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Semiconductor lasers have been widely utilized in optical communications and

optical data storage. However, in many important applications a small amount

of the output light may be reflected back into the laser cavity resulting in large

intensity fluctuations and a broadened laser linewidth. Here we experimentally and

numerically characterize the subtle influence that spontaneous emission in the laser

cavity has on shaping the instabilities produced by the time-delayed optical feedback

from external reflections.

In the first experiment, we estimate the relative role played by determinis-

tic and stochastic influences in the semiconductor laser at high injection currents

under the influence of reflective feedback over a large range of feedback strengths.

An empirical mode decomposition method is utilized to provide a physically signif-

icant definition of the Hilbert phase. Hurst exponent measurements of the Hilbert

phase fluctuations show a clear transition from regular Brownian motion to frac-

tional Brownian motion as the amplitude of coherent feedback is incremented in the

experiment and model equations.



At lower injection currents noise is believed to play a much more crucial role

in the intensity dropout dynamics witnessed by the system. In a second experiment

we adapt a methodology commonly used to evaluated escape phenomena in the

theory of large fluctuations to elicit deterministic features shared by many dropouts

in an experimental an simulated intensity time series. The optimal path of dropout

derived from this analysis demonstrates epochs both before and after the dropout

where the system dynamics exhibits a chaotic itinerancy between external cavity

lasing modes supported by the system.

Finally, we numerically investigate the role of additive noise in the selection of

a chaotic instability supported by the semiconductor laser with time-delayed optical

feedback for different parameter settings. We find that a single instability is pre-

ferred by the system over a larger region of the parameter space as the amplitude of

the noise term is increased in the model equations. An experimental characteriza-

tion of this stability region serves as a sensitive indicator of the amount of Langevin

noise relevant in numerically describing stochastic influences present in the evolution

of the light dynamics.
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Chapter 1

Introduction

Through the process of stimulated emission, a photon with the correct energy

will induce an excited atom to emit a similar photon with identical phase, frequency,

and direction of propagation. The first coherent source of radiation was produced by

Townes and Shawlow in 1954, where they induced emission in the microwave regime

with ammonia molecules. Four years later they published a landmark theoretical

paper outlining how light may be amplified for infrared and optical frequencies [1].

The first laser to emit in the visible spectrum was soon developed by Maiman at

Hughes Research Laboratories using a ruby crystal as the gain medium and a helical

photographic strobe lamp as the power source [2]. While many materials have been

utilized to generate coherent emission, the semiconductor laser, first discovered in

1962 [3, 4, 5, 6], accounts for 99.8% of the lasers sold in the world market [7].

Advances in fabrication technology have allowed the construction of small efficient

semiconductor lasers which may be easily integrated with electronics at a low cost.

Although they are often used as pump source for other lasing systems, the spectral

content of semiconductor lasers permits information to be impressed on the light

generated by modulation of the current powering the laser diode. As a result, these

lasers are widely utilized for optical data storage and especially communication over

optical fibers at the key telecommunications wavelengths of 1.3 µm and 1.55 µm.
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Dispersion in the fiber is negligible at 1.3 µm and the loss in the fiber reaches a

minimum at 1.55 µm [8]

However, the light dynamics of a semiconductor laser may be strongly influ-

enced by outside perturbations introduced into the system. Even small influences

may strongly affect their performance in communications systems. In this Chapter

we describe some characteristics of semiconductor lasers and discuss instabilities

which may result in the light dynamics when a powerful perturbation that the laser

is most sensitive to, the re-injection of time-delayed optical feedback from a distant

reflector, is introduced into the active medium of the laser diode. A consideration

of the phenomena that result motivates the aim of this study, which is to ana-

lyze the effect that noise has in influencing the global dynamics witnessed in the

semiconductor laser.

1.1 Semiconductor Lasers

1.1.1 Operating Principles

As with any realization of coherent emission, three requirements are necessary

in order for semiconductor material to lase: (1) a medium which allows stimulated

emission, (2) a source providing population inversion to the system, and (3) the

construction of a cavity to locally confine the generated light so that lasing conditions

may persist. Semiconductors are based on p-n junctions of semiconductor materials.

In materials such as BaAl, GaInN the separation of valence and conduction bands

on the order of a few eV, which is comparable to energy of photons in the visible
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spectrum. A range of materials have been developed to produce wavelengths over a

wide spectrum from 0.1 µm to 3 µm. The energy band gap of the lasing medium

may additionally be adjusted when the laser is manufactured using strain [9].

In semiconductors the gain is achieved via carriers, which consist of an electron-

hole pair, where the electron lies in bottom of the conduction band and the hole

(absence of electron) resides near the top of the valence band. In thermodynamic

equilibrium, the electrons and holes distributed over a quasi-continuum range of

energies described by Fermi-Dirac statistics and may be described by a density of

states. The carriers serve as a source for stimulated emission, as photons may induce

radiative recombination of the electron and hole producing a photon with identical

characteristics. However, the carriers may spontaneously recombine to form photons

that do not share characteristics with the coherent state. In addition, absorbtion

of light in the gain medium may produce carriers and various mechanisms for non-

radiative recombination due to material defects are present as well. Nonradiative

depletion of carriers also occurs in Auger recombination, where an electron and hole

recombine but the energy of this transition is used to further excite an electron [8].

It is clear that with many competing recombination and absorption processes

in the gain medium, the rate of stimulated emission is extremely small. Many carri-

ers must be available in a small region in order for stimulated emission to dominate

the light dynamics. Laser action arises when a sufficient density of carriers are

injected into a gain medium from an electrical contact. For very small injection

currents, the light is primarily produced by spontaneous emission, as a majority of

the photons are absorbed before they may initiate stimulated emission with remain-
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ing carriers. When the injection current is tuned high enough such that enough

light is generated to overcome absorption, then the material is transparent. Upon a

further increase of injected charge carriers, stimulated emission may begin but the

coherent light produced is attenuated as it travels through the material. Dissipation

processes in the gain medium and losses of photons out of the injected region must

be compensated by a further increase of the injection current. Once these are over-

come, lasing threshold is reached and stimulated emission will dominate the light

output processes producing a coherent light source of light. Further increases of the

injection current at this point translate into a proportional increase of the output

intensity of the laser (losses along the direction of propagation), as the number of

carriers in the medium are clamped to the amount produced at the lasing threshold.

As discussed above, the electrons and holes must be densely concentrated into

a small region to generate enough stimulated transitions for sufficient light output.

This localization is commonly achieved in practice with the use of a heterostructure.

This arrangement is depicted in Fig. 1.1. The region where gain is achieved, the

active layer, is sandwiched between two semiconductor materials which each possess

a wider band-gap. This feature more efficiently confines charge carriers injected

into the active layer when forward bias is applied so the lasing threshold may be

reached for lower levels of the injection current. Furthermore, the potential barrier

created by the band-gap difference allows the thickness of the active layer to be

tightly controlled.

The cladding layers provide a useful method to confine the carriers and enhance

the population inversion. Once coherent light is generated, it is also important to

4



Figure 1.1: A schematic of the heterostructure which dramatically increases lasing

efficiency. The cladding layers effectively confine the carriers in the active region

due to a larger band-gap of the supporting materials. Gradations in the refractive

index in the active layer (perpendicular to the y direction) aid in concentrating as

much light as possible along the direction of propogation (z direction).
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retain a good portion of the optical field within the active layer to promote further

stimulated emission. In an edge-emitting laser the direction of propagation is parallel

with the thin active layer of the heterostructure. A Fabry-Perot resonant cavity is

comprised of polished facets which are established by cleaving the semiconductor

laser along the crystal plane. Standing waves in the cavity form the longitudinal

modes available for lasing emission. The reflectivity of the facets is generally only

around 30%, much lower than most other lasing mediums with mirrors reflecting

near all of the light in the gain medium. The reflectivity of one facet is often coated

with a dielectric material to establish a single output for the light. The cladding

layers confining the carriers are chosen to have a lower index of refraction then the

active layer which serves to concentrate the optical field in the active medium (x

direction). The current is injected along a thin stripe parallel to the desired direction

of propagation (z direction) as shown in Fig. 1.1. The gain applied along this stripe

can serve to localize the gain in the active medium, a process known as gain-guiding,

but lower threshold injection currents may be achieved by introducing a variation

of the refractive index along the plane of the active medium which is perpendicular

to the direction of propagation.

When the laser is pumped beyond lasing threshold, the optical spectrum ex-

hibit single or multi-mode emission which may be dependent on the temperature

and level of injection current [10]. Distributed feedback lasers and distributed Bragg

reflectors use a grating along the direction of propagation to establish the oscilla-

tion of a single longitudinal mode. The polarization direction is determined by the

cladding structure (y direction) and the semiconductor will often emit with a TE
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mode. The TM mode is possible but the TE is more likely because of its higher

reflectivity from the polished facets [11].

1.1.2 Dynamic and Stochastic Characteristics

Under lasing conditions a semiconductor laser will emit at a constant power

output determined by the injection current level. Spontaneous emission results in

fluctuations of the intensity as well as the phase. However, the phase is further

affected a short time later by the instantaneous change in the field intensity. The

delayed change in the phase is particularly pronounced in semiconductor lasers. A

fine balance exists between the carrier number and the electric field in the resonator

so that a fluctuation in the intensity results in a corresponding change in the car-

rier number. The interplay between these two variables is manifested through the

relaxation oscillations

fRO =
1

2
(

1

τeτph
)(

I

Ith
− 1)

1
2 . (1.1)

determined by the characteristic lifetimes of the carrier number τe and photons τph

as well as the level of injection current I with respect to solitary lasing threshold

Ith. In a semiconductor laser the change in the gain of the optical field with respect

to a change in the carrier number (the imaginary part of the refractive index) is

overshadowed by the deviation which occurs in the real part of the refractive index

due to a carrier change [12]. The ratio of the change in the real part of the refractive

index to the change in the gain may be characterized by the line-width enhancement

factor α, also known as the phase-amplitude coupling coefficient. This parameter
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is normally much below unity for most lasers but generally takes a value of 3 − 6

in semiconductor lasers. As its name implies the line-width enhancement factor

strongly affects the spectral purity of the laser emission by widening the emission

spectrum by a factor of 1 + α2.

1.2 Consequences of Coherent Optical Feedback

The short time scale of the relaxation oscillations (less than 1 ns) in a semi-

conductor laser make it an attractive candidate for modulation in communications

systems. However, due to the low reflectivity of the facets comprising the Fabry-

Perot cavity, a semiconductor laser is sensitive to outside perturbations from the

environment. When an external optical field is injected into the cavity or the laser

receives time-delayed light from a reflection back into the active medium, compli-

cated dynamics may be exhibited in the light dynamics. Here we focus on the

dynamical consequences which result from the introduction of coherent optical feed-

back back into the laser cavity.

Time-delayed feedback is prevalent in many physical processes and is a rele-

vant element which must be considered in the accurate characterization of ecological

and biological systems. Feedback loops are found in the finite transmission of neural

spikes and in many of regulation processes within the body to establish homeosta-

sis [13]. The delay may appear as a discrete re-injection of a signal into a system

or its influence may be distributed over a finite time interval. In either case, the

presence of delayed information in the system will often cause complex behavior
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and increase the dimensionality available to motions in the system [14]. Since the

continuous interval of the delay line must be specified in such a system, the phase

space is essentially rendered infinite-dimensional [15].

We mention that time delays may additionally be manifested in a semiconduc-

tor laser through incoherent optical feedback [16] or through optoelectronic feedback

via a time-delayed modulation of the injection current [17]. In many situations of

practical interest the feedback is generated by the reflection of a coherent optical

field back into the resonant cavity comprising the laser diode, and many studies

have focused on understanding the dynamics of this feedback source. While early

interest in the effects of reflective feedback in semiconductor lasers stemmed from

observations of enhanced noise properties, the focus later shifted to view the delete-

rious effects of the perturbation as a nonlinear dynamical phenomenon when chaotic

signatures were recognized in observations of the system [18].

Tkach and Chraplyvy [19] partitioned the experimental observations caused by

feedback into five regimes dependent on the amount of feedback which is transmitted

back into the laser cavity. For extremely small feedback strengths the line-width

of the laser diode may narrow [20, 21] or broaden [22] as a result of the phase

shift incurred during the finite propagation of the light through the passive external

cavity. For slightly larger feedback strengths longitudinal mode-hopping may be

induced or the laser may lock to the mode with the minimum line-width.

Even though desirable spectral results may be produced with a small amount

of feedback, over a large range of feedback strengths from ∼ 10−4 to 10−1 the line-

width of the laser may dramatically enlarge from about 10 MHz to well over 20 GHz .
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It is in this regime where nonlinear effects dominate the light dynamics and are

most problematic for implementations of semiconductor lasers in practice. A vast

number of studies have traced routes to chaotic output in the laser for increasing

feedback strengths and various descriptions of the underlying dynamics have been

proposed. The physically intuitive Lang-Kobayashi delay-differential equations [23]

are widely regarded to most accurately capture the increased line-width and large

amplitude fluctuations witnessed in experimental observations. Investigations of

this model predict that the light dynamics are the result of mode-hopping among a

large number of peripheral modes formed by the feedback cavity.

1.3 Chaotic Itinerancy

Chaotic itinerancy (CI) has recently been proposed as a ubiquitous phenomenon

in a variety of high-dimensional dynamical systems, and is generally recognized as

itinerant switching between low-dimensional attractors via high-dimensional chaos [24].

Experiments and numerical models of nonlinear coupled oscillators [25] and systems

with time-delayed feedback [26], in particular, have contributed largely to the charac-

terization of this dynamic mechanism. Optical media under the influence of delayed

feedback have served as exemplary systems for studying manifestations of CI [27],

and itinerant motion has been found to be relevant in describing the dynamical

behavior of photorefractive cells [28] and laser systems exhibiting multimode oscil-

lations [29].

For moderate levels of reflective feedback, the light dynamics of a semiconduc-

10



tor laser have numerically been shown to itinerate across hundreds of external cavity

modes for a wide range of injection currents. This phenomenon is traditionally char-

acterized in simulations of the Lang-Kobayashi equations for the complex electric

field and population inversion. Streak camera measurements of the light dynamics

on very short time scales have provided indirect confirmation of the deterministic

scenario of LFF predicted from the numerical model [67]. Hilbert phase informa-

tion extracted from filtered intensity measurements has previously demonstrated

external cavity mode shifts [31].

1.4 Outline

Although a semiconductor laser may wander between hundreds of external

cavity modes as a result of coherent optical feedback, two behaviors have been

observed to emerge in the global dynamics of the system. The Lang-Kobayashi

equations predict that each dynamical state shares the same backbone of attracting

states. As we will demonstrate in the following chapter, the determining factor of

the global dynamics exhibited by the system lies with the transitions which are

observed to occur between the individual external cavity lasing modes.

The purpose of this study is to gain a more complete understanding of the

factors which contribute to the intermode interactions of the dynamical states in

this system. In particular, we focus on the role that noise plays in dictating the

transition characteristics of the system which ultimately determine the global dy-

namics assumed in the light dynamics of the semiconductor laser. After a brief
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consideration of the dynamics of the Lang-Kobayashi model in Chapter 2, three

investigations are conducted with the motivation of quantitatively elucidating the

influence of noise in this high-dimensional system.

1.4.1 Hurst Exponent Measurements

When both noise and deterministic feedback yield similar signatures in tradi-

tional spectral and dynamical measurements, how can we discern the effects of each

on the light output. In Chapter 3, the phase dynamics of a semiconductor laser

with optical feedback is studied by construction of the Hilbert phase from its exper-

imentally measured intensity time series. The Hurst exponent [32] is evaluated for

the phase fluctuations and grows from 0.5 to ∼ 0.7 (indicating fractional Brownian

motion [33]) as the feedback strength is increased. A comparison with numerical

computations based on a delay-differential equation model shows excellent agree-

ment and reveals the relative roles of spontaneous emission noise and deterministic

dynamics for different feedback strengths.

1.4.2 Chaotic Itinerancy near Solitary Lasing Threshold

In Chapter 4 we report a direct experimental observation of chaotic itinerancy

in simultaneous measurements of the light intensity and voltage fluctuations of a

laser diode exhibiting low-frequency fluctuations. The distribution of trajectories

leading up to (following) an intensity dropout is computed from the experiment and

reveals the presence of itinerant mechanisms before (after) dropout initiation. Here
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we extract itinerant motions significant to a large number of dropouts by adopting

a methodology [34] commonly used to study escape dynamics in the theory of large

fluctuations. The distribution of trajectories leading to escape from a metastable

state generally displays a distinct peak, known as the optimal path, indicating how

the system is most likely to move.

In the context of large fluctuations, the motion and variance of this optimal

path gives insight to the potential barrier crossed during activated escape [35]. For

the purposes of our study, the optimal path reveals epochs before and after the

dropout where the system dynamics is dominated by high-dimensional transitions

between external cavity modes. A phase space reconstruction of the trajectory

for the optimal path of motion illustrates sudden shifts between low-dimensional

attractor ruins and is shown to correspond to simulations of the laser intensity and

carrier number.

1.4.3 Noise-Induced Selection of the Laser Dynamics

Noise is an inevitable element which must be considered in any experimen-

tal realization, and a number of studies have focused on the effect of stochastic

driving in a variety of nonlinear systems. In many circumstances noise may have

a positive influence on the trajectory of a dynamical system. Two common mani-

festations are found in stochastic resonance [36], where the response of a periodic

driving signal is enhanced with the appropriate addition of noise, and coherence

resonance [37], where input noise regularizes the occurence of large fluctuations in
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an excitable system. More recently, the role of noise has been studied in systems

exhibiting a large number of attractors. Even a small amount of injected noise may

dramatically affect the stability of individual attractors in a multi-stable system,

particulary when the basins of the constituent attractors are riddled or possess a

fractal boundary. As a result, multistability may be enhanced in a system [38] or the

noise may induce the trajectory to transiently wander between attractors. When

the noise is strong enough to induce attractor-hopping, studies of GCMs [39] and

a kicked rotor [40] have revealed noise-induced attractor selection. The trajectory

is preferentially guided by noise towards weak attractors of the system, and the

attractor visited most often stongly depends on the level of noise.

In situations where the underlying system possesses a large number of degrees

of freedom, transient switching between multiple attractors may be witnessed with-

out the influence of a stochastic term. Even though the system never settles on a

single attractor, dynamical states in these systems may be globally defined by the

set of transitions observed to occur between attractor ruins.

In Chapter 5 we examine the role of additive noise in selecting the dynamical

states observed in a semiconductor laser with time-delayed optical feedback. We

quantitatively characterize an intermittency between the two dominant dynamical

states over a wide range of a system parameter for different levels of Langevin noise.

As higher levels of noise are introduced into the system, the system preferentially

selects one of the dynamical states for a larger span of the parameter, preventing

the onset of intermittency. The characteristic scaling associated with the intermit-

tent transition is characterized experimentally and is shown to exhibit a sensitive
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dependence to the level of noise in the model equations.
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Chapter 2

Dynamics in the Presence of Optical Time-Delayed Feedback

The Lang-Kobayashi model [23] has been the paradigmatic model for studying

instabilities in semiconductor lasers under the influence of optical feedback due to

a widespread success in describing experimental observations over a wide range of

parameters. The model is simply formed by combining the standard semiclassical

rate equations, where light is treated classically from a consideration of Maxwell’s

equations in a cavity in concert with a quantum treatment of carriers, with a direct

addition of a discrete injection of a time-delayed field. In this Chapter we introduce

the Lang-Kobayashi model and focus on the formulation of two important parame-

ters: the linewidth enhancement factor and the rate at which feedback is re-injected

into the laser cavity. The contribution of each quantity has a profound influence on

the dynamical states which are realized in the compound cavity system. The non-

linear characteristics are additionally discussed and we emphasize the importance

of the interplay between individual attractors which are formed from steady-state

solutions of the Lang-Kobayashi equations, as they ultimately govern the global

behavior which is accessible experimentally.
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2.1 The Lang-Kobayashi Equations

The single-mode Lang-Kobayashi equation for the complex electric field in a

compound cavity consisting of the active gain medium (with internal round-trip

time τint and the passive external resonator (round-trip time τ) follows below:

d

dt
E(t)eiω0t = [iωN (n(t)) +

1

2
(G(n(t)) − Γ)]E(t)eiω0t + κE(t − τ)eiω0(t−τ). (2.1)

The slowly-varying envelope of the electric field is modulated rapidly by the solitary

emission frequency ω0. The first term on the right-hand side reflects the dependence

of the longitudinal mode resonant frequency

ωN ≡ Nπc

ηlint

(2.2)

on the carrier number n which, as discussed below, occurs via the refractive index

η. The integer N defines which longitudinal mode is exhibited in the cavity, c is

the light velocity, and lint is the length of the laser diode cavity. The second term

accounts for the balance between the gain amplification G(n) due to stimulated

emission and the attenuation of the light described the cavity decay rate Γ = 1/τph,

where τph is the lifetime of the photon. The photon losses stem from light exiting

through the material layers and the polished facets of the resonant cavity. The

direct addition of coherent optical feedback frames Eqn. 2.1 as a delay-differential

equation.

The rate equation Eqn. 2.1 is coupled with the evolution of the carrier number

d

dt
n(t) =

J

ed
− n(t)

τe
− G(n)|E(t)|2. (2.3)
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The first term represents the injection rate per unit volume of the excited carriers

in terms of the injection current density J , the electronic charge e, and the active

layer thickness d. The carrier lifetime τe reflects the decay of the excited states as

a result of the spontaneous recombination of electrons and holes as well as non-

radiative recombination from defects and Auger recombination. The third term

accounts for the depletion of the carriers due to stimulated emission. This equation

additionally assumes that carrier diffusion is not relevant in describing the dynamics

of the compound cavity, a reasonable assumption for the index-guided lasers realized

in our experiments.

2.1.1 Phase-Amplitude Coupling

We now apply a linear approximation for the gain and refractive index to

evaluate how changes in the carrier number affect the resonant frequency ωN [12].

For small variations δn(t) = n(t) − nth of the carrier number around the solitary

lasing threshold nth, the refractive index may be described as

η(t) = ηth + δn
∂η

∂n
. (2.4)

Plugging this relation into Eqn. 2.2 the longitudinal mode frequency assumes the

form

ωN = ωth −
ωth

ηth
(δn

∂η

∂n
). (2.5)

As the gain is similarly dependent on the number of carriers in the active layer, we

may approximate the gain near threshold as

G(n) = Gth + δn
∂G

∂n
. (2.6)
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However, the threshold condition for the solitary laser requires the gain to match

the photon losses in the cavity, hence Gth = Γ and we may express δn as

δn =
(G(n) − Γ)

∂G
∂n

. (2.7)

When this expression is utilized in Eqn. 2.6, then the resonant frequency relative to

threshold reads as

(ωN − ωth) =
α(G(n) − Γ)

2
(2.8)

where

α ≡ −2ωth

ηth

(
∂η
∂n
∂G
∂n

) (2.9)

is the phase-amplitude coupling which has important consequences in describing

response characteristics and the line-width broadening observed in semiconductor

laser dynamics. We substitute Eqn. 2.8 into the rate equation for the electric field

Eqn. 2.1 and cancel out the rapidly oscillating exponential to obtain

d

dt
E(t) =

1

2
(1 + iα)Gn(n(t) − nth)E(t) + κE(t − τ)eiω0(t−τ) (2.10)

in terms the differential gain Gn = ∂G/∂n and deviation of the carrier density from

threshold. From this representation of the Lang-Kobayashi field equation it is clear

that α explicitly connects fluctuations in the amplitude to changes in the phase.

As this factor enhances the line-width of the resonant frequency, we will later see

that it additionally plays a substantial role in opening up compound cavity modes

available to the system in the presence of optical feedback.
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Figure 2.1: Schematic of the coherent addition between the optical field inside the

laser cavity E(t) reflected off the output facet with reflectivity r and the time-

delayed light E(t − τ) re-entering the laser cavity. This process occurs at a rate

τ−1
int = 2Lint/c describing the round-trip time of the light within the gain medium.

2.1.2 Optical Feedback

The external cavity of the laser system is simply constructed by placing a

mirror of reflectivity R at the desired distance lext from the front facet (with reflec-

tivity r) of the laser diode. This distance defines the round-trip time in the passive

external cavity τ = 2lext/c . The amount of light re-injected after passing through

the cavity is characterized by the coupling coefficient κ. The time delay additionally

introduces a phase shift e−iω0τ . We now reframe this coupling in terms of the losses

suffered during the journey of the output through the external cavity. As shown in

Fig. 2.1, at a rate of τ−1
int the time-delayed light E(t − τ) reenters the laser diode

at the front facet and meets with the field E(t) which has just been reflected from

within the active medium. Then the composite field E ′(t) heading towards the back

facet takes the form
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E ′(t) = E(t)
√

r + E(t − τ)
√

1 − re−iω0τ/2
√

Re−iω0τ/2
√

1 − r

=
√

rE(t) + (1 − r)
√

RE(t − τ)e−iω0τ . (2.11)

From this equation we see that the time-delayed field transmits out of the cavity

through the facet and picks up a phase shift of e−iω0τ/2 on its way to the external

reflector. After reflection, another phase shift is obtained and finally the field meets

up with the light present in the cavity after a final transmission through the front

facet. It follows that for each round trip undertaken by the light within the laser

diode, the time-delayed field is injected with a phase shift e−iω0τ at a rate

κ =
1 − r

τin

√
R

r
. (2.12)

2.1.3 Spontaneous Emission

The effect of noise has not been considered so far in the model of the Lang-

Kobayashi equations, yet as we will see in future chapters it has a profound influence

on the dynamics of the model equations and its inclusion is important for an ac-

curate representation of experimental observations. The primary source of noise is

spontaneous emission in the amplitude and the phase dynamics of the light. Since

the optical field is not quantized in the semiclassical treatment of the dynamics in

the Lang-Kobayashi equations, the noise source may be represented by a complex

Langevin noise current FE(t) described by Gaussian random numbers with zero

mean 〈FE(t)〉 = 0 and a delta-correlation

〈FE(t)F ∗
E(t′)〉 = Rspδ(t − t′). (2.13)
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The number of spontaneous emission events which couple with the lasing mode are

phenomenologically described by the Langevin noise amplitude Rsp.

We may numerically construct the Langevin noise current [42] at each time

step dt in the integration of the model equations for each component of the complex

electric field by calculating FE(t) = Gr(t) + iGi(t), where

Gr =
√
−2Rspdt log(u1) cos(2πu2), (2.14)

Gi =
√
−2Rspdt log(u1) sin(2πu2), (2.15)

are Gaussian sources constructed from random numbers u1 and u2 drawn from a

uniform distribution over the unit interval. A noise current Fn(t) may also be

considered in the rate equation for the carrier density to account for contributions

of spontaneous emission and shot noise, but we will neglect it here as it does not

have much impact on the dynamics in the presence of FE(t).

2.1.4 Normalized Equations

When we take into account the expressions for feedback (Eqn. 2.12) and fluc-

tuations due to the Langevin noise, the rate equation for the optical field (Eqn. 2.10)

now reads

d

dt
E(t) =

1

2
(1+ iα)Gn(n(t)−nth)E(t)+

1 − r

τin

√
R

r
E(t− τ)eiω0(t−τ) +FE(t). (2.16)

In this form of the field equation the carrier number is evaluated with respect to

its deviation from threshold. The rate equation for the carrier number may similarly
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be rearranged by observing that, at solitary lasing threshold without feedback, the

threshold current Ith may be directly calculated from the carrier number at threshold

as Jth/ed = Ith/e = nth/τe. Using this relation and Eqn. 2.6, then Eqn. 2.3 may be

expressed as

d

dt
n(t) =

I

e
− (

Ith

e
− Nth

τe
) − n(t)

τe
− (Gth + Gn(n − nth))|E(t)|2. (2.17)

After some rearrangement the rate equation of the carrier number reads as

d

dt
n(t) = (PI − 1)

nth

τe
− n − nth

τe
− Gn(n − nth)|E(t)|2 − Γ|E(t)|2, (2.18)

where PI = I/Ith is the normalized pump current with respect to threshold and

Γ = Gth represents the losses at threshold conditions.

In later chapters we will often utilize a normalized version of the Lang-Kobayashi

equations [43],

dE

dt
= (1 + iα)nE(t) + κE(t − θ)e−iω0θ + FE(t), (2.19)

dn

dt
=

1

T
(p − n − (1 + 2n)|E|2). (2.20)

In this version of the delay-differential equations the parameters are scaled to

the photon lifetime τph and the field and carrier number are normalized to remove

the differential gain. Here E(t) = |E(t)|eiφ(t) is the normalized complex optical

field and n(t) is the difference in carrier number with respect to solitary lasing

conditions. Also θ is the external cavity round trip time and ω0 is the dimensionless

solitary laser frequency; p is the dimensionless pump strength above threshold; F ′
E(t)

is the Langevin noise term, with 〈FE(t)FE(t′)∗〉 = Rspδ(t − t′), where R′
sp is the

23



dimensionless spontaneous emission rate; T denotes the ratio between the decay

time of photons in the laser cavity and the carrier recombination time.

All computations of the Lang-Kobayashi equations in this study are integrated

using a fourth-order Runge-Kutta method [42]. In the following sections the steady

state solutions of the normalized Lang-Kobayashi equations are evaluated.

2.2 Dynamics in the Presence of Optical Feedback

We assume that the stationary solutions of Eqns. 2.19 and 2.20 can be ex-

pressed as E(t) = Ese
iωst and n(t) = ns. Additionally, the optical phase, defined

from the slowly-varying envelope of the electric field E(t) = A(t)eiφ(t)t with am-

plitude A(t), is conveniently represented in the analysis by the introduction of the

external cavity phase shift η(t) = (φ(t)−φ(t− θ)) and the corresponding stationary

solution η ≡ ωsθ.

2.2.1 Solutions of the Lang-Kobayashi Equations

In the phase space of |E(t)|2, n(t), and η(t), the fixed points of the system

satisfy

ηs = −κθ
√

1 + α2sin(ηs + ω0θ + tan−1α), (2.21)

ns = −ηcos(ηs + ω0θ), (2.22)

E2
s =

p − ns

1 + 2ns
. (2.23)

(2.24)
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An immediate inspection of the above fixed points clearly shows that the tran-

cendental equation for the external cavity phase shift determines the number and

position of available fixed points. The intensity and carrier number follow directly

from the solutions of Eqn. 2.21. When C = κθ
√

1 + α2 < 1, only one solution

exists close to the solitary laser frequency. As the feedback strength is increased,

new fixed points are created in pairs via a saddle-node bifurcation. The emergence

of new fixed points, which may also be generated by increases in the external cav-

ity round-trip time or the linewidth enhancement factor, can be visualized in the

graphical solution of Eqn. 2.21 shown in Fig. 2.2.

A linear stability analysis of the fixed points [44] reveals that for every pair

created, one may be identified as an external cavity mode (ECM) of the laser and

the other is an inherently unstable saddle point (antimode). The ECMs shifted from

the solitary laser frequency physically represent constructive interference between

the external cavity and the optical field, while the antimodes correspond to destruc-

tive interference. Upon its inception, each new ECM is stable but suffers a Hopf

bifurcation to periodic oscillations (relaxation oscillations become undamped) as the

feedback level is incremented. At even higher levels of feedback the attractor present

at each existing ECM follows a quasiperiodic route to chaos [45, 46]. Although this

is the most common path for the emergence of chaotic emission, a period-doubling

route has been observed when the relaxation oscillatons matched a harmonic of the

external cavity round-trip time.
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Figure 2.2: The fixed points of the Lang-Kobayashi equations satisy f(ηs) = ηs +

κθ
√

1 + α2sin(ηs + ω0θ + tan−1α) = 0. New pairs are created when an increase in

the amplitude penetrates the horizontal axis.
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2.2.2 The Rise of Chaotic Itinerancy

If the amount of feedback is sufficiently low, multiple chaotic attractors coexist

at the external cavity modes with separate basins of attraction. For moderate

feedback strengths the time-dependent solutions are no longer confined to a local

attractor surrounding each ECM and individual attractors begin to merge. The

laser emission will transiently move along the unstable chain of attractor ’ruins’

associated with the steady-state solutions, and the dynamics is said to exhibit a

chaotic itinerancy. The antimodes play a substantial role in regulating the individual

connections between ECMs.

The emergence of locally coupled attractor ruins is considered more concretely

in Fig. 2.3 for computations of the Lang-Kobayashi equations without the inclusion

of additive Langevin noise [47]. For a low level of feedback κ = 0.003, the time

series of the external cavity phase shift in Fig. 2.3 (a) wanders around a single

chaotic attractor. If the initial conditions are set close to other ECMs, spaced at

intervals of 2π apart, the trajectory of the system will similarly be locally confined

to the the nearby attractors (not shown). When the feedback is incremented to

κ = 0.005, attractor-merging of the ECMs is evident as depicted in Fig. 2.3 (b).

The duration spent near individual attractors will often fall close to a multiple of

the external cavity round trip time, but at higher feedback strengths mode-hopping

in the light dynamics may occur at a faster time-scale. In Fig. 2.3 (c) the mode-

hopping becomes more frequent at a feedback level of κ = 0.008.
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Figure 2.3: The dynamical interaction of the ECMs for feedback strengths of (a)

κ = 0.003 (b) κ = 0.005 and (c) κ = 0.008. The ECMs are spaced 2π apart (with

antimodes offset by π) and mode-hopping is seen to emerge for feedback levels higher

than ∼ κ = 0.0043.
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2.2.3 Observed Dynamical States

At higher levels of feedback or in the presence of a long external cavity round-

trip time (> 1 ns) hundreds of locally-coupled attractor ruins may participate in

the dynamics. When a particular ECM is visited by the system, the trajectory

of the system variables is highly localized around the ECM, but since the system

never settles down the resulting dynamical state observed in the system must be

typified by terms of the characteristic transitions which occur between the ECMs.

The dynamics of these motions is traditionally viewed in the (η(t), n(t)) phase space,

where the fixed points lie on a tilted ellipse [48]. In this representation the ECMs lie

along the lower branch of the ellipse while the antimode comprise the upper branch.

In addition to increasing the number of ECMs available to the system, the line-width

enhancement factor defines the eccentricity of the ellipse and regulates the size of

constituent attractors [49]. As discussed in the previous chapter, two dynamical

states have been extinsively characterized in experiments and simulations over a

wide range of system parameters.

When the laser dynamics exhibit low-frequency fluctuations (LFF) as depicted

in the simulated intensity time trace in Fig. 2.4 (a), the system trajectory wanders

among the attractor ruins close to the maximal gain mode at the tip of the ellipse

shown in Fig. 2.4 (b) until a crisis occurs when the system gets too close to the

antimodes on the upper branch. To generate these simulations, a noise amplitude

of Rsp = 1 × 10−4 is added to the normalized Lang-Kobayashi equations to model

realistic experimental conditions. This initiates a sudden shift in η(t) and n(t) to
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Figure 2.4: (a) Simulations of the LFF intensity dynamics and (b) the signature

transitions between ECMs in the phase space of the external cavity phase shift η(t)

and carrier number n(t) which typify this dynamical state. The crosses represent

the ECMS while the antimodes are denoted by the circles on the upper half of the

ellipse.

30



0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

time (ns)

I(
t)

  (
ar

b.
 u

ni
ts

)

−5000 −4000 −3000 −2000 −1000 0
−0.1

−0.05

0

η(t) = φ(t) − φ(t−τ)  (radians)

n(
t)

  (
ar

b.
 u

ni
ts

)

Figure 2.5: (a) The intensity dynamics of the CC regime demonstrate wild amplitude

swings (b) are observed to localize around a smaller group of ECMs than the LFF

state in the (η(t),n(t)) representation. The crosses represent the ECMS while the

antimodes are denoted by the circles on the upper half of the ellipse.

solitary lasing conditions, coincident with the dropout of intensity. A stepwise,

itinerant recovery of the system variables towards maximum gain follows along the

lower branch of the ellipse [51].

At larger injection currents, the system trajectory wanders more freely among

the modes and antimodes throughout the ellipse, resulting in the signature large-

amplitude fluctuations of the coherence collapse (CC) regime [50] shown in the

intensity time trace in Fig. 2.5 (a). The phase space dynamics depicted in Fig. 2.5
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(b) demonstrate that the CC dynamics are more tightly confined near the middle

of the ellipse, and there is no overall push towards the maximum gain mode or

long excursions on top of the antimodes towards solitary lasing conditions. The

qualitatively different features measured in the light dynamics are clearly manifested

in the allowed interactions observed to occur between the ECMs on the ellipse.

2.3 Experiment

The experimental setup utilized for all of the subsequent investigations is

shown in Fig. 2.6. For each experiment, a Lincolnix LDC-201 temperature con-

troller is used to stabilize (to better than 0.01K) a Fabry-Perot semiconductor laser

with an antireflection coating of approximately 10% reflectivity on one facet and a

high reflection coating on the other facet. Injection current is provided to the laser

with a Newport Model 505 laser driver. The diverging light (λ = 830 nm) emitting

from the laser is collimated with a ×20 microscope objective and reflected by a

high-reflectivity (∼ 98%) mirror. For each experiment a beam splitter directs light

onto a New Focus Model 1181 photodetector (12 GHz bandwidth) for system diag-

nostics. The output of the photodetector is recorded using a Tektronix TDS7104

digital oscilloscope with 100 ps resolution.
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Figure 2.6: Experimental setup of semiconductor laser diode with external feedback

from a mirror. The amount of feedback is adjusted using a variable neutral density

filter.
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Chapter 3

Hurst Exponent Measurements of Semiconductor Phase Dynamics

3.1 Overview

Time-delayed feedback has profound consequences on the dynamics of a semi-

conductor laser. However, as we saw with the low-frequency fluctuations (LFF)

phenomenon at the end of the previous chapter, the deterministic scenerio pre-

dicted by the Lang-Kobayashi equations does not provide a complete picture of the

dynamical instabilities which arise in the diode. Spontaneous emission must be ad-

ditionally added to the model equations in order to shape the light output so that it

resembles experimental observations. When deterministic and stochastic forces are

both present in the system, can we discern the relative role that each term plays in

driving the dynamics?

In this chapter, we address this question for the coherence collapse (CC) in-

stability which arises at high injection currents in the laser. As opposed to the

regular structures which appear in the power dropouts of the LFF state, the wild,

chaotic oscillations of the intensity in the CC regime make it exceptionally difficult

to distinguish the effect of spontaneous emission, and many numerical studies of

this phenomenon neglect the contribution of noise [47]. Nevertheless, we find that

the phase dynamics of the electric field betray the source which drives the fluctua-

tions in the laser system. The relative contribution of deterministic and stochastic
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influences may be quantitatively distinguished via Hurst exponent measurements of

the optical phase fluctuations.

Quite often, it is possible to experimentally determine the amplitude of dy-

namical variables, but the measurement of phase variables is much more elusive.

Gabor’s [52] introduction of the Hilbert transform to define an analytic signal from

the amplitude of a dynamical variable made it possible to derive an associated phase.

In recent years, such phase variables have been important in the study of nonlinear

oscillator dynamics and synchronization [53, 54]. When chaotic or noisy dynamics is

displayed by such systems, the definition of a unique phase variable is often difficult

due to the presence of multiple centers of rotation of the system trajectories.

In the context of the chaotic dynamics of the Lorentz model, Yalçinkaya

and Lai [55] used an empirical mode decomposition method [56] and the Hilbert

transform to provide a uniquely defined phase variable and examine its dynamics.

They showed that the Hurst exponent for the phase dynamics of this model chaotic

system was about 0.74, representing persistent fractional Brownian motion of the

phase [32, 57].

We experimentally estimate the Hurst exponent for measurements made on a

semiconductor laser with different levels of reflective feedback and compare these

results with computations of the Lang-Kobayashi equations with additive Langevin

noise [58]. Our results show that such measurements provide clear evidence for

a transition from regular Brownian motion (stochastic driving) to persistent frac-

tional Brownian motion (deterministic driving) of the phase as the amount of optical

feedback coupled to the semiconductor laser is progressively increased.
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3.2 Hurst Exponents

Random processes in biological and physical systems such as diffusion are

often times described as a Brownian motion, where the trajectory of a measured

variable may be described as a random walk. Specifically, the displacement of the

variable at each time interval is determined by a Gaussian random process. How-

ever, in phenomenon such as anomalous diffusion, the deviations in the system at

each time step are additionally influenced by previous motions undertaken by the

system. In the 1950’s Hurst developed an empirical scaling law to characterize

long-range correlations he found in recordings of a variety of natural systems in-

cluding river discharges, rainfall, and tree rings [32]. A decade later Mandelbrot put

Hurst’s observations in a more natural theoretical framework with the introduction

of fractional Brownian motion as a generalization of the random process [33]. In

this section we review Mandelbrot’s definition of this phenomenon and show how

measurements of the Hurst exponent reveal the degree of determinism (long-range

correlations) in the evolution of a dynamical system.

3.2.1 Brownian Motion and Fractional Brownian Motion

Consider a time trace of a regular Brownian motion

Br(ti) =
i∑

j=1

G(tj). (3.1)

where the displacement at each time step is drawn from a Gaussian white noise

source G(t). The time trace displayed in Fig. 3.1 (a) represents a Brownian mo-
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tion constructed from 100,000 increments of a Gaussian distribution possessing zero

mean and a standard deviation of unity (arbitrary units). Although the overall

displacement of the Brownian motion ∆Br(w) = Br(ti) − Br(ti′) does not deviate

from zero over a time interval of w = ti − ti′ with i > i′, the variance of ∆Br(w)

increases linearly with w. Equivalently, the mean of the absolute value of ∆Br(w)

scales with w according to [59]

〈|∆Br(w)|〉 ∝ w
1
2 . (3.2)

where the angle brackets signify the average over many iterations of the process. To

confirm this relationship for the time series in Fig. 3.1 (a), we slide a window with

width w from the beginning to the end of the time series to calculate 〈|∆Br(w)|〉.

This quantity is computed for different w spanning many orders of magnitude. Fi-

nally, as shown in Fig. 3.1 (b), the logarithm of the average displacement is plotted

against the logarithm of the window width. It is observed that the plot lies along a

straight line with a slope of 0.49, confirming the scaling of the Brownian process.

Mandelbrot introduced the notion of fractional Brownian motion as a random

walk where the individual increments at each time step depend on the whole history

of previous displacements. In short, the random process present at each time step

is weighted by a kernel of (ti − ti′)
H− 1

2 where the influence of the previous steps

is characterized by the Hurst exponent H [33]. The fractional Brownian motion is

defined then for a continuous time t as

BH(t) =
1

Γ(H + 1
2
)
{
∫ 0

−∞
[(t−t′)H− 1

2 −(−t′)H− 1
2 ]dB(t′)+

∫ t

0
(t−t′)H− 1

2 dB(t′)}. (3.3)

Long-range correlations are clearly present in this definition, and specifically, the
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Figure 3.1: (a) a regular Brownian time trace built from 100,000 increments of a

Gaussian noise source, (b) the logarithm of the mean absolute value 〈|∆Br(w)|〉 is

plotted against the logarithm of the window width w. A scaling of 0.49 is indicative

that no correlation exists between the individual time increments.
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Hurst exponent dictates the impact of future increments BH(t) with previous incre-

ments −BH(−t) via the correlation function [33]

C(t) =
〈−BH(−t)BH(t)〉

〈BH(t)2〉 = 22H−1 − 1. (3.4)

An approximation to a fractional Brownian motion may be numerically gen-

erated using successive random increments from Gaussian distribution and a finite

memory. This motion is the summation [33]

BH(ti) =
i∑

k=1

[BH(tk) − BH(tk−1)] (3.5)

where the displacements are computed as

BH(ti)−BH(ti−1) =
1

Γ(H + 1
2
)
[

i−2∑

j=i−M

((i− j)H− 1
2 − (i− j − 1)H− 1

2 )G(tj) + G(ti−1)].

(3.6)

The long-range correlations additionally affect the average absolute value of the

displacements over an interval w. The scaling may now be typified as

〈|∆BH(w)|〉 ∝ wH . (3.7)

When H = 0.5, the kernel in Eqn. 3.3 and the correlation function [Eqn. 3.4]

vanish over all time steps and the trajectory of the system may be described by a

regular Brownian motion. However, for H values above or below 0.5, two distinct

fractional Brownian motions may be discerned in the dynamics:

1. When H < 0.5 the correlation function is negative and the trajectory will tend

to turn back upon itself. As a result, the overall fluctuations of the motion

appear to be more constrained than a traditional Brownian motion and the

system is said to exhibit antipersistence.
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2. When H > 0.5 the correlation function is positive and the system demonstrates

persistence in the dynamics. In this case an increasing (decreasing) trend in

the past makes an increasing (decresing) trend in the future more probable.

The three panels in Fig. 3.2 display Brownian motions generated from Eqns. 3.5

and 3.6 with a Hurst exponent H = 0.25 [Fig. 3.2 (a)], H = 0.50 [Fig. 3.2 (b)],

and H = 0.75 [Fig. 3.2 (c)]. To emphasize the effect of the scaling exponent, each

time trace is built from the same sequence of random fluctuations (drawn from a

Gaussian source) and utilizes a history length of M = 10, 000 time steps. Although

the overall motion in each panel is similar, the range of each vertical axis indicates

the influence of previous deviations in the system. For instance, the antipersistant

behavior in Fig. 3.2 (a) covers a smaller range than the regular Brownian motion in

Fig. 3.2 (b). In contrast, the span of the vertical axis is drastically increased for the

persistent motion in Fig. 3.2 (c).

3.2.2 Example: Stochastic and Deterministic Mode-Hopping

The LFF and CC instabilities exhibit markedly different features in the light

output, yet, as revealed in the previous chapter, the two dynamical states share

a common backbone of external cavity modes. The resulting light dynamics are

therefore dependent on the transitions which occur between the lasing modes. Recall

that for a sufficient amount of feedback, the external cavity modes lose their stability

and the trajectory will itinerate among the attractor ruins available to the system.

However, stochastic influences additionally affect the mode-hopping characteristics
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Figure 3.2: (a) anti-persistent fractional Brownian motion with Hurst Exponent of

H = 0.25, (b) regular Brownian motion with Hurst Exponent of H = 0.50, and

(c) persistent fractional Brownian motion with Hurst Exponent of H = 0.75. Each

time series is computed from the same source of Gaussian fluctuations.
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of the system. This may be concretely observed in Fig. 3.3 (a), where we integrate

the model equations with Langevin noise at a low feedback level. An intensity time

series is shown for a higher feedback strength in Fig. 3.3 (c).

When both deterministic and stochastic forces induce mode-hopping between

the ECMs in the system, how may we determine the dominant influence in the

transition dynamics? At this point it is instructive to look at the optical phase

dynamics. In Fig. 3.4 (a) we plot the deviation of the phase about its average rate

of rotation for the time traces in Fig. 3.3 (b) (thin line) at low feedback strength and

at the higher feedback strength in Fig. 3.3 (d) (thick line). Note that we are now

examining the raw (unwrapped) optical phase and not the external cavity phase shift

previously considered. Each time series is sampled at 10 GHz in order to emphasize

dynamical timescales which may be realized in an experimental setting. It is clear

that the phase dynamics for the cases of deterministic and stochastic mode-hopping

resemble a Brownian-like motion. The degree of determinism present in each motion

may be estimated by calculating the Hurst exponent for each time trace.

In Fig. 3.4 (b) we plot logarithm of the mean absolute value of the phase dis-

placement versus the logarithm of various window widths for each time series shown

in Fig. 3.4 (a). The stars represent the phase displacements due to deterministic

mode-hopping and the circles designate the motions due to noise-induced hops. In

each case we find a scaling regime over about two decades of window width (from

∼ 3 ns to ∼ 20 ns). In this regime the dynamics are primarily dominated by inter-

mode interactions as the inherent laser dynamics occur on much faster timescales

(less than 1 ns). The stochastic-generated hopping between ECMs displays a regular
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Figure 3.3: (a) Simulated intensity time series of the CC regime at a low feedback

strength with a reflectivity of R = 0.0001, (b) optical phase fluctuations about

the average phase increment for the time series in (a), (c) simulated intensity time

series for the same parameters as (a) except for a higher feedback strength with a

reflectivity of R = 0.1, and (d) optical phase fluctuations about the average phase

increment for the time series in (c).
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Brownian motion with a Hurst exponent H = 0.52 while the deterministic mode-

hopping scales with H = 0.74, depicting a persistent fractional Brownian motion.

The high value of the Hurst exponent in the latter case agrees wih our expectation

that deterministic forces due to the delayed feedback produce long-range correlations

in the time trace.

3.3 Hilbert Phase

The results of the previous section demonstrate that the optical field fluctua-

tions contain relevant information about the influence of deterministic mechanisms

in the laser system. The dynamics of the optical field phase are not easily detected in

experimental situations, however, as the variations of the complex electric field occur

at extremely fast timescales of ∼ 1012 − 1014 Hz . Furthermore, intensity measure-

ments of the light dynamics using a photodector destroys the optical phase content

and oscilloscope time trace recordings are severly limited in bandwidth to 1 GHz .

In the 1940’s Gabor introduced the complex analytic signal as a method to extract

phase information from a time series measurement of an amplitude variable [52].

The phase associated with the analytic signal has recently been utilized in nonlinear

signal processing applications including chaotic oscillator dynamics [53, 60] and syn-

chronization phenomenon [61]. Here we introduce the formulation of the analytic

signal using the Hilbert Transform and point out the limitations of the physical

significance of the derived phase information.
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H = 0.49

H = 0.76

Figure 3.4: The mean absolute value of the phase displacement is measured at

various window widths for the optical phase fluctuations depicted in Fig. 3.3 (b),(d)

for respective feedback strengths of R = 0.0001 and R = 0.1. The scaling of the

two optical phase fluctuations deviates for window widths larger than the external

cavity round-trip time with an Hurst exponent estimate of H = 0.49 for R = 0.0001

and H = 0.75 forR = 0.1.
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3.3.1 Definition

A complex analytic signal I(t) may be constructed from a real time series

I(r)(t) by defining an imaginary component I(i)(t) such that

I(t) = I(r)(t) + iI(i)(t). (3.8)

The imaginary term must be defined carefully from I(r)(t) such that the amplitude

and phase of the resultant analytic signal will exhibit a geometric rotation in the

complex plane. Gabor recognized that this may be accomplished if the analytic

signal possesses only the positive frequency content of the real signal, i.e.

I(t) =
2√
2π

∫ ∞

0
a(ω)eiωtdω, (3.9)

where

a(ω) =
1√
2π

∫ ∞

−∞
I(r)(t)e−iωtdt (3.10)

represents the Fourier transform of I(r)(t). After substituting Eqn. 3.3 into Eqn. 3.2

and separating the real and imaginary components, this analytic signal may be

rewritten [62] as

I(t) = I(r)(t) + i
1

π
PV

∫ ∞

−∞

I(r)(t′)

(t − t′)
dt′. (3.11)

The imaginary term

I(i)(t) = i
1

π
PV

∫ ∞

−∞

I(r)(t′)

(t − t′)
dt′. (3.12)

is the Hilbert transform of I(r)(t) where PV represents the Cauchy principal value

of the integral and I(r)(t) may be recovered from I(i)(t) by an additional Hilbert

transform. It can furthermore be shown that the real (imaginary) component of
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the analytic signal is the convolution of 1
πt

and the imaginary (real) signal. Each

component is highly sensitive to the instantaneous motions of the amplitude of its

counterpart at each step in time.

The computation of the Hilbert transform is simplified by taking advantage

of the spectral content of the analytic signal shown in Eqn. 3.9. In practice, the

analytic signal may be built by (1) taking the Fourier transform of I(r)(t), (2) set-

ting the negative frequencies to 0 and doubling the positive frequencies (so I(r)(t)

contains the full a(ω)), and (3) taking the inverse Fourier transform achieve I(t).

The imaginary component of I(t) resulting from the inverse Fourier transform is the

Hilbert transform of I(r)(t).

To analyze the rotations of the system in the complex plane, the analytic signal

may be rewritten as

I(t) = AH(t)eiφH(t), (3.13)

where the Hilbert amplitude AH(t) and Hilbert phase φH(t) are real functions of

time. The instantaneous Hilbert frequency

ωH(t) =
dφH(t)

dt
, (3.14)

can always be calculated from the Hilbert phase. This frequency quantifies the rate

of rotation of I(t) in the complex plane.

3.3.2 Example

In Fig. 3.5 we demonstrate a calculation of the Hilbert phase from a short 6 ns

segment of an experimental intensity time trace measured in the coherence collapse
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regime. The real time series and its imaginary counterpart are shown in Fig. 3.5

(a). The Hilbert transform constructs I(i)(t) (grey line) such that it resembles I(r)(t)

(black line) except with a phase lag of π/2. The trajectory of the analytic signal

in the full complex plane is plotted in Fig. 3.5 (b). The phase lag of the imaginary

component is manifested as rotational motions of the analytic signal around the

mean amplitude of the time series (the origin in the complex plane). The full

evolution of the Hilbert phase is displayed in Fig. 3.5 (c) without regard to jumps

from 2π to 0. It is necessary for φH(t) to be unwrapped to deduce long range

fluctuations of the Hilbert phase in Hurst exponent calculations.

Although there is a clear notion of geometric rotation for the analytic signal in

the complex plane, in Fig. 3.5 (d) the instantaneous Hilbert frequency demonstrates

negative values at the center of the time trace. The interval over which ωH(t) dips

to negative values is problematic since we are ascribing a physical significance to

the Hilbert phase. The unphysical interval corresponds to a kink in the Hilbert

phase time trace detailed in the inset of Fig. 3.5 (c). This kink is formed when

the trajectory of the analytic signal revolves around a point away from the origin.

This alternative point of revolution is denoted by the star in Fig. 3.5 (b). The loop

made by I(t) around this alternative reference level indicates that multiple centers

of rotation exist in the complex plane of the analytic signal and the mean value of

the amplitude does not sufficiently capture all rotations present in I(r)(t).

The above example shows that the instantaneous Hilbert frequency bears a

physical interpretation only when the rotations in the complex plane take place

around a single reference point. In the next section we explore the conditions a real

48



0 2 4 6
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

time (ns)

I(r
) (t

) 
,  

I(i)
(t

) 
(a

rb
. u

ni
ts

)

−0.04 −0.02 0 0.02 0.04
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

I(r)(t) (arb. units)

I(i)
(t

) 
(a

rb
. u

ni
ts

)

0 2 4 6
0

10

20

30

40

50

time (ns)

U
nw

ra
pp

ed
 

φ H
(t

) 
(r

ad
ia

ns
)

0 2 4 6
−4

−2

0

2

4

6

8

10

12
ω

H
(t

) 
(r

ad
ia

ns
/n

s)

time (ns)

(a) (b)

(c) (d)

Figure 3.5: (a) the real (black line) and imaginary (gray line) components of the com-

plex analytic signal (b) the full rotation of the trajectory in the complex plane, (c)

the unwrapped Hilbert phase from the rotation, and (d) the instantaneous Hilbert

frequency calculated from the Hilbert phase in (c). The unphysical negative interval

of instantaneous Hilbert frequencies is associated with rotations centered around the

star in (b) and corresponds to the kink in (c).
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signal must satisfy to achieve a proper sense of rotation. A novel technique [56, 63] is

then introduced to empirically decompose an arbitrary real signal into components

which individually yield a physically significant Hilbert phase.

3.4 Empirical Mode Decomposition

The Hilbert phase analysis in the last section measured the rotations of the

analytic signal about the mean value of an intensity time series. While this is an

intuitive and preferred reference level for gauging the fluctuations of an amplitude

variable, it is certainly not a unique choice. For instance, the time interval of the

instantaneous Hilbert frequency displaying negative values in Fig. 3.5 (d) would

show physically relevant values if the Hilbert phase analysis was instead centered at

the red star in the complex plane in Fig. 3.5 (b). An unambiguous Hilbert phase may

only be defined if the system exhibits proper rotation; namely, there is a preferred

direction of rotation for I(t) in the complex plane which can be defined with respect

to a unique center. These conditions ensure that the instantaneous Hilbert frequency

does not reflect fluctuations of the amplitude induced by asymmetric waveforms [56].

Many nonlinear oscillators, however, will display multiple centers of rotation

in the complex plane. A nonstationary time series will certainly exhibit multiple

reference levels of fluctuation, but this phenomenon is more commonly caused by

the simultaneous presence of disparate frequencies in the real signal. In this case,

the reference level of a high-frequency oscillation in the system is modulated by the

lower-frequency components and a static level is irrelevant for typifying the Hilbert
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phase of the system. This explains why Hilbert phase analysis has mainly been

utilized in systems with one dominant frequency component such as the Rössler

attractor [53] or in situations where the signal has been band-pass filtered to a

narrow frequency range [61].

3.4.1 Intrinsic Mode Functions

When multiple timescales are present in a signal, the only way to make sense

of amplitude fluctuations is to separately consider the oscillations comprising the

system. In the past decade Nordon Huang has introduced the Empirical Mode

Decomposition (EMD) method to adaptively separate an arbitrary real time series

into components, each possessing a proper rotation structure, according to the innate

time scales of the dynamics [56]. The signal is then expressed as a sum of intrinsic

mode functions (IMF) which satisfy the following two conditions:

1. In the whole data set, the number of extrema and the number of zero-crossings

must either equal or differ at most by one.

2. At any point, the mean value of the envelope defined by the local maxima and

the envelope defined by the local minima is zero.

The EMD process is summarized as follows:

1. Construct two smooth splines connecting all the maxima and minima, respec-

tively, to get I(r)
max(t) and I

(r)
min(t).

2. Compute ∆I(r)(t) ≡ I(r)(t) − [I(r)
max(t) + I

(r)
min(t)]/2.
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3. Iterate steps 1 and 2 for ∆I(r)(t) until the resulting signal corresponds to

a proper rotation. Denote the resulting signal by C1(t), which is the first

intrinsic mode.

4. Take the difference I
(r)
1 (t) ≡ I(r)(t) − C1(t) and repeat step 1 to 3 to obtain

the second intrinsic mode C2(t).

5. Continue the procedure, known as sifting, until the mode CM(t) shows no

apparent variation.

By doing these steps, we have decomposed the original signal I(r)(t) into
∑M

j=1 Cj(t),

where each Cj(t) generates a proper rotation in the complex plane. The ∆I(r)(t)

produced in step two picks out the highest frequencies present in the system by

removing the modulation of the reference level by the low-frequency content of

the signal. This high-frequency component is subtracted from the original time

series once it satisfies the conditions of an IMF within a given tolerance [64]. The

remaining modes highlight slower and slower timescales in the system until only a

residual trend (without any oscillation) remains. In systems with a broad spectrum,

the number of zero-crossings in successive IMFs roughly decreases by a factor of two.

As a result, the EMD procedure has been compared with the hierarchical structure

of a filter bank observed in wavelet decompositions [65].

In Fig. 3.6 the EMD is applied to the real time series considered in Fig. 3.5.

Note that only 4 IMFs [Fig. 3.6 (a)-(d)] result from the fluctuations of I(r)(t) shown

in Fig. 3.5 (a) where the final IMF represents the residual trend in the system. We

next apply the Hilbert phase analysis to each IMF generated in the process. The
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Figure 3.6: Four intrinsic mode functions (IMF) (a)-(d) are generated using the

EMD method on the real time series shown in Fig. 3.5 (a). The sifting procedure

guarentees that each IMF exhibits proper rotation.

trajectory of each analytic signal in the complex plane is respectively plotted in

Fig. 3.7 (a)-(c). Here a common center of rotation is apparent for each IMF and an

unambiguous Hilbert phase may be defined at each timescale. The corresponding

instantaneous Hilbert frequency of each mode [Fig. 3.7 (d)-(f)] only takes positive

values, thereby retaining a physical sense of rotation throughout the entire time

series. The fluctuations of I(r)(t) are completely described then by the set of Hilbert

phases generated by the constituent IMFs.
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Figure 3.7: In (a)-(c) the trajectory of analytic signal from the fist three intrinsic

mode functions (IMF) in Fig. 3.6 (a)-(c) shows a unique center of rotation. The

corresponding instantaneous Hilbert frequencies in (d)-(f) demonstrate positive fre-

quencies throughout the evolution of the time series.

54



3.5 The Transition to Fractional Brownian Motion

The techniques developed in the previous two sections allow us to derive a

physically significant Hilbert phase from an intensity time series. We consider the

experimental setup shown in Fig. 2.6 using a Sharp LT015MD laser diode and an

external cavity round-trip time of 3 ns. The system is pumped at a bias current

level of 71.6 mA which is 1.25 times the threshold current of 57.2 mA. For the

experimental time series shown in Fig. 3.8 (a) with a feedback strength of R =

6.7 × 10−2 (here R is the reflectivity found in Eqns. 2.18), the EMD generates 14

IMFs, shown from Fig. 3.8 (b) to 3.8 (o). The properties of the IMFs ensure a

proper structure of rotation for the corresponding analytic signals.

In Fig. 3.9 (a) the 14 Hilbert phases and the corresponding uniform phase

increments calculated by 〈ωHi(t)〉t are plotted. Here omegaHi(t) is the instantaneous

Hilbert frequency defined in Eqn. 3.14. The Hilbert phases (solid line) fluctuate

about the dashed line representing the uniform phase increment. This is more

clearly shown in Fig. 3.9 (b), where δφH1(t) = [φH1(t) − 〈ωH1(t)〉t] is portrayed for

the intensity time series of Fig. 3.8 (a) (thin line). We have focused on φH1 since

this phase variable represents the fastest observed time scales for the laser system.

The 10 GHz sampling of the laser intensity enables us to observe the scaling of the

phase fluctuations on the time scales of the dynamical interactions between external

cavity modes. The phase fluctuations of the first IMF is also shown for a time series

recorded for a weaker feedback strength of R = 7.2 × 10−4 (thick line).

To examine the nature of the phase fluctuations, in Fig. 3.9 (c) we plot
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Figure 3.8: (a) Intensity output of the semiconductor laser with I = 71.6 mA and

R = 6.7 × 10−2, (b)-(o) 14 intrinsic mode functions for the time series of (a).
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Figure 3.9: (a) The Hilbert phases φHi(t) of the IMFs in Fig. 3.8 (solid line) and

the corresponding uniform phase increment 〈ωi(t)〉t (dashed line), where i = 1 . . . 14,

(b)the fluctuation of φH1(t) about the uniform phase increment 〈ω1(t)〉t for (a) (thin

line) and for a time series (not shown) with feedback strength R = 7.2×10−4 (thick

line), and (c) the Hilbert phase dynamics is a persistent fractional Brownian motion

with H = 0.71 for R = 6.7 × 10−2 and regular Brownian motion with H = 0.50 for

R = 7.2 × 10−4.
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log10(〈|∆φH1(t)|〉) versus log10w for the phase fluctuations shown in Fig. 3.9 (b).

Similar to the optical phase fluctuations, we find that a well-defined scaling regime

persists over about two decades of window width (from ∼ 3 ns to ∼ 150 ns). The

Hilbert phase dynamics of the semiconductor laser with a feedback of R = 7.2×10−4

displays regular Brownian motion with a Hurst exponent H = 0.50. This is an in-

dication that the fluctuations of the phase are dominated by spontaneous emission

noise inherent to the laser diode. For a stronger feedback of R = 6.7×10−2, we mea-

sure H = 0.71. In this case, the dynamics portray a persistant fractional Brownian

motion of the phase and the fluctuations are primarily influenced by the delayed

feedback.

In order to obtain a clearer picture of how the phase dynamics are influenced

by the feedback strength, we record 13 data sets with increasing feedback levels

from R = 0 to R = 0.18, shown in Fig. 3.10 (a)-(m). Our measurements in this

coherence collapse regime are characterized by rapid transitions between external

cavity modes.

For the Hurst exponent analysis, we obtained eight intensity time traces for

every feedback strength in the experiment. We could then calculate the average

Hurst exponent and the standard deviation of the eight samples for each of the 13

feedback strengths. The results are displayed in Fig. 3.11 by the triangles. When the

feedback strength changes from R = 0 to R = 6.4× 10−3, the Hurst exponent stays

close to 0.5 and the phase dynamics resemble regular Brownian motion. Spontaneous

emission noise is the driving force of the intermode switching dynamics for this range

of feedback and there are no long-range correlations present in the time series. If
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Figure 3.10: (a)-(m) Experimental intensity time series with increasing feedback

strength from R = 0 to R = 0.18. The pump current is set at 71.6 mA.

59



Figure 3.11: The Hurst exponent with error bars for experimental measurements

(triangles) and simulations (stars) for different feedback strengths R shows the tran-

sition from regular (H = 0.5) to fractional (H > 0.5) Brownian motion. Each Hurst

exponent is measured over a range of window widths from 3 ns to 150 ns.

the amount of feedback is increased past R = 6.4 × 10−3, the Hurst exponent

exhibits a sharp increase towards 0.7 and levels off for feedback strengths greater

than R = 4.8 × 10−2. In this regime, the phase dynamics is influenced by feedback

and depends strongly on the history. Many external cavity modes now participate

in the laser dynamics [66, 47], and the Hurst exponent we compute now reflects an

average of the scaling behavior of the phase dynamics for individual modes as well

as contributions from deterministic global intermode interactions.

The experiment may be numerically modeled by integrating the full Lang-

Kobayashi Eqns. ?? and ?? with the following parameter values: Nth = 3.9 × 108,
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α = 5, GN,0 = 21400 s−1 , r0 = 0.32, r = 0.1, τ = 3.0 ns, Rsp = 1014 s−1 , τr = 1.1 ns,

Γ = 1.1 ps−1 , τin = 3.9 ps, and PI = 1.25. The equations are integrated with a time

step of 0.5 ps for 41 µs (we neglect the first 1 µs for transients), low pass filtered

and smoothed over intervals of 0.1 ns to simulate the digital oscilloscope electronics.

In Fig. 3.11 we also report the Hurst exponent versus the reflectivity from

the simulations (stars), calculated for different effective external mirror reflectivity

R values matching the experiment and some additional cases. The computational

results support the experimental conclusion that the dynamics of the Hilbert phase

display ordinary Brownian motion for feedback strengths up to R = 6.4 × 10−3.

Further increases in feedback show a transition to fractional Brownian motion and

saturation of the Hurst exponent to H ∼ 0.7, displaying a close match with experi-

mental measurements.

3.6 Conclusion

We have experimentally confirmed for a real system the prediction of Yalçhinkaya

and Lai [55] of persistant Brownian motion for the most rapidly varying phase asso-

ciated with a model chaotic system. In addition, we demonstrate that it is possible

to distinguish between the influence of spontaneous emission noise and deterministic

feedback on the dynamics of a semiconductor laser with optical feedback. The laser

makes a transition from regular Brownian motion to persistant fractional Brownian

motion as the external mirror reflectivity is increased. The occurence of this tran-

sition is quantified by measurements of the Hurst exponent for the phase dynamics
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computed from the experimental and numerical intensity time series of the laser

system.
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Chapter 4

Chaotic Itinerancy in the Light and Carrier Dynamics

Near lasing threshold, spontaneous emission is such a prevalent force that

many studies have questioned whether nonlinear dynamical processes resulting from

reflective feedback are relevant for the description of the observed phenomena. Iden-

tification of chaotic itinerancy is especially difficult in experiments, where typically

only one scalar variable may be measured directly. Streak camera measurements

of the light dynamics on very short time scales have provided indirect confirmation

of the deterministic scenario of low-frequency fluctuations (LFF) predicted from

the Lang-Kobayashi equations [67]. Hilbert phase information extracted from fil-

tered intensity measurements has previously demonstrated external cavity mode

shifts [60].

In this chapter, we are interested in characterizing the itinerant motions dis-

played in simultaneous measurements of the light and carrier dynamics during the

course of a dropout event. In order to elicit features common to many individ-

ual dropouts, we form a statistical description of the process from a large number

of dropouts by calculating the experimental prehistory and posthistory probabil-

ity distribution functions [34] for the intensity and voltage fluctuations across the

laser diode. Optimal paths extracted from the probability distributions serve as

building blocks to reconstruct the phase space dynamics of the dropout event. The
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resulting trajectory highlights episodic transitions between low-dimensional attrac-

tor ruins [24] and demonstrates excellent agreement with simulations of the intensity

and carrier number.

4.1 The Prehistory Probability Distribution Function

As dropouts in the light dynamics are problematic for many applications in-

volving semiconductor lasers, the origin of this nuisance has been a subject of avid

interest for the past three decades. Since the LFF phenomenon is primarily observed

in experiments at low injection currents near the solitary lasing threshold, many

studies have focused on the role that spontaneous emission noise plays in shaping

this instability. A nonlinear stability analysis performed by Henry and Kazarinov

reduced the infinite-dimensional Lang-Kobayashi equations to an approximate one-

dimensional equation of motion for the carrier number in a potential well [48]. The

analysis only considered small fluctuations in the intensity and phase about the max-

imum gain mode due to stochastic influences. In this context power dropouts are

seen as escapes from the maximum gain mode over a potential barrier. Despite the

simplicity of this model, experiments have verified that this potential formulation

accurately captures the dependence of the dropout rate on the injection current and

feedback level [68]. Over the parameter regime where this model is applicable, then,

it is therefore desirable to experimentally discern features of the potential barrier in

order to gain further insight into the process of noise-induced escape.

Large fluctuations appear in a variety of non-equilibrium systems including
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switching in multistable lasers, Josephson junctions [70], protein folding, and elec-

tronic circuits [69]. In many of these systems, the large fluctuation is the result of

noise-induced escape from a metastable state. A remarkable feature in many of these

systems is that the exit path of escape to the extreme state often lies along a narrow

tube of trajectories [71]. The probability that the escape occurs within this tube

is exponentially larger then all other paths. The prehistory probability distribution

function has recently been introduced as a tool that experimentally uncovers the

distribution of trajectories which escape from a metastable state. This distribution

evaluates the density of paths which pass through a coordinate of the phase space at

each time step preceding the extreme event. The prehistory distribution generally

displays a distinct peak, known as the optimal path, indicating how the system is

most likely to move.

The first experimental application of this technique analyzed the fluctuations

leading to dropout events in a semiconductor laser with external optical feedback.

In Fig. 4.1 we reproduce the prehistory distributions measured by Hales et al. [35]

for the intensity dynamics of 1512 dropout events (bottom) and a model of activated

escape over a potential barrier (top). The dropout trajectories are aligned at the

moment of escape (t = 0), defined in this case to be the point where the intensity is

10% above the extreme dropout level. The experiment was conducted near solitary

lasing threshold with a high feedback strength and a delay cavity round trip time

of 3 ns. The intensity data was recorded with a 125 MHz bandwidth photodetector

and digitized with a sample period of 1 ns.

Even with this limited resolution the prehistory distribution of the LFF phe-
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Figure 4.1: The prehistory probability distribution function for two manifestations

of activated escape from a potential barrier (top distribution) and an experimental

distribution constructed from many dropout events in a semiconductor laser.
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nomenon demonstrates a well- defined peak at the moments immediately preceding

the extreme event as well as for times far from the event (t < −10 ns). However,

there is a characteristic broadening of the distribution in the intermediate time in-

terval (−3 ns < t < −10 ns). The distribution for the activated escape model

more or less portrays a similar broadening phenomenon. The sharp peaks in each

distribution correspond to motions of the system near the bottom of the potential

well (for t far from the dropout) and across the potential barrier (right before the

moment of dropout). The prehistory distribution becomes wider when the trajec-

tory lies near the top of the potential barrier which is flatter and therefore more

sensitive to fluctuations of the noise.

4.2 LFF as a Chaotic Itinerancy

The Lang-Kobayashi equations have been very successful in describing the

dynamical behavior of power dropouts, motivating countless investigations of the

deterministic phenomenon. Sano originally characterized LFF as a chaotic itiner-

ancy with a drift [51]. In this interpretation, the dropout pulse occurs as the result

of a crisis when the trajectory of the system wanders too close to the antimodes near

the maximum gain mode, initiating a sudden shift in the system variables to solitary

lasing conditions. The system then drifts across hundreds of external cavity modes

(for moderate feedback strengths) towards the maximum gain mode supported by

the feedback system. Shortly after this picture of the laser dynamics was formu-

lated, an analytical consideration of the Lang-Kobayashi equations predicted that
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itinerant motions between the external cavity modes is manifested in the unfiltered

intensity as a series of pulses with a short duration of 50 − 200 ps. These pulses

were soon experimentally confirmed through streak camera measurements of the

light dynamics on short time scales.

A numerical realization of these rapid intensity pulses is shown in Fig. 4.2

(a). However, when these pulses are bandwidth limited in oscilloscope recordings

(1GHz), the dynamics of the recovery resemble the staircase structure plotted in

Fig. 4.2 (b). After the initial drop towards zero emission, the intensity levels out

and iteratively grows along a series of steps towards the maximum gain mode. The

amount of time spent in each step corresponds to the round trip time of the light

in the external cavity. This manifestation of the itinerancy becomes apparent when

we plot the unfiltered trajectory of the carrier number in Fig. 4.2 (c). The staircase

structure arises due to the slow time scale of the carrier fluctuations (∼ GHz ).

Each dropout pulse evolves in a similar manner, and characteristics of the

dropout process may be deduced statistically. Hegarty found that many dropouts

exhibit damped relaxation oscillations immediately after the initial fall of the inten-

sity [72]. The stair structure in the recovery of the intensity has been extensively

studied by Liu et al. [73]. Their findings suggest that the laser is ’locked’ near a

particular compound cavity mode in each step of the recovery. The sequence of

steps is associated with an ordered sequence of external cavity modes and occurs

for each dropout in a time series.

In the next few sections we repeat the experiment of Hales et al. with higher

resolution equipment and show that the prehistory distribution reveals deterministic
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Figure 4.2: (a) The short pulses of a simulated time trace of a dropout event. (b)

The filtered intensity demonstrates a stair structure recovery of the light dynamics

as a result of the slow dynamics observed in (c) the unfiltered carrier density.
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characteristics in the system before the dropout at the time scale of the external cav-

ity round trip time. We additionally introduce the posthistory distribution to eval-

uate itinerant characteristics of the light dynamics in the recovery process towards

maximum gain. The dropout dynamics of the population inversion are considered

in measurements of the diode voltage fluctuations during the extreme event.

4.3 Experiment

For the experiment we set the injection current of the diode (RLT8340G) to

48.7 mA, which is 1.01 times the injection current, and subject the diode to a feed-

back that reduces the threshold current by about 10%. Concurrent measurements

of the intensity from the photodetector and the voltage fluctuations across the laser

diode indicate that the diode voltage exhibits pulsations when the intensity has

power dropouts—they occur simultaneously, an observation [74] first made only a

few years after the discovery of LFF [75].

These voltage fluctuations represent changes in the current (carrier number)

across the laser diode. The time scales of the LFF are too fast to be controlled by the

laser power supply, and so the diode voltage fluctuations are a good representation of

the population inversion dynamics. We note that a 24 ns oscillation inherent to the

electronic loop involved in voltage detection is present independent of the external

cavity delay time. The effect of the electronics is deconvoluted by passing the

measured voltage through a notch filter RLC circuit. The electronics loop consists

of a parallel measurement of the laser diode and laser power supply through a BNC
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Figure 4.3: (a) The logarithm of the prehistory and posthistory probability dis-

tribution function (color coded as shown) of experimental intensity dropouts with

t = 0 at the bottom of the dropout; (b) the logarithm of the prehistory and posthis-

tory probability distribution of diode voltage pulses corresponding to the intensity

dropouts in (a).
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connector. In the model RLC circuit C is in parallel to the serial connection of L

and R, and the values of L and C are optimally chosen with a resonant frequency

of the uncharacteristic 24 ns. A 281 MHz low-pass filter removes high frequencies

incurred in the transformation [76].

The prehistory (t < 0) and posthistory (t > 0) probability distribution func-

tions constructed from 718 intensity dropout events in the experiment are shown in

Fig. 4.3(a), where the moment of dropout (t = 0) is referenced at the lowest point of

a given dropout pulse evolution. The average intensity of the entire time series has

been subtracted and the probability of a particular intensity at a given time instant

is presented logarithmically to clearly display the variation of trajectories outside

the optimal path.

The prehistory distribution reveals the behavior of the system immediately

before the dropout. Far from the dropout, there is no structure in the dynamics, and

the optimal path lies along the average maximal output. Right before the intensity

drops, however, several periodic build-up spikes are visible with a period which is one

external cavity round trip time. In the posthistory distribution, a stair structure

is clearly visible with a stair width of one round trip time [73]. As the intensity

recovers close to the maximal output region, the stairs become indistinguishable.

Fig. 4.3(b) displays the prehistory and posthistory distribution for the pulses of

the deconvoluted diode voltage corresponding to the intensity dropouts in Fig. 4.3(a).

In the prehistory, no build-up structure may be resolved, and we observe a rise in

the pulse to full height. The posthistory distribution shows the gradual decay of the

voltage fluctuation, modulated at the round trip time period.
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Figure 4.4: (a) The logarithm of the prehistory and posthistory probability dis-

tribution of simulated intensity dropouts; (b) the logarithm of the prehistory and

posthistory probability distribution of carrier number difference corresponding to

the intensity dropouts in (a).
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The experiment may be numerically modeled by integrating Eqns. 2.18 with

a time step of 0.5 ps for the following parameter values: Nth = 3.3 × 108, βc = 5,

GN = 7176 s−1 ,τ = 14.2 ns, Rsp = 5 × 1013 s−1 , τr = 1.1 ns, Γ = 1.2 ps−1 ,

κ = 2 × 1011 s−1 , P = 1.01. The calculations are low-pass filtered and smoothed

over intervals of 0.2 ns to simulate the digital oscilloscope electronics.

In Fig. 4.4, the prehistory and posthistory distributions for the intensity and

the carrier number from the simulation are plotted. In Fig. 4.4(a), all structures

shown in the experimental distribution of Fig. 4.3(a) are accurately reproduced.

The distribution in Fig. 4.4(b) clearly depicts the characteristic stair structure and

periodic build-up spikes. The flat portions of the optimal trajectory for the dis-

tributions in Fig. 4.3 and Fig. 4.4 correspond to the residence of the system in an

external cavity mode. However, at intervals of the external cavity round trip time,

the optimal path demonstrates large swings which indicate the most likely excursion

taken by the system variables in transit to the next low-dimensional lasing mode.

4.4 Discussion

In Fig. 4.5(a), we build the phase space dynamics from the experiment us-

ing the optimal intensity and deconvoluted diode voltage from the distributions in

Fig. 4.3. Similar dynamics are constructed in Fig. 4.5(b) using the optimal intensity

and carrier number from Fig. 4.4. The modes (blue triangles) and antimodes (red

circles) in this representation lie interlaced along a curve. Before the dropout, the

trajectory resides in the high gain modes at the top of the curve. The trajectory
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Figure 4.5: (a) Experimental dynamics in the phase space of optimal measured

dropout intensity versus diode voltage, (b) computational dynamics in the phase

space of optimal simulated dropout intensity versus deconvoluted carrier number

difference. The blue triangles represent external cavity modes and the red circles

denote antimodes of the Lang-Kobayashi equations.
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traverses the phase space during the pulse and iteratively recovers along a series of

external cavity modes, clearly depicting in-step itinerant transitions of the intensity

and carrier dynamics.

The simultaneous transitions between the system variables may alternatively

be visualized in a time-delayed embedding of the optimal intensity path derived from

the distributions. In Fig. 4.6 (a) a three-dimensional representation of the recovery

process is presented in the phase space of the optimal experimental intensity and two

delayed coordinates. A consideration of the first minimum of the mutual information

of the optimal path reveals that the least amount of general correlation is found for

τDLY = 0.5 ns. The reconstructed attractor demonstrates a strong localization of

the delayed coordinates when the laser is locked to a step. At intervals of the external

cavity round-trip time, however, the light dynamics perform a large oscillation in

transit to the next recovery step. Similar features may be deduced from the time-

delayed embedding of the simulated optimal intensity depicted in Fig. 4.6 (b).

During an itinerant epoch, the system variables released from a local attrac-

tor are temporarily free to occupy a larger volume of phase space until the system

locks onto another low-dimensional external cavity mode. The increase in available

system phase space results in a significant broadening of the probability distribu-

tions computed for measurements of the light intensity and carrier number. This

variation is illustrated concretely in Fig. 4.7, where we plot the time dependence of

the standard deviation of the measured and calculated distributions in Fig. 4.3 and

Fig. 4.4. Sharp rises in the standard deviation of the distributions occur at intervals

of the external cavity round trip time, where high-dimensional dynamics dominate
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the motion of the feedback system. These distributions show that itinerant motions

are present both before and after the dropout events. This observation cannot be

explained by a simplified one dimensional stochastic model [48, 35] of fluctuation-

induced escape. The deterministic structure observed before the dropout implies

that the itinerant deviations are reinforced over many round trip times until the

dropout finally occurs.

4.5 Conclusions

We have reported experimental observations of concurrent itinerant motions

in the light and carrier dynamics of a semiconductor laser under the influence of

reflective feedback. These measurements are consistent with the predictions of the

Lang-Kobayashi equations. The role of chaotic itinerancy in the time evolution sur-

rounding an intensity dropout is evaluated in detail using prehistory and posthistory

probability distributions calculated from experimental measurements of the intensity

and voltage fluctuations across the diode. At intervals of the external cavity round

trip time, the system variables are no longer locally constrained to a low-dimensional

external cavity mode. Despite this loss of coherence in the light and carrier dynam-

ics, a continuous optimal path of escape to another attractor ruin is evidenced in the

reconstructed phase portrait of the dropout process. This path demonstrates a cer-

tain determinism of motion through high-dimensional phase space in the dynamics

of a time-delayed experimental system that is additionally influenced by noise.
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Chapter 5

Noise-Induced Selection of the Light Dynamics

Near lasing threshold, a semiconductor laser displays irregular dropouts of the

intensity over a wide range of feedback strengths. As we saw in the previous chapter,

the optical intensity recovers from these dropouts (LFFs) in a stepwise manner over

a time scale which is much longer than the laser system dynamics. When the

injection current is raised well above threshold, however, the intensity dropouts are

no longer present and the light dynamics show pronounced large amplitude chaotic

fluctuations characteristic of the coherence collapse (CC) regime [50].

Generally, these two instabilities are studied individually at injection currents

and feedback strengths well within either the LFF or CC regime. Only a few investi-

gations have examined this system at intermediate parameter values near the bound-

ary between these chaotic states. Previous studies have mapped out the parameter

space where each dynamical state is stable [77] and have characterized changes in

the interval between dropouts for variations of the injection current [78, 79]. It

is well-documented that spontaneous emission plays a non-trivial role in shaping

the dynamics of the laser system, particularly at injection current strengths near

the solitary lasing threshold where the LFF attractor is dominant. The inclusion

of stochastic terms in simulations has been shown to be instrumental in order to

match the duration between dropout events and power spectrum fluctuations which
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appear in experimental observations [?].

In this chapter we quantitatively examine, for a fixed level of reflective feed-

back, the stability of the LFF and CC state over a large range of injection currents

for different amplitudes of noise. A consideration of the Lang-Kobayashi model

without Langevin noise shows that an intermittency exists between LFF and CC

over a wide span of injection currents, including pump strengths below the solitary

lasing threshold. The addition of noise resticts the itinerant pathways leading to

CC dynamics at low injection currents, creating regions where the LFF state dom-

inates the system dynamics. As noise is further increased in the model, the LFF

is preferentially selected over the CC state for larger spans of the injection cur-

rent. The constructive role of this stochastic influence complements other studies of

high-dimensional nonlinear dynamical systems which have observed a noise-induced

selection of otherwise weak attracting states [39, 40].

Even though noise stabilizes the LFF state at low pump currents, we ex-

perimentally and numerically witness a similar intermittent transition to CC as

the injection current is incremented beyond a critical threshold. This threshold is

shown to follow a power law scaling in the simulations with respect to the noise level

over many orders of magnitude. Noise effectively translates the region over which

this intermittency occurs to higher levels of the injection current. An experimen-

tal characterization of the intermittency then offers a meaningful estimation of the

noise level which effectively influences the deterministic dynamics in this system.
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5.1 Noise-Induced Suppression of the Coherence Collapse Regime:

Numerical Simulations

We first consider the dynamical states predicted by the Lang-Kobayashi model

without the influence of a stochastic term (Rsp = 0) at a fixed level of moderate

feedback which reduces the threshold current of the laser 7%. Eqns. 2.19 and 2.20

are integrated with a time step of 1 ps (photon decay rate) for the following pa-

rameter values: α = 4.6, θ = 14.2 ns, κ = 0.073, T = 1500. Over a wide range

of injection currents the LFF state is observed to coexist with another dynamical

state. For injection current levels lower than p = −0.025 the LFF state only exists

as a transient and the system trajectory will eventually be captured by the stable

maximum gain mode at the tip of the ellipse [80] formed by the modes and anti-

modes in the phase space of the carrier number and the external cavity phase shift.

Even at these low pump values the LFF state is occasionally interrupted by bursts

from another dynamical state resembling CC dynamics. Above p = −0.025 the

intermittency between the two dynamical states is observed to persist with more

frequent departures to the CC regime.

In Fig. 5.1 the light dynamics are seen to alternate between LFF and CC dy-

namics at an injection current of p = 0 (solitary lasing threshold). The intensity

time trace in Fig. 5.1 (a) has been low-pass filtered at 50 MHz to remove resonances

associated with the external cavity round trip time (70 MHz ) and more easily dis-

criminate between the two dynamical states. Large dropout pulses of the LFF state

are sporadically punctured by rapid oscillations of the CC regime. As discussed
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in Chapter 2 these globally attracting states are formed from characteristic inter-

actions between the external cavity modes and antimodes. The time trace of the

external cavity phase shift η(t) in Fig. 5.1 (b) highlights the signature transitions

between the external cavity modes (separated by 2π) for each dynamical state. The

dropouts of the LFF state only occur at external cavity modes near the maximum

gain mode and are followed by a slow monotonic recovery. In the CC state, the

orbit of η(t) is instead restricted to a subset of the external cavity modes. Here

the push towards the maximum gain mode is frustrated by frequent slips of η(t) to

lower mode numbers. More pathways to lower mode numbers are available at larger

injection currents and LFF phenomenon is no longer present for p > 0.06.

Without a stochastic term in the model equations, both the LFF and CC states

are available to the system over a wide range of injection currents. We now consider

how the dynamics of the laser system are affected by the addition of Langevin

noise. As the amplitude of the noise is incremented for a fixed level of feedback and

injection current, we evaluate how noise shapes the preference of external cavity

modes by the system as well as the transitions observed to occur between them.

Ultimately, these features determine the dynamical states accessible to the system

over variations of a system parameter.

In Fig. 5.2 we plot the distribution of external cavity mode residence times

for increasing levels of the noise amplitude at an injection current level of p = 0.05.

All other system parameters are the same as those considered for the noiseless case.

Without noise, the light dynamics overwhelmingly exist in the CC state, and the

distribution of the external cavity modes (blue line) demonstrates a broad Gaussian
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Figure 5.1: The top panel features a severely filtered (50 MHz ) intensity time trace

in order to smooth the dynamics sufficiently so that full dropouts may be resolved

from the incomplete bursts to the CC state. The lower panel shows the time trace

of the external cavity phase shift η(t) = φ(t)−φ(t−τ). Note that jagged motions in

η(t) reflect the CC dynamics and occur in intervals where the incomplete dropouts

are prevalent.
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peak centered halfway between the solitary lasing frequency and the maximum gain

mode. At a noise level of Rsp = 1×10−6, an asymmetry develops in the distribution

(green line) towards the maximum gain mode, although a wide peak remains. When

the noise amplitude is increased to Rsp = 1 × 10−4, two narrow peaks are evident

in the distribution (red line), each centered at external cavity modes which are

unavailable to the system without the inclusion of noise.

The distributions in Fig. 5.2 clearly indicate that the noise amplitude dictates

which external cavity modes are visited by the system. They do not provide any

information, however, on the transitions which occur between individual external

cavity modes. In Fig. 5.3 the evolution of the system in the phase space of the

carrier number and external cavity phase shift is plotted for respresentative trajec-

tories of the three noise levels considered in Fig. 5.2. The red crosses denote the

external cavity modes and the blue circles designate the antimodes. When there is

no stochastic term present in the model equations, the orbit in Fig. 5.3 (a) exhibits

back-and-forth transitions between widely separated external cavity modes. The

external cavity phase shift does not stray towards either the maximum gain mode

or solitary lasing conditions, a signature of CC dynamics observed in Fig. 5.1 (b).

In Fig. 5.3 (b), the system similarly exhibits itinerant motions among a subset of

external cavity modes for a noise amplitude of Rsp = 1 × 10−6, although now the

LFF trajectory emerges along with a damping of the carrier number fluctuations.

The damping of the carrier fluctuations is even more extreme in Fig. 5.3 (c) for a

noise level of Rsp = 1 × 10−4. In the full LFF phenomenon massive shifts in η(t)

all redeposit the system near solitary lasing conditions. The nadir of the dropout
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Figure 5.2: The three distributions of external cavity mode times represent the noise

amplitudes discussed in the text: (1) Rsp = 0 (blue distribution), (2)Rsp = 1×10−6

(green distribution), and (3)Rsp = 1 × 10−4 (red distribution). Here the mode

number is defined as the division of the external cavity phase shift by 2π (the

inherent spacing between pairs of modes).
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Figure 5.3: For the three manifestations of noise in Fig. 5.2, the trajectory in the

phase space of the external cavity phase shift and the carrier number more closely

resemble the LFF dyamics as noise is incremented for (from top to bottom) Rsp = 0,

Rsp = 1 × 10−6, Rsp = 1 × 10−4.

comprises the secondary peak near solitary emission observed in the distribution

(dotted lines) of Fig. 5.2 (b),(c).

As the noise amplitude is increased in the model, itinerant pathways char-

acteristic of CC emission are suppressed in the system. Even for small levels of

noise, there exists a range of injection currents where no intermittency persists in

the dynamics and LFF is the only dynamical state observed in the system.

In Fig. 5.4 we plot the logarithm of the highest level of injection current

where the LFF state is uniquely observed in the system, denoted by pc, against the
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Figure 5.4: The highest injection current where the LFF region is stable pc increases

monotonically when plotted against the logarithm of the noise amplitude. Here the

onset is measured with respect to the lasing threshold in the presence of feedback.

logarithm of the underlying noise level. The injection current is evaluated relative

to the threshold level for lasing emission in the presence of feedback at p = −0.07.

Beginning with its emergence around p = −0.03, the LFF state is found to be the

only attracting state for larger values of the injection current as the noise amplitude

is incremented.

5.2 Intermittency Characteristics

The previous section explored the role that additive noise plays in selecting the

dynamical states observed in a semiconductor laser with coherent optical feedback.
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The LFF state is rendered stable over a finite span of the injection current due to

the suppression of CC itinerant pathways. This span grows to higher levels of the

injection current as the noise amplitude is increased. We now address the inevitable

breakdown of the LFF state as the injection current is increased beyond the region

of noise-induced stability. When the injection current is tuned past a critical value,

the LFF dynamics are punctured by intermittent episodes of CC dynamics similar to

computations of the model equations without a stochastic term. This phenomenon

is explored experimentally and in simulations of the Lang-Kobayashi model with

Langevin noise. Even in the presence of spontaneous emission noise in the laser

cavity, the average time between CC bursts demonstrates a clear algebraic scaling

as the injection current is increased beyond the level where intermittency is observed.

We will show in the simulations that over many orders of magnitude of the noise,

the characteristic scaling law associated with each noise amplitude collapses onto a

single curve when the injection current is taken relative to the onset threshold of

the intermittency.

The experiment is conducted using a Fabry-Perot semiconductor laser (RLT8438)

with a threshold current of Ith = 48.2 mA. The setup is the same as in Fig. 2.6 ex-

cept here an etalon was positioned in the delay loop to restrict the laser oscillations

to a single longitudinal mode at λ = 830.5 nm.

In Fig. 5.5 we show the evolution of the intensity for increasing levels of in-

jection current I at a feedback strength which reduces the lasing threshold by 8%.

As depicted in Fig. 5.5 (a), the intensity exhibits power dropouts at a driving cur-

rent of I = 52.0 mA. LFF dominate the light dynamics until I is increased past a
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Figure 5.5: The light dynamics measured in the experiment display intermittency

between the LFF attractor and more complicated fluctuations resembling CC dy-

namics at (a)I = 52.0 mA, (b)I = 56.0 mA, and (c)I = 65.0 mA.

threshold level I∗ ≈ 53.0 mA. For injection current levels larger than I∗, the power

dropouts demonstrate an intermittency with a new attracting state. In Fig. 5.5 (b)

this bursting behavior is demonstrated for I = 56.0 mA. For further increments of

I, the system resides entirely in the bursting state with even larger oscillations in

the light dynamics, shown in Fig. 5.5 (c) for I = 65.0 mA. We note that the I∗ is

strongly dependent on the feedback strength, and the LFF regime remains stable

for higher levels of I as the feedback is augmented [77].

The power spectra measured from the intensity time traces of Fig. 5.5 are

displayed in Fig. 5.6. In Fig. 5.6 (a) a majority of the power is found in the low-
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frequency component of the dropout pulses. The smaller peaks at higher frequencies

are associated with the external cavity round-trip time and its harmonics. When

intermittency appears in the intensity time traces and fast, large-amplitude swings

of the intensity are present, as in Fig. 5.5 (b), the bursts contribute energy to the

power spectrum in Fig. 5.6 (b) at the peaks associated with the delay cavity. The

low-frequency component is not as dominant in the spectrum as it is in Fig. 5.6 (a).

Finally, when the system resides entirely in the CC state, the power spectrum in

Fig. 5.6 (c) shows a concentration of energy at the peaks of the delay cavity with no

trace of the low-frequency component of the LFF attractor. For an intermittency

found in a periodically driven CO2 gas laser [81], the original attractor and the

bursting state similarly produced unique frequency signatures in their respective

power spectrum. Arecchi and co-workers have demonstrated that the bursts are

preventable in their system by selectively filtering out the frequency content of the

bursting attractor [81].

To characterize the intermittency in the light dynamics, we examine the resi-

dence times of the system on the original LFF state for injection currents near the

onset of intermittency. In Fig. 5.7 we plot the average interburst times as a function

of the injection current for the experimental data (red circles). These times are seen

to rapidly decrease as the injection current is incremented. The vertical asymptote

Ic represents the onset of intermittency and its choice will become more clear when

we examine the scaling associated with the introduction of the bursts.

For each deviation of the injection current past Ic, denoted ∆I = (I − Ic)/Ic,

the probability distribution of the interburst times τ is seen to follow an exponential
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Figure 5.6: The experimental spectra corresponding to the three intensity time series

shown in Fig. 5.4. Note that before the bursts (top panel) a large low-frequency

component is visible in the spectrum in the low MHz range. The magnitude of

this peak decreases (along with an increase in the external cavity resonances) for

increasing pump strength which intermittently introduces the CC regime.
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Figure 5.7: The average interburst time < τ > is plotted against the raw injection

current for experiment (red circles) and many noise amplitudes in the simulation

(squares). The simulation points clearly show the increase of the range of injection

current where the LFF region is stable as the noise amplitude is incremented.
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Figure 5.8: The logarithm of the average interburst time < τ > is plotted against

the logarithm of deviations of the injection current from the onset of intermittency

∆I for experiment (red circles) and many noise amplitudes in the simulation ∆p

(squares). The simulation points clearly collapse onto a single curve with a scaling

exponent of γSIM = 1.75 while the scaling exponent of the experiment is γEXP =

1.64.

decay. The LFF dynamics are interrupted more frequently for larger ∆I. The

experimental points (red circles) in Fig. 5.8 show that the average interburst time

< τ > decreases with ∆I according to a power law decay. Eight 1.6 ms samples are

recorded for each ∆I to estimate < τ >. The value of I∗ = 53.1 mA was chosen

as the injection current value where an extrapolation of the points on the graph of

log(< τ >) vs. log(∆I) predicts that one event will occur in a 1.6 ms sample and

results in a scaling exponent of γEXP = 1.64.
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With the inclusion of the Langevin noise term, at several fixed levels of feed-

back the Lang-Kobayashi equations robustly reproduce the intermittent transition

observed in the experiment. In Fig. 5.9 the light dynamics generated from the

model are displayed at a noise strength of Rsp = 1 × 10−4. The calculations are

low-pass filtered at 750 Mhz and smoothed over intervals of 0.1 ns to simulate the

digital oscilloscope electronics. The pump strengths represented in Fig. 5.9 (a)-(c)

are matched to the experimental measurements of Fig. 5.5 (a)-(c) and show sim-

ilar trajectories of the system at each level of injection current. The intensity at

p = 0.120 in Fig. 5.9 (b) portrays clear escapes to a bursting state, and at a larger

pump value of p = 0.349 the system dynamics are dominated by the high-frequency

large amplitude oscillations depicted in Fig. 5.9 (c). Similarly, the power spectra for

the intensity time traces show a clear progression from the low frequencies of the

dropouts to a sole distribution of the energies along the frequencies associated with

the resonances of the external cavity delay time.

We now evaluate the effect of the stochastic driving term on the scaling of

the intermittent transition for various manifestations of noise. For this analysis we

computed 1.6 ms samples at several levels of injection current near the onset of this

phenomenon for the noise levels considered in Fig. 5.4. In Fig. 5.7 the boundary of

the injection current range where the LFF region is stable is observed to increase

(squares) as in Fig. 5.4. Once the CC regime is introduced, a similar progression

to shorter interburst times of the LFF state is seen in all instances of noise as

the injection current is further increased. To evaluate the scaling associated with

each noise amplitude, in Fig. 5.8 we plot the logarithm of the average interburst
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Figure 5.9: The transition to CC dynamics in the simulation for parameters com-

parable to experimental data shown in Fig. 1 at pump levels of (a)p = 0.078,

(b)p = 0.120, and (c)p = 0.349.
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times against the respective deviation of the injection current past the onset of

intermittency pc, denoted ∆p = (p − pc)/pc. It is clear from this plot that the

scaling for each instance of noise (squares) collapses onto a single curve. This gives

a strong indication that the noise effectively translates the region of intermittency

and expands this region proportionally with the increase of the onset of intermittency

and results in a universal scaling exponent of γSIM = 1.75. For noise amplitudes

less than Rsp = 10−8 it is too difficult to discern between the LFF and CC dynamics

to capture an accurate measure of the interburst times.

5.3 Discussion

Noise has been shown to act as a stabilizing force for the LFF state. In

general, the LFF state persists over a larger span of the injection current as higher

amplitudes of noise are introduced into the system. The noise effectively translates

the region of coexistance between the LFF and CC states to higher values of the

injection current. The influence of noise in the system is diminished as the injection

current is tuned further from threshold and the CC dynamics eventually dominate

the output of the system.

We now consider how the CC state originates in the context of the experimental

data and simulations of the model equations with noise. In Fig. 5.10 we show detailed

intensity time traces from the experiment and the simulation with a noise level of

Rsp = 1 × 10−4 for (a) LFF at p = 0.078 in the experiment and in the simulation,

(b) the bursting dynamical state which inturrupts the LFF dynamics just past the
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Figure 5.10: Detailed intensity time traces from experiment and simulation at re-

spective pump currents (a) I = 52.0 mA and p = 0.078, (b) I = 54.0 mA and

p = 0.120, (c) I = 60.0 mA and p = 0.2450. Experimental traces are offset above

the numerically computed time series and the normalization in (a)-(c) is applied to

each plot individually to maintain clarity in the intensity dynamics. In (d)-(f) the

(η(t), n(t)) phase space is shown for corresponding simulated intensity dynamics of

(a)-(c). The red crosses represent external cavity modes and the blue circles denote

the unstable antimodes.
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onset of intermittency at p = 0.120, and (c) the fully developed CC state for a large

pump strength of p = 0.245. In each plot the light dynamics recorded from the

experiment are offset above the numerically determined time series. The phase space

of the carrier number and external cavity phase shift for the simulated trajectories

in Fig. 5.10 (a)-(c) are shown in (d)-(f). The red crosses represent the external

cavity modes and the blue circles denote the antimodes.

For the experimental and simulated LFF state shown in Fig. 5.10 (a), the

intensity time series is seen to suffer a dropout and subsequently recover to maximum

gain in a series of steps. The width of each step coincides with the duration of

ejected light in the external cavity formed by the reflective mirror. In Fig. 5.10

(d) the moment of dropout results in an immediate rise of the carrier number to

threshold level and, over an interval of the delay time, a relaxation of the external

cavity phase shift above the antimodes towards solitary lasing conditions (η = 0).

The recovery towards maximum gain then takes place along the external cavity

modes on the lower branch of the ellipse.

On the other hand, the light dynamics of the time series in Fig. 5.10 (b) demon-

strate rapid changes in the intensity output. Although there are clear similarities

to the dynamics of the LFF attractor, this dynamical state alternates between high

and low levels of emission within an interval of the external cavity delay time. To

understand this novel switching behavior, we turn to the phase portrait in Fig. 5.10

(e). In a manner similar with the dropout dynamics, the sharp reduction in output

power arises when the system is kicked above the antimodes with a large increase

in the carrier number. During the locomotion of the system towards solitary lasing
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conditions, however, the trajectory is ’captured’ by an external cavity mode with

high gain in the middle of the ellipse, coincident with the sudden shift in Fig. 5.10

(b) to a larger intensity. The dramatic changes in the system variables at the mo-

ments of dropout and mode-capture are manifested at later intervals of the external

cavity round-trip time throughout the remainder of the recovery. The CC behavior

is typically sustained for the duration of a few dropout events before the system

returns to the original LFF attractor.

It is clear that the injection current plays a crucial role in determining the

interaction between the external cavity modes and antimodes. As the laser diode is

pumped further from the onset of intermittency, the system trajectory is dominated

by these interactions, and regular motions associated with the LFF attractor are

replaced by large amplitude swings of the intensity, depicted in Fig. 5.10 (c). The

increased interactions among the modes and antimodes in Fig. 5.10 (f) restrict the

motions of the system to a narrower range of external cavity modes in the middle

of the ellipse and do not allow the full climb down to the maximum gain modes at

the tip of the ellipse.

In this particular system noise has the curious effect of stabilizing an attracting

state in the system over larger spans of the injection current, preventing the onset

of bursts from the CC regime. This is an atypical consequence of stochastic terms

in a system exhibiting an intermittency in the dynamics. In crisis-induced intermit-

tency, additive noise has been shown to restrict the range of a parameter where a

unique attractor is visited by the system. Stochastic influences additionally affect

the characteristic scaling law for the average duration between intermittent episodes
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at parameter values in the bursting regime. Theoretical and experimental studies of

on-off intermittency have likewise demonstrated that additive noise promotes more

frequent departures of a system trajectory to a bursting state.

5.4 Conclusions

We have examined the role of additive noise in selecting the dynamical states

observed in a semiconductor laser with time-delayed optical feedback. Analysis of

the delay-differential equations governing this system predict a chaotic itinerancy

among external cavity modes and unstable saddles, and the overall motions between

the attractor ruins generally fall into one of two distinct regimes of chaotic output.

We quantitatively characterized an intermittency between these dynamical states

over a wide range of a system parameter for different levels of Langevin noise. As

higher levels of noise are introduced into the system, the system preferentially selects

one of the dynamical states for a larger span of the parameter, preventing the onset

of intermittency. Stochastic terms do not have nearly the same impact on the system

dynamics at higher pump levels, where the constant current supplied to the laser

diode strongly overwhelms the spontaneous emission noise (capped once the laser

is tuned past threshold). Hence, the influence of the stochastic driving on the laser

decreases as the injection current is raised from threshold.

The characteristic scaling associated with the intermittent transition has been

studied experimentally and compared with simulations of the Lang-Kobayashi equa-

tions for different manifestations of Langevin noise. The translation of the inter-
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mittency region is shown to monotonically increase as a function of the input noise.

The experimental characterization of the location and scaling of the intermittency

provide a sensitive method for estimating the influence of noise when the dynamics

of the system display a chaotic itinerancy.
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Chapter 6

Conclusions

In conclusion, we have performed three experiments that measure the influence

of noise in a semiconductor laser subject to time-delyed optical feedback from a

distant reflector. Once a semiconductor laser is pumped at a high enough injection

current to emit stimulated emission, the level of noise in the system is fixed regardless

of how much higher the injection current is tuned. As such, the influence of noise is

interpreted to be very influential near lasing threshold but is highly diminished as

the pump current is incremented.

In the first two experiments, we separately investigated the two dominant

regimes of chaotic behavior with a different motivation in measuring the influence

of noise. Specifically, at the high injection currents which produce the coherence

collapse (CC) regime of chaotic behavior, we addressed the question of whether

spontaneous emission contributes at all to the dynamical evolution of the system over

a range of feedback strengths. As an estimator of the influence of noise, we calculated

the Hurst exponent from associated phase fluctuations of the experimental and

simulated intensity time series. To access physically meaningful phase fluctuations

we utilized an empirical mode decomposition along with the Hilbert transform. We

found that a scaling exists for time scales slower than the external cavity round trip

time of the light and it demonstrates a transition to fractional Brownian motion in
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the experiment and simulations as the amount of feedback is increased. A relevant

extension of this work would be the evaluation of the scaling at shorter time scales

to examine the temporal influence of noise at the inherent time scales of the laser

system, as estimated by the Hurst exponent.

In the second experiment we asked the opposite question. That is, at low

pump currents where the noise is believed to strongly govern the dynamics of the

low-frequency fluctuations regime, can we find deterministic features in the light

dynamics which cannot be captured by a stochastic model alone? We utilized

the prehistory and posthistory probability distribution functions for the intensity

dropouts to find recurrent features in the dynamics. This technique allowed us to

detect signatures of chaotic itinerancy in the dynamics of the staircase recovery,

that is, the unlocking of the slow carrier dynamics, in experimental and simulated

measurements of the light and carrier dynamics. An important consequence of this

analysis was the discovery of an itinerant epoch before the intensity dropout oc-

cured, giving a strong indication of the deterministic origin of the power dropouts.

In the experiment, however, we only looked at a single moderate feedback strength.

We could easily ask, then, if the same deterministic signature would remain when

the feedback is lowered and noise has a more prevalent role?

Finally, we performed a final experiment which sought the role that noise plays

in determining which output is present as the injection current is tuned between the

two dominant chaotic regimes. We discovered an intermittency in the light output

between the boundary of the LFF and CC states by increasing the injection current.

We found that although noise preserves the intermittent transition, it translates the
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span of this region to higher injection currents, such that, for high noise levels, the

interactions betweeen the external cavity modes which make up the CC dynamics

are suppressed. The spontaneous emission therefore plays a large part in guiding the

dynamical interactions in this system. In addition, an experimental characterization

of the intermittent transition sheds light on the amount of noise which affects the

dynamical evolution of the light output in the system.

A majority of studies have approached the irregular light output produced in a

semiconductor laser with coherent optical feedback stictly as either a deterministic

or stochastic phenomenon. The results of this dissertation imply that noise and

coherent feedback must concurrently be considered in simulations of the system in

order to accurately reproduce the light dynamics and their response to changes in

the system parameters. The interactions between the random input of spontaneous

emission and deterministic feedack provided by the external cavity in the dynamical

evolution of the system is a subject which we have only begun to understand and

will provide challenging problems for years to come.
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[55] T. Yalçinkaya and Y.C. Lai, Phys. Rev. Lett. 79, 3885 (1997).

[56] N. E. Huang et. al., Proc. Roy. Soc. (London) 454, 903 (1998).

[57] J. Feder, Fractals, Ch. 8 and 9, Plenum Press, New York (1988).

[58] W. S. Lam, W. Ray, P. N. Guzdar and R. Roy, Phys. Rev. Lett. 94, 010692
(2005).

[59] P. S. Addison, Fractals and Chaos, p. 54, Institute of Physics Publishing, Lon-
don (1997).

[60] W. S. Lam, P. N. Guzdar and R. Roy, Phys. Rev. E 67, 25604 (2003).

[61] D. Deshazer, R. Breban, E. Ott, and R. Roy, Phys. Rev. Lett. 87, 044101
(2001).

[62] Y. C. Lai and N. Ye, Int. J. Bif. Chaos 13, 1383 (2003).

[63] N. E. Huang, Hilbert-Huang Transform and Its Applications, editors N. E.
Huang and S. S. P. Shen, p. 1, World Scientific Publishing Co. Pte. Ltd., Sin-
gapore (2005).

[64] N. E. Huang et. al., Proc. Roy. Soc. (London) 459, 2317 (2003).

[65] P. Flandrin, G. Rilling and P. Goncalves, IEEE Sig. Proc. Lett. 11, 112 (2004).

[66] J. Ohtsubo, Prog. Optics 44, 1 (2002).

[67] I. Fischer et al., Phys. Rev. Lett. 76, 220 (1996).

[68] A. Hohl, H. J. C. van der Linden, and R. Roy, Opt. Lett. 20, 2396 (1995).

[69] D. G. Luchinsky and P. V. E. McClintock, Nature (London) 389, 463 (1997).

[70] M. H. Devoret, D. Esteve, J. M. Martinis, A. Cleland and J. Clarke, Phys. Rev.
B 36, 58 (1977).

109



[71] L. Onsager and S. Machlup, Phys. Rev. 91, 1505, 1512 (1953).

[72] G. Huyet et al., Europhys. Lett. 40, 619 (1997); S. P. Hegarty, G. Huyet, P.
Porta, and J. G. McInerney, Opt. Lett. 23, 1206 (1998).

[73] Y. Liu, P. Davis, and Y. Takiguchi, Phys. Rev. E 60, 6595 (1999).

[74] R. Ries and F. Sporleder, in Proceedings of the 8th European Conference on
Optical Communication, Cannes, France, 1982 (Comité de la Confe-graverence
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