
DataCutter and A Client Interface for the Storage Resource Brokerwith DataCutter Services �Tahsin Kurcy, Michael Beynony, Alan Sussmany, Joel Saltzy+y Institute for Advanced ComputerStudiesandDept. of Computer ScienceUniversity of MarylandCollege Park, MD 20742 + Dept. of PathologyJohns Hopkins Medical InstitutionsBaltimore, MD 21287fkurc,beynon,als,saltzg@cs.umd.eduAbstractThe continuing increase in the capabilities of high performance computers and continueddecreases in the cost of secondary and tertiary storage systems is making it increasingly feasibleto generate and archive very large (e.g. petabyte and larger) datasets. Applications are alsoincreasingly likely to make use of archived data obtained by di�erent types of sensors. Suchsensors include imaging devices deployed on satellites and aircraft, microscopy related imageryand radiology related imagery.Simulation or sensor datasets generated or acquired by one group may need to be accessedover a wide-area network by other groups. Datasets frequently describe data associated withcollections of very large structured or unstructured grids where each grid point is associated withseveral variables. Applications frequently need only to obtain portions of a dataset. Requireddata may correspond to a particular region in a multidimensional space. The application mayneed to access all data associated in a multidimensional region or it may need only certainvariable values at a subsampled set of spatial locations. In addition, in some cases, applicationsmay require data products obtained by aggregating data in one way or another. For instance,a user might require time or space averaged data.This document describes the design of a middleware infrastructure, called DataCutter, thatenables subsetting and user-de�ned �ltering of multi-dimensional datasets stored in archivalstorage systems across a wide-area network. We also describe a client API for Storage Resource�This research was supported by the National Science Foundation under Grants #ASC-9619020 (UC Subcontract#10152408), and by the O�ce of Naval Research under Grant #N66001-97-C-8534.1

Broker (SRB) clients, which allows SRB clients to carry out subsetting and �ltering of datasetsstored through the SRB. This API uses a prototype implementation of the DataCutter indexingand �ltering services.

2

Contents1 Introduction 42 Overview of the DataCutter Architecture 52.1 Indexing : 52.2 Filtering : 73 Client Interface for the Storage Resource Broker with DataCutter Services 83.1 Creating an Index : 93.1.1 Dataset Catalog, Index Catalog, and Linear Index Files : : : : : : : : : : : : 103.2 Deleting an Index : 143.3 Searching an Index : 153.4 Applying a Filter : 203.5 Implementing a New Filter Function : 243.6 A Metadata Format for Datasets, Indexes and Filters : : : : : : : : : : : : : : : : : 263.6.1 Datasets : 263.6.2 Indexes : 283.6.3 Filters : 28

3

1 IntroductionMany scienti�c applications generate and use datasets consisting of data values associated with amulti-dimensional space [5, 1, 7]. Scienti�c simulations typically generate datasets with at leastthree spatial dimensions and a temporal dimension. Satellite data and microscopy data generallyhave two (or more) spatial dimensions and a temporal dimension. Applications frequently need toaccess spatially de�ned data subsets via a spatial range query, which is a multi-dimensional boxin the underlying dataset space. Examples of applications that require e�cient data subsettinginclude: (1) programs that explore, compare and possibly visualize results generated by multiplevery large scale simulations [7], (2) programs that visualize or generate data products from globalcoverage satellite data [5], and (3) applications that visualize and classify microscopy data and carryout content based queries that return data subsets [1]. Spatial subsets can encompass contiguousregions of space, as for retrieving satellite data covering a particular geographical region. Spatialsubsets can also be de�ned once features of interest are categorized using spatial indices. Forinstance, subsetting can be carried out to retrieve simulation data associated with shocks in
uidsimulations, or tissue regions with particular cell types in microscopy datasets.There are various situations in which application-speci�c non-spatial subsetting and data ag-gregation can be applied to targeted data subsets. Some data analysis require values for only someof variables at a data point. For example, a computational
uid dynamics simulation dataset canbe organized so each data element contains velocity, momentum, and pressure values. An analysiscode may only use the pressure value at a grid point, and may ignore values for velocity and mo-mentum. In other cases, there may be a need to obtain an application-dependent low resolutionview of a dataset. For example, a hydrodynamics simulation may generate and store
ow data(e.g., velocity values) at �ne time steps. The analysis may need to be performed using coarser timesteps, which requires the stored velocity values to be averaged over several time steps. In thesecases, aggregation and transformation operations could be applied to data elements at the dataserver where they are stored, before returning them to the client where the analysis program is run.We are developing a middleware infrastructure, called DataCutter [3, 4], to make it possible toexplore and analyze scienti�c datasets stored on archival storage across a wide-area network. Dat-aCutter provides a core set of services, on top of which application developers can implement moreapplication-speci�c services or combine with existing Grid services such as meta-data management,resource management, and authentication services.The main design objective in DataCutter is to provide support for accessing subsets of datasetsvia range queries and for carrying out user-de�ned aggregations and transformations for very largedatasets in archival storage systems, in a shared distributed computing environment. To makee�cient use of distributed shared resources within the DataCutter framework, the applicationprocessing structure is decomposed into a set of processes, called �lters. DataCutter uses these4

Client Interface Filter Filter

Filtering

System
Archival Storage

System
Archival Storage

Data Results

Data AccessInfo
Segment

Indexing

Client Queries

Figure 1: DataCutter system architecture.distributed processes to carry out a rich set of queries and application speci�c data transformations.Filters can execute anywhere (e.g., on computational farms), but are intended to run on a machineclose (in terms of network connectivity) to the archival storage server or within a proxy closeto co-located clients. Filter-based algorithms are designed with predictable resource requirements,which are ideal for carrying out data transformations on shared distributed computational resources.Another goal of DataCutter is to provide common support for subsetting very large datasets throughmulti-dimensional range queries. Very large datasets may result in a large set of large data �les,and thus a large space to index. A single index for such a dataset could be very large and expensiveto query and manipulate. To ensure scalability, DataCutter uses a multi-level hierarchical indexingscheme.The organization of this document is as follows. An overview of the DataCutter architecture ispresented in Section 2. Section 3 describes the client API for Storage Resource Broker (SRB) [8]clients. In this section, a metadata format for datasets, indexes and �lters in DataCutter also ispresented.2 Overview of the DataCutter ArchitectureDataCutter (Figure 1) is being developed as a set of modular services. The client interface serviceinteracts with clients and provides the client API. The data access service provides low level I/Osupport for accessing the datasets stored on archival storage systems. Both the �ltering and in-dexing services use the data access service to read data and index information from �les stored onarchival storage systems. The indexing service manages the indices and indexing methods regis-tered with DataCutter. The �ltering service manages the �lters for application-speci�c aggregationoperations. In the following sections we describe the indexing and �ltering services in more detail.2.1 IndexingA DataCutter supported dataset consists of a set of data �les and a set of index �les. Data �lescontain the data elements of a dataset; data �les can be distributed across multiple storage systems.5

Each data �le is viewed as consisting of a set of segments. Each segment consists of one or more dataitems, and has some associated metadata. The metadata for each segment consists of a minimumbounding rectangle (MBR), and the o�set and size of the segment in the �le that contains it.Since each data element is associated with a point in an underlying multi-dimensional space, eachsegment is associated with an MBR in that space, namely a hyperbox that encompasses the pointsof all the data elements contained in the segment. Spatial indices are built from the MBRs for thesegments in a dataset. A segment is the unit of retrieval from archival storage for spatial rangequeries made through DataCutter. When a spatial range query is submitted, entire segments areretrieved from archival storage, even if the MBR for a particular segment only partially intersectsthe range query (i.e. only some of the data elements in the segment are requested). DataCuttertargets �les supported by archival storage systems. From the standpoint of APIs supported bythese archival storage systems, a DataCutter segment is a contiguous region of storage { a segmentmay not actually be stored in a contiguous manner on the host archival storage systems.One of the goals of DataCutter is to provide support for subsetting very large datasets (sizesup to petabytes). E�cient spatial data structures have been developed for indexing and accessingmulti-dimensional datasets, such as R-trees and their variants [2, 6]. However, storing very largedatasets may result in a large set of data �les, each of which may itself be very large. Therefore asingle index for an entire dataset could be very large. Thus, it may be expensive, both in terms ofmemory space and CPU cycles, to manage the index, and to perform a search to �nd intersectingsegments using a single index �le. Assigning an index �le for each data �le in a dataset could alsobe expensive because it is then necessary to access all the index �les for a given search. To alleviatesome of these problems, DataCutter uses a multi-level hierarchical indexing scheme implementedvia summary index �les and detailed index �les (Figure 2). The elements of a summary index �leassociate metadata (i.e. an MBR) with one or more segments and/or detailed index �les. Detailedindex �le entries themselves specify one or more segments. Each detailed index �le is associatedwith some set of data �les, and stores the index and metadata for all segments in those data �les.There are no restrictions on which data �les are associated with a particular detailed index �le fora dataset. Data �les can be organized in an application-speci�c way into logical groups, and eachgroup can be associated with a detailed index �le for better performance. For example, in satellitedatasets, each data �le may store data for one week. A detailed index �le can be associated withdata �les grouped by month, and a summary index �le can contain pointers to detailed index �lesfor the entire range of data in the dataset. DataCutter uses R-trees as its default indexing method.6

data file P data file Sdata file 1 data file O

 ...

 ...

 ... Summary index file NSummary index file 1

Detailed index file 1 Group of Segments Group of Segments Detailed index file NFigure 2: Two-level hierarchical indexing scheme of DataCutter.2.2 FilteringThe �ltering service manages the �lters for user-de�ned �ltering/aggregation operations on thedata. Filters can be used for a variety of purposes, including elimination of unnecessary data nearthe data source, pre-processing of segments in a pipelined fashion before sending them to the clients,and data aggregation. Filters can run anywhere, but are intended to run on a machine close (interms of network connectivity) to the archival storage server or within a proxy. When run closeto the archival storage system, �lters can reduce the amount of data injected into the network fordelivery to the client. In addition, �lters can be used to o�oad some of the required processingfrom clients to proxies or the data server, thus reducing client workload.A �lter is a user-de�ned object (e.g., a C++ class object) with methods to carry out applicationspeci�c processing on the data. A �lter consists of an initialization function, a processing function,and a �nalization function. The initialization function is executed when the �lter is �rst instantiatedby the �ltering service. The initialization function is used to create internal state and initializeobject member variables. The processing function is run repeatedly as new data arrives at the�lter input ports. The �nalization function is run when the �lter terminates (e.g., by consumingthe data on all its input streams).Communication between a �lter and its environment is restricted to its input and outputstreams. A stream denotes a supply of data to or from the storage media, or a
ow of databetween two application components, such as between two separate �lters or between a �lter and aclient. Streams deliver data in �xed-size bu�ers. For example, an input stream can deliver data onesegment at a time, and an output stream can output data one segment (after applying the �lteringoperation) at a time. The sources and sinks for these streams are speci�ed by the client program asa part of installation of the �lter. A �lter is not allowed to determine (or change) where its inputstream comes from or where its output stream goes to. This has two advantages. First, a �lterdoes not handle bu�ering and scheduling for its communication; the �ltering service performs thosefunctions, thereby reducing the complexity of �lters. Second, �lters can be transparently moved toproxies or other locations as resource constraints at the client and/or server change.7

3 Client Interface for the Storage Resource Broker with Data-Cutter ServicesIn this section, the client API for Storage Resource Broker (SRB) [8] clients is described. ThisAPI has been developed in a joint e�ort with Mike Wan and Arcot Rajasekar of the SRB group atthe San Diego Supercomputing Center (SDSC). The goal is to make it possible for SRB clients toperform spatial subsetting and �ltering on data collections accessible through the SRB.The current API uses a prototype implementation of the indexing and �ltering services, whichimplements a subset of the functionality of DataCutter. In the current version we provide thefollowing functionality:� Building/deleting indexes on datasets.� Subsetting a dataset through range queries. A range query is a multi-dimensional boundingbox de�ned in the underlying multi-dimensional space of the dataset. Subsetting is carriedout by performing a search (using the index created on the dataset) for data segments thatintersect a range query.� Carrying out user-de�ned �ltering operations on data segments before returning them to theclient.� Adding/registering new �ltering functions.The main restrictions of the current implementation are:� Users cannot add new index methods. Only the default indexing method of DataCutter,R-tree indexing, can be used.� The �ltering service does not support distributed execution of �lters. Users can registermultiple �lters, but only one �lter can be executed at a time for a single query, and only atthe SRB server.Note that SRB/DataCutter is a rapidly evolving system. We plan to gradually integrate morefunctionality in future releases. Hence, the interface and underlying system are subject to changesin the future. Currently, the interface has only C/C++ language bindings. The API speci�cationin this document assumes that the reader has SRB API speci�cations available (SRB API manualis available on the Web [8]). This document only describes the interface for SRB clients to useDataCutter services. 8

3.1 Creating an Indexint sfoCreateIndex(srbConn *conn, sfoClass class, int catType, char *hostName,char *inIndexName, char *outIndexName, char *resourceName)Input Parametersconn SRB server connect information. This can be created by a call to the SRB clConnectfunction. Refer to the SRB manual [8] for more information.class Subsetting scheme (SFO { search and �lter operations). It should be set to DataCutterClfor DataCutter operations.catType SRB catalog type (e.g., MCAT). Refer to the SRB manual [8] for more informationabout SRB catalog types.hostName Name of the server host on which to run the create index operation. If it is setto NULL, the operation is executed at the current server to which the client is connected.inIndexName Name of the SRB collection that contains the input linear index �les.outIndexName Name of the SRB collection where the index �les created by the indexingservice will be stored.resourceName SRB resource name. Refer to the SRB manual [8] for more informationabout SRB resource names.The sfoCreateIndex function creates an index for a set of data �les stored in the SRB. Metadataabout the data �les to be indexed and the linear index �les are created by the user in the collectioninIndexName in the SRB (e.g., using SRB I/O functions). The resulting index �les are stored in thecollection outIndexName in the SRB. If the collection outIndexName does not exist, it is createdby the indexing service.Error CodessfoCreateIndex returns the following values.DC OK Operation succeeded.DC DATACAT ERR Cannot access/read dataset catalog �le.DC INDEXCAT ERR Cannot access/read index catalog �le.DC RTREE ERR Cannot create the R-tree index �les.9

Dataset catalog file# SRB collection 1<SRB collection name><number of data files in this collection><SRB file name><SRB file name>...<SRB file name># SRB collection 2<SRB collection name><number of data files in this collection><SRB file name><SRB file name>... Figure 3: The format of the ASCII dataset catalog �le.DC INTER ERR Some internal error occurred. DataCutter allocates internal bu�ers, createsinternal state for various operations etc. This error indicates that some error has occurredwhile performing internal operations.The user is required to provide three sets of �les in the SRB collection speci�ed by inIndexName;a dataset catalog �le, an index catalog �le, and a set of linear index �les. The dataset and indexcatalog �les are assigned a well-de�ned name within the collection (data.cat for the dataset catalog�le, index.cat for the index catalog �le) so that the indexing service can access those �les. Inthe next section we describe the format of these �les. The DataCutter indexing service expectsthese �les to be binary �les. In this document, we describe the format of ASCII �les. We providea utility program to convert the ASCII �les into binary �les, which is also described.3.1.1 Dataset Catalog, Index Catalog, and Linear Index FilesA dataset catalog contains the path to and the name of each data �le in the dataset. Note that�les are stored in collections in the SRB (corresponding to directories in a UNIX �le system), andare assigned object IDs (corresponding to �le names in UNIX). The format of the ASCII datasetcatalog �le is given in Figure 3. A line starting with \#" is considered a comment and is ignored.An example dataset catalog is shown in Figure 4.An index catalog contains the names of the linear index �les. The format of the ASCII indexcatalog �le is given in Figure 5. A line starting with \#" is considered a comment and is ignored.The linear index �les contain unordered lists of metadata for the segments in the dataset. The10

srb_test1_collection4test11_datasettest12_datasettest13_datasettest14_datasetsrb_test2_collection2test21_datasettest22_dataset Figure 4: An example dataset catalog �le.# Index catalog file<number of linear index files><SRB file name><SRB file name>...<SRB file name>Figure 5: The format of the ASCII index catalog �le.linear index �les correspond to DataCutter detailed index �les (see Section 2.1), and each linearindex �le can be associated with one or more data �les in the dataset. In the current implementation,the indexing service creates a detailed index �le from each linear index �le, and a single summaryindex �le for all detailed index �les for the dataset. The format of the linear index �le is given inFigure 6. In the ASCII linear index �le, a line beginning with \#" is considered a comment and isignored. The format of the binary �les for dataset and index catalog �les di�er from the format ofASCII dataset and index catalog �les. However, the format of the binary �le for the linear indexis the same as the format of the ASCII �le, except that there are no comment lines and no whitespaces between entries in the binary �le. Therefore, the user can directly generate binary linearindex �les without generating the ASCII �les.<file type> describes the �le type. It is an unsigned char and should be set to A for anASCII �le, and B for a binary �le.<dim> is the number of dimensions of the bounding boxes for the data segments.<number of data files> is the number of data �les indexed by this index �le.<data file id> is the logical data �le id. This value corresponds to the rank of the data�le11

Linear index file<file type><dim><number of data files># data file 1<data file id><number of segments># segment 1 of data file 1<min x> <min y> ... <min k><max x> <max y> ... <max k><offset> <size><min x> <min y> ... <min k><max x> <max y> ... <max k><offset> <size>...<min x> <min y> ... <min k><max x> <max y> ... <max k><offset> <size># data file 2<data file id><number of segments># segment 1 of data file 2<min x> <min y> ... <min k><max x> <max y> ... <max k><offset> <size># segment 1 of data file 2<min x> <min y> ... <min k><max x> <max y> ... <max k><offset> <size>... Figure 6: The format of linear index �le.in the dataset catalog in the order the name of data �les appears. For instance, in Figure 4,the data file id for \test11 dataset" is 0, and for \test21 dataset" is 4.<number of segments> is the number of segments indexed in the data �le by this index �le.<min x> <min y> ... <min k> are the minimum values in each dimension of the bound-ing box of the segment. Each value is a double.<max x> <max y> ... <max k> are the maximum values in each dimension of the bound-ing box of the segment. Each value is a double.<offset> <size> are the o�set and size of the segment in the data �le. O�set and size12

create_catalogs <command-line parameters>command-line parameters:-l <ASCII linear index file> <binary linear index file>create binary linear index file (<binary linear index file>) fromASCII linear index file (<ASCII linear index file>). Note thatthe name of the binary linear index file should be the same asthe name listed in index catalog file.-d <ASCII dataset catalog file>create binary dataset catalog file (data.cat) from ASCII datasetcatalog file.-i <ASCII index catalog file>create binary index catalog file (index.cat) from ASCII indexcatalog file.-cd print contents of binary dataset catalog file (data.cat) tostandard output in ASCII dataset catalog file format.-ci print contents of binary index catalog file (index.cat) tostandard output in ASCII index catalog file format.-cl <binary linear index file>print contents of binary linear index file (<binary linear index file>)to standard output in ASCII index catalog file format.-h print this information to standard outputFigure 7: The synopsis of create catalogs program.values are of type unsigned int.As was stated previously, the DataCutter indexing service expects dataset catalog, index catalogand linear index �les to be binary �les, stored in the inIndexName collection in the SRB. Theindexing service uses a di�erent format for binary dataset and index catalog �les. A utility program,called create catalogs, is provided so that the user can convert ASCII dataset and index catalog�les into the binary format used by the indexing service. The same utility program can also be usedto convert ASCII linear index �les into binary linear index �les. This program is located in theutility directory in the software distribution. The synopsis of this program is given in Figure 7.13

3.2 Deleting an Indexint sfoDeleteIndex(srbConn *conn, sfoClass class, int catType,char *hostName, char *indexName)Input Parametersconn SRB server connect information. Created by a call to the SRB clConnect function.Refer to the SRB manual [8] for more information.class Subsetting scheme (SFO { search and �lter operations) class. It should be set toDataCutterCl for DataCutter operations.catType SRB catalog type. Refer to the SRB manual [8] for more information about SRBcatalog types.hostName Name of the server host on which to run the delete index operation. If it is setto NULL, the operation is executed at the current server to which the client is connected.indexName Name of the collection that contains the index �les.The sfoDeleteIndex function deletes an index that was created by a call to sfoCreateIndex. Thename of the collection that contains the index �les is given in indexName.Error CodessfoDeleteIndex returns the following values.DC OK Operation succeeded.DC INDEXDEL ERR Could not delete the index.DC INTER ERR Some internal error occurred. DataCutter allocates internal bu�ers, createsinternal state for various operations etc. This error indicates that some error has occurredwhile performing internal operations.
14

3.3 Searching an Indextypedef struct {int dim; /* number of dimensions of the bounding box */double *min; /* array of minimums in each dimension */double *max; /* array of maximums in each dimension */} sfoMBR; /* Bounding box structure */typedef struct {sfoMBR segmentMBR; /* bounding box of the segment */char *objID; /* object in SRB that contains the segment */char *collectionName; /* collection where object is stored */unsigned int offset; /* offset of the segment in the object */unsigned int size; /* size of segment */} segmentInfo; /* segment metadata information */typedef struct {int segmentCount; /* number of segments returned */segmentInfo *segments; /* array of segment metadata information */int continueIndex; /* continuation flag */} indexSearchResult; /* search result structure */int sfoSearchIndex(srbConn *conn, sfoClass class, char *hostName,char *indexName, void *query,indexSearchResult **myresult, int maxSegCount)Input Parametersconn SRB server connect information. Refer to the SRB manual [8] for more information.class Subsetting scheme (SFO { search and �lter operations) class. It should be set toDataCutterCl for DataCutter operations.hostName Name of the server host on which to run the search index operation. If it is setto NULL, the operation is executed at the current server to which the client is connected.indexName Name of the SRB collection that contains the index �les.query Pointer to the query structure. DataCutter queries use the following query structure:15

typedef struct {int dim; /* number of dimensions of the query bounding box */double *min; /* array of minimum values in each dimension */double *max; /* array of maximum values in each dimension */} rangeQuery;dim is the number of dimensions. min is the array of minimum values in each dimension, maxis the array of maximum values in each dimension of the query.maxSegCount Maximum length of the segmentInfo array that is returned from a call tosfoSearchIndex.Output Parametersmyresult Stores the index search results. The myresult structure is allocated by the SRB.The allocated space can be deallocated by a call tosfoFreeIndexResults(indexSearchResult *myresult)The sfoSearchIndex function performs a search on indexName to �nd the segments that intersectthe range query given in the query parameter. The metadata for segments is returned in the outputparameter myresult. The segment metadata is stored in the segments array in a segmentInfostructure. The segments array is allocated by the indexing service{ the calling program is re-sponsible for freeing the segment array. The segmentCount (� maxSegCount) stores the numberof entries returned in the segments array, which may be less than maxSegCount. The returnedcontinueIndex �eld is greater than zero if there are more results to return; �1 is returned if thereare no more results. The DataCutter indexing service maintains internal state for the query so thatsubsequent calls to sfoGetMoreSearchResult (described next) can return more results. If thereare no more results to return, the indexing service deletes the internal query state and sets thecontinueIndex �eld to �1. maxSegCount limits the maximum number of segments to be returnedfrom a single call to the sfoSearchIndex function.Error CodessfoCreateIndex returns the following values.DC OK Operation succeeded.DC DATACAT ERR Cannot read dataset catalog �le.DC INDEXCAT ERR Cannot read index catalog �le.DC RTREE ERR Cannot access the R-tree index �les.16

DC QUERY ERR The number of query dimensions does not match the number of dataset di-mensions.DC SEGINFO ERR Cannot create segment information data structures. For example, allocationof a bu�er to hold segment information may have failed.DC INTER ERR Some internal error occurred. DataCutter allocates internal bu�ers, createsinternal state for various operations etc. This error indicates that some error has occurredwhile performing internal operations.

17

int sfoGetMoreSearchResult(srbConn *conn, sfoClass class, char *hostName,int continueCond, indexSearchResult **myresult,int maxSegCount)Input Parametersconn SRB server connect information. Refer to the SRB manual [8] for more information.class Subsetting scheme (SFO { search and �lter operations) class. It should be set toDataCutterCl for DataCutter operations.hostName Name of the server host on which to run the get more result operation. If it isset to NULL, the operation is executed at the current server to which the client is connected.continueCond If set to a value greater than 0, return more results. If it is set to �1, returnno more results.maxSegCount Maximum number of segment information to be returned from a call tosfoGetMoreSearchResult.Output Parametersmyresult Stores the index search results. The myresult structure is allocated by SRB. Theallocated space can be deallocated by a call tosfoFreeIndexResults(indexSearchResult *myresult)The sfoGetMoreSearchResult function is used to get more results from a search operation fora query. This function should be called after a call to the sfoSearchIndex function. ThecontinueCond parameter should be set greater than zero to get more results. If it is set to �1,no more results are returned for the query. The DataCutter indexing service maintains internalstate for the query submitted via a call to sfoSearchIndex. If the input parameter continueCondis set to �1, then the indexing service deletes the internal state for the query, and no results arereturned. If the state of the current query is deleted, sfoSearchIndex should be called again tostart a new search. The value of the maxSegCount parameter limits the length of the segmentmetadata array that can be returned from a call to the sfoGetMoreSearchResult function, as forsfoSearchIndex.Note that in the current implementation, neither sfoSearchIndex nor sfoGetMoreSearchResultreturns a query handle. DataCutter maintains internal state for the current query. Thus, only onequery can be submitted at a time by any one client. A call to sfoSearchIndex will delete thestate for the current query and initialize the internal state for the new query, and subsequent callsto sfoGetMoreSearchResult will return results for the new query. We plan to extend the API18

and the underlying system in future releases so that a client can have multiple simultaneous activequeries.Error CodessfoGetMoreSearchResult returns the following values.DC OK Operation succeeded.DC RTREE ERR Cannot access the R-tree index �les.DC QUERY ERR The query dimensions does not match the dataset dimensions.DC SEGINFO ERR Cannot create segment information data structures. For example, allocationof a bu�er to hold segment information may have failed.DC NOTINIT ERR This error indicates that sfoGetMoreSearchResult has been called beforea call to sfoSearchIndex.DC INTER ERR Some internal error occurred. DataCutter allocates internal bu�ers, createsinternal state for various operations etc. This error indicates that some error has occurredwhile performing internal operations.

19

3.4 Applying a Filtertypedef struct {segmentInfo segInfo; /* info on segment data buffer after filter oper. */char *segment; /* segment data buffer after filter is applied */} segmentData;typedef struct {int segmentDataCount; /* #segments in segmentData array */segmentData *segments; /* segmentData array */int continueIndex; /* continuation flag */} filterDataResult;int sfoApplyFilter(srbConn *conn, sfoClass class, char *hostName,int filterID, char *filterArg, int numOfInputSegments,segmentInfo *inputSegments, filterDataResult **myresult,int maxSegCount)Input Parametersconn SRB server connect information. Refer to the SRB manual [8] for more information.class Subsetting scheme (SFO { search and �lter operations) class. It should be set toDataCutterCl for DataCutter operations.hostName Name of the server host on which to run the �lter operation. If it is set to NULL,the �lter operation is executed at the current server to which the client is connected.�lterID An integer value denoting the id of the �lter to be applied. To retrieve data segmentswithout applying a �lter, it should be set to -1.�lterArg User arguments to the �lter function. The �lter argument is a string, which isparsed by the �lter function.numOfInputSegments Number of segments on which the �lter operation is to be applied.inputSegments Array of metadata for input segments, on which the �lter operation is tobe applied.maxSegCount Maximum number of segments that may be returned from a call to thesfoApplyFilter function.Output Parameters 20

myresult Array of segments produced by the �lter operation. The myresult structure isallocated by SRB. The allocated space can be deallocated by a call tosfoFreeFilterResults(filterDataResult *myresult)The sfoApplyFilter function applies a �lter operation, denoted by filterID, to the set of seg-ments, whose metadata is given in inputSegments. Results are returned in the output parametermyresult. The value of continueIndex in the filterDataResult structure is set greater thanor equal to zero if there are more segments to be processed. Its value is set to �1 if there areno more segments. As for the indexing service, the �ltering service also maintains internal stateabout the list of segments to be processed, so that subsequent calls to sfoGetMoreFilterResultcan process the remaining segments in the list of input segments. If there are no more segments tobe processed, the internal state is deleted, and the returned continueIndex is set to �1.Error CodessfoApplyFilter returns the following values.DC OK Operation succeeded.DC FILTERID ERR The value of filterID is incorrect.DC FILTER ERR Error in carrying out user-de�ned �lter operations.DC SEGMENT ERR Cannot read or process a segment in the list of segments. For example,allocation for a bu�er to hold data for a segment may have failed. The segment �eld insegmentData is set to NULL for those segments.DC INTER ERR Some internal error has occurred. DataCutter allocates internal bu�ers, createsinternal state for various operations etc. This error indicates that some error has occurredwhile performing internal operations.
21

int sfoGetMoreFilterResult(srbConn *conn, sfoClass class, char *hostName,int continueCond, filterDataResult **myresult,int maxSegCount)Input Parametersconn SRB server connect information. Refer to the SRB manual [8] for more information.class Subsetting scheme (SFO { search and �lter operations) class. It should be set toDataCutterCl for DataCutter operations.hostName Name of the server host on which to run the �lter operation. If it is set to NULL,the �lter operation is executed at the current server to which the client is connected.continueCont If set greater than 0, return more results. If it is set to �1, return no moreresults.maxSegCount Maximum number of segments that should be returned from each call to thesfoGetMoreFilterResult function.Output Parametersmyresult Array of segments produced by the �lter operation. The myresult structure isallocated by SRB. The allocated space can be deallocated by a call tosfoFreeFilterResults(filterDataResult *myresult)The sfoGetMoreFilterResult function is used to get more �ltered segments, from the list ofsegments passed to the sfoApplyFilter function. The continueCond parameter should be setgreater than zero to get more results. If it is set to �1, the function does not return more results.The semantics of sfoGetMoreFilterResult is similar to that of sfoGetMoreSearchResult in theindexing service. If the input parameter continueCond is set to �1, the �ltering service deletesits internal state for the current list of segments, and no results are returned. If the current stateis deleted, sfoApplyFilter should be called again with a new list of segments to apply a �lteroperation. The value of the maxSegCount parameter limits the number of the segments that canbe returned from a call to the sfoGetMoreFilterResult function.Note that in the current implementation, neither sfoApplyFilter nor sfoGetMoreFilterResultreturns a handle for the current list of segments to which the �lter operation is applied. Data-Cutter maintains internal state for the list of segments. Thus, only one list of segments can beprocessed at a time for any one client. A call to sfoApplyFilter will delete the internal state for22

the current list of segments and initialize the internal state for the new list. Subsequent calls tosfoGetMoreFilterResult will return results for the new list of segments.Error CodessfoGetMoreFilterResult returns the following values.DC OK Operation succeeded.DC NOTINIT ERR This error indicates that sfoGetMoreFilterResult has been called beforea call to sfoApplyFilter.DC FILTER ERR Error in carrying out user-de�ned �lter operations.DC SEGMENT ERR Error in reading and/or processing a segment. For example, allocation for abu�er to hold data for a segment may have failed. The segment �eld in segmentData is setto NULL for those segments.DC INTER ERR Some internal error has occurred. DataCutter allocates internal bu�ers, createsinternal state for various operations etc. This error indicates that some error has occurredwhile performing internal operations.

23

#include "sfoDCFilterImpl.h"class dcFilterImpl fpublic:dcFilterImpl();virtual ~dcFilterImpl();/* initialize the filter */virtual int init(char *user_arg);/* Methods to disclose memory requirements for scratch *//* space and the output segment data */virtual int scratchSpaceSize(void) f return -1; g;virtual void setScratchSpace(void *scratchBufferPtr) f g;virtual int outputSegmentSize(void) f return -1; g;/* The filter operation to be applied. */virtual int process(void *segBufferIn, segmentInfo *segInfoIn,segmentData *segOut);/* finalization */virtual int finalize(void);g; Figure 8: The �lter base class for adding new �lters.3.5 Implementing a New Filter FunctionThe �ltering service in the SRB/DataCutter system is implemented in C++. Adding new �ltersto the system is achieved via C++ inheritance and virtual methods. The �ltering service providesa base class, which the user subclasses and then implements the virtual methods. The de�nition ofthe base class in the prototype implementation is given in Figure 8:init This method is used to initialize class data members from the user argument (filter arg)passed in from sfoApplyFilter. The user has to implement this method. init must return0 if the operation succeeds, and �1 otherwise.scratchSpaceSize This method is used to disclose the amount of scratch memory space(in bytes) to be allocated by the �ltering service. If this method returns a value greaterthan 0, the �ltering service allocates a bu�er of that size. After the bu�er is allocated, thesetScratchSpacemethod (described next) is called by the �ltering service to pass the pointerto the bu�er to the user code. The bu�er may be used in the user-de�ned process methodas scratch space, for example to hold intermediate values to process an input segment. The24

user is not required to implement this method; a default implementation, which returns �1,is provided by the �ltering service. In that case, no scratch space is pre-allocated for the �lterby the �ltering service and user-de�ned methods are required to dynamically allocate scratchspace.setScratchSpace This method is used to pass the pointer to the scratch bu�er, allocated bythe �ltering service, to the user code. The scratchBufferPtr parameter is a pointer to thebu�er allocated by the �ltering service. The user may implement this method to initializeinternal pointers to access the scratch space bu�er in other methods. It is a NULL pointer ifthe scratchSpaceSize method returns �1.outputSegmentSize This method is used to disclose the (maximum) size (in bytes) of thebu�er required to hold the resulting segment after the �ltering operation is applied to aninput segment. If this method returns a value greater than 0, the �ltering service allocates abu�er, the size of which is equal to the value returned from the method, to be used to holdan output segment generated in the process method. The user does not have to implementthis method; a default implementation, which returns �1, is provided by the �ltering service.In that case, no bu�er is pre-allocated for the output segments and the user-de�ned processmethod is required to dynamically allocate space for each output segment.process This method applies the �lter operation on the input segment, segBufferIn, withassociated metadata segInfoIn, and stores the result in segOut (see Section 3.4 for thede�nition of the segmentData structure, and Section 3.3 for the de�nition of the segmentInfostructure). segOut->segInfo should contain metadata for the output segment after the �lteris applied. The segmentMBR �eld of segInfo can contain the minimum bounding rectanglefor the output segment. The size �eld must contain the size (in bytes) of the outputsegment. The data for the output segment should be stored in segOut->segment. Notethat the bu�er for segOut->segment is allocated by the �ltering service if the user-de�nedoutputSegmentSize returns a value greater than 0. Otherwise, segOut->segment will be aNULL pointer, in which case the bu�er for the output segment should be allocated in theprocess method. The size and segment �elds are also used by the �ltering service to returnthe output segment data to the client from the SRB server. The user has to implement thismethod. The process method must return 0 if the operation succeeds, and �1 otherwise.�nalize This method is used to free resources allocated by the �lter. The user has to imple-ment this method. It must return 0 if the operation succeeds, and �1 otherwise.The �ltering service �rst calls the init method so that the user-de�ned �lter can parse theuser argument and perform initialization of member variables, etc. Then, scratchSpaceSize25

and outputSegmentSize methods are called by the �ltering service to get the size of the bu�erspace required for the scratch space and output segments. Note that the current �ltering ser-vice neither enforces user-de�ned �lters to pre-disclose dynamic memory requirements for scratchspace and output segments, nor prohibits a �lter from using dynamic memory allocation1 If thescratchSpaceSize and outputSegmentSize methods return values greater than 0, the �lteringservice allocates the requested bu�er space on behalf of the user-de�ned �lter. The pointer to thebu�er for scratch space is passed to the user-de�ned code through the setScratchSpace method.The �ltering service calls this function and passes the pointer to the bu�er via scratchBufferPtrparameter. The user-code in setScratchSpace may initialize the internal member pointers toaccess the bu�er space in the process method. The process method is called for each input seg-ment retrieved from archival storage. The segOut->segment �eld of the segmentData structurepoints to the bu�er space (if it has been allocated by the �ltering service) to store the output seg-ment after applying the �lter operation to the current input segment. If the bu�er space is notallocated by the �ltering service, the segOut->segment is a NULL pointer. In that case, thebu�er for the output segment must be allocated dynamically in the process method. After allsegments are processed, the �ltering service calls the �nalize method so that the user-de�ned �ltercan free the resources it allocated.Currently, adding and registering a new �lter function is done by the SRB system administrator.That is, the user should send the source code for a user-de�ned �lter function, implemented as asubclass of dcFilterImpl, to the SRB system administrator. The system administrator integratesthe new �lter class into the SRB server (i.e. compiles the source code and links the class object tothe SRB executable), and assigns a �lter id for the new �lter function. This �lter id can be usedin a call to the sfoApplyFilter function, as the value of the �lterID parameter.3.6 A Metadata Format for Datasets, Indexes and FiltersIn this section, we present a metadata format to describe datasets, indexes and �lters registered inSRB/DataCutter system. This metadata format is designed to make use of existing MCAT systemso that users can access metadata information through SRB/MCAT client API.3.6.1 DatasetsThe metadata attributes for a dataset consist of primary-data-info, data-class-info, andstructured-data-info tables. The primary-data-info keeps the primary metadata information1One of our current research projects is investigating when pre-disclosing resource requirements will be important,how it can be used for developing strategies for better resource management and scheduling of �lters for e�cientexecution in a distributed environment with shared resources, and the implications of pre-disclosing resource require-ments in developing applications using �lters. We plan to integrate the strategies developed in our research work infuture releases. 26

about the dataset:data id The dataset id assigned by the MCAT. It is of type integer.data name A user de�ned name for the dataset. It is of type string.data desc A short text description of the dataset, e.g., \AVHRR Satellite data over NorthernAmerica". It is of type string.data collection A dataset is stored in an SRB collection. This �eld holds the name of thecollection. It is of type string.data type A user de�ned type for the dataset, e.g., \Image", \Microscopy", \AVHRR", etc.The type can be used to designate datasets with the same segment structure. A �lter designedto process data segments from a dataset can be applied to other datasets with the same datasegment structure. It is of type string.The data-class-info table keeps the information about the class of the dataset. In general,datasets stored through the SRB can also be accessed by a search-and-�lter class other than Dat-aCutter (e.g., a geographic information system). The class information is used to categorize adataset according to the search-and-�lter operations applicable to the dataset.class name The name of the class the dataset belongs to. For example, for datasets that areintended to be accessed through DataCutter, the value of this attribute should be DataCutterCl.It is of type integer.The structured-data-info table is used to keep application-speci�c information for datasets.For example, DataCutter datasets are expected to be multi-dimensional. The dimensions andranges in each dimension can be stored with the structured-data-info. The attributes ofstructured-data-info are:structure type The type of the structured information. The user-de�ned type value isused by the client program to correctly decode the internals of the structures. For example,if structured data is stored as an XML �le, then the value could be \XML". It is of typestring.structure commentsA short description of the structured information. It is of type string.structure data id points to the data id that stores the structure. For example, the struc-ture can be an XML �le stored in SRB. Then, the data id value can be used to �nd the nameof the collection, where the XML �le is stored, from the primary-data-info attributes. Itis of type integer. 27

internal structure can be used to store a small amount of structured information in MCAT.It is of type string.Note that there exists a cross-reference in MCATmapping a data name to the structured-data-infotable so that a user can access this information through a search on the dataset name.3.6.2 IndexesIn MCAT, indexes are considered to be a dataset of a particular type. Hence, primary informationon indexes (i.e. primary-data-info) is already stored as part of the metadata for datasets. Theextra information required for indexes describes which index applies to which dataset and thelocation of the indexes. This information is stored in the index-data-info table, with the followingattributes:index id This is actually the data id in the primary-data-info table. It is of type integer.The index id is used to �nd the corresponding set of attributes for the name of the index,description of the index, etc., stored in the primary-data-info table.indexeddata id The data id of the dataset indexed by this index. It is of type integer.indexeddata type This value holds information about the type of the index. It allows usersto search for speci�c types of index, e.g., R-tree indexes. It is of type string.index location The location of the index. An index can be stored in an SRB collection (asfor DataCutter), or, for example, can be stored in a relational database (perhaps for anothersearch-and-�lter class). It is of type string.index comments A short description of the index. It is of type string.3.6.3 FiltersIn MCAT, �lters are considered to be methods, and methods are considered to be datasets of a par-ticular type. Therefore, the primary information about �lters can be stored in the primary-data-infotable in MCAT. The structured-data-info table can be used to hold �lter speci�c information,for example the input parameters to a �lter. The extra metadata information required for a �lteris: method id This is actually the data id in the primary-data-info table. It is of typeinteger.data id The data id of the dataset to which this �lter can be applied. It is of type integer.data type The type of the data to which this segment can be applied. It is of type string.28

AcknowledgementsWe would like to thank Michael Wan and Arcot Rajasekar of the SRB team at San Diego Su-percomputer Center for their invaluable help in designing the SRB/DataCutter interface and inintegrating DataCutter services into the SRB.References[1] Asmara Afework, Michael D. Beynon, Fabian Bustamante, Angelo Demarzo, Renato Ferreira, RobertMiller, Mark Silberman, Joel Saltz, Alan Sussman, and Hubert Tsang. Digital dynamic telepathology -the Virtual Microscope. In Proceedings of the 1998 AMIA Annual Fall Symposium. American MedicalInformatics Association, November 1998.[2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R*-tree: An e�cientand robust access method for points and rectangles. In Proceedings of SIGMOD'90, pages 322{331. ACMPress, May 1990.[3] Michael D. Beynon, Renato Ferreira, Tahsin Kurc, Alan Sussman, and Joel Saltz. DataCutter: Middle-ware for �ltering very large scienti�c datasets on archival storage systems. In Proceedings of the EighthGoddard Conference on Mass Storage Systems and Technologies/17th IEEE Symposium on Mass StorageSystems, pages 119{133, College Park, MD, March 2000. IEEE Computer Society Press.[4] Michael D. Beynon, Tahsin Kurc, Alan Sussman, and Joel Saltz. Design of a framework for data-intensive wide-area applications. Technical Report CS-TR-4104 and UMIACS-TR-2000-04, University ofMaryland, Department of Computer Science and UMIACS, February 2000. To appear in the Proceedingsof the 2000 Heterogeneous Computing Workshop.[5] Chialin Chang, Bongki Moon, Anurag Acharya, Carter Shock, Alan Sussman, and Joel Saltz. Titan: Ahigh performance remote-sensing database. In Proceedings of the 1997 International Conference on DataEngineering, pages 375{384. IEEE Computer Society Press, April 1997.[6] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of SIG-MOD'84, pages 47{57. ACM Press, May 1984.[7] Tahsin M. Kurc, Alan Sussman, and Joel Saltz. Coupling multiple simulations via a high performancecustomizable database system. In Proceedings of the Ninth SIAM Conference on Parallel Processing forScienti�c Computing. SIAM, March 1999.[8] SRB: The Storage Resource Broker. http://www.npaci.edu/DICE/SRB/index.html.
29

