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Estimates from economic panel surveys are generally required to be published 

soon after the survey reference period, resulting in missing data due to late reporting 

as well as nonresponse.  Estimators currently in use make some attempt to correct for 

the impact of missing data.  However, these approaches tend to simplify the assumed 

nature of the missing data and often ignore a portion of the reported data for the 

reference period.  Discrepancies between preliminary and revised estimates highlight 

the inability of the estimation methodology to correct for all error due to late 

reporting. 

The current model for one economic panel survey, the Current Employment 

Statistics survey, is examined to identify factors related to potential model 

misspecification error, leading to identification of an extended model.  An approach is 

developed to utilize all reported data from the current and prior reference periods, 

through missing data imputation.  Two alternatives to the current models that assume 

growth rates are related to recent reported data and reporting patterns are developed, 

one a simple proportional model, the other a hierarchical fixed effects model.  



  

Estimation under the models is carried out and performance compared to that of the 

current estimator through use of historical data from the survey.  Results, although 

not statistically significant, suggest the potential associated with use of reported data 

from recent time periods in the working model, especially for smaller establishments. 

A logistic model for predicting likelihood of late reporting for sample units that 

did not report for preliminary estimates is also developed.  The model uses a 

combination of operational, respondent, and environmental factors identified from a 

reporting pattern profile.  Predicted conditional late reporting rates obtained under the 

model are compared to actual rates through use of historical information for the 

survey.  Results indicate the appropriateness of the parameters chosen and general 

ability of the model to predict final reporting status.  Such a model has the potential to 

provide information to survey managers for addressing late reporting and 

nonresponse. 
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Chapter I: Overview 

A. Introduction 

Many economic surveys must strike a balance between timeliness and accuracy in 

the generation of estimates.  Estimates are generally required to be published soon 

after the survey reference period in order to efficiently guide policy aimed at affecting 

the marketplace.  Speed of delivery can adversely affect survey quality, however, as 

nonreporting will tend to be higher with shorter collection periods.  Estimation 

methods developed for these surveys are intended to compensate for missing data so 

as to reduce the error due to nonreporting. 

A portion of survey nonreporting within such a survey environment can often be 

viewed as temporal, with responses for some sample units becoming available 

subsequent to the prescribed collection period (referred to here as “late reporting”).  

The remaining portion of survey nonreporting reflects sample units that never report 

data for the reference period (referred to here as “nonresponse”).  One approach 

commonly taken with economic data series is the issuance of preliminary estimates 

shortly after the reference period, based upon sample data received within the 

prescribed collection period (referred to here as “preliminary reporting”), followed by 

one or more revised estimates based upon data from both preliminary and late 

reporters. 

Despite the issuance of revised estimates, preliminary estimates are most critical 

for use and tend to receive the most visibility.  Deviations between preliminary and 

revised estimates may be perceived as an inability of the estimation methodology to 

appropriately correct for nonreporting.  Although information on sampling and other 
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errors associated with the preliminary estimates may be provided, and may show 

revisions are not outside the bounds of expected survey error, the perception of 

survey performance may still be tied to the nature of differences between preliminary 

and revised estimates.  This is especially true when looking at revisions to period-to-

period change in the estimates, where a difference between preliminary and revised 

estimates deemed inconsequential for the reference period level may be greater than 

the estimate of period-to-period change.  Thus one key objective for such surveys is 

reducing the potential for large differences between preliminary and revised 

estimates, both level and change. 

B. Discussion of Problem 

Estimators currently in use for economic panel surveys of establishments often 

utilize relationships between current and prior period values in deriving current 

period estimates, in part to control variability in period-to-period change that would 

result from differences in the set of reporting sample units from one period to the 

next.  As a result, these estimators may restrict usable sample to those units reporting 

data for both periods.  The set of usable sample units will expand between the 

generation of preliminary and revised estimates with the addition of late reporters for 

the current period which had reported for the prior period. For example both the 

Current Employment Statistics survey, conducted by the Bureau of Labor Statistics, 

and the Monthly Retail Trade survey, conducted by the Census Bureau, revise 

estimates based upon late reporters. 

The magnitude of the difference between preliminary and revised estimates 

depends in part upon the extent to which preliminary reporters can be used as proxies 
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to reflect the distribution for late reporters.  To the extent distributions deviate for late 

reporters, revised estimates will show larger differences from the preliminary 

estimates.  The potential for different distributions may be exacerbated when using 

estimators which utilize both current and prior period values in deriving current 

period estimates. 

Estimators often attempt to control for the impact of missing data due to late 

reporting and nonresponse through the creation of estimation cells, defined primarily 

through the use of information available for the entire population, in which 

nonreporting is assumed to be random (i.e., that within an estimation cell preliminary 

reporters reflect the relationship between current and prior period values for late 

reporters).   

There are two key issues associated with estimation methods currently used that 

bear consideration in developing methods intended to reduce differences between 

preliminary and revised estimates: 

1) Discarding data from sample that fail to report for both the current and 

immediately prior reference period. A portion of the data discarded when 

generating preliminary estimates ends up being used when generating revised 

estimates, that being prior period data for current period late reporters.  By 

developing approaches for preliminary estimation that make direct use of data 

that may be included in the revised estimates, differences between preliminary 

and revised estimates could potentially be reduced. 

2) Assuming no difference in relationship between current and prior month 

regardless of prior reporting patterns.  The underlying models used for current 
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estimation methods typically assume relationships that depend only upon 

information known for the population.  Prior data on sample units, which will 

be more complete for consistent reporters than for sample units that report 

sporadically, may provide insight into the relationship between current and 

prior periods. 

An approach to address these issues and potentially reduce the magnitude of 

differences between preliminary and revised estimates would be to expand the model 

underlying the current estimators to encompass differential relationships based upon 

prior reporting patterns and available data, and to impute for missing current period 

data when prior period data are present.  That is the approach taken in this dissertation 

research. 

C. Statement of Purpose 

The primary objective of this dissertation research was to develop an estimation 

approach for panel surveys, given late reporting and nonresponse, yielding improved 

accuracy for preliminary estimates of monthly population totals and month-to-month 

change in population totals, relative to that achieved by estimators currently in 

practice.  The focus was on more complete and effective use of available population 

and sample information than is currently the case, through imputation for missing 

data due to late reporting and nonresponse, so as to reduce the difference between 

preliminary and revised estimates.  An example panel survey, the Current 

Employment Statistics (CES) survey, was used for developing alternative approaches 

and for assessment of performance. 
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The performance of estimates resulting from the working models were compared 

to that for estimates derived by the methodology currently in practice, by comparing 

differences between preliminary and revised estimates.  The focus was on late 

reporting and nonresponse error.  Measurement error, although important in 

addressing the overall accuracy of survey estimates, was not addressed in this 

research. 

A secondary objective of this dissertation research was to develop a model for 

predicting final reporting status for sample units other than preliminary reporters.  A 

logit model appears appropriate for use in this regard, with independent variables 

selected on the basis of late reporting and nonresponse patterns.  The working model 

was developed so as to balance parsimony and incorporation of relevant factors and 

information. 

D. Statement of Work 

In the dissertation research, the following activities were carried out: 

1. Review the statistical literature relative to late reporting and nonresponse, 

especially as it applies to panel surveys of establishments (Chapter II); 

2. Describe the survey design and estimation methods currently used in an 

example panel survey subject to late reporting and nonresponse, so as to 

motivate the research problem (Chapter III); 

3. Analyze the example panel survey in terms of reporting patterns and develop 

and assess a model for predicting final reporting status (late reporter, 

nonresponse) for sample establishments failing to report during the survey’s 

preliminary reporting period (Chapter IV). 
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4. Analyze the example panel survey in terms of impact of late reporting and 

nonresponse and develop and assess working models for imputing missing 

employment values for sample establishments reporting only one of the current 

and prior months and for estimating current month employment (Chapter V); 

5. Comment on the implications of the research findings as they relate to future 

research and implementation in a survey setting (Chapter VI). 
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Chapter II: Literature Review 

A. Introduction 

Unit nonresponse is a common occurrence in sample surveys that, if ignored, 

results in increased variance and likely bias for survey estimates. Nonresponse 

decreases the effective sample size of the survey, thereby increasing the variance of 

survey estimates.  In addition, nonresponse can yield biased estimates if the 

distribution for variables of interest for respondents differs from that for 

nonrespondents.  As discussed in Chapter I, an additional aspect of unit nonresponse 

in surveys (both cross-sectional and panel) is that related to late reporting (see e.g., 

Bureau of Labor Statistics, 2004a; Hogan, et al., 1997). 

As noted by the Committee on National Statistics’ Panel on Incomplete Data 

(Madow, et al., 1983), “…the inevitable nonresponse requires the consideration of 

methods that improve analysis by statistical adjustment of the collected data.  But no 

statistical methods will fully compensate for missing units and data.  Biases will 

almost certainly remain.  Good methods are chiefly aimed at reducing biases and 

mean square error of estimators while reducing or at least not unduly increasing 

variances of estimators.” 

A common approach to compensating for unit nonresponse in cross-sectional 

surveys is through weighting adjustments utilizing auxiliary information about the 

sample units from the frame.  A number of books, monographs, and papers 

addressing general methods and theory of weighting adjustments for unit nonresponse 

have been written (see, e.g., Little and Rubin, 2002; Oh and Scheuren, 1983; Kalton 
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and Kasprzyk, 1986; and, in the establishment survey setting, Hidiroglou, et al., 

1995). 

Unit nonresponse within panel surveys takes on an additional dimension beyond 

that for cross-sectional surveys (i.e., time).  Although some sample units will be 

nonrespondents for all survey periods and others will provide responses for all survey 

periods, many sample units will respond for some survey periods and be 

nonrespondents for others.  Panel surveys thus offer the potential for a richer set of 

auxiliary information (i.e., values for the variables of interest for the nonresponding 

sample unit from prior and/or succeeding survey periods) on which to base a 

nonresponse compensation method than that available from an analogous cross-

sectional survey, albeit at the price of more complex reporting patterns.  This 

environment not only allows for a wider range of weighting adjustment methods to be 

considered for panel surveys, but also makes imputation a more desirable option. 

In spite of the availability of additional auxiliary data and the long existence of 

panel surveys, compensation for nonresponse in panel surveys is often based on 

cross-sectional methods or some variant developed to fit panel surveys.  In addition, 

much of the nonresponse literature is focused on cross-sectional surveys.  For 

example, the recent nonresponse text by Groves and Couper (1998) does not address 

the issue of nonresponse in a longitudinal survey other than that occurring in the first 

wave.  

This chapter presents a discussion of nonresponse adjustment methods as 

applicable to panel surveys.  As a framework, the chapter begins with a brief 

overview of panel surveys, followed by a discussion of key nonresponse theory and 
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common adjustment methods used for cross-sectional surveys.  A mathematical 

framework for unit nonresponse in panel surveys is then presented, followed by a 

review of adjustment methods currently in use for panel surveys.  The issue of late 

reporting in panel surveys is then discussed.  The chapter closes with a discussion of 

future direction for this area of research. 

B. Panel Surveys 

Panel surveys are “surveys in which similar measurements are made on the same 

sample at different points in time” (Kasprzyk, et al., 1989).  Panel surveys may 

involve complete overlap of the sample across time, rotation of the sample units 

across time, or a combination of complete overlap and rotation of the sample across 

time. 

Duncan and Kalton (1987) discuss characteristics of surveys across time – panel 

and repeated surveys.  Although both panel and repeated surveys provide estimates 

for a population at multiple points in time, panel surveys are particularly well-suited 

for estimating gross and other components of individual change and for aggregating 

data for individuals over time, important characteristics for use in economic analysis 

(Solon, 1989).  In addition, panel surveys provide advantages for collecting data on 

events occurring in specified time periods and, with some mechanism for taking into 

account population changes, also allow for estimating net changes.  Bailar (1989) and 

Binder (1998) provide discussions of key issues associated with surveys across time.  

One important issue is the types of estimates desired, e.g., if cross-sectional estimates 

are required in addition to estimates of change.  Maintenance of an accurate sampling 

frame must be planned for.  Respondent burden becomes critical, as sample units are 
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expected to provide data multiple times.  Sample attrition must be considered, not 

only because of the nonresponse effect for later time periods, but also because of the 

impact on selected analyses given missing time periods for a given sample unit.  

Finally, nonresponse adjustment is complicated as units may not respond for every 

time period. 

Panel surveys differ from cross-sectional surveys in terms of the manner in which 

nonresponse may be classified and the information available about nonrespondents 

upon which to base approaches to compensate for nonresponse.  As a result, 

approaches to compensating for nonresponse often differ for panel surveys from those 

for cross-sectional surveys. 

C. Nonresponse Overview 

Unit nonresponse is defined as “…a complete failure to obtain data from a sample 

unit…” (Office of Management and Budget, 2001).  An obvious implication of unit 

nonresponse is a variance increase due to the reduction in the effective sample size.  

The variance increase for a sample mean from a simple random sample can be 

expressed (ignoring the finite population correction) as the ratio of the total to the 

responding sample size 

2

2

/( )( )
( ) /

yr

n y

S n mVar y n
Var y S n n m

−
= =

−
 

where =ry  mean for sample respondents 

=ny  mean for all sample units 

2
yS =  population variance for Y  

=n  total number of sample units 
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=m  number of nonrespondents 

Based upon this relationship, one approach to alleviating the impact of 

nonresponse on survey variance is to oversample based upon the anticipated 

nonresponse rate, so the responding sample size is expected to be that required to 

achieve the target variance. 

A second implication of unit nonresponse is the potential for biased estimates.  

Nonresponse bias for a sample mean from a simple random sample can be expressed 

as the product of two components: the nonresponse rate and the difference between 

the means of the respondents and the nonrespondents 

))()(()()( mrnrr yEyE
n
myyEyBias −=−=  

where =my  mean for sample nonrespondents 

=
n
m  unit nonresponse rate 

Reducing the unit nonresponse rate thus serves to lessen the bias implications of 

nonresponse as well as the variance, while reducing the difference between 

nonrespondents and respondents relative to the variables of interest should serve to 

lessen the nonresponse bias.  Operational refinements regarding questionnaire design, 

collection mode, response burden, and survey protocol can be implemented in an 

attempt to reduce nonresponse rates (see e.g., Lessler and Kalsbeek, 1992).  A 

combination of operational refinements, such as collection of observational 

information about nonresponding units, and statistical methods, such as weight 

adjustments or imputation, are typically applied to reduce the bias impact of 

nonresponse. 
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Development of statistical methods resulting in a decrease in the bias due to 

nonresponse requires an understanding of the response mechanism and the 

relationship between respondents and nonrespondents.  The response mechanism is 

commonly viewed in terms of the reason for nonresponse: refusal; unavailable 

(referred to as “not-at-home” in the household survey setting); inability to participate; 

and not located (see, e.g., Kalton and Kasprzyk, 1986; Groves, 1989).  Classification 

of nonrespondents in terms of reason for nonresponse requires information be 

collected as part of the survey protocol. 

Several recent articles (Curtin, et al., 2000; Keeter, et al., 2000; Merkle and 

Edelman, 2002) have called into question traditional assumptions about the impact of 

higher nonresponse rates, or at the least the perceived benefits of reducing 

nonresponse rates.  These articles suggest lowering nonresponse rates (i.e., reducing 

the first component of the nonresponse bias equation) may actually increase the 

second component of the nonresponse bias equation, the difference between the 

means of the respondents and the nonrespondents, leaving a net result of no gain in 

terms of nonresponse bias. 

Panel surveys add another dimension to the response mechanism, that being 

response status at different points in time.  Little and David (1983) distinguished three 

types of panel survey nonresponse – attrition (sample unit stops reporting), late entry 

(sample unit does not report initially), and reentry (sample unit has a gap in 

reporting).  While this categorization describes general patterns of nonresponse, the 

types are not mutually exclusive.  A sample unit that stops reporting (attrition) could 
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have had gaps in reporting for time periods prior to attrition (reentry) and may not 

have reported initially (late entry). 

Little and Su (1989) identified two patterns of panel survey nonresponse – 

monotone (the only type of nonresponse is attrition) and haphazard (nonresponse is 

either late entry or reentry or both).  For a monotone pattern of nonresponse, if a 

sample unit is a nonrespondent for time period, t , then the sample unit is a 

nonrespondent for any time period *t t> .  Thus, under a monotone pattern of 

nonresponse the set of responding sample units for time period 1t +  is a subset of the 

set of responding sample units for time period t .  Although a fully monotone pattern 

of nonresponse is unlikely, the actual pattern may be approximately monotone (e.g., 

dropouts in clinical trials).   

These two taxonomies could be refined to reflect more completely the nature of 

reporting patterns.  The Little and David taxonomy ignores mixtures of patterns, 

while the haphazard response category of Little and Su’s taxonomy does not provide 

useful distinctions among haphazard patterns, encompassing a wide variety of 

nonresponse patterns (e.g., the late entry and reentry panel nonresponse types 

described by Little and David, as well as any combination of Little and David’s three 

nonresponse types).  Clarifying the distinctions among patterns of nonresponse could 

prove useful in developing a nonresponse compensation method, as distributional 

properties may differ among patterns.  In addition, complete nonresponse (sample 

unit never reports) should be added to the list of nonresponse types and complete 

response (sample unit always reports) should be added so all sample units are 

encompassed by the classification.  As a result, it may be more appropriate to talk in 
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terms of panel survey reporting patterns rather than nonresponse patterns.  An 

expanded and refined taxonomy of reporting patterns for panel surveys is proposed in 

Chapter IV.  

D. Nonresponse Models 

Statistical methods to compensate for unit nonresponse require models, whether 

explicitly stated or implicitly assumed, specifying the relationship between 

respondents and nonrespondents in terms of available reported and auxiliary 

information.  Although methods for compensating for unit nonresponse have been a 

part of survey methodology for over 50 years (see, e.g., Cochran, 1953; Hansen, et 

al., 1953), the last quarter century has seen the development of more rigorous 

theoretical foundations upon which to build survey-specific models for compensating 

for unit nonresponse.  These foundations have provided an approach for explicitly 

stating underlying assumptions that often were implicitly assumed historically, and 

for selecting an appropriate method to compensate for nonresponse. 

1. Ignorability 

An important concept in determining the appropriateness of a model is 

ignorability, formulated by Rubin (1976).  Ignorability may be viewed as defining the 

conditions under which the missing data mechanism does not depend upon missing 

values resulting from nonrespondents, and therefore inferences about the population 

can appropriately be made using only observed values i.e., the nonresponse 

mechanism and the missing data for nonrespondents can be “ignored” when making 
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inferences (although ancillary information about the nonrespondents may be 

required). 

The concept of ignorability can be stated in terms of conditional probability 

distributions (Little and Rubin, 2002).  If Y  represents the data for the variable of 

interest, which are subject to nonresponse, X represents ancillary data, which are fully 

observed, and M  represents missingness of the data, then the joint distribution of 

( ),X Y  and M  can be written as 

( ) ( ) ( ), , | , , | | , ,f X Y M f X Y f M X Yθ φ θ φ=  

The missing data mechanism is characterized by the conditional distribution of M  

given ( ),X Y , ( | , , )f M X Y φ , where φ  denotes unknown parameters of the 

distribution.   

Note that Y  can be decomposed into observed, obsY , and missing, misY , 

components, i.e., ( ),obs misY Y Y= . 

If missingness does not depend on the values of the variable of interest regardless 

of status, i.e., if  

( ) ( )| , , |f M X Y f Mφ φ=  for all Y  and φ  

then the data are said to be missing completely at random (MCAR). 

If missingness depends only on the components of Y  that are observed, i.e., if  

( ) ( )| , , | , ,obsf M X Y f M X Yφ φ=  for all misY  and φ  

then the data are said to be missing at random (MAR). 

If missingness depends on components of Y  that are missing, i.e., if  

( ) ( )| , , | , , ,obs misf M X Y f M X Y Yφ φ=  or 
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( ) ( )| , , | , ,misf M X Y f M X Yφ φ=  

then the data are said to be not missing at random (NMAR). 

In addition, the missing data mechanism is ignorable for data meeting either the 

MCAR or MAR condition, and for which the parameters of the joint distribution of 

( ),X Y  and M , θ  and φ , are distinct, in the sense that the joint parameter space of 

( ),θ φ  is the product of the parameter space of θ  and the parameter space of φ . 

If the missing data mechanism is ignorable, the distribution of the missing values 

conditional on the observed values and the response mechanism is equivalent to the 

distribution of the missing values conditioned solely on the observed data and, 

therefore, unbiased estimates for nonrespondents may be derived based upon 

observed values along with ancillary information known for the sample. In practice, 

establishing a condition of MAR or MCAR will require the population may be 

segmented into groups such that the MAR condition is met (or approximately met) 

within each group. 

2. Selection Models 

Selection models fit closely with Rubin’s concept of ignorability.  The joint 

distribution of Y  and  M  given unknown distribution parameters θ  and ψ  can be 

factored as 

( ) ( ) ( ), | , | | , ,f Y M f Y f M Yθ ψ θ θ ψ=  

Developing a nonresponse adjustment approach can then be viewed as defining 

appropriate conditions under which the data can be viewed as MAR, thereby allowing 

inference from the observed data.  Little (1986) discusses two common approaches to 
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defining conditions for estimation of means—response propensity and predicted 

means.  In both approaches, the objective is to define strata within which the data can 

be viewed as MAR.  This is accomplished by stratifying the sample on some auxiliary 

variable, X , known for the population, for which the variable of interest, Y , is 

(believed to be) conditionally independent of the response status,  ( 0,  1)r = . 

The response propensity approach, suggested by David, et al. (1983), utilizes the 

propensity score theory of Rosenbaum and Rubin (1983).  The response propensity 

given an auxiliary variable, X , is given by ( ) ( )1|p X P r X= = .  Under response 

propensity theory, if the auxiliary variable can be shown to be conditionally 

independent of the response indicator, r , given ( )Xp , then the variable of interest is 

also conditionally independent of the response indicator given ( )Xp .  The result is 

the definition of conditions under which MAR holds and inference for the full 

population may be made from the observed data. 

In practice, estimates of ( )Xp  are generated from the logistic regression of r  on 

X , and nonresponse adjustment strata are formed based upon grouped values of the 

estimated )(Xp , under the assumption that conditional independence holds within 

grouped values,.  An example of an application of the response propensity approach 

for defining nonresponse adjustment cells is provided in Rizzo, et al. (1996). 

Under the predicted means approach, the objective is to stratify the sample such 

that the distribution of Y  is the same for respondents and nonrespondents within 

stratum.  As the values of Y  are not known for the entire sample, an auxiliary 

variable, X , correlated with Y  and known for the sample, is used.  In practice, 

estimates of Y  are generated from the regression of Y  on X , and nonresponse 
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adjustment strata are then formed based upon grouped values of the estimated Y , 

under the assumption respondents and nonrespondents share the same distribution 

within grouped values. 

As discussed in Little (1986), response propensity stratification reduces large-

sample bias (that portion of the bias which dominates the overall bias as the sample 

size increases), while predicted means stratification reduces both bias and variance.  

One drawback to predicted means stratification is that it requires separate models and 

nonresponse adjustments for each variable of interest to achieve the gains. 

Both response propensity and predicted means approaches to defining nonresponse 

adjustment cells rely on the correlation between X  and Y  for inferring ignorability 

and upon the assumption that small deviations in distributions among units classified 

in the same cell do not adversely affect the assumption of ignorability.  For surveys 

with large numbers of variables of interest, establishing nonresponse adjustment cells 

on the basis of a single (albeit possibly multivariate) X  can strain the assumption that 

ignorability holds for each variable of interest.  Surveys in which either the response 

propensity or the predicted means are continuous in nature are also subject to lack of 

robustness of the ignorability assumption. 

3. Pattern-Mixture Models 

Little (1993) proposed the use of pattern-mixture models for handling incomplete 

multivariate data, such as that arising from a panel survey.  This approach differs 

from the selection model approach in the decomposition of the joint distribution of 

the observation matrix, Y , and missing-data indicator matrix, M .  Pattern-mixture 
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models invert the assumption concerning conditionality between Y  and M , 

specifying that the distribution of Y  is conditioned on the missing data pattern, M : 

( ) ( ) ( )πϕπϕ ,||,|, MYfMfMYf =  

Separate models are then required for Y  conditioned upon each missing data 

pattern.  When the data are MCAR, the pattern-mixture model is equivalent to the 

selection model. 

Pattern-mixture models lead to marginal distributions for Y  that are mixtures of 

distributions (e.g., mixture of normal distributions, with different parameters for each 

missing data pattern, rather than one normal distribution with a consistent set of 

parameters across missing data patterns).  These models are typically underidentified 

due to the missing data, requiring restrictions be specified to allow identification of 

all model parameters.  In this sense, the pattern-mixture model approach can be 

viewed as a means of recognizing and addressing nonignorability of the response 

mechanism.  Pattern-mixture models provide an approach for explicitly stating the 

assumptions about data relationships without the need for the fully restrictive 

assumptions of data assumed MAR. 

Using Little’s (1986) illustration, assume a survey is taken at two time periods, 

 ( 1,  2)t = .  There are four potential response patterns, 1 2( , r ) (1,1), (1,0), (0,1), (0,0)r = .  

Rather than assume the joint distribution of 1Y  and 2Y  is the same for all missing data 

patterns as with the complete data pattern, the pattern-mixture model approach allows 

specification of separate models for each missing data pattern.  As can be seen, the 

conditional distributions ( )2 1| , (0,1)f Y Y , and ( )1 2| , (1,0)f Y Y , and the joint 

distribution ( )2 1, | (0,0)f Y Y  cannot be estimated given the data. 
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Use of pattern-mixture models requires specification of models for each missing 

data pattern, as well as specification of models specifying the distribution of 

unidentified parameters (called “identifying restrictions”).  Complete-case missing-

variable (CCMV) restrictions equate all missing variables to the complete case 

pattern. 

Returning to the illustration, CCMV restrictions would specify 

( ) ( )2 1 2 1| , (0,1) | , (1,1)f Y Y f Y Y=  

( ) ( )1 2 1 2| , (1,0) | , (1,1)f Y Y f Y Y=  

( ) ( )2 1 2 1, | (0,0) , | (1,1)f Y Y f Y Y=  

This is analogous to the approach taken with selection models and, if all 

parameters (identifiable or not) for the models corresponding to missing data patterns 

are assumed equivalent to those for the complete case, will simplify to the MAR 

assumptions.  The difference between the pattern-mixture model and the selection 

model under the CCMV restrictions is that parameters for missing data patterns can 

differ from those for complete cases in situations where the parameters are estimable.  

For panel surveys, this means prior information about the sample unit could be used 

to estimate the parameters of the assumed distribution, rather than having to rely 

solely on respondents from the current reference period.  Other restrictions can be 

defined to fit expected relationships between missing data and estimable parameters. 

For example, in panel surveys missing data patterns reflecting attrition may be 

more appropriately equated with other missing-data patterns rather than to complete 

data patterns.  Returning to the illustration once more, an alternative set of identifying 

restrictions for the total nonresponse pattern could specify 
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( )( ) ( )( )1 1| 0,0 | 1,0f Y f Y=  

( )( ) ( )( )1,0|0,0| 22 YfYf =  

The pattern-mixture model provides flexibility to make weaker assumptions about 

data relationships than those resulting from ignorability while maintaining the ability 

to estimate parameters needed for inference.  Pattern-mixture models are not a 

panacea, however, as models must be specified not only for the conditional 

distribution of Y  given the missing data pattern, but also for the relationships 

between parameters from different models.  Specified models cannot be fully 

validated due to the missing data.  Eltinge (2002) discusses considerations in 

evaluating methods for compensating for nonresponse. 

E. Nonresponse Adjustment Approaches 

As stated previously, statistical methods are commonly applied to compensate for 

nonresponse.  Methods fall into two categories: (1) weight adjustment, in which 

sampling weights, based upon selection probability, for respondents are adjusted so as 

to account for the nonrespondents; or (2) imputation, in which values are assigned for 

the missing units, with appropriate sampling weights applied to all sample units, 

responding and imputed.  Although weighting adjustment is the common method for 

compensating for unit nonresponse in cross-sectional surveys, imputation has 

desirable features for application with panel surveys.  A number of discussions of 

common weighting and imputation methods are provided in the literature (see, e.g., 

Oh and Scheuren, 1983; Kalton and Kasprzyk, 1982; and, in the establishment survey 

setting, Hidiroglou, et al., 1995; Kovar and Whitridge, 1995). 
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1. Weighting Adjustments 

Weight adjustments are discussed in detail in Oh and Scheuren (1983). The 

authors define two basic estimation approaches, poststratification and weighting class 

adjustment, which assume the population has been classified into subpopulations 

through either a response propensity or predicted means method.  The choice of 

approach depends upon whether the population size is known for each subpopulation.  

Application of the two approaches is illustrated for the estimation of sample means. 

For the poststratification approach, the estimated sample mean based upon the 

observed sample within each subpopulation, ˆ
hY , is adjusted by the ratio of the post-

stratum population size to the total population size 

ˆ ˆh
PS h

h

NY Y
N

=∑  

while for the weighting class estimator, the adjustment is by the ratio of the weighting 

class sample size to the total sample size (which represents an estimate of the ratio of 

the weighting class population size to the total population size). 

ˆ ˆh
WC h

h

nY Y
n

=∑  

Weight adjustments, although yielding appropriate estimates for means and totals 

of the population as well as for domains corresponding to weighting adjustment cells, 

are less efficient for estimates of population subgroups that do not correspond to 

weighting adjustment cells.  Although nonresponse weighting adjustment can reduce 

bias in survey estimates, there is the potential for increased variance of the estimates 

through the creation of extreme weights or through increasing the variability of the 

weights beyond that intended by the sample design. 
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One reason extreme weights may result is due to the creation of a large number of 

adjustment cells due to cross-classification of a number of auxiliary variables.  A 

method for controlling the generation of extreme weights and the resulting variance 

increase is raking ratio adjustment, or iterative proportional fitting (Deming and 

Stephan, 1940). 

2. Imputation 

An alternative approach to controlling both variability and bias resulting from 

nonresponse is imputation.  Imputation involves the creation of appropriate values to 

represent those missing due to nonresponse.  Imputation may also be used to create 

all values in the case of unit nonresponse.  A key objective of imputation is to provide 

approximately unbiased estimates for the population of interest and domains of 

interest within the population.  A variety of methods have been developed to provide 

imputed values for survey use.  A model (either explicitly stated or implicitly 

assumed) relates the value for the unobserved unit to known information.   

Kalton and Kasprzyk (1982) describe three desirable features of imputation: 1) 

imputation aims to reduce bias due to nonresponse; 2) imputation provides a complete 

data set for weighting and analysis; 3) results obtained from different analyses of a 

completed data set will be consistent.  There are negative aspects to imputation as 

well.  Imputation can result in increased bias.  In addition, from a data use aspect, 

there is a risk analysts may view the completed data set as having been generated 

without nonresponse, and thereby understate the error when conducting analyses. 

Kovar and Whitridge (1995) review approaches to imputation taken within 

business surveys.  Imputation methods can be classified as deterministic or stochastic.  
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Deterministic methods yield imputed values that are uniquely determined given the 

sample of respondents.  Stochastic methods, by contrast, yield imputed values that are 

subject to some degree of randomness.  Often, the only difference between a 

deterministic and a stochastic method is the introduction of a random residual into the 

imputed value. 

Following are categories of deterministic imputation methods employed within 

business surveys, as described by Kovar and Whitridge: 

a. Mean imputation: Replaces missing values with the mean of the reported 

values within an imputation class.  This method destroys distributions and 

multivariate relationships, and can perform poorly when nonresponse is not 

random.  This method is equivalent to the weight adjustment approach, and 

assumes the following model. 

cicciY εµ +=  

b. Sequential hot-deck: Replaces data for a nonreporting unit with values 

from the last reporting unit preceding it in the data file.  This method uses 

actual reported data for imputation, reasonably preserving distributions; 

however, care must be taken to minimize the frequency with which one 

respondent is imputed, to avoid effectively creating extreme weights.  A critical 

issue is the choice of variables for formation of imputation classes and for 

sorting records within class. 

c. Ratio and regression: Replaces missing values with corresponding ratio or 

regression predicted values, based upon some auxiliary variable(s).  These 

methods are useful for imputing values for continuous variables, and perform 
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well in cases of both random nonresponse and nonrandom but ignorable 

nonresponse.  A critical step is obviously selection of the model and auxiliary 

variables.  These approaches assume the following model. 

iiY εβ += 'X  

d. Nearest-neighbor: Replaces data for a nonreporting unit with values from 

a reporting unit of minimal distance (based upon some multivariate measure of 

the reported data) from the nonresponse unit.  Like sequential hot-deck 

imputation, this method preserves multivariate relationships, but care must be 

taken to minimize the frequency with which one respondent is imputed. 

Stochastic imputation can be represented by the general model 

0mi r rj mij mi
j

y b b x e= + +∑  

where mijx  are the values of the auxiliary variables (indexed by j ) for the thi  

observation, 0rb  and rjb  are the coefficients of a regression between y  and x  based 

on the responding units, and the mie  are residuals chosen in a prespecified manner.  

The following categories of stochastic imputation method are commonly employed: 

i. Random hot deck: Replaces data for a nonreporting unit with values from 

a randomly selected reporting unit from the data file.  Selection may be either 

with or without replacement.  This method better preserves distributions and 

limits multiple use of an individual donor record (especially with slection 

without replacement) more effectively than the sequential hot deck imputation 

method (Kalton and Kasprzyk, 1982). 
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ii. Regression with random residuals: Replaces missing values with 

corresponding regression predicted values, based upon some auxiliary 

variable(s), plus a residual. 

As can be seen, the deterministic ratio and regression method fits the stochastic 

general model, with residuals set to zero.  Correspondingly, the mean, sequential hot 

deck, and nearest neighbor deterministic methods could be applied as a stochastic 

method by adding random residuals. 

If the data are MAR, stochastic imputation methods yield approximately unbiased 

estimates of distributions and element variances, while deterministic imputation 

methods tend to distort the shape of the distribution (Kalton and Kasprzyk, 1982).  

Mean and regression methods provide explicit models for the imputation; under the 

hot deck and nearest neighbor methods the imputation model is implicit. 

Utilizing auxiliary information about the population, either through formation of 

imputation classes from which to estimate mean imputation values or directly as 

explanatory variables in a regression model, does provide the potential to reduce bias 

in survey estimates. Imputation also provides complete sample data sets, allowing 

more comprehensive population inferences than available with weight adjustments.  

Given the characteristics of establishment populations, with auxiliary data correlated 

with survey variables of interest commonly available for the universe, regression 

imputation models may be more desirable than mean imputation models for 

establishment surveys.  When imputing for unit nonresponse under either a regression 

or mean imputation approach, a downside is the potential for attenuation as well as 

illogical or impossible combinations of variable values. 
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F. Mathematical Framework for Nonresponse in Panel Surveys 

Consider a population of fixed size N .  For each unit, ),...,1( Ni = , in the 

population, there is a variable of interest, tiY , for each reference period  ( 1,...)t = .  

The set of population values across reference periods can be represented by the 

column vector 

[ ]
1[ 1]

[ 1]

[ 1]

N

Nt ti

t N

Y
×

×

×

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

Y
Y

Y
#  

with subvectors corresponding to the reference periods, and rows within each 

subvector corresponding to the units in the population. 

It is assumed auxiliary information, possibly multivariate, about the population 

units is available, such that for each population unit there is a set of  ( 1)Q ≥  auxiliary 

variables (which may include values of the variable of interest, *tY , for reference 

periods prior to t ), such that the set of auxiliary variables can be represented by the 

matrix 

[ ]N Q iqX× ⎡ ⎤= ⎣ ⎦X  

In order to obtain estimates for the population statistics of interest, a panel survey 

is conducted, in which data are collected for each reference period from a sample, s , 

of fixed size ( ) n N≤  selected from the population under some probability sample 

design, ( )p s , such that the selection probability for unit i  is iπ .  The set of selection 

probabilities for the population can be represented by the vector [ ][ 1]N iπ× =π . 
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The same set of sample units is surveyed across all months.  Sample selection 

indicator 1=iδ  indicates unit i  was selected, 0=iδ  indicates unit i  was not 

selected.  The population units may be ordered such that the set of sample selection 

indicators can be represented by the vector 

⎥
⎦

⎤
⎢
⎣

⎡
=

−
×

)(
]1[

nN

n
N 0

1
I  

Similarly, the set of population values can be partitioned into values for the sample 

units and values for the nonsampled units 

1[ 1]

1[( ) 1]
[ ]
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where stY  is a subset of the full population vector tY  for reference period t  

corresponding to the sample units. 

As a result of the survey environment, unit nonresponse occurs, yielding a 

reporting sample size for reference period t  of )( nnt ≤ .  Response indicators, tir , 

reflect the reporting status for sample unit i  for reference period t .  Response 

indicator 1tir =  signifies unit i  reported reference period t  data, while a response 

indicator 0tir =  signifies unit i  did not report reference period t  data.  The set of 

response indicators for reference period t  can be represented by the vector 

[ ][ 1]st n tir× =R .  The set of response indicators across all reference periods ),...,1( Tt =  

can be represented by the matrix 
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[ ] 1[ 1] [ 1]s n t s n st n• × × ×⎡ ⎤= ⎣ ⎦R R R"  

The set of reported sample values can be represented by the matrix 

[ ] [ ] [ ][ ] 1 1sR n t ti ti i s ti str Y Diag r Diag r× ⎡ ⎤= = ⎣ ⎦Y Y Y"  

where [ ]tiDiag r  is the diagonal [ ]n n×  matrix with the response indicator tir  as 

the thi  diagonal element. 

Compensation for nonresponse in a panel survey then involves definition of 

working models specifying assumed distributions for the variable of interest in terms 

of the other available information (i.e., auxiliary variables, sample selection 

indicators, selection probabilities, and reporting status for the sample units across 

reference periods), then making use of available data [ ]: : : :sR s•Y X I π R  to derive 

estimates for the population, Y  (i.e., deriving estimates for nonreporting units in the 

sample and for nonsample units in the population). 

G. Nonresponse Adjustment for Panel Survey 

The longitudinal nature of panel surveys brings the added dimension of time into 

consideration for nonresponse adjustment.  Whereas cross-sectional surveys have 

only auxiliary information about nonreporting units available for use in nonresponse 

adjustment, panel surveys have available for the nonreporters values for the variable 

of interest from other reference periods (although often limited) which can be treated 

as additional auxiliary information for use in specifying the working models for the 

assumed distribution of the variable of interest for the current reference period.   



 30 
 

Unit nonresponse adjustment for panel surveys generally follows one of three 

approaches – weight adjustment of the reported sample, imputation of the records for 

unit nonrespondents, or link relative estimation. 

1. Weight Adjustments 

Little and David (1983) proposed a method for adjusting for attrition in a panel 

survey, utilizing auxiliary information from the frame along with response 

information from periods prior to attrition.  Sample weights are adjusted based on the 

regression of the response indicators for a wave and all available auxiliary 

information.  This approach, however, only applies for strict attrition. 

Kalton (1986) proposed a panel survey weight adjustment approach wherein 

nonrespondents and respondents for a time period are matched based on their 

reporting pattern for prior time periods.  For example, letting 1 signify a response and 

0  signify nonresponse, the approach would match the following sets of sample units 

[ ]
[ ]1101

0101
 

and weight up the time period 4  respondents to represent the time period 4  

nonrespondents.  This approach is rooted in the response propensity method, wherein 

sample units with the same prior reporting patterns are assumed to have similar 

distributions for the variables of interest.  This method can be used to match reporters 

and nonreporters within adjustment cells defined on other auxiliary information.  The 

underlying assumption is that nonresponse is not related to change in the variable of 

interest. 
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This approach becomes complex for surveys with large numbers of survey periods.  

Some patterns may have small numbers of respondents, so either large weights (and 

their corresponding impact on variance) must be accepted or reporting patterns must 

be collapsed.  Special provisions must be made to handle more complex analyses, 

such as period-to-period change, as additional reporting patterns are no longer usable. 

Kalton and Miller (1986) reported on the comparison of a weighting adjustment of 

respondents across all periods with a simple carry-over imputation (i.e., historical 

imputation) for a three-period panel survey simulated from the 1984 Panel of the 

Survey of Income and Program Participation (SIPP).  Results showed carry-over 

imputation fared poorly, as it failed to represent changes over time.  However, the 

applicability of this study is limited due to the small number of periods, the use of a 

carry-over imputation, and the restriction of the usable sample for weighting to units 

responding in all three periods. 

Lepkowski (1989) provides an assessment of relative strengths of three weighting 

(total respondents, total respondents and strict attrition, all patterns), two imputation 

(carry-over, cross-period hot deck), and two combined (impute for patterns with 

limited numbers of missing periods and weight for all others, impute for selected non-

attrition patterns to achieve attrition pattern and weight for all others using total 

respondent and strict attrition patterns) strategies in terms of five criteria 

a. Practicality – ease of implementation and ease of use of subsequent data 

b. Flexibility – ability of the procedure to handle multiple data types in a 

data record 

c. Quality – ability of the procedure to predict the missing value correctly 
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d. Precision – accuracy of the resultant estimates 

e. Preservation of relationships – maintains structure across variables 

No strategy was deemed clearly superior.  Weighting strategies were deemed 

preferable when the amount of period nonresponse is limited, and imputation 

strategies were deemed to have advantages when period nonresponse is substantial.  

Combined procedures were deemed to be worthy of consideration when the number 

of periods is large and weighting strategies falter.  Several key points from the 

assessment which should be considered in looking at new approaches are: 1) 

incorporating as much prior information as possible into a weighting strategy 

provides the best opportunity to preserve relationships; 2) restricting a weighting 

strategy to respondents for all waves has a major negative impact on the precision of 

estimates; and 3) the validity of the working model is critical to the quality of the 

strategy. 

Rizzo, et al. (1996), compare three approaches to weight adjustments for panel 

surveys: logistic regression; CHAID (Chi-square automatic interaction detector); and 

generalized raking.  The logistic regression strategy sought to predict response rates 

within estimation cells, with three approaches used: full logistic regression prediction; 

prediction for small cells only with observed response rates used in large cells: and 

use of observed response rates in cells formed by collapsing smaller cells based on 

predicted response rates.  The CHAID strategy created adjustment cells through 

application of two CHAID models – including seven most important predictor 

variables from the logistic regression model, and including all variables considered 

for the logistic regression model.  The generalized raking strategy applied raking 
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using marginal distributions for the predictor variables from the logistic regression 

model. 

Comparisons were made using data from the 1987 panel for the SIPP.  No 

substantive differences were found among the various methods.  However, the 

authors found less correlation among alternative weights and the original SIPP 

weights, suggesting the choice of auxiliary variables is important.  The authors also 

suggest using as many auxiliary variables correlated to response propensity as 

possible.  This study looked at cross-sectional estimates and thus did not address the 

issue of change over time. 

2. Imputation 

Probably the most simplistic approach to imputation for panel surveys is historical 

imputation, as described by Kovar and Whitridge (1995): 

Historical imputation uses values reported by the same unit on previous survey 

occasions.  This method, while easily applied to unit nonresponse in panel surveys, 

will tend to attenuate size of trends and incidence of change, although variants adjust 

previous values by a measure of the trend.  This method assumes the following 

model. 

( 1)ti t i tiY Y ε−= +  

This model assumes there is no change in the value for a unit across reference 

periods, and thus is not a realistic working model given a key objective of a 

longitudinal survey is to measure change across time (as discussed in the study by 

Kalton and Miller, 1986).  One area where such a model could be applicable is for 
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surveys in which the variables of interest are categorical (e.g., labor force status) and 

strongly correlated over time for an individual unit. 

Cross-wave hot deck imputation (see, e.g., Kalton, 1986), extends the stochastic 

hot-deck imputation method used for cross-sectional surveys.  In this approach, 

nonrespondents for the current period are classified with respondents on the basis of 

reported information for a prior period when both responded.  A donor respondent 

unit is randomly selected and that unit’s current period information is imputed for the 

nonrespondent.  However, given units are categorized in cells, information may still 

be lost. 

Regression imputation for panel nonresponse (see e.g., Kalton, 1986) is also an 

extension from the cross-sectional environment, in this case of the cross-sectional 

regression imputation approach.  Auxiliary variables include values from previous 

time periods, with the parameters estimated from the constant reporters. 

Pfeffermann and Nathan (2002) proposed an extension of the proportional 

regression model, taking a time series approach. The time series model proposed for 

use in nonresponse imputation was of the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )' ' 'ci t ci t t c t t c t c t ci tY e= + + +X b W v W u  

where ( )ci tX  is a p-dimensional vector of unit-level explanatory variables 

( )c tW  is a q-dimensional vector of class-level explanatory variables 

( )tb  and ( )tv  are fixed vector coefficients 

( )c tu  is a q-dimensional vector of class-level random effects, and 

( )ci te  is a unit-level random error, 
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with the unit-level and class-level random errors following independent first-order 

autoregressive models. 

Based upon comparisons of bias and MSE for a simulated population the time 

series method was superior to both mean and simple regression imputation, and 

equivalent to augmented regression imputation. 

3. Link Relative Estimation 

An alternative to weighting and imputation sometimes employed for panel surveys 

of establishments is link relative estimation (Madow and Madow, 1978).  Estimates 

of the relative change in the population total from one time period to the next are 

derived from the sample, and this estimated relative change is applied to the prior 

time period’s estimated total.  Although sample weights may be used in estimating 

the relative change, there is no adjustment of sampling weights or imputation for 

nonresponse. 

Link relative estimation is a derivative of ratio estimation, the difference being a 

series of ratios are multiplied (or “linked”) together to obtain the final ratio to be 

applied to the population value.  In common practice, the ratios or links represent the 

relative period-to-period change for time periods beginning with that for which the 

population value is available through the current time period of interest. 

For example, Madow and Madow (1978), define the link relative estimator for 

time t  as 

0 1 0 *
* 1

ˆ
t

t t t
t

Y Y LR LR Y LR
=

= × × × = ∏…  

where 0Y  represents the population value at time 0  
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*tLR  represents the (known) estimated relative change (or link relative) from 

time period * 1t −  to time period *t  

Each link relative is derived on the basis of the reporting sample in time periods 

* 1t −  and *t . Assuming formation of estimation cells, c , the estimator for the 

population total becomes. 

( )

( )
( )

( )
( )

( )
( )

, 1 *, * 1

, 1 *, * 1

*

0 * 01
* 1 * 11 * 1

ˆ ˆt t t t

t t t t

tci t cit ti s i s
t c t c ct c

c c ct tt ci t ci
i s i s

Y Y
Y Y Y LR Y

Y Y
− −

− −

∈ ∈

−
= =− −

∈ ∈

⎡ ⎤⎡ ⎤ ⎛ ⎞
⎢ ⎥⎜ ⎟⎢ ⎥ ⎡ ⎤⎛ ⎞

= = =⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

∑ ∑
∑ ∑ ∑∏ ∏∑ ∑

 

where ( ), 1t ts −  represents the sample reporters common to reference periods t  and 

1−t  

The underlying model for the link relative estimator can be approximated by a 

proportional regression model with no intercept (Madow and Madow, 1978) 

( )1ti tit iY Yβ ε−= +  

( )( )2
1~ 0,ti t iYε σ −  

This proportional regression model has appeal for use in establishment surveys (it 

is used for the Current Employment Statistics survey), where inference is often made 

about the change or rate of change for the population.  In that sense, this model can be 

thought of as a longitudinal analogue to the mean imputation model.  

Although the link relative estimator uses prior information, it does not fully 

leverage the historical information about the relation between the nonrespondent and 

the respondents. The link relative also discards sample information from current time 

period in situation when reporters did not report data for the prior time period. 
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West, et al. (1989) examined the performance of four alternative proportional 

regression models in predicting actual values for employment data. 

Model 1: ( )1ti tit iY Yα β ε−= + +  

Model 2: ( )1ti tit iY Yβ ε−= +  

Model 3: ( )( )1lnti tit iY Yα β ε−= + +  

Model 4: ( )( )1lnti tit iY Yβ ε−= +  

Errors were first assumed to have a simple variance structure, ( )2~ 0,tiε σ , then 

assumed to have a variance proportional to either the prior time period’s level 

( ( )( )2
1~ 0,ti t iYε σ − , models 1-2) or the log of the prior time period’s level 

( ( )( )( )2
1~ 0, lnti t iYε σ − , models 3-4).  The authors found no one model superior to the 

others, but found Model 2 with error variance proportional to the prior time period’s 

value (the same model described in Madow and Madow, 1978) robust, simple, and 

intuitively appealing.  This study did not, however, examine more extensive use of 

prior information. 

Previously, West (1983) had considered link relative type and regression type 

estimators utilizing information from the two prior time periods along with the basic 

one period link relative estimator.  The one period link relative estimator again 

performed well when looking at estimates of both level and change, while the 

regression estimators tended to do poorly the longer the time period between the 

availability of the administrative data on population totals and the current time period. 
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H. Late Reporting 

For many ongoing economic surveys, estimates are to be published soon after the 

reference period according to some prescribed processing schedule.  The processing 

schedule requires completion of data collection as of some given cutoff date, resulting 

in unit nonresponse for the sample.  Some of the unit nonresponse is temporal, as 

additional responses are obtained subsequent to the cutoff date.  Given this late 

reporting, revised estimates for reference period t  are often issued as part of 

processing for some fixed number of subsequent reference periods. 

Revisions due to late reporting can be non-negligible.  For the Current 

Employment Statistics survey, revisions between initial estimates and final estimates 

incorporating late reporters, while less than 0.1% at the national level, have varied by 

more than 1% for some industries (Copeland, 2003b).  Monthly Retail Trades Survey 

revisions (which are due to both rotating sample and late reporting) have been less 

than 0.3% nationally, but as high as 5% for selected industries (Cantwell, et al., 

1995).  Revisions to the advanced sample estimates for the Statistics of Income 

Corporate Sample were as high as 11% for selected variables (Czajka and Hinkins, 

1993). 

To extend the mathematical framework for nonresponse to include late reporting, 

assume initial estimates for reference period t  are based upon sample units reporting 

by a predefined initial cutoff date, td .  Revised estimates for reference period t  are 

issued concurrent with the initial estimates for each of the following K  reference 

periods, with the revised estimates for reference period t  incorporating all late 

reporting received to date.  Late reporting for reference period t  is thus accepted until 
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a predefined final cutoff date, t Kd + , which also serves as the initial cutoff date for 

reference period t K+ . 

The cutoff date specific response indicator for sample unit i  for reference period 

t , |it kr , is defined as the response status relative to cutoff date, ( ) 0t kd k K+ ≤ ≤ .  A 

cutoff date specific response indicator | 1it kr =  signifies unit i  reported reference 

period t  data on or before cutoff date t kd + , while a response indicator | 0it kr =  

signifies unit i  had not reported reference period t  data as of cutoff date t kd + . 

Note that:  

1. ( )| | *1 1,  *it k it kr r k k= ⇒ = ≥ ; and  

2. | * | , ( * )it k it Kr r k K= ≥ , given the final cutoff date for reference period t  is t Kd +  

Response indicators for reference period t  for unit i  across cutoff dates may be 

summarized by the reporting status variable 

1 0 0
0 , 1 , 0
0 0 1

PR
ti
LR

ti ti
NR
ti

X
X
X

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

X  

where the superscripts refer to preliminary reporting ( )PR , late reporting ( )LR , and 

nonresponse ( )NR  

( )|0

|0

1 if 1 PR for month 
0 if 0

tiPR
ti

ti

r t
X

r
⎧ =⎪= ⎨

=⎪⎩
 

( )|0 |

|0 |

1 if 0 and 1 LR for month 
0 if 1 or 0

ti ti KLR
ti

ti ti K

r r t
X

r r
⎧ = =⎪= ⎨

= =⎪⎩
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( )|

|

1 if 0 NR for month 
0 if 1

ti KNR
ti

ti K

r t
X

r
⎧ =⎪= ⎨

=⎪⎩
 

The set of reporting status variables for all reference periods as of cutoff date td  

can be represented by the matrix 

( ) ( )|0 [ ] 1| [ 1] |0[ 1]| [ 1] | [ 1]ts n t s K n st ns t K K n s t k k n• × × ×− × − ×
⎡ ⎤= ⎣ ⎦X X X X X" " "  

Values of reporting status variables, tciX , only become known once a sample unit 

reports, or following the final cutoff date for reference period.  However, preliminary 

estimates are based upon information known as of the initial cutoff date.  

The accuracy of preliminary estimates for a reference period will depend upon (in 

addition to the sample design) nonreporting and late reporting size and patterns, the 

nature and magnitude of bias associated with the nonresponse, and the ability of the 

estimation methodology to eliminate, or at least reduce, these errors.  The overall 

accuracy of survey estimates will depend upon the nature and magnitude of 

nonresponse bias.  Failure of the estimation methodology to account adequately for 

nonresponse bias will result in potentially large benchmark revisions to final survey 

estimates.  The accuracy of the preliminary estimates will also depend upon the 

nature and magnitude of any bias associated with late reporters.  Failure of the 

estimation methodology to adequately account for late reporter bias will result in 

potentially large revisions to preliminary estimates. 

Drew and Fuller (1981) explored the issue of estimation using information on late 

reporting relative to callbacks.  The working assumption was that likelihood of 

response, kq , depended upon some characteristic known for all sample units and was 
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constant within characteristic for each contact.  Drew and Fuller (1981) defined an 

estimator for the population mean based on R  callbacks as 

1

ˆ ˆ
K

k k
k

Y f y
=

= ∑  

where ky  is the sample mean for all respondents across all R  callbacks 

( )

( )

1

.

1
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.
1

ˆ1 1
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ˆ1 1
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−
−

=
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⎧ ⎫⎡ ⎤− −⎨ ⎬⎣ ⎦⎩ ⎭
∑

 is the estimated proportion of units with 

characteristic k  

ˆkq  is the solution to the polynomial equation  

( ) ( ) ( )
1

1
.

1
1 1 1 1
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n n rq q Rq q
−
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=

⎡ ⎤− = − − −⎣ ⎦∑  

with k  representing a characteristic and r  representing a callback 

This approach, while incorporating information about late reporting, assumes the 

distribution does not vary across callbacks within a characteristic, thereby requiring 

ignorability of both the late reporting and residual nonresponse mechanism. 

Czajka, et al. (1992) proposed a response propensity approach to the problem of 

estimating corporate tax information from an advance sample of returns.  Sample 

units within each design stratum were assigned to a propensity (of advanced reporting 

of tax information) class on the basis of auxiliary information, and weights were 

calculated within each propensity class and stratum using two methods 

a. “Propensity stratification” 

1
ˆ

jk
jk

jk

N
w

n
=  
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where ˆ
jkN  is the estimated number of population units that would fall into 

propensity class k  of stratum j  

b. “Propensity weighting” 

2 2
2
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( )2

1

ˆ1/ 1jkn
ijkP
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i jk

p
w

n=

−
=∑ is the preliminary weight 

ˆ ijkp  is the predicted propensity for the thi  observation in propensity class 

k  of stratum j  

Results showed estimates from the propensity approach generally represented 

improvements (relative to the final estimates based upon the full – early and late – 

sample) over the existing approach to estimating from advanced reports (weighting 

based on design stratum only: 
ˆ

j
j

j

N
w

n
= ).  Results appeared consistent when looking 

at variables used in the propensity prediction and those not used. 

The propensity approach could prove useful in application for panel surveys as 

well.  The challenge would be to find predictors of response propensity/on time 

reporting propensity related to change over time, which is the key measure of interest. 

Both the Current Employment Statistics survey (Bureau of Labor Statistics, 2004a) 

and Monthly Retail Trade Survey (Hogan, et al., 1997) generate preliminary estimates 

that are later revised to incorporate data from late reporters.  In both situations, 
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ignorability of both the late reporting and residual nonresponse mechanisms are 

assumed within estimation cells, with preliminary estimates based upon weighted link 

relative using early reporters 

( )
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where ( ), 1 |t t ts −  represents the sample reporters common to months t  and 1−t  which 

reported by td , the preliminary cutoff date for month t , and final estimates based 

upon weighted link relative using both early and late reporters 
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where ( ), 1 |( )t t t ks − +  represents the sample reporters common to months t  and 1−t  which 

reported by t kd + , the final cutoff date for month t . 

Hogan, et al. (1997) examined the ability of simple linear models to improve the 

performance of advanced estimates for the Monthly Retail Trade Survey.  Parameters 

were estimated based upon historical relationships between advanced and final 

estimates.  Results were mixed.  Approaches considered were fairly simplistic, 

however, with no attempt to incorporate other information which might have served 

to improve performance such as prior knowledge about late reporters or information 

about rates of change over time. 

Rao, et al. (1989) proposed a time series approach, following the Kalman filter 

approach of Harvey (1981), for generating preliminary estimates based on early 
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reporters.  In the first approach, errors in the preliminary estimates are assumed to 

follow a stationary AR(1) process 

( )
* *

1
ˆ ˆ ˆ ˆP
t t t ttY Y Y Yψ ζ−= − = +  

and that the final estimates follow an AR(1) process 

1
ˆ ˆ
t t tY Yφ ε−= +  

where ψ  represents  

2
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~ 0,
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ε σ

⎛ ⎞⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎣ ⎦⎝ ⎠

  

The second approach incorporates sampling errors about the final estimates 

t̂ t tY Y u= +  

where ( )2~  0,t uu iid N σ , and assumes the population values follow an AR(1) process 

1t t tY Yφ ε−= +  

The third approach extends the second approach to assume the errors may be 

correlated across time 

( )~  , uiid N ∑u 0 . 

These approaches were compared with the standard preliminary estimate approach 

in terms of estimating the final estimated level, t̂Y , the true level, tY , and the true 

period-to-period change, 1t tY Y −− , for profits data from quarterly surveys of industrial 

corporations conducted by Statistics Canada.  Results indicate that, while the standard 

preliminary estimate is essentially the best predictor of the final estimate, t̂Y , the 

second time series approach performs better for estimating both the true level and the 
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true period-to-period change. These approaches looked at the relationship between 

totals, rather than looking at the unit level.  As a result, adjustment for late reporting 

was at an aggregate level, rather than by unit.  Carrying the models down to lower 

levels could incorporate more information about relationships. 

I. Discussion 

Although the issue of compensating for nonresponse has been widely researched 

and addressed in cross-sectional surveys, less attention has been given to this issue for 

panel surveys.  Many approaches can be seen as general extensions of cross-sectional 

methods.  Other methods seek to model based on change from immediately prior 

period, and assume ignorable nonresponse for the existing period.  This assumption 

may not be met in many applications and, as a result, estimates may not be accurately 

reflecting current levels and change from prior period. 

A broad reporting pattern classification that accounts for both reporting status and 

timeliness of reporting may provide a structure for developing a pattern-mixture 

model to estimate growth rates without the assumption of ignorable nonresponse.  

Such a working model would seek to leverage prior information about nonreporters 

where available, thereby expanding from simpler models that only incorporate 

information about reporters. 

Additionally, integration of nonresponse and late reporting models is needed to 

address the more appropriate view of the problem being faced in panel surveys with 

short publication deadlines.  Such approaches may require a combination of modeling 

likelihood of both response and timeliness of reporting along with pattern-mixture 

models for estimating distributional properties. 
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Chapter III: Principal Motivating Example 
The Bureau of Labor Statistics’ (BLS) Current Employment Statistics (CES) 

survey is a monthly survey of establishments in the United States collecting 

information on employment, hours, and earnings.  The primary statistics of interest 

for the CES survey are the total non-farm payroll employment in the U.S., and the 

change in total non-farm payroll employment from the prior month.  CES estimates 

for these statistics are generated using data collected from a monthly panel survey, 

with a sample size over 300,000 establishments.  In order to provide timely 

information, estimates are generated three to four weeks after the survey reference 

period.  Estimates are revised each of the next two months to incorporate late 

reporting, and are subsequently revised on an annual basis to incorporate the most 

recent benchmark population information. 

The reader is referred to Bureau of Labor Statistics (2001, 2004a, 2004b), upon 

which this chapter is based, for broader and more detailed descriptions of the CES 

survey.  Appendix A contains a statistical formulation for a broader class of panel 

surveys, within which the CES survey is contained. 

A. CES Sample Design and Data Collection 

The population for the CES survey consists of over 8 million non-farm business 

establishments (defined as an economic unit which produces goods or services) in the 

United States.  The population frame is derived from the BLS’ ES-202 program, a 

federal/State cooperative between the BLS and State Employment Security Agencies 

(SESA’s).  The ES-202 program collects information on businesses covered by State 

unemployment insurance (UI) laws and Federal agencies covered by the 
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Unemployment Compensation for Federal Employees (UCFE) program.  The main 

exclusions from this population are small agricultural employers and nonprofit 

organizations, and selected classes of workers (self-employed, domestic help, railroad 

workers, and State and local government elected officials). 

The BLS recently completed a major redesign of the CES survey (Werking, 1997; 

Bureau of Labor Statistics, 2003), moving the survey from its historical quota sample 

design to a probability basis.  The probability sample design was phased into 

published estimates over a four year period, with one or more major industry 

divisions transitioned from the quota sample to the probability sample each June, 

beginning in 2000 and completed in 2003, as shown in Table 1. 

Table 1-CES Timing for Transition to Probability Sample 
CES Timing for Transition to Probability Sample 

Major Industry Division National series State and area series 

Wholesale trade June 2000 March 2001 

Mining, Construction, Manufacturing June 2001 March 2002 

Transportation and public utilities; 
Finance, insurance, and real estate; 
Retail trade 

June 2002 March 2003 

Services June 2003 March 2003 

 

The new sample design is a stratified, simple random sample of establishments, 

clustered by UI account.  Strata are defined by state, industry (based upon North 

American Industry Classification System (NAICS) categories), and employment size 

(defined as the maximum employment across the most recent 12 month period).  

Sampling rates for each stratum are determined through optimum allocation. 
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Sample selection is carried out on an annual basis, with the frame defined by the 

1st quarter ES-202.  Controlled selection is used to optimize overlap of sample 

establishments for both trending and operational efficiency.  Sampling occurs late in 

the calendar year with new sample establishments sent to the field for data collection 

on a flow basis, to control workload; however new sample establishments are not 

immediately used in the estimation methodology.  Sample replacement of the prior 

set of sample establishments with the new set of sample establishments in the 

estimation process occurs with the annual benchmarking process (described in section 

B).  Thus there is approximately a two year lag between the time period used for 

frame development and implementation of the resulting sample into the CES 

estimates. 

The BLS cooperates with the SESA’s to collect the variables of interest from 

sample establishments.  Respondents are asked to extract the requested data from 

payroll records.  A variety of modes are used for data collection – touchtone data 

entry (TDE), computer-assisted telephone interviewing (CATI), mail, FAX, 

Electronic Data Interchange (EDI), magnetic tape, computer diskette, and World 

Wide Web (WWW).  Regardless of mode, sample establishments are provided a 

“shuttle” form (BLS-790) reflecting the data to be provided for each month in the 

calendar year.  The BLS-790 varies across industries, based on the specific 

information collected for each industry.  (The BLS-790 for manufacturing is provided 

in Appendix B.1.) 

The reference period for a given month is defined as the pay period that includes 

the 12th day of the month.  The primary variable of interest for the CES survey is total 
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employees, defined as persons on an establishment’s payroll who received pay for 

any part of the pay period that includes the 12th day of the month.  Other variables 

collected are women employees,  and nonsupervisory/production/construction 

(depending upon the industry) employees along with their associated payroll, hours, 

and overtime hours. 

All data must be reported within a two to three week period, the cutoff date 

depending upon the day of the week the 12th falls on and the number of days in the 

month, for inclusion in the initial published estimates for the month, which are 

generally released the first Friday of the following month.  For example, data for July 

2002 (for which the 12th was the second Thursday of the month) had to be reported by 

the cutoff date of July 27 (resulting in a reporting period of 11 calendar days from the 

12th) to be included in the estimates published August 3.  Table 2 contains 

information about CES collection timing for April 2001-March 2002. 

Table 2-CES Data Collection Timing 

Month 12th falls on Reporting 
Close Date

Number of 
Reporting Days

Estimate 
Release Date

April Thu 4/27 11 5/4
May Sat 5/25 9 6/1
June Tue 6/29 12 7/6
July Thu 7/27 11 8/3
August Sun 8/24 14 8/31
September Wed 9/28 12 10/5
October Fri 10/26 10 11/2
November Mon 11/30 14 12/7
December Wed 12/28 10 1/4
January Sat 1/25 10 2/1
February Tue 3/1 13 3/8
March Tue 3/28 13 4/5

Number of Reporting Days do not include the 12th, as well as holidays that occur 
within 7 days of the Reporting Close Date

CES Data Collection Timing
April 2001 - March 2002

 



 50 
 

Not all sample establishments report by the cutoff date for the month.  Additional 

responses are received after the close of the collection period for the month.  Initial 

estimates for a given month (referred to as first closing estimates) are revised the 

subsequent two months, incorporating data from late reporters into the survey 

estimates.  These revisions are referred to as second and third closing estimates. 

Following is a standard classification of reporting status for sample establishments 

for a given month t , reflecting the CES collection methodology in terms of timing of 

reporting for current month reporters and, for current month nonreporters, prior 

reporting patterns. 

1. Reporters 

a. Preliminary Reporters 

i. 1st Closing Reporters – sample establishments reporting data for the month 

prior to td , the cutoff date for processing preliminary estimates for month 

t  

b. Late Reporters 

i. 2nd Closing Reporters – sample establishments reporting data for the 

month after td  but prior to 1td + , the cutoff date for processing preliminary 

estimates for month 1+t  

ii. 3rd Closing Reporters – sample establishments reporting data for the 

month after 1td +  but prior to 2td +  

2. Nonreporters – sample establishments not reporting data for month t  

a. Attritors – month t  nonreporters which have reported for at least one prior 

month, but have not reported data for six or more consecutive months 
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b. Refusals – month t  nonreporters which have not reported for any prior 

month 

c. Episodic Nonreporters – all other month t  nonreporters 

Figure 1 provides an illustration of these reporting patterns, with month t  

classification determined following subsequent months of data collection.  All three 

nonreporter types (refusals, attritors, and episodic nonreporters) impact the overall 

accuracy of the CES estimates, regardless of closing.  Late reporters (second closing 

reporters, third closing reporters) affect the accuracy of preliminary estimates only.  

The impact of late reporters on the preliminary estimates for month t  can be assessed 

by examining the direction and magnitude of revisions between first and third closing 

estimates for month t .  The impact of nonreporters on the final estimates can be 

assessed by examining the direction and magnitude of revisions between third closing 

estimates and benchmark data for the benchmark month (March). 

On an annual basis, estimates are revised to reflect incorporation of ES-202 

population data from March of the prior calendar year.  These revisions are referred 

to as benchmark estimates.  As part of benchmark estimation, data from late reporters 

beyond those included in the third closing estimates are included for selected months.  

In addition, sample replacement occurs during benchmark estimation. 
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Figure 1-CES Reporting Patterns 
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B. CES Estimation Methodology 

CES survey estimates are generated through use of a weighted link relative 

estimator.  This estimator uses a weighted sample trend within an estimation cell to 

move forward the prior month’s estimate for that cell.  The current CES weighted link 
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relative estimator of all employees for a given revision, ( )0,1, 2k = , for month t  is 

defined broadly as 

( ) ( )

( )
( )

( )
( )

( )
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1 1
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where tciy  represents total employment reported by sample establishment i  in 

estimation cell c  for month t  

( )Cc ,...,1 =  refers to estimation cell (defined by industry and, for selected 

industries, region) 

ciw  represents the sampling weight for sample establishment i  in estimation 

cell c  

( ), 1 |t t ks −  represents the set of sample units that reported data for both months t  

and 1t −  as of the cutoff date for revision k  [=0,1,2] of month t  

( )1
( 1)
ˆ k

t cY +
−  represents the prior month, 1t − , weighted link relative estimate for 

estimation cell c  based upon data reported as of the cutoff date for revision 

1k +  of month 1t −  (which corresponds to revision k  of month t ) 

( )
( ) ( )
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∑

∑
 represents the link relative for month t  based upon 

data reported as of the cutoff date for revision k  of month t  

As part of CES data processing, outliers are identified.  Outliers are sample 

establishments reporting data yielding month-to-month changes that are viewed by 

survey analysts as abnormal or that report special reasons for the employment change 
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from the prior month (e.g., strike).  The CES estimator treats outliers as special cases, 

removing them from the sample included in the weighted link relative (and from the 

prior month’s estimated population total) and then adding them in after the link 

relative is applied to the adjusted prior month’s estimate.  This outlier treatment can 

be represented as 

( ) ( )
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where tO  represents the set of outliers identified for month t  

For the remainder of the chapter, outlier treatment is not included in the estimation 

formulae in the interest of space and of clearly conveying the core estimator.  

However, it should be remembered that the outlier treatment is part of the estimator.  

The treatment of outliers, although of interest relative to the overall accuracy of the 

weighted link relative estimator, is not included in the scope of this dissertation 

research. 

More specifically, the weighted link relative estimators for all employees at each 

closing are 

First closing (i.e., preliminary or revision 0) estimate of monthly employment, 

generated based upon data reported as of the first closing cutoff date for month t  
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NOTE: the first closing estimates for month t  use the second closing estimates for 

month 1t −  
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Second closing (i.e., revision 1) estimate of monthly employment, generated based 

upon data reported as of the second closing cutoff date for month t  
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Third closing (i.e., revision 2) estimate of monthly employment, generated based 

upon data reported as of the third closing cutoff date for month t  
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NOTE: both the second and third closing estimates for month t  use the same 

estimate of employment for month 1t − , ( )
( )2

1
ˆ

t cY −  (the third closing estimate for month 

1t − ) 

The corresponding estimators for month-to-month change in all employees for 

each closing are 

First closing (i.e., preliminary or revision 0) estimate of month-to-month change in 

employment, generated based upon data reported as of the first closing cutoff date for 

month t  

( ) ( )
(0) (0) (1)
, 1 1

ˆ ˆ
tt t tY Y− −∆ = −  

NOTE: the first closing estimates of month-to-month change for month t  use the 

second closing estimates for month 1t −  
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Second closing (i.e., revision 1) estimate of month-to-month change in 

employment, generated based upon data reported as of the second closing cutoff date 

for month t  

( ) ( )
(1) (1) (2)
, 1 1

ˆ ˆ
tt t tY Y− −∆ = −  

Third closing (i.e., revision 2) estimate of month-to-month change in employment, 

generated based upon data reported as of the third closing cutoff date for month t  

( ) ( )
(2) (2) (2)
, 1 1

ˆ ˆ
tt t tY Y− −∆ = −  

NOTE: both the second and third closing estimates for month-to-month change in 

employment for month t  use the same estimate of employment for month 1t − , ( )
( )2

1
ˆ

t cY −  

(the third closing estimate for month 1t − ) 

The CES estimator implicitly assumes the trend for both late reporters and 

nonreporters within an estimation cell is the same as for preliminary reporters that 

also reported data for the prior month.  Although both late reporters and nonreporters 

contribute to variance and nonresponse bias present in the CES estimates, it is late 

reporting alone that drives revisions seen between preliminary and final estimates.  

The current CES estimator, however, assumes late reporting is a form of ignorable 

nonresponse and does not differentially adjust late reporters. 

On an annual basis, as part of the generation of first closing estimates for January, 

administrative information on employment from the ES-202 program is incorporated 

into the CES estimates.  This is accomplished by replacing estimated employment for 

the March of the prior year with the actual employment for that March from the ES-

202 program.  The replaced March is referred to as the “benchmark” month and the 

employment counts for the replaced March are referred to as the “benchmark” 
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employment.  Estimates for the 11 months prior to the benchmark month and for all 

months subsequent to the benchmark month are revised based upon the benchmark 

employment for the replaced March. 

Benchmark estimates take several forms.  First, benchmark estimates are generated 

for months subsequent to the new benchmark month (i.e., from April through October 

of the prior year).  These estimates take the same form as previously.  Estimates for 

April through October of the prior year utilize the original link relative derived as part 

of third closing processing for the month (i.e., do not incorporate data from the 

sample replacement nor from fourth closing reporters).  Link relatives for November 

and December of the prior year (3rd and 2nd closing estimates, respectively) are 

derived using the new sample that was fielded beginning the prior year. 
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, for the April of the preceding year (i.e., 

using the benchmark value for March of the preceding year to initialize the link 

relative estimation) 
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, for May-October of the preceding year  
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, for November of the prior year 
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, for December of the prior year 

where ( ) ( ), 1 |2t ts old−  represents the set of outgoing sample units that reported data 

for both months t  and 1t −  as of the cutoff date for the 2nd  revision 

( ) ( ), 1 |t t ks new−  represents the set of incoming sample units that reported data for 

both months t  and 1t −  as of the cutoff date for the thk  revision 

Second, benchmark estimates are generated for months prior to the new 

benchmark month, but subsequent to the previous benchmark month (i.e, from April 

two years prior through February of the prior year).  The estimates for these months 

are the prior benchmark estimate for the month (generated the prior year) adjusted for 

the change in March to March employment levels based on the new benchmark data. 

( ) ( )0

1 0

2( 2)
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12B B
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t t c t c tc
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t t
Y Y Y Y
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∑ , for April two years preceding through 

February of the preceding year 

where 
1Bt  represents the benchmark month from the preceding year 

0Bt  represents the benchmark month from the two years preceding 

Publication schedule for the CES survey is illustrated in Table 3 from two 

perspectives – by publication month and for a given reference month across 

publication months.  Refer to Appendix B.2 for a chart indicating estimate revision 

schedules and data used.) 
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Table 3-CES Publication Schedule 

Calendar 
Month 1st Closing 2nd Closing 3rd Closing First Benchmark 

Revision
Second Benchmark 

Revision

Nov '03

Dec '03

Jan '04

Feb '04

Calendar Month June '03 Estimate 
Published

Jul '03

Aug '03

Sep '03

Feb '04

Feb '05

CES Publication Schedule

Published Estimates

June 2003 Publication Schedule

( )0
'03OctY

( )1
'03OctY

( )2
'03OctY

( )0
'03NovY

( )0
'03DecY

( )0
'04JanY

( )1
'03NovY

( ) ( )( )2 1
'03 '03

BM
Nov NovY Y=

( )2
'03AugY( )1

'03SepY

( )2
'03SepY

( ) ( )( )1 1
'03 '03

BM
Dec DecY Y= ( ) ( )1 1

'03 '03, ,BM BM
Apr OctY Y… ( ) ( )2 2

'02 '03, ,BM BM
Apr FebY Y…

( )1
'03

BM
JunY

( )2
'03

BM
JunY

( )0
'03JunY

( )1
'03JunY

( )2
'03JunY

 

The CES estimator can thus be viewed as being initialized at month 0=t  by using 

the most recently available March data from the BLS’ ES-202.  The preliminary 

estimator (and, correspondingly, revised estimators) can be rewritten as the product of 

link relatives 

( ) ( ) ( ) ( )

2
(0) (0) (1) (2)

0, 1 1 , 2 *, * 1
1 * 1

ˆ
tC

t ct t c t t c t t c
c t

Y LR LR LR Y
−

− − − −
= =

⎡ ⎤⎧ ⎫
= ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦
∑ ∏  

where 0cY  represents the benchmark total employment from the ES-202. 

The first two terms in the equation for (0)
t̂Y  represent the 1st and 2nd closing link 

relatives for months t  and 1t − , respectively.  These terms will change as part of 2nd 

and 3rd closing estimation for tY .  All other terms represent the 3rd closing link 

relatives for their respective months, which will not change. 
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Both monthly level and month-to-month change estimates from the CES survey 

are of interest to data users.  Indirect measures of the accuracy of CES estimates are 

visible through the revision and benchmark process.  Revisions from first to third 

closing revisions for all months except November and December are solely due to the 

effect of late reporting (November third closing and December second closing 

estimates also reflect the incorporation of the new benchmark data), while revisions 

from third closing to the benchmark for March are the result of the combined effects 

of sampling, nonresponse, and measurement error. 

CES survey estimates are also adjusted to account for business births (new 

establishments) and deaths (closed establishments).  Business deaths are excluded 

from the CES weighted link relative estimator; however, the prior month employment 

for such establishments is implicitly carried forward to the current month, thus 

overstating employment.  This overstatement is offset by an understatement of the 

employment due to business births.  As employment associated with business births 

will not equal the carried forward employment associated with business births, the 

residual employment due to the net effect of business births and deaths is estimated 

through use of a model-based approach. 

CES survey estimates are seasonally adjusted to stabilize trends and enable better 

estimation of month-to-month changes in employment.  Seasonal factors are 

calculated twice a year using multiplicative models in X-12 ARIMA, and revisions 

are made annually concurrent with the benchmark revision process. 

Variance estimation for the CES survey is carried out using Fay’s method for 

variance estimation under balanced repeated replication (Judkins, 1990).  A total of 
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80 balanced half-samples were selected.  Using the Fay method, the CES variance 

estimator applies weights of 0.5 and 1.5 for the half-samples within a replicate, rather 

than the normal weights or 0 and 2.  Thus 

1 0.5*i iwt Iα α= +  

where ( )1, 1iIα = −  represents the indicator assigned to distinguish which half-

sample unit i  belong to replicate ( )1, ,80α = …  

The estimate for the thα  replicate can then be represented as 
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The variance estimate is derived as an adjusted mean squared error 
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v Y
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−
=
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Variance estimates represent only sampling variance and do not reflect 

nonsampling errors, such as measurement error and nonresponse bias.  Overall 

performance of the estimates is measured in terms of the size of the benchmark 

revisions (difference between third closing estimate and benchmark data for March). 

C. Analysis Data Files 

Analyses carried out as part of this dissertation research utilized CES sample data 

for the period January 2000 through December 2002, along with ES-202 population 

totals for March 2001 and 2002, for establishments from the four industries—

Construction, Manufacturing, Mining, and Wholesale Trade—which had transitioned 
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to a probability sample design as of March 2001.  Data preparation was carried out 

using SAS v8.2. 

1. Sample Data File 

Sample establishments included in the analysis were those selected for the 2000 

sample replacement which had reported employment data prior to 3rd closing in at 

least one month in the period January 2000 through December 2002.  Given the 

controlled selection utilized for the CES survey, the majority of the 2000 sample had 

been previously selected and thus already in the field at the beginning of 2001, while 

newly selected establishments not previously in sample were sent to the field during 

2001.  (For the analysis datafile, 71.7% of establishments reported data in January 

2000, and 90.8% of establishments had reported data prior to the start of the analysis 

period.)  The 2000 sample was officially utilized for CES estimates effective May 

2002, as part of the March 2001 benchmark revision.  As part of that benchmark 

revision, estimates back to October 2001 were revised to utilize the 2000 sample. 

A total of 60,944 sample establishments met the inclusion criteria.  The datafile of 

included sample establishments was created as follows. 

a. Reporters from the 2000 sample were extracted from the CES microdata files 

for January 2000 through December 2002 to create an initial datafile of CES 

reporters.  The following data items were extracted from the microdata files: 

establishment CES identification number; data month and year; sample year; 

reported employment; closing for which data were reported; and class flag and 

explanation code (used for identifying atypicals and unusables). 
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This datafile was restructured to the unique establishment CES identification 

number level, with other data items reformatted to include a data month indicator.  

Data months for which no record existed for the establishment CES identification 

number on the CES microdata file were flagged as nonreporting. 

A review of the data indicated atypical flags were not always indicated where 

needed, due to data preparation operations prior to transition to the 2000 sample 

for CES estimation.  Following consultation with CES support staff at BLS, a 

custom process for flagging atypicals not previously identified was undertaken as 

part of data preparation.  The custom process identified atypicals as those 

establishments for which month-to-month employment change was both greater 

than 100 and greater than 1.5 times the average of the current and prior months’ 

reported employment.  The number of establishments identified as atypical in any 

month never exceeded 45, and averaged 20 for the analysis period, representing 

0.03% of the 60,944 establishments on the analysis datafile. 

The SAS code used to read the CES microdata file and create an initial datafile 

of 253,972 CES reporters is provided in Appendix C.1. 

b. Establishments in the 2000 CES sample for the industries of interest were 

extracted from the CES cross-walk file, which contains both design and other 

auxiliary information for establishments selected for the CES sample.  The 

following data items were extracted for use in the analysis: establishment 

longitudinal database (LDB), Unemployment Insurance (UI), and RUN (reporting 

unit number) sample reporting number and reporting-with number; and NAICS 

industry code. 
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Sample reporting-with numbers are intended to link sample establishments that 

are reported together on one file.  The establishment reporting data for one or more 

sample establishments is identified by the sample reporting-with number.  The 

CES cross-walk file was segmented into a parent file (those records for which 

sample reporting number equaled sample reporting-with number) and a child file 

(those records for which sample reporting number did not equal sample reporting-

with number). 

The initial datafile of CES reporters was merged with the file of establishments 

from the CES cross-walk file, first by matching CES identification number from 

the CES datafile to sample reporting number from the parent CES cross-walk file, 

then by matching CES identification number from the unmatched CES datafile to 

sample reporting with number from the child CES cross-walk file.  The full set of 

253,918 matched records (99.98% of total records on initial CES datafile) was 

used to create a revised CES datafile. 

The CES cross-walk file was used to append NAICS codes to the CES 

microdata file, and to pick up UI and RUN identification numbers for use in 

merging with other data files.  The revised datafile of CES reporting was restricted 

to records with a NAICS code in Mining (113300 – 113399, 210000 – 219999), 

Construction (230000 – 309999), Manufacturing (310000 – 419999), and 

Wholesale Trade (420000 – 439999).  This yielded a datafile consisting of 60,944 

records. 

The SAS code used to extract data from the CES cross-walk-file and merge 

with the initial datafile of CES reporters is provided in Appendix C.2 – C.4. 
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c. Information on length of pay period was obtained from the CES registry file 

for August 2001.  The CES registry file contains information relative to sample 

recruitment and data collection.  Registry files are maintained at the state level, 

however, and information is not consistently updated or maintained.  As a result, 

only length of pay period was obtained from the CES registry file. August 2001 

was used as this roughly corresponded to when fielding of the 2000 CES sample 

was complete.  A total of 54,410 of the sample records (89.28%) on the CES 

datafile were matched to a record on the CES registry file.  This subset formed the 

basis for parameter estimation under Bayes’ models, while the full dataset was 

used for post-stratification and estimation. 

The SAS code used to extract information from the August 2001 CES registry 

file and append it to the CES datafile is provided in Appendix C.5. 

d. Selected sample design information (sample design size class, selection 

weight) for CES sample establishments is contained on the CES random group file 

for a given year’s sample.  The revised datafile of CES reporting was merged with 

the 2000 CES random group file on the basis of state and UI. number.  The full set 

of matched records was used to update the revised CES datafile, appending design 

size class and selection weight.  A total of 60,926 records (99.98%) on the CES 

data file were matched to the CES random group file. 

The SAS code used to extract data from the CES random group file and merge 

with the revised CES datafile is provided in Appendix C.6. 

Table 4 contains information on record counts for each step in the process of 

creating the CES datafile. 
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Table 4-CES Data File Record Counts 

Records on CES microdata file 253,972
Includes all industries
Report by 3rd closing at least one month in 1/00 - 12/02

Matched to cross-walk file 253,918 99.98%

In one of four industries of interest 60,944 24.00%
Records used in post-stratification, estimation

Matched to CES random group file 60,926 99.97%

Marched to August '01 CES Registry File 54,410 89.28%
Records used in parameter estimation under Bayes' models

Preparation of CES Data File

 

Table 5provides distribution information for selected characteristics for the 

CES microdata file. 

Table 5-CES Datafile Distribution by Selected Characteristics 

Total %
Total Establishments 60,944 100.0%
Industry
Construction 16,739 27.5%
Manufacturing 29,742 48.8%
Mining 2,358 3.9%
Wholesale Trade 12,105 19.9%
Design Size Class
<10 8,687 14.3%
10-19 5,429 8.9%
20-49 7,966 13.1%
50-99 7,232 11.9%
100-249 13,526 22.2%
250-499 6,280 10.3%
500-999 4,110 6.7%
1000+ 7,696 12.6%
Missing 18 0.0%
Length of Pay Period
Weekly 34,702 56.9%
Bi-Weekly 11,184 18.4%
Semi-Monthly 6,100 10.0%
Monthly 2,423 4.0%
Missing 6,535 10.7%

CES Microdata File
Distribution by Selected Characteristics
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Table 6 provides reporting status counts and percentages by month for the CES 

microdata file.  Reporting status counts are provided relative to total sample units 

(PR+LR+NR), reporting sample units (PR+LR), and non-preliminary reporters 

(LR+NR).  

Table 6-CES Datafile Distribution by Reporting Status 

Month Tot % (PR+LR+NR) % (PR+LR) Tot % (PR+LR+NR) % (LR+NR) Tot % (PR+LR+NR)
Apr '01 33,065 60.8% 82.3% 7,125 13.1% 36.7% 12,264 22.5%
May '01 30,421 55.9% 76.6% 9,314 17.1% 41.9% 12,915 23.7%
Jun '01 32,043 58.9% 80.7% 7,685 14.1% 36.9% 13,157 24.2%
Jul '01 32,413 59.6% 80.7% 7,743 14.2% 36.0% 13,768 25.3%
Aug '01 33,817 62.2% 83.1% 6,864 12.6% 32.7% 14,117 25.9%
Sep '01 34,644 63.7% 83.3% 6,930 12.7% 32.3% 14,535 26.7%
Oct '01 33,295 61.2% 82.1% 7,280 13.4% 30.8% 16,346 30.0%
Nov '01 31,237 57.4% 75.8% 9,964 18.3% 37.9% 16,319 30.0%
Dec '01 31,150 57.3% 74.7% 10,542 19.4% 39.3% 16,278 29.9%
Jan '02 30,823 56.6% 76.5% 9,444 17.4% 34.4% 17,985 33.1%
Feb '01 33,946 62.4% 83.3% 6,821 12.5% 27.8% 17,675 32.5%
Mar '02 34,107 62.7% 83.6% 6,687 12.3% 27.1% 17,963 33.0%

CES Microdata File
Distribution by Reporting Status

April 2001 - March 2002

NonrespondersLate ReportersPreliminary Reporters

 

For purposes of estimation for both parameter estimation for the employment 

growth model and the reporting status model, and for post-stratification and link 

relative estimation, the CES microdata file was restructured to create records at the 

sample establishment by month level, with information on the CES microdata file 

reformatted for ease of processing.  The SAS code used to create the two analysis 

files is provided in Appendix C.7. 

2. Benchmark Data 

Population employment totals for March of 2000, 2001, and 2002 for the 

industries of interest were derived from BLS’ Longitudinal Database (LDB), which is 

the basis for the ES-202.  All establishments within the industries of interest as of 1st 

quarter 2000 were extracted from the LDB, along with reported employment for 
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March of 2000, 2001, and 2002.  Employment data were summed to the industry 

level to obtain benchmark figures for each month.  The SAS code used to summarize 

LDB data is provided in Appendix C.8. 
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Chapter IV: CES Reporting Pattern Profile 
The CES survey is subject to late reporting and nonresponse, which are the result 

of a combination of respondent, operational, and environmental factors.  

Understanding the reporting dynamics for the survey can not only identify 

opportunities for improving response rates, but may also suggest working models for 

predicting response status and for imputing for missing data due to late reporting and 

nonresponse. 

Reporting patterns are of interest for two reasons.  First, the extent and recency of 

information available for use in estimation varies across reporting patterns.  Second, 

distributional properties may differ among the patterns.  Both should be taken into 

account when specifying factors for the underlying working model used for 

imputation. 

As discussed in Chapter II, late reporting and nonresponse can adversely affect the 

quality of survey estimates.  For panel surveys, the patterns of late reporting and 

nonresponse across time are of interest as well as their levels.  Prior to profiling CES 

survey reporting patterns, a new taxonomy for classifying reporting patterns in panel 

surveys, extending prior work in this area, is developed.  This taxonomy is then tied 

into the CES survey classifications of reporting status to define an approach for 

looking at CES reporting patterns. 

CES reporting patterns were profiled using data from January 2000 through 

December 2002 for four industries (Construction, Manufacturing, Mining, and 

Wholesale Trade), encompassing a total of 60,944 sample establishments reporting 

data for at least one month in the period (regardless of timeliness).  Reporting patterns 
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were profiled in several ways.  First an overview of CES reporting patterns is 

provided relative to the new reporting pattern taxonomy and CES reporting status 

categories, and then month-to-month reporting patterns are provided relative to the 

structure of the CES weighted link relative estimator and the interest in developing a 

model to allow imputation for missing data. 

Based upon information gleaned from the profile of the CES survey reporting 

patterns, a model is developed for predicting reporting status for sample units not 

reporting for 1st closing.  The adequacy of the model is evaluated on the basis of 

comparison to actual reporting status at the aggregate level. 

A. A New Taxonomy for Panel Reporting Patterns 

Survey nonresponse is frequently classified on the basis of reason for nonresponse.  

Panel surveys add another dimension to the response mechanism, that being response 

status by survey period.  Surveys that publish revised estimates offer yet another 

dimension to the response mechanism, that being timeliness of reporting. 

As discussed in Chapter II, existing taxonomies for nonreporting patterns could be 

refined to reflect more completely the nature of reporting patterns.  Clarifying 

distinctions among patterns could prove useful for both response improvement 

efforts, by providing greater granularity for nonresponse analyses, and development 

of nonresponse adjustment methods, as distributional properties could differ among 

patterns. 

Reporting patterns can be categorized into five basic types, as shown in Table 7. 
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Table 7-Basic Reporting Patterns for Panel Surveys 

Reporting Pattern Description

Complete Response unit reports every time period

Complete Nonresponse unit does not report for any time period

Attrition unit stops reporting after a given time period

Late Entry unit begins reporting after the initial survey 
period

Episodic Nonresponse unit experiences a mixture of reporting and 
nonreporting across time periods

Basic Reporting Patterns for Panel Surveys

 

An expanded and refined set of reporting patterns for panel surveys can be defined 

by mixtures of the basic reporting patterns.  Reporting patterns defined by only one 

basic pattern may be thought of as first order reporting patterns, while other reporting 

patterns (based upon a combination of basic patterns) may be thought of as 

interactions of reporting patterns.  This taxonomy for reporting patterns, along with 

illustrations, is provided in Figure 2.  Note that classification of a sample unit in terms 

of a reporting pattern is temporary, unless the survey has ended and there will be no 

further time periods for which data will be collected. 
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Figure 2-Reporting Pattern Illustrations 

Response Pattern 
Classification Response Pattern Description 1 2 … t1 … t2 … T-1 T

Total Response Unit reports every time period

Total Nonresponse Unit does not report for any time period

Unit reports for every time period until some 
point in time, after which it no longer reports

Unit reports for the first time period, then 
experiences a mixture of reporting and 

nonreporting until some point in time, after 
which it no longer reports

Attrition with Episodic 
Nonresponse

Month

Unit reports for the first time period, and 
experiences a mixture of reporting and 

nonreporting for all subsequent time periods

Strict Episodic 
Nonresponse

Response Pattern Illustrations
Shaded area represents data reported for month

Late Entry with 
Episodic Nonresponse

Strict Attrition

Strict Late Entry

Late Entry Attrition with 
Episodic Nonresponse

Unit does not report until some point in time 
subsequent to the first time period, after which 

it continues to report for every time period
Unit does not report until some point in time 

subsequent to the first time period, after which 
it continues to report for every time period until 

some point in time, after which it no longer 
reports

Unit does not report until some point in time 
subsequent to the first time period, after which 

it experiences a mixture of reporting and 
nonreporting until some point in time, after 

which it no longer reports

Unit does not report until some point in time 
subsequent to the first time period, after which 

it experiences a mixture of reporting and 
nonreporting for succeeding time periods

Strict Late Entry 
Attrition

 

For a survey such as the CES survey, in which revised estimates for a given month 

are generated, late reporting adds another dimension to reporting patterns, as 

illustrated in Figure 3.  In order for a sample unit to be utilized in the first-closing link 

relative, it must have reported for the prior month (whether preliminary or late) as 

well as have been a preliminary reporter for the current month. 
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Figure 3-Timeliness Pattern Illustrations 

Response Pattern 
Classification Timeliness Classification T-1 T Use

On-Time both months Preliminary
On-time current month only Preliminary

On-time prior month only Final
Late both months Final

Current, Prior Month Nonreporter N/a No
On-time No

Late No
On-time No

Late No

Timeliness Pattern Illustrations
Shaded area represents data reported on-time for month

Dotted area represents late reported data for month
Month

Prior Month Only Reporter

Current Month Only Reporter

Current, Prior Month Reporter

 

B. CES Reporting Patterns Relative to Taxonomy 

The focus of this profile is on the dynamic portion of CES survey nonreporting –

attrition, and episodic nonreporting.  Complete nonresponse, while contributing to the 

overall nonresponse impact, is less tractable in terms of a nonresponse adjustment 

strategy due to the lack of any reported data.  Late reporting is discussed in the next 

section.  Portions of the results presented in this section have been described 

elsewhere (Copeland 2003a, 2003b).  Reporting patterns were explored in part to 

identify factors that may be used to predict reporting status. 

CES survey distributions relative to the reporting pattern taxonomy developed 

earlier in this chapter are presented in Table 8.  These results encompass the eighteen 

month period January 2001 through June 2002 and exclude Complete Nonresponse. 
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Table 8-Reporting Pattern Distributions 

Manufacturing
NAICS 31xx-33xx

Wholesale Trade
NAICS 42xx-43xx

Mining
NAICS 1133, 21xx

Construction
NAICS 23xx

Complete Response 57.0% 49.8% 51.2% 47.4%

Strict Attrition 9.3% 11.8% 10.6% 9.4%

Strict Late Entry 7.0% 10.5% 10.2% 9.9%

Strict Late Entry Attrition 2.1% 3.5% 3.2% 3.5%

Attrition with Episodic 
Nonresponse 4.1% 4.6% 4.2% 5.4%

Late Entry with Episodic 
Nonresponse 2.0% 2.8% 2.0% 2.5%

Late Entry Attrition with 
Episodic Nonresponse 0.6% 0.6% 0.6% 0.4%

Strict Episodic Nonresponse 17.8% 16.5% 17.9% 21.5%

Reporting Pattern Distributions
Selected Industries, Jan '01 - Jun '02

 

Roughly half the sample provided complete response for the eighteen month 

period.  These units were thus able to be used in the 3rd closing estimates for all 

months.  Other first order reporting patterns (Strict Attrition, Strict Late Entry, Strict 

Episodic Nonresponse) account for just over one-third of the sample. 

Attrition (classified based on observing reporting patterns through December 

2002) occurred for 15% - 20% of the sample, while some type of episodic 

nonresponse occurred for roughly 25% of the sample.  (Note: Late entry could not be 

distinguished from initiation of new sample units (carried out on a flow basis); thus, 

some establishments classified as late entry may actually belong to the next higher 

level.  In addition, some establishments classified as attrition may have become out of 

business.) 

For complete response, as well as for attrition and late entry (during their period of 

reporting), timeliness of reporting affects which closing the sample units are used in.  
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For episodic reporting, any gaps result in the sample unit being unusable for the 

month of nonreporting as well as the first month of reporting following a gap. 

1. Attrition 

A second portion of nonresponse in a panel survey is due to sample establishments 

that stop reporting as of some point in time.  Rosen, et al. (1993) classified attrition 

for the CES survey as: establishment went out of business; establishment overtly 

refused to continue participation; and establishment simply ceased reporting.  

Reasons for refusal and ceasing reporting include fatigue and, for establishment 

surveys, change in contact person within the establishment, with the result that a new 

decision is made relative to survey participation.  CES guidelines treat reporting gaps 

of six months as attrition. 

Data for attritors are not utilized in the weighted link relative estimator, with the 

implicit assumption being that the growth rate from month 1−t  to t  is the same for 

attritors as for available reporters within estimation cell.  To the extent this 

assumption fails to hold, the accuracy of the CES survey estimates will be adversely 

affected. 

A cumulative attrition rate through month t  may be calculated as 

, *
1

1,
,1

% 100%

t

Att t
t

t
Act

n
Att

n
== ×
∑

 

where 

, *Att tn  is the number of sample establishments becoming attritors effective 

month *t  

1,Actn  is the number of active sample establishments as of month 1  
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Cumulative attrition rates by major industry segment for the period January 2001 

through June 2002 are presented in Figure 4, relative to active sample establishments 

as of December 2000.  Attrition rates weighted by employment, are provided in 

Figure 5. 

Figure 4-Cumulative Attrition Rate (unweighted) 

Cumulative Attrition Rate
Relative to Active Sample units Dec '00

Selected Industries, Jan '01 - Jun '02
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Figure 5-Cumulative Attrition Rate (weighted) 

Cumulative Attrition Rate (weighted by employment)
Relative to Active Sample units Dec '00

Selected Industries, Jan '01 - Jun '02
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These graphs suggest cumulative attrition rates at the establishment level were 

slightly less for Manufacturing, while cumulative attrition rates weighted by 

employment tended to be slightly greater for Wholesale Trade.  These data also 

provide an indication that Attritors tend to be smaller establishments, as the 

cumulative attrition rate is greater for establishments than for employment.  Again, 

this is consistent with CES operational procedures which place greater emphasis on 

ensuring continued participation of larger establishments, so as to control the impact 

on survey estimates.  This result may also be due in part to a greater likelihood of 

smaller establishments to go out of business, which could not be distinguished from 

attrition in this analysis. 

A monthly attrition rate for month t  may be calculated as 

%100%
1

1
,1,

, ×
−

=

∑
−

=

T

t
tAttAct

TAtt
T

nn

n
Att  

Monthly attrition rates for the period January 2001 through June 2002, based on 

unweighted and weighted counts, respectively, are presented in Figure 6 and Figure 7.  

These graphs show attrition rates higher in January (2.2% - 4.0% for establishments 

and 1.7% - 4.9% for employment) than for the remaining months (0.5% - 1.9% for 

establishments and 0.1% - 3.4% for employment).  Attrition rates are more variable 

for employment, especially for Mining. 

The larger January attrition rate is likely due to the data collection process, in 

which establishments are mailed a calendar year log form in January.  It is reasonable 

to assume some establishments opt to discontinue participation in the survey when 

they receive the new log form, as it provides a physical reminder of the expectations 
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BLS has for their continued participation in the survey for the next 12 months.  There 

appears to be a potential carry-over of this attrition effect in February. 

Figure 6-Monthly Attrition Rate (unweighted) 

Monthly Attrition Rate
Selected Industries, Jan '01 - Jun '02
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Figure 7-Monthly Attrition Rate (weighted) 

Monthly Attrition Rate (weighted by employment)
Selected Industries, Jan '01 - Jun '02
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2. Episodic Nonresponse 

Episodic nonreporting represents sample establishments that do not report for a 

given month, but do report for a subsequent month.  Gaps could be due to a variety of 

factors, such as change in data reporters, and seasonal closings.  Episodic 

nonreporting can only be distinguished from attrition post hoc. 

Episodic nonresponse may be viewed relative to the total sample size, with a 

within-month episodic nonresponse rate calculated as 

,

,

% 100%ENR t
t

Act t

n
ENR

n
= ×  

where 

,ENR tn  is the number of sample establishments that are episodic nonreporters 

in month t  

,Act tn  is the number of active sample establishments as of month t  

Monthly episodic nonresponse rates for the period January 2001 – June 2002, 

based on unweighted and weighted counts, respectively, are presented in Figure 8 and 

Figure 9.  These results show episodic nonresponse rates ranging from 1.2% to 5.1% 

for establishments and, excluding Mining, from 1.1% - 4.7% for employment.  

Mining episodic nonresponse rates for employment were much more variable, 

ranging from 0.6% to 9.0%.  Thus, for episodic nonresponse rates, there do not 

appear to be any differences due to employment size. 
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Figure 8-Episodic Nonresponse Rate (unweighted) 

Episodic Nonresponse Rate (Establishments)
Selected Industries, Jan '01 - Jun '02
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Figure 9-Episodic Nonresponse Rate (weighted) 

Episodic Nonresponse Rate (Employment)
Selected Industries, Jan '01 - Jun '02
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The distribution of the maximum gap in nonreporting for episodic nonreporters in 

2001 is presented in Table 9. 

Table 9-Nonreporting Gaps 

Longest gap for 
episodic nonreporters Manufacturing Wholesale 

Trade Mining Construction

1 month 42.7% 43.5% 49.3% 40.3%

2 months 21.2% 20.4% 19.7% 21.3%

3 months 17.3% 16.4% 13.5% 18.5%

4 months 11.0% 13.2% 8.8% 12.4%

5 months 5.9% 5.4% 6.2% 5.8%

6 months 1.9% 1.1% 2.6% 1.7%

7+ months 0.0% 0.0% 0.0% 0.0%

Nonreporting Gaps
Episodic Nonreporters in 2001

 

Between 40% and 49% of the episodic nonreporters experienced no more than a 

one month gap in nonreporting, while 18% - 20% experienced a gap of more than 

three months.  Long gaps not leading to attrition may be a result of nonresponse 

conversion efforts undertaken for the CES survey. 

Episodic nonreporting creates a carry-over effect in the use of a sample unit, due to 

the nature of the CES estimator.  A sample establishment that does not report for a 

given month will be left out of the calculation of the weighted link relative not only 

for that month, but also for the succeeding month, as it will not be contained within 

the set of constant reporters. 

3. Combined Nonreporting 

The prior information about the components of nonresponse can be viewed as a 

whole across time.  Such a picture can provide some insight into the nature of the 

problems faced in appropriately compensating for nonresponse. 
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Information about the distribution of the reporting behavior in 2001 for the active 

sample as of December 2000 is provided in Table 10. 

Table 10-2001 Reporting Behavior 

Manufacturing Wholesale 
Trade Mining Construction

Respond all 12 
months 74.5% 69.4% 70.3% 68.7%

Attritor during 12 
months 11.0% 15.0% 13.6% 13.0%

Episodic NR during 
12 months 14.5% 15.6% 16.1% 18.3%

Reporting Behavior 2001
Active Sample Units as of Dec '00

 

Roughly 70% of sample establishments reported all 12 months, while between 

10% and 15% became attritors from the sample.  The remaining 15% to 20% of 

sample units experienced at least one occasion of episodic nonresponse in the year. 

Although roughly 15% of the sample had an episodic nonresponse occurrence in 

2001, the frequency within a given month is somewhat less.  The distribution of 

reporting status for Manufacturing from January 2001 through June 2002 is provided 

in Figure 10. 

This graph shows episodic nonreporting accounted for less than 5% of the sample 

within a month.  However, as stated earlier, episodic nonreporting also affects the 

usability of a subsequent month reporter, due to the need for two consecutive months 

of data for the weighted link relative.  As seen from the diagonally hatched portion of 

the bar, this carry-over effect resulted in an additional 2% - 7% of the sample being 

unusable for the weighted link relative within a month.  In addition, there are a small 

percentage of the sample establishments (1% - 7%) that report too late for inclusion 

even in the third closing estimates. 
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Figure 10-Sample Distribution by Reporting Status 

Sample Distribution by Reporting Status
Manufacturing, Jan '01 - Jun '02
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B. Late Reporting 

The current CES estimator only utilizes sample units reporting for both months t  

and 1t − .  For preliminary estimates, a sample unit must have reported by first 

closing for month t  as well as have reported for month 1t − .  The sample is expanded 

for revised estimates with the inclusion of late reporters for month t  that had reported 

for month 1t − .  Thus both preliminary (preliminary reporter vs. not preliminary 

reporter) and final reporting status (late reporter vs. nonreporter) impact on the use of 

sample unit in estimation. 

For purposes of discussion, reporting status for reference period t  for unit i  may 

be summarized by 

( )TPR LR NR
ti ti ti tiX X X=X  
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where the superscripts refer to preliminary reporting ( )PR , late reporting ( )LR , 

and nonresponse ( )NR  

1 if unit  is a preliminary reporter for month 
0 otherwise

PR
ti

i t
X ⎧

= ⎨
⎩

 

1 if  unit  is a late reporter for month
0 otherwise

LR
ti

i t
X ⎧

= ⎨
⎩

 

1 if  unit  is a nonreporter for month 
0 otherwise

NR
ti

i t
X ⎧

= ⎨
⎩

 

Frequency of occurrence for reporting patterns yielding at least one month of 

reported data is provided in Table 11.  As this table shows, for preliminary estimates 

the current CES estimator is only able to utilize data for roughly three-fourths of the 

sample units for which data are available for at least one of the two months.  Sample 

units for which only prior month’s data are available account for roughly 90% of the 

remaining sample units.  Sample units eventually classified as late reporters account 

for roughly 75% of the subset for which only prior month’s data are available. 

Table 11-Reporting Pattern Distribution 

Month t Month t-1
76.0% 69.3% 71.9% 78.7%
2.4% 2.5% 2.6% 3.1%

21.6% 28.2% 25.4% 18.2%
16.5% 23.1% 19.5% 12.3%
5.2% 5.1% 5.9% 5.9%

Reporting Patterns
Frequency of Occurrence Jan 2001 - June 2002

Reporting Pattern Manufacturing Mining ConstructionWholesale 
Trade
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1. Timeliness of Reporting Across Time 

Timeliness of reporting is an issue for most sample establishments in the CES 

survey, although not on a continual basis.  A top-level distribution of frequency of 

first-closing reporting for establishments in the Complete Response reporting pattern, 

for the eighteen-month period January 2001 – June 2002, is presented in Table 12. 

The proportion of establishments in the Complete Response reporting pattern that 

reported on-time every month ranged from 23% to 29% at the industry level, while 

the proportion of establishments that reported late every month ranged from 1% to 

12%. Thus, the majority of sample establishments vary in terms of which closing 

their data are used in. 

Table 12-Timeliness of Reporting Pattern Distributions 

Manufacturing
NAICS 31xx-33xx

Wholesale Trade
NAICS 42xx-43xx

Mining
NAICS 1133, 21xx

Construction
NAICS 23xx

Every Month by First Closing 27.7% 22.7% 22.8% 29.1%

12 - 17 Months by First Closing 55.4% 53.6% 51.3% 60.3%

6 - 11 Months by First Closng 10.6% 8.3% 16.2% 8.1%

1 - 5 Months by First Closing 4.0% 3.1% 7.6% 2.0%

No Month by First Closing 2.2% 12.3% 2.1% 0.6%

Selected Industries, Jan '01 - Jun '02
Sample Reporting all Eighteen Months

Timeliness of Reporting Pattern Distributions

 

2. Late Reporting vs. Preliminary Reporting 

This set of tables looks at late reporting rates as a proportion of total reporting, by 

selected characteristics.  These were characteristics previously mentioned as related 

to late reporting (number of reporting days, size, length of pay period), as well as 

other factors potentially related to late reporting (prior reporting behavior). 
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Prior reporting behavior may be indicative of current behavior for sample units.  

With information on reporting status available across time, it is possible to examine 

relationships between reporting status in recent months and reporting status for the 

current month.  In particular, late reporting in a recent month was hypothesized to be 

correlated with late reporting in the current month. 

For a variety of reasons, some sample establishments are unable to respond within 

the narrow timeframe required for publication of first closing results, but do provide 

data for the survey month at a later point in time (Rosen, et al., 1991).  Calendar 

effects appear to play a role in late reporting.  For the CES survey, the number of 

reporting days available for data collection depends upon the day of the week the 12th 

of the month falls on; the shorter the data collection period, the greater the likelihood 

for late reporting.  In addition, as data are to be reported for the pay period containing 

the 12th day of the month, the length of a sample establishment’s pay period could 

affect availability of the information to be reported 

While the data for these late reporters are utilized in second and third closing 

estimates (depending upon when they report), any differences between their month-

to-month trends and that assumed by the weighted link relative estimator will drive 

the direction and magnitude of revisions to the first closing estimates. 

A late reporting rate, conditional on reporting, may be calculated as 

( ) ( ) %1000|% ×
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Late reporting rate, conditional on reporting, for the period March 2000 through 

December 2002 are presented in Figure 11.  These graphs show late reporting rates 
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have generally ranged between 10% and 35%.  This percentage varies across both 

time and industry. 

Figure 11-CES Late Reporting Rates 

Late Reporting Rates
March 2000 - December 2002
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Late reporting rates were then examined by various factors felt to be related to 

timeliness of reporting – design size class, length of pay period, number of reporting 

days, prior two months’ reporting status, and calendar month.  Results are provided in 

Table 13. 

The results suggest late reporting rates are greater for larger establishments, 

establishments with a monthly pay period, and establishments which had been either 

a late reporter or nonrespondent the prior months.  To a lesser degree, months with 

fewer reporting days exhibit higher late reporting rates, as does the month of January. 
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Table 13-Late Reporting Rates, Conditional on Reporting, for Selected 
Characteristics 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
<10 14.32% 3.07% 13.12% 2.35% 17.44% 7.27% 18.53% 14.33%

10-19 14.26% 3.99% 12.62% 2.48% 16.75% 4.29% 17.34% 10.87%
20-49 13.89% 4.21% 13.88% 2.43% 19.09% 5.15% 19.29% 8.31%
50-99 15.20% 5.46% 16.49% 3.40% 20.80% 5.49% 20.36% 6.55%

100-249 15.32% 3.51% 17.38% 3.08% 26.79% 6.18% 24.01% 4.76%
250-499 19.56% 3.60% 19.24% 3.45% 29.10% 12.69% 27.88% 4.92%
500-999 21.16% 5.37% 23.41% 4.72% 22.90% 8.99% 35.42% 6.99%
1000+ 32.97% 6.78% 27.75% 4.43% 32.00% 11.33% 48.30% 9.22%

Design Size Class

Late Reporting Rates, Conditional on Reporting
by Design Size Class

(3/00 - 12/02)

Construction Manufacturing Mining Wholesale Trade

 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
Weekly 14.15% 3.30% 16.84% 2.80% 19.99% 5.56% 24.89% 6.01%

Bi-Weekly 18.29% 4.05% 23.86% 4.73% 26.27% 4.81% 20.31% 8.64%
Semi-Monthly 19.00% 5.26% 20.56% 4.77% 22.77% 9.44% 22.75% 6.95%

Monthly 39.06% 5.78% 44.78% 5.05% 41.22% 8.07% 58.17% 6.44%

Length of Pay Period

Late Reporting Rates, Conditional on Reporting
by Length of Pay Period

(3/00 - 12/02)

Construction Manufacturing Mining Wholesale Trade

 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
9 16.94% 0.98% 21.51% 1.88% 26.30% 4.98% 30.49% 4.65%

10 16.89% 2.42% 21.83% 2.81% 26.10% 4.48% 27.73% 3.53%
11 16.68% 5.36% 20.29% 3.31% 22.73% 3.26% 25.87% 3.75%
12 14.28% 0.92% 17.91% 0.85% 22.60% 3.74% 28.71% 10.52%
13 14.18% 1.94% 18.34% 2.63% 21.67% 4.63% 22.89% 3.17%
14 14.49% 4.31% 17.32% 2.67% 22.32% 5.60% 24.42% 4.72%
15 13.61% 1.70% 15.94% 4.00% 18.80% 0.66% 28.99% 14.80%

Number of Reporting 
Days

Late Reporting Rates, Conditional on Reporting
by Number of Reporting Days

(3/00 - 12/02)

Construction Manufacturing Mining Wholesale Trade

 

Month t-1 Month t-2 Mean Stdev Mean Stdev Mean Stdev Mean Stdev
PR PR 7.43% 2.57% 8.18% 2.58% 9.12% 4.06% 8.63% 4.23%

LR 25.32% 5.35% 30.06% 6.66% 29.32% 11.92% 28.33% 11.45%
NR 16.04% 4.43% 17.36% 4.95% 18.12% 15.41% 16.91% 10.89%

LR PR 26.75% 5.71% 31.25% 7.03% 40.49% 16.14% 30.58% 13.76%
LR 56.10% 7.39% 66.45% 7.71% 67.37% 14.41% 81.33% 12.51%
NR 34.36% 7.19% 42.05% 7.74% 45.40% 15.92% 47.24% 14.60%

NR PR 40.88% 10.79% 46.80% 9.73% 45.04% 17.20% 41.13% 12.52%
LR 66.72% 8.47% 76.96% 6.86% 74.24% 18.30% 71.20% 13.03%
NR 61.24% 12.18% 67.25% 7.15% 66.05% 18.26% 59.21% 12.45%

Late Reporting Rates, Conditional on Reporting
by Prior 2 Months' Reporting Pattern

(3/00 - 12/02)

Construction Manufacturing Mining Wholesale TradePrior 2 Months' Reporting Pattern
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Mean Stdev Mean Stdev Mean Stdev Mean Stdev
Jan 18.97% 1.49% 23.66% 0.41% 29.77% 0.85% 31.38% 1.96%
Feb 13.71% 1.30% 17.28% 0.64% 21.34% 0.92% 24.64% 3.53%
Mar 11.84% 0.75% 15.08% 1.84% 17.81% 2.43% 29.52% 8.90%
Apr 14.06% 1.65% 18.41% 1.76% 24.05% 5.43% 33.26% 11.93%
May 15.53% 2.55% 19.85% 3.18% 23.18% 6.45% 27.31% 6.41%
Jun 14.75% 0.42% 18.68% 0.80% 21.20% 0.76% 26.48% 1.69%
Jul 14.82% 0.76% 18.93% 0.40% 23.73% 3.85% 24.88% 1.60%
Aug 15.58% 2.14% 20.09% 3.39% 27.02% 0.93% 25.05% 4.37%
Sep 13.47% 0.78% 17.44% 0.64% 22.18% 0.97% 20.27% 1.74%
Oct 19.10% 6.92% 19.98% 1.23% 22.82% 4.90% 25.55% 3.37%
Nov 16.74% 5.49% 18.85% 3.52% 22.97% 7.59% 24.17% 6.33%
Dec 17.52% 2.97% 24.22% 4.72% 24.55% 5.47% 26.33% 6.93%

Month

Late Reporting Rates, Conditional on Reporting
by Calendar Month

(3/00 - 12/02)

Construction Manufacturing Mining Wholesale Trade

 

The result for design size is consistent with operational procedures used in CES 

data collection, wherein more emphasis is placed on obtaining responses from larger 

establishments, and also with operational aspects of reporting, wherein large 

establishments reporting for multiple worksites may find it difficult to compile all the 

information in time for first closing.  Likewise the result for length of pay period is 

consistent with operational aspects of reporting, as establishments with monthly pay 

periods generally would not have data for the reference pay period until late in or 

after the close of the collection period. 

Relationship between prior late reporting and increased late reporting rates likely 

indicates ability of a sample establishment to obtain the required information within 

the collection period.  This factor may also be correlated with length of pay period. 

One reason for the relatively weak relationships with late reporting rates for 

number of reporting days and calendar maybe potentially more complex relationships 

involving calendar dynamics.  Rather than the number of reporting days, it may be 

that closing date in conjunction with length of pay period may affect late reporting 

rates.  For example, the likelihood of late reporting for an establishment with a bi-
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weekly pay period could be greater is the week containing the 12th of the month were 

the first week of the pay period than if it were the second week of the pay period.  

These types of relationships were not investigated as part of this research. 

These findings suggest inclusion of establishment design size, length of pay period 

and recent reporting status as factors in predicting late reporting rates at the 

establishment level. 

3. Late Reporting vs. Nonresponse 

For purposes of developing a model to predict final reporting status, the remaining 

tables look at conditional late reporting rates relative to the same factors as in the 

previous section.  Conditional late reporting rate, given a sample unit was not a 

preliminary reporter, was defined as  
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Length of time from last report can be expected to be strongly correlated with 

likelihood of reporting in the current period.  As evidenced in Table 14 this is true for 

the CES sample.  Sample units with a gap in reporting of four or more months 

averaged less than a 10% conditional late reporting rate for each industry.  Reporting 

gap was felt to be such a dominant factor that the profile relative to other factors was 

carried out conditional on a top-level classification of reporting gap of 3 months or 

less. 
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Table 14-Conditional LR Rates, by Reporting Gap 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
0 67.61% 7.20% 77.03% 4.55% 77.35% 6.76% 82.27% 4.15%
1 26.98% 5.68% 34.97% 4.90% 30.95% 11.01% 30.14% 11.42%
2 16.88% 10.70% 18.84% 3.54% 18.25% 13.36% 13.38% 6.12%
3 9.76% 7.61% 11.05% 3.32% 10.82% 13.50% 7.02% 3.60%
4 7.25% 9.94% 8.01% 5.00% 8.29% 11.05% 6.85% 6.25%
5 3.52% 2.60% 4.59% 2.22% 6.03% 9.53% 4.00% 5.13%
6 2.88% 1.62% 4.16% 2.05% 3.30% 4.92% 2.58% 2.15%
7 2.03% 1.25% 2.97% 2.07% 4.40% 9.44% 2.07% 1.75%
8 1.88% 1.56% 2.55% 1.85% 2.08% 3.75% 1.82% 2.43%
9 1.62% 1.26% 1.86% 1.50% 3.42% 5.49% 1.77% 2.23%
10 1.31% 0.99% 1.74% 1.47% 2.50% 4.43% 1.50% 2.98%
11 1.13% 1.27% 1.91% 2.05% 1.83% 5.32% 0.78% 0.83%

12+ 0.96% 0.60% 1.03% 0.66% 0.38% 0.42% 0.59% 0.41%

Nonreporting Gap (in 
Months)

Late Reporting Rates, Conditional on Not Preliminary Reporter
by Nonreporting Gap

(3/00 - 12/02)

Construction Manufacturing Mining Wholesale Trade

 

By examining the nature of the relationship between conditional late reporting 

rates and reporting gaps, it appears a transformation to the logit of the conditional late 

reporting rate and the log of one plus the length of the reporting gap follow a linear 

relationship, as evidenced by Figure 12. 

Figure 12-Logit (Conditional LR Rate) vs Log(Gap+1) 

Logit (Conditional Late Reporting Rate) vs.Log (Reporting Gap+1)
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As a logistic regression would be a reasonable model for the conditional late 

reporting rate, as discussed more fully in section D, these results suggest inclusion of 

the log transformation of the length of reporting gap in the model for predicting 

current month reporting status. 

Prior reporting behavior for a sample unit was hypothesized to be related to 

conditional late reporting rate.  In particular, late reporting in a recent month was 

hypothesized to be correlated with late reporting in the current month.  Information 

on the conditional late reporting rate relative to reporting status for the prior two 

months, excluding sample units with a reporting gap of 4+ months, is provided in 

Table 15.  As can be seen, higher conditional late reporting rates are associated with 

prior reporting (both preliminary and late), with prior late reporting associated with 

higher conditional late reporting rates than prior preliminary reporting, especially 

when the late reporting occurred in month 1t − .  These results suggest inclusion of 

prior reporting patterns in the model for predicting current month reporting status. 

Table 15-Conditional LR Rates, by Prior Reporting Pattern 

Month t-1 Month t-2 Mean Stdev Mean Stdev Mean Stdev Mean Stdev
PR PR 63.95% 10.96% 72.84% 7.94% 69.25% 12.63% 69.62% 9.72%

LR 65.80% 6.38% 73.57% 4.98% 72.53% 13.06% 73.73% 7.24%
NR 40.43% 8.96% 43.04% 7.69% 44.58% 28.91% 42.17% 16.75%

LR PR 77.50% 4.92% 83.17% 4.18% 83.99% 10.88% 82.95% 7.38%
LR 80.71% 4.14% 87.05% 2.43% 86.87% 7.65% 92.77% 2.62%
NR 61.98% 7.04% 65.45% 6.14% 69.86% 13.07% 69.71% 11.60%

NR PR 23.96% 6.11% 30.32% 5.77% 25.91% 10.96% 25.51% 12.50%
LR 34.38% 6.73% 41.87% 5.18% 40.04% 18.33% 37.98% 12.35%
NR 13.76% 9.55% 15.50% 3.21% 15.33% 12.43% 10.65% 5.27%

Prior 2 Months' Reporting Pattern

Excluding Sample with Reporting Gap 4+ Months

Construction Manufacturing Mining Wholesale Trade

Late Reporting Rates, Conditional on Not Preliminary Reporter
by Prior 2 Months' Reporting Pattern

(3/00 - 12/02)

 

Two characteristics of establishments were hypothesized to be related to 

conditional reporting rates, length of payroll and prior months’ employment trend. 
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Payroll structure affects late reporting, given the nature of the reference period 

(pay period containing the 12th of the month) and the reporting period (which closes 

on the Friday two weeks after the end of the week containing the 12th).  Sample units 

with monthly pay periods will likely not have data available within the reporting 

period.  Sample units with bi-weekly pay periods will be faced with varying abilities 

to have data for reporting, depending upon when their pay period ends relative to the 

12th.  Sample units with weekly and semi-monthly pay periods could be expected to 

be most likely to be able to report within the prescribed reporting period.  This 

supposition is relatively supported by conditional late reporting rates by length of pay 

period, excluding sample units with a reporting gap of 4+ months (Table 16).  These 

results suggest inclusion of length of payroll in the model for predicting current 

month reporting status. 

Table 16-Conditional LR Rates, by LOPP 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
Weekly 50.24% 8.96% 61.41% 4.93% 60.74% 10.95% 64.77% 7.85%

Bi-Weekly 53.23% 7.56% 66.70% 4.95% 63.10% 8.36% 63.00% 10.97%
Semi-Monthly 43.57% 8.36% 59.35% 7.76% 60.53% 12.63% 60.43% 8.82%

Monthly 64.49% 6.31% 76.06% 4.19% 68.57% 7.06% 83.33% 4.10%

Length of Pay Period

Late Reporting Rates, Conditional on Not Preliminary Reporter
by Length of Pay Period

(3/00 - 12/02)

Construction Manufacturing Mining Wholesale Trade

Excluding Sample with Reporting Gap 4+ Months

 

The prior month’s employment trend was hypothesized to be related to conditional 

late reporting, in that respondents in sample units experiencing large declines may be 

more focused on business issues than reporting data for a survey, and thus may have 

lower conditional late reporting rates.  Sample units were rank ordered based on prior 

month’s employment trend (change for establishments with <50 reported 

employment, to avoid unstable growth rates, and growth rate for establishments with 
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50+ reported employment, to avoid unstable change).  As shown in Table 17, no 

evidence of an effect due to prior month employment trend was seen.  The much 

lower conditional late reporting rates seen for establishments with an unknown 

ranking was felt to be related to nonreporting. 

Table 17-Conditional LR Rates, by Prior Employment Change 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
N/A 12.54% 3.43% 13.22% 3.67% 13.79% 7.45% 14.19% 8.96%

Bottom Third 65.63% 11.73% 72.23% 4.93% 69.31% 11.37% 81.27% 5.72%
Middle Third 62.63% 9.65% 72.53% 5.31% 70.95% 10.19% 81.90% 5.82%

Top Third 66.67% 12.55% 74.36% 5.59% 74.01% 9.19% 82.01% 5.38%

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
N/A 52.30% 10.71% 54.49% 8.20% 57.51% 29.29% 55.28% 14.95%

Bottom Third 73.09% 8.89% 77.91% 4.83% 81.38% 7.91% 83.47% 4.34%
Middle Third 72.77% 8.90% 78.78% 4.86% 78.78% 7.92% 84.28% 4.45%

Top Third 72.74% 9.30% 78.43% 4.85% 81.18% 6.54% 83.28% 4.25%

Excluding Sample with Reporting Gap 4+ Months
(3/00 - 12/02)

Construction Manufacturing Mining Wholesale Trade
Prior Month Employment <50

Prior Month Employment 50+
Ranked Prior Month's 
Employment Growth 

Rate

Construction Manufacturing Mining Wholesale Trade

Ranked Prior Month's 
Employment Change

Late Reporting Rates, Conditional on Not Preliminary Reporter
by Prior Month's Employment Change

 

Both late reporting and nonreporting are affected by operational aspects of the 

CES survey.  Given the importance of larger units, more emphasis is placed upon 

achieving high preliminary reporting rates as well as high overall reporting rates for 

larger units.    Results in Table 18 indicate average conditional late reporting rates by 

design size class, excluding sample units with a reporting gap of 4+ months, increase 

as establishment size increases, reflecting the relative effort placed on data collection 

by establishment size, as well as the greater likelihood of smaller establishments 

going out of business. 
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Table 18-Conditional LR Rates, by Design Size Class 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
<10 39.64% 7.48% 45.76% 6.89% 45.57% 16.53% 48.98% 11.22%

10-19 44.65% 8.86% 47.54% 6.86% 57.26% 12.04% 53.47% 9.98%
20-49 48.96% 10.40% 52.26% 6.26% 58.16% 9.07% 58.94% 9.29%
50-99 57.30% 9.35% 58.83% 5.37% 62.47% 10.31% 62.65% 8.58%

100-249 59.50% 7.54% 64.45% 5.82% 70.34% 9.35% 69.39% 6.35%
250-499 60.82% 6.17% 64.53% 5.53% 61.28% 18.77% 72.51% 6.25%
500-999 57.24% 9.60% 66.96% 6.18% 63.13% 19.62% 75.11% 8.56%
1000+ 68.49% 8.82% 70.51% 4.24% 70.98% 14.11% 81.51% 3.94%

Design Size Class

Late Reporting Rates, Conditional on Not Preliminary Reporter
by Design Size Class

(3/00 - 12/02)

Construction Manufacturing Mining Wholesale Trade

Excluding Sample with Reporting Gap 4+ Months

 

Average conditional late reporting rates by size class based on prior month 

reported employment, excluding sample units with a reporting gap of 4+ months, 

were also examined, and are provided in Table 19.  While these also follow a roughly 

increasing function as establishment size increases, differences are less pronounced 

than for design size class. This is a logical outcome, as design size class is the 

operational information most readily available for which to prioritize nonreporting 

followup.  The results on conditional late reporting rates suggest some measure of 

establishment size in the model for predicting current month reporting status. 

Table 19-Conditional LR Rates, by Prior Month Size Class 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
NR 8.69% 2.61% 11.11% 3.60% 8.33% 5.22% 9.23% 5.51%
<10 58.86% 9.15% 67.78% 5.72% 66.21% 10.75% 78.41% 6.91%

10-19 64.24% 11.85% 72.19% 6.23% 73.90% 10.50% 81.29% 5.43%
20-49 68.51% 12.50% 73.12% 5.14% 72.13% 8.59% 82.54% 5.00%
50-99 71.11% 10.21% 75.83% 5.17% 77.15% 8.17% 82.61% 4.36%

100-249 72.18% 8.39% 77.96% 5.06% 81.13% 7.60% 83.01% 4.18%
250-499 73.24% 8.05% 76.33% 6.15% 78.54% 8.48% 82.85% 5.18%
500-999 71.88% 13.56% 77.55% 4.79% 80.56% 16.64% 80.37% 7.99%
1000+ 74.03% 12.74% 80.38% 5.23% 85.07% 10.89% 78.60% 9.26%

Prior Month Reported 
Employment

Late Reporting Rates, Conditional on Not Preliminary Reporter
by Prior Month Reported Employment Size Class

(3/00 - 12/02)

Construction Manufacturing Mining Wholesale Trade

Excluding Sample with Reporting Gap 4+ Months
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Finally, conditional late reporting rates were examined relative to calendar effects, 

or what might be termed environmental factors. 

The length of the data reporting period for a month depends upon the day of the 

week on which the 12th of the month falls.  Data reporting periods vary from 9 to 15 

days.  One could expect months with shorter reporting periods to experience higher 

conditional late reporting rates.  Calendar month was also examined to determine 

whether any evidence existed to support some type of effect on conditional late 

reporting rates.  One could expect higher conditional late reporting rates associated 

with December, as respondents may be out of the office during much of the reporting 

period. 

Interestingly, while results by number of reporting days show some evidence of 

higher conditional late reporting rates for months with 9 reporting days, months with 

15 reporting days likewise showed some evidence of higher conditional late reporting 

rates, as shown in Table 20.  This may be due to an interaction with a calendar month 

effect, as only two months had 15 reporting days, one of which was December, 2002. 

Table 20-Conditional LR Rates, by Number of Reporting Days 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
9 53.20% 1.12% 67.75% 0.73% 68.81% 8.88% 72.07% 3.57%
10 50.41% 9.38% 62.72% 6.10% 60.17% 5.40% 66.73% 4.15%
11 55.67% 7.23% 65.82% 2.46% 64.80% 5.59% 68.56% 2.87%
12 50.78% 7.11% 64.60% 2.91% 64.66% 8.88% 70.67% 7.91%
13 44.66% 10.38% 62.16% 6.08% 57.67% 8.89% 63.79% 5.70%
14 50.19% 7.00% 60.00% 2.29% 61.00% 10.16% 65.80% 4.08%
15 54.41% 2.80% 64.09% 3.82% 69.08% 9.16% 74.66% 16.16%

Number of Reporting 
Days

Late Reporting Rates, Conditional on Not Preliminary Reporter
by Number of Reporting Days

(3/00 - 12/02)

Construction Manufacturing Mining Wholesale Trade

Excluding Sample with Reporting Gap 4+ Months
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Conditional late reporting dates by month, however, did not suggest a higher 

conditional late reporting rate for December nor for any other month, as seen in Table 

21. 

Table 21-Conditional LR Rates, by Calendar Month 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev
Jan 51.57% 1.83% 63.32% 0.83% 60.10% 2.97% 65.07% 3.71%
Feb 44.42% 0.62% 58.13% 1.16% 51.97% 2.41% 62.79% 4.28%
Mar 46.72% 5.19% 60.82% 5.31% 60.13% 15.09% 71.26% 13.15%
Apr 45.24% 6.21% 60.08% 9.06% 63.62% 8.26% 71.30% 11.11%
May 51.93% 2.34% 65.31% 4.26% 63.45% 11.21% 69.11% 5.72%
Jun 50.99% 8.95% 65.03% 1.68% 64.52% 3.94% 68.99% 2.50%
Jul 50.53% 10.55% 65.23% 0.59% 64.18% 1.07% 66.63% 1.79%
Aug 49.49% 13.74% 66.51% 4.72% 66.71% 8.36% 69.02% 3.86%
Sep 47.68% 13.68% 63.95% 2.82% 63.72% 7.47% 65.10% 5.77%
Oct 56.96% 8.38% 63.65% 5.30% 61.34% 11.14% 67.26% 7.15%
Nov 55.83% 6.57% 59.93% 2.98% 60.42% 11.62% 67.42% 6.02%
Dec 57.58% 4.31% 66.59% 4.56% 65.07% 4.11% 67.27% 3.76%

Month

Late Reporting Rates, Conditional on Not Preliminary Reporter
by Calendar Month

(3/00 - 12/02)

Construction Manufacturing Mining Wholesale Trade

Excluding Sample with Reporting Gap 4+ Months

 

4. Summary 

The data on CES reporting patterns show late reporting to constitute a relatively 

large proportion of total reporting.  Factors related to late reporting appears related to 

prior months’ reporting status, length of pay period, and design size class. 

D. Model for Predicting Final Reporting Status 

An ancillary objective of this dissertation research was to specify a model for 

predicting reporting status for month t  at the unit level, given preliminary reporting 

status is known (i.e., as of td , the cutoff date for month t ).  This information could 

be used to predict final reporting rates for month t  (and thereby provide early 

warnings), identify areas of focus for followup efforts, and possibly allow early 
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assessment of potential differences between preliminary and final estimates for month 

t .  In addition, the reporting status model could potentially be integrated with the 

employment growth model to provide imputation representing (expected) predicted 

late reporters specifically. 

At the time preliminary estimates are generated, reporting status for month t  is not 

fully known.  Reporting status is known for preliminary reporters, i.e., 

( )Ttci 001=X , but for the remainder of the sample units it is unknown, with two 

possible outcomes, late reporter or nonresponse, i.e., ( ) ( )TT
tci 100,010=X .  

The model seeks to predict month t  reporting status for sample units with unknown 

reporting status as of preliminary cutoff date for month t , i.e., those units for which 

0
.
.

tci

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

X  

For a sample unit, there are three states that can occur relative to reporting status – 

preliminary reporting ( )1=PR
tciX , late reporting ( )1=LR

tciX , or nonresponse ( )1=NR
tciX .  

The vector of reporting status indicators, ( )TNR
tci

LR
tci

PR
tcitci XXX=X , can be 

assumed to follow a point-multinomial distribution 

( )~ 1, , ,tci PRci LRci NRciMultinomial p p pX  

1,0=l
tciX  (l=PR, LR, NR) 

1
,,

=∑
= NRLRPRl

l
tciX  

[ ] ( )0,1 , 1, PR,LR,NRlci lci
l

p p l∈ = =∑  
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For a sample unit that is not preliminary reporter, there are two states that can 

occur – late reporting or nonresponse.  The conditional distribution of reporting status 

indicators for late reporting and nonresponse, given a sample unit is not a preliminary 

reporter, can be shown to follow a point binomial distribution 

( ) ( )| 0, | 0,
| 0 ~ 1, ,PR PR

tci tci

TLR NR PR
tci tci tci LR X ci NR X ci

X X X Bin p p
= =

=  

1,0=l
tciX , (l=LR, NR) 

1
,

=∑
= NRLRl

l
tciX  

[ ] ( )| 0, | 0,
0,1 , 1, LR,NRPR PR

tci tcil X ci l X ci
l

p p l
= =

∈ = =∑  

A logit model is thus appropriate to describe the conditional probability a sample 

unit is a late reporter in month t  ( )1=LR
tciX  for a sample unit, given the sample unit is 

not a preliminary reporter in month t  ( )0=PR
tciX  

( )[ ] tci
T
c

PR
tci

LR
tci XXP ΨγΨ +=== c,0|1logit α  

where  

( )
( )c

c

α
α

exp1
exp
+

 (i.e., inverse [ ]clogit α ) represents the underlying cell-level 

conditional probability of late reporting 

tciΨ  is the vector of factor values for the sample unit 

cγ  is the vector of factor coefficients 

Review of CES reporting patterns earlier in this chapter suggests factors be 

defined by the following characteristics representing respondent, operational, and 

environmental factors: 
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*Number of months (through month 1−t ) since last report (G=0, 1, 2, …) 

*Reporting status the prior two months ( ) ( )citcit 21 , −− XX  

*Design size class (S<10, 10-19, 20-49, 50-99, 100-249, 250-499, 500-999, 

1000+) 

*Length of pay period (L=Weekly, Bi-weekly, Semi-monthly, monthly)  

*Number of reporting days for the month (D=9, 10, 11, 12, 13, 14, 15) 

Based on results of the reporting pattern profile, number of months from last report 

was translated to 

( )1ln +G  

for use in the model. 

All factors are categorical.  As categories were nominal, each factor was translated 

to a vector of dummy ( )1,0  values for use in the model.  Each vector contains all 0’s 

and a single 1 to designate the factor category for the sample unit.  (This has already 

been done for prior reporting status.)  For example, the length of pay period 

categories are translated to the following vector 

( ) ( ) ( ) ( )( )cicicicici LLLL MonthlyMonthly-Semiweekly-BiWeekly=L  

( ) 1,0=ciloppL ; lopp=Weekly, Bi-weekly, Semi-monthly, Monthly 

A seasonal component, corresponding to a calendar month effect, may also be 

present in the underlying model.  However, the number of months available for the 

research (15 months at the outset, growing to only 26 months) was deemed 

insufficient to allow this effect to either be estimated or to be distinguished from the 

number of reporting days effect.  This constraint, in conjunction with results of the 
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reporting pattern profile led to exclusion of a seasonal component for the working 

model. 

A collection mode effect may also be present in the underlying model.  Research 

by Rosen, et al. (1993) indicates differential rates of reporting by collection mode.  

There may be a similar effect related to conditional probability of late reporting as 

well.  Intuitively, one could posit such an effect for mail vs. automated forms of 

collection due to the delay associated with mail delivery.  Collection mode effect was 

initially planned to be included in the dissertation research; however, obstacles to data 

availability were encountered due to the current status of reporting and retention of 

information on collection mode, resulting in lack of complete, accurate information 

covering all months and all CES sample units.  As a result, collection mode was 

excluded in the working model.  Extension of the working model to include collection 

mode, if complete and accurate data could be obtained, could yield additional 

predictive power. 

For purposes of estimation, a Bayes approach was used.  This approach was used 

rather than logistic regression estimation as the number of parameters involved in the 

model resulted in sparse or missing cells, and Bayes estimation provides parameter 

estimates for such situations.  The working model associated with | 0LR PR
tci tciX X =  

(reporting status of late reporting, given a sample unit is not a preliminary reporter) 

was formulated as point-binomial distribution, with binomial probability following a 

logit model and factor coefficients of the logit model assumed to have uniform priors 

( ) ( ) ( ) ( )1 2 1 | 0,
| 0, , , , , , , ~ 1, PR

tci

LR PR LR
tci tci ci ci t tct ci t ci t ci LR X ci

X X G Bin p− − − =
= X X S L D Φ  
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( )| 0,
logit PR

tciLR X ci
p

=
=  

( ) ( ) ( ) ( ) ( )( )c Gc Sc Lc Dct-1 1 t-2 2 1ln 1T T T T T
ci ci tc t ci c t ci t ciGα γ− − −+ + + + + + +γ X γ X γ S γ L γ D  

( )

( )

( )

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

−

−

−

−
NR

cikt

LR
cikt

PR
cikt

cikt

X
X
X

X , k=1,2 

( ) ( ),...2,1,01 =− citG  is the number of months (through month 1−t ) since sample unit 

i  in estimation cell c  last reported 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

ci

ci

ci

S

S

8

1

#S  is the vector of dummy size variables 

( )
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⎟
⎟
⎟

⎠

⎞

⎜
⎜
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⎝

⎛

=

ciMonthly

ciWeekly

ci

L

L
#L  is the vector of dummy length of pay period variables 
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⎛
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9

#D  is the vector of dummy number of reporting days variables 

( ) ( )( )TTTT
c

T
cc
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( ) ( ) ( ) ( )~ , , PR,LR,NR , 1,2l
X Xt k c U b b l kγ − − = =  

( )GGGc bbU ,~ −γ  

( ) ( )~ , , 1, ,8
kS c S SU b b kγ − = …  

( ) ( )~ , , 1, , 4
kL c L LU b b kγ − = …  

( ) ( )~ , , 1, ,7
kD c D DU b b kγ − = …  

DLSGX bbbbbul ,,,,,, αα  are pre-defined bounds for the corresponding prior 

distributions, defined using the following assumptions 

Underlying cell-level conditional probabilities of late reporting range between 

.01 and .99, thus ( ) ( )2,2, −=αα ul  

Effect due to gap in reporting and prior months’ reporting status are expected to 

be greater than effect due to other categorical factors (design size class, 

length of pay period, number of reporting days), with the following bounds 

selected 

( ) ( )5,5, −=− XX bb  

( ) ( ), 5,5G Gb b− = −  

( ) ( )2,2, −=− SS bb  

( ) ( )2,2, −=− LL bb  

( ) ( )2,2, −=− DD bb  

In practice, the dimension for each vector was reduced by one, since any one 

element is linearly dependent on the remaining elements (as 1=∑ kγ ).  The element 
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selected for exclusion from the vector becomes the reference level for the factor. The 

reference level for each categorical factor was selected as follows 

Reporting status: ( ) ( )1, 1, 2PR
t k ciX k− = =  

Design size class: S=50-99 

Length of pay period: L=Bi-weekly 

Number of reporting days: D=12 

For reporting status, preliminary reporting was designated as the reference level.  

For each of the remaining variables, the level roughly in the middle of the range of 

levels was designated as the reference level. 

The model was further refined in an attempt to reduce the number of parameters in 

the model.  Collapsing of categories within a factor was carried out on the basis of 

estimated values for the factor coefficients obtained using the full set of months 

available for the research (March 2000 through December 2002, as described in 

Chapter III) using WinBUGS v1.4.  WinBUGS was called from a program written in 

R v.1.8.1, using background code developed by Andrew Gelman (see Gelman, et al., 

2003).  (Note: For Manufacturing, the sample file exceeded allowable space limits for 

the software.  Approximately half the sample was randomly selected within each 

month for use in the modeling.  Each observation was assigned a random number 

generated using a standard normal distribution.  Observations with random numbers 

greater than zero were selected.)  

The following discussion is based on information contained in Sinharay (2003) 

MCMC algorithms, such as those used within WinBUGS, are used to obtain a 

random sample from a posterior distribution of interest given sample data and prior 
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distributions.  This sample is used to approximate the posterior distribution, allowing 

posterior expectations for parameters associated with the distribution to be derived 

(see, e.g., Gelman, et al., 1995).  This process is carried out by specifying prior 

distributions for the variable of interest and parameters of the distribution, along with 

sample data.  The user also specifies the number of iterations to be run by the 

algorithm, a burn-in period (the number of initial iterations discarded), and a number 

of chains to be run (the number of separate series of iterations run).  Finally, the user 

specifies initial values for the parameters of the distribution. 

The MCMC algorithm seeks to create a distribution that has converged to the 

posterior distribution of interest.  Gelman and Rubin (1992) proposed a “potential 

scale reduction factor” (PSRF) as an estimate of how much sharper the distribution 

estimate might become if the simulations were continued indefinitely.  This PSRF 

declines to one as the simulated distribution converges to the posterior distribution.  

Generally, values of PSRF less than 1.1 or 1.2 are acceptable. 

The WinBUGS software offers several additional options which are useful in 

checking for convergence.  The first is to run multiple chains, that is, to create 

multiple initial values and sets of simulations to see that they converge to the same 

estimates.  The second is to set the number of iterations run by the MCMC algorithm 

sufficiently high so as to achieve some level of convergence. 

Model diagnostics provided through WinBUGS are the Deviance Information 

Criterion (DIC, intended as a generalization of Akaike’s Information Criteria) and 

p(D) (effective number of parameters) (Spiegelhalter, et al. 2002).  These diagnostics 

are used in comparing competing models. 
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Output generated from WinBUGS in R under the Gelman software includes the 

following: 1) parameter estimates, standard deviations, and selected percentiles; 2) 

values of PSRF values for each parameter; 3) graphs of parameter estimates and 

PSRF values.  Code can be added to the R program to capture DIC and pD values for 

the model. 

The full model was run using two chains, with 1,000 iterations and a burn-in 

period of 500 iterations.  Initial values for each parameter were set at 0.1 above the 

mean for the distribution for chain one and 0.1 below the mean for the distribution for 

chain two.  Table 22 contains PSRF values for the various parameters by industry.  

As can be seen, the only parameter which did not meet the guideline convergence 

criteria is the intercept for Manufacturing (PSRF=1.27), which exceeds the criteria 

only slightly.  Based on this information, the model was not run using a larger 

number of iterations.  Appendix D contains factor estimates and associated standard 

deviations from the full model. 
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Table 22-PSRF Values for Full Conditional Reporting Status Model 

Construction Manufacturing Mining Wholesale Trade
Intercept 1.04 1.27 1.00 1.16

9 1.00 1.05 1.01 1.03
10 1.00 1.06 1.01 1.05
11 1.00 1.04 1.01 1.04
12* n/a n/a n/a n/a
13 1.00 1.04 1.01 1.03
14 1.01 1.05 1.02 1.05
15 1.01 1.01 1.01 1.02
Weekly 1.03 1.01 1.01 1.00
Bi-Weekly* n/a n/a n/a n/a
Semi-Monthly 1.00 1.01 1.01 1.00
Monthly 1.01 1.00 1.00 1.00
<10 1.01 1.04 1.01 1.07
10-19 1.00 1.03 1.00 1.04
20-49 1.00 1.06 1.00 1.05
50-99* n/a n/a n/a n/a
100-249 1.00 1.11 1.01 1.09
250-499 1.00 1.13 1.01 1.04
500-999 1.01 1.12 1.01 1.04
1000+ 1.01 1.06 1.01 1.07

n/a n/a n/a n/a
1.00 1.05 1.01 1.01
1.00 1.01 1.00 1.00
n/a n/a n/a n/a

1.01 1.01 1.16 1.02
1.00 1.03 1.02 1.00

ln(Reporting Gap) 1.00 1.02 1.12 1.03

*Designated reference level for factor

Logit Model for Conditional Probability of Late Reporting
Potential Scale Reduction Factors
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For illustration purposes, model results generated by the R program are displayed 

graphically in Figure 13 for Mining and Figure 14 for Wholesale Trade.  By way of 

explanation of the figures, the graph on the left shows the posterior 80% interval for 

each parameter along with the PSRF value (designated as R-hat in the graph).  The 

parameter “a” corresponds to the intercept, “gD[k]” corresponds to coefficient for the 

kth level of the number of reporting days indicator, “gL[k]” corresponds to coefficient 

for the kth level of the length of pay period indicator, “gS[k]” corresponds to 
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coefficient for the kth level of the design size class indicator, “gLRk” corresponds to 

coefficient for the late reporter indicator for month t k− , “gNRk” corresponds to 

coefficient for the nonreporter indicator for month t k− , and “gG” corresponds to the 

coefficient for the log(1 + reporting gap length) parameter. 

The graphs on the right show the posterior median and 80% intervals associated 

with each of the two chains for each parameter.  For parameters with different levels 

(e.g., design size class, “gS”), each level is provided on the same graph.  In addition, 

there is a graph for the deviance under the model.  The nearly monotonic increasing 

impact of design size class is visible for both industries (i.e., the medians increase or 

are stable from level to level within “gS”), along with the influence of monthly length 

of pay period and 15 reporting days. 

Figure 13-Conditional LR Rate Model Results, Full Model: Mining 
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Figure 14-Conditional LR Rate Model Results, Full Model: Wholesale Trade 

 

In the interest of parsimony of the model and reduction of computer calculation 

time to run the model, levels within a categorical variable were collapsed if posterior 

95% credible intervals for the coefficient for one category encompassed the estimated 

coefficient for another category.  Collapsed factor categories selected for each 

industry are provided in Table 23. 

Collapsing follows the expected relationship among design size classes, wherein 

the likelihood of late reporting increases as design size class increases, with the 

exception of Mining.  This exception may be due in part to smaller sample sizes for 

Mining, especially for larger size classes.  Collapsing among number of reporting 

data does not follow an intuitive pattern (e.g., late reporting in Construction 

associated with 10 reporting days less similar to 9 or 11 reporting days than to 13 
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reporting days).  However, as discussed previously, this may be an indication of a 

more complex relationship involving reporting timeframe and length of pay period. 

Table 23-Collapsed Factor Categories for Logit Model of Conditional LR Rate 

Construction Manufacturing Mining Wholesale 
Trade

9 D1 D1 D1 D1
10 D2 D0 D0 D2
11 D3 D1 D1 D1
12* D0 D0 D0 D0
13 D2 D0 D0 D2
14 D0 D0 D0 D1
15 D0 D0 D2 D3
Weekly L1 L1 L0 L1
Bi-Weekly* L0 L0 L0 L0
Semi-Monthly L2 L1 L0 L1
Monthly L3 L2 L1 L2
<10 S1 S1 S1 S1
10-19 S2 S1 S2 S2
20-49 S3 S2 S0 S3
50-99* S0 S0 S0 S0
100-249 S0 S3 S3 S4
250-499 S0 S3 S0 S4
500-999 S0 S3 S0 S4
1000+ S0 S4 S3 S5

R(t-1)0 R(t-1)0 R(t-1)0 R(t-1)0
R(t-1)1 R(t-1)1 R(t-1)1 R(t-1)1
R(t-1)2 R(t-1)2 R(t-1)2 R(t-1)2
R(t-2)0 R(t-2)0 R(t-2)0 R(t-2)0
R(t-2)1 R(t-2)1 R(t-2)1 R(t-2)1
R(t-2)2 R(t-2)2 R(t-2)2 R(t-2)2

*F 0 represents reference level for factor F

Logit Model for Conditional Probability of Late Reporting
Collapsed Factor Categories
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To assess the appropriateness of proposed collapsing, the model was run with and 

without collapsing for the beginning month of the period of interest for the research, 

April, 2001.  Model diagnostics DIC and p(D) under the two approaches are provided 

in Table 24.  The DIC values indicate the model with collapsed factors experiences 

no noticeable loss of information from the full model.  Therefore, these reduced sets 

of models were used in the empirical analysis. 



 111 
 

Table 24-Reporting Status Model: Diagnostics for Full, Collapsed Set of 
Parameters 

DIC pD DIC pD
Construction 51650 29.0 51652 18.2
Manufacturing 43040 26.6 43136 17.1
Mining 7408 23.0 7422 11.2
Wholesale Trade 34915 25.8 34979 21.7

Full set of parameters Collapsed set of parameters

Model Diagnostics
Reporting Status Model

Based on March 2000 - March 2001 Reporting History

 

For the empirical analysis, no variance estimates were calculated.  Notes 

concerning variance estimation for the reporting status model are provided in 

Appendix E. 

E. Model Implementation 

1. Approach 

Reporting status likelihoods for sample units not reporting as of the preliminary 

cutoff date for month t  were estimated using conditional probabilities of late 

reporting resulting from the model for the period April 2001 through March 2002.  

Estimated conditional late reporting rates for each month were compared to actual 

values. 

2. Generating Estimates 

Parameter estimates were generated for each month of interest, t , using the model 

in conjunction with all available data from January 2000 through month 1t − .  

Parameters for the logit model for the conditional probability of late reporting status 

were estimated using WinBUGS v1.4 called from a program written in R v.1.8.1.  
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The WinBUGS model specification is provided in Appendix F.1.  The R code used 

for parameter estimation is provided in Appendix F.2. 

The model was run using two chains, with 500 iterations and a burn-in period of 

250 iterations.  Initial values for each parameter were set at 0.1 above the mean for 

the distribution for chain one and 0.1 below the mean for the distribution for chain 

two.  Averages for the potential scale reduction factors for the model across the 12 

months are provided in Table 25.  As can be seen, there were 15 parameters that 

failed to meet the guideline convergence criteria for at least one month.  Further 

examination showed failure occurred in just one month for all but three parameters 

(Construction, ln(Reporting Gap+1) – 2 months, Wholesale Trade, Design size class 

3 – 3 months, and Wholesale Trade, intercept – 5 months).  As maximum PSRF 

values the parameters with multiple occurrences were not dramatically greater than 

1.2 and the other parameters had at most one occurrence, the model was not run using 

additional iterations.  The lack of convergence for a given month could, however, 

adversely affect the predictive power of the model. 
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Table 25-PSRF Values for Conditional Reporting Status Model 

Construction Manufacturing Mining Wholesale Trade
Intercept 1.42 1.40 1.07 1.32

D[1] 1.03 1.02 1.03 1.16
D[2] 1.05 0.00 1.09 1.12
D[3] 1.03 n/a n/a 1.06
L[1] 1.12 1.02 1.02 1.02
L[2] 1.53 1.14 n/a 1.03
L[3] 1.16 n/a n/a n/a
S[1] 1.03 1.15 1.01 1.35
S[2] 1.02 1.15 1.01 1.18
S[3] 1.02 1.38 1.06 1.26
S[4] n/a 1.24 n/a 1.38
S[5] n/a n/a n/a 1.28

1.03 1.02 1.09 1.08
1.07 1.05 1.03 1.03
1.22 1.65 1.19 1.24
1.07 1.21 1.09 1.02

ln(Reporting Gap) 1.27 1.64 1.18 1.16

Logit Model for Conditional Probability of Late Reporting
Maximum Potential Scale Reduction Factors
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Several illustrations from the graphical results available from the R software used 

to call WinBUGS are provided in Figure 15-Figure 18. 

Figure 15-Conditional LR Rate Model Results for March 2002: Construction 
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Figure 16- Conditional LR Rate Model Results for March 2002: Manufacturing 

 

Figure 17- Conditional LR Rate Model Results for March 2002: Mining 
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Figure 18- Conditional LR Rate Model Results for March 2002: Wholesale 
Trade 

 

Estimated coefficient values for the initial month of the analysis period, April 

2001, are provided in Table 26.  It should be remembered that factor level definitions 

vary across industry for number of reporting days, design size class, and, with the 

exception of L1 (Monthly), length of pay period. 

Table 26-Coefficient Estimates for Conditional Late Reporting Model: April 
2001 

2.5% Level Estimate 97.5% Level 2.5% Level Estimate 97.5% Level 2.5% Level Estimate 97.5% Level 2.5% Level Estimate 97.5% Level
Intercept 0.6212 0.7151 0.8001 0.8815 0.9590 1.0391 0.3475 0.4719 0.5885 1.2175 1.3181 1.4185

D1 -0.2264 -0.1801 -0.1311 0.1454 0.1973 0.2528 0.3686 0.5035 0.6567 -0.4646 -0.3905 -0.3221
D2 0.2929 0.3787 0.4601 n/a n/a n/a 0.1186 0.4078 0.6584 -0.6097 -0.5338 -0.4617
D3 0.9263 0.9853 1.0480 n/a n/a n/a n/a n/a n/a 1.8379 1.9383 1.9975
L1 0.1401 0.2469 0.3462 -0.0287 0.0923 0.2103 0.1053 0.3194 0.5357 0.1451 0.2420 0.3399
L2 -0.3462 -0.2809 -0.2111 -0.2576 -0.2077 -0.1479 n/a n/a n/a -0.3339 -0.2780 -0.2179
L3 -0.5977 -0.5057 -0.4060 n/a n/a n/a n/a n/a n/a n/a n/a n/a
S1 -0.7410 -0.6842 -0.6288 -0.6006 -0.4908 -0.4016 -0.8320 -0.6297 -0.4287 -0.4764 -0.3704 -0.2707
S2 -0.5391 -0.4750 -0.4079 -0.4387 -0.3238 -0.2235 -0.6391 -0.4325 -0.2295 -0.3485 -0.2212 -0.1009
S3 -0.4090 -0.3548 -0.2915 0.1516 0.2157 0.2890 0.0608 0.1968 0.3274 -0.2181 -0.1067 -0.0071
S4 n/a n/a n/a 0.2730 0.3538 0.4317 n/a n/a n/a 0.1061 0.1942 0.2865
S5 n/a n/a n/a n/a n/a n/a mn/a mn/a mn/a 0.3236 0.4143 0.5053

0.6087 0.6674 0.7283 0.5338 0.5922 0.6524 0.7844 0.9280 1.0760 0.9873 1.0539 1.1226
0.1501 0.2055 0.2573 0.1224 0.1780 0.2354 0.3962 0.5184 0.6501 0.1725 0.2314 0.2979
-0.4928 -0.4023 -0.2855 -0.9884 -0.8760 -0.7664 -0.9716 -0.6470 -0.3858 -1.0325 -0.8898 -0.7592
-0.2124 -0.1485 -0.0812 -0.8647 -0.7811 -0.7105 -0.3813 -0.1946 -0.0086 -0.4985 -0.4114 -0.3235

ln(Reporting Gap) -1.4035 -1.3175 -1.2409 -1.0605 -0.9533 -0.8587 -1.4816 -1.2337 -0.9883 -1.3750 -1.2515 -1.1105
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The reporting gap has a large negative effect on the conditional late reporting rate, 

yielding an expected decline of 31 to 39 percentage points in the late reporting rate 

across industries, due to a change from no reporting gap to a gap of one month for a 

sample unit with characteristics corresponding to the reference levels for the 

remaining factors.  In the other direction, prior month late reporting status for a 

sample unit with characteristics corresponding to the reference levels for the 

remaining factors is associated with an expected increase of 10 to 19 percentage 

points in the likelihood of current month late reporting. 

There were some shifts in the values of the estimated parameters across time, as 

indicated in Figure 19-Figure 23.  The estimated coefficient for log of reporting gap 

decreased between April 2001 and March 2002.  This was somewhat offset for 

Manufacturing and Wholesale Trade by an increase in the estimated coefficient for 

prior month nonresponse. As a reporting gap of one or more month implies prior 

month nonresponse, this suggests an interaction term for the model could be 

considered in future research.  The influence of prior month late reporting, by 

contrast, was relatively stable across the analysis time period.  The intercept was also 

fairly stable across time. 
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Figure 19-Coefficient Estimates for Log(Reporting Gap+1) 

Logit Model for Conditional Probability of Late Reporting
Estimated Coefficient for Log(Reporting Gap+1)
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Figure 20-Coefficient Estimates for Prior Month NR 

Logit Model for Conditional Probability of Late Reporting
Estimated Coefficient for Prior Month Nonresponse
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Figure 21-Coefficient Estimates for Prior Month LR 

Logit Model for Conditional Probability of Late Reporting
Estimated Coefficient for Prior Month Late Reporting
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Figure 22-Coefficient Estimates for Length of Pay Period=Monthly 

Logit Model for Conditional Probability of Late Reporting
Estimated Coefficient for Length of Pay Period=Monthly

-0.050

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

Apr-01 May-01 Jun-01 Jul-01 Aug-01 Sep-01 Oct-01 Nov-01 Dec-01 Jan-02 Feb-02 Mar-02

Month

Es
tim

at
ed

 V
al

ue

Construction
Manufacturing
Mining
Wholesale Trade

 



 119 
 

Figure 23-Intercept Estimates 

Logit Model for Conditional Probability of Late Reporting
Estimated Coefficient for Intercept
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Actual conditional late reporting rates were derived for the period from April 2001 

through March 2002, using the revised CES datafile.  Estimated conditional late 

reporting rates were derived using Model III in conjunction with the parameter 

estimates.  Two estimated conditional late reporting rates were derived – using 

parameter estimates based upon all available data as of month t  (updated 

parameters), and using parameter estimates based upon all available data as of the 

first month of interest (April ’01 parameters).  The SAS code used for deriving 

estimated conditional late reporting rates is provided in Appendix F.3. 

3. Measures of Accuracy 

The reporting status model was developed to allow accurate prediction of final 

reporting status for sample units that were not preliminary responders.  Assessment of 
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the performance of the model can be made by comparison to actual final reporting 

status.  The measures of accuracy utilized are 

( )( ) ( ) ( )Err t t tEst LR Est LR Act LR= −  

( )( )
( )( )

'02

0 '01

Err
ˆAve Err

12

Mar

t
t Apr

t

Est LR
Y ==

∑
 

( )( )
( )( )

'02

0 '01

Err
ˆAve Abs Err

12

Mar

t
t Apr

t

Est LR
Y ==

∑
 

4. Results 

Predicted conditional late reporting rates for the four industries had an average 

absolute error between two and four percentage points (Table 27-Table 30).  There 

was only one error greater than 10 percentage points, that being the initial month for 

Construction.  Predicted conditional late reporting rates based upon a fixed set of 

parameter estimates performed almost as well as those based upon updated parameter 

estimates. 
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Table 27-Predicted Conditional LR Rates: Construction 

Month Actual LR Rate
Predicted LR 

Rate (Updated 
parameters)

Error
Predicted LR 
Rate (April '01 
parameters)

Error

Apr-01 24.8% 40.3% 15.5% 40.3% 15.5%
May-01 29.3% 33.8% 4.5% 34.2% 4.9%
Jun-01 27.0% 26.8% -0.1% 27.1% 0.2%
Jul-01 27.9% 34.7% 6.8% 38.9% 11.0%
Aug-01 24.6% 24.2% -0.4% 24.9% 0.3%
Sep-01 24.5% 23.4% -1.1% 24.1% -0.4%
Oct-01 24.3% 24.5% 0.3% 25.4% 1.1%
Nov-01 34.6% 32.1% -2.5% 32.0% -2.6%
Dec-01 33.2% 25.7% -7.5% 26.4% -6.8%
Jan-02 27.1% 27.9% 0.8% 27.1% 0.0%
Feb-02 21.0% 22.1% 1.0% 21.6% 0.6%
Mar-02 20.3% 20.1% -0.3% 19.8% -0.3%
Ave Err 1.4% 2.0%

Ave Abs Err 3.4% 3.6%

Predicted Conditional Late Reporting Rates
April 2001 - March 2002

Construction

 

Table 28-Predicted Conditional LR Rates: Manufacturing 

Month Actual LR Rate
Predicted LR 

Rate (Updated 
parameters)

Error
Predicted LR 
Rate (April '01 
parameters)

Error

Apr-01 46.1% 49.2% 3.1% 49.2% 3.1%
May-01 50.6% 50.6% 0.0% 51.4% 0.8%
Jun-01 44.8% 44.1% -0.7% 44.3% -0.5%
Jul-01 44.3% 45.8% 1.5% 46.8% 2.5%
Aug-01 39.8% 40.9% 1.1% 41.2% 1.4%
Sep-01 39.4% 40.1% 0.7% 40.6% 1.2%
Oct-01 37.4% 41.8% 4.5% 42.4% 5.0%
Nov-01 40.8% 41.5% 0.7% 42.5% 1.7%
Dec-01 46.3% 41.9% -4.5% 42.9% -3.5%
Jan-02 40.8% 42.1% 1.3% 42.7% 1.9%
Feb-02 33.4% 35.1% 1.7% 35.9% 2.6%
Mar-02 32.4% 34.1% 1.8% 35.1% 1.8%
Ave Err 0.9% 1.5%

Ave Abs Err 1.8% 2.2%

Predicted Conditional Late Reporting Rates
April 2001 - March 2002

Manufacturing
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Table 29-Predicted Conditional LR Rates: Mining 

Month Actual LR Rate
Predicted LR 

Rate (Updated 
parameters)

Error
Predicted LR 
Rate (April '01 
parameters)

Error

Apr-01 41.2% 46.6% 5.3% 46.6% 5.3%
May-01 42.2% 47.6% 5.4% 48.8% 6.6%
Jun-01 39.1% 39.0% -0.2% 39.2% 0.0%
Jul-01 39.2% 40.4% 1.2% 42.8% 3.6%
Aug-01 45.5% 39.2% -6.3% 39.3% -6.2%
Sep-01 41.1% 39.7% -1.4% 39.7% -1.4%
Oct-01 28.9% 35.5% 6.6% 34.9% 6.0%
Nov-01 45.9% 37.3% -8.6% 37.0% -8.8%
Dec-01 42.8% 38.9% -3.9% 38.1% -4.7%
Jan-02 38.0% 43.6% 5.6% 42.6% 4.6%
Feb-02 32.2% 35.1% 2.9% 34.8% 2.6%
Mar-02 24.9% 26.5% 1.6% 27.0% 1.6%
Ave Err 0.7% 0.8%

Ave Abs Err 4.1% 4.3%

Predicted Conditional Late Reporting Rates
April 2001 - March 2002

Mining

 

Table 30-Predicted Conditional LR Rates: Wholesale Trade 

Month Actual LR Rate
Predicted LR 

Rate (Updated 
parameters)

Error
Predicted LR 
Rate (April '01 
parameters)

Error

Apr-01 47.1% 48.2% 1.1% 48.2% 1.1%
May-01 53.8% 51.4% -2.4% 51.6% -2.3%
Jun-01 47.9% 51.6% 3.7% 51.7% 3.8%
Jul-01 42.7% 45.1% 2.5% 45.3% 2.6%
Aug-01 39.1% 41.5% 2.4% 41.9% 2.8%
Sep-01 37.9% 41.9% 4.0% 43.4% 5.6%
Oct-01 35.9% 39.2% 3.3% 39.5% 3.6%
Nov-01 45.9% 41.9% -4.0% 42.4% -3.5%
Dec-01 42.3% 38.9% -3.5% 39.8% -2.5%
Jan-02 38.9% 41.6% 2.6% 41.8% 2.9%
Feb-02 33.1% 33.9% 0.8% 34.6% 1.5%
Mar-02 33.0% 32.5% -0.5% 33.4% -0.5%
Ave Err 0.8% 1.3%

Ave Abs Err 2.6% 2.7%

Predicted Conditional Late Reporting Rates
April 2001 - March 2002

Wholesale Trade

 

Looking at the performance of estimated conditional late reporting rates by prior 

reporting patterns in Table 31, average absolute errors are below 10 percentage points 

when sample sizes are above 150. 
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Table 31-Average Absolute Errors for Predicted Conditional LR Rates 

Month t-
1

Month t-
2 Ave n Actual 

LR Rate

Predicted LR 
Rate 

(Updated 
parameters)

Predicted LR 
Rate (April 

'01 
parameters)

Ave n Actual 
LR Rate

Predicted LR 
Rate 

(Updated 
parameters)

Predicted LR 
Rate (April 

'01 
parameters)

Ave n Actual 
LR Rate

Predicted LR 
Rate 

(Updated 
parameters)

Predicted LR 
Rate (April 

'01 
parameters)

Ave n Actual 
LR Rate

Predicted LR 
Rate 

(Updated 
parameters)

Predicted LR 
Rate (April 

'01 
parameters)

PR PR 798 65.2% 7.7% 8.8% 1605 72.9% 5.3% 5.3% 115 67.8% 11.2% 10.5% 606 69.5% 8.7% 8.6%
LR 279 66.4% 4.9% 5.6% 699 73.5% 4.1% 4.0% 51 72.4% 12.1% 12.1% 197 71.5% 6.8% 6.6%
NR 90 43.0% 15.2% 15.6% 131 41.9% 12.4% 12.3% 10 41.3% 29.9% 29.8% 52 42.4% 21.9% 22.1%

LR PR 232 78.4% 4.9% 5.4% 621 83.0% 3.4% 3.4% 60 84.3% 7.8% 8.6% 175 81.1% 6.7% 6.3%
LR 325 81.7% 4.9% 5.0% 1240 87.0% 1.2% 1.2% 114 88.1% 3.0% 2.9% 989 93.5% 2.5% 2.6%
NR 110 62.6% 12.4% 12.9% 269 64.5% 6.7% 6.8% 20 65.9% 15.0% 15.4% 96 67.7% 13.4% 14.2%

NR PR 287 24.1% 8.7% 9.5% 487 29.4% 8.6% 8.6% 42 27.1% 9.6% 9.6% 188 22.9% 7.5% 7.5%
LR 126 36.2% 8.4% 8.8% 310 41.4% 5.4% 5.4% 25 36.0% 17.2% 17.6% 114 35.1% 8.3% 8.6%
NR 3345 3.3% 2.7% 3.4% 4331 4.8% 1.6% 2.4% 408 3.8% 2.0% 2.6% 2114 3.0% 1.6% 2.3%

Average Absolute Error in Predicted Conditional Late Reporting Rate
by Prior Reporting Pattern
April 2001 - March 2002

Average Absolute ErrorAverage Absolute ErrorAverage Absolute ErrorAverage Absolute Error

Wholesale TradeConstruction Manufacturing MiningPrior 2 Months' 
Reporting 
Pattern

 

5. Discussion 

The logit model for conditional late reporting status appears to perform well 

overall and for larger subsets of the population.  The coefficients of the parameters 

are fairly stable over time, suggesting a periodic update of the estimated values 

should be sufficient for ongoing prediction.  Further research into the relationship 

between seasonality and number of reporting days could provide improvements to the 

model.  Consideration could also be given to establishing a standard set of factor 

levels across industry for consistency sake, with the loss in information as per the 

DIC evaluated for model selection. 

The parameter estimates from the model could be used to prioritize resources 

when targeting nonresponse.  Those characteristics associated with lower conditional 

probability of late reporting should be given higher priority in nonresponse followup.  

The model could also be used dynamically to estimate level of late reporting expected 

after preliminary data collection, thereby identifying when the makeup of the non-

preliminary reporters are such that low levels of late reporting are expected, allowing 
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special nonresponse followup efforts to be put into place prior to completion of data 

collection. 
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Chapter V:  An Alternative Approach for the CES 
Preliminary Estimates of Employment 

Within this chapter, an alternate approach for use in CES preliminary estimation of 

employment is developed and its performance assessed relative to the current 

methodology.  The approach seeks to address potential model misspecification error 

and involves imputing for missing data in an attempt to predict late reporting values 

that will be used in revised estimates.  The objective is to reduce the difference 

between preliminary and revised estimates. 

Prior to specification of the approach, comments on the current estimator are 

provided in section A, and the nature of model misspecification error is explored and 

the CES sample evaluated relative to the potential for model misspecification error in 

section B.  The approach is described in section C and its performance evaluated 

using historical data in section D. 

A. Comments on CES Estimation Methodology 

The model that yields the weighted link relative as a maximum likelihood 

estimator (MLE) is a weighted proportional regression model, in which the current 

month’s value is assumed proportional to the prior month’s value (West, et al., 1989), 

with the proportionality factor assumed to vary by estimation cell, ( )c 1, ,C= … , and 

month. 

Model 0: ( 1)tci tc t ci tciY Y kρ −= +  

( )
2

ind 1~  0, k t ci
tci

ci

Y
k N

w

σ −⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
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where tcρ  is the model parameter describing the month t  expected growth rate for 

cell c . 

Under this model the maximum likelihood estimator (MLE) for tcρ  is 

( )1

ˆ c

c

ci tci
i s

tc
ci t ci

i s

w Y

w Y
ρ ∈

−
∈

=
∑
∑

 

where cs  represents the sample from estimation cell c .  This is the complete response 

form of the current CES weighted link relative.  An estimate of current month 

employment can be written as 

( )∑ −=
c

cttct YY 1ˆˆ ρ  

In practice, population totals, ( )1t cY − , are unknown at the time of estimation, and 

estimation is complicated by the presence of late reporting and nonresponse.  The 

weighted link relative estimator used for CES is a variant of the MLE taking these 

situations into account by ignoring late reporting and nonresponse by utilizing only 

sample units which report data in both months t  and 1−t .  Estimated employment is 

obtained by linking back to the most recently available benchmark totals, 
Bt cY  (which 

is assumed to be a fixed quantity), through the monthly weighted link relatives.  Thus, 

using the notation developed in Chapter III, the preliminary estimator for month t  

may be written as the product of weighted link relatives back to Bt  and the 

benchmark totals. 
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( ) ( ) ( ) ( )
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Under Model 0 it can be seen that, for all revisions, the expected value of the 

weighted link relative for month t , conditioned on ( )1t−Y , is the month t  

proportionality factor for the estimation cell. 
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Correspondingly, the expected value of the estimated employment for month t  

under Model 0, conditioned on the benchmark population values ctB
Y , is equal to the 

expected population total for month t .  This result is derived through a series of 

conditional expectations, with conditional expectations taken based on each 

population total prior to month t . 
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An implicit assumption of the current weighted link relative estimator is that, 

within an estimation cell, establishments not reporting data for both months t  and 

1−t  (which includes nonsampled units, and late reporting and nonresponse units in 

month t , as well as preliminary reporting units in month t  for which data were not 

reported in month 1−t ) have the same expected growth rate as establishments 

reporting data, i.e., they all follow Model 0. 

A more reasonable assumption may be that the proportionality factor varies not 

only by the static characteristics currently used to define estimation cells, but also by 

dynamic characteristics related to recent employment information.  If, instead of 

Model 0, proportionality factors vary across classifications of establishments within 

estimation cell 

Model 1: ( )( ) ( )cgittcgcgittcgi YYYE 11| −− = ρ  

where g  represents some classification of establishments within estimation cell c  

tcgρ  is the model parameter describing the month t  expected growth rate for class 

g  within cell c . 

then the expected value under this model of the current weighted link relative no 

longer equals the expected value of the population total.  This can be shown by first 

writing the deviation of the tcgρ  from tcρ  as  

tcgtctcg δρρ +=  

The expected value of the current weighted link relative under Model 1 is then  
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, the 

proportion of the population total for estimation cell c  contained within class g  as of 

revision k . 

Thus, classifications of sample below the estimation cell level, g , that result in 

deviances from the growth rate at the estimation cell level, tcρ , indicate the potential 

for errors in the current weighted link relative estimator.  To the extent the estimated 

relative sizes of these classes are such that the deviations do not net out (i.e., 

( ) 0≠Ψ k
tc ), the current weighted link relative estimator will be biased under Model 1.  

Empirical information on these components is provided in section B of this chapter.  



 130 
 

Note that, under complete response, the design expectation for ( ) 0=Ψ k
tc , and the 

weighted link relative is unbiased under Model 1. 

The expected value of the estimated employment for month t  under Model 1 is 
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This calculation assumes the number of sample units in ( ) kctts |1, −  is sufficiently 

large so that the expectation of the product of ratios is approximately equal to the 
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product of the expectations of the ratios.  Again, under complete response, the design 

expectation for ( ) 0=Ψ k
tc , and the estimated employment is unbiased under Model 1. 

Assuming ct*ρ  and ( )k
ct*Ψ  are relatively stable across time, replacing with mean 

values, cρ  and cΨ  yields 
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Further, assuming cΨ  is small relative to cρ  (if cρ  is around 1.0, say cΨ  <0.001), 

then 2nd and higher order terms including cΨ  may reasonably be ignored, leaving 

( ) ( ) ( ) ( )( )1ˆ | Model 1 | Model 0 B

B

t t
t t t c B c c

c
E Y E Y Y t t ρ − −⎡ ⎤= + − Ψ⎣ ⎦∑  

This result shows the bias in tŶ  due to model misspecification increases with the 

number of months from the last benchmark date, assuming cΨ  is non-zero.  This 

provides the motivation for carrying out benchmark updates on a frequent basis.  For 

the CES survey, the number of months from the last benchmark ranges from 11 to 23.  

Thus, even if biases on the monthly link relatives are less than 0.001, the bias on the 

monthly employment estimate could be on the order of one percent of the population 

value. 
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Given incomplete reporting, the expected value of the weighted link relative under 

Model 1 will vary between the preliminary and the final due to the inclusion of late 

reporters.  The expected difference can be written as 
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To the extent the estimated relative sizes of the population in estimation cell c  

contained within class g  vary between preliminary and final, the preliminary and 

final link relatives will differ.  Empirical information on these values is provided in 

section B of this chapter.  One approach to generation of a preliminary estimate 

subject to less revision would be to utilize the sample that can later be included as late 

reporters, thereby reducing differences between the ( )
( )1

1ˆ cgtp −  and ( )
( )3

1ˆ cgtp − .  This is the 

approach developed in the remainder of this chapter. 

B. Potential for Error in Current CES Estimation Methodology 

1. Indirect Indicators of Error Due to Late Reporting 

Commonly, indirect indicators of the impact of nonreporting are used to assess the 

potential impact, as data for the nonreporters are not known.  The CES survey 

provides more tangible information related to the impact of nonreporting through 2nd 

and 3rd closing revisions (late reporting) and, to a lesser extent, benchmark revisions 

(nonresponse, plus sampling and measurement error). 

Comparisons of first and third closing estimates provide a direct indication of the 

impact of late reporting, as the only difference between the two estimates is the 
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inclusion of late reporters into the sample.  The relative difference between first and 

third closing estimates for month t , 
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and the difference between first and third closing estimates of the month-to-month 

change from month 1−t  to month t , 
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provide measures of the extent to which growth rates for late reporters differed from 

those for early reporters.  Large differences provide an indication that the late 

reporting mechanism may not be ignorable. 

Figure 24 shows relative differences between first and third closing published non-

seasonally adjusted estimates of monthly employment for the period May 2001 – 

February 2002 and May 2002 – February 2003.  March and April were excluded from 

this graph due to the nature of CES survey processing as, for these years, annual 

benchmark data were incorporated with the publication of first closing estimates for 

May (and thus second closing for April and third closing for March) thereby negating 

the ability to measure solely late reporting impact for these months.  Although the 

larger industries have experienced fairly small revisions (absolute relative differences 

less than 0.3%), the revisions for Mining have been much greater, with the absolute 

relative difference as high as 1.1% in February 2003. 
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Figure 24-First Closing Revision 

First Closing Revision, Relative to Third Closing Estimate
Selected Industries: May '01 - Feb '02, May '02 - Feb '03
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Revisions in the monthly employment estimates and in the estimates of month-to-

month change in employment can also be compared with the month-to-month change 

in employment, which is a primary measure for assessing the employment data.  

Revisions that are large relative to the estimated change could serve to decrease the 

utility of the preliminary reports.  Magnitudes of the revisions in monthly and month-

to-month change in employment to the first closing estimate of month-to-month 

change in employment for the period May 2002 – February 2003 are provided in 

Table 32. 
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Table 32-First Closing Revision versus Month-to-Month Change 
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May-02 16,769 -10 24 -9 6,682 3 19 4 561 -2 4 -2 6,595 2 196 1

Jun-02 16,838 4 78 5 6,713 0 27 1 562 -1 3 -1 6,794 -4 200 -7

Jul-02 16,755 -6 -88 -5 6,716 -3 3 -3 561 -2 -1 -1 6,857 -6 61 0

Aug-02 16,784 7 30 12 6,698 0 -15 0 562 3 3 3 6,864 3 13 3

Sep-02 16,709 11 -70 -1 6,672 1 -27 2 561 -2 -4 -2 6,785 15 -78 11

Oct-02 16,643 2 -74 -1 6,667 6 -6 6 560 0 0 1 6,752 3 -50 5

Nov-02 16,575 -15 -73 -12 6,662 -9 -11 -9 554 0 -6 0 6,645 4 -111 5

Dec-02 16,487 -13 -72 -14 6,646 0 -7 0 550 1 -4 1 6,448 1 -196 -4

Jan-03 16,341 7 -136 10 6,585 4 -62 5 537 3 -14 3 6,128 -3 -323 -1

Feb-03 16,293 -6 -58 -3 6,584 -1 -4 -2 535 6 -3 4 6,065 -4 -66 2

First Closing Revisions versus First Closing Month-to-Month Employment Change
Selected Industries: May '02 - Feb '03

Manufacturing Wholesale Trade Mining Construction

(Numbers in thousands)

 

 

Although revisions for several months are larger than the first closing estimate of 

month-to-month employment change, the changes in these situations are small.  For 

months with larger employment changes, revisions are not of the magnitude of the 

change, but could nonetheless be viewed as substantial (five of eighteen first closing 

changes of at least 50,000 saw a revision in the first closing estimated employment 

level that was 10%+ of the magnitude of the first closing estimated change (i.e., 

( ) ( )
( )

( )0
1,

02 *1.0 −∆>− tttt YY ), while four saw a 10%+ revision in the magnitude of the 

change (i.e., ( ) ( )
( )

( )0
1,

02 *1.0 −∆>∆−∆ tttt )).  Viewed from this perspective, late reporting 

could be considered to have an adverse impact on the accuracy of the first closing 

estimates. 
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2. Differences between Preliminary and Late Reporters 

As discussed in section A of this chapter, to the extent there is misspecification in 

the underlying model upon which the current CES weighted link relative is based 

(Model 0), there is the potential for error in the resulting estimated employment.  Of 

particular interest for this research is that model misspecification could result in 

differences between preliminary and revised estimates. 

One way this potential for error due to model misspecification can be assessed is 

to look at the level of agreement in weighted link relatives between preliminary and 

late reporters.  If Model 0 fits well, then over time the relationship between weighted 

link relatives for preliminary and late reporters within an estimation cell should 

follow a straight line through the origin with a slope of 1.  Figure 25-Figure 28 show 

the actual preliminary and late reporter weighted link relatives for March 2000 

through December 2002.  The straight line assuming Model 0 is provided, along with 

the straight line fitted to the data points.  As can be seen, for both Construction (slope 

= 0.963) and Manufacturing (slope = 0.905) the fitted line has a slope close to 1.  This 

is not the case for Mining (slope = 0.411) and Wholesale Trade (slope = 0.671).  Note 

the scales on each figure are different, to allow better visibility to the data points for 

that industry. 
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Figure 25-Link Relatives for Preliminary, Late Reporters-Construction 

Link Relatives for Preliminary, Late Reporters
Construction
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Figure 26-Link Relatives for Preliminary, Late Reporters-Manufacturing 

Link Relatives for Preliminary, Late Reporters
Manufacturing
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Figure 27-Link Relatives for Preliminary, Late Reporters-Mining 
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Figure 28-Link Relatives for Preliminary, Late Reporters-Wholesale Trade 

Link Relatives for Preliminary, Late Reporters
Wholesale Trade
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Regardless of fit, weighted link relatives for late reporters occasionally differ from 

those of preliminary reporters by more than one percentage point, as illustrated in 

Figure 29.  It is these more extreme deviations that will tend to yield larger revisions, 

and which the approach developed in the next section is intended to control for.  In 

order to develop the approach, a set of underlying factors that may be driving these 

deviations must be identified. 

Figure 29-Link Relative Deviations: Late Reporters – Preliminary Reporters 

Link Relative Deviations
Late Reporter - Preliminary Reporter
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3. Components of Model Misspecification Error 

Potential model misspecification may be more directly assessed by examining the 

components of error defined in section A of this chapter: tcgδ  (deviation of class 

growth rate from cell growth rate); and ( )
( )2

1ˆ t cgp −  (estimated proportion of cell contained 
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within class), identified in the previous section.  The question is what characteristics 

should be used to define classes within estimation cell. 

Two sets of characteristics were hypothesized to be related to employment growth 

rate for month t : prior month employment size and prior month employment change.  

Employment size was considered because: 1) growth rate experience may reasonably 

be expected to differ for small and large establishments; and 2) growth rates are 

inherently more unstable for establishments with smaller employment in month 1t −  

(i.e., an employment change of 1 for an establishment of with month 1t −  

employment of 5 represents a 20% change).  Prior month employment change was 

considered as employment change for the current period could vary based upon the 

relative size of the employment change for the immediately prior period. 

Employment change can be viewed in actual ( ) ( )( )1 2t i t iY Y− −−  or relative 

( ) ( )( )1 2/t i t iY Y− −  terms.  For smaller establishments, actual employment change provides 

a more stable measure than does relative employment change, while the opposite is 

true for larger establishments.  Therefore, the approach was developed to use actual 

employment change for smaller establishments and relative employment change for 

larger establishments. 

Rank ordered prior month employment changes (both actual and relative) for each 

month were separated into three sets of units for purposes of defining prior month 

employment change classes within an industry.  Establishments within the first set 

were designated as low prior month employment change, those within the second set 

were designated as mid prior month employment change and those within the third 

set were designated as high prior month employment change.  Those units for which 
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prior employment change was not known (i.e., unit did not report for month 2−t ) 

were designated as unknown prior month employment change. 

The class utilized for an establishment was determined based upon the 

establishment’s employment level for month 1t −  (the base month for the 

employment change to be estimated by the model).  For establishments classified as 

small employment level (<50) for month 1t − , the actual prior month employment 

change class was used; establishments classified as large employment level for month 

1t − , the relative prior month employment change class was used. 

Average values for tcgδ  and ( )
( )2

1ˆ t cgp −  for the period March 2000 – December 2002, 

based upon design size class within industry, were calculated using the final reported 

sample (i.e., preliminary plus late reporters).  For tcgδ , the standard deviation of the 

monthly values was also calculated, along with the number of monthly values that 

were greater than zero (to provide an indication of consistency of direction).  For 

( )
( )2

1ˆ t cgp − , the minimum and maximum monthly values were calculated to indicate the 

range for possible use in estimating potential error associated with the current 

weighted link relative.  Average numbers of total and preliminary reporters were also 

calculated as an indication of whether sufficient sample sizes exist for estimation of 

parameters.   

Looking at prior month size class (Table 33), it appears that the smallest 

establishments (<10) have different employment growth rates ( tcgδ  ranges from 0.006 

to 0.021 and, with the exception of Mining, values of tcgδ  were positive for 85%+ of 

the months). 
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Table 33-Components of Model Misspecification Error: Size 

Total Preliminary 
Reporters Average stdev Percent >0 Average Min Max

Construction <10 2692 2344 0.0191 0.0114 97.1% 0.1678 0.1590 0.1835
10-19 1239 1086 -0.0015 0.0072 47.1% 0.1286 0.1122 0.1441
20-49 1804 1571 -0.0018 0.0066 41.2% 0.2077 0.1823 0.2212
50-99 1473 1271 -0.0039 0.0066 20.6% 0.1573 0.1440 0.1656

100-249 1435 1230 -0.0050 0.0089 23.5% 0.1902 0.1693 0.2196
250+ 465 382 -0.0075 0.0184 32.4% 0.1484 0.1200 0.1722

Manufacturing <10 1554 1277 0.0128 0.0083 100.0% 0.0232 0.0193 0.0267
10-19 1231 1043 0.0021 0.0061 61.8% 0.0308 0.0264 0.0359
20-49 2323 1983 0.0017 0.0054 61.8% 0.0730 0.0653 0.0835
50-99 3182 2660 -0.0001 0.0042 44.1% 0.0972 0.0891 0.1054

100-249 6180 5141 0.0009 0.0050 55.9% 0.2155 0.2029 0.2265
250+ 4687 3735 -0.0012 0.0021 29.4% 0.5604 0.5379 0.5835

Mining <10 285 233 0.0212 0.0348 67.6% 0.0711 0.0557 0.0838
10-19 214 175 -0.0166 0.0345 32.4% 0.0680 0.0575 0.0805
20-49 317 252 -0.0034 0.0197 47.1% 0.1333 0.1111 0.1563
50-99 191 151 -0.0006 0.0101 41.2% 0.0953 0.0787 0.1130

100-249 163 125 0.0094 0.0255 58.8% 0.1326 0.0978 0.1737
250+ 122 85 -0.0022 0.0097 38.2% 0.4997 0.4494 0.5519

Wholesale Trade <10 2252 1753 0.0057 0.0052 85.3% 0.1385 0.0527 0.1542
10-19 1009 801 0.0005 0.0090 50.0% 0.1079 0.0737 0.1191
20-49 1112 851 -0.0007 0.0055 47.1% 0.1756 0.1565 0.1946
50-99 706 530 -0.0019 0.0082 50.0% 0.1474 0.1330 0.1666

100-249 891 660 -0.0006 0.0044 50.0% 0.1916 0.1676 0.2302
250+ 423 293 -0.0013 0.0047 26.5% 0.2389 0.1851 0.3202

Values for    Values for Average Sample Size

Components of Model Misspecification Error
by Prior Month Employment Size

March 2000 - December 2002

Prior Month 
Employment 

Size
Industry

tcgδ ( )cgtp 1ˆ −

 

This situation is illustrated in Figure 30, which graphs weighted link relatives for 

reporting establishments in the prior month employment class <10 against the 

weighted link relatives for Construction as a whole.  In this case, the link relatives for 

the industry as a whole are almost consistently below those for this size class.  These 

results suggest the use of prior month employment size, perhaps collapsed into two or 

a few classes, in Model 1 could better explain employment growth rates for potential 

late reporters than Model 0. 



 143 
 

Figure 30- Comparison of Industry and Industry x Size Link Relatives 

Link-Relatives: Industry vs. Ind x Size
Construction: Prior Month Emp <10

March 2000 - December 2002
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The results contained in Table 34 provide the breakout of values for tcgδ  and 

( )
( )2

1ˆ t cgp −  for prior month employment size class by prior month employment change 

class.  These results indicate that for smaller establishments, particularly those in the 

<10 size class, prior month employment change that was low or high deviate 

noticeably from the industry level growth rate, and in opposite directions.  

Establishments with prior month employment of 10-19 and 20-49 showed some 

tendencies in this same direction, but not to the extent seen for the smallest size class.  

Where deviations occurred, establishments with low prior month employment change 

experienced growth rates larger than those for the industry as a whole, while 

establishments with high prior month employment change experienced growth rates 

smaller than those for the industry as a whole. 
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Table 34-Components of Model Misspecification Error: Size x Change 

Total Preliminary 
Reporters Average stdev Percent >0 Average Min Max

Construction <10 Low 492 424 0.1054 0.0396 100.0% 0.0278 0.0202 0.0349
Mid 1708 1501 0.0105 0.0119 82.4% 0.1021 0.0931 0.1184
High 374 322 -0.0307 0.0208 11.8% 0.0310 0.0221 0.0389
Unk 118 97 0.0286 0.0445 73.5% 0.0070 0.0027 0.0134

10-19 Low 383 335 0.0279 0.0175 97.1% 0.0347 0.0257 0.0430
Mid 443 391 -0.0061 0.0100 20.6% 0.0493 0.0406 0.0767
High 378 330 -0.0209 0.0175 8.8% 0.0405 0.0299 0.0538
Unk 36 30 -0.0044 0.0613 38.2% 0.0040 0.0019 0.0079

20-49 Low 571 498 0.0031 0.0167 58.8% 0.0575 0.0448 0.0736
Mid 592 516 -0.0075 0.0097 26.5% 0.0729 0.0570 0.0946
High 597 522 0.0008 0.0120 50.0% 0.0711 0.0518 0.0835
Unk 44 34 -0.0123 0.0507 47.1% 0.0061 0.0020 0.0126

50-99 Low 459 397 -0.0139 0.0239 32.4% 0.0437 0.0380 0.0517
Mid 484 417 -0.0050 0.0112 41.2% 0.0540 0.0491 0.0608
High 499 432 0.0052 0.0129 67.6% 0.0553 0.0475 0.0630
Unk 31 24 -0.0016 0.0408 52.9% 0.0044 0.0018 0.0101

100-249 Low 418 360 -0.0202 0.0197 17.6% 0.0525 0.0394 0.0648
Mid 456 390 -0.0064 0.0151 38.2% 0.0604 0.0499 0.0735
High 532 458 0.0066 0.0128 70.6% 0.0721 0.0613 0.0825
Unk 29 22 0.0010 0.0476 38.2% 0.0051 0.0020 0.0125

250+ Low 119 97 -0.0156 0.0410 23.5% 0.0359 0.0229 0.0551
Mid 164 137 -0.0040 0.0154 44.1% 0.0542 0.0296 0.0784
High 166 136 -0.0030 0.0376 47.1% 0.0518 0.0361 0.0765
Unk 16 11 -0.0189 0.0362 23.5% 0.0065 0.0024 0.0279

Components of Model Misspecification Error: Construction
by Prior Month Employment Size x Prior Month Employment Change

March 2000 - December 2002

Prior Month 
Employment 

Change

Prior Month 
Employment 

Size
Industry

Values for Average Sample Size Values for    tcgδ ( )cgtp 1ˆ −

 

Total Preliminary 
Reporters Average stdev Percent >0 Average Min Max

Manufacturing <10 Low 260 202 0.0926 0.0401 100.0% 0.0033 0.0023 0.0043
Mid 1071 899 0.0040 0.0090 67.6% 0.0159 0.0119 0.0194
High 159 126 -0.0355 0.0218 2.9% 0.0030 0.0022 0.0039
Unk 65 50 0.0355 0.0480 88.2% 0.0010 0.0003 0.0022

10-19 Low 319 270 0.0237 0.0129 100.0% 0.0074 0.0055 0.0092
Mid 604 517 -0.0021 0.0050 29.4% 0.0153 0.0118 0.0196
High 271 227 -0.0119 0.0139 11.8% 0.0072 0.0052 0.0089
Unk 38 29 0.0050 0.0205 64.7% 0.0009 0.0002 0.0019

20-49 Low 795 680 0.0109 0.0143 82.4% 0.0234 0.0195 0.0287
Mid 783 669 -0.0026 0.0055 29.4% 0.0245 0.0188 0.0321
High 682 585 -0.0039 0.0089 35.3% 0.0231 0.0175 0.0302
Unk 63 50 0.0072 0.0230 52.9% 0.0020 0.0008 0.0044

50-99 Low 1081 908 0.0004 0.0106 52.9% 0.0304 0.0260 0.0353
Mid 1042 869 -0.0025 0.0064 29.4% 0.0317 0.0276 0.0386
High 991 833 0.0016 0.0077 61.8% 0.0326 0.0278 0.0377
Unk 68 51 0.0053 0.0211 61.8% 0.0025 0.0011 0.0055

100-249 Low 2076 1734 0.0030 0.0174 35.3% 0.0718 0.0650 0.0808
Mid 1803 1496 -0.0022 0.0049 29.4% 0.0623 0.0541 0.0694
High 2189 1830 0.0016 0.0054 76.5% 0.0770 0.0714 0.0861
Unk 112 81 -0.0063 0.0292 52.9% 0.0043 0.0018 0.0082

250+ Low 1326 1065 -0.0061 0.0081 17.6% 0.1436 0.1199 0.1865
Mid 1759 1398 -0.0011 0.0038 38.2% 0.2294 0.1841 0.2663
High 1476 1185 0.0035 0.0049 79.4% 0.1686 0.1408 0.1935
Unk 126 88 -0.0048 0.0184 44.1% 0.0187 0.0069 0.0400

Values for 

Components of Model Misspecification Error: Manufacturing
by Prior Month Employment Size x Prior Month Employment Change

March 2000 - December 2002

Prior Month 
Employment 

Change

Average Sample Size Values for    
Industry

Prior Month 
Employment 

Size

tcgδ ( )cgtp 1ˆ −
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Total Preliminary 
Reporters Average stdev Percent >0 Average Min Max

Mining <10 Low 45 36 0.1826 0.2594 85.3% 0.0086 0.0032 0.0164
Mid 201 166 0.0010 0.0271 55.9% 0.0508 0.0369 0.0596
High 30 24 0.0017 0.1279 47.1% 0.0089 0.0050 0.0167
Unk 9 7 0.0761 0.4931 55.9% 0.0027 0.0000 0.0100

10-19 Low 54 45 0.0169 0.0964 58.8% 0.0160 0.0077 0.0290
Mid 104 84 -0.0172 0.0366 35.3% 0.0327 0.0221 0.0422
High 51 42 -0.0442 0.0720 23.5% 0.0176 0.0077 0.0273
Unk 5 4 -0.0183 0.1753 47.1% 0.0017 0.0000 0.0064

20-49 Low 88 71 0.0079 0.0464 70.6% 0.0340 0.0157 0.0671
Mid 123 98 -0.0051 0.0238 44.1% 0.0544 0.0284 0.0775
High 97 78 -0.0169 0.0340 29.4% 0.0419 0.0182 0.0623
Unk 8 6 0.0352 0.2509 55.9% 0.0030 0.0001 0.0117

50-99 Low 56 45 0.0025 0.0278 55.9% 0.0269 0.0191 0.0400
Mid 68 53 -0.0046 0.0149 29.4% 0.0324 0.0199 0.0480
High 63 50 0.0022 0.0207 50.0% 0.0342 0.0169 0.0468
Unk 4 3 -0.0371 0.1768 32.4% 0.0018 0.0000 0.0093

100-249 Low 54 41 0.0050 0.0503 52.9% 0.0463 0.0254 0.0844
Mid 48 37 -0.0037 0.0174 44.1% 0.0350 0.0199 0.0570
High 58 44 0.0145 0.0395 67.6% 0.0487 0.0302 0.0778
Unk 4 3 0.0156 0.0803 58.8% 0.0027 0.0003 0.0124

250+ Low 34 23 -0.0083 0.0331 32.4% 0.1473 0.0435 0.3023
Mid 46 32 0.0026 0.0126 55.9% 0.1913 0.0892 0.3479
High 38 27 -0.0057 0.0223 38.2% 0.1473 0.0534 0.2482
Unk 4 3 -0.0924 0.3837 38.2% 0.0138 0.0000 0.1282

Values for    Values for 

Components of Model Misspecification Error: Mining
by Prior Month Employment Size x Prior Month Employment Change

March 2000 - December 2002

Industry
Prior Month 
Employment 

Size

Prior Month 
Employment 

Change

Average Sample Size tcgδ ( )cgtp 1ˆ −

 

Total Preliminary 
Reporters Average stdev Percent >0 Average Min Max

Wholesale Trade <10 Low 212 164 0.0564 0.0320 97.1% 0.0128 0.0050 0.0165
Mid 1806 1419 0.0024 0.0067 61.8% 0.1078 0.0379 0.1209
High 146 116 -0.0242 0.0315 17.6% 0.0123 0.0068 0.0160
Unk 87 54 0.0188 0.0523 67.6% 0.0056 0.0008 0.0161

10-19 Low 205 160 0.0173 0.0157 91.2% 0.0201 0.0145 0.0264
Mid 584 470 -0.0011 0.0048 35.3% 0.0624 0.0402 0.0725
High 187 151 -0.0147 0.0188 8.8% 0.0214 0.0132 0.0272
Unk 33 20 0.0181 0.1031 61.8% 0.0039 0.0011 0.0109

20-49 Low 328 247 0.0096 0.0168 82.4% 0.0476 0.0381 0.0647
Mid 441 341 -0.0029 0.0050 29.4% 0.0712 0.0561 0.0872
High 305 239 -0.0066 0.0091 23.5% 0.0494 0.0346 0.0630
Unk 38 24 -0.0054 0.0205 44.1% 0.0075 0.0007 0.0197

50-99 Low 226 169 0.0010 0.0172 70.6% 0.0428 0.0324 0.0526
Mid 232 175 -0.0009 0.0058 44.1% 0.0494 0.0385 0.0652
High 226 173 -0.0045 0.0153 41.2% 0.0501 0.0420 0.0668
Unk 23 14 -0.0031 0.0797 38.2% 0.0051 0.0008 0.0118

100-249 Low 286 213 0.0009 0.0085 64.7% 0.0584 0.0414 0.0744
Mid 272 200 0.0006 0.0079 50.0% 0.0597 0.0392 0.0943
High 307 231 -0.0015 0.0052 38.2% 0.0656 0.0529 0.0982
Unk 26 15 -0.0124 0.0471 41.2% 0.0079 0.0018 0.0179

250+ Low 118 81 -0.0051 0.0135 35.3% 0.0696 0.0367 0.1288
Mid 154 106 0.0004 0.0064 47.1% 0.0786 0.0511 0.1140
High 134 96 0.0017 0.0066 55.9% 0.0693 0.0488 0.1193
Unk 18 10 -0.0026 0.0296 50.0% 0.0214 0.0019 0.0710

Components of Model Misspecification Error: Wholesale Trade
by Prior Month Employment Size x Prior Month Employment Change

Industry
Prior Month 
Employment 

Size

Prior Month 
Employment 

Change

Average Sample Size

March 2000 - December 2002

Values for    Values for tcgδ ( )cgtp 1ˆ −
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Again, several illustrations show the degree of deviation from Model 0 for selected 

classes.  Figure 31 presents graphs of weighted link relatives for reporting 

establishments in the prior month employment class <10 for Construction, by prior 

month employment change class (Low, Mid, High), against the weighted link 

relatives for the industry as a whole.  If Model 0 fit for all classes, the observations 

would be on the 45 degree line denoted as “Linear (Model 0 Fit).” 

Figure 31-Comparison of Industry and Industry x Size x Change Link Relatives 

Link-Relatives: Industry vs. Ind x Size x Prior Change
Construction: Prior Month Emp <10, Low Prior Month Change

March 2000 - December 2002
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Link-Relatives: Industry vs. Ind x Size x Prior Change
Construction: Prior Month Emp <10, Mid Prior Month Change

March 2000 - December 2002
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Link-Relatives: Industry vs. Ind x Size x Prior Change
Construction: Prior Month Emp <10, High Prior Month Change

March 2000 - December 2002
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For establishments in the Low and Mid prior month employment change classes, 

the link relatives for the industry as a whole tend to be below the actual link relatives 

(consistently so for the Low prior month employment change class), while the reverse 

is true for establishments in the High prior month employment change class.  These 

results suggest the use of prior month employment size crossed with prior month 

employment change, at least for one or several smaller size classes, in Model 1 could 

better explain employment growth rates for potential late reporters than Model 0. 

Based upon the preceding information, rough estimates of the bias in the current 

CES weighted link relative estimator under Model 1 were estimated, using the 

expected value derived in section A, and are presented in Table 35.  Average bias 

refers to the bias derived using average values of tcgδ   and ( )
( )2

1ˆ t cgp − .  Minimum bias 

refers to the bias estimated using average values of tcgδ  with minimum values of 

( )
( )2

1ˆ t cgp −  if tcgδ  is positive and with maximum values of ( )
( )2

1ˆ t cgp −  if tcgδ  is negative.  

Maximum bias refers to the bias estimated using average values of tcgδ  with 

maximum values of ( )
( )2

1ˆ t cgp −  if tcgδ  is positive and with minimum values of ( )
( )2

1ˆ t cgp −  if 

tcgδ  is negative. 

Table 35-Estimated Bias for Current Weighted Link Relative, ( )cttLR 1, −  

Industry Average Minimum Maximum
Construction 0.0001 -0.0037 0.0032
Manufacturing 0.0000 -0.0009 0.0008
Mining -0.0019 -0.0183 0.0061
Wholesale Trade 0.0001 -0.0020 0.0019

Estimated Bias

Estimated Bias for Current Weighted Link Relative
Under Model 1

Based on Data from March 2000 - December 2002
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Results indicate small estimated biases on average for a monthly link relative 

although, given the estimate for a given month is linked to the benchmark through 11 

to 23 months and the bias is cumulative, the estimated bias for a monthly employment 

estimate could be on the order of several tenths of a percentage point (and more than 

one percentage point for Mining.  Given values for minimum and maximum 

estimated bias are fairly evenly balanced around zero, however, the biases could have 

a tendency to net out over time.  In any given month there appears to be the potential 

for biases on the order of a tenth of a percentage point or more on the estimated link 

relative should the sample composition be skewed toward establishments with 

characteristics with lower growth rates than for the industry as a whole. 

The estimated bias for small establishments, however, appears much more 

pronounced.  Using the same approach, the estimated bias was derived for 

establishments with prior month employment <10.  The results, provided in Table 36, 

show that estimated bias in the link relative for such establishments could be more 

than one percentage point.  In addition, minimum and maximum estimated biases are 

not balanced around zero, and thus would tend to cumulate across time. 

Table 36- Estimated Bias for Current Weighted Link Relative, ( )cttLR 1, − , when 

( ) 101 <− itY  

Industry Average Minimum Maximum
Construction 0.0194 0.0172 0.0209
Manufacturing 0.0129 0.0118 0.0139
Mining 0.0260 0.0138 0.0374
Wholesale Trade 0.0057 0.0054 0.0058

Estimated Bias

Estimated Bias for Current Weighted Link Relative
Under Model 1

Based on Data from March 2000 - December 2002
Prior Month Employment <10
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In a similar fashion, the expected difference between preliminary and final 

estimates were derived, using values of tcgδ , ( )
( )2

1ˆ t cgp − , and  ( )
( )0

1ˆ cgtp − , and are presented 

in Table 37.  Average bias refers to the bias derived using average values of tcgδ   and 

( )
( )

( )
( )0

1
2

1 ˆˆ cgtcgt pp −− − .  Minimum bias refers to the bias estimated using average values of 

tcgδ  with minimum values of ( )
( )

( )
( )0

1
2

1 ˆˆ cgtcgt pp −− −  if tcgδ  is positive and with maximum 

values of ( )
( )

( )
( )0

1
2

1 ˆˆ cgtcgt pp −− −  if tcgδ  is negative.  Maximum bias refers to the bias 

estimated using average values of tcgδ  with maximum values of ( )
( )

( )
( )0

1
2

1 ˆˆ cgtcgt pp −− −  if 

tcgδ  is positive and with minimum values of ( )
( )

( )
( )0

1
2

1 ˆˆ cgtcgt pp −− −  if tcgδ  is negative. 

Table 37-Estimated Revision for Preliminary Weighted Link Relative, ( )cttLR 1, −  

Industry Average Minimum Maximum
Construction -0.0002 -0.0017 0.0009
Manufacturing -0.0001 -0.0006 0.0003
Mining 0.0001 -0.0071 0.0072
Wholesale Trade -0.0001 -0.0014 0.0015

Estimated Revision for Preliminary Weighted Link Relative
Under Model 1

Based on Data from March 2000 - December 2002

Estimated Revision

 

Results indicate small estimated revisions on average for a monthly link.  In any 

given month there appears to be the potential for revisions to the estimated link 

relative on the order of a tenth of a percentage point or more in either direction should 

the sample composition for preliminary reporters be skewed toward establishments 

with characteristics with lower growth rates than for the industry as a whole. 

Estimated revisions for establishments with prior month employment <10 are also 

small, as indicated in Table 38.  This is due to relatively small changes in the values 

for ( )cgtp 1ˆ −  between preliminary and final estimation, thus diminishing changes in the 
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link relatives.  Despite the potential bias for this subgroup discussed earlier, these 

results indicate the current weighted link relative estimator does not afford a 

reduction in that bias with increased sample reporting. 

Table 38-Estimated Revision for Preliminary Weighted Link Relative, ( )cttLR 1, − , 
when ( ) 101 <− itY  

Industry Average Minimum Maximum
Construction 0.0001 -0.0010 0.0016
Manufacturing 0.0001 -0.0010 0.0016
Mining 0.0012 -0.0039 0.0113
Wholesale Trade 0.0000 -0.0014 0.0019

Estimated Revision for Preliminary Weighted Link Relative
Under Model 1

Based on Data from March 2000 - December 2002

Estimated Revision

Prior Month Employment <10

 

 

C. Approach for Utilizing Incomplete Data 

The results in the prior section suggest employment growth rate within industry is 

related to prior month employment size and prior month employment change, at least 

for establishments with small prior month employment.  As the primary objective is 

to reduce differences between preliminary and revised estimates, the approach seeks 

to directly utilize information for sample establishments that subsequently become 

late reporters for month t .  This can be accomplished through imputation of missing 

month t  values for sample reporting in month 1−t .  While this approach results in 

the inclusion of sample units that do not subsequently become late reporters (i.e., that 

become nonresponders for month t ), given late reporters make up the majority 

(~75%) of these sample units, it was felt this approach may yield smaller differences 

between preliminary and final estimates. 
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Imputation was utilized in the alternate approach rather than redefining estimation 

cells and carrying out a weighted link relative estimation at the refined cell level.  

Revising the definitions of estimation cells to incorporate the additional factors is not 

feasible, as population values for prior month employment size and change are not 

available on an ongoing basis.  While a weighted link relative could be calculated at 

the refined cell level, the prior month estimated employment for the cell would be 

dynamic as establishments can change cells from month to month (i.e., the issue is 

values of ( )cgtY 1
ˆ

− ). 

The approach developed here is intended to be used to impute for missing 

employment data due to sample units with reporting patterns resulting in missing data 

for month t  when data are reported for month 1−t  

( )( )1

0 1 0 0
. 0 , . 1
. 0 . 0

tci t ci−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

X X  

and thus utilize, for preliminary estimates of month t  employment, all sample units 

for which data were reported for month 1−t . 

1. Model 1: Proportional Growth Rate within Size and Prior Growth Class 

The underlying model used for imputation assumes proportionality factors vary 

across classifications of establishments within industry 

Model 1: ( ) tcgicgittcgtcgi kYY += −1ρ  

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

cgi

cgitk
ind

tcgi w
Y

Nk 1
2

,0~
σ
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where g represents the classification of sample unit i  in industry c  for month t  

based upon 

( )1te −  (prior month employment size class) 

( ) ( )2,1 −−∆ tt  (prior month employment change class) 

Based on the results in section B, two sets of size classes were used in the 

evaluation: 1) <10 and 10+ (recognizing the distinctions in deviations seen at the size 

class level) – Model 1A; and 2) <10, 10-19, 20-49, and 50+ (recognizing potential 

additional distinctions in deviations seen at the size by employment growth class 

level) – Model 1B. 

Table 39 contains the levels for prior employment size and prior employment 

change classes for Models 1A and 1B.  For the large establishment size class, no 

further disaggregation by prior month employment change was made, given the 

results discussed previously. 

Under this model the maximum likelihood estimator (MLE) for tcρ  is 

( )∑

∑

∈
−

∈
=

cg

cg

si
cgitcgi

si
tcgicgi

tcg Yw

Yw

1

ρ̂  

As is done for the current CES weighted link relative estimator, estimates for tcgρ  

are derived using the set of constant reporters for months t  and 1t − .  Analogous to 

the situation for model 0, these estimates will be model unbiased for tcgρ̂  under 

Model 1. 
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Table 39-Cell Classifications within Industry for Model 1 

Prior Month 
Employment

Designation for Prior Month 
Employment Change

Designation for

<10 1 Low Third L
Mid Third M
Top Third H
Unknown U

10+ 4 n/a -

Prior Month 
Employment

Designation for Prior Month 
Employment Change

Designation for

<10 1 Low Third L
Mid Third M
Top Third H
Unknown U

10-19 2 Low Third L
Mid Third M
Top Third H
Unknown U

20-49 3 Low Third L
Mid Third M
Top Third H
Unknown U

50+ 4 n/a -

Cell Classifications within Industry
Model 1A

Model 1B

( )1te − ( ) ( )2,1 −−∆ tt

( ) ( )2,1 −−∆ tt

( )1te − ( ) ( )2,1 −−∆ tt

( ) ( )2,1 −−∆ tt

( ) ( )2,1 −−∆ tt

 

Model 1 assumes values of tcgρ  are the same for month t  reporters and 

nonreporters (i.e., expected growth rate is the same for late reporters and preliminary 

reporters within a cell/class cg ).  A first question is the appropriateness of this 

assumption. 

If Model 1 provides a good description of the population distribution, then the 

difference between link relatives for preliminary and late reporters should be small.  

Table 40 contains comparisons of deviations in link relatives between preliminary 

and late reporters for redefined cells versus industry level.  These results show greater 

comparability of link relatives associated with the redefined cell definitions, as both 

the average deviation and the average absolute deviation for the redefined cells are 

generally lower than the corresponding deviations for the industry level. 
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Table 40-Deviations of Link Relatives, ( )cttLR 1, − : Preliminary vs. Late Reporters 

Preliminary 
Reporters

Late 
Reporters Average Ave Abs Average Ave Abs

Construction <10 Low 404 66 0.0425 0.0804 0.1221 0.1393
Mid 1521 210 0.0025 0.0195 -0.0144 0.0381
High 322 51 -0.0376 0.0464 -0.0903 0.0931
Unk 97 21 -0.0061 0.0859 -0.0035 0.0870

10-19 Low 191 28 0.0128 0.0781 0.0339 0.0806
Mid 669 90 -0.0042 0.0172 -0.0355 0.0386
High 196 30 -0.0135 0.0480 -0.0654 0.0798
Unk 30 6 0.0418 0.1186 0.0049 0.1161

20-49 Low 308 46 0.0025 0.0540 -0.0187 0.0572
Mid 922 135 0.0017 0.0152 -0.0303 0.0320
High 306 43 0.0066 0.0336 -0.0182 0.0529
Unk 34 9 -0.0060 0.0897 -0.0456 0.0752

50+ n/a 2883 490 0.0014 0.0128 -0.0042 0.0122
Manufacturing <10 Low 200 56 0.0574 0.0800 0.1423 0.1439

Mid 901 173 0.0034 0.0258 0.0045 0.0254
High 126 33 0.0002 0.0510 -0.0370 0.0537
Unk 50 15 0.0453 0.1351 0.0765 0.1306

10-19 Low 234 44 0.0080 0.0373 0.0326 0.0419
Mid 556 93 -0.0073 0.0148 -0.0110 0.0155
High 223 44 -0.0040 0.0244 -0.0174 0.0301
Unk 29 9 0.0192 0.0715 0.0214 0.0626

20-49 Low 380 64 0.0055 0.0201 0.0216 0.0302
Mid 1204 203 -0.0039 0.0084 -0.0080 0.0104
High 349 58 -0.0003 0.0204 -0.0067 0.0230
Unk 50 13 -0.0166 0.0579 -0.0125 0.0540

50+ n/a 11537 2512 -0.0015 0.0050 -0.0018 0.0043
Mining <10 Low 36 9 -0.0052 0.3140 0.1742 0.3366

Mid 167 35 0.0248 0.0827 0.0309 0.0789
High 24 6 0.0644 0.2954 0.0624 0.2766
Unk 7 3 -0.3468 0.4392 -0.2652 0.3476

10-19 Low 37 7 0.0619 0.2524 0.0979 0.2412
Mid 102 24 0.0107 0.0588 -0.0026 0.0521
High 33 6 -0.0505 0.1561 -0.0734 0.1497
Unk 4 3 -0.4836 0.6184 -0.5161 0.5293

20-49 Low 42 11 -0.0157 0.0855 0.0017 0.0736
Mid 151 36 0.0066 0.0305 0.0087 0.0319
High 54 15 0.0095 0.0850 -0.0055 0.0768
Unk 6 3 -0.2227 0.4099 -0.2324 0.2849

50+ n/a 361 115 0.0004 0.0131 0.0004 0.0100
Wholesale Trade <10 Low 164 48 0.0131 0.0716 0.0635 0.0927

Mid 1419 387 0.0005 0.0133 -0.0018 0.0137
High 116 31 -0.0157 0.0648 -0.0423 0.0722
Unk 54 33 0.0339 0.0819 0.0411 0.0671

10-19 Low 152 42 -0.0096 0.0445 0.0045 0.0388
Mid 478 116 -0.0052 0.0149 -0.0102 0.0159
High 151 37 0.0018 0.0253 -0.0174 0.0304
Unk 20 14 -0.0632 0.1127 -0.0310 0.0607

20-49 Low 118 39 0.0012 0.0362 0.0140 0.0258
Mid 537 160 0.0011 0.0082 -0.0053 0.0087
High 171 48 -0.0009 0.0194 -0.0157 0.0237
Unk 24 15 -0.0603 0.0968 -0.0693 0.0936

50+ n/a 1483 537 -0.0015 0.0045 -0.0024 0.0042

Average Sample Size

Diagnostics for Fit of Link-Relatives
Industry vs. Industry x Prior Month Employment x Prior Month Employment Change

March 2000 - December 2002

Ind x Prior Month Emp x Prior 
Month Emp Change Level Industry Level

Deviation of Link-relatives - Preliminary vs. Late Reporter
Prior Month 
Employment 

Change

Prior Month 
Employment 

Size
Industry
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A second question is specification of the assumed distribution for units other than 

those reporting in month 1−t  (i.e., other than constant reporters or units for which 

imputations are carried out).  As stated previously, the common approach of 

estimating link relatives for each of the classes and multiplying by the prior month’s 

estimate is not valid as the population within a class changes over time and thus, an 

estimate of the population value is not available. 

An alternative is to take a pattern-mixture model (Little, 1993) approach.  The 

population can be assumed to be divided into three groups: 

1) Units for which data for both months t  and 1−t  are available.  These are the 

units currently used in the weighted link relative. 

2) Units for which data for only month 1−t  are available.  These are the units for 

which the alternative approach will derive imputed values for use in the 

weighted link relative. 

3) Units for which data for month 1−t  are not available.  These represent a 

combination of nonsampled, nonreporters for both months t  and 1−t , and 

units reporting for month t  but not month 1−t . 

Each of these three groups of units has a different missing data pattern.  Under the 

pattern-mixture model approach, growth rate is assumed dependent upon missing data 

pattern, e.g.,  

( ) tMcgiMcgittMcgtMcgi kYY += −1ρ  

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

cMgi

cMgitk
ind

tcMgi w
Y

Nk 1
2

,0~
σ

 

where M  refers to missing data pattern as defined above. 
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Growth rates for missing data patterns 2 and 3 cannot be estimated from the data.  

Therefore identifying restrictions linking the parameters for the models for missing 

data patterns 2 and 3 are linked to those for missing data pattern 1 so as to allow 

estimation of parameters.  The identifying restrictions for missing data pattern 2 

assumes equivalence of growth rates within the redefined cells 

cgtcgt 12 ρρ =  

This identifying restriction allows imputation of missing values based upon the 

estimated growth rates for a cell based upon constant reporters. 

For missing data pattern 3, the intention is to use the weighted link relative within 

an industry based upon the set of constant reporters plus reporters for month 1̀−t  

with imputed values to estimate the link relative for the industry.  This assumes the 

identifying restriction for missing data pattern 3 links the growth for units in the 

missing data pattern at the industry level to the marginal (at the industry level) of the 

growth rates for missing data patterns 1 and 2 

..3 ctct ρρ =  

This marginal can be derived by taking the expected value of the weighted link 

relative utilizing data from missing data patterns 1 and 2 under Model 1. 
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∑=
g

tcgp̂t1cgρ  

where tcgp̂  is an estimate of the proportion of the population total for estimation cell 

c  within class g . 

Note that this is similar to the expected value of the current weighted link relative 

under Model 1 since tcgtctcg δρρ += .  The difference from the previous result is that 

tcgp̂  is based on all month 1−t  reporters instead of just constant reporters for both 

months t  and 1−t . 

2. Model 2: Stable Effect of Prior Month Employment Change within Size 

Class 

Information on tcgδ  presented in section B suggests the effect of prior employment 

growth rate for establishments with prior month employment <10 may be relatively 

stable.  As a result, an alternative to Model 1, assuming the effect of prior 

employment change does not depend on time t , was also considered.  This model 

used the size classes from Model 1A.  This model can be written as 

Model 2: ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
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where 
( )1ttceρ
−

 is the underlying employment growth rate from month 1−t  to month t  

for industry c  and prior employment size class ( )1te −   
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( ) ( ) ( )
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∆  is the vector containing all 0’s and a single 1 to 

designate prior month’s employment change for sample units in the small size 

class, rank ordered into four groups – low, middle, high, unknown (i.e., 

employment change not reported for months 1−t  and/or 2−t ) 

Note that the 
( )1ttceρ
−

 and ( )1−tceλ  are fixed effects at any given time period; 

however, λ  does not depend upon month and therefore can be estimated using data 

from previous months.  Estimation of the ( )1−tceλ  for Model 2 was carried out using 

Bayes’ estimation with data for the six months prior to month t , as described in 

section D.  Estimation of the ( )1−tceρ  was carried out using weighted link relatives for 

the constant reporters for months  t  and 1−t , in the same manner as the growth rates 

for Model 1. 

In practice the dimension of the λ  and ∆  were reduced by one, since any one 

element is linearly dependent on the remaining elements.  The element selected for 

exclusion from the vector becomes the reference level for the factor.  The mid group 

( )( )mid∆   was selected to be the reference level. 

D. Empirical Analysis of Model Performance 

Estimates generated using a completed dataset consisting of reported data and data 

imputed using Models 1A, 1B, and 2 were compared to those generated using 

reported data only (current method – Model 0) for the period March 2000 through 
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December 2002 (April 2001 through March 2002 for Model 2).  Preparation of the 

CES data for the research analysis was described in Chapter III. 

Statistics of interest were total employment for the month and the change in total 

employment from the prior month.  Performance assessment was made on the basis of 

revisions between preliminary ( )0k =  and final ( )1k =  estimates.  In addition, 

estimates for March 2001 and 2002 (referred to below as the “benchmark” months, 

Bt ) were compared with the total employment from the ES-202 program. 

1. Generating Estimates 

Employment estimates were generated using the current CES link relative 

estimator.  A separate dataset was created for each approach – a dataset consisting of 

reported data only and three datasets consisting of reported data plus data imputed for 

late reporters and nonrespondents using Models 1A, 1B, and 2. 

For each data set, two sets of estimates were generated for each month – 

preliminary and final – using SAS v.8.2.  The fixed effects for Model 2 were 

estimated using a Bayes’ approach, described in Appendix G.  For the dataset 

consisting of reported data only, preliminary estimates were based upon those 

reporting by the preliminary cutoff date, td , for month t , while final estimates were 

based on those reporting by the final cutoff date.  For the completed datasets, 

preliminary estimates were based upon data reported by td , plus data imputed for late 

reporters and nonrespondents, while final estimates were based upon data reported by 

the final cutoff date plus data imputed for nonrespondents (i.e., imputed data was 

replaced with reported data for late reporters, while imputed data remained the same 
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for nonrespondents).  The SAS code used in deriving the imputed values and 

calculating the link relatives is provided in Appendix H.3. 

2. Variance Estimates 

Variance estimates for weighted link relatives were derived using the CES BRR 

method described in Chapter III.  As discussed in Shao, et al. (1998), imputing for 

missing values separately for each replicate based on data within the appropriate half-

sample recovers variance due to imputation and produces consistent variance 

estimates for a class of estimators that are smooth functions of totals, which 

encompasses the weighted link relative. 

This approach to variance estimation was carried out for the empirical analysis. 

Model coefficients were estimated separately for each replicate and half-sample. The 

one exception was that the fixed effects coefficients for Model 2 were not reestimated 

for each replicate, due to length of time required for computing.  As a result, the 

errors presented will underestimate the total errors associated with link relatives from 

Model 2.  The SAS code used in calculating the half-sample estimates is provided in 

Appendix H.4. 

3. Measures of Accuracy 

This dissertation research was carried out to develop an estimator for employment 

in the CES survey that would result in a reduction in the magnitude of revisions 

between preliminary and final estimates of monthly employment and month-to-month 

change in employment.  Assessment of the performance of the proposed estimator 

can be made by comparison to final estimates. 
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Monthly estimates of the link relatives and associated standard deviations for the 

approaches are provided in Appendix I.  One item of note is the size of the standard 

deviations associated with the estimated link relatives.  As seen in Table 41, the 

standard deviations dominate revisions between preliminary and final estimates.  This 

will limit the conclusions that can be drawn from the analysis to observations. 

Table 41-Summary Information for Estimated Link Relatives, ( )cttLR 1, −  

Industry Preliminary Final Preliminary Final Preliminary Final Preliminary Final

Construction 0.0106 0.0107 0.0011 0.0106 0.0107 0.0010 0.0108 0.0108 0.0010 0.0115 0.0118 0.0010
Manufacturing 0.0033 0.0033 0.0009 0.0033 0.0033 0.0008 0.0033 0.0033 0.0008 0.0034 0.0036 0.0010
Mining 0.0142 0.0132 0.0029 0.0143 0.0130 0.0029 0.0141 0.0129 0.0029 0.0120 0.0097 0.0025
Wholesale Trade 0.0064 0.0055 0.0008 0.0065 0.0056 0.0008 0.0066 0.0056 0.0008 0.0065 0.0060 0.0009

Average Revisions, Standard Deviations for Estimated Link Relatives
March 2000 - December 2002

Model 1B

Average st dev Average 
Absolute 
Revision

Model 2

Average st dev Average 
Absolute 
Revision

Average st dev Average 
Absolute 
Revision

Current Model 1A

Average st dev Average 
Absolute 
Revision

 
Monthly estimates of employment were derived by utilizing March 2002 ES-202 

data as the benchmark month, and moving the estimates forward by multiplying link 

relatives across months.  Preliminary estimates were calculated as the preliminary 

link relative times the prior month’s final estimate of employment. 

For monthly estimates, the performance measure used is the relative revision 

between preliminary and final estimates 

( )( )
( ) ( )

( )

2 0
0

0|1 0

ˆ ˆˆRel Rev ˆ
t t

t
t

Y YY
Y
−

=  

The difference in absolute relative revisions between that for the current method 

and that for an alternative method provides an indication of the reduction in the 

magnitude of the revision.  Table 42 provides summary information for the relative 

revisions across the period April 2000 through December 2002.  Revisions for 

alternative methods are essentially the same as those for the current method, although 

the alternative methods achieved a slight reduction in the average revision. 
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Table 42-Relative Revisions for Monthly Employment Estimates, tŶ  

Industry Metric Current Model 1A Model 1B Model 2

Construction Average Revision 0.00% 0.01% 0.02% 0.02%

Average Absolute 
Revision 0.11% 0.10% 0.10% 0.10%

Average Reduction in 
Absolute Revision - 0.01% 0.01% 0.00%

Manufacturing Average Revision -0.02% -0.02% -0.02% -0.01%

Average Absolute 
Revision 0.08% 0.08% 0.08% 0.10%

Average Reduction in 
Absolute Revision - 0.01% 0.01% 0.01%

Mining Average Revision 0.04% 0.05% 0.04% 0.14%

Average Absolute 
Revision 0.30% 0.30% 0.30% 0.25%

Average Reduction in 
Absolute Revision - 0.00% 0.00% -0.01%

Wholesale Trade Average Revision -0.02% -0.01% 0.00% -0.03%

Average Absolute 
Revision 0.08% 0.08% 0.08% 0.09%

Average Reduction in 
Absolute Revision - 0.01% 0.00% 0.02%

Relative Revisions in Estimated Monthly Employment
April 2000 - December 2002

 
The distributions for the reductions in absolute relative revisions are plotted in 

Figure 32.  A positive value in the figure means that the revisions are smaller under 

the model that with the current method.  The graphs suggest a general tendency for 

the magnitude of the relative revisions for the alternate approaches to be less than the 

relative revisions for the current method in Manufacturing and Wholesale Trade. 



 164 
 

Figure 32-Reduction in Absolute Relative Revision for Monthly Employment 
Estimates, tŶ  

Reduction in Absolute Relative Revisions for Monthly Employment Estimates
Construction
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Reduction in Absolute Relative Revisions for Monthly Employment Estimates
Manufacturing

April 2000 - December 2002
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Reduction in Absolute Relative Revisions for Monthly Employment Estimates
Mining

April 2000 - December 2002
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Reduction in Absolute Relative Revisions for Monthly Employment Estimates
Wholesale Trade

April 2000 - December 2002
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For estimates of month-to-month change, the performance measure used is the 

actual revision between preliminary and final estimates 

( )( ) ( ) ( )0 2 0
0|1 , 1 , 1 , 1

ˆ ˆ ˆRev t t t t t t− − −∆ = ∆ −∆  

Revisions in month-to-month change estimates are graphed in Figure 33.  There 

appears to be a general tendency for larger revisions in month-to-month change for 

the current method versus the alternative methods, especially related to larger month-

to-month change estimates. 

Figure 33-Revisions in Month-to-Month Change Estimates, ( )1,
ˆ

−∆ tt  

Revisions in Estimated Month-to-Month Employment Change: Construction
May 2000 - Dec 2002
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Revisions in Estimated Month-to-Month Employment Change: Manufacturing
May 2000 - Dec 2002
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Revisions in Estimated Month-to-Month Employment Change: Mining
May 2000 - Dec 2002
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Revisions in Estimated Month-to-Month Employment Change: Wholesale Trade
May 2000 - Dec 2002
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For all industries, there is a reduction in the absolute revision of month-to-month 

change estimates, on average across the months, as seen in Table 43.  This reduction, 

although less than 1,000 on average, does represent 6% - 8% of the average revision 

for the current method. 
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Table 43-Summary of Revisions in Month-to-Month Change Estimates, ( )1,
ˆ

−∆ tt  

Industry Metric Current Model 1A Model 1B Model 2

Construction
Average 
Absolute 
Revision

6,506 6,006 6,095 6,232

Average 
Reduction in 
Absolute 
Revision

- 500 411 273

Manufacturing
Average 
Absolute 
Revision

11,540 10,824 10,702 13,327

Average 
Reduction in 
Absolute 
Revision

- 716 837 -1,787

Mining
Average 
Absolute 
Revision

1,500 1,492 1,487 1,190

Average 
Reduction in 
Absolute 
Revision

- 7 13 310

Wholesale Trade
Average 
Absolute 
Revision

3,603 3,362 3,476 4,412

Average 
Reduction in 
Absolute 
Revision

- 241 128 -809

Absolute Revision in Estimated Month-to-Month Change in Employment
May 2000 - December 2002

 
At a more local level, the performance of the model can be evaluated by 

comparing imputed values to actual values for late reporters.  Imputation error for a 

set of late reporters can be defined as 

,
1 1

1

ˆ

Rel Err(Method m)
LR LR
ti ti

LR
ti

ti m ti
X X

ti
X

Y Y

Y
= =

=

−

=
∑ ∑

∑
 

where tiY  represents the month t  reported employment from sample establishment i  

,t̂i mY  represents the imputed employment for month t  for sample establishment i , 

based on imputation method m  

Note that for the current weighted link relative estimator, the imputed employment 

for a sample establishment is equal to the prior month employment for that 



 170 
 

establishment times the preliminary link relative for the corresponding estimation 

cell. 

( )
( )

( )
0

, , 1 1t̂ci m t t c t ciY LR Y− −=   

Table 44 contains summary information on average relative errors by prior month 

size class, and by prior month employment change within prior month size class, for 

the period March 2000 – December 2002.    Both 10+ and 10-19, 20-49, 50+ size 

classes are shown, with the results for Model 1 based upon the corresponding Model 

1A (10+) or Model 1B (10-19, 20-49, 50+).  These data show the reduction in errors 

for establishments with prior month employment <10, especially those with Low 

prior month employment change.  These data also indicate that improvements due to 

use of Model 1 are fairly well restricted to establishments with prior month 

employment size <10. 

Table 44-Relative Errors in Predicting Employment for Late Reporters 

Current Model 1 Model 2 Current Model 1 Model 2 Current Model 1 Model 2 Current Model 1 Model 2

<10 Average Relative 
Error -5.5% -3.3% -3.8% -5.5% -3.9% -4.8% -7.8% -5.9% -5.5% -1.0% -0.3% 0.7%

Average Absolute 
Relative Error 5.6% 3.9% 3.8% 5.7% 4.4% 5.1% 9.8% 8.7% 9.7% 1.4% 1.1% 2.0%

Average Reduction in 
Absolute Relative 
Error

1.7% 2.2% 1.2% 1.8% 1.2% 0.5% 0.3% -0.7%

10+ Average Relative 
Error 0.1% -0.3% -0.3% 0.0% 0.0% -0.1% -0.3% -0.4% -0.6% 0.1% 0.0% -0.2%

Average Absolute 
Relative Error 0.8% 0.8% 0.9% 0.3% 0.3% 0.3% 1.1% 1.2% 1.2% 0.4% 0.4% 0.5%

Average Reduction in 
Absolute Relative 
Error

0.0% -0.1% 0.0% 0.0% 0.0% -0.1% 0.0% 0.0%

10-19 Average Relative 
Error -1.7% -1.7% n/a -0.3% 0.0% n/a -0.3% -1.4% n/a 0.3% 0.5% n/a

Average Absolute 
Relative Error 2.2% 2.5% n/a 1.8% 1.8% n/a 3.9% 4.4% n/a 1.2% 1.3% n/a

Average Reduction in 
Absolute Relative 
Error

-0.2% n/a 0.0% n/a -0.5% n/a -0.1% n/a

20-49 Average Relative 
Error -1.7% -1.9% n/a -0.6% -0.5% n/a 0.3% -0.2% n/a 0.3% 0.2% n/a

Average Absolute 
Relative Error 2.0% 2.1% n/a 1.1% 1.1% n/a 2.0% 2.3% n/a 0.9% 1.1% n/a

Average Reduction in 
Absolute Relative 
Error

-0.1% n/a 0.0% n/a -0.3% n/a -0.2% n/a

50+ Average Relative 
Error 0.3% -0.3% n/a 0.0% 0.0% n/a -0.3% -0.2% n/a 0.1% -0.1% n/a

Average Absolute 
Relative Error 0.9% 0.9% n/a 0.3% 0.3% n/a 1.2% 1.4% n/a 0.4% 0.5% n/a

Average Reduction in 
Absolute Relative 
Error

0.0% n/a 0.0% n/a -0.2% n/a -0.1% n/a

Relative Errors in Predicting Employment for Late Reporters
March 2000 - December 2002

Size Class Metric Construction Manufacturing Mining Wholesale Trade
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Current Model 1 Model 2 Current Model 1 Model 2 Current Model 1 Model 2 Current Model 1 Model 2

<10 Low Average Relative 
Error -13.6% -5.1% -8.1% -12.1% -4.8% -5.6% -12.7% -1.5% -10.2% -5.0% 0.4% -8.7%

Average Absolute 
Relative Error 14.2% 7.3% 8.9% 12.6% 10.1% 13.0% 20.0% 21.5% 18.2% 6.0% 4.9% 14.4%

Average Reduction in 
Absolute Relative 
Error

6.8% 5.1% 2.6% 1.6% -1.5% 2.9% 1.0% -7.3%

High Average Relative 
Error 3.7% 0.9% 2.7% -0.6% -4.0% -3.1% -3.7% -3.2% -4.1% 2.8% 0.5% -2.0%

Average Absolute 
Relative Error 5.8% 4.7% 4.9% 6.3% 6.8% 7.5% 17.7% 22.0% 32.2% 4.6% 4.6% 16.2%

Average Reduction in 
Absolute Relative 
Error

1.1% -0.4% -0.5% 0.4% -4.4% -9.1% -0.1% -14.0%

Mid Average Relative 
Error -4.5% -3.3% -3.8% -3.2% -2.7% -4.3% -4.7% -4.9% -2.4% -0.6% -0.3% -0.1%

Average Absolute 
Relative Error 5.0% 4.2% 3.9% 3.9% 3.6% 4.7% 8.2% 8.6% 6.9% 1.2% 1.1% 1.0%

Average Reduction in 
Absolute Relative 
Error

0.9% 1.1% 0.3% 0.4% -0.4% 0.3% 0.1% 0.1%

Relative Errors in Predicting Employment for Late Reporters

March 2000 - December 2002

Size 
Class Metric Construction Manufacturing Mining Wholesale TradeEmp Change 

Class

Prior Month Employment Size <10

 
Figure 34 presents scatterplots of the relative errors in imputed values for late 

reporters by month for small establishments in Construction, the industry which 

demonstrated the largest improvement due to Model 1.  These graphs illustrate the 

level of improvement in predicting employment for small late reporters under Model 

1.  They also illustrate the aspects of imputing for larger (10+) establishments, with 

both current method and Model 1 subject to similar error distributions. 

Figure 34-Relative Error in Imputed Values for Late Reporters: Construction 

Relative Error in Imputed Employment for Late Reporters: Construction
Prior Month Employment <10, Low Prior Month Employment Change

March 2000 - December 2002
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Relative Error in Imputed Employment for Late Reporters: Construction
Prior Month Employment <10, Mid Prior Month Employment Change

March 2000 - December 2002
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Relative Error in Imputed Employment for Late Reporters: Construction
Prior Month Employment <10, High Prior Month Employment Change

March 2000 - December 2002
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Relative Error in Imputed Employment for Late Reporters: Construction
Prior Month Employment 10+
March 2000 - December 2002
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Final estimates of employment for March of 2001 and 2002 were compared to the 

corresponding benchmark data from ES-202, with the relative benchmark revision 

derived as 

( )( )
( )2

1
0|

ˆ
ˆRel Rev B

B

B

t t
B t

t

Y Y
Y

Y
−

=  

where 
Bt

Y  represents the benchmark employment for month t  

As seen in Table 45, benchmark revisions for Model 1A and 1B are similar to 

those for the current method.  The differences in benchmark revisions for Model 2 are 

due to its being initialized with March 2001 instead of March 2002.  If the current 

method is benchmarked to March 2001, the revisions for March 2002 are similar to 

those for Model 2. 
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Table 45-Benchmark Revisions 

Industry Benchmark Current Model 1A Model 1B Model 2

Construction March 2001 1.16% 1.16% 1.31% -

March 2002 0.86% 0.89% 1.10% -0.29%

Manufacturing March 2001 1.13% 1.13% 1.14% -

March 2002 0.12% 0.12% 0.13% -1.04%

Mining March 2001 1.81% 1.76% 1.83% -

March 2002 0.66% 0.68% 0.87% 2.76%

Wholesale Trade March 2001 2.10% 2.12% 2.14% -

March 2002 4.23% 4.27% 4.33% 2.16%

Benchmark Relative Revision for Estimated March Employment
March 2001, 2002

 

E. Summary 

The current CES weighted link relative estimator is subject to bias if the expected 

growth rate varies by establishment characteristics within an estimation cell.  

Although examination of employment growth relative to prior reported information 

suggests the current underlying model does not hold for some subpopulations, the 

results obtained by imputing for missing data under the alternative models did not 

yield significant improvement in either monthly revisions or benchmark revisions.  

This is not entirely unexpected, as rough estimated biases and potential revisions 

were seen to be minimal.  There did appear to be some support for the use of recent 

reported data in the working model; in particular use of such information may slightly 

dampen monthly revisions, especially for month-to-month change. 

Given the minimal impact on both overall bias and revisions due to use of Model 

1, it does not appear to afford measurable improvement over the existing model for 

aggregate estimates.  For lower level estimates (e.g., small establishments within 

industry), however, Model 1 does offer the potential for improved estimates. 
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Chapter VI:  Conclusions 
Demands for timely survey estimates for economic data will continue.  While 

methods for controlling late reporting continue to be explored and developed, this is a 

problem not likely to go away.  In spite of efforts to improve response rates, if there is 

any movement, it is in the direction of higher nonresponse rates.  Thus, improved 

methods for controlling the effects of late reporting and nonresponse will be needed. 

Examination of employment growth relative to prior reported information suggests 

the current underlying model does not hold for some subpopulations.  The resulting 

model misspecification has two impacts – potential differential bias for preliminary 

and late reporting contributing to the size of the revisions for monthly level and 

month-to-month change, and potential overall bias in the employment estimates 

contributing to the size of the benchmark revisions.  The latter effect was not included 

in this research and warrants further investigation. This line of research should 

include development of approximately unbiased estimates of the ( )1ˆ t cgp − , as well as a 

more in-depth examination of factors associated with large tcgδ  and their 

distributional properties.  Another area of potential research is the error properties of 

link relative estimates resulting from alternative models. 

While the model considered here attempted to utilize recently reported data for late 

reporters, an alternative could be considered through the use of a more direct time 

series approach such as that discussed by Pfeffermann and Nathan (2002).  

Although the particular models selected for employment growth did not yield 

statistically significant improvement, there were sufficient indications of the potential 

for use of such parameters and approaches to warrant further research.  A challenge in 
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developing an alternative method is that the current method experiences relatively 

small errors in conjunction with relatively large standard errors on the link relatives. 

However, the sensitivity of the information is such that even very small errors can be 

intolerable, thus warranting consideration of methods with minimal gains. 

A first approach may be to utilize a refined version of the method to monitor the 

results of the current method in an attempt to identify before the fact the potential for 

larger revisions.  This could include estimation of the potential differential bias based 

on estimates of the ( )1ˆ t cgp −  and tcgδ , in conjunction with predicted final reporting 

status.  Taking this approach could surface potential enhancements to the model 

through identification of additional factors and refinement of class definitions. 

The reporting status model, on the other hand, showed very positive results.  

Incorporation of respondent, operational, and environmental characteristics can 

provide a more comprehensive accounting of the factors affecting late reporting and 

nonresponse.  Although the focus of this research was limited to final reporting status 

conditional on preliminary reporting status, it is reasonable to expect such a model to 

perform well if used for predicting reporting status prior to data collection for the next 

reference period.  Such a model could be used to proactively refine collection and 

follow up strategies. 

Taking a more global view of the needs associated with a large panel survey, 

development and evaluation of an integrated approach to account for late reporting 

and nonresponse for a CES survey-type design can provide guidance as to the 

opportunity for error reduction in first closing estimates relative to later closings and 

benchmarks. 
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When looking at the issue of overall error of the estimates and benchmark 

revisions, research could also be undertaken to incorporate measurement error into 

the problem of estimation.  Although the availability of administrative data providing 

actual population values is limited, it is not unusual for establishment populations.  

While such data are commonly used to evaluate the performance of estimators and to 

establish benchmarks, methods for adequately accounting for measurement error in 

survey estimators are lacking.  Developing an understanding of the performance of 

resultant estimators will provide guidance to survey designers in the consideration of 

the use of administrative data in the estimation process. 

Incorporation of the various lines of research (late reporting, nonresponse 

measurement error) could lead to development of an integrated approach to error 

adjustment for an establishment panel survey.  At the least, research could result in 

development of a framework for generating total error estimates. 
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Appendices 

A. Notation for a General Panel Survey 

Notation and survey description will be developed first for a general panel survey, 

within which the CES survey fits.  A more restrictive survey description will then be 

developed to represent the specific panel survey design to be considered in the proposed 

research. 

1. Overview 

Consider a population of fixed size N  (i.e., the population does not vary over time).  

For each unit, ),...,1( Ni = , in the population, there is a set of P  variables of interest, 

[ ]1 tipti P Y× ⎡ ⎤= ⎣ ⎦Y , for each reference period ( )1,t = … .  The set of population values across 

time through reference period t  can be represented by the matrix 

[ ]

[ ]

[ ]

1
T

N P

Nt P
T
t N P

×

×

×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y

Y
Y
# , [ ]

[ ]

[ ]

[ ]

1 1

1

1

t P

tn Pt N P

tN P

×

××

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y

YY

Y

#

#
 

Statistics of interest for reference period t  are the population totals for each variable, 

( )Pp ,,1 …=  

[ ] [ ] [ ][ 1]1
1

0 0 1 0 0
N

TT T T
tp tip N N N Nt P PNt

i
Y Y × ××

=

⎡ ⎤= = ⎣ ⎦∑ 0 0 1 Y" " "  

and the change in the population totals from the prior reference period, 1−t , to the 

current reference period, t , for each variable 
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( ) ( ) ( )

[ ] [ ] [ ][ ]

, 1 1

11
0 0 1 0 0

p tpt t t p

TT T T T
N N N N Nt p PNt

Y Y Y− −

× ××

∆ = − =

⎡ ⎤−⎣ ⎦0 0 1 1 Y" " "
 

To obtain estimates for the statistics of interest, a panel survey is conducted, in which 

data, tiy , are obtained from a sample of units, ),...,1( ni = , for reference periods, 

( )…1, =t .  Survey estimates of the population totals, tpY , and the change in the 

population totals from the prior reference period, ( ) ( ), 1 pt t Y−∆ , are to be published soon 

after the reference period according to some prescribed processing schedule.  The 

processing schedule for reference period t  requires completion of data collection as of 

some given cutoff date, td , resulting in unit nonresponse.  Some of the unit nonresponse 

is temporal, as additional responses are obtained subsequent to td .  Given the occurrence 

of reporting following td , revised estimates for reference period t  are issued as part of 

processing for some fixed number of subsequent reference periods.  These revisions are 

referred to as closing estimates.  The order of revision is denoted by the index variable, 

 ( 0,1, , )k K= … , with the original estimate referenced by 0k = . 

In addition, through some administrative data source, actual values for a subset of the 

variables of interest which are collected by the administrative data source, 

[ ] [ ]( )( ) 
C

B B B A B A

A A A
t t t N P t N P P× × −

⎡ ⎤= ⎣ ⎦Y Y Y Y , for the population become available for selected 

reference periods, ( ) 1, ,Bt t∈⎡ ⎤⎣ ⎦… , for which the administrative data source collects the 

information (referred to as benchmark reference periods), following some fixed time lag 

after the corresponding benchmark reference period.  As a result, during survey 

processing for a specified reference period, survey estimates for the subset of variables of 
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interest available from the administrative data for the most recently available benchmark 

reference period are replaced with the actual population values, and estimates for the 

remaining reference periods and for other survey variables are revised to incorporate this 

population information.  These revisions are referred to as benchmark revisions. 

Estimation for the survey involves determining how best to incorporate survey and 

administrative information available at the time 1st closing estimates for reference period 

t  are processed, so as to account for nonresponse and measurement error, in addition to 

the sample design.  One means of assessing the accuracy of the estimates is on the basis 

of the revisions made to incorporate late reporting and administrative data availability.  

There are dual objectives, those being to minimize the magnitude of revisions to 

estimates of tpY , the population total for the reference period, and also to minimize the 

magnitude of revisions to ( ) ( ), 1 pt t Y−∆ , the period-to-period change in the population 

totals. 

Following is a description of the general panel survey environment.  The discussion of 

the CES survey in Chapter III provides an illustration of the various concepts presented. 

2. Survey Design 

Estimates for the statistics of interest are generated using data from a panel survey, 

with data collected at regular intervals corresponding to the reference periods.  A sample, 

s , of size )( Nn <  is selected from the population under some probability sample design, 

( )p s .  The sample design makes use of a set of Q  design variables, iqX , known for each 

unit in the population.  The set of design variables can be represented by the matrix 

[ ] iqN Q X× ⎡ ⎤= ⎣ ⎦X . 
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Selection probabilities for the population can be represented by the vector 

[ ] [ ]1 iN π× =π  

A fixed set of sample units is surveyed every reference period.  The sample selection 

indicator 1=iδ  indicates unit i  was selected, 0=iδ  indicates unit i  was not selected.  

The population units may be ordered such that the vector of sample selection indicators 

can be represented as 

[ ]
[ ]

[ ]

1

1
( ) 1

n

N
N n

×

×
− ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

1
I

0
 

3. Data Collection 

As part of data collection, sample units report values, ity .  The set of sample values 

through reference period t  can be represented by the matrix (assuming complete 

response) 

[ ]

[ ]

1

[ ]

s n P

s nt P

st n P

×

×

×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

y

y
y
#  

In the interest of timeliness for the publication of estimates, a cutoff date, td , is 

established for each reference period ( td  is referred to as the preliminary cutoff date for 

reference period t ).  Not all sample units report reference period t  data by the 

preliminary cutoff date (i.e., there is nonresponse for reference period t , relative to the 

preliminary cutoff date).  However, preliminary estimates of tpY , and ( ) ( ), 1 pt t Y−∆  must be 

derived based upon data reported as of td . 
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Sample units not reporting reference period t  data by the preliminary cutoff date may 

report subsequent to td  (i.e., there is late reporting for reference period t , relative to the 

preliminary cutoff date).  Preliminary estimates for reference period t  are then revised, to 

incorporate late reporting, as part of survey processing for ( 1)K ≥  subsequent reference 

periods, after which time the estimates for reference period t  are considered final.  Data 

collection for reference period t  thus continues through the cutoff date, t Kd + , which is 

the preliminary cutoff date for reference period t K+  ( t Kd +  is referred to the final cutoff 

date for reference period t ).  The estimate for reference period t  generated as part of 

survey processing for reference period ( ) 0t k k K+ ≤ ≤  is referred to as the thk  revision 

estimate for reference period t  and is denoted as ( )ˆ k
tY .  Thus, the preliminary estimate for 

reference period t  is denoted as ( )0
t̂Y , and the final estimate for reference period t  is 

denoted as ( )ˆ K
tY . 

The set of sample values for reference period t  reported as of the cutoff date, t kd + , is 

denoted as | [ ]st k n P×y .  The set of all sample values for all reference periods reported as of 

the cutoff date, t kd + , can be represented by the matrix (assuming complete response) 

( ) [ ] ( ) [ ] [ ] ( ) [ ]1| | | |0| *

T
T T T T
s K n P s t k K n P st k n P s t k n Ps k n t k P × − × × + ×• + ×⎡ ⎤⎣ ⎦

⎡ ⎤= ⎣ ⎦y y y y y" " "  

Correspondingly, the set of all sample values for reference period t  reported as all 

cutoff dates, ( ) 0t kd k K+ ≤ ≤ , can be represented by the matrix (assuming complete 

response) 

( ) |0[ ] | [ ] | [ ]| [ 1 ]

TT T T
st n P st k n P st K n Pst n K P × × ×• + × ⎡ ⎤= ⎣ ⎦y y y y" "  
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4. Response Patterns 

Response indicators, |it kr , reflect the status of reference period t  data reporting for 

sample unit i , relative to the cutoff date, ( )0t kd k K+ ≤ ≤ .  A response indicator | 1it kr =  

signifies unit i  reported reference period t  data on or before cutoff date t kd + , while a 

response indicator | 0it kr =  signifies unit i  had not reported reference period t  data as of 

cutoff date t kd + . 

Note that: 

( )| | *1 1, *ti k ti kr r k k= ⇒ = ≤  

( )| * |  *ti k ti Kr r k K= ≥  

Sample units may be partitioned into the following classes reflecting reference period 

t  reporting status: 

a. Preliminary Reporting ( )PR  – unit i  reported reference period t  data by preliminary 

cutoff date 

|0 1tir =  

b. Late Reporting ( )LR  – unit i  reported reference period t  data after preliminary 

cutoff date, but on or before final cutoff date 

|0 0tir =  and | 1ti Kr =  

c. Nonresponse ( )NR  – unit i  did not report reference period t  data as of the final 

cutoff date 

| 0ti Kr =  



 184 
 

Response indicators for reference period t  for unit i  across cutoff dates may be 

summarized by the reporting status variable 

( )TPR LR NR
ti ti ti tiX X X=X  

where the superscripts refer to preliminary reporting ( )PR , late reporting ( )LR , and 

nonresponse ( )NR  

( )|0

|0

1 if 1 PR for month 
0 if 0

tiPR
ti

ti

r t
X

r
⎧ =⎪= ⎨

=⎪⎩
 

( )|0 |

|0 |

1 if 0 and 1 LR for month 
0 if 1 or 0

ti ti KLR
ti

ti ti K

r r t
X

r r
⎧ = =⎪= ⎨

= =⎪⎩
 

( )|

|

1 if 0 NR for month 
0 if 1

ti KNR
ti

ti K

r t
X

r
⎧ =⎪= ⎨

=⎪⎩
 

The set of reporting status variables for all reference periods as of cutoff date t kd +  can 

be represented by the matrix 

( ) [ ] ( ) [ ] [ ] ( ) [ ]1| 1 | 1 | 1 |0 1| t s K n s t k K n st k n s t k ns k n t k × − × × + ×• × +⎡ ⎤⎣ ⎦
⎡ ⎤= ⎣ ⎦X X X X X" " "  

Note that at the preliminary cutoff date for reference period t , sample units may be 

partitioned into only two groups relative to reference period t  reporting, Preliminary 

Reporting ( )( )1 0 0 T
ti =X  and Preliminary Nonreporting ( )( )1 . . T

ti =X  (which is 

the aggregate of Late Reporting and Nonresponse). 

5. Administrative Data 

Through some administrative data source, actual values for a subset of the variables of 

interest, [ ]B A

A
t N P×Y , for the population become available for specific reference periods  
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within each calendar year, following some fixed time lag, l . This subset of variables is 

referred to as benchmark data.  The reference periods for which administrative data 

become available are designated by ( ) = 0, (12 / ), 2*(12 / ),Bt B B⎡ ⎤⎣ ⎦… , and are referred to 

as benchmark reference periods.  As of the preliminary cutoff date for reference period t , 

the most recent benchmark reference period available is denoted as |B tt , and the most 

recent benchmark data is denoted as |B

A
t tY . 

6. Estimation 

The estimates of tpY , and ( ) ( ), 1 pt t Y−∆  generated as part of survey processing for 

reference period ( ) 0t k k K+ ≤ ≤  are referred to as the thk  revision estimate for 

reference period t  and are denoted by ( )ˆ k
tpY  and ( )

( ) ( ), 1
ˆ k

pt t Y−∆ .  Thus, the preliminary 

estimates for reference period t  are denoted by ( )0
t̂pY  and ( )

( ) ( )0
, 1

ˆ
pt t Y−∆ , and the final 

estimates for reference period t  are denoted by ( )ˆ K
tpY  and ( )

( ) ( ), 1
ˆ K

pt t Y−∆ . 

The problem is how best to account for sampling, late reporting, nonresponse, and 

measurement error when estimating tpY  and ( ) ( ), 1 pt t Y−∆  based upon information available 

at the preliminary cutoff date for reference period t .  In other words, as discussed in 

Chapter I, how should estimators ( )0
t̂pY  and ( )

( ) ( )0
, 1

ˆ
pt t Y−∆  be defined based upon the data 

available  

| |: : : : :
tB s t s t• •⎡ ⎤⎣ ⎦Y Z I π X y  
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B. CES Information 

1. Collection Instrument – Manufacturing 

 

 



 187 
 

 



 188 
 

2. CES Estimate Revision Schedule 
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C. Selected Program Code for Data Preparation 

1. Reading CES Microdata 

Filename ces00 "c:\CES Data\micro.y2000.sam0001.txt"; 
Filename ces01 "c:\CES Data\micro.y2001.sam0001.txt"; 
Filename ces0203 "c:\CES Data\micro.y2002.y2003.sam0001.txt7"; 
libname hold "c:\CES Data"; 
 
*Program Name: x:/Research Project/File Creation/Edited Microdata Read 
*This program reads the CES microdata files,  
*runs an additional edit to look for anomalous changes, 
*creates monthly response indicators: 
*NR = 1 - not reported (by 3rd closing) 
*LR = 1 - late reporter (2nd or 3rd closing) 
*and outputs a file with data for 2000-2002; 
 
*read CES microdata for 2000; 
 
%macro out1(mon); 
data  
%do a=1 %to &mon; 
 ces_00_&a (keep=ces_id LR&a NR&a ae&a atyp&a flag&a)  
%end; 
 check_00 (keep=ces_id sam00 sam01) close_00 (keep=ces_id close); 
%mend; 
 
%macro recode1(mon); 
%do a=1 %to &mon; 
 if month=&a then do; 
  LR&a=0; 
  NR&a=0; 
  ae&a=ae; 
  atyp&a=0; 
  flag&a=0; 
 
  *change NR indicator to 1 if ae lt 0; 
 
  if ae lt 0 then do; 
   NR&a=1; 
   ae&a=.; 
   flag&a=1; 
  end; 
 
  *change NR indicator to 1 if ae >99,999; 
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  else if ae gt 99999 then do; 
   NR&a=1; 
   ae&a=.; 
   flag&a=2; 
  end; 
 
  *change NR indicator to 1 if ae missing; 
 
  else if ae = . then do; 
   NR&a=1; 
   flag&a=3; 
  end; 
 
  *change NR indicator to 1 if close missing; 
 
  else if close=. then do; 
   NR&a=1; 
   flag&a=4; 
  end; 
 
  *change NR indicator to 1 if close gt 3; 
  *(happens later in process,; 
  *after all months are merged; 
  *so ae figure can be used in calculating ave_ae); 
  *check for close > 4; 
 
  else if close gt 3 then do; 
   flag&a=5; 
   if close >4 then output close_00; 
  end; 
 
  *change LR indicator to 1 if NR = 0 and close = (2 or 3); 
 
  else if close gt 1 then LR&a=1; 
 
  *set atyp to 2 if explan=90; 
  *all data unusable for that month; 
  *if not unusable next month,; 
  *this month can be used for next months LR; 
 
  if explan = 90 then atyp&a=2; 
 
  *set atyp to 1 if class is an odd # and cc ne 90; 
  *ae data treated as unweighted for that months LR; 
  *if not atypical next month,; 
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  *this month can be used for next months LR; 
 
  else if class gt 0 then do; 
   k1=class/2; 
   k2=(class-1)/2; 
   if floor(k1)=floor(k2) then do; 
    atyp&a=1; 
   end; 
  end; 
  output ces_00_&a; 
 end; 
%end; 
%mend; 
 
%macro sort1(mon); 
%do a=1 %to &mon; 
 proc sort data=ces_00_&a; 
 by ces_id; 
 run; 
%end; 
%mend; 
 
%macro merge1(mon); 
merge  
%do a=1 %to &mon; 
 ces_00_&a  
%end; 
; 
%mend; 
 
 
%out1(12); 
infile ces00 missover; 
input @1 month 2. 
  @3 year 4. 
        @7 ces_id 9. 
        @20 ae 6. 
  @58 close 1. 
  @60 explan 2. 
  @62 class 2. 
  @64 sam00 1. 
  @65 sam01 1. 
  @; 
if sam00=1 then do; 
%recode1(12); 
end; 
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else output check_00; 
run; 
 
*Look at records not pulled into ces_00 files to make sure sam00 not odd; 
 
proc sort data=check_00; 
by sam00; 
run; 
 
proc freq data=check_00; 
tables sam00*sam01; 
run; 
 
*Look at records pulled into ces_00 files with unexpected close; 
 
proc sort data=close_00; 
by close; 
run; 
 
proc freq data=check_00; 
tables close; 
run; 
 
*Process the ces_00 files; 
 
%sort1(12); 
run; 
 
data ces_00; 
%merge1(12); 
by ces_id; 
run; 
 
*read CES microdata for 2001; 
 
%macro out2(mon); 
data  
%do a=13 %to &mon; 
 ces_01_&a (keep=ces_id LR&a NR&a ae&a atyp&a flag&a)  
%end; 
  check_01 (keep=ces_id sam00 sam01) close_01 (keep=ces_id close); 
%mend; 
 
%macro recode2(mon); 
%do a=13 %to &mon; 
 if month=&a-12 then do; 
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  LR&a=0; 
  NR&a=0; 
  ae&a=ae; 
  atyp&a=0; 
  flag&a=0; 
 
  *change NR indicator to 1 if ae lt 0; 
 
  if ae lt 0 then do; 
   NR&a=1; 
   ae&a=.; 
   flag&a=1; 
  end; 
 
  *change NR indicator to 1 if ae >99,999; 
 
  else if ae gt 99999 then do; 
   NR&a=1; 
   ae&a=.; 
   flag&a=2; 
  end; 
 
  *change NR indicator to 1 if ae missing; 
 
  else if ae = . then do; 
   NR&a=1; 
   flag&a=3; 
  end; 
 
  *change NR indicator to 1 if close missing; 
 
  else if close=. then do; 
   NR&a=1; 
   flag&a=4; 
  end; 
 
  *change NR indicator to 1 if close gt 3; 
  *(happens later in process,; 
  *after all months are merged; 
  *so ae figure can be used in calculating ave_ae); 
  *check for close > 4; 
 
  else if close gt 3 then do; 
   flag&a=5; 
   if close >4 then output close_01; 
  end; 
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  *change LR indicator to 1 if NR = 0 and close = (2 or 3); 
 
  else if close gt 1 then LR&a=1; 
 
  *set atyp to 2 if explan=90; 
  *all data unusable for that month; 
  *if not unusable next month,; 
  *this month can be used for next months LR; 
 
  if explan = 90 then atyp&a=2; 
 
  *set atyp to 1 if class is an odd # and cc ne 90; 
  *ae data treated as unweighted for that months LR; 
  *if not atypical next month,; 
  *this month can be used for next months LR; 
 
  else if class gt 0 then do; 
   k1=class/2; 
   k2=(class-1)/2; 
   if floor(k1)=floor(k2) then do; 
    atyp&a=1; 
   end; 
  end; 
  output ces_01_&a; 
 end; 
%end; 
%mend; 
 
%macro sort2(mon); 
%do a=13 %to &mon; 
 proc sort data=ces_01_&a; 
 by ces_id; 
 run; 
%end; 
%mend; 
 
%macro merge2(mon); 
merge  
%do a=13 %to &mon; 
 ces_01_&a  
%end; 
; 
%mend; 
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%out2(24); 
infile ces01 missover; 
input @1 month 2. 
  @3 year 4. 
        @7 ces_id 9. 
        @20 ae 6. 
  @58 close 1. 
  @60 explan 2. 
  @62 class 2. 
  @64 sam00 1. 
  @65 sam01 1. 
  @; 
if sam00=1 then do; 
%recode2(24); 
end; 
else output check_01; 
run; 
 
*Look at records not pulled into ces_01 files to make sure sam00 not odd; 
 
proc sort data=check_01; 
by sam00; 
run; 
 
proc freq data=check_01; 
tables sam00*sam01; 
run; 
 
*Look at records pulled into ces_01 files with unexpected close; 
 
proc sort data=close_01; 
by close; 
run; 
 
proc freq data=check_01; 
tables close; 
run; 
 
*Process the ces_01 files; 
 
%sort2(24); 
run; 
 
data ces_01; 
%merge2(24); 
by ces_id; 
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run; 
 
*read CES microdata for 2002/2003; 
 
%macro out3(mon); 
data  
%do a=25 %to &mon; 
 ces_02_&a (keep=ces_id LR&a NR&a ae&a atyp&a flag&a)  
%end; 
 check_02 (keep=ces_id sam00 sam01) close_02 (keep=ces_id close)  
  check_03 (keep=ces_id month year sam00 sam01); 
%mend; 
 
%macro recode3(mon); 
%do a=25 %to &mon; 
 if month=&a-24 then do; 
  LR&a=0; 
  NR&a=0; 
  ae&a=ae; 
  atyp&a=0; 
  flag&a=0; 
 
  *change NR indicator to 1 if ae lt 0; 
 
  if ae lt 0 then do; 
   NR&a=1; 
   ae&a=.; 
   flag&a=1; 
  end; 
 
  *change NR indicator to 1 if ae >99,999; 
 
  else if ae gt 99999 then do; 
   NR&a=1; 
   ae&a=.; 
   flag&a=2; 
  end; 
 
  *change NR indicator to 1 if ae missing; 
 
  else if ae = . then do; 
   NR&a=1; 
   flag&a=3; 
  end; 
 
  *change NR indicator to 1 if close missing; 
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  else if close=. then do; 
   NR&a=1; 
   flag&a=4; 
  end; 
 
  *change NR indicator to 1 if close gt 3; 
  *(happens later in process,; 
  *after all months are merged; 
  *so ae figure can be used in calculating ave_ae); 
  *check for close > 4; 
 
  else if close gt 3 then do; 
   flag&a=5; 
   if close >4 then output close_02; 
  end; 
 
  *change LR indicator to 1 if NR = 0 and close = (2 or 3); 
 
  else if close gt 1 then LR&a=1; 
 
  *set atyp to 2 if explan=90; 
  *all data unusable for that month; 
  *if not unusable next month,; 
  *this month can be used for next months LR; 
 
  if explan = 90 then atyp&a=2; 
 
  *set atyp to 1 if class is an odd # and cc ne 90; 
  *ae data treated as unweighted for that months LR; 
  *if not atypical next month,; 
  *this month can be used for next months LR; 
 
  else if class gt 0 then do; 
   k1=class/2; 
   k2=(class-1)/2; 
   if floor(k1)=floor(k2) then do; 
    atyp&a=1; 
   end; 
  end; 
  output ces_02_&a; 
 end; 
%end; 
%mend; 
 
%macro sort3(mon); 
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%do a=25 %to &mon; 
 proc sort data=ces_02_&a; 
 by ces_id; 
 run; 
%end; 
%mend; 
 
%macro merge3(mon); 
merge  
%do a=25 %to &mon; 
 ces_02_&a  
%end; 
; 
%mend; 
 
 
%out3(36); 
infile ces0203 missover; 
input @1 month 2. 
  @3 year 4. 
        @7 ces_id 9. 
        @20 ae 6. 
  @58 close 1. 
  @60 explan 2. 
  @62 class 2. 
  @64 sam00 1. 
  @65 sam01 1. 
  @; 
if sam00=1 then do; 
if year=2002 then do; 
%recode3(36); 
end; 
else if year=2003 then output check_03; 
end; 
else output check_02; 
run; 
 
*Look at records not pulled into ces_02 files to make sure sam00 not odd; 
 
proc sort data=check_02; 
by sam00; 
run; 
 
proc freq data=check_02; 
tables sam00*sam01; 
run; 
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*Look at records pulled into ces_02 files with unexpected close; 
 
proc sort data=close_02; 
by close; 
run; 
 
proc freq data=check_02; 
tables close; 
run; 
 
*Process the ces_02 files; 
 
%sort3(36); 
run; 
 
data ces_02; 
%merge3(36); 
by ces_id; 
run; 
 
*merge data for 2000, 2001, 2002; 
 
%macro out4(mon); 
data editces (drop=ae0 NR0  
%do a=1 %to &mon; 
 edae&a  
%end; 
); 
%mend; 
 
%macro recode4(mon); 
%do a=1 %to &mon; 
 if NR&a=. then do; 
  NR&a=1; 
  LR&a=0; 
  atyp&a=0; 
  flag&a=6; 
 end; 
%end; 
%mend; 
 
*determine the first and last month reported; 
*first month requires a response within 1st-3rd closing,; 
*but accepts edit failures and atypicals; 
*last month merely requires a response; 
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%macro firstlast1(mon); 
first_mo=0; 
last_mo=0; 
%do a=1 %to &mon; 
 if first_mo=0 then do; 
  if NR&a=0 then first_mo=&a; 
 end; 
 if NR&a=0 then last_mo=&a; 
%end; 
%mend; 
 
*conduct custom edit; 
*flag as atypical if month-to-month change is > 100 and; 
*month-to-month change is > 1.5 times average ae for two months; 
 
%macro clean1(mon); 
ae0=.; 
NR0=1; 
%do a=1 %to &mon; 
 %do b=&a-1 %to &a-1; 
  if NR&a=0 and NR&b=0 and atyp&a=0 then do; 
   if abs(ae&a-ae&b) gt 100 then do; 
    if abs((ae&a-ae&b)/(.5*(ae&a+ae&b))) gt 1.5 then 
atyp&a=3; 
   end; 
  end; 
 %end; 
 if flag&a=5 then NR&a=1; 
%end; 
%mend; 
 
*calculate an edited ae by deleting ae if atyp > 0 and; 
* next months atyp > 0 or missing; 
 
%macro clean2(mon); 
%do a=1 %to &mon; 
 %do b=&a+1 %to &a+1; 
  if atyp&a gt 0 then do; 
   if atyp&b gt 0 then edae&a=.; 
   else if atyp&b=. then edae&a=.; 
   else edae&a=ae&a; 
  end; 
 %end; 
%end; 
%mend; 
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%out4(36); 
merge ces_00 ces_01 ces_02; 
by ces_id; 
%recode4(36); 
%clean1(36); 
%clean2(35); 
if atyp36 gt 0 then edae36=.; 
else edae36=ae36; 
%firstlast1(36); 
 
*calculate average employment based on; 
*reported months (regardless of close),; 
*reported months with no atyp or atyp followed by non-atyp; 
*for use in weighting counts; 
 
ed_ave_ae=mean(edae1,edae2,edae3,edae4,edae5,edae6, 
 edae7,edae8,edae9,edae10,edae11,edae12, 
 edae13,edae14,edae15,edae16,edae17,edae18, 
 edae19,edae20,edae21,edae22,edae23,edae24, 
 edae25,edae26,edae27,edae28,edae29,edae30, 
 edae31,edae32,edae33,edae34,edae35,edae36); 
ave_ae=mean(ae1,ae2,ae3,ae4,ae5,ae6, 
 ae7,ae8,ae9,ae10,ae11,ae12, 
 ae13,ae14,ae15,ae16,ae17,ae18, 
 ae19,ae20,ae21,ae22,ae23,ae24, 
 ae25,ae26,ae27,ae28,ae29,ae30, 
 ae31,ae32,ae33,ae34,ae35,ae36); 
diff_ae=ave_ae-ed_ave_ae; 
run; 
 
*delete records with no first month report; 
 
data editces nofirst; 
set editces; 
if first_mo=0 then output nofirst; 
else output editces; 
run; 
 
*Look at records deleted due to no first month; 
 
proc sort data=nofirst; 
by last_mo; 
run; 
 
proc freq data=nofirst; 
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tables last_mo; 
run; 
 
proc univariate data=nofirst; 
var ave_ae ed_ave_ae diff_ae; 
run; 
 
*Look at characteristics of editces; 
 
proc freq data=editces; 
tables first_mo last_mo  
 NR1 NR2 NR3 NR4 NR5 NR6 NR7 NR8 NR9 NR10  
 NR11 NR12 NR13 NR14 NR15 NR16 NR17 NR18 NR19 NR20  
 NR21 NR22 NR23 NR24 NR25 NR26 NR27 NR28 NR29 NR30  
 NR31 NR32 NR33 NR34 NR35 NR36  
 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 LR9 LR10  
 LR11 LR12 LR13 LR14 LR15 LR16 LR17 LR18 LR19 LR20  
 LR21 LR22 LR23 LR24 LR25 LR26 LR27 LR28 LR29 LR30  
 LR31 LR32 LR33 LR34 LR35 LR36  
 atyp1 atyp2 atyp3 atyp4 atyp5 atyp6 atyp7 atyp8 atyp9 atyp10  
 atyp11 atyp12 atyp13 atyp14 atyp15 atyp16 atyp17 atyp18 atyp19 atyp20  
 atyp21 atyp22 atyp23 atyp24 atyp25 atyp26 atyp27 atyp28 atyp29 atyp30  
 atyp31 atyp32 atyp33 atyp34 atyp35 atyp36  
 flag1 flag2 flag3 flag4 flag5 flag6 flag7 flag8 flag9 flag10  
 flag11 flag12 flag13 flag14 flag15 flag16 flag17 flag18 flag19 flag20  
 flag21 flag22 flag23 flag24 flag25 flag26 flag27 flag28 flag29 flag30  
 flag31 flag32 flag33 flag34 flag35 flag36; 
run; 
 
proc univariate data=editces; 
var ave_ae ed_ave_ae diff_ae  
 ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 ae9 ae10  
 ae11 ae12 ae13 ae14 ae15 ae16 ae17 ae18 ae19 ae20  
 ae21 ae22 ae23 ae24 ae25 ae26 ae27 ae28 ae29 ae30  
 ae31 ae32 ae33 ae34 ae35 ae36; 
run; 
 
data hold.editces (drop=diff_ae); 
set editces; 
run; 
 
proc contents data=hold.editces; 
run; 
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2. Obtaining NAICS from CES cross-walk file 

libname hold "c:\CES Data"; 
 
*Program Name: x:Research Project/File Creation/CW_NAICS 
*This program creates NAICS groupings for CW file; 
 
 
data hold.cw_mar_03 (keep=ldbnum ldbae naics_00 naics_01 naics_cw 
 naics_sec report reptwith run_00 run_01 ui_00 ui_01 sam_00 sam_01); 
set hold.cw_10mar03; 
if naics_00 ge 900000 then naics_cw="govt"; 
else if naics_00 ge 800000 then naics_cw="othsvcs"; 
else if naics_00 ge 700000 then naics_cw="leisure"; 
else if naics_00 ge 600000 then naics_cw="educ"; 
else if naics_00 ge 540000 then naics_cw="prof"; 
else if naics_00 ge 530000 then naics_cw="fire"; 
else if naics_00 ge 520000 then naics_cw="fire"; 
else if naics_00 ge 510000 then naics_cw="info"; 
else if naics_00 ge 480000 then naics_cw="tpu"; 
else if naics_00 ge 440000 then naics_cw="retail"; 
else if naics_00 ge 420000 then naics_cw="whole"; 
else if naics_00 ge 310000 then naics_cw="mfg"; 
else if naics_00 ge 230000 then naics_cw="construct"; 
else if naics_00 ge 220000 then naics_cw="tpu"; 
else if naics_00 ge 210000 then naics_cw="mining"; 
else if naics_00 ge 114000 then naics_cw="agr"; 
else if naics_00 ge 113300 then naics_cw="mining"; 
else if naics_00 ge 111000 then naics_cw="agr"; 
else naics_cw="miss"; 
naics_sec=naics_cw; 
if naics_sec="othsvcs" then naics_sec="svcs"; 
else if naics_sec="leisure" then naics_sec="svcs"; 
else if naics_sec="educ" then naics_sec="svcs"; 
else if naics_sec="prof" then naics_sec="svcs"; 
else if naics_sec="info" then naics_sec="svcs"; 
run; 
 
proc contents; 
run; 
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3. Merging CES microdata and CES cross-walk files 

libname hold "c:\CES Data"; 
 
*Program Name: x:Research Project/File Creation/merge_ces_cw; 
*This program merges the 2000 CES sample records with 
*the 3/10/03 CW file records. 
*Merging is based on ces_id (ces) to report (cw), 
*first to parent records, then (if unmatached) to child records. 
*The only data from ces is ces_id other variables are kept from cw 
*An output data set, ces_cw, is created, 
*with added field source (1 - ces & cw parent,  
*2 - ces & cw child, 3 - ces only); 
 
data ces_full; 
set hold.editces(keep=ces_id); 
rpt=ces_id; 
run; 
 
proc sort; 
by rpt; 
run; 
 
data nochild parent child; 
set hold.cw_mar_03 (keep=report reptwith ldbnum ldbae  
 ui_00 run_00 naics_cw sam_00 sam_01); 
if sam_00=1 then do; 
 rptw=10; 
 rptw=reptwith; 
 rpt=10; 
 rpt=report; 
 if reptwith=. then output nochild; 
 else if reptwith=report then output parent; 
 else output child; 
end; 
run; 
 
proc sort data=parent; 
by rpt; 
run; 
 
proc sort data=child; 
by rpt; 
run; 
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data ces_p only_ces_p only_p; 
merge ces_full(in=a) parent(in=b); 
by rpt; 
if a & b then do; 
 source=1; 
 output ces_p; 
end; 
else if a then output only_ces_p; 
else if b then output only_p; 
run; 
 
data ces_c only_ces_c only_c; 
merge only_ces_p(in=a) child(in=b); 
by rpt; 
if a & b then do; 
 source=2; 
 output ces_c; 
end; 
else if a then do; 
 source=3; 
 output only_ces_c; 
end; 
else if b then output only_c; 
run; 
 
data ces_cw; 
set ces_p ces_c only_ces_c; 
run; 
 
proc sort data=ces_cw; 
by ces_id; 
run; 
 
data hold.ces_cw; 
set ces_cw; 
run; 
 
data parent; 
set only_p; 
run; 
 
data child; 
set only_c; 
run; 
 
proc freq data=hold.ces_cw; 
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tables naics_cw; 
run; 
 
proc freq data=parent; 
tables naics_cw; 
run; 
 
proc freq data=child; 
tables naics_cw; 
run; 
 
proc contents data=hold.ces_cw; 
run; 
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4. Appending NAICS onto CES microdata 

libname hold "c:\CES Data"; 
 
*Program Name: x:Research Project/File Creation/Edited CES_NAICS 
*This program appends the NAICS code from CW file 
*to the Edited CES data file - the resulting file is sorted by NAICS; 
 
data naics (drop=ui_00 run_00); 
set hold.ces_cw (keep=ces_id naics_cw ui_00 run_00 ldbnum rpt rptw source); 
ui=ui_00; 
run=run_00; 
run; 
 
proc sort data=hold.editces out=editces; 
by ces_id; 
run; 
 
data ces_naics; 
merge editces (in=a) naics (in=b); 
by ces_id; 
if a; 
if naics_cw='    ' then delete; 
else if naics_cw='agr ' then delete; 
else if naics_cw='govt' then delete; 
else if naics_cw='miss' then delete; 
else if naics_cw='oths' then delete; 
else if naics_cw='educ' then delete; 
else if naics_cw='prof' then delete; 
else if naics_cw='info' then delete; 
else if naics_cw='leis' then delete; 
else if naics_cw='reta' then delete; 
else if naics_cw='tpu ' then delete; 
else if naics_cw='fire' then delete; 
run; 
 
proc freq data=ces_naics; 
tables first_mo last_mo naics_cw  
 NR1 NR2 NR3 NR4 NR5 NR6 NR7 NR8 NR9 NR10  
 NR11 NR12 NR13 NR14 NR15 NR16 NR17 NR18 NR19 NR20  
 NR21 NR22 NR23 NR24 NR25 NR26 NR27 NR28 NR29 NR30  
 NR31 NR32 NR33 NR34 NR35 NR36  
 LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 LR9 LR10  
 LR11 LR12 LR13 LR14 LR15 LR16 LR17 LR18 LR19 LR20  
 LR21 LR22 LR23 LR24 LR25 LR26 LR27 LR28 LR29 LR30  
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 LR31 LR32 LR33 LR34 LR35 LR36  
 atyp1 atyp2 atyp3 atyp4 atyp5 atyp6 atyp7 atyp8 atyp9 atyp10  
 atyp11 atyp12 atyp13 atyp14 atyp15 atyp16 atyp17 atyp18 atyp19 atyp20  
 atyp21 atyp22 atyp23 atyp24 atyp25 atyp26 atyp27 atyp28 atyp29 atyp30  
 atyp31 atyp32 atyp33 atyp34 atyp35 atyp36  
 flag1 flag2 flag3 flag4 flag5 flag6 flag7 flag8 flag9 flag10  
 flag11 flag12 flag13 flag14 flag15 flag16 flag17 flag18 flag19 flag20  
 flag21 flag22 flag23 flag24 flag25 flag26 flag27 flag28 flag29 flag30  
 flag31 flag32 flag33 flag34 flag35 flag36  
 naics_cw*LR1*NR1 naics_cw*atyp1  
 naics_cw*LR12*NR12 naics_cw*atyp12  
 naics_cw*LR24*NR24 naics_cw*atyp24  
 naics_cw*LR36*NR36 naics_cw*atyp36; 
run; 
 
proc univariate data=ces_naics; 
var ave_ae ed_ave_ae ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 ae9 ae10  
 ae11 ae12 ae13 ae14 ae15 ae16 ae17 ae18 ae19 ae20  
 ae21 ae22 ae23 ae24 ae25 ae26 ae27 ae28 ae29 ae30  
 ae31 ae32 ae33 ae34 ae35 ae36; 
run; 
 
proc sort data=ces_naics out=hold.editces1; 
by ui; 
run; 
 
proc contents data=hold.editces1; 
run; 
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5. Appending length of pay period from August 2001 CES registry file 

libname hold "c:\CES Data"; 
 
*Program Name: x:/Research Project/File Creation/Registry File 
*; 
 
 
data aug01 (drop=rptid); 
set hold.aug01 (keep=ui rptid rptw lopp respcode); 
rpt=rptid; 
run; 
 
proc sort data=aug01; 
by rpt; 
run; 
 
data aug01_1 aug01_2; 
set aug01; 
by rpt; 
if first.rpt then output aug01_1; 
else output aug01_2; 
run; 
 
data ces_cw (drop=ui_00); 
set hold.ces_cw (keep=ces_id ui_00 run_00 naics_cw rpt rptw); 
if naics_cw='oths' then delete; 
else if naics_cw='agr ' then delete; 
else if naics_cw='miss' then delete; 
else if naics_cw='govt' then delete; 
else if naics_cw='educ' then delete; 
else if naics_cw='prof' then delete; 
else if naics_cw='info' then delete; 
else if naics_cw='leis' then delete; 
else if naics_cw='reta' then delete; 
else if naics_cw='tpu ' then delete; 
else if naics_cw='fire' then delete; 
ui=0; 
ui=ui_00; 
run; 
 
proc sort data=ces_cw; 
by rpt; 
run; 
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data ces_cw1 ces_cw2; 
set ces_cw; 
by rpt; 
if first.rpt then output ces_cw1; 
else output ces_cw2; 
run; 
 
proc sort data=aug01; 
by rpt; 
run; 
 
data aug01_1 aug01_2; 
set aug01; 
by rpt; 
if first.rpt then output aug01_1; 
else output aug01_2; 
run; 
 
data ces1_aug1 ces1_only1; 
merge ces_cw1 (in=a)  
 aug01_1 (in=b); 
by rpt; 
if a & b then output ces1_aug1; 
else if a then output ces1_only1; 
run; 
 
proc sort data=ces1_aug1; 
by ces_id; 
run; 
 
data ces1_aug11 ces1_aug2; 
set ces1_aug1; 
by ces_id; 
if first.ces_id then output ces1_aug11; 
else output ces1_aug2; 
run; 
 
proc sort data= hold.editces1 out=ces; 
by ces_id; 
run; 
 
data hold.editces2; 
merge ces (in=a) ces1_aug11 (in=b); 
by ces_id; 
if a then output hold.editces2; 
run; 
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6. Appending sample design information from CES random group file 

libname hold "c:\CES Data"; 
 
*Program Name: x:Research Project/File Creation/Edited CES_NAICS_RG 
*This program appends size, state, selection weight, and RG values from 
RANGROUP file 
*to the Edited CES data file - the resulting file is sorted by ui; 
 
data rangroup; 
set hold.rangroup (keep=ui selwt size st h1-h80); 
run; 
 
proc sort data=rangroup nodupkey; 
by ui; 
run; 
 
data editces1 only1; 
merge hold.editces1 (in=a) rangroup (in=b); 
by ui; 
if a & b then do; 
 source_rg=1; 
 output editces1; 
end; 
else if a then do; 
 source_rg=2; 
 output only1; 
end; 
run; 
 
data editces1; 
set editces1 only1; 
rename source=source_cw; 
run; 
 
proc sort data=editces1; 
by size; 
run; 
 
proc univariate data=editces1; 
by size; 
var ave_ae; 
run; 
 
proc freq data=editces1; 
tables source_cw*source_rg; 
run; 
 
proc sort data=editces1 out=hold.editces2; 
by naics_cw st size ces_id; 
run; 
 
proc contents data=hold.editces2; 
run; 
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7. Analysis file creation 

*options mprint; 
Libname hold "c:\CES Data"; 
 
*Program Name: x:Research Project/Paper Programs/Analysis File1; 
*Creates the analysis data file for Employment modeling and variances; 
 
proc sort data=hold.ces_lopp out=ces_lopp; 
by ces_id; 
run; 
 
proc sort data=hold.editces2 out=editces2; 
by ces_id; 
run; 
 
data ces; 
merge ces_lopp editces2; 
by ces_id; 
run; 
 
proc sort data=ces; 
by ui; 
run; 
 
data rangroup; 
set hold.rangroup (drop=grandfl subsplwt); 
run; 
 
proc sort data=rangroup nodupkey; 
by ui; 
run; 
 
data editces1; 
merge ces (in=a) rangroup (in=b); 
by ui; 
if a & b then output editces1; 
else if a then output editces1; 
run; 
 
%macro keep1(mon); 
data  
%do a=3 %to &mon; 
 %do b=&a-1 %to &a-1; 
  %do c=&a-2 %to &a-2; 
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   ces&a (keep=ind size selwt lopp first_mo h1-h80  
    LR&a NR&a atyp&a ae&a LR&b NR&b atyp&b ae&b 
LR&c NR&c ae&c)  
  %end; 
 %end; 
%end; 
; 
%mend; 
 
%macro keep2(mon); 
set editces1 (keep=naics_cw size selwt first_mo lopp h1-h80  
%do a=1 %to &mon; 
 LR&a NR&a atyp&a ae&a  
%end; 
); 
%mend; 
 
%macro pull(mon); 
%do a=3 %to &mon; 
 %do b=&a-1 %to &a-1; 
  %do c=&a-2 %to &a-2; 
   data ces&a (drop=first_mo); 
   set ces&a; 
    if first_mo le &b; 
    month=&a; 
    rename LR&a=LR_0; 
    rename NR&a=NR_0; 
    rename ae&a=y_0; 
    rename atyp&a=atyp_0; 
    rename LR&b=LR_1; 
    rename NR&b=NR_1; 
    rename ae&b=y_1; 
    rename atyp&b=atyp_1; 
    rename LR&c=LR_2; 
    rename NR&c=NR_2; 
    rename ae&c=y_2; 
  %end; 
 %end; 
%end; 
%mend; 
 
 
%macro combine(mon); 
set  
%do a=3 %to &mon; 
 ces&a  
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%end; 
; 
%mend; 
 
%keep1(36); 
%keep2(36); 
if naics_cw="cons" then ind=1; 
else if naics_cw="mfg " then ind=2; 
else if naics_cw="mini" then ind=3; 
else if naics_cw="whol" then ind=4; 
run; 
 
%pull(36); 
run; 
 
 
data analysis1; 
%combine(36); 
run; 
 
proc contents data=analysis1; 
run; 
 
data hold.analysis1; 
set analysis1; 
run; 
 
*Remember to add n=1 when doing Resp Status Modeling; 
*Remember to create dummy variables when doing modeling; 
*Remember to recode LR and NR when doing summary counts; 
  
Proc means data=est2; 
class ind month emp1; 
var err_PR err_est err_model err_PRpct err_estpct err_modelpct; 
title "summary of absolute errors for late reporters - LR with 1+ prior emp, unknown 
prior emp change"; 
run; 
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8. Summarize LDB information to obtain benchmark counts 

Filename ldb01 "c:\CES Data\ldb12863.dat"; 
Filename ldb02 "c:\CES Data\ldb12867.dat"; 
libname hold "c:\CES Data"; 
 
*Program Name: x:/Research Project/Paper Programs/LDB - Links Analysis 
*This program reads the LDB extract files,  
*assigns a size class 
*and outputs a file with benchmark data for 2001, 2002; 
 
*read LDB data for 2001; 
 
data ldb01 (drop=naics_ldb); 
infile ldb01 missover; 
input @1 ldb 9. 
  @10 state 2. 
        @12 ui 10. 
        @22 run 5. 
  @32 naics_ldb 6. 
  @38 emp01 6. 
        @; 
if naics_ldb ge 440000 then delete; 
else if naics_ldb ge 420000 then naics="whol"; 
else if naics_ldb ge 310000 then naics="mfg "; 
else if naics_ldb ge 230000 then naics="cons"; 
else if naics_ldb ge 220000 then delete; 
else if naics_ldb ge 210000 then naics="mini"; 
else if naics_ldb ge 114000 then delete; 
else if naics_ldb ge 113300 then naics="mini"; 
else delete; 
 if emp01 le 10 then size=1; 
 else if emp01 le 20 then size=2; 
 else if emp01 le 50 then size=3; 
 else if emp01 le 100 then size=4; 
 else if emp01 le 150 then size=5; 
 else if emp01 le 500 then size=6; 
 else if emp01 le 1000 then size=7; 
 else size=8; 
run; 
 
proc sort data=ldb01; 
by state ui run; 
run; 
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*read LDB data for 2002; 
 
data ldb02 (drop=naics_ldb); 
infile ldb02 missover; 
input @1 ldb 9. 
  @10 state 2. 
        @12 ui 10. 
        @22 run 5. 
  @32 naics_ldb 6. 
  @38 emp02 6. 
        @; 
run; 
 
proc sort data=ldb02; 
by state ui run; 
run; 
 
data ldb only01 only02; 
merge ldb01 (in=a) ldb02 (in=b); 
by state ui run; 
if a & b then output ldb; 
else if a then output only01; 
else if b then output only02; 
run; 
 
proc sort data=ldb; 
by naics size; 
run; 
 
proc summary data=ldb noprint; 
 class naics size; 
 var emp01 emp02; 
 output out=tot_ldb sum=emp01 emp02; 
run; 
 
data tot_ldb (drop=_type_ _freq_); 
set tot_ldb; 
if _type_ ge 2; 
run; 
 
proc sort data=tot_ldb out=hold.tot_ldb; 
by naics size; 
run; 
 
proc print data=hold.tot_ldb; 
run; 



 217 
 

D. Coefficient Estimates for Full Logit Late Reporting Probability Model  
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E. Notes Concerning Variance Estimation for Predicted Conditional Late Reporting 
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F. Selected Code for Reporting Status Model Implementation 

1. Model specification for WinBUGS 

model { 
  for (i in 1:N){ 
    LR[i] ~ dbin (p[i],n[i]) 
    logit(p[i]) <- a + inprod(gD[],days[i,]) + gL*lopp[i] + inprod(gS[],size[i,]) + 
        gLR1*LR1[i] + gLR2*LR2[i] + gNR1*NR1[i] + gNR2*NR2[i] + gG*gap[i] 
 
  } 
 
  a ~ dunif (-5, 5) 
  gLR1 ~ dunif (-5, 5) 
  gLR2 ~ dunif (-5, 5) 
  gNR1 ~ dunif (-5, 5) 
  gNR2 ~ dunif (-5, 5) 
  gD[1] ~ dunif (-2, 2) 
  gD[2] ~ dunif (-2, 2) 
  gL ~ dunif (-2, 2) 
  gS[1] ~ dunif (-2, 2) 
  gS[2] ~ dunif (-2, 2) 
  gS[3] ~ dunif (-2, 2) 
  gG ~ dunif (-5, 5) 
 
} 
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2. R code used to read data and call WinBUGS 

# response status model with collapsed factors - months 3 - k 
############################ 
#Mining 
############################ 
#months 3-15 
 
test3 <- read.table ("LR1_mine3.txt", header=T) 
test4 <- read.table ("LR1_mine4.txt", header=T) 
test5 <- read.table ("LR1_mine5.txt", header=T) 
test6 <- read.table ("LR1_mine6.txt", header=T) 
test7 <- read.table ("LR1_mine7.txt", header=T) 
test8 <- read.table ("LR1_mine8.txt", header=T) 
test9 <- read.table ("LR1_mine9.txt", header=T) 
test10 <- read.table ("LR1_mine10.txt", header=T) 
test11 <- read.table ("LR1_mine11.txt", header=T) 
test12 <- read.table ("LR1_mine12.txt", header=T) 
test13 <- read.table ("LR1_mine13.txt", header=T) 
test14 <- read.table ("LR1_mine14.txt", header=T) 
test15 <- read.table ("LR1_mine15.txt", header=T) 
test <- rbind(test3, test4, test5, test6, test7, test8, test9, test10, test11, test12, test13, 

test14, test15) 
N <- nrow(test) 
n <- test$n 
LR <- test$LR 
LR1 <- test$LR1 
LR2 <- test$LR2 
NR1 <- test$NR1 
NR2 <- test$NR2 
days.1 <- test$days9 + test$days11  
days.2 <- test$days15 
days <- cbind(days.1, days.2) 
size.1 <- test$size1 
size.2 <- test$size2 
size.3 <- test$size5 + test$size8 
size <- cbind(size.1, size.2, size.3) 
lopp <- test$lopp4 
gap <- log(test$gap) 
 
data <- list("N", "n", "LR", "LR1", "LR2", "NR1", "NR2", "days", "lopp", "size", 

"gap") 
inits1 <- list(a=1.1, gD=c(0.1,0.1), gL=0.1, gS=c(0.1,0.1,0.1), gG=0.1, gLR.1=0.1, 

gLR.2=0.1, gNR.1=0.1, gNR.2=0.1) 
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inits2 <- list(a=0.9, gD=c(-0.1,-0.1), gL=-0.1, gS=c(-0.1,-0.1,-0.1), gG=-0.1, 
gLR.1=-0.1, gLR.2=-0.1, gNR.1=-0.1, gNR.2=-0.1) 

inits <- list(inits1, inits2) 
parameters <- c("a", "gD", "gL", "gS", "gLR1", "gLR2", "gNR1", "gNR2", "gG") 
test.sim <- bugs (data, inits, parameters, "Resp Status Model Initial Extended-

Mine.txt", n.chains=2, n.iter=500, digits=4) 
 
attach.all(test.sim) 
test.sim$summary 
 
Mean<-test.sim$summary[1:13,1] 
Stdev<-test.sim$summary[1:13,2] 
Per2.5<-test.sim$summary[1:13,3] 
Per97.5<-test.sim$summary[1:13,7] 
Rhat<-test.sim$summary[1:13,8] 
n.eff<-test.sim$summary[1:13,9] 
DIC.16 <- DIC 
pD.16 <- pD 
 
results16<-

data.frame(M16=Mean,SD16=Stdev,LPer16=Per2.5,UPer16=Per97.5,R16=Rhat,n16
=n.eff) 

params16<-data.frame(M16=Mean) 
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3. Summary of results of model 

*options mprint; 
Libname source "c:\unzipped"; 
 
data cons; 
set source.cons_lr1; 
if month ge 16; 
if month le 27; 
run; 
 
proc sort data=cons; 
by month; 
run; 
 
data parameters; 
infile 'I:\Bayes\CES\Paper\parconsrev3.csv' delimiter=','; 
input month a gD1 gD2 gD3 gL1 gL2 gL3 gS1 gS2 gS3 gLR1 gLR2 gNR1 gNR2 
gG; 
run; 
 
proc sort data=parameters; 
by month; 
run; 
 
data pred; 
merge cons parameters; 
by month; 
logit = a + gG*log(gap)  
 + gS1*size1 + gS2*size2 + gS3*size3  
 + gL1*lopp4 + gL2*lopp2 + gL3*lopp3  
 + gD1*(days10 + days13) + gD2*days9 + gD3*days11  
 + gLR1*LR_1 + gNR1*NR_1 + gLR2*LR_2 + gNR2*NR_2; 
Pred_Prior=exp(logit)/(1 + exp(logit)); 
run; 
 
*proc print data=pred; 
*run; 
 
proc summary data=pred noprint; 
class month LR_1 NR_1 LR_2 NR_2; 
var n LR Pred_Prior; 
output out=Results sum = Total LR Pred_Prior; 
run; 
 
*proc print data=results; 
*run; 
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data Results (drop=_type_ _freq_); 
set Results; 
if _type_=16 or _type_=31; 
Actual_LR=LR/Total; 
Pred_LR_Prior=Pred_Prior/Total; 
Err_Prior=Pred_LR_Prior-Actual_LR; 
run; 
 
proc sort data=Results; 
by LR_1 NR_1 LR_2 NR_2 month; 
run; 
 
data parameters16 (drop=month); 
set parameters; 
if month=16; 
n=1; 
run; 
 
proc sort data=parameters16; 
by n; 
run; 
 
proc sort data=cons; 
by n; 
run; 
 
data pred16; 
merge parameters16 cons; 
by n; 
logit = a + gG*log(gap)  
 + gS1*size1 + gS2*size2 + gS3*size3  
 + gL1*lopp4 + gL2*lopp2 + gL3*lopp3  
 + gD1*(days10 + days13) + gD2*days9 + gD3*days11  
 + gLR1*LR_1 + gNR1*NR_1 + gLR2*LR_2 + gNR2*NR_2; 
Pred_Prior=exp(logit)/(1 + exp(logit)); 
run; 
 
*proc print data=pred; 
*run; 
 
proc summary data=pred16 noprint; 
class month LR_1 NR_1 LR_2 NR_2; 
var n LR Pred_Prior; 
output out=Results16 sum = Total LR Pred_Prior; 
run; 
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*proc print data=results; 
*run; 
 
data Results16 (drop=_type_ _freq_ LR Total Pred_Prior); 
set Results16; 
if _type_=16 or _type_=31; 
Actual_LR=LR/Total; 
Pred_LR_Prior16=Pred_Prior/Total; 
Err_Prior16=Pred_LR_Prior16-Actual_LR; 
run; 
 
proc sort data=Results16; 
by LR_1 NR_1 LR_2 NR_2 month; 
run; 
 
data Results; 
merge Results Results16; 
by LR_1 NR_1 LR_2 NR_2 month; 
run; 
 
proc print data=Results; 
var month LR_1 NR_1 LR_2 NR_2 Total LR Actual_LR Pred_LR_Prior Err_Prior 
Pred_LR_Prior16 Err_Prior16; 
title "LR Prediction Results for Construction for Months 16-24"; 
run; 
 
PROC EXPORT DATA= WORK.RESULTS  
            OUTFILE= "I:\Bayes\CES\Paper Results\Cons Pred LR.xls"  
            DBMS=EXCEL2000 REPLACE; 
RUN; 
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G. Bayes’ Estimation of Fixed Effects 

Parameters for the employment growth models were estimated using SAS v.8.2 for 

the current method and Model 2, and SAS v.8.2 and WinBUGS v.1.4 called from a 

program written in R v.1.8.1 for the hierarchical fixed effect approach (Model 2).  

The WinBUGS model specification is provided in Appendix H.1.  The R code used 

for calling WinBUGS is provided in Appendix H.2.  Missing employment was 

imputed under Models 1 and 2 for sample units reporting in month 1t −  that had not 

reported data for month t  in time for preliminary estimation. 

The sample for three of the industries (Construction, Manufacturing, and 

Wholesale Trade), was on the order of 10 to 20 times as large as that for the 

remaining industry (Mining).  As a result, the WinBUGS program for these industries 

had a run time over 24 hours for one month within an industry (versus approximately 

two hours for Mining).  In order to provide a more efficient run time, these industries 

were subsampled at a 10% rate (for Construction and Wholesale Trade) or a 5% rate 

(for Manufacturing).  Even with these reductions in sample size, each model ran on 

the order of 1-2 hours.  Given the model was run for 12 months for each of 4 

industries, the computing time required to obtain all the necessary parameter 

estimates was on the order of 3-4 days (not including the inevitable glitches involved 

in testing the program code). 

The model was run using two chains, with 200 iterations and a burn-in period of 

100 iterations.  Initial values for each parameter were set at 0.1 above the mean for 

the distribution for chain one and 0.1 below the mean for the distribution for chain 

two.  Averages for the potential scale reduction factors for the model across the 12 
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months are provided in Table 46.  As can be seen, there were four parameters that 

failed to meet the guideline convergence criteria for at least one month.  However, 

further examination showed occurrences were at most two for any parameter, so the 

model was not run using additional iterations. 

Table 46-PSRF Values for Employment Growth Model 2 

Small Large Small Large Small Large Small Large
1.05 1.19 1.02 1.16 1.05 1.19 1.02 1.02
1.03 1.11 1.02 1.39 1.03 1.04 1.02 1.11
1.02 1.05 1.03 1.07 1.04 1.07 1.02 1.07
1.07 1.15 1.04 1.18 1.09 1.14 1.05 1.08
1.02 1.16 1.05 1.20 1.03 1.08 1.05 1.03
1.03 1.12 1.03 1.10 1.03 1.09 1.02 1.07

1.07 1.18 1.05 1.23 1.10 1.26 1.04 1.14

1.11 1.19 1.02 1.35 1.02 1.11 1.02 1.14

1.06 1.15 1.04 1.17 1.04 1.08 1.02 1.05
1.10 1.07 1.04 1.05 1.04 1.04 1.02 1.07

Construction Manufacturing Mining Wholesale Trade
Prior Month Size Class

Maximum Potential Scale Reduction Factors for Model II
March 2001 - April 2002

( )4t cρ −

( )6t cρ −

( )3t cρ −

( )5t cρ −

( )2t cρ −

( )1t cρ −
( )low
cλ
( )high
cλ
( )unk
cλ

yσ  

Several illustrations from the graphical results available from the R software used 

to call WinBUGS are provided in Figure 35-Figure 37.  The parameter, “rho[k]” 

corresponds to the proportionality factor for month (7 )t k− −  (i.e., months were 

sequentially ordered in the WinBUGS specification from 1 to 6, with 1 representing 

the oldest month, 6t − , and 6 representing the most recent month, 1t − ), “pC[k]” 

corresponds to the 'sλ  [ ] ( ) [ ] ( ) [ ] ( )( )1 ,  2 ,  3low high unkpC pC pCλ λ λ⇒ ⇒ ⇒ .  Looking 

at the graphs, the greater variability associated with the estimate for ( )unkλ  can be 

seen.  Refer to Chapter IV for an explanation of the structure of the graphs. 
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Figure 35-Model 2 Results for March 2002: Manufacturing, Large Employment 

 

Figure 36-Model 2 Results for March 2002: Mining, Large Employment 
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Figure 37-Model 2 Results for March 2002: Mining, Small Employment 

 

Values for the estimated parameters are relatively unstable for the small prior 

employment group, but fairly stable across time for the large prior employment 

group, as indicated in Table 47 and Figure 38.  The standard deviations were used 

rather than a relative standard deviation, as the coefficients are roughly equivalent.  It 

should also be noted that many of the coefficients are not significantly different from 

zero, which is somewhat to be expected as, based on the review of link relatives by 

characteristic discussed in Chapter V, deviations from the industry level for a group 

are expected to be relatively small. 



 231 
 

Table 47-Distribution of Coefficient Estimates for Model 2 

Mean st dev Mean st dev Mean st dev Mean st dev
Small (1-9) Low 0.06 0.03 0.10 0.04 0.07 0.02 0.04 0.05

High -0.01 0.06 -0.03 0.04 0.03 0.03 0.06 0.11
Unknown -0.02 0.01 -0.01 0.01 0.00 0.04 -0.01 0.03

Large (10+) Low 0.00 0.02 0.00 0.00 0.01 0.03 0.00 0.00
High 0.01 0.01 0.01 0.01 0.00 0.02 0.00 0.01
Unknown 0.01 0.02 0.02 0.01 0.01 0.05 0.00 0.01

Distribution of Coefficient Estimates
April 2001 - March 2002

Construction Manufacturing Mining Wholesale TradePrior Employment 
Size

Employment 
Growth Group

 

Figure 38-Coefficients for Model 2 

Bayes' Model for Employment Growth
Estimated Coefficients for Low Employment Change Group
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Bayes' Model for Employment Growth
Estimated Coefficients for High Employment Change Group

Small Prior Month Employment (1-9)
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Bayes' Model for Employment Growth
Estimated Coefficients for Unknown Employment Change Group

Small Prior Month Employment (1-9)
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 H. Selected Code for Employment Growth Model Implementation 

1. Model specification for WinBUGS 

model { 
  for (i in 1:n){ 
    y[i] ~ dnorm (y.hat[i], tau.y[i]) 
    y.hat[i] <- (rho[month[i]] + inprod(pC[],change[i,]))*x[i] 
    tau.y[i] <- pow(sigma.y, -2)*w[i]/z[i] 
    z[i] <- max(1, x[i]) 
  } 
 
  for (j in 1:n.month){ 
    rho[j] ~ dunif (.2, 1.8) 
  } 
 
  sigma.y ~ dunif (0, 1000) 
  pC[1] ~ dunif (-2, 2) 
  pC[2] ~ dunif (-2, 2) 
  pC[3] ~ dunif (-2, 2) 
 
} 
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2. R code used to read data and call WinBUGS 

######################################### 
# ae model 
# assumes proportional relationship within size (small - <10, large, 10+) 
# small 
# months 10-15 
 
test10 <- read.table ("smmine2_10.txt", header=T) 
test11 <- read.table ("smmine2_11.txt", header=T) 
test12 <- read.table ("smmine2_12.txt", header=T) 
test13 <- read.table ("smmine2_13.txt", header=T) 
test14 <- read.table ("smmine2_14.txt", header=T) 
test15 <- read.table ("smmine2_15.txt", header=T) 
test <- rbind(test10, test11, test12, test13, test14, test15) 
n <- nrow(test) 
n.month <- max(test$month)-9 
 
x <- test$x 
y <- test$y 
w <- test$selwt 
month <- test$month-9 
change1 <- test$change1 
change2 <- test$change2 
change3 <- test$change3 
change <- cbind(change1,change2,change3) 
 
data <- list("n", "n.month", "x", "y", "w", "month", "change") 
inits1 <- list(rho=c(1.01,1.01,1.01,1.01,1.01,1.01), pC=c(0.01,0.01,0.01), 
sigma.y=0.1) 
inits2 <- list(rho=c(0.99,0.99,0.99,0.99,0.99,0.99), pC=c(-0.01,-0.01,-0.01), 
sigma.y=0.1) 
inits <- list(inits1, inits2) 
parameters <- c("rho", "pC", "sigma.y") 
test.sim <- bugs (data, inits, parameters, "Large AE Model.txt", n.chains=2, 
n.iter=200, digits=4) 
 
attach.all(test.sim) 
test.sim$summary 
Mean<-test.sim$summary[1:11,1] 
Stdev<-test.sim$summary[1:11,2] 
LPer<-test.sim$summary[1:11,3] 
UPer<-test.sim$summary[1:11,7] 
Rhat<-test.sim$summary[1:11,8]   
n.eff<-test.sim$summary[1:11,9] 
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res16s<-data.frame(M16s=Mean, Sd16s=Stdev, sPer16s=LPer, UPer16s=UPer, 
R16s=Rhat, n16s=n.eff) 
par16s<-data.frame(M16s=Mean) 
DIC.16s<-DIC 
pD.16s<-pD 
temp<-data.frame(M=Mean, Sd=Stdev, sPer=LPer, UPer=UPer, R=Rhat, n=n.eff, 
DIC=DIC, pD=pD) 
 
write.table(temp, file= "Temp Mine2 Small 16.csv", sep= "," , col.names=NA) 
 
###################################### 
# ae model 
# assumes proportional relationship within size (small - <10, large, 10+) 
# large 
# months 10-15 
 
test10 <- read.table ("lgmine2_10.txt", header=T) 
test11 <- read.table ("lgmine2_11.txt", header=T) 
test12 <- read.table ("lgmine2_12.txt", header=T) 
test13 <- read.table ("lgmine2_13.txt", header=T) 
test14 <- read.table ("lgmine2_14.txt", header=T) 
test15 <- read.table ("lgmine2_15.txt", header=T) 
test <- rbind(test10, test11, test12, test13, test14, test15) 
n <- nrow(test) 
n.month <- max(test$month)-9 
 
x <- test$x 
y <- test$y 
w <- test$selwt 
month <- test$month-9 
change1 <- test$change1 
change2 <- test$change2 
change3 <- test$change3 
change <- cbind(change1,change2,change3) 
 
data <- list("n", "n.month", "x", "y", "w", "month", "change") 
inits1 <- list(rho=c(1.01,1.01,1.01,1.01,1.01,1.01), pC=c(0.01,0.01,0.01), 
sigma.y=0.1) 
inits2 <- list(rho=c(0.99,0.99,0.99,0.99,0.99,0.99), pC=c(-0.01,-0.01,-0.01), 
sigma.y=0.1) 
inits <- list(inits1, inits2) 
parameters <- c("rho", "pC", "sigma.y") 
test.sim <- bugs (data, inits, parameters, "Large AE Model.txt", n.chains=2, 
n.iter=200, digits=4) 
 
attach.all(test.sim) 
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test.sim$summary 
Mean<-test.sim$summary[1:11,1] 
Stdev<-test.sim$summary[1:11,2] 
LPer<-test.sim$summary[1:11,3] 
UPer<-test.sim$summary[1:11,7] 
Rhat<-test.sim$summary[1:11,8]   
n.eff<-test.sim$summary[1:11,9] 
res16l<-data.frame(M16l=Mean, Sd16l=Stdev, LPer16l=LPer, UPer16l=UPer, 
R16l=Rhat, n16l=n.eff) 
par16l<-data.frame(M16l=Mean) 
DIC.16l<-DIC 
pD.16l<-pD 
temp<-data.frame(M=Mean, Sd=Stdev, sPer=LPer, UPer=UPer, R=Rhat, n=n.eff, 
DIC=DIC, pD=pD) 
 
write.table(temp, file= "Temp Mine2 Large 16.csv", sep= "," , col.names=NA) 
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3. Create imputed data and derive link relatives 

*options mprint; 
Libname hold "c:\CES Data"; 
 
*Program Name: x:Research Project/Paper Programs/Revision/Final; 
*AE Estimation variance-4size; 
*Calculates full and half-sample estimates; 
 
%macro createvar(var); 
p0=prior; 
c0=curr; 
p0p=prior; 
c0p=curr; 
p0f=prior; 
c0f=curr; 
p1=prior; 
c1=curr; 
p1f=prior; 
c1f=curr; 
%mend; 
 
*Calculate full sample estimates; 
 
data all (keep=ind month size n ch selwt curr prior emp1 group2 LR_0 
NR_0 NR_1 NR_2 R); 
set hold.analysis1r (keep=LR_0 NR_0 NR_1 NR_2 atyp_0 atyp_1 
 ind month y_0 y_1 y_2 selwt size); 
if NR_1 = 1 then delete; 
if atyp_0 ge 1 then delete; 
if y_1 = . then delete; 
n=1; 
if atyp_1 ge 1 then do; 
 NR_2=1; 
 y_2=.; 
end; 
if selwt = . then selwt=1; 
if y_1 le 9 then emp1=1; 
 else if y_1 le 19 then emp1=2; 
 else if y_1 le 49 then emp1=3; 
 else emp1=4; 
if y_2 = . then group2=0; 
 else if y_2 le 9 then group2=1; 
 else if y_2 le 19 then group2=2; 
 else if y_2 le 49 then group2=3; 
 else if y_2 le 99 then group2=4; 
 else if y_2 le 249 then group2=5; 
 else if y_2 le 499 then group2=6; 
 else group2=7; 
if atyp_1 ge 1 then ch=.; 
if NR_2=0 then ch=y_1-y_2; 
rename y_1=prior; 
rename y_0=curr; 
if LR_0=1 then R=2; 
 else if NR_0=1 then R=3; 
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 else R=1; 
run; 
 
*Group into quintiles by ch-within ind, month month t-2 emp group; 
*yield low=0, med=1, hi=2, unk=.; 
proc sort data=all; 
by ind month group2; 
run; 
 
proc rank data=all out=all groups=3; 
by ind month group2; 
var ch; 
ranks ch_r; 
run; 
 
*rename change to make low=1, med=2, hi=3, unk=4; 
*use actual change for month t-1 emp <10, relative change for month 
t-1 emp 10+ 
*create dummy variables for use in model estimation; 
data all (drop=ch); 
set all; 
if emp1 le 3 then rch=ch_r; 
 else rch=.; 
if rch ge 0 then do; 
 if rch = 0 then change=1; 
 else if rch =1 then change=2; 
 else if rch = 2 then change=3; 
end; 
else change=4; 
run; 
 
*Create subsets for use in estimating LRs, imputation; 
*conf1: LR in month t, R in month t-1 and t-2, month t-1 emp>0; 
*for1: not LR in month t, R in month t-1 and t-2, month t-1 emp>0; 
*q data sets should be empty; 
data conf1 conq1 only0  
 for1 forq1  
 Q1; 
set all; 
if emp1=1 then do; 
 if change=1 then cell=1; 
 else if change=3 then cell=2; 
 else cell=3; 
end; 
else if emp1=2 then do; 
 if change=1 then cell=4; 
 else if change=3 then cell=5; 
 else cell=6; 
end; 
else if emp1=3 then do; 
 if change=1 then cell=7; 
 else if change=3 then cell=8; 
 else cell=9; 
end; 
else cell=10; 
if NR_0+LR_0=0 then do; 
 if NR_1=0 then do; 
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  if prior ge 0 then output conf1; 
  else output conq1; 
 end; 
 else output only0; 
end; 
else if NR_0+LR_0=1 then do; 
 if prior ge 0 then output for1; 
 else output forq1; 
end; 
else output Q1; 
run; 
 
*calculate current link relatives; 
*preliminary; 
*combine PRs that reported in month t-1; 
data PR; 
set conf1; 
run; 
 
proc sort data=PR; 
by ind month; 
run; 
 
proc summary data=PR nway; 
by ind month; 
var prior curr; 
weight selwt; 
output out=LR_PR sum=p c; 
run; 
 
data LR_PR (drop=p c); 
set LR_PR (drop=_type_ _freq_); 
lr_PR=c/p; 
run; 
 
proc sort data=LR_PR; 
by ind month; 
run; 
 
*final; 
*combine LRs that reported in month t-1 with PRs that reported in 
month t-1; 
data LR; 
set for1; 
if LR_0=1; 
run; 
 
data Rpt; 
set PR LR; 
run; 
 
proc sort data=Rpt; 
by ind month; 
run; 
 
proc summary data=Rpt nway; 
by ind month; 
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var prior curr; 
weight selwt; 
output out=LR_Rpt sum=p c; 
run; 
 
data LR_Rpt (drop=p c); 
set LR_Rpt (drop=_type_ _freq_); 
lr_R=c/p; 
run; 
 
proc sort data=LR_Rpt; 
by ind month; 
run; 
 
*First level estimation; 
*create variables for use in comparions for constant reporters; 
*0 refers to reported values; 
*1 refers to current size x prior change imputed values; 
*f refers to final values; 
 
data conf1; 
set conf1; 
%createvar(1); 
run; 
 
*Carry out imputation; 
***********; 
*month t-1 Rpt; 
*calcuate link relative for size x change; 
proc sort data=conf1; 
by ind month cell; 
run; 
 
proc summary data=conf1 nway; 
by ind month cell; 
var p0 c0; 
weight selwt; 
output out=LR_sc sum=p c; 
run; 
 
data LR_sc (drop=p c); 
set LR_sc (drop=_type_ _freq_); 
lr_sc=c/p; 
run; 
 
proc sort data=LR_sc; 
by ind month cell; 
run; 
 
*merge with ind link relatives; 
data LR_conf1; 
merge LR_PR LR_Rpt LR_sc; 
by ind month; 
run; 
 
*impute for missing values using emp x change, ind, model; 
*missing month t, month t-1 emp>0, prior change available; 
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proc sort data= for1; 
by ind month cell; 
run; 
 
data for1adj; 
merge LR_conf1 for1 (in=a); 
by ind month cell; 
if a; 
c1=prior*lr_sc; 
p1=prior; 
if LR_0=1 then do; 
 p0p=prior; 
 c0p=prior*lr_PR; 
 p0f=prior; 
 c0f=curr; 
 c1f=curr; 
 p1f=prior; 
end; 
else if NR_0=1 then do; 
 c1f=c1; 
 p1f=p1; 
end; 
run; 
 
*Final estimation; 
*use all available records; 
 
data imp; 
set conf1 for1adj; 
run; 
 
proc sort data=imp; 
by ind month LR_0; 
run; 
 
proc summary data=imp nway; 
by ind month; 
var p0 c0 p0f c0f p1 c1 p1f c1f; 
weight selwt; 
output out=LR_imp_all sum=p0 c0 p0f c0f pI cI pIf cIf; 
run; 
 
data LR_imp_all (drop=p0 c0 p0f c0f pI cI pIf cIf); 
set LR_imp_all (drop=_type_ _freq_); 
lr0=c0/p0; 
lr0f=c0f/p0f; 
lr1=cI/pI; 
lr1f=cIf/pIf; 
run; 
 
proc sort data=LR_imp_all; 
by ind month; 
run; 
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4. Derive balanced half sample estimates 

*Calculate half-sample estimates; 
 
%macro rg(rg); 
%do z=1 %to &rg; 
data all_neg (keep=ind month size n ch selwt curr prior emp1 group2 
LR_0 NR_0 NR_1 NR_2)  
 all_pos (keep=ind month size n ch selwt curr prior emp1 group2 
LR_0 NR_0 NR_1 NR_2); 
set hold.analysis1r (keep=LR_0 NR_0 NR_1 NR_2 atyp_0 atyp_1 h&z  
 ind month y_0 y_1 y_2 selwt size); 
if h&z=. then delete; 
if NR_1 = 1 then delete; 
if atyp_0 ge 1 then delete; 
if y_1 = . then delete; 
n=1; 
if atyp_1 ge 1 then do; 
 NR_2=1; 
 y_2=.; 
end; 
if selwt = . then selwt=1; 
selwt=1+0.5*h&z; 
if y_1 le 9 then emp1=1; 
 else if y_1 le 19 then emp1=2; 
 else if y_1 le 49 then emp1=3; 
 else emp1=4; 
if y_2 = . then group2=0; 
 else if y_2 le 9 then group2=1; 
 else if y_2 le 19 then group2=2; 
 else if y_2 le 49 then group2=3; 
 else if y_2 le 99 then group2=4; 
 else if y_2 le 249 then group2=5; 
 else if y_2 le 499 then group2=6; 
 else group2=7; 
if atyp_1 ge 1 then ch=.; 
if NR_2=0 then ch=y_1-y_2; 
rename y_1=prior; 
rename y_0=curr; 
if h&z=-1 then output all_neg; 
else if h&z=1 then output all_pos; 
run; 
 
****************; 
*run for one half sample; 
*Group into tertiles by ch-within ind, month month t-2 emp group; 
*yield low=0, med=1, hi=2, unk=.; 
proc sort data=all_neg; 
by ind month group2; 
run; 
 
proc rank data=all_neg out=all_neg groups=3; 
by ind month group2; 
var ch; 
ranks ch_r; 
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run; 
 
data all_neg (drop=ch); 
set all_neg; 
if emp1 le 3 then rch=ch_r; 
 else rch=.; 
if rch ge 0 then do; 
 if rch = 0 then change=1; 
 else if rch =1 then change=2; 
 else if rch = 2 then change=3; 
end; 
else change=4; 
run; 
 
data conf1 conq1 only0  
 for1 forq1  
 Q1; 
set all_neg; 
if emp1=1 then do; 
 if change=1 then cell=1; 
 else if change=3 then cell=2; 
 else cell=3; 
end; 
else if emp1=2 then do; 
 if change=1 then cell=4; 
 else if change=3 then cell=5; 
 else cell=6; 
end; 
else if emp1=3 then do; 
 if change=1 then cell=7; 
 else if change=3 then cell=8; 
 else cell=9; 
end; 
else cell=10; 
if NR_0+LR_0=0 then do; 
 if NR_1=0 then do; 
  if prior ge 0 then output conf1; 
  else output conq1; 
 end; 
 else output only0; 
end; 
else if NR_0+LR_0=1 then do; 
 if prior ge 0 then output for1; 
 else output forq1; 
end; 
else output Q1; 
run; 
 
*calculate current link relatives; 
*preliminary; 
*combine PRs that reported in month t-1; 
data PR; 
set conf1; 
run; 
 
proc sort data=PR; 
by ind month; 
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run; 
 
proc summary data=PR nway; 
by ind month; 
var prior curr; 
weight selwt; 
output out=LR_PR sum=p c; 
run; 
 
data LR_PR (drop=p c); 
set LR_PR (drop=_type_ _freq_); 
lr_PR=c/p; 
run; 
 
proc sort data=LR_PR; 
by ind month; 
run; 
 
*final; 
*combine LRs that reported in month t-1 with PRs that reported in 
month t-1; 
data LR; 
set for1; 
if LR_0=1; 
run; 
 
data Rpt; 
set PR LR; 
run; 
 
proc sort data=Rpt; 
by ind month; 
run; 
 
proc summary data=Rpt nway; 
by ind month; 
var prior curr; 
weight selwt; 
output out=LR_Rpt sum=p c; 
run; 
 
data LR_Rpt (drop=p c); 
set LR_Rpt (drop=_type_ _freq_); 
lr_R=c/p; 
run; 
 
proc sort data=LR_Rpt; 
by ind month; 
run; 
 
*First level estimation; 
*create variables for use in comparions for constant reporters; 
*0 refers to reported values; 
*1 refers to current size x prior change imputed values; 
*f refers to final values; 
%macro createvar(var); 
p0=prior; 
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c0=curr; 
p0p=prior; 
c0p=curr; 
p0f=prior; 
c0f=curr; 
p1=prior; 
c1=curr; 
p1f=prior; 
c1f=curr; 
%mend; 
 
data conf1; 
set conf1; 
%createvar(1); 
run; 
 
*Carry out imputation; 
***********; 
*month t-1 Rpt; 
*calcuate link relative for size x change; 
proc sort data=conf1; 
by ind month cell; 
run; 
 
proc summary data=conf1 nway; 
by ind month cell; 
var p0 c0; 
weight selwt; 
output out=LR_sc sum=p c; 
run; 
 
data LR_sc (drop=p c); 
set LR_sc (drop=_type_ _freq_); 
lr_sc=c/p; 
run; 
 
proc sort data=LR_sc; 
by ind month cell; 
run; 
 
*merge with ind link relatives; 
data LR_conf1; 
merge LR_PR LR_Rpt LR_sc; 
by ind month; 
run; 
 
*impute for missing values using emp x change, ind, model; 
*missing month t, month t-1 emp>0, prior change available; 
proc sort data= for1; 
by ind month cell; 
run; 
 
data for1adj; 
merge LR_conf1 for1 (in=a); 
by ind month cell; 
if a; 
c1=prior*lr_sc; 
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p1=prior; 
if LR_0=1 then do; 
 p0p=prior; 
 c0p=prior*lr_PR; 
 p0f=prior; 
 c0f=curr; 
 c1f=curr; 
 p1f=prior; 
end; 
else if NR_0=1 then do; 
 c1f=c1; 
 p1f=p1; 
end; 
run; 
 
*Final estimation; 
*use all available records; 
 
data imp_neg; 
set conf1 for1adj; 
run; 
 
********************; 
*repeat for other half-sample; 
*Group into tertiles by ch-within ind, month month t-2 emp group; 
*yield low=0, med=1, hi=2, unk=.; 
proc sort data=all_pos; 
by ind month group2; 
run; 
 
proc rank data=all_pos out=all_pos groups=3; 
by ind month group2; 
var ch; 
ranks ch_r; 
run; 
 
data all_pos (drop=ch); 
set all_pos; 
if emp1 le 3 then rch=ch_r; 
 else rch=.; 
if rch ge 0 then do; 
 if rch = 0 then change=1; 
 else if rch =1 then change=2; 
 else if rch = 2 then change=3; 
end; 
else change=4; 
run; 
 
data conf1 conq1 only0  
 for1 forq1  
 Q1; 
set all_pos; 
if emp1=1 then do; 
 if change=1 then cell=1; 
 else if change=3 then cell=2; 
 else cell=3; 
end; 
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else if emp1=2 then do; 
 if change=1 then cell=4; 
 else if change=3 then cell=5; 
 else cell=6; 
end; 
else if emp1=3 then do; 
 if change=1 then cell=7; 
 else if change=3 then cell=8; 
 else cell=9; 
end; 
else cell=10; 
if NR_0+LR_0=0 then do; 
 if NR_1=0 then do; 
  if prior ge 0 then output conf1; 
  else output conq1; 
 end; 
 else output only0; 
end; 
else if NR_0+LR_0=1 then do; 
 if prior ge 0 then output for1; 
 else output forq1; 
end; 
else output Q1; 
run; 
 
*calculate current link relatives; 
*preliminary; 
*combine PRs that reported in month t-1; 
data PR; 
set conf1; 
run; 
 
proc sort data=PR; 
by ind month; 
run; 
 
proc summary data=PR nway; 
by ind month; 
var prior curr; 
weight selwt; 
output out=LR_PR sum=p c; 
run; 
 
data LR_PR (drop=p c); 
set LR_PR (drop=_type_ _freq_); 
lr_PR=c/p; 
run; 
 
proc sort data=LR_PR; 
by ind month; 
run; 
 
*final; 
*combine LRs that reported in month t-1 with PRs that reported in 
month t-1; 
data LR; 
set for1; 
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if LR_0=1; 
run; 
 
data Rpt; 
set PR LR; 
run; 
 
proc sort data=Rpt; 
by ind month; 
run; 
 
proc summary data=Rpt nway; 
by ind month; 
var prior curr; 
weight selwt; 
output out=LR_Rpt sum=p c; 
run; 
 
data LR_Rpt (drop=p c); 
set LR_Rpt (drop=_type_ _freq_); 
lr_R=c/p; 
run; 
 
proc sort data=LR_Rpt; 
by ind month; 
run; 
 
*First level estimation; 
*create variables for use in comparions for constant reporters; 
*0 refers to reported values; 
*1 refers to current size x prior change imputed values; 
*f refers to final values; 
 
data conf1; 
set conf1; 
%createvar(1); 
run; 
 
*Carry out imputation; 
***********; 
*month t-1 Rpt; 
*calcuate link relative for size x change; 
proc sort data=conf1; 
by ind month cell; 
run; 
 
proc summary data=conf1 nway; 
by ind month cell; 
var p0 c0; 
weight selwt; 
output out=LR_sc sum=p c; 
run; 
 
data LR_sc (drop=p c); 
set LR_sc (drop=_type_ _freq_); 
lr_sc=c/p; 
run; 
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proc sort data=LR_sc; 
by ind month cell; 
run; 
 
*merge with ind link relatives; 
data LR_conf1; 
merge LR_PR LR_Rpt LR_sc; 
by ind month; 
run; 
 
*impute for missing values using emp x change, ind, model; 
*missing month t, month t-1 emp>0, prior change available; 
proc sort data= for1; 
by ind month cell; 
run; 
 
data for1adj; 
merge LR_conf1 for1 (in=a); 
by ind month cell; 
if a; 
c1=prior*lr_sc; 
p1=prior; 
if LR_0=1 then do; 
 p0p=prior; 
 c0p=prior*lr_PR; 
 p0f=prior; 
 c0f=curr; 
 c1f=curr; 
 p1f=prior; 
end; 
else if NR_0=1 then do; 
 c1f=c1; 
 p1f=p1; 
end; 
run; 
 
*Final estimation; 
*use all available records; 
 
data imp_pos; 
set conf1 for1adj; 
run; 
 
data imp; 
set imp_neg imp_pos; 
run; 
 
proc sort data=imp; 
by ind month; 
run; 
 
proc summary data=imp nway; 
by ind month; 
var p0 c0 p0f c0f p1 c1 p1f c1f; 
weight selwt; 
output out=LR_imp sum=p0 c0 p0f c0f pI cI pIf cIf; 
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run; 
 
data LR_imp_&z (drop=p0 c0 p0f c0f pI cI pIf cIf); 
set LR_imp (drop=_type_ _freq_); 
lr0_&z=c0/p0; 
lr0f_&z=c0f/p0f; 
lr1_&z=cI/pI; 
lr1f_&z=cIf/pIf; 
run; 
 
proc sort data=LR_imp_&z; 
by ind month; 
run; 
%end; 
%mend; 
 
%rg(80); 
run; 
 
proc sort data=LR_imp_all; 
by ind month; 
run; 
 
%macro together(rg); 
merge LR_imp_all (keep=ind month lr0 lr0f lr1 lr1f)  
%do a=1 %to &rg; 
LR_imp_&a  
%end; 
; 
%mend; 
 
data LR_imp0 (keep=ind month lr0 lr0f lr0_1-lr0_80 lr0f_1-lr0f_80)  
 LR_imp1 (keep=ind month lr1 lr1f lr1_1-lr1_80 lr1f_1-lr1f_80); 
%together(80); 
by ind month; 
output LR_imp0; 
output LR_imp1; 
run; 
 
data hold.LR_imp0; 
set LR_imp0; 
run; 
 
data hold.LR_imp1; 
set LR_imp1; 
run; 
 
data hold.LR_imp_all; 
set LR_imp_all; 
run; 
 
data LR_imp0p (keep=ind month lr0 lr0_1-lr0_80) 
 LR_imp0f (keep=ind month lr0f lr0f_1-lr0f_80); 
set hold.LR_imp0; 
output LR_imp0p; 
output LR_imp0f; 
run; 
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PROC EXPORT DATA= work.LR_imp0p  
            OUTFILE= "c:\CES Data\RG0bp.xls"  
            DBMS=EXCEL2000 REPLACE; 
RUN; 
 
PROC EXPORT DATA= work.LR_imp0f  
            OUTFILE= "c:\CES Data\RG0bf.xls"  
            DBMS=EXCEL2000 REPLACE; 
RUN; 
 
data LR_imp1p (keep=ind month lr1 lr1_1-lr1_80) 
 LR_imp1f (keep=ind month lr1f lr1f_1-lr1f_80); 
set hold.LR_imp1; 
output LR_imp1p; 
output LR_imp1f; 
run; 
 
PROC EXPORT DATA= work.LR_imp1p  
            OUTFILE= "c:\CES Data\RG1bp.xls"  
            DBMS=EXCEL2000 REPLACE; 
RUN; 
 
PROC EXPORT DATA= work.LR_imp1f  
            OUTFILE= "c:\CES Data\RG1bf.xls"  
            DBMS=EXCEL2000 REPLACE; 
RUN; 
 
*options mprint; 
Libname hold "c:\CES Data"; 
 
*Program Name: x:Research Project/Paper Programs/Revisions/Final/; 
*AE Estimation variance-2size-model; 
*Calculates half-sample estimates; 
 
%macro createvar(var); 
p0=prior; 
c0=curr; 
p0p=prior; 
c0p=curr; 
p0f=prior; 
c0f=curr; 
p1=prior; 
c1=curr; 
p1f=prior; 
c1f=curr; 
p2=prior; 
c2=curr; 
p2f=prior; 
c2f=curr; 
%mend; 
 
*Exclude month t atypicals; 
*Exclude if nonreporter in month t-1; 
*Create emp class (<10, 10+) based on month t-1, month t reported 
employment; 
*Create size groupings based on month t-2 reported emp; 
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*(if atyp in month t-1 then assume reported emp for month t-2 
unknown); 
*calculate change, relative change from month t-2 to t-1; 
data all (keep=ind month size n ch selwt curr prior emp1 group2 LR_0 
NR_0 NR_1 NR_2 R); 
set hold.analysis1r (keep=LR_0 NR_0 NR_1 NR_2 atyp_0 atyp_1 
 ind month y_0 y_1 y_2 selwt size); 
if NR_1 = 1 then delete; 
if atyp_0 ge 1 then delete; 
if y_1 = . then delete; 
n=1; 
if atyp_1 ge 1 then do; 
 NR_2=1; 
 y_2=.; 
end; 
if selwt = . then selwt=1; 
if y_1 le 9 then emp1=1; 
 else emp1=2; 
if y_2 = . then group2=0; 
 else if y_2 le 9 then group2=1; 
 else if y_2 le 19 then group2=2; 
 else if y_2 le 49 then group2=3; 
 else if y_2 le 99 then group2=4; 
 else if y_2 le 249 then group2=5; 
 else if y_2 le 499 then group2=6; 
 else group2=7; 
if atyp_1 ge 1 then ch=.; 
if NR_2=0 then ch=y_1-y_2; 
rename y_1=prior; 
rename y_0=curr; 
if LR_0=1 then R=2; 
 else if NR_0=1 then R=3; 
 else R=1; 
run; 
 
*Group into tertiles by ch-within ind, month month t-2 emp group; 
*yield low=0, med=1, hi=2, unk=.; 
proc sort data=all; 
by ind month group2; 
run; 
 
proc rank data=all out=all groups=3; 
by ind month group2; 
var ch; 
ranks ch_r; 
run; 
 
*rename change to make low=1, med=2, hi=3, unk=0; 
*use actual change for month t-1 emp <10, relative change for month 
t-1 emp 10+ 
*create dummy variables for use in model estimation; 
data all (drop=ch); 
set all; 
if emp1 = 1 then rch=ch_r; 
 else rch=.; 
if rch ge 0 then do; 
 if rch = 0 then change=1; 
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 else if rch =1 then change=2; 
 else if rch = 2 then change=3; 
end; 
else change=4; 
run; 
 
*Create subsets for use in estimating LRs, imputation; 
*conf1: LR in month t, R in month t-1 and t-2, month t-1 emp>0; 
*for1: not LR in month t, R in month t-1 and t-2, month t-1 emp>0; 
*q data sets should be empty; 
data conf1 conq1 only0  
 for1 forq1  
 Q1; 
set all; 
if emp1=1 then do; 
 if change=1 then cell=1; 
 else if change=3 then cell=2; 
 else cell=3; 
end; 
else cell=4; 
if NR_0+LR_0=0 then do; 
 if NR_1=0 then do; 
  if prior ge 0 then output conf1; 
  else output conq1; 
 end; 
 else output only0; 
end; 
else if NR_0+LR_0=1 then do; 
 if prior ge 0 then output for1; 
 else output forq1; 
end; 
else output Q1; 
run; 
 
*calculate current link relatives; 
*preliminary; 
*combine PRs that reported in month t-1; 
data PR; 
set conf1; 
run; 
 
proc sort data=PR; 
by ind month; 
run; 
 
proc summary data=PR nway; 
by ind month; 
var prior curr; 
weight selwt; 
output out=LR_PR sum=p c; 
run; 
 
data LR_PR (drop=p c); 
set LR_PR (drop=_type_ _freq_); 
lr_PR=c/p; 
run; 
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proc sort data=LR_PR; 
by ind month; 
run; 
 
*final; 
*combine LRs that reported in month t-1 with PRs that reported in 
month t-1; 
data LR; 
set for1; 
if LR_0=1; 
run; 
 
data Rpt; 
set PR LR; 
run; 
 
proc sort data=Rpt; 
by ind month; 
run; 
 
proc summary data=Rpt nway; 
by ind month; 
var prior curr; 
weight selwt; 
output out=LR_Rpt sum=p c; 
run; 
 
data LR_Rpt (drop=p c); 
set LR_Rpt (drop=_type_ _freq_); 
lr_R=c/p; 
run; 
 
proc sort data=LR_Rpt; 
by ind month; 
run; 
 
*First level estimation; 
*create variables for use in comparions for constant reporters; 
*0 refers to reported values; 
*1 refers to post-stratification imputed values; 
*2 refers to model imputed values; 
*f refers to final values; 
data conf1; 
set conf1; 
%createvar(1); 
run; 
 
*Carry out imputation; 
***********; 
*month t-1 emp>0, prior change available; 
*calcuate link relative; 
proc sort data=conf1; 
by ind month cell; 
run; 
 
proc summary data=conf1 nway; 
by ind month cell; 
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var p0 c0; 
id emp1; 
weight selwt; 
output out=LR_sc sum=p c; 
run; 
 
data LR_sc (drop=p c); 
set LR_sc (drop=_type_ _freq_); 
lr_sc=c/p; 
run; 
 
proc sort data=LR_sc; 
by ind month emp1; 
run; 
 
*create records for use in model; 
*reference value is for change=2; 
data LR_model; 
set LR_sc; 
if cell=3 or cell=4; 
rename lr_sc=lr_model; 
run; 
 
proc sort data=LR_model; 
by ind month emp1; 
run; 
 
*Read file of factors for model; 
data factors; 
infile 'c:\CES Data\Paper\Model Parameters.csv' delimiter=','; 
input month ind emp1 pC1 pC2 pC3; 
run; 
 
proc sort data=factors; 
by ind month emp1; 
run; 
 
*merge model factors with emp x change link relatives; 
data LR_sc_model; 
merge LR_model factors LR_sc; 
by ind month emp1; 
run; 
 
*merge with ind link relatives; 
data LR_all; 
merge LR_PR LR_Rpt LR_sc_model; 
by ind month; 
run; 
 
proc sort data=LR_all; 
by ind month cell; 
run; 
 
*impute for missing values using emp x change, ind, model; 
*missing month t, month t-1 emp>0, prior change available; 
proc sort data= for1; 
by ind month cell; 
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run; 
 
proc print data=LR_all; 
run; 
 
data for1adj; 
merge LR_all for1 (in=a); 
by ind month cell; 
if a; 
c1=prior*lr_sc; 
p1=prior; 
if cell=1 then c2=prior*(lr_model + pC1); 
else if cell=2 then c2=prior*(lr_model + pC2); 
else c2=prior*lr_model; 
p2=prior; 
if LR_0=1 then do; 
 p0p=prior; 
 c0p=prior*lr_PR; 
 p0f=prior; 
 c0f=curr; 
 c1f=curr; 
 p1f=prior; 
 c2f=curr; 
 p2f=prior; 
end; 
else if NR_0=1 then do; 
 c1f=c1; 
 p1f=p1; 
 c2f=c2; 
 p2f=p2; 
end; 
run; 
 
*Final estimation; 
*use all available records; 
data imp; 
set conf1 for1adj; 
run; 
 
proc sort data=imp; 
by ind month; 
run; 
 
proc summary data=imp nway; 
by ind month; 
var p0 c0 p0f c0f p1 c1 p1f c1f p2 c2 p2f c2f; 
weight selwt; 
output out=LR_imp sum=p0 c0 p0f c0f pI cI pIf cIf pM cM pMf cMf; 
run; 
 
data LR_imp_all (drop=p0 c0 p0f c0f pI cI pIf cIf pM cM pMf cMf); 
set LR_imp (drop=_type_ _freq_); 
lr0=c0/p0; 
lr0f=c0f/p0f; 
lr1=cI/pI; 
lr1f=cIf/pIf; 
lr2=cM/pM; 
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lr2f=cMf/pMf; 
run; 
 
proc sort data=LR_imp_all; 
by ind month; 
run; 
 
 
proc sort data=imp_LR; 
by ind month cell; 
run; 
 
proc summary data=imp_LR nway; 
by ind month cell; 
var p0 c0 p0p c0p p0f c0f p1 c1 p1f c1f p2 c2 p2f c2f; 
weight selwt; 
output out=LR_imp sum=p0 c0 p0p c0p p0f c0f pI cI pIf cIf pM cM pMf 
cMf; 
run; 
 
data LR_imp_cell (drop=p0 c0 p0p c0p p0f c0f pI cI pIf cIf pM cM pMf 
cMf); 
set LR_imp (drop=_type_ _freq_); 
lr0p=c0p/p0p; 
lr0f=c0f/p0f; 
lr1a=cI/pI; 
lr2=cM/pM; 
run; 
 
proc sort data=LR_imp_cell; 
by ind month cell; 
run; 
 
 
PROC EXPORT DATA= WORK.LR_imp_cell 
            OUTFILE= "c:\CES Data\Revisions\Final\Link 
Relatives_2size_cell.xls"  
            DBMS=EXCEL2000 REPLACE; 
RUN; 
 
 
%macro rg(rg); 
%do z=1 %to &rg; 
data all_neg (keep=ind month size n ch selwt curr prior emp1 group2 
LR_0 NR_0 NR_1 NR_2)  
 all_pos (keep=ind month size n ch selwt curr prior emp1 group2 
LR_0 NR_0 NR_1 NR_2); 
set hold.analysis1r (keep=LR_0 NR_0 NR_1 NR_2 atyp_0 atyp_1 h&z  
 ind month y_0 y_1 y_2 selwt size); 
if NR_1 = 1 then delete; 
if atyp_0 ge 1 then delete; 
if h&z=. then delete; 
if y_1 = . then delete; 
n=1; 
if atyp_1 ge 1 then do; 
 NR_2=1; 
 y_2=.; 
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end; 
if selwt = . then selwt=1; 
selwt=1+0.5*h&z; 
if y_1 le 9 then emp1=1; 
 else emp1=2; 
if y_2 = . then group2=0; 
 else if y_2 le 9 then group2=1; 
 else if y_2 le 19 then group2=2; 
 else if y_2 le 49 then group2=3; 
 else if y_2 le 99 then group2=4; 
 else if y_2 le 249 then group2=5; 
 else if y_2 le 499 then group2=6; 
 else group2=7; 
if atyp_1 ge 1 then ch=.; 
if NR_2=0 then ch=y_1-y_2; 
rename y_1=prior; 
rename y_0=curr; 
if h&z=-1 then output all_neg; 
else if h&z=1 then output all_pos; 
run; 
 
****************; 
*run for one half sample; 
*Group into tertiles by ch, relch-within ind, month month t-2 emp 
group; 
*yield low=0, med=1, hi=2, unk=.; 
proc sort data=all_neg; 
by ind month group2; 
run; 
 
proc rank data=all_neg out=all_neg groups=3; 
by ind month group2; 
var ch; 
ranks ch_r; 
run; 
 
data all_neg (drop=ch); 
set all_neg; 
if emp1 = 1 then rch=ch_r; 
 else rch=.; 
if rch ge 0 then do; 
 if rch = 0 then change=1; 
 else if rch =1 then change=2; 
 else if rch = 2 then change=3; 
end; 
else change=4; 
run; 
 
data conf1 conq1 only0  
 for1 forq1  
 Q1; 
set all_neg; 
if emp1=1 then do; 
 if change=1 then cell=1; 
 else if change=3 then cell=2; 
 else cell=3; 
end; 
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else cell=4; 
if NR_0+LR_0=0 then do; 
 if NR_1=0 then do; 
  if prior ge 0 then output conf1; 
  else output conq1; 
 end; 
 else output only0; 
end; 
else if NR_0+LR_0=1 then do; 
 if prior ge 0 then output for1; 
 else output forq1; 
end; 
else output Q1; 
run; 
 
*calculate current link relatives; 
*preliminary; 
*combine PRs that reported in month t-1; 
data PR; 
set conf1; 
run; 
 
proc sort data=PR; 
by ind month; 
run; 
 
proc summary data=PR nway; 
by ind month; 
var prior curr; 
weight selwt; 
output out=LR_PR sum=p c; 
run; 
 
data LR_PR (drop=p c); 
set LR_PR (drop=_type_ _freq_); 
lr_PR=c/p; 
run; 
 
proc sort data=LR_PR; 
by ind month; 
run; 
 
*final; 
*combine LRs that reported in month t-1 with PRs that reported in 
month t-1; 
data LR; 
set for1; 
if LR_0=1; 
run; 
 
data Rpt; 
set PR LR; 
run; 
 
proc sort data=Rpt; 
by ind month; 
run; 
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proc summary data=Rpt nway; 
by ind month; 
var prior curr; 
weight selwt; 
output out=LR_Rpt sum=p c; 
run; 
 
data LR_Rpt (drop=p c); 
set LR_Rpt (drop=_type_ _freq_); 
lr_R=c/p; 
run; 
 
proc sort data=LR_Rpt; 
by ind month; 
run; 
 
*First level estimation; 
*create variables for use in comparions for constant reporters; 
*0 refers to reported values; 
*1 refers to post-stratification imputed values; 
*2 refers to model imputed values; 
*f refers to final values; 
data conf1; 
set conf1; 
%createvar(1); 
run; 
 
*Carry out imputation; 
***********; 
*month t-1 emp>0, prior change available; 
*calcuate link relative; 
proc sort data=conf1; 
by ind month cell; 
run; 
 
proc summary data=conf1 nway; 
by ind month cell; 
var p0 c0; 
id emp1; 
weight selwt; 
output out=LR_sc sum=p c; 
run; 
 
data LR_sc (drop=p c); 
set LR_sc (drop=_type_ _freq_); 
lr_sc=c/p; 
run; 
 
proc sort data=LR_sc; 
by ind month emp1; 
run; 
 
*create records for use in model; 
*reference value is for change=2; 
data LR_model; 
set LR_sc; 
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if cell=3 or cell=4; 
rename lr_sc=lr_model; 
run; 
 
proc sort data=LR_model; 
by ind month emp1; 
run; 
 
*Read file of factors for model; 
data factors; 
infile 'c:\CES Data\Paper\Model Parameters.csv' delimiter=','; 
input month ind emp1 pC1 pC2 pC3; 
run; 
 
proc sort data=factors; 
by ind month emp1; 
run; 
 
*merge model factors with emp x change link relatives; 
data LR_sc_model; 
merge LR_model factors LR_sc; 
by ind month emp1; 
run; 
 
*merge with ind link relatives; 
data LR_all; 
merge LR_PR LR_Rpt LR_sc_model; 
by ind month; 
run; 
 
proc sort data=LR_all; 
by ind month cell; 
run; 
 
*impute for missing values using emp x change, ind, model; 
*missing month t, month t-1 emp>0, prior change available; 
proc sort data= for1; 
by ind month cell; 
run; 
 
data for1adj; 
merge LR_all for1 (in=a); 
by ind month cell; 
if a; 
c1=prior*lr_sc; 
p1=prior; 
if cell=1 then c2=prior*(lr_model + pC1); 
else if cell=2 then c2=prior*(lr_model + pC2); 
else c2=prior*lr_model; 
p2=prior; 
if LR_0=1 then do; 
 p0p=prior; 
 c0p=prior*lr_PR; 
 p0f=prior; 
 c0f=curr; 
 c1f=curr; 
 p1f=prior; 
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 c2f=curr; 
 p2f=prior; 
end; 
else if NR_0=1 then do; 
 c1f=c1; 
 p1f=p1; 
 c2f=c2; 
 p2f=p2; 
end; 
run; 
 
*Final estimation; 
*use all available records; 
data imp_neg; 
set conf1 for1adj; 
run; 
 
 
********************; 
*repeat for other half-sample; 
*Group into tertiles by ch-within ind, month month t-2 emp group; 
*yield low=0, med=1, hi=2, unk=.; 
 
proc sort data=all_pos; 
by ind month group2; 
run; 
 
proc rank data=all_pos out=all_pos groups=3; 
by ind month group2; 
var ch; 
ranks ch_r; 
run; 
 
data all_pos (drop=ch); 
set all_pos; 
if emp1 = 1 then rch=ch_r; 
 else rch=.; 
if rch ge 0 then do; 
 if rch = 0 then change=1; 
 else if rch =1 then change=2; 
 else if rch = 2 then change=3; 
end; 
else change=4; 
run; 
 
data conf1 conq1 only0  
 for1 forq1  
 Q1; 
set all_pos; 
if emp1=1 then do; 
 if change=1 then cell=1; 
 else if change=3 then cell=2; 
 else cell=3; 
end; 
else cell=4; 
if NR_0+LR_0=0 then do; 
 if NR_1=0 then do; 
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  if prior ge 0 then output conf1; 
  else output conq1; 
 end; 
 else output only0; 
end; 
else if NR_0+LR_0=1 then do; 
 if prior ge 0 then output for1; 
 else output forq1; 
end; 
else output Q1; 
run; 
 
*calculate current link relatives; 
*preliminary; 
*combine PRs that reported in month t-1; 
data PR; 
set conf1; 
run; 
 
proc sort data=PR; 
by ind month; 
run; 
 
proc summary data=PR nway; 
by ind month; 
var prior curr; 
weight selwt; 
output out=LR_PR sum=p c; 
run; 
 
data LR_PR (drop=p c); 
set LR_PR (drop=_type_ _freq_); 
lr_PR=c/p; 
run; 
 
proc sort data=LR_PR; 
by ind month; 
run; 
 
*final; 
*combine LRs that reported in month t-1 with PRs that reported in 
month t-1; 
data LR; 
set for1; 
if LR_0=1; 
run; 
 
data Rpt; 
set PR LR; 
run; 
 
proc sort data=Rpt; 
by ind month; 
run; 
 
proc summary data=Rpt nway; 
by ind month; 
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var prior curr; 
weight selwt; 
output out=LR_Rpt sum=p c; 
run; 
 
data LR_Rpt (drop=p c); 
set LR_Rpt (drop=_type_ _freq_); 
lr_R=c/p; 
run; 
 
proc sort data=LR_Rpt; 
by ind month; 
run; 
 
*First level estimation; 
*create variables for use in comparions for constant reporters; 
*0 refers to reported values; 
*1 refers to post-stratification imputed values; 
*2 refers to model imputed values; 
*f refers to final values; 
data conf1; 
set conf1; 
%createvar(1); 
run; 
 
*Carry out imputation; 
***********; 
*month t-1 emp>0, prior change available; 
*calcuate link relative; 
proc sort data=conf1; 
by ind month cell; 
run; 
 
proc summary data=conf1 nway; 
by ind month cell; 
var p0 c0; 
id emp1; 
weight selwt; 
output out=LR_sc sum=p c; 
run; 
 
data LR_sc (drop=p c); 
set LR_sc (drop=_type_ _freq_); 
lr_sc=c/p; 
run; 
 
proc sort data=LR_sc; 
by ind month emp1; 
run; 
 
*create records for use in model; 
*reference value is for change=2; 
data LR_model; 
set LR_sc; 
if cell=3 or cell=4; 
rename lr_sc=lr_model; 
run; 



 265 
 

 
proc sort data=LR_model; 
by ind month emp1; 
run; 
 
*Read file of factors for model; 
data factors; 
infile 'c:\CES Data\Paper\Model Parameters.csv' delimiter=','; 
input month ind emp1 pC1 pC2 pC3; 
run; 
 
proc sort data=factors; 
by ind month emp1; 
run; 
 
*merge model factors with emp x change link relatives; 
data LR_sc_model; 
merge LR_model factors LR_sc; 
by ind month emp1; 
run; 
 
*merge with ind link relatives; 
data LR_all; 
merge LR_PR LR_Rpt LR_sc_model; 
by ind month; 
run; 
 
proc sort data=LR_all; 
by ind month cell; 
run; 
 
*impute for missing values using emp x change, ind, model; 
*missing month t, month t-1 emp>0, prior change available; 
proc sort data= for1; 
by ind month cell; 
run; 
 
data for1adj; 
merge LR_all for1 (in=a); 
by ind month cell; 
if a; 
c1=prior*lr_sc; 
p1=prior; 
if cell=1 then c2=prior*(lr_model + pC1); 
else if cell=2 then c2=prior*(lr_model + pC2); 
else c2=prior*lr_model; 
p2=prior; 
if LR_0=1 then do; 
 p0p=prior; 
 c0p=prior*lr_PR; 
 p0f=prior; 
 c0f=curr; 
 c1f=curr; 
 p1f=prior; 
 c2f=curr; 
 p2f=prior; 
end; 



 266 
 

else if NR_0=1 then do; 
 c1f=c1; 
 p1f=p1; 
 c2f=c2; 
 p2f=p2; 
end; 
run; 
 
*Final estimation; 
*use all available records; 
data imp_pos; 
set conf1 for1adj; 
run; 
 
data imp; 
set imp_neg imp_pos; 
run; 
 
proc sort data=imp; 
by ind month; 
run; 
 
proc summary data=imp nway; 
by ind month; 
var p0 c0 p0f c0f p1 c1 p1f c1f p2 c2 p2f c2f; 
weight selwt; 
output out=LR_imp sum=p0 c0 p0f c0f pI cI pIf cIf pM cM pMf cMf; 
run; 
 
data LR_imp_&z (drop=p0 c0 p0f c0f pI cI pIf cIf pM cM pMf cMf); 
set LR_imp (drop=_type_ _freq_); 
lr0_&z=c0/p0; 
lr0f_&z=c0f/p0f; 
lr1_&z=cI/pI; 
lr1f_&z=cIf/pIf; 
lr2_&z=cM/pM; 
lr2f_&z=cMf/pMf; 
run; 
 
proc sort data=LR_imp_&z; 
by ind month; 
run; 
 
%end; 
%mend; 
 
%rg(80); 
run; 
 
proc sort data=LR_imp_all; 
by ind month; 
run; 
 
%macro together(rg); 
merge LR_imp_all (keep=ind month lr0 lr0f lr1 lr1f lr2 lr2f)  
%do a=1 %to &rg; 
LR_imp_&a  
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%end; 
; 
%mend; 
 
data LR_imp0 (keep=ind month lr0 lr0f lr0_1-lr0_80 lr0f_1-lr0f_80)  
 LR_imp1 (keep=ind month lr1 lr1f lr1_1-lr1_80 lr1f_1-lr1f_80)  
 LR_imp2 (keep=ind month lr2 lr2f lr2_1-lr2_80 lr2f_1-lr2f_80); 
%together(80); 
by ind month; 
output LR_imp0; 
output LR_imp1; 
output LR_imp2; 
run; 
 
proc print data=LR_imp0; 
run; 
 
data hold.LR_imp0; 
set LR_imp0; 
run; 
 
data hold.LR_imp1; 
set LR_imp1; 
run; 
 
data hold.LR_imp2; 
set LR_imp2; 
run; 
 
data hold.LR_imp_all; 
set LR_imp_all; 
run; 
 
data LR_imp0p (keep=ind month lr0 lr0_1-lr0_80) 
 LR_imp0f (keep=ind month lr0f lr0f_1-lr0f_80); 
set hold.LR_imp0; 
output LR_imp0p; 
output LR_imp0f; 
run; 
 
PROC EXPORT DATA= work.LR_imp0p  
            OUTFILE= "c:\CES Data\RG0ap.xls"  
            DBMS=EXCEL2000 REPLACE; 
RUN; 
 
PROC EXPORT DATA= work.LR_imp0f  
            OUTFILE= "c:\CES Data\RG0af.xls"  
            DBMS=EXCEL2000 REPLACE; 
RUN; 
 
data LR_imp1p (keep=ind month lr1 lr1_1-lr1_80) 
 LR_imp1f (keep=ind month lr1f lr1f_1-lr1f_80); 
set hold.LR_imp1; 
output LR_imp1p; 
output LR_imp1f; 
run; 
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PROC EXPORT DATA= work.LR_imp1p  
            OUTFILE= "c:\CES Data\RG1ap.xls"  
            DBMS=EXCEL2000 REPLACE; 
RUN; 
 
PROC EXPORT DATA= work.LR_imp1f  
            OUTFILE= "c:\CES Data\RG1af.xls"  
            DBMS=EXCEL2000 REPLACE; 
RUN; 
 
data LR_imp2p (keep=ind month lr2 lr2_1-lr2_80) 
 LR_imp2f (keep=ind month lr2f lr2f_1-lr2f_80); 
set hold.LR_imp2; 
output LR_imp2p; 
output LR_imp2f; 
run; 
 
PROC EXPORT DATA= work.LR_imp2p  
            OUTFILE= "c:\CES Data\RG2p.xls"  
            DBMS=EXCEL2000 REPLACE; 
RUN; 
 
PROC EXPORT DATA= work.LR_imp2f  
            OUTFILE= "c:\CES Data\RG2f.xls"  
            DBMS=EXCEL2000 REPLACE; 
RUN; 
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I. Estimated Link Relatives 

 



 270 
 

 



 271 
 

 



 272 
 



 273 
 

References 

Bailar, B.A. (1989), “Information Needs, Surveys, and Measurement Errors,” in 
Kasprzyk, D., Duncan, G., Kalton, G., Singh, M.P. (eds.), Panel Surveys (pp. 348-
374), New York: John Wiley and Sons, Inc. 

Binder, D.A. (1998), “Longitudinal Surveys: Why Are These Surveys Different From 
All other Surveys?,” Survey Methodology, 12, 101-108. 

Bureau of Labor Statistics. (2001), Chapter 7, “Estimation,” Current Employment 
Statistics Manual: U.S. Bureau of Labor Statistics, Washington, D.C. 

Bureau of Labor Statistics. (2003), “BLS Establishment Estimates Revised to 
Incorporate March 2002 Benchmarks,” Employment and Earnings, U.S. Bureau of 
Labor Statistics, Washington, D.C. 

Bureau of Labor Statistics. (2004a), Chapter 2, “Employment, Hours, and Earnings 
from the Establishment Survey, BLS Handbook of Methods, U.S. Bureau of Labor 
Statistics, Washington, D.C. 

Bureau of Labor Statistics. (2004b), Technical Notes to Establishment Survey Data 
Published in Employment and Earnings, U.S. Bureau of Labor Statistics, 
Washington, D.C. 

Cantwell, P.J., Caldwell, C.V., Hogan, H., and Konschnik, C.A. (1995), “Examining 
the Revisions in Monthly Trade Surveys Under a Rotating Panel Design,” 
Proceedings of the Section on Survey Research Methods, American Statistical 
Association, 567-572. 

Carlin, B.P., Polson, N.G, and Stoffer, D.S. (1992), “A Monte Carlo Approach to 
Nonnormal and Nonlinear State-Space Modeling,” Journal of the American 
Statistical Association, 87, 493-500. 

Cochran, W.G. (1953), Sampling Techniques, New York: John Wiley and Sons, Inc. 

Copeland, K.R. (2003a), “Nonresponse Adjustment in the Current Employment 
Statistics Survey,” Proceedings of the Federal Committee on Statistical Methodology, 
(forthcoming). 

Copeland, K.R. (2003b), “Reporting Patterns in the Current Employment Statistics 
Survey,” Proceedings of the Section on Survey Research Methods, American 
Statistical Association, (forthcoming). 

Curtin, R., Presser, S., and Singer, E. (2000), “The Effects of Response Rate Changes 
on the Index of Consumer Sentiment,” Public Opinion Quarterly, 64, 413-428. 



 274 
 

Czajka, J. and Hinkins, S. (1993), “Comparing Advance and Final Estimates: 1990 
SOI Corporate Sample,” Proceedings of the Section on Survey Research Methods, 
American Statistical Association, 592-596. 

Czajka, J.L., Hirabayashi, S.M., Little, R.J.A., and Rubin, D.B. (1992), “Projecting 
from Advance Data Using Propensity Modeling: An Application to Income and Tax 
Statistics,” Journal of Business and Economic Statistics, 10, 117-131. 

David, M.H., Little, R., Samuhel, M., and Triest, R. (1983), “Imputation Models 
Based on the Propensity to Respond,” Proceedings of the Section on Business and 
Economic Statistics, American Statistical Association, 168-173. 

Deming, W.E. and Stephan, F.F. (1940), “On a Least Squares Adjustment of a 
Sampled Frequency Table When the Expected Marginals Are Known,” The Annals of 
Mathematical Statistics, 11, 427-444. 

Drew, J.H. and Fuller, W.A. (1981), “Nonresponse in Complex Multiphase Surveys,” 
Proceedings of the Section on Survey Research Methods, American Statistical 
Association, 623-628. 

Duncan, G.J. and Kalton, G. (1978), “Issues of Design and Analysis of Surveys 
Across time,” International Statistical Review, 73, 97-117. 

Eltinge, J.L. (2002), “Diagnostics for the Practical Effects of Nonresponse 
Adjustment Methods,” in Groves, R.R., Dillman, D.A., Eltinge, J.L., and Little, 
R.J.A. (eds.), Survey Nonresponse (pp. 417-429), New York: John Wiley and Sons. 

Gelman, A.R. and Rubin, D.B. (1992), “Inference from Iterative Simulation under 
Multiple Sequences,” Statistical Science, 7, 457-511. 

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2003), Bayesian Data 
Analysis, 2nd ed, New York: Chapman & Hall. 

Groves, R.M. (1989), Survey Errors and Survey Costs, New York: John Wiley and 
Sons, Inc. 

Groves, R.M. and Couper, M.P. (1998), Nonresponse in Household Interview 
Surveys, New York: John Wiley and Sons, Inc. 

Hansen, M.H., Hurwitz, W.N., and Madow, W.G. (1953), Sample Survey Methods 
and Theory, New York: John Wiley and Sons, Inc. 

Harvey, A.C. (1981), Time Series Models, Oxford: Phillip Allan Publishers, Ltd. 

Hidiroglou, M.A., Sarndal, C.-E., and Binder, D.A. (1995), “Weighting and 
Estimation in Business Surveys,” in Cox, B.G., Binder, D.A., Chinnappa, B.N., 
Christianson, A., Colledge, M.J., Kott, P.S. (eds.), Business Survey Methods (pp. 477-
502), New York: John Wiley and Sons, Inc. 



 275 
 

Hogan, H., Cantwell, P.J., and Cruz, C. (1997), “Predicting Final Retail Seals 
Estimates from Advance Reports,” Proceedings of the Section on Survey Research 
Methods, American Statistical Association, 22-31. 

Judkins, D.R. (1990), “Fay’s Method for Variance Estimation,” Journal of Official 
Statistics, 6, 223-239. 

Kalton, G. (1986), “Handling Wave Nonresponse in Panel Surveys,” Journal of 
Official Statistics, 2, 303-314. 

Kalton, G. and Kasprzyk, D. (1982), “Imputing for Missing Survey Response,” 
Proceedings of the Section on Survey Research Methods, American Statistical 
Association, 22-31. 

Kalton, G. and Kasprzyk, D. (1986), “The Treatment of Missing Data,” Survey 
Methodology, 12, 1-16. 

Kalton, G. and Miller, M.E. (1986), “Effects of Adjustments for Wave Nonresponse 
on Panel Survey Estimates,” Proceedings of the Section on Survey Research Methods, 
American Statistical Association, 194-199. 

Kaspryzyk, D., Duncan, G., Kalton, G., and Singh, M.P. (eds.) (1989), Panel Surveys, 
New York: John Wiley and Sons, Inc. 

Keeter, S., Miller, C., Kohut, A., Groves, R.M., and Presser, S. (2000), 
“Consequences of Reducing Nonresponse in a National Telephone Survey,” Public 
Opinion Quarterly, 64, 125-148. 

Kovar, J.G. and Whitridge, P.J. (1995), “Imputation of Business Survey Data,” in 
Cox, B.G., Binder, D.A., Chinnappa, B.N., Christianson, A., Colledge, M.J., Kott, 
P.S. (eds.), Business Survey Methods (pp. 403-423), New York: John Wiley and Sons, 
Inc. 

Lepkowski, J.M. (1989), “Treatment Of Wave Nonresponse In Panel Surveys,” in 
Kasprzyk, D., Duncan, G., Kalton, G., Singh, M.P. (eds.), Panel Surveys (pp. 348-
374), New York: John Wiley and Sons, Inc. 

Lessler, J.T. and Kalsbeek, W.D. (1992), Nonsampling Error in Surveys, New York: 
John Wiley and Sons, Inc. 

Little, R.J.A. (1986), “Survey Nonresponse Adjustments for Estimates of Means,” 
International Statistical Review, 54, 139-157. 

Little, R.J.A. (1993), “Pattern-Mixture Models for Multivariate Incomplete Data,” 
Journal of the American Statistical Association, 88, 125-134. 

Little, R.J.A. and David, M.H. (1983), “Weighting Adjustments for Non-response in 
Panel Surveys,” Working paper: U.S. Bureau of the Census, Washington, D.C. 



 276 
 

Little, R.J.A. and Rubin, D. B. (2002), Statistical Analysis with Missing Data, 2nd 
edition, New York: John Wiley and Sons. 

Little, R.J.A. and Su, H.-L. (1989), “Item Nonresponse in Panel Surveys,” in 
Kasprzyk, D., Duncan, G., Kalton, G., and Singh, M.P. (eds.), Panel Surveys (pp. 
403-423), New York: John Wiley and Sons, Inc. 

Madow, L.H. and Madow, W.G. (1978), “On Link Relative Estimators,” Proceedings 
of the Section on Survey Research Methods, American Statistical Association, 534-
539. 

Madow, W.G., Nisselson, H., and Olkin, I. (eds.) (1983), Incomplete Data in Sample 
Surveys, New York: Academic Press. 

Merkle, D.M., and Edelman, M. (2002), “Nonresponse in Exit Polls: A 
Comprehensive Analysis,” in Groves, R.R., Dillman, D.A., Eltinge, J.L., and Little, 
R.J.A. (eds.), Survey Nonresponse (pp. 243-257), New York: John Wiley and Sons. 

Office of Management and Budget (2001), Measuring and Reporting Sources of 
Error in Surveys, Statistical Policy Working Paper 31, Springfield VA: National 
Technical Information Service. 

Oh, H.L. and Scheuren, F.J. (1983), “Weighting Adjustment For Unit Nonresponse,” 
in Madow, W.G., Olkin, I., Rubin, D.B. (eds.), Incomplete Data in Sample Surveys. 
Vol. 2: Theory and Bibliography (pp. 143-184), New York: Academic Press, Inc. 

Pfeffermann, D. and Nathan, G. (2002), “Imputation for Wave Nonresponse: Existing 
Methods and a Time Series Approach,” in Groves, R.R., Dillman, D.A., Eltinge, J.L., 
and Little, R.J.A. (eds.), Survey Nonresponse, New York: John Wiley and Sons. 

Rao, J.N.K., Srinath, K.P., and Quenneville, B. (1989), “Estimation of Level and 
Change Using Current Preliminary Data,” in Kasprzyk, D., Duncan, G., Kalton, G., 
Singh, M.P. (eds.), Panel Surveys (pp. 348-374), New York: John Wiley and Sons, 
Inc. 

Rizzo, L., Kalton, G., and Brick, J.M. (1996), “A Comparison of Some Weighting 
Adjustment Methods for Panel Nonresponse,” Survey Methodology, 22, 43-53. 

Rosen, R.J., Clayton, R.L., and Rubino, T.R. (1991), “Controlling Nonresponse in an 
Establishment Survey,” Proceedings of the Section on Survey Research Methods, 
American Statistical Association, pp. 587-592. 

Rosen, R.J., Clayton, R.L., and Wolf, L.L. (1993), “Long Term Retention of Sample 
Members under Automated Self-Response Data Collection,” Proceedings of the 
Section on Survey Research Methods, American Statistical Association, pp. 748-752. 

Rosenbaum, P.R. and Rubin, D.B. (1983), “The Central Role of the Propensity Score 
in Observational Studies for Causal Effects, “ Biometrika, 70, 467-474. 



 277 
 

Rubin, D.B. (1976), “Inference and Missing Data,” Biometrika, 63, 581-592. 

Shao, J. Chen, Y., and Chen, Y. (1998), “Balanced Repeated Replication for 
Stratified Multistage Survey Data under Imputation,” Journal of the American 
Statistical Association, 93, 819-831. 

Sinharay. S. (2003), “ Assessing Convergence of the Markov Chain Monte Carlo 
Algorithms: A Review,” Educational Testing Service Research Report. 

Solon, G. (1989), “The Value of Panel Data in Economic Research,” in Kasprzyk, D., 
Duncan, G., Kalton, G., Singh, M.P. (eds.), Panel Surveys (pp. 348-374), New York: 
John Wiley and Sons, Inc. 

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and van der Linde, A. (2002), “Bayesian 
measures of model complexity and fit” (with discussion), J. Roy. Statist. Soc. B, 64, 
583-640. 

Werking, G.S. (1997), “Overview of the CES Redesign,” Proceedings of the Section 
on Survey Research Methods, American Statistical Association, pp. 512-516. 

West, S.A. (1983), “A Comparison of Different Ratio and Regression Type 
Estimators for the Total of a Finite Population,” Proceedings of the Section on Survey 
Research Methods, American Statistical Association, 388-393. 

West, S., Butani, S., Witt, M., and Adkins, C. (1989), “Alternative Imputation 
Methods for Employment Data,” Proceedings of the Section on Survey Research 
Methods, American Statistical Association, 227-232. 

 

 


