for each detector position.

The procedure to align one of the single detectors is described as follows:

1. The single detector was positioned azimuthally by rotating the AARC base so that one of

the slots is located at the desired angle and then placing the single detector behind the slot

and pointing the detector at the bead.

2. the single detector was positioned radially by rotating the AARC so that the side AARC

was positioned adjacent to the single detector. The single detector holder’s front face was

moved to match the radial distance of the front detector flats of the side AARC. This was

iterated with the previous step to correct for errors in moving the single detector. Once the

single detector was positioned, the pedestal under the 1.5” post was clamped down.

3. Using the diametrically opposed slot to the one used to align the single detector holder,
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an imaging system was set up to image the bead 180 degrees from the detector. Before

back illuminating the fiber, the imaging system needed be set to an appropriate exposure

to prevent saturation. We used a Blackfly PGE-23S6M camera with a Navitar Zoom 7000

TV lens set at 108 mm focal length, which required the minimum shutter time and gain

when back illuminating the fiber with a desk lamp. The imaging system did not need to

be exactly precise - as long as it was able to clearly see the bead in focus as well as the

projection of the back illuminated fiber.

4. Once the bead and back illumination was visible, the height of the ½” post underneath the

single detector holder could be adjusted simultaneously with the yaw rotation to achieve

optimal signal and centering of the illumination around the bead.

When repeating this process for other detectors, the imaging system would need to be moved.

Fortunately, we had only used two fixed fiber detectors and, as mentioned above, the precision of

the imaging system was not critical.

Given the limited space in the target chamber, a procedure was needed to align the fiber

detectors in both the side AARC and single detector holders without creating a gridlock. The

procedure to align the entire set of single detectors and AARC detectors is described as follows:

1. The fixed fiber detectors were to be aligned first before putting fiber detectors in the side

AARC, because the fixed fiber detectors require rotation of the AARC base over large

angles. The side AARC would be moved out of the way (for example, where the 0 deg

detector aligns with θ = 20◦) and the inspection imaging system would be set up (blue dots

in Fig. 8) and alignment be done for each of the two fixed fiber detectors.

209



2. After the fixed fiber detectors are aligned, the imaging system was relocated (red dot in

Fig. 8) looking through a gap in the array of fixed detectors (for example, θ = −75◦)

to allow the side AARC detectors to be inspected near their nominal positions during the

experiment (for example θ = 105◦).

This system will require the fixed electron detectors to be arranged so as to allow a gap in

order for the fiber detectors in the side AARC (positioned at the +10 deg and -10 deg positions)

to be inspected without colliding into the gas nozzle. When the -10 deg detector is at θ = 105◦,

the right edge of the side AARC would be at 140 deg.
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Figure 6.24: Diagram of the placement of the inspection imaging system during alignment. The
red dot indicates the location of the camera which was made to focus on the alignment bead
through a gap between the fixed detectors. The red line indicates this camera’s line of sight
across the opposite side of the bead where the movable detector, mount on the side arc, must be
positioned for inspection. The blue dots indicated the positions for where the camera needed to
be placed to inspect each of the two fixed fiber detectors across the bead. The side arc was rotated
out of the way to allow a clear line of sight to the fixed detector.

6.4.2 AARC Alignment to Laser Focus

There were three lasers involved in the alignment. The first was a green diode laser (532

nm) in the target area, that passed through the TCC at an angle. The second was a diode laser

from the laser bay made available on Week 2. The third was the VEGA-3 laser running at low

power. The intention would be that all three lasers overlap at the focus, and that the diode laser
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was collinear with the VEGA-3 laser. While there was likely some deviation between the beams,

they were small due to their sharing of a common imaging system for imaging the focal spot.

Due to time constraints, the green laser was used for aligning the AARC.

The AARC had two linear translation stages, one more-or-less along the laser axis and the

other transverse to it. The exact parallelism and perpendicularity was not critical, since these

stages spanned a plane containing the laser k vector, and their home positions referenced by the

bead. The bead of the AARC was determined to be well-aligned in the transverse direction rela-

tive to the green laser when transmitted light through the bead (which acts like a lens), captured

by the focal spot imaging system, displayed a symmetrical pattern on the image, as shown in Fig.

6.25b. Since the field-of-view (FOV) of the imaging system (around 200 microns – based on a

calibrated tip size of 9.5 microns) was smaller than the size of the bead itself (450 microns), the

AARC transverse linear stage needed to be translated in order for the edges of the bead to come

into view, as shown in Fig. 6.25a and c. The bead was determined to be well-aligned longitudi-

nally to the beam when the edges of the bead appeared in focus on the imaging system. After the

imaging system was aligned, the bead was removed, and the motorized tip was moved into the

field-of-view of the imaging system and adjusted until it was centered an in focus, as shown in

Fig. 6.25d.
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Figure 6.25: Images captured by the microscope objective imaging system oriented along the
main beam during alignment. See Fig. 6.3 for schematic. Shown are images of the a) left edge,
b) center, and c) right edge of the bead. Also shown are d) the alignment tip and e) the diode
laser. A 533 nm laser was used for illumination of the bead and tip, whereas the diode laser was
800 nm.

It turned out that the physical height of the laser, instead of the nominal 230 mm provided

to us prior to the experiment, was 227 mm. To address this realization, the AARC assembly,

being mounted on a 23 mm rising block and four 2 mm thick shims beneath the block corners,

was lowered by removing the shims, lowering the bead to 228 mm. The remaining 1 mm offset

in height was compensated by raising the beam height of the laser by adjusting the alignment

mirrors. The diode and VEGA-3 beams were also raised by 1 mm by adjusting the focusing

parabola. The imaging system, which captures the image of the diode laser as shown in Fig.

6.25, was used to fine tune the parabola adjustment.

The AARC rotation stage was referenced to the laser axis using diametrically opposed

pupils set at the height of the bead. The AARC was rotated so that the alignment laser passed

through both pupils while scattering off the bead. The rotation stage had a physical home cor-

responding to the limit switch, which was disabled during operation, but may be enabled when
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referencing was required. It turned out that simply mounting the AARC rotation base onto the

rotation stage by eye was enough for the pupils to be aligned to the laser without further fine

tuning in the rotation of the stage. The home position of the rotation stage was therefore the

same position for positioning the Side AARC’s center detector at 90 degrees relative the laser

propagation axis. Since the pupil diameter was 2 mm and located 125 mm from the rotation axis,

the rotational calibration was correct to within ±0.5◦.

6.5 Reimaging of Fiber Array

The streak camera was designed to accept light through its input slit, which is delicate and

prone to damage from physical contact. To avoid this, it would be necessary to couple the light

from the flat cleaved fibers into the streak camera without attempting to place the fibers at the

plane of the slit. A reimaging system, illustrated in in Fig. 6.26, was therefore designed for this

purpose. The lens comprising the reimaging system (Nikon F-mount 50 mm f/1.4), the fibers, as

well as the streak camera input slit needed to be placed at distances relative to one another so as

to optimize the f/# matching of the system while keeping all four fibers within the field of view.
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Figure 6.26: Diagram of the reimaging system used for coupling the output fibers onto the input
slit of the streak camera, showing the geometric quantities used for calculating coupling effi-
ciency. The output fiber emits light with a cone half-angle θ0 based on its NA specification. The
lens (f = 50 mm) with a front surface distance so from the fiber collects a half-angle of θ1. The
collection efficiency at the lens, ϵ1 depends on θ0 relative to θ1. The lens and focuses the light
onto the slit at a distance si from the lens back surface. The image of the fiber face has a diameter
D at the slit, set to a width w (which during the experiment was open all the way, allowing the en-
tire fiber image through). The output half-angle, θ2, is determined by si as well as the lens output
aperture diameter. The streak camera input optics captures with a half-angle θ3. The collection
efficiency at the streak camera input depends on θ2 relative to θ3. The total collection efficiency
is ϵ1 × ϵ2.

The collection efficiency of the reimaging system is given by ϵ = ϵ1 × ϵ2 where ϵ1 and ϵ2

are the collection efficiencies at different stages of the reimaging system, and are equal to either

the ratio of the solid angles of the output light and the collection aperture, that is ϵ1 = Ω1/Ω0 and

ϵ2 = Ω3/Ω2 (overfilled condition), or unity (under-filled condition). The solid angle is related to

the half-angle via Ωi =
∫ 2π

0

∫ θi
0
sin θdθdϕ = 2π(1− cos θi), hence:

ϵ1 =


1− cos θ1
1− cos θ0

θ0 > θ1

1 θ0 ≤ θ1

(6.4)

ϵ2 =


1− cos θ3
1− cos θ2

θ2 > θ3

1 θ2 ≤ θ3

(6.5)

The angles themselves were determined as follows:

• θ0 is determined by the fiber numerical aperture (0.22) and is equal to sin−1(0.22) = 12.7◦.
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• θ1 is determined by the object distance, so, and the input clear aperture of the lens, which

is measured to be 34mm, and is equal to tan−1(34 mm/(2so)).

• θ2 is determined by the image distance, si, and the output clear aperture (in reality, it may

be smaller, but this is a conservative approximation), measured to be 32 mm, and is equal

to tan−1(32 mm/(2si)).

• θ3 is determined by the f/# of the streak camera input optics, which comprises of a pair

of f/3.5 lenses located such that the slit is one focal length away from the first lens, and is

equal to tan−1(1/(2× 3.5)) = 8.13◦.

The object and image distances, so and si, were defined as the distances from the front and back

flange of the lens respectively, as shown in Fig. 6.28. Their relationship is one-to-one, and was

characterized by measuring the distance of the best-focus image formed of a 1 cm section of a

ruler for each lens distance from the object. The size of the corresponding image, Dimage was

also measured to obtain the magnification.

The quantities so and si are not to be confused with the object and image distances relative

the the principal planes, so,pp and si,pp, which approximately follows the thins lens relationship:

1

f
=

1

so,pp
+

1

si,pp
(6.6)

Nevertheless, these distances are related by offsets, i.e., so + ho = so,pp and si + hi = si,pp

where ho and hi are constants equal to the displacement between the physical back and front

of the lens and the back and front principal planes respectively. The lens was characterized by

measuring si and the magnification, M , as a function of so, and then determining ho and hi by
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Figure 6.27: Photos showing the setup used for measuring image distance so versus object dis-
tance si of the reimaging lens. The reimaging lens is a Nikon F-mount 50 mm f/1.4 camera lens
with its focus ring set to the minimum focus distance. The image on the right shows the imaged
ruler section used for determining the location of the image plane as well as magnification, via
the image size Dimage, over a set of distances.

fitting Eq. 6.6 to the data, with ho and hi as the fitting parameters, as shown in Fig. 6.28a. The

result is ho = 10.5 mm and hi = 51.47 mm. These values were also used to calculate M using

M = (si + hi)/(so + ho) and plotted against the data points in Fig. 6.28b.

Figure 6.28: Plots of a) the image distance versus object distance datasets taken over two different
days along with a fit over the combined dataset and b) same as a) but with the magnification
measurements included.
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The conclusion based on the previous discussion is that the total light collection efficiency

ϵ of the reimaging system has a one-to-one relationship with the magnification M of the imaging

setup (via their mutual relationship with so and si). Figure 6.29 shows that ϵ increases with M

up to a certain value (M ∼ 2) after which no more efficiency can be gained from increasing

the magnification. This can be understood intuitively from the fact that the magnification is

proportional to the image distance, which is inverse related with the solid angle entering the

streak camera slit such that at a sufficient image distance, all of the light is collected by the streak

camera input optics and none is lost to overfilling. Meanwhile, the light from the fiber end, which

is placed close to the lens, are completely captured by the lens.

Figure 6.29: Plot of the overall efficiency versus magnification from the dataset as well as the
curve based on the fit parameters. The overall efficiency is a function of si and so via ϵ = ϵ1(so)×
ϵ2(si) as is the magnification (M = (si + hi)/(so + ho), where hi and ho are fit parameters). The
requirement that the image is in focus provides a constraint between si and so.

The choice of M is limited by size of the fiber array and the length of the streak camera

input slit (∼ 17 mm), which would clip the image of the fiber array if the magnification is too
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large. The fiber array consisted of the four flat cleaved fiber ends oriented horizontally in order to

produce individual streaks in the final streak camera image. The spacing of the fibers needed to

be small enough in order for the magnified image to fit within the streak camera input slit, while

large enough where light from one fiber does not bleed into another. This was accomplished by

designing a support consisting of a block of material with through holes just large enough for the

fibers to be threaded. The initial prototype involved a 3D printed support as well as right angle

clamps (normally used for post holders) used for cinching the jacketed portion of the fiber via

bubble wrap, as shown in Fig. 6.30. The right angle clamps allowed the individual fibers to be

adjusted for focus.

Figure 6.30: Photo showing initial prototyping of a system for holding mounting multiple bare
fibers. A 3D printed block with ∼ 2 mm holes was used to position the bare fiber ends, while an
improvised cinching system consisting of right angle post clamps and bubble wrap over the jack-
eted (orange) portion of the fibers was used to position and secure the fiber ends longitudinally.

Later, the design was switched over to a 1 in. diameter cylindrical holder, which can be

mounted on a mirror mount for adjust-ability. The final mounting system, shown in Fig. 6.31,

consisted of an aluminum cylindrical holder mounted to a breadboard and block over which the
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jacketed portions of the fibers were lightly clamped.

Figure 6.31: Photos showing the final assembly used to mount the output fibers. The fibers were
secured using clamps over their jacketed regions, while the bare ends were threaded through ∼ 1
mm diameter holes drilled through a custom-machined 1” diameter aluminum disc designed for
compatibility with 1” optical mounts.

This mounting system was designed to be modular and easily integrated into the reimaging

system shown schematically in Fig. 6.32. A light tight shroud made of black construction paper
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and black anodized aluminum foil taped together was built to prevent ambient light from being

collected by the streak camera.

Figure 6.32: Diagram of the full assembly for output fiber mounting and reimaging. The Nikon
lens was mounted on an xy translation stage for position adjustment to reimage the bare fiber ends
at the object plane onto the streak camera input slit located at the image plane. This assembly
was put together, installed in front of the streak camera and covered in a light-tight shroud on
short notice, therefore a photo is not available.

The final reimaging system had a magnification of ∼ 1.7 as can be seen by the 1 mm size

images of the fibers, which are physically 600 µm in diameter, in Fig. 6.33. This would give a

f/# matching efficiency of about 50%. While a better efficiency may have been obtained from

additional fine tuning the reimaging system for a higher magnification, as there was apparently

more room in the slit for the imaged fibers, this was not done in the interest of time.
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Figure 6.33: Images of the reimaged fibers along with ambient light collected at the input slit of
the streak camera. The slit’s width and length were set at a) 1 mm and 18 mm, b) 3 mm and 18
mm, c) 5 mm and 18 mm, d) 5 mm and 15 mm, e) 5 mm and 10 mm, and f) 5 mm and 5 mm.

6.5.1 Signal Bleeding and Ghosting

With the fibers setup, data was taken in order to characterize the bleeding of light from

adjacent fibers as well as ghosting. Each fiber was individually illuminated to see these effects.

As can be seen from Fig. 6.34, the individual fiber signals have coronas with a rather substantial

extent ∼ 2 mm, as well as ghost images appearing at roughly lateral reflection about the centerline

of the image.
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Figure 6.34: Images of individual illuminated fibers and their of ghost images, captured by the
streak camera. The ghost images are roughly located at a position horizontally-mirrored across
the vertical bisector of the image and at a vertical distance higher than the center of the main spot
by about a spot radius.

As shown in the lineouts in Fig. 6.35, the illuminated fibers produced a flat top distribution

whose base extends 70-80 pixels (or 800 to 900 µm, based on the spatial calibration of 88 pixels

per mm), while the tails extend to 150-250 pixels (1.7 to 2.8 mm). The ghost images have peak

signals of 1% to 2% of the main signal peak and gaussian distributions whose base extends 75-

100 pixels (850 to 1100 µm).
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Figure 6.35: Plots of the lineouts of the illuminated fiber ends (top four images) and that of their
corresponding ghost spots (bottom four images). See Fig. 6.34 for the image over which the
lineouts were taken. The ghost spots peak at around a few hundred counts, while the main spots
peak on the order of a few 10’s of thousands of counts. The ghost spots therefore account for
∼ 1% of the main spots and can be ignored if the signal strength between different fibers are
within the same order of magnitude.

6.6 Measuring Temporally Resolved Signals with the Streak Camera

The streak camera’s function was to resolve time varying light signals at resolutions as

small as 10’s of ps. This is accomplished by first converting the light into an electron flux propor-
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tional to the light intensity at the photocathode via the photoelectric effect. The photoelectrons

are accelerated through the gap between a pair of sweep electrode plates, where they are diverted

in the transverse direction using a temporally ramped electric field produced by sweeping the

voltage applied to the plates. The swept electrons then hit a phosphor screen and converted to

light as they leave a fluorescent afterimage. This light is captured by a camera through an image

intensifier. A diagram of the streak camera components is shown in Fig. 6.36.

Figure 6.36: Diagram of components in a streak camera for converting temporal light signals
into streak images. Light incident on a slit is collected by input optics which reimage the slit
onto a photocathode. Photoelectrons are generated at the photocathode and accelerated through
the space between sweep electrodes. A temporally-ramped voltage across the electrodes causes
the passing electrons to disperse vertically as a function of time. The dispersed electrons strike a
phosphor screen, leaving a vertical streak whose vertical position is related to time. The image
of the streak is captured through an image intensifier by a readout camera. Four fibers imaged on
the entrance slit would result in four streaks in the readout image.

6.6.1 Streak Camera Timing

The streak camera (Hamamatsu C13410) timing system involves starting the sweep circuit

on the streak unit (C13410) at least 17 ns prior to the arrival of the laser pulse at the target chamber

center (TCC). The sweep circuit is normally held at a voltage that deflects electrons generated

from the photocathode from the phosphor screen and image area. Sweeping this voltage over
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time causes the electrons to hit the phosphor screen at a position correlated with time. A back

sweep is necessary to reset the voltage to the starting conditions, during which the photocathode

is automatically turned off to eliminate any conversion of light signal to electrons, and then turned

back on again after the back sweep is completed. The afterimage of the streak left on the phosphor

screen lasts on the order of milliseconds, during which fluorescent light is captured through an

image intensifier (V12303-10) by a readout camera (C13440-20CU).

The sweep circuit may be run at a predefined repetition rate or triggered externally. In our

experiment, it was triggered externally using a signal synchronized with the firing of the laser.

The streak camera also allows the photocathode gate to be externally triggered (Trigger mode) as

an alternate option to leaving it on (Normal mode). If the option to the leave the photocathode on

is selected, the photocathode will only turn off during the back sweep (as shown in Fig. 6.37).

Figure 6.37: Timing diagram for normal mode operation. The gate status corresponds to voltage
applied to the photocathode (active when open), while the streak trigger corresponds to the trigger
to the sweep circuitry, which begins the application of the temporally ramped signal to the sweep
plates (sweep waveform). After completing the sweep, the photocathode is deactivated and the
voltage across the sweep plates are swept back to the initial voltage level, ready for the next
trigger. Source: C13410 Instruction Manual.

To remove the capturing of light outside the time period of the desired streaked signal

associated with leaving the photocathode on, the trigger mode can be selected so that the photo-
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cathode is normally off and turns on only during sweep, including the period up to 10 us prior to

the sweep (depending on delay settings), and turned off prior to the back sweep (see Fig. 6.38).

While normal mode was used initially for diagnostics, we had later transitioned to trigger mode.

Figure 6.38: Timing diagram for trigger mode. The gate status, with ”open” corresponding to
the photocathode being active with voltage applied, in contrast to normal mode (Fig. 6.37), only
occurs during the short window between the gate trigger and the end of the main sweep (before
the back sweep). Source: C13410 Instruction Manual.

The trigger sources for the sweep circuit and photodiode gate are explained below. Variable

delay generators, as shown in Fig. 6.39, were used to allow the operator to adjust the delay to

find the value which matches the streak with the arrival of the light signal generated by the laser

pulse.
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Figure 6.39: Diagram of trigger network for the streak camera in the target area. The Stanford
and C1097-05 delay generators provided a fixed hardware controlled delay, while the C10647-10
Synchronous delay generator provided a trigger signal synchronized with the VEGA oscillator
from a photodiode. The synchronous delay generator triggers off of the first oscillator pulse
it sees after it receives a trigger from the laser trigger. The oscillator signal featured minimal
jitter compared to the laser trigger (explained in Fig. 6.41), thereby providing more precise and
stable trigger for the stream camera’s sweep electronics. The streak camera’s photocathode was
triggered by the laser trigger since its timing precision requirements were not as demanding as
the sweep electronics. The streak camera provides a delayed monitor out signal to trigger the
ORCA readout camera.

A synchronous delay generator (C10647-10) utilizes a coarse gate and fine gate to output a

low jitter trigger synchronized with the firing of the laser. The coarse gate receives a trigger that

is synchronized with the firing of each laser pulse. The available sources provided for this trigger

had jitters on the order of 350 ps, which would not be usable for fast streak speeds (e.g., 500 ps).

To reduce the jitter to a usable level, a signal from the mode-locked oscillator is sent to trigger

the fine gate. The synchronous delay generator outputs on the first oscillator pulse it sees after
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receiving a trigger to the coarse gate. The resulting jitter at the streak camera is then around 10

or 20 ps.

The low jitter signal sent from the synchronous delay generator is then sent to the jitter-

free C1097-05 delay generator, which can be controlled from a computer running Hamamatsu

software (HPD-TA) to allow the operator to scan different delay values to find the signal. The

streak camera provides a streak monitor out signal the is correlated with the timing of the streak

to trigger the readout camera. The streak monitor out was also read out alongside the oscillator

train, as shown in Fig. 6.40, to monitor the stability of the streak timing relative to the laser.

Figure 6.40: Scope image showing oscillator train and streak monitor out. The synchronous delay
generator (Fig. 6.39) triggers off of the first oscillator pulse it sees after it receives a laser trigger.
The streak monitor out is a signal synchronized with the laser trigger with some delay.

The signals for the triggers were generated in the laser bay as shown in Fig. 5. The os-

cillator signal comes from a fiber optic signal capturing the oscillator train, which has a 12.3 ns

roundtrip time (78.125 MHz repetition rate) and sent to a photodiode. An FPGA-based device

converts the oscillator signal into TTL clock signals of three different frequencies: 78.125 MHz
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(same as the oscillator, 10 Hz, and 1 Hz. These TTL signals are distributed to five sites, each con-

sisting of an FPGA-based delay generator, along the laser line for triggering various equipment.

One such site is dedicated to triggering the VEGA-3 laser, including its Pockels cells. This is the

site from which two triggers, synchronized with the firing of the laser, were provided for use in

the target area (TA). The first of such triggers, which we call V3-1, is derived from the previous

pulse during 1 Hz operation, and then delayed by about 800 ms, in order to provide a trigger that

is sent earlier by 200 ms relative to the Pockels cells for triggering slow devices operating with

the next pulse. The second of the triggers, which we call V3-2, is sent simultaneously (i.e., within

a few hundred ns) with the firing of the Pockels cells. The exact delay timing of these triggers

are shown in the inset table in Fig. 6.41 and their wave forms are shown in Fig. 6.42.

Figure 6.41: Diagram of the trigger sources in the laser bay. The signal from th oscillator (78.125
MHz) was sent to a FPGA-based frequency divider to generate 1 Hz, 10 Hz, and 78.125 MHz
TTL outputs. These outputs were sent to an FGPA-based delay generator, which provide delayed
1 Hz outputs to the Pockels cells as well as to the laser bay. One such outputs, which we call V3-
1, was a signal derived from the previous pulse (when operating in 1 Hz) with an added delay.
Another output, which we call V3-2, was a signal derived from the current pulse and given a
delay to closely match the timing to the output to the Pockels cell.
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Figure 6.42: Scope image showing two triggers synchronized with the laser shots, CH2: V3-
2 (blue) and CH4: V3-1 (green). These triggers are explained in Fig. 6.41. The V3-1 signal
was initially used to trigger the synchronous delay generator for streak camera, but resulted in
occasional jumps of 12.8 ns (one oscillator period) in the streak camera timing (see Fig. 6.43).
When the V3-2 signal was used to trigger the synchronous delay generator, it resulted in no
observed jumps.

During the testing of the streak camera, we had found that using V3-1 as the coarse trigger

for the synchronous delay generator resulted in occasional jumps in the streak camera timing by

one oscillator cycle (12.8 ns). Switching to using V3-2 for the coarse gate virtually eliminated

this problem. Although we did not fully diagnose the cause, this was likely due to the arrival of

V3-1 coinciding closely in time with the edge of an oscillator pulse, such that a small drift in

time (a few ns) would result in an adjacent oscillator pulse being chosen for the fine trigger. The

trigger V3-2 likely arrived far enough from the edge of an oscillator pulse that its drift was not

enough to pass the edge.

In order to monitor the trigger stability, the signals from V3-1, V3-2, and the oscillator train

were monitored with oscilloscopes. Additionally, the streak camera provides a streak monitor
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output (STRK MON) signal correlated in time with the streaking of the camera and a photodi-

ode was placed in the target chamber to capture the light from the laser when it reaches TCC.

These were also monitored with oscilloscopes. As such, the drift and jitter in the relative time

differences between these signals were monitored shot-to-shot. At finer time scales, the streaked

images at 0.5 ns streak times were used to determine the shot-to-shot jitter.

Figure 6.43: Streak camera images captured manually subsequently in time showing the evidence
of jitter with jumps between adjacent oscillator pulses in the laser bay. The jump is 12.7 ns, which
is consistent with the oscillator repetition period. The jumps occurred while the V3-1 signal
(explained in Fig. 6.41 and Fig 6.42) was used as the laser trigger for the synchronous delay
generator for the streak camera, and was removed upon switching to the V3-2 signal. Bottom:
Temporal profiles averaged around the signal region for the two images shown in the top row.
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Figure 6.44: Centroids averaged over the four fiber detectors from the streak camera images at a
500 ps streak duration, taken during the live runs of the angular RTS scans at different energies.
See, for example, Fig. 6.48 of a streak image with a 500 ps duration. The data points show
stability in the streak camera signal throughout the live RTS measurements.

In order to determine the settings needed to capture the streaked image of the light produced

when the laser pulse arrives at TCC, which we call t0, we ran the VEGA-3 laser at low powers (3

mJ) in atmospheric pressure order to produce light from air breakdown. This light is captured by

the streak camera running at streak mode, at subsequently smaller streak durations with the delay

adjusted to keep the streak signal centered, until it can be seen at the smallest streak duration, 0.5

ns. This delay setting was then used as the starting point for finding the RTS emission during the

high power, live laser shots in vacuum.
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Figure 6.45: Streaked images from air breakdown from the laser at low power (3 mJ) at different
streak times. Evident from the images, the air breakdown has a temporal duration of ∼ 1 ns,
which only begins to be resolved at the 5 ns streak time and lower. The second strong pulse in
the image with a 20 ns streak time occurring ∼ 10 ns after the initial signal was likely due to
reflection from the chamber walls, consistent with the distance traveled by light over 10 ns (3 m)
being on the order of the chamber dimensions. Images were taken on 03/25/2022.
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Figure 6.46: Streaked images from 6 J laser interaction with gas on (800 mbar reservoir pressure)
at different streak times. The RTS signal begins to be temporally resolvable at 2 ns streak times,
and is fully contained within the 500 ps streak time image, showing a signal duration of ∼ 300
ps. Images were taken on 03/25/2022.

During streak mode operation, each streak duration has a different delay value needed for

the streak camera to capture the same point in time. Hamamatsu has a table of recommended de-

lay offsets for each streak duration relative to the delay for the 500 ps streak duration. During the

experiment, these delay settings were used as starting points and adjusted as necessary to find the

time of light emission of interest. Both the manufacturer recommended delays and experimental

delays are shown in Table 6.4.
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Sweep Duration [ns] Spec Sheet Delay [ns] ∆ [ns] Experimental Delay [ns] ∆ [ns]
100 279

121
110.6
16.3
13.4
15.7
1.9
0.1

585.0
0.0
3.0

16.0
13.6
13.9
1.9
0.1

50 158 585.0
20 47.4 588.0
10 31.1 604.0
5 17.7 617.6
2 2.0 631.5
1 0.1 633.4

0.5 0 633.5

Table 6.4: Table of delays (from Hamamatsu spec sheet as well as experimental settings, recorded
on 3/23/2022) versus sweep duration. The experimental delay is defined as the sum of the delay
produced by the three delay generators between the laser trigger and the streak camera needed to
observe the RTS signal, though not necessarily have the signal centered. It can be observed that
the difference in delay, ∆, between sequential sweep duration settings for both the Hamamatsu
recommended delays and the experimental delay settings are the same at 2 ns sweep time and
smaller (highlighted in bold). At higher sweep times, it was not necessary for the experimental
delay to be adjusted substantially to observe the RTS signal.

There are multiple factors determining the temporal resolution of the streaked fiber system:

1. The size of imaged fiber face on the readout camera

2. Dispersion in the fiber

3. Temporal dispersion in the streak camera optics and electronics

The size of the image fiber face at the readout camera while the streak camera is in focus

mode and slit is open affects the temporal resolution in that light captured at the streak camera

input during an instant in time, will have a temporal full-width at half maximum (FWHM) during

streak mode given by:

∆tim =
Dpix∆tstrk

1016
(6.7)

where Dpix is the imaged fiber diameter in terms of pixels, ∆tstrk is the streak time, and
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1016 is used as the vertical image resolution. The full-width at half maximum diameter of the

image of the fiber is about 60 pixels, corresponding to 30 ps when the streak camera is set to 500

ps streak mode.

Figure 6.47: Image of fiber face on the readout camera in focus mode, as well as a vertical lineout
of one of the fiber spots. In focus mode, the input slit of the streak camera is imaged directly
without temporally streaking the signal. The FWHM of the spot is ∼ 60 pixels, corresponding to
30 ps at 500 ps streak time.

As Thorlabs do not make measurements of the dispersion characteristics of their multi-

mode fibers, their suggestion was to calculate for modal dispersion as the dominating contributor

and add on a few ps to account for chromatic dispersion. Modal dispersion, which is the path

difference of the fiber for rays incident at the maximum acceptance angle compared to a normally

incident ray, is given roughly by [98]:

∆tdisp =
L× NA2

2ncorec
(6.8)

which is about 221 ps for parameters based on the experiment, with L = 4 m, NA = 0.22,

and ncore = 1.46. Combined with chromatic dispersion effects contributing another few ps, a
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10 second light pulse, corresponding to the laser pulse transit time over the fiber detector’s 3

mm field of view diameter, would result in a ≈ 235 ps signal at the end of the fiber output face.

Parameters of the streak tube which contribute to the temporal resolution include space charge

repulsion of electrons, as well as longitudinal components of momenta added to swept electrons

by the real (nonideal) sweep electrodes.

6.7 Experimental Procedure

The first day of data acquisition for the high resolution RTS angular distribution took place

on 03/28/2022. During this day, the laser operated at full power, single-shot, with an on-target

energy of 20.5 ± 0.2 J. This was lower than the typical 23 J energy on-target provided by the

VEGA-3 laser due to a failure in an amplifier for one of the pumps to the main amplifier, re-

sulting in a shutdown of that pump for the day. The AARC was rotated at 5◦ increments from

θArc = −55◦ to 20◦, where θArc = 0◦ corresponds to the central detector on the side arc ori-

ented perpendicular to the laser beam, and θArc = −90◦ corresponds the central detector looking

head on at the incoming beam. At each position, 10 − 12 acquisitions of the signal and 3 − 4

acquisitions of the background (gas nozzle off) were typically taken.

The second day of data acquisition for high resolution RTS angular distribution was 03/30/2022.

Three energies were used: 9.01 ± 0.07 J, 5.78 ± 0.05 J, and 1.90 ± 0.05 J. As with the angular

scan at 20.5 J on the previous RTS acquisition day, angular scans from θArc = −55◦ to 20◦ at

5◦ increments were performed at each of the three energies, taking typically 4 − 6 signal acqui-

sitions and 2 − 3 background acquisitions per angle. For these lower energies, however, rather

than running at single-shot, each acquisition consisted of 8-shot bursts at 1 Hz. Data capturing
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the pulse energy and duration for both days are summarized in section 6.1.4.

6.8 Results and Analysis

In the end, 164 signal and 48 background runs were used in the analysis for the 20.5 J scan,

65 signal and 35 background runs for the 9.01 J scan, 95 signal and 33 background runs for the

5.78 J scan, and 159 signal and 48 background runs for the 1.90 J scan. A typical streaked image,

example shown in Fig. 6.48, consists of four streaks each coming from a different fiber detector.

Since only the F3 and F4 fibers were mounted on the side arc, whereas the F1 and F2 were on

stationary mounts, only the F3 and F4 detectors were used to determine the final results of the

analysis. Regions of interest (ROI) were chosen for streaked images to contain the F3 (red box)

and F4 (blue box) detector streaks, even with jitter taken into account. The regions of interest

were each 151 pixels in width and 813 pixels in height, corresponding to a duration of ∼ 400 ps.

The ROIs for the F3 and F4 detectors remain unchanged across signal and background and the

entire range of angular positions and laser pulse energies
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Figure 6.48: An example image of the streaked fibers (labeled from left to right: F1, F2, F3, F4)
taken with a streak duration of 500 ps. The red and blue boxes indicate the regions of interest for
the F3 and F4 fibers respectively, which were mounted on the side arc. The F1 and F2 fibers were
fixed and were not included in the analysis.

In order to obtain relative angular RTS values, a sum over the counts were taken over the

ROI and then divided by the total number of pixels, 122763. This value was then, for the days

in which 8-shot bursts per run were acquired, divided by 8. This value was averaged over the

different samples at the same angle for both the signal and background sets separately, and then

the averaged background was subtracted from the averaged signal for each angle to ultimately

get a value in the background-subtracted average counts per pixel per shot. Figure 6.49 shows

log scale plots of the background-subtracted signals and the resulting angular distribution data,

whose uncertainties are the standard errors (standard deviation divided by the square root of the

number of data points) of the set of signal and background images added in quadrature.
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Figure 6.49: Plots of the angular distribution measurement data taken at different energies for
both the F3 and F4 detectors in log scale. The sum over the region of interest of the signal minus
the average background is shown in a) while the the mean of the data points for each angle is
shown in b) with the standard deviation in the mean represented by the error bars.

One can immediately see that for all pulse energies used, a dip exists, bottoming at around

70◦, roughly consistent with the 2019 experiment. At a glance, any shift in the dip of the angular

distribution versus higher intensities is subtle at best, but there is a small shift between 5.8 J and

the higher energies of a few degrees. The angular distribution for 1.9 is too noisy for a dip to

be quantified, but the existence of a dip remains (note that there are some data points not visible

in the log scale, as they have negative values after background subtraction). Figure 6.50 shows

plots of the data in a linear scale along with parabolas fitted over the angular range of 50◦ to

90◦. As in the analysis for the 2019 experiment, the parabola fits were performed by minimizing

the χ2 value (see Eq. 5.5) by varying the three parameters defining the parabolic expression,

A(θi −B)2 + C, however, rather than using a uniform uncertainty averaged over all data points,

the individual computed uncertainties for each data point were used.
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Figure 6.50: Plots of the angular distribution data in linear scale at various pulse energies along
with parabolic fits over the data points in the angular range of 50◦ to 90◦. The pulse energies
include: a) 1.9 J, b) 5.8 J, c) 9 J, and d) 20 J, on target Due to the noise for the 1.9 J dataset, the
parabolas are not well defined over this angular region and the fits result in disagreeing parabolas.
The parabolas for 5.8 J, 9 J, and 20 J data set, however, are well defined.

Several parabola fits were done for each energy over various ranges of angles around the

dip. The results for the predicted dip angle, θmin, shown in Fig. 6.51a, show an overall, small

trend towards smaller angles with increasing energy, but not a monotonic relationship. The values

of θmin increased between 9.0 J and 20.5 J. This can be explained from the forward skewing in the

overall radiation, parameterized by Sf , defined as the ratio between the average of the background

subtracted signal data, S(θi), averaged over the angles 50◦, 55◦, and 60◦ (left of the dip) to the
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data averaged over the angles 80◦, 85◦ and 90◦ (right of the dip).

Sf =
{S(θi)|θi = 50◦, 55◦, 60◦}avg
{S(θi)|θi = 80◦, 85◦, 90◦}avg

(6.9)

The larger backward skewing exhibited by the distribution at 5.8 J would have shifted θmin toward

smaller values. Curiously, the distribution at 5.8 J shows as much, if not more forward skewing

as the distribution at 20.5 J, which are both larger than the skewing for the distribution at 9 J. In

other words, the data shows that the relative forward skewing of the radiation does not necessarily

monotonically increase with energy.

Figure 6.51: Plots of a) the parabola vertex position, θmin, from the fits to the angular distribution
data using various ranges of angles (details in Table 6.5) and b) the forward skewing factor, Sf ,
for each angular distribution dataset defined as the ratio between the average of the signals in the
angular range of 50◦ to 60◦ to that in the angular of of 80◦ to 90◦ (see Eq. 6.9).

Table 6.5 shows the results of the different parabola fits. Starting with a range of 50◦ to

90◦, which has n = 9 data points resulting in a degree of freedom of ν = n − 3 = 6, the range

was reduced one data point at a time until the range contained 5 data points from 60◦ to 80◦.

The fits at 1.9 J have θmin values that systematically vary between the F3 and F4 detector data

and are shown for reference only. The fact of the matter was that there was excess noise in the
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1.9 J data set exacerbated by leakage of photons in background images. For the 5.8 J, 9.0 J, and

20.5 J data sets, there was enough signal-to-noise where parabolas can be clearly defined over

the fitted regions. There were a couple of omitted outliers where the fits did not converge to a

parabola with a dip located between 50◦ and 90◦, but those were due largely in part to the fitting

process itself and not the data. With additional tweaking, the fits in these outliers could be made

to converge, but was not done out of interest in time.

Table 6.5: Summary statistical parameters of the fits to the angular distribution data, for various
angular ranges. Shown are the χ2 values define in Eq. 5.5 as well as the corresponding p values
for the degree of freedom η determined by the number of data points subtracted by 3. The values
for the fits which did not produce a parabola consistent with the dataset (for example, θmin that
were outside of the 50◦ to 90◦ range) are treated as outliers and left blank.

θrange [◦] 50− 90 50− 85 55− 90 55− 85 55− 80 60− 85 60− 80
ν 6 5 5 4 3 3 2

1.9 J, F3
χ2 28.9 28.9
p 1.00 1.00

θmin [◦] 62.5 63.1

1.9 J, F4
χ2 15.5 15.4 14.5
p 0.98 0.99 0.99

θmin [◦] 76.7 77.5 76.0

5.8 J, F3
χ2 2.10 1.75 1.70 1.54 1.54 1.41 1.40
p 0.09 0.12 0.11 0.18 0.33 0.30 0.50

θmin [◦] 72.6 72.9 72.8 73.0 73.1 73.2 72.9

5.8 J, F4
χ2 4.78 4.59 1.94 1.94 0.83 1.93 0.23
p 0.43 0.53 0.14 0.25 0.16 0.41 0.11

θmin [◦] 72.2 72.4 72.3 72.3 73.5 72.3 74.6

9.0 J, F3
χ2 4.93 1.39 4.93 1.03 1.02 0.40
p 0.45 0.07 0.58 0.09 0.20 0.18

θmin [◦] 68.9 69.2 68.9 69.1 69.0 68.2

9.0 J, F4
χ2 1.07 0.83 1.06 0.50 0.40 0.50 0.0.37
p 0.02 0.02 0.04 0.02 0.06 0.08 0.17

θmin [◦] 69.5 69.2 69.6 69.5 70.0 69.5 69.9

20.5 J, F3
χ2 9.24 3.63 3.62 0.41 2.31 0.27
p 0.84 0.40 0.54 0.06 0.49 0.12

θmin [◦] 72.3 70.8 70.8 70.0 70.3 69.9

20.5 J, F4
χ2 2.95 2.82 2.91 2.70 0.86 1.34 0.61
p 0.18 0.27 0.27 0.39 0.16 0.28 0.26

θmin [◦] 71.9 72.2 71.8 72.1 70.6 70.0 70.1
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6.9 Discussion and Conclusion

The results have shown that the dip in the angular distribution does not vary significantly

with the laser pulse energy (which correlates with the laser peak intensity and intensity distri-

bution). There is a dip that persists at around 70◦. For the detection setup used, operating the

laser at lower energies will at some point result in a signal-to-noise ratio too small to quantify the

dip. At the higher energy ranges, there was a very subtle shift in the dip towards lower angles.

The relative amount of forward scattering compared to backward scattering between the dip did

not show a clear trend versus the laser energy. As a laser intensity gauge, looking at the angu-

lar distribution along the E-k plane does not appear to be a viable method, at least not over the

energy ranges tested. It is be possible, however, that at even higher laser energies, that the dip

and/or the relative forward scattering will vary enough to observe a clear difference. Even then,

the requirement for the detectors to be precisely aligned, the expense and complexity of using a

streak camera, as well as the large number of shots needed to acquire sufficient sample sizes pose

significant practical limitations in this method.

The RTS angular distribution data taken during this experiment is still a new observation

of physics, and the results lead to the following questions:

1. What is the physics behind the existence of a dip at 70◦?

2. Why does the dip persist around 70◦ over an intensity range from 1019 to 1020 W/cm2?

The answer to the first question might possibly lie in the relative magnitudes of the longitudinal

and transverse momenta of the electron trajectory as it is scattered by the laser, combined with the

effects of relativistic beaming. The answer to the second question might be the RTS contributions
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overwhelmingly originating from the corona of the laser beam, rather than the peak. Perhaps

the choice of filtering the light over the range of 600 − 650 nm also resulted in a selection of

intensities and emission directions as a result of the Doppler effect, leading to a complicated

relation between the radiated light and the observed angular distribution.
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Chapter 7

Modeling Relativistic Thomson Scattering for Realistic Laser Beams

In Chapter 2, we discussed the physics of relativistic Thomson scattering mainly of an elec-

tron interacting with an electromagnetic infinite plane wave, and in a few instances considered

the case of a Gaussian temporal pulse. In Chapters 3 to 6, we presented the ultraintense laser

experiments conducted looking at the optical spectrum as well as the angular distribution of radi-

ated light produced from RTS and discussed their results which found that the onset wavelength

in the spectrum is sensitive to the laser intensity, whereas the location of the dip in the angular

distribution is not. This chapter is intended to expand upon Chapter 2 by discussing the physics

of RTS due to a focused laser beam and explain some of the observations made from experiments.

7.1 Gaussian Beams

The simplest example of a focused beam is the Gaussian beam which may be derived by

taking the paraxial approximation to the scalar wave equation. The intensity distribution in space

is given by [99]:

I = I0
w2

0

w2(z)
exp

[
−2

(
r

w(z)

)2
]

(7.1)

where w0 is the beam waist, w(z) =

√
1 +

(
z
zR

)2
is the beam radius at z, and zR =

πw2
0

λ
is the

Rayleigh length. The complex fields are given by [100]:

ψ(x, y, z) =
C

w(z)
exp

[
ik
x2 + y2

2R(z)
− iϕG(z)−

x2 + y2

w2(z)

]
(7.2)
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where C is a constant equal to the peak field amplitude, R(z) = z + z2R/z is the radius of

curvature and ϕG(z) = tan−1(z/zR) is the Guoy phase. One might make the interpretation that

the real fields are obtained by taking the real part of the complex fields, and in the case of linear

polarization, that the field lies entirely along what is defined as the direction of polarization. This

is approximately correct to first order. There are, however, additional components in the exact

fields if one were to impose consistency with Maxwell’s equations, which is addressed in the next

section.

7.2 Maxwell-Consistent Fields

The Erikson-Singh model [101] provides a method to calculate Maxwell-consistent fields

based on a given paraxial wave solution, ψ(x), defined such that the propagating wave solution

is ψ(x)ei(kz−ωt), and x ≡ xx̂ + yŷ + zẑ is a position of the field in space. The fields from the

Erikson-Singh model is given by:

E(x, t) = E0

[
x̂+

ŷ

2k2
∂2

∂x∂y
+
iẑ

k

∂

∂x

]
ψ(x)ei(kz−ωt) (7.3)

B(x, t) = B0

[
x̂

2k2
∂2

∂x∂y
+ ŷ +

iẑ

k

∂

∂y

]
ψ(x)ei(kz−ωt) (7.4)

where ψ(x) describes the spatial dependence of the wave amplitude, and may take on the form

of spatial modes (e.g., Hermite-Gaussian or Laguerre-Gaussian modes). For the purposes of this

thesis, we consider primarily two forms for ψ(x): the standard Gaussian profile (known as the

TEM0,0 mode, given in Eq. 7.2), and the Laguerre-Gaussian p = 1, l = 0 (LG1,0) mode [102],

given by:
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(7.5)ψ(x) =
C

w(z)

[
1− 2(x2 + y2)

w2(z)

]
exp

[
i
k(x2 + y2)

2R(z)
− i3ϕG(z)−

x2 + y2

w2(z)

]

where C is a constant, zR is the Rayleigh range, w(z) is the beam radius, and ϕG(z) is the Guoy

phase defined for the Gaussian mode in the prior section. The LG1,0 mode can be used to simulate

profiles containing a strong primary Airy ring.

It can be seen from Eq. 7.3 and 7.4 that the electric and magnetic fields will have longitu-

dinal components (along ẑ) proportional to a first spatial derivative and orthogonal components

proportional to a second mixed spatial derivative in ψ(x).

7.3 Ponderomotive Scattering

A focused beam having a spatial dependence on its field amplitude means that an electron

would see varying field strengths as it oscillates. The gradient it sees implies that the electron

experiences a stronger field strength in one side of its oscillation compared to the other side,

resulting in ponderomotive motion towards regions of lower intensity.

For low intensities, the ponderomotive force can be derived by considering the ponderomo-

tive energy, Up, of an electron oscillating in a laser field where the magnetic field is negligible,

as described in section 2.2 on linear Thomson scattering. The position is given in Eq. 2.6 by

r(t) = e
mω2E(r, t) so that the ponderomotive energy, defined as the average potential energy in

the system over a cycle, can be written as:

Up =
1

2
mω2|r(t)|2 = 1

2

e2

mω2
|E(r, t)|2 = e2E2

0(r)

4mω2
(7.6)

where E(r, t) = E0(r) cos(ωt) and E0(r) is the electric field amplitude at position r. The pon-

249



deromotive force is defined as Fp = −∇Up so that:

dp

dt
= − e2

2mω2
∇|E|2= − e2

4mω2
∇E2

0(r) (7.7)

where p is the slow component of the momentum, i.e., p = p̃+p, with p̃ being the fast (oscilla-

tory) component. Equation 7.7 states that the ponderomotive force is proportional to the intensity

gradient (oriented from higher towards lower intensity).

The ponderomotive force for relativistic intensities is not as straightforward to derive, how-

ever, such derivations have been carried out [103–105] and a concise summary given in [106].

Furthermore, numerical calculations have been performed in [104] using their derived expression

to establish agreement with integration of the full Lorentz force. This expression is presented

below with a caveat that it was derived assuming λ0 = 1 µm, w0 = 10 µm, and ∆t ∼ 300 fs:

dp

dt
= − e2

2mγ
∇
∣∣∣Ã⊥

∣∣∣2 (7.8)

Here Ã⊥ is defined to be the component of A which includes the fast oscillations and γ is the

average Lorentz factor of the particle trajectory. The difference between Eq. 7.8 and 7.7 is

whereas the nonrelativistic expression involves a gradient of the spatial envelope, the relativistic

expression involves the gradient of the time-average of the oscillatory field, along with a factor

of γ in the denominator resulting in a suppression of the ponderomotive force. It can be argued

that for a pulse that is not too short (as would be the case for the 300 fs condition used in the

paper), that
∣∣∣Ã⊥

∣∣∣2 ≈ ∣∣12A⊥
∣∣2, where A⊥ is simply the spatial envelope of the traveling pulse. In

this regime, the factor γ may be approximated by adding in quadrature the slow (total) and fast
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(transverse, time averaged) components of the momentum, namely:

γ ≈
√

1 +
|p|2
m2c2

+
a2(t, r)

2
(7.9)

where, a(t, r) is the value of the normalized vector potential at position r at time t, and is related

to the fast component of momentum via conservation of canonical momentum, p̃⊥ = eÃ⊥, so

that:

|p̃⊥|2

m2c2
=
e
∣∣∣Ã⊥

∣∣∣2
m2c2

≈ 1

2

e
∣∣A⊥

∣∣2
m2c2

=
a2(t, r)

2
(7.10)

To show the effects of ponderomotive scattering, we take an approach similar to [58] using

a simple Gaussian distribution in the laser field (Eq. 7.2) so that the electric field is polarized

along x̂ without any orthogonal or longitudinal components. In other words, we replace the

definitions of the electric and magnetic fields from the equations of the plane wave modified with

a Gaussian temporal pulse envelope in Eq. 2.78 and 2.79 with ones that include a Gaussian spatial

mode:

E = E0 cos

[
kz − ωt+

kx2

2R(z)
− ϕG(z)

]
w0

w(z)
exp

[
− x2

w2(z)

]
exp

[
−(kz − ωt)2

τ 2

]
x̂ (7.11)

B =
E0

c
cos

[
kz − ωt+

kx2

2R(z)
− ϕG(z)

]
w0

w(z)
exp

[
− x2

w2(z)

]
exp

[
−(kz − ωt)2

τ 2

]
ŷ (7.12)

where R(z) = z +
z2R
z

is the phase-front radius of curvature and ϕG(z) = tan−1
(

z
zR

)
is the

Gouy phase. The electron path of motion can then be calculated as usual using the Lorentz force

differential equation. This is done for electrons in the E-k plane for various values of a0 and

plotted in Fig. 7.1.
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Figure 7.1: Plots of the electron motion born at z(t0) = 0, y(t0) = 0, and various locations in
x(t0) from x(t0) = 0 to x(t0) = w0, where w0 = 20 µm for a0 values of 1 (a and e), 2 (b and f),
and 3 (c and g). The electron is born prior to the arrival of the pulse (t0 → −∞) for a-c and born
at the peak of the pulse (t0 = 0) for e-g.
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The results show increased ponderomotive scattering relative to the forward drift along

with an overall diminished relativistic Thomson scattering as the electron is born further away

from axis. At some critical distance from axis, x0,c ∼ w0/2, the Gaussian function reaches and

inflection point so that the change in intensity gradient vs. x increases towards 0. As a result, the

effects of ponderomotive scattering tapers off beyond x0,c.

When the fields described by Eq. 7.11 and 7.12 are used to calculate the motion of an

ensemble of electrons in 3 dimensions, the result is that the electron is only ponderomotively

scattered with a component along the x direction, and never along the y direction, even if the

electron is born at a location offset along y from the z axis, as shown in Fig. 7.2c and d. This

turns out the be inaccurate, and that the real scattering electron distribution is affected by the

longitudinal fields described by Erikson-Singh, which results in the scattering also having a y

component, and a distribution over a cone. The Erikson-Singh model may be simplified, accord-

ing to [107], and taking terms up to first order in 1/Z:

EES = E0

(
x̂− i

x

Z
ẑ
)
ψ(x)ei(kz−ωt) (7.13)

BES =
E0

c

(
ŷ − i

y

Z
ẑ
)
ψ(x)ei(kz−ωt) (7.14)

where Z = zR + iz. After multiplying by the temporal envelope, exp[−(kz − ωt)2/τ 2], and

evaluating the real part, we find that the x component of EES and y component of BES are the

same as Eq. 7.11 and 7.12; the longitudinal components along z, which are 90◦ out of phase with
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the transverse components, and are given by:

EES · ẑ = E0

(
xzR

z2R + z2

)
sin

[
kz − ωt+

kx2

2R(z)
− ϕG(z)

]
× w0

w(z)
exp

[
− x2

w2(z)

]
exp

[
−(kz − ωt)2

τ 2

]
(7.15)

BES · ẑ =
E0

c

(
yzR

z2R + z2

)
sin

[
kz − ωt+

kx2

2R(z)
− ϕG(z)

]
× w0

w(z)
exp

[
− x2

w2(z)

]
exp

[
−(kz − ωt)2

τ 2

]
(7.16)

Including these components in the numerical solutions of the Lorentz force ODE results in the

expected cone scattering behavior as shown in Fig. 7.2e and f.

254



Figure 7.2: Plots of a traveling focused pulse (w0 = 20 µm, a0 = 2) and the resulting scattered
electrons born at focus. The traveling pulse, a), at various time snapshots are superimposed,
where the lightest pink shaded region are the surface contours corresponding to I/I0 = 10−100.
The pulse at focused is shown in b). The pulse up to 2w0 is shown along with the paths of an
ensemble of 1000 electrons calculated using the simple Gaussian model (Eq. 7.11 and 7.12) in c)
along with a close up in d) and those for the Erikson-Singh model in e) and f).
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7.4 Plane Wave Solutions Convolved with Gaussian Laser Distribution

In order to account for the laser’s intensity distribution in space and its effect on the RTS

radiation, as observed by a detector in an experiment, it would be necessary to sum up the contri-

butions of a large number of electrons born throughout the focal region. This becomes a complex

and computationally expensive ordeal. There is still knowledge to be gained about how the inten-

sity distribution in space of a focused beam itself determines the overall radiated angular distribu-

tion. As the peak intensity of a beam increases, so does the region in the corona where electrons

are accelerated to relativistic speeds and contribute to RTS radiation. This can be accounted for

without including ponderomotive effects using the approach described in [59].

This approach involves convolving plane wave results of RTS radiation over a range of

normalized vector potential values, a, with a weight distribution calculated from the spatial dis-

tribution a(r). The quantity a is not to be confused with a0, which in the current context is defined

as the normalized vector potential at the peak of the distribution. To be precise, a Gaussian beam

has a spatial distribution given by:

a(r) = a0
w0

w(z)
exp

(
− r2

w(z)2

)
(7.17)

and when written in terms of coordinates normalized to the Gaussian beam parameters becomes:

a(r) = a0
1√

1 + ξ2
exp

(
− ρ2

1 + ξ2

)
(7.18)

where ξ ≡ z/zR and ρ ≡ r/w0. In this approach, we ignore the temporal pulse shape, which is
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adequate for our purposes considering that, to a reasonable approximation, electrons sample the

entire intensity distribution in space at the peak of the pulse as it propagates.

The weight associated with a value of a over an interval size ∆a ≡ a2 − a1 is proportional

to the volume in space, ∆V , containing the interval of a values ∈ [a1, a2]. We may define a ≡ a1

and a2 = a + ∆a, for example. Conveniently, Eq. 7.18 provides the spatial dependence of a(r)

in cylindrical coordinates, so that ∆V can be defined as a difference in the solids of revolution

of the two volumes bounded by the surface contour defined by a1 and a2 respectively. In other

words:

∆V

∆a
(a; a0) =

1

∆a

∣∣∣∣∣
∫ ξmax,2

−ξmax,2

πρ2(a2, ξ; a0)dξ −
∫ ξmax,1

−ξmax,1

πρ2(a1, ξ; a0)dξ

∣∣∣∣∣ (7.19)

where ρ(a, ξ) is a function that can be derived by solving Eq 7.18 for ρ:

ρ(a, ξ; a0) =

√
−(1 + ξ2) ln

(
a

a0

√
1 + ξ2

)
(7.20)

and ξmax,i is the positive endpoint of the volume along the axis, which is determined by setting

ρ = 0 in Eq. 7.18 and solving for ξ:

ξmax,i =

√(
a0
ai

)2

− 1 (7.21)

Due to symmetry, the negative endpoint is simply −ξmax,i. Several contours are plotted using Eq.

7.20 in Fig. 7.3.
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Figure 7.3: Plots of a) contour lines and b) surface contours of constant a for a Gaussian spatial
distribution. The distribution is given by Eq. 7.18.

Since a(r) extends over all space and never reaches a value of 0, a cutoff value, acut, must

be established to prevent ∆V
∆a

(a; a0) from blowing up. As in [59], we choose acut = 0.01, which

corresponds to ∼ 2× 1014 W/cm2 just above the first appearance intensity of Nitrogen. Equation

7.19 was intended to be determined numerically, with an appropriate choice in the size of ∆a,

which defines a total number of a values, Na, from acut to a0, that is, Na = ceil(a0−acut
∆a

), where

ceil() is a MATLAB function for rounding the argument to the next whole integer. After some

trial an error, we have determined that ∆a ≲ 10−5 is required for ∆V
∆a

(a; a0) to converge as ∆a is

varied for a0 up to 10. The computed functions of ∆V
∆a

(a : a0) are plotted in Fig. 7.4 for a0 from

1 to 10.
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Figure 7.4: Plots of the weight distributions, ∆V
∆a

(a; a0), calculated numerically for various values
of a0. The weight distributions are given by Eq. 7.19. A value of ∆a = 10−5 was used in the
calculation.

It can be seen from Fig. 7.3 and 7.4 that as a decreases relative to a0, the total volume

containing a fixed ∆a interval increases quite dramatically. Going from the peak towards lower

intensities, the surface contours begin as ellipsoids and transitions to a peanut or dumb bell shape.

The next step would be to calculate the plane wave angular distributions from the analytical

formulas in [55] (Eq. 2.104) for each value of a for a given volume-weight distribution at a0,

multiply with the corresponding weight, and sum the results. Since a value of ∆a = 10−5

was used to determine the volume-weight distributions, the number of data points in for a given

distribution in the a0 = 1 to 10 range is on the order of 105 to 106. Therefore, to make calculations

time efficient, it would be necessary to interpolate over the ∆V
∆a

(a; a0) curves and obtain a smaller
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sample of N ∼ 100 points. Suppose we have a list of of a values, ai ∈ [acut, a0], such that ai and

ai+1 are equally spaced for all i. The distribution in the total number of emitted RTS photons in

the nth harmonic per unit time per unit solid angle, dΓ
(n)
tot

dΩ
, can then be written as a weighted sum

of the plane wave RTS distributions at intensity ai,
dΓ

(n)
pw

dΩ
, with ∆V

∆a
as the weights:

dΓ
(n)
tot

dΩ
(θ, ϕ) =

N∑
i=1

dΓ
(n)
pw

dΩ
(θ, ϕ; ai)×

∆V

∆a
(ai; a0) (7.22)

Here, the photon rate per unit solid angle, dΓ
dΩ

, is used instead of the power per unit solid angle, dP
dΩ

.

For plane wave solutions, they are related by a division in the radiated photon frequency h̄ω =

nh̄ω0

[
1 + 1

2
a20 sin

2(θ/2)
]
, so that distribution of higher frequencies being forward scattered due

to Doppler effect, thus contributing to higher power in the forward direction, is canceled out:

dΓ
(n)
pw

dΩ
=

1

nh̄ω0

[
1 + 1

2
a20 sin

2(θ/2)
] dP (n)

dΩ
(7.23)

Figure 7.5 shows the result of using Eq. 7.22 to calculated the second harmonic emission (n = 2)

for plane wave solutions convolved with the Gaussian distribution for a0 = 1 to 6. Furthermore,

the same is plotted of angular distribution in the E-k plane in Fig. 7.6 for a0 = 1 to 10.
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Figure 7.5: Plots of the total angular distribution of photons rate per unit solid angle in the second harmonic, dΓ
(2)
tot

dΩ
, calculated from

the weighted sum of plane wave solutions. The weighted sum is given by Eq. 7.22, where the weights are derived from the intensity
distribution in space of a focused Gaussian beam (Eq. 7.19). The plots include calculations for various values of a0: a) 1, b) 2, c) 3, d)
4, e) 5, and f) 6.
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Figure 7.6: Plots of the total angular distribution of photon rate per unit solid angle in the second

harmonic, dΓ
(2)
tot

dΩ
, from calculating the weighted sum of the plane wave solutions looking along the

E-k plane. In other words, the E-k plane is along ϕ = 0 in Fig. 7.5. The weight sum is given
by Eq. 7.22), where the weights are derived from the intensity distribution in space of a focused
Gaussian beam (Eq. 7.19). The calculation is done for a0 from 1 to 10.

The results of these calculations show that when the intensity distribution in space is con-

sidered - rather than just the peak intensity - the overall angular distribution has a dip which does

not vary significantly with a0. The electrons scattering at the corona of the laser experience RTS

at lower intensities. Since the size of the corona grows with a0, the overall effect is that the dip

is not as sensitive to a0 as the plane wave models alone predict. This provides an explanation for

the experimental observations described in Chapter 6 in the 2022 experiment where the dip did

not shift very much with the pulse energy delivered to the target.

There are more details that may be added to this approach to further refine the model.

For one, in the experiment, the field of view was limited to a diameter of ≈ 3 mm, whereas the
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calculation was performed for as far as the contour for acut = 0.01 extended. Another detail is that

in the 2022 experiment, measurements were made in the 600 to 650 nm band, which, considering

the relationship between radiated frequency and scattering angle due to the the Doppler effect

(Eq. 2.88), provides an angular bandpass filter for every value of a, and would likely change the

overall angular distribution. At sufficiently large values of a0, the third and higher harmonics

would begin to enter the 600 to 650 nm band. Lastly, the appearance intensities for various gas

species may be included as a modification to the weight distribution. All of these details add

complexity to the model, and would require careful consideration in order to be implemented.
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Chapter 8

Conclusion

8.1 Summary of Thesis

We began with the premise that the growth in the number of ultraintense lasers worldwide

created a need for laser diagnostics which have not kept up with the development of powerful

lasers. Current methods of characterizing the intensity at focus are done by either sampling a

leaked portion of the beam or performing measurements at low power and subsequently assuming

such measurements hold at full power. This thesis explored the feasibility of using relativistic

Thomson scattering (RTS) as an in situ intensity gauge for the focus of ultraintense lasers (I ≳

2×1018 W/cm2) as well as the physics of RTS at such intensities, of which few experiments have

been conducted.

In Chapter 2, we discussed the physics of RTS, introducing the normalized vector potential,

a0, as a parameter representing laser intensity and covered the equations of motion as governed by

the Lorentz force as well as the radiation produced by the relativistic electron. We discussed how

the measurement of the second harmonic spectrum looking specifically at the Doppler-shifted

onset wavelength, λr, can be used to measure the laser’s peak intensity. We also discussed the

angular distribution and showed that the presence of a dip in the E-k plane shifting towards the

laser propagation direction, k, as a0 increases motivated experiments in measuring the angular

distribution.

In Chapter 3, we presented an overview of the experiments conducted at CLPU in mea-
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suring the features of RTS deemed promising as diagnostics of the laser intensity. The spectrum

measurements of the second harmonic emission of RTS were performed using the VEGA-2 300

TW laser in the 2018 experiment discussed in Chapter 4, which showed that the onset wavelength

did, in fact, vary as the laser pulse energy delivered to the target was changed in a manner that

agreed with indirect estimates of the peak intensity.

Measurements of the angular distribution were performed in the 2019 and 2022 experiment

discussed in Chapters 5 and 6 respectively. In the 2019 experiment using the VEGA-2 laser, we

showed that there is a dip which exists in the E-k plane which appeared to shift forward with

laser energy; however, due to noise and limited angular resolution, it was not conclusive whether

or not the location of the dip moved at all. In the 2022 experiment using the VEGA-3 laser,

measurements of the angular distribution was done more carefully, achieving 5◦ resolution, larger

statistical samples, and reduction of plasma recombination light by using a streak camera which

provided temporal gating down to ∼ 300 ps in duration. This experiment showed that the dip

hardly moved at all with the laser energy.

In Chapter 7, we discussed the properties of RTS for the case of focused beams, which

necessarily introduces a spatially dependent intensity profile. One consequence is the pondero-

motive scattering of an electron over time from regions of higher to lower intensity proportional

to the intensity gradient. Another is the fact that the corona region, in which electrons are scat-

tered relativistically, grows with a0. Since there are a greater number of electrons that experience

scattering at lower intensities in the corona than at the peak, they contribute significantly to the

overall radiated angular distribution. A model convolving plane wave solutions with the intensity

distribution in space shows that the dip in the angular distribution should not be very sensitive to

a0, in stark contrast to the results from the plane wave models alone.
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8.2 Conclusions from Results

We have found that the onset wavelength, λr, of the second harmonic spectrum being sen-

sitive to the laser intensity makes a spectral analysis approach feasible in principle for charac-

terizing the laser intensity. This was tested for a 800 nm central wavelength laser with a 30 fs

temporal pulse duration and using a detector at (θ = 90◦, ϕ = 0◦). The spectral analysis of the

second harmonic may be suitable as an intensity gauge in the 1018 to 1019 W/cm2 range, although

further work will be required to fully verify this technique as a diagnostic tool.

For the approach measuring the angular distribution, we have found that the location of

the dip is not sensitive to the laser peak intensity. This may be due to the growing size of the

corona as a0 increases, where electrons undergoing lower intensity RTS contribute to the overall

angular distribution and suppressing the movement of the dip location. Furthermore, measuring

the angular distribution required multiple fiber detectors and numerous runs in order to capture

the signal at high angular resolution. It may also be necessary to utilize a streak camera in order

to gate out the the plasma recombination light to distinguish the weak RTS signal. With the

streak camera, the signal became too low to be reliable at pulse energies below about 2 J for a

measurement band of 600 to 650 nm. Overall, the angular distribution does not appear to be a

very viable approach for laser intensity characterization.
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8.3 Future Research Possibilities on RTS

8.3.1 Verification of Spectral Analysis of Second Harmonic

A natural path ahead following the conclusion of this thesis is to fully develop the spectral

analytical approach of measuring the second harmonic radiation. So far, we have verified sensi-

tivity of the onset wavelength, λr, to the laser intensity in the direction of (θ = 90◦, ϕ = 0◦) only.

This leaves a whole range of detection directions to be explored, such as (θ = 90◦, ϕ = 90◦),

where the emitted RTS radiation is stronger, as well as θ < 90◦, where theory predicts λr to be

less sensitive to the laser peak intensity, allowing for higher intensities to be characterized before

the second harmonic overlaps with the fundamental.

An important issue to address is the the fact that the spectral data that allowed us to observe

λr shifting with the delivered on target energy comes from a clipped portion of the beam (see Fig.

4.14b). The clipped portion included a captured beam length of ∼ 85 µm, which was not clipped

at the spectrometer input slit, given its orientation along the length of the slit (see Fig. 4.23). This

raises a number of questions:

1. Does the spectrum change if a larger length of the beam was capture?

2. Does the spectrum change if we were to scan spatially along the beam, capturing a clipped

portion of the beam?

3. We we really looking at the focal plane of the laser in our spectral data?

In regards to question 3, we believe that we measured at the laser focus, since we had aligned our

E∥-objective imaging system with a diode laser scattering off of the alignment tip. It is possible,
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however, that the focus of the real beam may have been outside of the field of view. On the

other hand, since the VEGA-2 laser was focused with f/13 geometry, the exact location of the

focus should not have been critical. Nevertheless, these are questions that future experiments can

address. Images of the spatial distribution of the laser, without spectral dispersion, may be taken

by turning the diffraction grating of the spectrometer to a reflector by setting it to 0th order.

Lastly, it may be worthwhile to study RTS from different gas species. Since different gas

species have different sets of appearance intensities, there will be differences in the radiated

light between species due to the varying effects of ponderomotive scattering on electrons born

at different points in time relative to the peak of the pulse, as well as different locations in the

spatial distribution of the laser. Whether and how these differences are consequential to the

detected radiation are questions yet to be answered.

8.3.2 Spectral Analysis of Third Harmonic RTS

In our experiments, we did not intend to look for third harmonic radiation and have not

found evidence of third harmonic in our data. Third harmonic radiation have been reportedly

observed in [71] using a 10 nm bandpass filter centered at 310 nm, and in [68] also using 10

nm bandpass filters of an unspecified central wavelength. The measurements in [71] (see Fig. 3

in the paper) included polarization which were resolved along the θ̂ (polar) and ϕ̂ (azimuthal)

directions. In regards to intensity characterization using spectral analysis, it may be possible to

use polarization filters to suppress the detection of second harmonic so that the onset wavelength

of the third harmonic may be resolved. For instance, the second harmonic radiation emitted in

in the direction of (θ = 90◦, ϕ = 90◦) consists of primarily θ̂ (or ẑ) polarization, and may be
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suppressed using polarizers oriented along ϕ̂ (or x̂). On the other hand, the fact that the third

harmonic is generally weaker than the second makes this approach quite delicate, requiring small

detection numerical apertures, polarizers with high extinction ratios, lasers with high polarization

purity, and may benefit from using large f-numbers in the laser’s focusing geometry.

8.3.3 Spectral Analysis of Fundamental RTS

The advantage of using the fundamental in our spectral analytical approach is that it is not

limited by the overlapping of harmonics as the laser intensity increases. However, this approach

is not without difficulties. Looking at the first harmonic spectrum would require infrared detec-

tors. Image intensifiers become nonsensitive to infrared light beyond the NIR as the low energy

photons are no longer able to overcome the work function needed to convert into electrons at the

photocathode. Detectors conventionally used for IR spectroscopy include InGaAs sensors with

minimum exposure times on the order of 1 µs, which is not short enough to gate out plasma

recombination light. A spectral analysis may be possible if there is an IR band free of plasma

recombination.

8.3.4 RTS from Protons

At sufficient intensities, protons begin to move at relativistic speeds. This can be seen in

the the normalized vector potential for protons, ap ≡ me

mp
a0 ≈ 0.0005a0, which reaches 1 when

a0, the usual normalized vector potential for electron, is on the order of 2000, equivalent to an

intensity of 9× 1024 W/cm2. An experiment involving protons may be possible using hydrogen.

The question would be whether or not the electrons ionized from hydrogen would produce RTS
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that contaminate with the proton RTS. A possible path to alleviate this is to preionize and scatter

away electrons using a second pulse prior to the primary pulse.

8.3.5 Further Studies of RTS Angular Distribution

Although measuring the angular distribution does not appear to be a viable means for char-

acterizing the laser intensity, it may be studied for the sake of understanding the physics of RTS

and support other methods of in situ intensity characterization. Our measurements of angular dis-

tribution focused on the emission along the E-k plane. Experiments conducted by other groups

only looked at the distribution for fixed θ as a function of ϕ. A full map of the radiation pattern

has yet to be measured, and doing so may serve as a useful verification of theoretical models

and numerical simulations. However, without a clear purpose beyond gaining a general under-

standing of RTS, it may be difficult to justify conducting such studies considering the cost and

complexity.
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Appendix A: Formula Derivations

A.1 Angular Distribution of Radiation in Component Form

The quantity n̂ × [(n̂ − β) × β̇] appears in multiple equations for the radiated angular

distribution, namely (in cgs units)

dPrad

dΩ
(n̂, t) =

e2

4πc

∣∣∣∣∣∣
n̂×

{
(n̂− β(tret))× β̇(tret)

}
(1− β(tret) · n̂)3

∣∣∣∣∣∣
2

(A.1)

and

d2Urad

dωdΩ
(n̂) =

e2

4π2c

∣∣∣∣∣∣
∫ ∞

−∞

n̂×
[
(n̂− β(tret))× β̇(tret)

]
(1− β(tret) · n̂)2

exp [iω(tret − n̂ · r(tret)/c)] dtret

∣∣∣∣∣∣
2

(A.2)

=
e2ω2

4π2c

∣∣∣∣∫ ∞

−∞
n̂× (n̂× β(tret)) exp [iω(tret − n̂ · r(tret)/c)] dtret

∣∣∣∣2 (A.3)

whose numerical implementation in code may be more conveniently written in terms of the indi-

vidual components of n̂, β, and β̇. Such is provided in this appendix.

271



Beginning with

(n̂− β)× β̇ =

∣∣∣∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

nx − βz ny − βy nz − βz

β̇x β̇y β̇z

∣∣∣∣∣∣∣∣∣∣∣∣

=

[(ny − βy)β̇z − (nz − βz)β̇y]x̂

−[(nx − βx)β̇z − (nz − βz)β̇x]ŷ

[(nx − βx)β̇y − (ny − βy)β̇x]ẑ

≡

Nxx̂

+Nyŷ

+Nzẑ

(A.4)

where Nx, Ny, and Nz are shorthand for the components of (n̂− β)× β̇, we may then write

n̂× [(n̂− β)× β̇] =

∣∣∣∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

nx ny nz

Nx Ny Nz

∣∣∣∣∣∣∣∣∣∣∣∣
=

(nyNz − nzNy)x̂

−(nxNz − nzNx)ŷ

+(nxNy − nyNx)ẑ

=

{
ny[(nx − βx)β̇y − (ny − βy)β̇x] + nz[(nx − βx)β̇z − (nz − βz)β̇x]

}
x̂

−
{
nx[(nx − βx)β̇y − (ny − βy)β̇x]− nz[(ny − βy)β̇z − (nz − βz)β̇y]

}
ŷ

+
{
−nx[(nx − βx)β̇z − (nz − βz)β̇x]− ny[(ny − βy)β̇z − (nz − βz)β̇y]

}
ẑ

(A.5)
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While we’re at it, expressions for n̂× (n̂× β) are provided:

n̂× (n̂× β) =

[ny(nxβy − nyβx) + nz(nxβz − nzβx)]x̂

−[nx(nxβy − nyβx)− nz(nyβz − nzβy)]ŷ

+[−nx(nxβz − nzβx)− ny(nyβz − nzβy)]ẑ

=

[(nyβy + nzβz)nx − (n2
y + n2

z)βx]x̂

+[(nxβx + nzβz)ny − (n2
x + n2

z)βy]ŷ

+[(nxβx + nyβy)nz − (n2
x + n2

y)βz]ẑ

(A.6)

from which a desired form can be chosen. The expressions for β · n̂ and n̂ ·r are left to the reader.

The components of n̂, which are Cartesian, may be written in terms of spherical coordinates

of a unit sphere where θ is the polar coordinate relative to ẑ and ϕ is the azimuthal coordinate

such that (θ = 90◦, ϕ = 0) corresponds to x̂ and (θ = 90◦, ϕ = 90◦) corresponds to ŷ:

nx = sin θ cosϕ (A.7)

ny = sin θ sinϕ (A.8)

nz = cos θ (A.9)

A rectilinear 2D grid in θ-ϕ is mapped to positions on a sphere via Eq. A.7 to A.9, as illustrated

in Fig. A.1. Each unique point (θ, ϕ) on the grid therefore corresponds to a unique set of values

in the Cartesian directional coordinates (nx, ny, nz) and point on the unit sphere.
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Figure A.1: Diagrams of a unit sphere with grid lines which are mapped to a rectilinear 2D grid
in θ and ϕ. This diagram shows an example with 18× 18 grid faces.
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Appendix B: Units and Physical Constants

B.1 Conversion of Electric Charge and Fields between cgs and SI

Some of the expressions presented in this thesis were originally published in Gaussian

units, also known as centimeter-grams-seconds (cgs), in their respective sources [55, 72]. The

International System of units (SI) is currently the globally accepted system of units. We present

an approach to convert key expressions from cgs to their SI counterparts in this thesis.

In this thesis, we are primarily concerned with the electric and magnetic fields, E and

B, in free space, as well as the point charge, q, which for an electron is equal to −e, where

e is the elementary charge (positive definite). A more thorough discussion on units used in

electrodynamics is covered in the Appendix in Jackson [72]. For this Appendix specifically, we

will use subscript SI to denote quantities in SI units and G to denote quantities in Gaussian (cgs)

units. The relationships for the charge, electric and magnetic fields, as well as the electrostatic

scalar and magnetic vector potentials, in SI and Gaussian units are given by:

qSI =
√
4πϵ0qG (B.1)

ESI =
EG√
4πϵ0

(B.2)

BSI =

√
µ0

4π
BG (B.3)

ΦSI =
ΦG√
4πϵ0

(B.4)

ASI =

√
µ0

4π
AG (B.5)
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where ϵ0 is the vacuum permittivity and µ0 is the vacuum permeability. Along with the vacuum

speed of light, c, which is related to these constants via c = 1/
√
µ0ϵ0, the values of the constants

are given by the following:

ϵ0 = 8.854 187 8 ...× 10−12 C2 · s2 · kg−1 ·m−3 (B.6)

µ0 = 1.256 637 0 ...× 10−6 kg ·m2 · C−2 (B.7)

c = 2.997 924 58× 108 m · s−1 (B.8)

The expression for ESI follows from Eq. B.1 and the fact that the electric field is defined as

the force per unit charge. In SI units, the Coulomb force acting on point charge q2 by q1 is given

by:

FE =
q1,SIq2,SI
4πϵ0r21,2

r̂1,2 (B.9)

where r1,2 is the distance between the two charges and r̂1,2 is the unit vector directed from the

location of q1,SI to q2,SI. From the perspective of q2,SI, which we may consider as a ”test charge”,

the charge q2,SI produces a field in space, also known as an electric field, given by:

ESI =
qSI

4πϵ0r2
r̂ (B.10)

where q1,SI is replaced symbolically with qSI, r1,2 with r and r̂1,2 with r̂. In Gaussian units, the

prefactor 1
4πϵ0

is absorbed into the charge terms q1q2, so that:

FE =
q1,Gq2,G
r21,2

r̂1,2 (B.11)
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with corresponding electric field:

EG =
qG
r2

r̂ (B.12)

Using Eq. B.1, we can then derive Eq. B.2:

ESI =
qSI

4πϵ0r2
r̂ =

qG√
4πϵ0r2

r̂ =
EG√
4πϵ0

(B.13)

Without going into a derivation for Eq. B.3, we discuss the physical interpretation between

the magnetic fields in the two systems of units. In SI units, the magnetic force on a point charge,

qSI, is given by:

FB = qSIv ×BSI (B.14)

so that the magnetic field BSI may be interpreted as a force per unit charge per unit velocity (in

a cross product relationship with the magnetic field) of the charge. Converting to Gaussian units,

we then have:

FB =
qG√
4πϵ0

v ×
√
µ0

4π
BG = qG

v

c
×BG (B.15)

In Gaussian units, the magnetic field can be interpreted as a force per unit charge per unit nor-

malized velocity. The electric and magnetic fields in Gaussian units therefore have the same

dimensions. Furthermore, the magnitudes of the electric and magnetic fields for an electromag-

netic wave are the same in Gaussian units, whereas in SI the ratio is equal to c. In summary, the
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Lorentz force in SI and Gaussian units are given by:

FSI = qSI (ESI + v ×BSI) (B.16)

FG = qG

(
EG +

v

c
×BG

)
(B.17)

In view of Eq. B.4 and B.5, the electrostatic scalar potential, Φ, being related to the elec-

trostatic field via Estat = −∇Φ, has the same conversion factor between SI and Gaussian units

as E. The same can be said for the magnetic vector potential, A, with its counterpart, B, via the

relationship B = ∇ × A. If the vector potential has an explicit dependence on time, however,

then the total electric field is related to A in a way that varies depending on the units involved,

specifically:

ESI = −∇ΦSI −
∂ASI

∂t
(B.18)

EG = −∇ΦG − 1

c

∂AG

∂t
(B.19)

The factor of 1
c

for the electric field expression in Gaussian units is due to the change in the ratio

of the time varying (e.g., electromagnetic radiation) parts of |E| to |B| from SI to Gaussian units.

The normalized vector potential in SI and Gaussian units are given by:

a0,SI =
2e2SI⟨|ASI|2⟩

m2c2
(B.20)

a0,G =
2e2G⟨|AG|2⟩

m2c4
(B.21)
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B.2 Conversion of Radiation Expressions from cgs to SI

Armed with the basic conversion formulas between SI and cgs, we may now derive formu-

las for the radiation expressions presented in 2.3.4. First we have the Liènard-Wiechert potentials:

ΦLW,G(x, t) =

[
−eG

(1− β · n̂)R

]
ret

⇒ ΦLW,SI(x, t) =
1

4πϵ0

[
−eSI

(1− β · n̂)R

]
ret

(B.22)

ALW,G(x, t) =

[
−eGβ

(1− β · n̂)R

]
ret

⇒ ALW,SI(x, t) =
µ0

4π

[
−eSIv

(1− β · n̂)R

]
ret

(B.23)

Next, we have the electric and magnetic fields derived from the Liènard-Wiechert Potentials:

ELW,G(x, t) = −eG
[

n̂− β

γ2(1− β · n̂)3R2

]
ret

− eG
c

 n̂×
{
(n̂− β)× β̇

}
(1− β · n̂)3R


ret

(B.24)

⇒ ELW,SI(x, t) = − eSI
4πϵ0

[
n̂− β

γ2(1− β · n̂)3R2

]
ret

− eSI
4πϵ0c

 n̂×
{
(n̂− β)× β̇

}
(1− β · n̂)3R


ret

(B.25)

BLW,G(x, t) = [n̂× ELW,G]ret ⇒ BLW,SI(x, t) =
1

c
[n̂× ELW,SI]ret (B.26)

from which we can extract the radiation terms:

Erad,G(x, t) = −eG
c

 n̂×
{
(n̂− β)× β̇

}
(1− β · n̂)3R


ret

(B.27)

⇒ Erad,SI(x, t) = − eSI
4πϵ0c

 n̂×
{
(n̂− β)× β̇

}
(1− β · n̂)3R


ret

(B.28)

Brad,SI(x, t) =
1

c
[n̂× Erad,SI]ret (B.29)

279



The Poynting vector is given by:

|SG(x, t)|=
c

4π
E2

rad,G(x, tret) ⇒ |SSI(x, t)|=
1

µ0c
E2

rad,SI(x, tret) (B.30)

The radiated power per unit solid angle is:

dPrad,G

dΩ
(n̂, t) =

c

4π
[RErad,G(x, tret)]

2

=
e2G
4πc

∣∣∣∣∣∣
n̂×

{
(n̂− β(tret))× β̇(tret)

}
(1− β(tret) · n̂)3

∣∣∣∣∣∣
2

(B.31)

⇒ dPrad,SI

dΩ
(n̂, t) =

1

µ0c
[RErad,SI(x, tret)]

2

=
e2SI

16π2ϵ0c

∣∣∣∣∣∣
n̂×

{
(n̂− β(tret))× β̇(tret)

}
(1− β(tret) · n̂)3

∣∣∣∣∣∣
2

(B.32)

The radiated energy per unit frequency per unit solid angle is:

d2Urad,G

dωdΩ
(n̂) =

c

4π2

∣∣∣∣∫ ∞

−∞
R(tret)Erad,G(x, tret) exp (iωt) dt

∣∣∣∣2 (B.33)

=
e2G
4π2c

∣∣∣∣∣∣
∫ ∞

−∞

n̂×
[
(n̂− β(tret))× β̇(tret)

]
(1− β(tret) · n̂)2

exp [iω(tret − n̂ · r(tret)/c)] dtret

∣∣∣∣∣∣
2

(B.34)

=
e2Gω

2

4π2c

∣∣∣∣∫ ∞

−∞
n̂× (n̂× β(tret)) exp [iω(tret − n̂ · r(tret)/c)] dtret

∣∣∣∣2 (B.35)

⇒d2Urad,SI

dωdΩ
(n̂) =

cϵ0
π

∣∣∣∣∫ ∞

−∞
R(tret)Erad,SI(x, tret) exp (iωt) dt

∣∣∣∣2 (B.36)

=
e2SI

16π3ϵ0c

∣∣∣∣∣∣
∫ ∞

−∞

n̂×
[
(n̂− β(tret))× β̇(tret)

]
(1− β(tret) · n̂)2

exp [iω(tret − n̂ · r(tret)/c)] dtret

∣∣∣∣∣∣
2

(B.37)

=
e2SIω

2

16π3ϵ0c

∣∣∣∣∫ ∞

−∞
n̂× (n̂× β(tret)) exp [iω(tret − n̂ · r(tret)/c)] dtret

∣∣∣∣2 (B.38)

280



The analytical expressions from Sarachik and Schappert [55] describe the power as given

by (Eq. 2.103):

dP (n)

dΩ
=
e2Gπc

2λ20
f (n)(a0, θ, ϕ) =

e2SIc

8ϵ0λ20
f (n)(a0, θ, ϕ) (B.39)

where f (n)(a0, θ, ϕ) is a dimensionless function.

B.3 Dimensional Analysis of Radiation Expressions

Alternatively, the radiation expressions in Gaussian units may be used directly in compu-

tation, followed by a conversion of the resulting values to SI units via dimensional analysis. In

this section, we will use dimensional analysis to show that the radiation expressions in SI and

Gaussian units agree. To do this, we start with the expressions in Gaussian units, then plug in

the values of the given quantities in Gaussian units. The result will contain units of statC (Gaus-

sian unit for charge), which may be converted to Gaussian base units (cm, g, s), then to the erg

(Gaussian unit for energy) and finally to the Joule (SI unit for energy). We will need following

definitions and conversion factors:

eG = 4.8× 10−10 statC (B.40)

1 statC2 = cm3g/s2 (B.41)

1 erg = g · cm2/s2 = 10−7 J (B.42)

It is useful to have the square of eG on hand:

e2G = (4.8× 10−10 statC)2 = 2.3× 10−19 cm3g/s2 (B.43)
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We focus on the expressions written out explicitly in terms of n̂, β, β̇, and r/c which are all

dimensionless quantities, so that we only need to concern ourselves with the constant prefactors.

We begin with the prefactors in Eq. B.31 and B.32:

e2G
4πc

=
(4.8× 10−10 statC)2

4π × 3× 1010 cm/s
= 6.11× 10−31 cm

2g/s2

cm/s
= 6.11× 10−31 erg · s

= 6.11× 10−38 J · s (B.44)

e2SI
16π2ϵ0c

=
(1.602× 10−19 C)2

16π2(8.854× 10−12 C2s2kg−1m−3)(3× 108 m/s)

= 6.11× 10−38 J · s (B.45)

The prefactors in Eq. B.34 and B.37 differ from Eq. B.31 and B.32 only by a factor of 1
π

, while

the prefactors for B.35 and B.38 differ by a factor of ω2

π
. It may be convenient to rewrite the

prefactor in units of eV·fs to better understand the scale of the underlying physics:

6.11× 10−38 J · s× 1 eV

1.602× 10−19 J
× 1015 fs

s
= 3.81× 10−4 eV · fs (B.46)

The remaining dimensions of 1
fs2

is contained within the β̇ term inside the absolute value brackets

(squared) in Eq. B.31 and B.32.
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The analytical function from Sarachik and Schappert has a prefactor:

e2Gπc

2λ20
=

(4.8× 10−10 statC)2π(3× 1010 cm/s)

2× (0.8× 10−4 cm)2
= 1.70

cm2g

s3

= 1.70
erg

s
× 10−7 J

erg
= 1.70× 10−7 J/s (B.47)

e2SIc

8ϵ0λ20
=

(1.602× 10−19 C)2(3× 108 m/s)

8(8.854× 10−12 C2s2kg−1m−3)(0.8× 10−6 m)2

= 1.70× 10−7 kg ·m2/s3 = 1.70× 10−7 J/s (B.48)

Converting to units of eV/fs:

1.70× 10−7 J/s×
(

1 eV

1.602× 10−19 J

)(
1 s

1015 fs

)
= 1.06× 10−2 eV/fs (B.49)
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Appendix C: MATLAB Code (Numerical Calculations) from Chapter 2

Note: When copying and pasting code blocks onto MATLAB, the document compiler may

add additional newline characters where a full line is broken in order to fit the document. These

characters would need to be removed manually in the MATLAB editor. Furthermore, the caret

character ˆ produced by the document compiler may not be recognized by MATLAB, and would

require manual replacement in the editor.

C.1 A Note on Double Precision

Double precision is MATLAB’s default variable format for floating point numbers. The

precision of a double variable is not uniform and depends on the value. The precision quantified

by the distance between value of the number and its next adjacent number, and is typically around

10−15 the size of the value of the number itself. Figure C.1 shows a plot of precision determined

using MATLAB’s eps() function, which calls the ”epsilon of the machine”, vs. log10 (order of

magnitude) of the value.
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Figure C.1: Plot of eps (precision) as a function of the log10 value. In other words, if the value is
x then y = log10 x such that x = 10y.

The range of values in physics calculations can vary by 10′s or even more than 100 orders

of magnitude depending on the units used. Arithmetic operations can lead to precision error

and be accumulated. Furthermore, presentation of values with large exponents (whether positive

or negative) can become difficult to interpret. It is therefore, good practice when performing

numerical calculations to work with units whose typical values fall within the same order of

magnitude, preferably an order of magnitude of 1.

C.2 Electron Motion under Lorentz Force by an Infinite Plane Wave

% Written and tested in MATLAB version R2022a
clear;

a0 = 1; % Normalized Vector Potential

% Normalized units are used in this script
% Initial Conditions
x0 = a0;
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z0 = 0;
px0 = 0;
pz0 = 0;
delta0 = 0;

% ODE Parameters
y0(1) = x0;
y0(2) = z0;
y0(3) = px0;
y0(4) = pz0;
y0(5) = 0; % Used to facilitate calculating F_E and F_B separately
y0(6) = 0; % Used to facilitate calculating F_E and F_B separately
Nt = 8001;
tf = 2*pi*10*(1+a0ˆ2/4); % 10 cycles
ti = 0;
tspan = linspace(ti,tf,Nt);

% ODE Solution
[t,y] = ode89(@(t,y) RTS_ODE(t,y,a0,delta0), tspan, y0);

% Extract Variables from Solution
for i=1:length(t)

soln(i,:) = RTS_ODE(t(i),y(i,:),a0,delta0);
end

% Output Variables (Time Series) vs. t

x = y(:,1);
z = y(:,2);
px = y(:,3);
pz = y(:,4);
Fx = soln(:,3);
Fz = soln(:,4);
FEx = soln(:,5);
FBx = soln(:,6);

% Velocity and Acceleration in Normalized units
gamma = sqrt(1+px.ˆ2+pz.ˆ2);
vx = px./gamma;
vz = pz./gamma;
dt = t(2) - t(1);
ax = diff(vx)/dt;
az = diff(vz)/dt;

% Alternative Method to Determine Acceleration
betax = px./gamma;
betaz = pz./gamma;
betadotx = (1./gamma).*(Fx-px./(gamma.ˆ2).*(px.*Fx+pz.*Fz));
betadotz = (1./gamma).*(Fz-pz./(gamma.ˆ2).*(px.*Fx+pz.*Fz));

The previous script references the RTS ODE() function which is defined below.

%% RTS ODE function
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function dydt = RTS_ODE(t,y,a0,delta0)
% This function uses normalized units
%p -> p/mc
%x -> kx
%z -> kz
%t -> omega*t

% y variable element definitions
%y(1) = x; dydt(1) = dxdt
%y(2) = z; dydt(2) = dzdt
%y(3) = px; dydt(3) = dpxdt
%y(4) = pz; dydt(4) = dpzdt = F_B_z (magnetic force z component)
%dydt(5) = F_E_x (electric force x component)
%dydt(6) = F_B_x (magnetic force x component)
dydt = zeros(6,1);

% Lorentz integrator
dydt(1) = y(3)/sqrt(1+y(3)ˆ2+y(4)ˆ2);
dydt(2) = y(4)/sqrt(1+y(3)ˆ2+y(4)ˆ2);
dydt(3) = (y(4)/sqrt(1+y(3)ˆ2+y(4)ˆ2)-1)*a0*cos(y(2)-t+delta0);
dydt(4) = -y(3)/sqrt(1+y(3)ˆ2+y(4)ˆ2)*a0*cos(y(2)-t+delta0);
dydt(5) = -a0*cos(y(2)-t+delta0);
dydt(6) = y(4)/sqrt(1+y(3)ˆ2+y(4)ˆ2)*a0*cos(y(2)-t+delta0);

end

C.3 Electron Motion under Lorentz Force by a Gaussian Temporal Pulse

When a Gaussian temporal pulse is considered, we want a solution with a carrier-envelope

phase (CEP) of 0 and where the electron is at its peak excursion during the peak of the laser. This

is done by solving the Lorentz force differential equation in both directions of time, positive and

negative, starting from t = 0, and combining the two-sided solutions. This is carried out in the

script below.

% Written and tested in MATLAB version R2022a
clear;

a0 = 1;

% Initial Conditions
x0 = a0;
z0 = 0;
px0 = 0;
pz0 = 0;
delta0 = 0;
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y0(1) = x0;
y0(2) = z0;
y0(3) = px0;
y0(4) = pz0;
y0(5) = 0; % For facilitating solving for F_E_x
y0(6) = 0; % For Facilitating solving for F_B_x
Nt = 8001;
tf = 2*pi*10*(1+a0ˆ2/4); % 10 cycles (each side) of the infinite plane wave
at a0
ti = -tf; %
tspan1 = linspace(0,tf,Nt); % Positive side
tspan2 = linspace(0,ti,Nt); % Negative side

% Two sided RTS solution (mainly for gaussian)
[t1,y1] = ode89(@(t1,y1) RTS_ODE_gaussian_pulse(t1,y1,a0,delta0), tspan1,
y0); % Positive Solution
[t2,y2] = ode89(@(t2,y2) RTS_ODE_gaussian_pulse(t2,y2,a0,delta0), tspan2,
y0); % Negative Solution

% Combined Solution
t = [flipud(t2); t1(2:length(t1))];
y = [flipud(y2); y1(2:length(y1),:)];
for i=1:length(t)

soln(i,:) = RTS_ODE_gaussian_pulse(t(i),y(i,:),a0,delta0);
end

% Output Variables (Time Series) vs. t
x = y(:,1);
z = y(:,2);
px = y(:,3);
pz = y(:,4);
Fx = soln(:,3);
Fz = soln(:,4);
FEx = soln(:,5);
FBx = soln(:,6);

gamma = sqrt(1+px.ˆ2+pz.ˆ2);
vx = px./gamma;
vz = pz./gamma;
dt = t(2) - t(1);
ax = diff(vx)/dt;
az = diff(vz)/dt;

The previous script references the RTS ODE gaussian pulse() function defined below. The pulse

width of the Gaussian envelope is defined to be 30 fs (intensity FWHM) within the function.

function dydt = RTS_ODE_gaussian_pulse(t,y,a0,delta0)
c = 3*10ˆ8; % m/s
lambda0 = 0.8; % um
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% y variable element definitions
% Quantities are in normalized units
%y(1) = x; dydt(1) = dxdt
%y(2) = z; dydt(2) = dzdt
%y(3) = px; dydt(3) = dpxdt
%y(4) = pz; dydt(4) = dpzdt = F_B_z
%dydt(5) = F_E_x
%dydt(6) = F_B_x
dydt = zeros(6,1);

t_fwhm = 30; %fs
tau = t_fwhm/sqrt(2*log(2))*2*pi*c/lambda0*10ˆ-6*10ˆ-15; % fs

% Lorentz integrator
dydt(1) = y(3)/sqrt(1+y(3)ˆ2+y(4)ˆ2);
dydt(2) = y(4)/sqrt(1+y(3)ˆ2+y(4)ˆ2);

carrier = cos(y(2)-t+delta0);
envelope_temp = exp(-(t-y(2)).ˆ2/tauˆ2);

dydt(3) = (y(4)/sqrt(1+y(3)ˆ2+y(4)ˆ2)-1)*a0*carrier*envelope_temp;
dydt(4) = -y(3)/sqrt(1+y(3)ˆ2+y(4)ˆ2)*a0*carrier*envelope_temp;

dydt(5) = -a0*cos(y(2)-t+delta0);
dydt(6) = y(4)/sqrt(1+y(3)ˆ2+y(4)ˆ2)*a0*carrier*envelope_temp;

end

C.4 Electron Motion in the Drift Frame via Lorentz Transform

The script in C.2 is required to be run prior to running the following script. This script

takes the electron motion infinite plane wave solutions, computes a Lorentz transform to the drift

frame, and plots the resulting paths of motion.

gamma0 = sqrt(1+qˆ2/2);

% Lorentz Transformation from Numerical Results
vD = qˆ2/(4+qˆ2);
gammaD = 1/sqrt(1-vDˆ2);

tD = gammaD.*(t-vD/c*z);
zD = gammaD.*(z-vD*t);

tf_ci = find(abs(t-tf/10)==min(abs(t-tf/10))); % Search for index at the
end of the first cycle
ti_c = 1:tf_ci;
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% Figure-8 Analytical (Gibbon)
a = sqrt(qˆ2/(4+2*qˆ2));
kxmax = 2*a;
kx = linspace(-kxmax,kxmax,300);
kz = sqrt((1/16)*kx.ˆ2.*(4*aˆ2-kx.ˆ2));
c = 1;
vR = sqrt((1-4*(1-2*vD/(c+vD))*(2+2*(vD/(c+vD))-kx.ˆ2).ˆ-2));

for ti=1:length(t_lin)
tvar = t_lin(ti);
fun = @(zvar) myfun(zvar,a,tvar);
z_RTS(ti) = fzero(fun,1);
x_RTS(ti) = -q/sqrt(1+qˆ2/2)*cos(z_RTS(ti)-tvar+pi);
px_RTS(ti) = -q*sin(z_RTS(ti)-tvar+pi);
pz_RTS(ti) = -qˆ2/(4*sqrt(1+qˆ2/2))*cos(2*(z_RTS(ti)-tvar+pi));

end

% Plotting
grdlist = {[1],[2]};

figure('position',[1 1 1500 700]);
subplot(1,2,grdlist{1});
hold on;
p1(1)=plot(z(ti_c),t(ti_c),'linewidth',1.5,'color','blue',...
'displayname','Lab Frame');
p1(2)=plot(zD(ti_c),tD(ti_c),'linewidth',1.5,'color','red',...
'displayname','Lorentz Transform','linestyle',':');
p1(3)=plot(z_RTS,t_lin,'linewidth',1.5,'color','red',...
'displayname','Doppler Correction','linestyle','-');
xlim([-3 3]);
ylim([0 10]);
p1(4)=line([0 20],[0
20],'linestyle','--','color','black','displayname','Light Cone');
line([0 -20],[0 20],'linestyle','--','color','black');
xlabel('$kz$');
ylabel('$\omega t$');
legend(p1,'location','north');

subplot(1,2,grdlist{2});
p2(1)=plot(z(ti_c),x(ti_c),'linewidth',1.5','color','blue',...
'displayname','Lab Frame');
hold on;
p2(2)=plot(zD(ti_c),x(ti_c),'linewidth',1.5,'color','red',...
'displayname','Lorentz Transform','linestyle',':');
p2(3)=plot(kz,kx,'color','red','linestyle','-','linewidth',1.5,...
'displayname','Doppler Correction');
plot(-kz,kx,'color','red','linestyle','-','linewidth',1.5);
xlim([-0.5 2]);
ylim([-1 1]);
xlabel('$kx$');
ylabel('$kz$');
legend(p2,'location','north');

for i=1:2
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subplot(1,2,grdlist{i});
daspect([1 1 1]);
set(gca,'fontsize',15);
grid on;

end

C.5 Electron Motion in the Drift Frame from Analytical Expressions

The following code computes and plots the electron motion in the drift frame from analyt-

ical expressions (see section 2.3.3).

clear;
set(0,'defaulttextinterpreter','latex');
figure('position',[1 1 1200 500]);

% Figure-8 momentum vectors

N = 1024*4;
N_cyc = 10; % Use 1 for default, 10 for FFT
tmax = 2*pi*N_cyc;
t_lin = linspace(0,tmax,N);
myfun = @(z,a,t) z-aˆ2/2*sin(2*(z-t+pi)); % parameterized function

% parameters
q = 1; % Normalized vector potential
a = sqrt(qˆ2/(4+2*qˆ2));
theta_obs = -atan(0.15/1);

for ti=1:length(t_lin)
t = t_lin(ti);
fun = @(z) myfun(z,a,t);
z_RTS(ti) = fzero(fun,1);
x_RTS(ti) = -q/sqrt(1+qˆ2/2)*cos(z_RTS(ti)-t+pi);
px_RTS(ti) = -q*sin(z_RTS(ti)-t+pi);
pz_RTS(ti) = -qˆ2/(4*sqrt(1+qˆ2/2))*cos(2*(z_RTS(ti)-t+pi));
end

dt = t_lin(2)-t_lin(1);
Fx_RTS = diff(px_RTS)/dt;
Fz_RTS = diff(pz_RTS)/dt;

gamma_RTS = sqrt(1+px_RTS.ˆ2+pz_RTS.ˆ2);
vx_RTS = px_RTS./gamma_RTS;
vz_RTS = pz_RTS./gamma_RTS;
ax_RTS = diff(vx_RTS)/dt;
az_RTS = diff(vz_RTS)/dt;
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ticoarse = 1:N/8:N;
subplot(1,3,1);
plot(z_RTS,x_RTS,'linewidth',1.5,'color','blue','linestyle',':');
hold on;
plot(z_RTS(ticoarse),x_RTS(ticoarse),'linestyle','none','marker','.',...
'markersize',20,'color',[1 0 0]);
pscale=0.3;
quiver(z_RTS(ticoarse),x_RTS(ticoarse),pz_RTS(ticoarse)*pscale,...
px_RTS(ticoarse)*pscale,'linewidth',1.5,'autoscale','off','color',[1 0 0]);
xlim([-0.4 0.4]);
xticks(-0.4:0.4:0.4);
ylim([-1 1]);
title({'Figure-8 ($a_0=1$)',...

'and momentum'});

% Figure-8 vs. a0
qlist = [0.5, 1, 2, 10];

for qi = 1:length(qlist)
qtemp = qlist(qi);
a = sqrt(qtempˆ2/(4+2*qtempˆ2));
vD(qi) = qtempˆ2/(4+qtempˆ2);

kxmax(qi) = 2*a;

kx{qi} = linspace(-kxmax(qi),kxmax(qi),300);
kz{qi} = sqrt((1/16)*kx{qi}.ˆ2.*(4*aˆ2-kx{qi}.ˆ2));

c = 1;
vR{qi} =
sqrt((1-4*(1-2*vD(qi)/(c+vD(qi)))*(2+2*(vD(qi)/(c+vD(qi)))-kx{qi}.ˆ2).ˆ-2));
end

subplot(1,3,2);
for qi = 1:length(qlist)
colorval = [0 0 qi/length(qlist)];
lwval = qi/length(qlist)*2;
p(qi)=plot(kz{qi},kx{qi},'color',colorval,'linewidth',lwval,...
'displayname',strcat('a_0=',num2str(qlist(qi))));
hold on;
plot(-kz{qi},kx{qi},'color',colorval,'linewidth',lwval);
end
legend(p,'location','eastoutside');
xlim([-0.5 0.5]);
zlim([-1.5 1.5]);
title('Figure-8 vs. $a_0$');

% Figure-8 proportions vs. a0
a0_lin = linspace(10ˆ-2,100,10000);

zamp = a0_lin.ˆ2./(4*(1+a0_lin.ˆ2/2));
xamp = a0_lin./sqrt(1+a0_lin.ˆ2/2);

subplot(1,3,3);
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plot(a0_lin,zamp./xamp,'linewidth',1.5);
title('Figure-8 Proportions vs. $a_0$');
xlim([10ˆ-2 10ˆ2]);
xticks(10.ˆ(-2:2));

C.6 Radiation Spectrum at θ = 90◦

One of the scripts in either C.2 (plane wave) or C.3 (Gaussian pulse) is required to be run

prior to running the following script. This script takes the electron motion solutions to either the

infinite plane wave or Gaussian pulse and computes and plots the spectrum radiated at θ = 90◦

(see section 2.3.4).

c = 3*10ˆ8; % m/s
lambda0 = 800*10ˆ-9; % m
omega0 = 2*pi*c/lambda0/10ˆ15; % rad/fs

omega_FFT = linspace(0,4,1000); % units of omega0

% Components of Fourier Integral
for i=1:length(omega_FFT)

FIx_E(i) = 0;
FIz_E(i) = -sum(vz.*exp(1i*omega_FFT(i)*(t-x))*dt);

FIx_B(i) = sum(vx.*exp(1i*omega_FFT(i)*(t-x))*dt);
FIz_B(i) = -sum(vz.*exp(1i*omega_FFT(i)*(t-x))*dt);

end

e_cgs = 4.8*10ˆ-10; % statcoulumb
c_cgs = 3*10ˆ8*100; % cm/s
C1 = e_cgsˆ2*omega0ˆ2/(4*piˆ2*c_cgs)/10ˆ7/(1.602*10ˆ-19)/omega0ˆ2*10ˆ15; %
eV/(rad/fs)/sr
C2 = C1/(2*pi*c_cgs*10ˆ-2*10ˆ-15)*10ˆ-9; % eV/(rad/fs)ˆ2/nm/sr

lambda_FFT = 2*pi*c./(omega_FFT*omega0*10ˆ15)*10ˆ9; % nm

FI_E = abs(FIx_E.ˆ2 + FIz_E.ˆ2).ˆ2;
FI_B = abs(FIx_B.ˆ2 + FIz_B.ˆ2).ˆ2;

figure('position',[1 1 1400 500]);

subplot(1,2,1);
yyaxis left;
plot(omega_FFT,FI_E*C1,'linewidth',1.5,'Displayname','|| E');
ylabel('$\frac{dˆ2U}{d\omega d\Omega}$ [eV/(rad/fs)/sr]');
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yyaxis right;
plot(omega_FFT,FI_B*C1,'linewidth',1.5,'Displayname','\perp E');
xlabel('$f/f_0$');
ylabel('$\frac{dˆ2U}{d\omega d\Omega}$ [eV/(rad/fs)/sr]');
title('Frequency Spectrum');

subplot(1,2,2);
yyaxis left;
plot(lambda_FFT,FI_E*C2.*omega_FFT.ˆ2*omega0ˆ2,'linewidth',1.5,...
'Displayname','|| E');
ylabel('$\frac{dˆ2U}{d\lambda d\Omega}$ [eV/nm/sr]');
yyaxis right;
plot(lambda_FFT,FI_B*C2.*omega_FFT.ˆ2*omega0ˆ2,'linewidth',1.5,...
'Displayname','\perp E');
xlim([200 1200]);
xlabel('$\lambda$ [nm]');
ylabel('$\frac{dˆ2U}{d\lambda d\Omega}$ [eV/nm/sr]');
title('Wavelength Spectrum');

for i=1:2
subplot(1,2,i);
legend('location','north');
grid on;
set(gca,'fontsize',15);
end

C.7 Total Energy Angular Distribution

The script in C.2 is required to be run prior to running the following script. This script

computes the total energy angular distribution (Eq. 2.101) from the electron motion solutions to

the Lorentz force differential equation.

e_cgs = 4.8*10ˆ-10;
c_cgs = 3*10ˆ8*100;

Ngrid = 50;
theta_lin = linspace(0,pi,Ngrid);
phi_lin = linspace(-pi,pi,Ngrid);
[theta,phi] = meshgrid(theta_lin,phi_lin);

nx = sin(theta).*cos(phi);
ny = sin(theta).*sin(phi);
nz = cos(theta);

denom = {};
int = zeros(size(nx));
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for i=1:length(t)
betay(i) = 0;
betadoty(i) = 0;
numx{i} = ny.*((nx-betax(i))*betadoty(i)-(ny-betay(i))*betadotx(i))
...
+ nz.*((nx-betax(i))*betadotz(i) - (nz-betaz(i))*betadotx(i));
numy{i} =
-nx.*((nx-betax(i))*betadoty(i)-(ny-betay(i))*betadotx(i)) ...
+ nz.*((ny-betay(i))*betadotz(i) - (nz-betaz{qi}(i))*betadoty(i));
numz{i} =
-nx.*((nx-betax(i))*betadotz(i)-(nz-betaz(i))*betadotx(i)) ...
- ny.*((ny-betay(i))*betadotz(i) - (nz-betaz(i))*betadoty(i));

denom{i} = (1-betax(i).*nx-betaz(i).*nz).ˆ5;

int = int + (numx{i}.ˆ2+numy{i}.ˆ2+numz{i}.ˆ2)./denom{i};
end
int = omega0ˆ2*e_cgsˆ2/(4*pi*c_cgs)*int*dt*10ˆ-7/(1.602*10ˆ-19)/omega0;

%% Plot Solution
figure('position',[1 1 1900 800]);

subplot(1,2,1);
surf(nx,nz,ny,int,'edgecolor','none');
set(gca,'ydir','reverse');
xlabel('$x$');
ylabel('$z$');
zlabel('$y$');

subplot(1,2,2)
imagesc(theta_lin*180/pi,phi_lin*180/pi,int{qi});
xlabel('$\theta$ [$ˆ\circ$]');
ylabel('$\phi$ [$ˆ\circ$]');
set(gca,'ydir','normal','xdir','reverse');
cb=colorbar;
cb.Label.String = 'eV/sr';
xticks(0:45:180);
yticks(-180:45:180);

for i=1:2
subplot(1,2,i);
colormap jet;
daspect([1 1 1]);
caxis([0 max(int,[],'all')]);
set(gca,'fontsize',12);

end
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C.8 Energy Angular Distribution over a Spectral Band

The script in C.2 is required to be run prior to running the following script. This script

computes the energy angular distribution radiated over a spectral band from 400 - 700 nm (see

Eq. 2.102) from the electron motion solutions to the Lorentz force differential equation. This

script is written to allow either Eq. 2.72 (”Full Expression”) or 2.73 (”By Parts Expression”)

to be used. The ”Full Expression” is commented out so that only the ”By Parts Expression” is

implemented.

e_cgs = 4.8*10ˆ-10; % statC
c_cgs = 3*10ˆ8*100; % cm/s

Ngrid = 50;
theta_lin = linspace(0,pi,Ngrid);
phi_lin = linspace(-pi,pi,Ngrid);
[theta,phi] = meshgrid(theta_lin,phi_lin);

nx = sin(theta).*cos(phi);
ny = sin(theta).*sin(phi);
nz = cos(theta);

lambda0 = 800; % nm Laser central wavelength

lambda1 = 400; % nm Band Lower Bound
lambda2 = 700; % nm Band Upper Bound

c = 3*10ˆ8; % m/s
omega0 = 2*pi*c/(lambda0*10ˆ-9)*10ˆ-15; % rad/fs
omega1 = 2*pi*c/(lambda1*10ˆ-9)*10ˆ-15; % rad/fs
omega2 = 2*pi*c/(lambda2*10ˆ-9)*10ˆ-15; % rad/fs

omegalist = linspace(omega2,omega1,500);
domega = omegalist(2) - omegalist(1);
lambdalist = 2*pi*c./omegalist*10ˆ-15*10ˆ9; % nm
dlambda = lambdalist(2) - lambdalist(1);

denom = {};
y= zeros(1,length(t)); % Clears out original assignment of variable y

intband_tot = zeros(size(nx));
for oi = 1:length(omegalist)

omega = omegalist(oi);
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intbandx{qi} = zeros(size(nx));
intbandy{qi} = zeros(size(ny));
intbandz{qi} = zeros(size(nz));
for i=1:length(t)

msg = ['oi=',num2str(oi),'/',num2str(length(omegalist)),...
'; ti=',num2str(i),'/',num2str(length(t{qi}))];
disp(msg);

%
betay(i) = 0;
betadoty(i) = 0;

% Full Expression
%{
numx{i} =

ny.*((nx-betax(i))*betadoty(i)-(ny-betay(i))*betadotx(i)) ...
+ nz.*((nx-betax(i))*betadotz(i) -

(nz-betaz(i))*betadotx(i));
numy{i} =

-nx.*((nx-betax(i))*betadoty(i)-(ny-betay(i))*betadotx(i)) ...
+ nz.*((ny-betay(i))*betadotz(i) -

(nz-betaz(i))*betadoty(i));
numz{i} =

-nx.*((nx-betax(i))*betadotz(i)-(nz-betaz(i))*betadotx(i)) ...
- ny.*((ny-betay(i))*betadotz(i) -

(nz-betaz(i))*betadoty(i));

denom{i} = (1-betax(i).*nx-betaz(i).*nz-betay(i).*ny).ˆ2;

fourargx{i} = numx{i}./denom{i};
fourargy{i} = numy{i}./denom{i};
fourargz{i} = numz{i}./denom{i};
%}
% End of Full Expression

% By Parts Expression
%
fourargx{i} =
(ny*betay(i)+nz*betaz(i)).*nx-(ny.ˆ2+nz.ˆ2)*betax(i);
fourargy{i} = (nx*betax(i)+nz*betaz(i)).*ny -
(nx.ˆ2+nz.ˆ2)*betay(i);
fourargz{i} = (nx*betax(i)+ny*betay(i)).*nz -
(nx.ˆ2+ny.ˆ2)*betaz(i);
%}
% End of By Parts Expression

fourkern{i} =
exp(1i*omega/omega0*(t(i)-nx*x(i)-ny*y(i)-nz*z(i)));

intbandx = intbandx + fourargx{i}.*fourkern{i};
intbandy = intbandy + fourargy{i}.*fourkern{i};
intbandz = intbandz + fourargz{i}.*fourkern{i};

end
intband = (intbandx*dt).ˆ2 + (intbandy*dt).ˆ2 + (intbandz*dt).ˆ2;
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intband = abs(intband).ˆ2;
intband =
e_cgsˆ2/(4*piˆ2*c_cgs)*intband*10ˆ-7/(1.602*10ˆ-19)*10ˆ15; %
eV/(rad/fs)/sr

intband_tot = intband_tot + intband;

end
intband_tot = intband_tot*domega; % eV/sr

%% Plot Solution
figure('position',[1 1 1900 800]);

subplot(1,2,1);
surf(nx,nz,ny,intband_tot,'edgecolor','none');
set(gca,'ydir','reverse');
xlabel('$x$');
ylabel('$z$');
zlabel('$y$');

subplot(1,2,2)
imagesc(theta_lin*180/pi,phi_lin*180/pi,intband_tot);
xlabel('$\theta$ [$ˆ\circ$]');
ylabel('$\phi$ [$ˆ\circ$]');
set(gca,'ydir','normal','xdir','reverse');
cb=colorbar;
cb.Label.String = 'eV/sr';
xticks(0:45:180);
yticks(-180:45:180);

sgtitle('Radiated energy per steradian (400-700 nm), 10 cycles, infinite
plane wave');

for i=1:2
subplot(1,2,i);
colormap jet;
daspect([1 1 1]);
caxis([0 max(intband_tot,[],'all')]);
set(gca,'fontsize',12);

end
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Appendix D: MATLAB Code (Data Analysis)

D.1 Calibration using USAF Test Pattern (Experiment 3)

The script in this appendix opens four images of the USAF test pattern captured by the

wedge imaging system in Experiment 3, extracts a horizontal and vertical lineout from a chosen

element in each image, calculates element line edges based on the lineout intersection to a set of

threshold values (see Fig. D.1 and Table D.1). From the edge values, the element line widths

in units of pixels [px] are calculated by taking the difference between adjacent edges (see Table

D.2). The line widths are converted to spatial calibration values in units of px per µm by using

the standard line widths for the corresponding group and element in the USAF test pattern. For

example, the values in Table D.2, are multiplied by the standard line width of 6.96 µm for Group

6 Element 2, and are averaged to obtain a final value of 7.3 px/µm with a standard deviation of

0.3 px/µm. A chart of standard values of line pairs/mm are given in Table D.3. For example,

for Group 6 Element 2, the standard value is 71.8 line pairs per mm, which corresponds to an

element line width of 1/71.8/2× 103 = 6.96 µm.
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Figure D.1: Plots used to illustrate an example of the spatial calibration using a USAF test pattern.
Shown are a) an image of the USAF test pattern, with the red dotted line indicating the lineout
sample and b) the image lineout values in units of counts [cts], with the horizontal dotted lines
indicating various thresholds used for calculating element line edges.

Table D.1: Positions of the element line edges determined from finding the intersection between
the lineout and threshold values fo Group 6 Element 2. See Fig. D.1 for the corresponding image.
The edges are labeled xi with i from 1 to 6.

Threshold [cts]
105 1.2× 105 1.4× 105 1.6× 105 1.8× 105

x1 [px] 34 34 34 35 35
x2 [px] 87 86 86 84 83
x3 [px] 136 136 136 137 137
x4 [px] 190 189 189 189 188
x5 [px] 236 236 237 237 237
x6 [px] 290 289 289 288 288

Table D.2: Values of element line widths determined from taking the difference between adjacent
edges. The widths are defined as ∆xj,i = xj − xi with the corresponding values given in Table
D.1.

Threshold [cts]
105 1.2× 105 1.4× 105 1.6× 105 1.8× 105

∆x2,1 [px] 53 52 52 49 48
∆x3,2 [px] 49 50 50 53 54
∆x4,3 [px] 54 53 53 52 51
∆x5,4 [px] 46 47 48 48 49
∆x6,5 [px] 54 53 52 51 51
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Table D.3: Chart of line pairs per mm for the corresponding Group and Element in a 1951 USAF
resolution test target. The width of a single line may be determined by dividing the inverse of
these values by 2. The values were obtained from [108]. The Group and Element combinations
used in Experiment 3 are highlighted in bold, while the Group and Element used in the example
in Fig. D.1 and Tables D.1 and D.2 is highlighted in red.

Group Number
Element -2 -1 0 1 2 3 4 5 6 7

1 0.250 0.500 1.00 2.00 4.00 8.00 16.00 32.00 64.00 128.00
2 0.280 0.561 1.12 2.24 4.49 8.98 17.95 36.0 71.8 144.0
3 0.315 0.630 1.26 2.52 5.04 10.10 20.16 40.3 80.6 161.0
4 0.353 0.707 1.41 2.83 5.66 11.30 22.62 45.3 90.5 181.0
5 0.397 0.793 1.59 3.17 6.35 12.70 25.39 50.8 102.0 203.0
6 0.445 0.891 1.78 3.56 7.13 14.30 28.50 57.0 114.0 228.0

% Written and tested in MATLAB version R2022a
clear;
% Load and organize image files
path = './wedge_calibration_USAF_20220401/';

file{1} = 'group6_2_3.tif';
file{2} = 'group6_5_6.tif';
file{3} = 'group7_element_1_2_3_4.tif';
file{4} = 'group7_element_3_4_5_6.tif';

pattern_element = {'Im1: G6 E2-3','Im2: G6 E5-6','Im3: G7 E1-4','Im4: G7
E3-6'};
lineout_element = {'Im1: G6 E2','Im2: G6 E6','Im3: G7 E1','Im4: G7 E6'};
pattern_linewidth = [6.96,4.38,3.91,2.19];

for i=1:4
image{i} = double(imread(strcat(path,file{i})));

end

% Define lineout coordinates
H{1} = [618,560; 942,560];
H{2} = [937,347; 1156,347];
H{3} = [748,350; 946,350];
H{4} = [670,688; 827,688];

V{1} = [1147,360; 1147,703];
V{2} = [1276,269; 1276,502];
V{3} = [631,233; 631,456];
V{4} = [618,599; 618,749];

% Assign Lineouts
for i=1:4

lineoutH{i} = image{i}(H{i}(1,2):H{i}(2,2),H{i}(1,1):H{i}(2,1));
lineoutV{i} = image{i}(V{i}(1,2):V{i}(2,2),V{i}(1,1):V{i}(2,1));

end
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% Determine Edges and Linewidths vs. Threshold
thresholdlist = [1:0.2:1.8]*10ˆ4;
for j=1:length(thresholdlist)

for i=1:4
edgesH{i,j}=find(diff(sign(lineoutH{i}-thresholdlist(j))));
edgesV{i,j}=find(diff(sign(lineoutV{i}-thresholdlist(j))));
dedgesH{i,j} = diff(edgesH{i,j});
dedgesV{i,j} = diff(edgesV{i,j}');

end
end

% Aggregate Data and Calculate Statistics
dedgesH_E = {[],[],[],[],[]};
dedgesV_E = {[],[],[],[],[]};
calibH_all = [];
calibV_all = [];
for i=1:4

for j=1:length(thresholdlist)
dedgesH_E{i} = [dedgesH_E{i}, dedgesH{i,j}];
dedgesV_E{i} = [dedgesV_E{i}, dedgesV{i,j}];

end
calib_H(i) = mean(dedgesH_E{i})/pattern_linewidth(i); % px / mm
calib_V(i) = mean(dedgesV_E{i})/pattern_linewidth(i); % px / mm
calib_H_std(i) = std(dedgesH_E{i})/pattern_linewidth(i); % px / mm
calib_V_std(i) = std(dedgesV_E{i})/pattern_linewidth(i); % px / mm

calibH_all = [calibH_all, dedgesH_E{i}/pattern_linewidth(i)];
calibV_all = [calibH_all, dedgesH_E{i}/pattern_linewidth(i)];

end
calib_H_tot = mean(calibH_all);
calib_V_tot = mean(calibV_all);
calib_H_tot_std = std(calibH_all);
calib_V_tot_std = std(calibV_all);

% Organize statistics into table
Tcalib = table(lineout_element', calib_H', calib_H_std', calib_V',
calib_V_std',...
'variablenames', {'Lineout Element', 'Horizontal', 'H Std. Dev.',
'Vertical', 'V Std. Dev.'});
Tcalib = [Tcalib;{'Overall', calib_H_tot, calib_H_tot_std, calib_V_tot,
calib_V_tot_std}];
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Appendix E: MATLAB Code (Numerical Calculations) from Chapter 7

Note: When copying and pasting code blocks onto MATLAB, the document compiler may

add additional newline characters where a full line is broken in order to fit the document. These

characters would need to be removed manually in the MATLAB editor. Furthermore, the caret

character ˆ produced by the document compiler may not be recognized by MATLAB, and would

require manual replacement in the editor.

E.1 Electron Motion under Lorentz Force by a Focused Pulse

This script computes the electron motion via the Lorentz force for a linearly polarized

electromagnetic wave defined having a Gaussian beam spatial profile focused to w0 = 20 µm, as

well as a Gaussian temporal profile with a 30 fs intensity FWHM (Eq. 7.11 and 7.12). This is

done for a set of electrons are born at various positions along x̂, the polarization axis in the focal

plane. The time in which the electron is born can be changed through the assignment of variable

ti in the code.

clear;
set(0,'defaulttextinterpreter','latex');

c = 3*10ˆ8;

lambda0 = 0.8; % um
k = 2*pi/lambda0; % 1/um
w0 = 20; % um
zR = pi*w0ˆ2/lambda0; % um
z0 = k*zR; % Rayleigh Length in normalized units

omega0 = 2*pi*c/(lambda0*10ˆ-6); % rad/s

t_fwhm = 30; %fs
tau = t_fwhm/sqrt(2*log(2))*2*pi*3*10ˆ8/(800*10ˆ-9)*10ˆ-15;

q = 10;
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Np = 21; % Number of particles

%x0max = k*w0*2;

x0max = 300;
x0list = linspace(0,x0max,Np);
z0list = zeros(1,Np);

alist = q*exp(- x0list.ˆ2./(k*w0)ˆ2);

for ei = 1:Np
x0 = x0list(ei);
z0 = z0list(ei);
px0 = 0;
pz0 = 0;
delta0 = 0;

y0(1) = x0;
y0(2) = z0;
y0(3) = px0;
y0(4) = pz0;
%y0(5) = 0;
%y0(6) = 0;
Nt = 16000;
tf = 2*pi*25*(1+qˆ2/4);
ti = 0; % Determines when electrons are aborn
tspan1 = linspace(ti,tf,Nt);

[t,y] = ode89(@(t1,y1) RTS_ODE_focused_gaussian_2D(t1,y1,q,delta0),
tspan1, y0);

clear('soln');
for i=1:length(t)

soln(i,:) =
RTS_ODE_focused_gaussian_2D(t(i),y(i,:),q,delta0);

end
tp{ei} = t;
x{ei} = y(:,1);
z{ei} = y(:,2);
px{ei} = y(:,3);
pz{ei} = y(:,4);
vx{ei} = soln(:,1);
vz{ei} = soln(:,2);

gamma{ei} = sqrt(1+px{ei}.ˆ2+pz{ei}.ˆ2);
theta_s{ei} = atan(px{ei}(length(t))./pz{ei}(length(t)));

end

%%
figure;

hold on;
linspace(0,1,Np)'];
for ei=1:Np
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plot(z{ei},x{ei},'color',clist(ei,:),...
'displayname',['|x_0|=',num2str(abs(x0list(ei)/k),'%1.0f'),' um']);
daspect([1 1 1]);

end
legend('location','eastoutside');
xlabel('$kz$');
ylabel('$kx$');
title({['$a_0=',num2str(q),'$, $w_0=',num2str(w0),'$ um,
$z_R=',num2str(zR,'%1.1f'),'$ um'],...

['$\Delta t_{fwhm}=',num2str(t_fwhm),'$ fs, $\omega_0
t_i=',num2str(ti,'%1.1f'),'$ $\omega_0
t_f=',num2str(tf,'%1.1f'),'$']});

set(gca,'fontsize',15);

The previous script requires the function RTS ODE focused gaussian 2D to be defined as fol-

lows:

function dydt = RTS_ODE_focused_gaussian_2D(t,y,q,delta0)
% y variable element definitions
%y(1) = x; dydt(1) = dx/dt
%y(2) = z; dydt(2) = dz/dt
%y(3) = px; dydt(3) = dpx/dt
%y(4) = pz; dydt(4) = dpz/dt

dydt = zeros(4,1);

% Spatial Focusing Parameters
lambda0 = 0.8; % um
k = 2*pi/lambda0; % 1/um
w0 = 20; % um
zR = pi*w0ˆ2/lambda0; % um
z0 = k*zR; % Rayleigh Length in normalized units

% Temporal Pulse Parameters
t_fwhm = 30; %fs
tau = t_fwhm/sqrt(2*log(2))*2*pi*3*10ˆ8/(800*10ˆ-9)*10ˆ-15;

% Intermediate Values
gamma = sqrt(1+y(3)ˆ2+y(4)ˆ2);
Rinv = y(2)/(y(2)ˆ2 + z0ˆ2); % 1 / Radius of Curvature (normalized
units)
w = k*w0*sqrt(1+(y(2)/z0)ˆ2); % Beam radius (normalized units)
phi_G = atan(y(2)/z0); % Guoy phase

% Field Components
carrier = cos(y(2) - t + delta0 + y(1)ˆ2/2*Rinv - phi_G);
envelope_spat = exp(- y(1)ˆ2./wˆ2)/(w/k/w0);
envelope_temp = exp(-(t-y(2)).ˆ2/tauˆ2);
Ex = q*carrier*envelope_spat*envelope_temp;
By = q*carrier*envelope_spat*envelope_temp;
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% Lorentz integrator
dydt(1) = y(3)/sqrt(1+y(3)ˆ2+y(4)ˆ2); % dx/dt
dydt(2) = y(4)/sqrt(1+y(3)ˆ2+y(4)ˆ2); % dz/dt
dydt(3) = y(4)/sqrt(1+y(3)ˆ2+y(4)ˆ2)*By - Ex; % dpx/dt
dydt(4) = -y(3)/sqrt(1+y(3)ˆ2+y(4)ˆ2)*By; % dpz/dt

end

E.2 Volume-Weight Distribution vs. a for a Focused Gaussian Beam (peak

= a0)

This script calculates the weight distribution at each value of the spatially dependent nor-

malized vector potential, a, based on the volume contained within an interval ∆a centered at a

(Eq. 7.19), for a defined in space to be a focused Gaussian beam with peak value of a0. This

calculated multiple times, each for a different values of a0.

clear;
set(0,'defaulttextinterpreter','latex');
q0list = [1 2 3 4 5 6 7 8 9 10];

Nq0 = length(q0list);

qcut = 0.01;
Nz = 64;
dq1 = 10ˆ-5;

qlist = {};
dV = {};
for q0i=1:length(q0list)

q0 = q0list(q0i);

Nq(q0i) = ceil((q0-qcut)/dq1);
qlist{q0i} = linspace(qcut,q0,Nq(q0i));
dq(q0i) = qlist{q0i}(2) - qlist{q0i}(1);

disp(['q0i=',num2str(q0i),'/',num2str(Nq0),',
Nq=',num2str(Nq(q0i)),', dq=',num2str(dq(q0i))])
for qi=1:length(qlist{q0i})

q = qlist{q0i}(qi);

zmax = sqrt((q0/q)ˆ2-1);
z = linspace(-zmax,zmax,Nz);
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dz = z(2)-z(1);
rho{qi} = sqrt(-(1+z.ˆ2).*log(q/q0*sqrt(1+z.ˆ2)));
V(qi) = pi*sum(rho{qi}.ˆ2*dz,'omitnan');
if qi > 1

dV{q0i}(qi-1) = abs(V(qi)-V(qi-1));
end

end

Vmax{q0i} = V(1);
%dq = qlist(2)-qlist(1);
%dV = dV/sum(dV*dq)*Vmax;
dV{q0i} = dV{q0i}/dq(q0i);

end

for q0i=1:Nq0
q0 = q0list(q0i);
% Interpolation over 100 intensities
qint{q0i} = linspace(qcut,q0,100);
dVint{q0i} = interp1(qlist{q0i}(1:length(qlist{q0i})-1),...

dV{q0i},qint{q0i},'cubic');
end

E.3 Angular Distribution Convolved with Gaussian Beam

The script in E.2 is required to be run prior to running this script. This script calculates the

RTS angular distribution from the analytical expressions derived by Sarachik and Schappert (Eq.

2.103) for the second harmonic convolved with the Gaussian beam distribution using Eq. 7.22

and 7.23.

e = 1.602*10ˆ-19;
c = 3*10ˆ8;
lambda0 = 800*10ˆ-9; % m
omega0 = 2*pi*c/lambda0; % rad/s

N = 101;

theta_lin = linspace(0,pi,N);
phi_lin = linspace(-pi, pi,N);
[theta,phi] = meshgrid(theta_lin, phi_lin);
cosalpha = sin(theta).*cos(phi);

dNdO_tot = zeros(N);
dNdO_band = zeros(N);

Nq0 = length(q0list);
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for q0i=1:Nq0
dNdO_band_tot{q0i} = zeros(N);
dNdO_band_grand_tot{q0i} = zeros(N);
for n=1:68

dNdO_band_harm{q0i,n} = zeros(N);
end

end

parfor q0i = 1:Nq0
q0calc = q0list(q0i);
qlist_lin_calc = qint{q0i};
pdf_lin = dVint{q0i};
n = 2;
for qi = 1:(length(qlist_lin_calc)-1)

disp(strcat('q0i=',num2str(q0i),', qi=',num2str(qi)));
q = qlist_lin_calc(qi);
dist = RTS_sarachik(n,q,omega0,'dNdO',N);
dNdO_band = dist*pdf_lin(qi);
dNdO_band_tot{q0i} = dNdO_band_tot{q0i} + dNdO_band;

end
%dNdO_band_harm{q0i,n} = dNdO_band_tot{q0i};
dNdO_band_grand_tot{q0i} = dNdO_band_grand_tot{q0i} +
dNdO_band_tot{q0i};

end

%% Plot Distribution

nx = sin(theta).*cos(phi);
ny = sin(theta).*sin(phi);
nz = cos(theta);

figure;
for q0i = 1:6

subplot(2,6,2*q0i-1);
surf(nx,nz,ny,...

dNdO_band_grand_tot{q0i}/max(dNdO_band_grand_tot{q0i},...
[],'all'),'edgecolor','none');

title(['$a_0=',num2str(q0list(q0i)),'$']);
xlabel('$x$');
ylabel('$z$');
zlabel('$y$');
set(gca,'ydir','reverse');

subplot(2,6,2*q0i);
imagesc(theta_lin*180/pi,phi_lin*180/pi,...

dNdO_band_grand_tot{q0i}/max(dNdO_band_grand_tot{q0i},...
[],'all'));

set(gca,'xdir','reverse','ydir','normal');
xlabel('$\theta$ [$ˆ\circ$]');
ylabel('$\phi$ [$ˆ\circ$]');
xticks(0:45:180);
yticks(-180:45:180);
cb = colorbar;
cb.Label.String = 'd\Gamma/d\Omega [norm.]';
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end
colormap jet;

for i=1:12
subplot(2,6,i);
daspect([1 1 1]);
set(gca,'fontsize',15);

end

sgtitle('RTS Radiation Pattern $(n=2)$ of Plane Wave Convolved over
Gaussian Spatial Distribution in Intensity');

The previous script calls the RTS sarachik function defined below.

function [distout,theta_lin,phi_lin,theta,phi] =
RTS_sarachik(n,q,omega0,dist,N)

%SARACHIK_RTS
% Calculates angular distribution in an NxN theta-phi grid for a
given
% harmonic, n, normalized vector potential, q, and incident laser
angular
% frequency, omega0 [rad/s].
% Options for distribution type (dist) are dPdO, dNdO, and
dNdthetadphi
% Option for a wavelength band [nm]

% Constants
e = 1.602*10ˆ-19;
c = 3*10ˆ8;

if nargin <= 4
N = 101; % Default: 101x101
if nargin <= 3

dist = 'dNdO'; % (Default: dNdO)
if nargin <= 2

lambda0 = 800*10ˆ-9; % m
omega0 = 2*pi*c/lambda0; % rad/s
(Default 375*2*pi Trad/s)

end
end

end
end

% Grid Setup
theta_lin = linspace(0,pi,N);
phi_lin = linspace(-pi, pi,N);
[theta,phi] = meshgrid(theta_lin, phi_lin);
cosalpha = sin(theta).*cos(phi);

% Calculations
A = eˆ2*omega0ˆ2*(1+(1/2)*qˆ2)*qˆ2/(8*pi*c);
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M = (1+1/2*qˆ2*sin(theta/2).ˆ2);

F1 = zeros(size(theta));
F2 = zeros(size(theta));

X = (1/4)*n*qˆ2*sin(theta/2).ˆ2./M;
Y = q*n*cosalpha./M;

numax = max_besselnu_sarachik(n);
l_max = numax;
%l_max = 15; % Works for lower harmonics (need to determine exact
boundary)
l_list = -l_max:l_max;
for j=1:length(l_list)

l = l_list(j);
F1 = F1 +
besselj(l,X).*(besselj(2*l+n+1,Y)+besselj(2*l+n-1,Y));
F2 = F2 +
besselj(l,X).*(besselj(2*l+n+2,Y)+besselj(2*l+n-2,Y));

end

T1 = (1 - (1+1/2*qˆ2)*cosalpha.ˆ2./M.ˆ2).*F1.ˆ2;
T2 = -(1/2)*q*cosalpha.*(cos(theta)-(1/2)*qˆ2*sin(theta/2).ˆ2)./...

M.ˆ2.*F1.*F2;
T3 = (1/16)*qˆ2*sin(theta).ˆ2./M.ˆ2.*F2.ˆ2;

dPdO_L = A.*(nˆ2./M.ˆ2).*nˆ2./M.ˆ4.*(T1 + T2 + T3);
dNdO = dPdO_L.*M;
paredes = dNdO.*sin(theta);

omega_RTS = n*omega0./(1+1/2*qˆ2*sin(theta/2).ˆ2); % rad/s
lambda_RTS = 2*pi*c./omega_RTS*10ˆ9; % nm

end

The function RTS sarachik calls the function max besselnu sarachik defined below. This func-

tion determines where to truncate the Bessel function summation series.

function numax = max_besselnu_sarachik(nmax)
%MAX_BESSELNU_SARACHIK Summary of this function goes here
% Determines max Bessel function index for truncation of
inifinite
% series of Bessel functions
nmax_list = [11,26,41,60,76];
numax_list = [25,50,75,100,125];
if nmax <= 11

numax = 25;
else

numax = ceil(interp1(nmax_list,numax_list,nmax));
end

end

310



Appendix F: Gas Nozzle Simulations

F.1 Gas Nozzle Simulations for a 1 mm Orifice

In this appendix, we describe simulations used to estimate the pressure of gas released

from a nozzle as a function of distance from the nozzle. The simulation is based on kinetic

theory, assumes collisionless particles for simplicity, and a species of molecular nitrogen. The

collisionless assumption would be valid for low pressures (≲ 10−2 mbar for nitrogen) where the

mean free path, lp, is larger than the linear dimension of length scales considered (in our case,

on the order of ∼ 1 to 10 cm) [109]. One may argue that at these lower pressures, conservation

of momentum implies that the macroscopic results of a collisionless system is similar to those of

a system with collisions. At higher pressures (≳ 10−1 mbar for nitrogen), the particles collide

frequently, leading to collective motion, so that the kinetic theory breaks down. At these higher

pressures, our model therefore serves only as a rough approximation of the gas density. Table

F.1 shows the molecular density, average interparticle spacing, and mean free path for nitrogen

over 9 decades of gas pressures from atmosphere to the typical background pressures in vacuum

encountered in experiment. The average interparticle spacing is given by:

∆r ≡ 1

ρ
1/3
mol

(F.1)

and can be used to estimate the Coulomb potential experienced by electrons born from different

atoms. At a pressure of 1 atm, ∆r = 3.5 nm, corresponding to a Coulomb field of Ecoul =

1.2× 108 V/m, which is equivalent to a laser with an intensity of Ieq = 3.8× 109 W/cm2, many
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orders of magnitudes smaller than relativistic intensities. The mean free path, lp, is the average

distance a molecule travels before colliding with another molecule, and depends on the size of the

molecule parameterized by diameter, dmol, the thermal velocity, vth, and the molecular density. It

is given by:

lp =
1√

2ρmolπd2mol

(F.2)

where dmol ≈ 3× 10−8 cm for molecular nitrogen.

Table F.1: List of molecular densities, ρmol, at various gas pressures Pgas, assuming an ideal gas,
along with the average interparticle spacing, ∆r ≡ ρ

−1/3
mol , and mean free path, lp, calculated for

molecular nitrogen.

Pgas ρmol [1/cm3] ∆r [cm] lp [cm]
1 atm (≈ 1 bar) 2.4× 1019 3.5× 10−7 1.0× 10−5

100 mbar 2.4× 1018 7.5× 10−7 1.0× 10−4

10 mbar 2.4× 1017 1.6× 10−6 1.0× 10−3

1 mbar 2.4× 1016 3.5× 10−6 1.0× 10−2

10−1 mbar 2.4× 1015 7.5× 10−6 1.0× 10−1

10−2 mbar 2.4× 1014 1.6× 10−5 1.0
10−3 mbar 2.4× 1013 3.5× 10−5 1.0× 10
10−4 mbar 2.4× 1012 7.5× 10−5 1.0× 102

10−5 mbar 2.4× 1011 1.6× 10−4 1.0× 103

In our kinetic, collisionless model, we initialize a set of Np = 106 particles with a uniform-

random distribution inside a 20 mm by 20 mm by 20 mm cube, which acts as our reservoir. The

initial velocities of these particles have a probability distribution in their Cartesian components,

denoted as vi, given by the Maxwell-Boltzman law [110]:

P (vi) ∝ exp

(
− v2i
2v2th

)
(F.3)

where

vth =

√
kBT

m
≈ 297.6 m/s (F.4)
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is the thermal velocity and also the standard deviation of the distribution, kB = 1.38×10−23 m2 ·

kg · s−2 · K−1 is the Boltzmann constant, T is the gas temperature taken to be room temperature

of 300 K, and m is the mass of the gas species, which for molecular nitrogen is 28 amu or

4.68 × 10−26 kg. An example of the initial particle distributions in position and velocity are

plotted in Fig. F.1.

We define a coordinate system such that the origin is at the center of the cube. A circular

hole of diameter dhole = 1 mm is placed on the center of one side of the cube, namely the side in

plane defined by y = 10 mm. The simulation calculations the position at each iteration based on

the simple Euler’s method over 300 time steps from 0 ms to 1 ms, with step sizes of 6.7 µs. No

forces are applied to the particles other than at the boundaries of the cube. At the time step where

a particle pass outside of the cube through a wall, its position is reflected about the wall and its

velocity component normal to the wall is flipped. However, if the particle passes through the hole,

this calculation is ignored, and the particle is flagged as ”outside” of the cube so that for the rest

of time the particle does not interact with the the boundary. The step size of 6.7 µs was chosen to

avoid having particles with velocities large enough such that the particle travels a distance larger

than the dimension of the box over one time step, resulting in leakage and nonphysical behavior.

A particle count of 106 was chosen due to memory limitations of the computer (32 GB).

However, a larger particle count would be preferable in order to have a better statistical sample

outside of the cube as well as for consistency with the particle densities of the reservoir used in

experiment ∼ 1013 to 1015 cm−3. Under the simulation parameters used, the number of particles

leaked outside after 1 ms is about 1 percent of the total. The simulation results are shown in Fig.

F.2.
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Figure F.1: Plots of the initial position and velocity distribution of particles used in the simulation. The particles are instantiated with
a uniform spatial distribution inside of a 20 mm by 20 mm by 20 mm cube. The cube has a 1 mm diameter hole through which the
particles can leak. The velocity distribution follows the Maxwell-Boltzmann distribution for molecular nitrogen at 300 K.
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Figure F.2: Plots of the position distribution, shown in isometric as well as top view, of the simulated particles at various times. At
t = 0.10 ms, the gas plume begins to fill the region up to about 100 mm. At t = 1.00 ms, the gas distribution up to 250 mm from the
hole has reached a steady state.
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In order to quantify the gas density from these simulations, we divide space into bins of size

10 mm by 10 mm by 10 mm and count the number of particles within. This is done in MATLAB

using the hist() function for y position of particles inside the column defined by |x|≤ 5 mm and

|z|≤ 5 mm, as well as using the hist3() function in a bivariate histogram in the y and x position

for the layer defined by |z|≤ 5 mm. This is shown for select times are shown in Fig. F.3. In order

to improve sampling, the simulation was run 10 times with different seeds, and the histogram

data is averaged over these runs and shown in Fig. F.4.

The density distribution is expected to be continuous with the reservoir at the hole. At

distances sufficiently far from the hole, such that the hole may be approximated as a point emitter,

the density is expected to fall off proportional to the inverse square distance, |R−R0|, from the

hole, where R0 is the position of the hole center and R is the position of the observation point.

For an observation point along the y axis, this reduces to R−R0. The density distribution can be

described by a function of the form:

f(R) =
c1

(R−R0)2 + c2
(F.5)

for R ≥ R0, where c1 and c2 are parameters to be determined. In general, there would also be a

factor of cos θ, where θ is the angle made from the normal axis to the hole, with the hole center

as the point of origin, since a particle inside the box traveling towards the hole with direction θ

sees a cross sectional area equal to A cos θ, where A = πd2hole/4 is the area of the hole. Here, we

are interested in the density at θ = 0, which also implies that R = y. When Eq. F.5 is used to fit

the averaged histogram data, with c1, c2, and R0 as fitting parameters, we determine the best fit
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values (95% confidence half-interval) to be:

c1 = 9000 (500) mm2 (F.6)

c2 = 0.10(0.05) mm2 (F.7)

R0 = 9.8(0.3) mm (F.8)

The ratio c1/c2 = 90000 corresponds approximately to the particle number per bin inside the

cube (which should be closer to 1000000/8 = 125000 given that bin volume is 1/8 that of the

cube) and R0 is the fit-determined location of the hole along the y. In order for these parameters

to be useful, we define the reservoir gas density by normalizing c1/c2 to the bin volume:

ρ0 =
c1

c2Vbin
(F.9)

where Vbin = 103 mm3 so that the gas density as a function of R becomes

ρgas(R) =
f(R)

Vbin
=

ρ0c2
(R−R0)2 + c2

(F.10)

where Vbin = 103 mm3. Equation F.10 can be written in a more physically intuitive form:

ρgas(∆R) =
ρ0(

∆R
Rf

)2
+ 1

(F.11)

where ∆R = R − R0 is the distance from the hole, and Rf ≡ √
c2 = 0.32 (0.08) mm is

the parameter that controls the rate of density falloff with distance which we assumed to be

independent of the reservoir density. One may recognize Eq. F.11 to be a Lorentzian function.
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Figure F.3: Plots of single variable as well as two-variable histograms of simulated particle numbers. In the single variable histogram,
the binning is conducted along a column with a 10 mm by 10 mm cross sectional area, and centered along the y axis. In the bivariate
histograms the binning is done over a 10 mm thick layer centered on the x-y plane.
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Figure F.4: Plots of histograms averaged over 10 simulation runs. In the single variable histogram, the data at y ≥ 10 mm was fit with
a Lorentzian with length scale Rf ≈ 0.32 (see Eq. F.11). In the bivariate histogram, the bins at the edges include position values up to
infinity, leading to artificial overcounting, and should be ignored.
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