
 

 

ABSTRACT 
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The propagation of waves in rods, shells and rotating shafts with variable 

thickness is studied through numerical models and experimental measurements. All 

numerical models are formulated using the Transfer Matrix approach, which accurately 

reproduces the dynamic behavior and wave propagation characteristics of the considered 

structures at each frequency. The numerical predictions show that exponential and linear 

thickness profiles generate a cut-off frequency, below which waves do not propagate 

along the structure. Hence, the considered rods and shells are capable of filtering out low 

frequency and they behave as high-pass mechanical filters. The filtering capabilities of 

the considered class of rods and shells are investigated for different types of profiles. 

Furthermore, the effect introduced by using periodicity and changing the material 

properties of the structure in a functionally graded manner is investigated. 



 

 

The effect of linear profiles is practically evaluated by determining both the 

frequency and time response for excitations applied at one side of the structure. These 

results are compared to uniform profiles through the Wavelet Transform (WT), which 

visualizes the structure vibrational energy simultaneously in both the time and frequency 

domain. The agreement between the theoretical and experimental results validates the 

numerical models and demonstrates the effectiveness of the proposed design 

configurations in attenuating the propagation of waves especially in the low-frequency 

range. 

The filtering characteristics are also investigated for rotating shafts with tapered 

and stepped geometry. It is found out that rotation at a constant speed does not 

significantly modify the flexural wave propagation characteristics of the system. Also, 

the interest is extended to studying the Campbell diagrams of tapered and periodically 

stepped profiles. Experiments on the propagation of vibration from a gearbox through 

rotating shafts prove that tapered and periodic profiles can effectively redistribute the 

energy spectrum by confining the propagation to specific frequency bands. Such 

characteristics become more evident when the shaft is provided with active periodic 

piezoelectric inserts. 

The effectiveness of the constant axial loads and feedback control on the shaft 

performance is determined and compared to the alternative passive periodic treatments. 
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CHAPTER 1: INTRODUCTION AND OBJECTIVES 

The purpose of this work is to establish guidelines for controlling the wave 

propagation characteristics of rods, axial symmetric shells and rotating shafts, through 

proper design of their geometrical and material properties. 

An interesting way to address the issue of shaping the wave propagation 

characteristics of the structure is by using Functionally Graded Materials. These 

materials allow for gradually varying the Young’s modulus of the structure in a given 

direction, which changes the characteristic speed of sound in the material. Longitudinal 

compressional waves can be taken as a simple example. In the case that the Young’s 

modulus of each section of the waveguide increases, also the propagating speed of the 

compressional wave increases as well, so that each sinusoidal component of the 

disturbance is shifted to higher frequencies. Depending on the section area and on the 

length of the waveguide, it is evident at this point that the waves with low frequencies 

will virtually disappear at the end tip of the waveguide, because they were shifter to 

higher frequencies. 

Changing the geometry of the waveguide is another way to modify the 

propagation of waves inside the structure. The effect of stepped and tapered profiles can 

be investigated and compared to the behavior of uniform profiles. As an example, the 

same longitudinal compressional wave is considered at this point. In the case of a 

uniform rod, the characteristic speed of the wave and the section area do not change so 
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every frequency travels undisturbed along the waveguide. When a step is created in the 

section area, then a free body diagram can show how only in the inner core is still present 

a pure compressional wave while the outer part of the bigger section is subject to shear 

deformation. This implies that the compressional wave entering the bigger section creates 

an additional shear wave that absorbs part of the energy carried by the compressional 

wave. Hence, at the end tip of the bigger section, only a portion of the compressional 

wave is transmitted and it is clear that depending on the length and section ratio such 

wave can completely disappear from the spectrum. 

In fact, it is generally understood that conical geometry acts as a natural 

mechanical high-pass filter for longitudinal waves [11 and 15]. They introduce the idea of 

stop-bands (as the set of frequencies where attenuation occurs) and pass-bands where 

propagation is not obstructed. The study of stepped profiles belongs to the more general 

field of research of periodic structures. For example, Brillouin [7] investigated the effect 

of periodicity on the propagation spectrum of crystals and electronic components; while 

other authors (Mead [32 and 33], Orris et al. [38], Roy and Plunkett [42]) focused on the 

property of periodic structures to act as mechanical broadband filters by redistributing the 

vibrational energy away from the particular regions of frequencies. Recent developments 

that expand the interest on periodic structures to the application of active control can be 

found in the works of Ruzzene et al. [43], and Baz [6]. 

In the case of helicopter design, one of the key problems is minimizing the 

vibration transmission levels generated by the gearbox-engine assembly. besides meeting 

all strict operational requirements, new designs must prove to be effective in increasing 

the crew comfort, improving the fatigue life of the structures, and extending flight 
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envelope. Works in this field traditionally concentrate on the helicopter frame and struts 

([3], [35], [45], [48]), but they also recently focus on the tail rotor and transmission shaft 

as well [41]. 

In this work, the idea of periodicity is combined with the variable geometry and 

material properties, innovative damping coatings and active control in order to drastically 

improve the wave propagation characteristics of rods, shells and rotating shafts by 

optimizing the bandwidth and amplitude of the stop-bands. 

After deriving the analytical model for the equation of motion from the balance of 

mechanical energy using Hamilton’s Principle, solutions to the homogeneous system of 

equations are calculated by integrating the state matrix along the length of the structure. 

A coordinate transformation puts the system into the transfer matrix configuration. The 

eigenvalues of this matrix give a fundamental insight into the propagation characteristics 

of waves along the structure. These characteristics are discussed in details in order to 

discern what advantages tapered geometry can introduce. Furthermore, the predictions of 

the mathematical models are validated through experimental comparisons with 

prototypes of the structures. Finally, the effect of having different combinations of 

periodic and tapered elements is investigated. 

The present dissertation is organized as follows. A general introduction has been 

given in this first chapter. In the second chapter, the wave propagation in one-

dimensional rods is presented. The equations of motion and the “Transfer Matrix” are 

derived by using Hamilton’s principle and a numerical solution for the wave propagation 

constants is given for different tapered geometries. The theoretical characteristics of 

longitudinal waves, generated by exponential and polynomial profiles, are compared to 
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those developed in uniform rods. Then, experiments are performed on a linearly tapered 

rod and its characteristics are compared with the numerical model by using the Wavelet 

Transform method. 

In chapter three, the study is extended to axis-symmetric shells. Polynomial and 

exponential tapered profiles are investigated. Longitudinal and radial waves 

characteristics are discussed in comparison with corresponding characteristics of uniform 

cylinders of equivalent mass. Shells with functionally graded material properties (FGM) 

are also taken into consideration. An optimization process is attempted by combining the 

effect of tapered profiles with FGM or periodicity. Finally, the numerical predictions are 

confirmed with experiments on linearly tapered shells. 

The problem of rotordynamics is addressed in the forth and fifth chapters. In 

chapter four, the focus is on different passive treatments, while the fifth chapter 

concentrates on actively applying additional control forces through piezoelectric 

actuators. Besides investigating how rotation modifies the flexural wave characteristics of 

shafts, the interest is extended to the comparison of the Campbell diagrams of tapered, 

stepped and uniform profiles. Periodicity as well as complex geometries are mixed 

together in order to improve the attenuation bandwidth and shift the stop bands to more 

convenient frequencies. Experiments on the propagation of the vibration of engine-

gearbox demonstrate the effectiveness of tapered and periodic profiles with or without 

additional passive damping coating treatments. Additional experiments on a stepped 

active shaft prove the effectiveness of active control in attenuating the wave propagation 

as compared to various passive treatments. The contributions of this dissertation and 

suggestions for future work are summarized in the sixth chapter. 
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CHAPTER 2: WAVE PROPAGATION IN TAPERED RODS 

2.1 Introduction 

The vibration of non-uniform rods and beams is a subject of considerable 

scientific and practical interest because of its relevance to many structural, mechanical, 

and aeronautical engineering applications. 

Closed-form solutions for conical rods and beams can be found in classic 

vibration books [15 and 22]. Also, Doyle [11] considered a spectral finite element 

formulation of the dynamics of viscoelastic, tapered rods. It was shown that the spectral 

formulation can model distributed mass more efficiently than a traditional finite element 

model formulation. Eisenberger [12] demonstrated that the natural frequencies are only 

slightly affected by the taper and that the equation of motion of rods with conical cross 

section can be reduced to the form of a wave equation by a mere variable transformation. 

Lau [27], Abrate [1], and Kumar and Sujith [25] investigated all the possible area 

variations (polynomial, exponential, catenoidal) for which exact analytical solutions for 

the problem can be obtained with a systematic approach. Bapat [5] combined the closed-

form solution for uniformly tapered rods with the transfer matrix method and compared 

its performance to multi-step approximation and FEM results demonstrating that the 

transfer matrix solution can be a much more effective approach to the problem. In recent 

years, Wang [55] derived closed-form solutions for free longitudinal vibration of a rod 

with exponentially distributed stiffness and mass. Li [30] considered rods, whose mass 
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distribution is not necessarily assumed to be proportional to the stiffness distribution. 

Exact or approximate solutions for arbitrary mass-stiffness distributions are pursued. 

 

The present chapter is organized as follows. A literature survey is presented in 

Section 2.1. In Section 2.2, the equations of motion and the mathematical model is 

derived for the two most common families of rod profiles, namely, polynomial and 

exponential profiles. In Section 2.3, an analytical solution is presented for a simple 

exponential profile in order to understand the concepts of propagation constant, stop 

bands, and cut-off frequency. Numerical solutions are finally presented for few examples 

of rod profiles in the same section. In Section 2.4, experiments are conducted on a 

linearly tapered rod and compared to numerical predictions. In Section 2.5, the 

conclusions are provided along with the explanations for the benefits of implementing 

tapered section versus uniform sections. 

 

2.2 Equation Of Motion Of Rods With Variable Cross Section 

The equation of equilibrium [15] for a generic rod is (Figure 2.1): 

 

 

 

 

 

 

Figure 2.1: Generic rod element. 

N(x,t) N(x,t)+dN(x,t) 

dx

A(x) 
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2

( , ) ( , )( ( , ) ) ( , ) ( )N x t u x tN x t dx N x t A x
x t

ρ∂ ∂+ − =
∂ ∂

 (2.1) 

 

where ( , )( , ) ( ) u x tN x t EA x
x

∂=
∂

 is the longitudinal force. For harmonic motion, at 

frequency ω one obtains the ordinary differential equation: 

 

 
2

2
2

( ) 1 ( ) ( ) ( ) 0
( )

d u x dA x du x k u x
dx A x dx dx

 + + = 
 

 (2.2) 

 

where 

ρ

ω
E

k =  is the wave number. Hence, the equation of motion (2.2) can be cast in 

a state-space formulation by defining the state vector { },
T

xZ u u= : 

 

 ,2 ,

0 1
( )x xx

Z Z Z x ZA
k

A

 
 = ⇔ = ⋅
 − −  

A  (2.3) 

 

The solution of equation (2.3) is given by: 

 

 )0()( 0
)(

ZeLZ
L

dxx∫=
A

 (2.4) 

 

It is well-known that, for a linear elastic structure, the relation between the 

longitudinal force N(x,t) and the displacement u(x,t), is as follows 
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 ( , )( , ) ( ) u x tN x t EA x
x

∂=
∂

 (2.5) 

 

Then we can easily compute the transfer matrix T from 

 

 OO

dxx

L YYeY
L

TGG 1
O

A

L =






 ∫= −0
)(

 (2.6) 

 

where the new space vector Y at the two ends of the rod is given by 

0
0

0

(0)1 0
(0) ,

(0)0 (0)

( )1 0
and ( )

( )0 ( )

x

L
L

xL

u u
Y Z

N uEA

u Lu
Y Z L

u LN EA L

    = = =    −     
    = = =    

     

O

L

G

G
 

 

The eigenvalues λi of the transfer matrix T provide all the information about the 

propagation characteristics, that is 

 

 i i i i ii i
i e e e eµ α β α βλ += = =  (2.7) 

 

where µi is the propagation parameter, αi and βi are called the attenuation factor and the 

phase angle, respectively; they represent the real and imaginary portion of the 

propagation constant. 
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By recalling equations (2.6) and (2.7), each wave component can be written in 

indicial notation as 

 

 ( ) ( )i ii
L Oi i

Y e Y eα β=  (2.8) 

 

Equations (2.8) shows that the disturbance measured at location L is shifted in 

phase by the factor β with respect to the signal measured at location 0 and it is magnified 

or attenuated by factor α depending on the taper ratio. 

 

In general, it can be stated that, when the phase β shifts 180°, destructive 

interference occurs between the traveling wave and the reflected wave so that no 

disturbance can propagate along the rod (STOP BAND). The frequency that sets the 

boundary of the stop band is called cut-off frequency. It will be explained in more details 

with an example in the next section. 

 

2.3 Numerical Examples 

Some examples are presented here for the two most common classes of rod 

profiles: exponential profiles and polynomial profiles. 

2.3.1 Exponential Profile 

The cross section is written as: 
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 L
xa

eAxA 0)( =  (2.9) 

 

where A0 and a are set constants. In the case of exponential cross section the system 

matrix A, given by equation (2.3), does not depend on the variable x, which make all the 

calculations particularly easy as A becomes as 

 

 











−−=

L
ak 2

10
A  (2.10) 

 

Solutions to the wave equation (2.2) can be written as xUexu λ=)(  [11], where λ 

are solutions of the characteristic polynomial of A, such that: 

 

 022 =++ k
L
a λλ  (2.11) 

 

The roots of (2.11), 

 

 
2

2
2,1 22







−±−=

L
aki

L
aλ  (2.12) 

 

are such that: 

- when   k2 < (a/2L)2  , (ω  < ωc) , the roots are both real, so waves cannot 

propagate along the rod; this frequency range is called STOP BAND. 
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- when   k2 > (a/2L)2 , (ω > ωc) , the roots become complex, so waves will 

propagate along the rod: PASS BAND. 

 

The frequency ωc correspondent to the particular wave number that sets the 

boundary between the two different behaviors,  k = (a/2L)  , is called cut-off frequency , 

namely 
ρ

ω E
L
a

C 2
=  . 

The imaginary part of λ1,2 gives the Dispersion Relation : a non-zero imaginary 

component means the wave is free to travel along the structure. 

Consider a rod that has the characteristics listed in Table (2.1). 

 

Table 2.1: PVC Rod Properties. 

Parameter Value 

Young Modulus E [Pa] 3.2x108 

Density ρ [Kg/m3] 1150 

Length L [mm] 457.2  (18”) 

Area A0 [mm2] 645.16  (2”*½”) 

Taper parameter a 4 

 

 

A plot of the wave number k versus the frequency ω quantifies the dispersion 

characteristics of the rod. Such characteristics are displayed in Figure (2.2) for uniform 

and tapered rods indicating a cut-off frequency of 2000 Hz for the tapered rod. 
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Figure 2.2: Dispersion relation k=k(ω) for longitudinal wave  

in uniform rods (thin line) and tapered rods (thick line). 

 

 

The propagation characteristics of the uniform and tapered rods are obtained from 

the transfer matrix approach. In Figure (2.3), the propagation and attenuation parameters 

of both the uniform and tapered rods (αi and βi) are displayed. The figure clearly 

indicates that the propagation parameter αi for the uniform rod is equal to zero, 

emphasizing the presence of a pass band over the entire frequency spectrum. The 

different behavior in the case of tapered rods, with the presence of stop and pass bands, is 

also clearly evident in Figure (2.3). 
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Figure 2.3: Propagation Constants α i and βI  

for uniform rods (thin line) and tapered rods (thick line). 

 

 

Two different cases are considered and compared to the uniform rod, namely the 

cases of tapered rods with positive and negative taper parameter a. The three different 

shapes considered are shown in Figure (2.4): 
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Figure 2.4: Rod aspect for different profiles. 

 

 

For each of the considered cases, the propagating constants are computed and 

plotted in Figure (2.5). In the figure, the dotted line corresponds to the uniform rod and 

there is no attenuation as expected because the decaying amplitude α remains zero all the 

time. Also, the solid lines correspond to decreasing and increasing cross section. In this 

case, a stop band is developed making the rod act as a high pass filter. 
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Figure 2.5: Propagation parameter µ=α+iβ and cut-off frequency. 

 

 

It is important here to note that equation (2.6) can be also interpreted as the drive 

point impedance between the excitation location 0 and the measuring point L. It is 

understood from Figure (2.6) that while the uniform profile feeds the disturbance through 

as it is, tapered profiles show a stop band at low frequencies so that only signals above 

the cutoff frequency are transmitted. 
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Figure 2.6: Transmitted force: FL/F0. 

 

 

2.3.2 Polynomial Profile 

The cross section is modeled as: 

 

 m

L
xaAxA )1()( 0 +=  (2.13) 
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Polynomial taper is examined because it is more easily implemented for practical 

purposes, especially in the simplest configuration of linear taper (m=1). Note that A0 and 

a are predetermined constants. 

 

In this case, the matrix A becomes: 

 

 
( )












+
−−=

axL
amk 2

10
A  (2.14) 

 

The wave propagation characteristics for a tapered rod, whose characteristics are 

listed in Table (2.2), are shown in Figure (2.7) in comparison to the characteristics of the 

uniform rod. 

 

Table 2.2: PVC Rod Properties. 

Parameter Value 

Young Modulus E [Pa] 3.2x108 

Density ρ [Kg/m3] 1150 

Length L [mm] 457.2  (18”) 

Area A0 [mm2] 645.16  (2” x ½”) 

Taper parameter a 10 
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Figure 2.7: Propagation constants µ=α+iβ and cut-off frequency. 

 

 

Note the presence of a cut-off frequency in the propagation characteristics at 

approximately 1000 Hz. Hence no disturbance lower than 1 kHz will propagate along the 

structure. 

In other words, if the response of a point at location L is considered due to a 

disturbance exerted at location 0, Figure (2.8) pictures the shift of the first peak to higher 

frequencies. This shift to higher frequency is proved to be directly dependent on the taper 

ratio, as it increases when the taper ratio gets more pronounced. 

 

 

 

…… uniform
____ tapered 



 

 19

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-2

10
-1

10
0

10
1

10
2

10
3

T
ra

ns
m

itt
ed

 F
or

ce

frequency [rad/s]  

Figure 2.8: Transmitted force: FL/F0 . 

 

 

Let us now write the coefficient a in terms of the more practical geometric aspect 

ratio of the rod: 

1.Exponential profile: 

 

 

ρρ
ω E

L
A
A

E
L

a

A
Aa

L

C

L

2

ln

2

;ln

0

0










==

=

 (2.15) 

 

2.Polynomial profile: 
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It is interesting to see that in both cases the cut-off frequency exclusively depends 

on the cross section ratio AL/A0 and the length L of the rod, but different types of profile 

do not play any role. 

 

Hence, because linear profiles (m=1) can be easily machined, linearly tapered 

rods with the material properties shown in Table (2.3) are used in the experimental study 

described in Section 2.4. 

 

Table 2.3: PVC Prismatic Rod Properties. 

Parameter Value 

Young Modulus E [Pa] 3.2x108 

Density ρ [Kg/m3] 1150 

Length L [mm] 457.2  (18”) 

Height h [mm] 50.8  (2”) 

Width b [mm] 12.7  (½”) 

Taper Ratio AL/A0 4 
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The transmissibility characteristics of the linearly tapered rod under consideration 

are displayed in Figures (2.9) and (2.10). 
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Figure 2.9: Frequency response. 

 

 

Figure (2.9) presents a comparison between the frequency response of the tapered 

and uniform rods. The tapered rod exhibits a stop band for frequencies below 1500 Hz. 

In order to gain a better understanding of the unique behavior of tapered rods, the 

Wavelet Transform technique, briefly described in Appendix A.1, is applied to the 

frequency response of figure (2.9). In figure (2.10), the presence of a stop band extending 

to 1.5 kHz for the tapered rod is noticeable, while in the case of the uniform rod a pass 

band over the entire frequency spectrum can be identified. 
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Figure 2.10: Frequency response and Wavelet transform of rods: 

(a) uniform thickness and (b) tapered profile. 

 

 

2.4 Experimental Characteristics Of Tapered Rods 

Experiments are carried out to validate the numerical results obtained in  

Section 2.3. The setup considered consists in two simple prismatic bars hung in a free-

free configuration. The wave propagation characteristics and the transmitted force of the 

(b) 

(a) 
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tapered rod of Figure (2.11) are monitored and compared with the corresponding 

characteristics of rods with uniform profile. Dimensions and material properties of the 

rods used in the experiments have been summarized in Table (2.3). One of the two rods 

had uniform profile while the other was tapered with a geometric ratio AL / A0 = 4. 

 

 

 

 

Figure (2.11): Tapered rod. 

 

 

 

Figure 2.12: Spectrum Analyzer. 
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An impact hammer (PCB Model 086C02) is used to exert a longitudinal 

impulsive excitation on one tip of the rod. The longitudinal acceleration at the rod end 

opposite to the force location is captured by a piezoelectric accelerometer (PCB Model 

303A03). The spectrum analyzer (ONO SOKKI Model CF910), in Figure (2.12), is 

triggered by the input force and records the signal coming from the accelerometer for 10 

milliseconds. The stored transient response is analyzed through the Wavelet Transform 

(WT) in order to capture the pass and stop band characteristics. The WT allows for 

displaying the energy distribution simultaneously in the time and frequency domain and 

hence allows for fully describing the filtering characteristics of this class of structures. 

Results are collected in Figures (2.13) and (2.14). 

 

The captured signal is also truncated at approximately 3 milliseconds in order to 

isolate the first traveling wave from all further reflections due to the finite length of the 

rod. This gives a sharper insight in the propagation characteristics of the considered rods. 

From Figure (2.13b) it is clear that the impulse is captured without any dispersion 

occurring as the disturbances travels along the uniform rod. The energy looks equally 

distributed about the two most significant peaks at approximately 900 Hz and 2000 Hz. 

On the other hand, the tapered profile pictured in Figure (2.14b) deforms the 

impulsive wave as time progresses. This reflects in a shift in frequency of the energy 

content represented by the WT plot. Note that most of the energy is about the 2000 Hz 

peak. 
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Figure 2.13: Time history and wavelet transform of the response of a uniform rod 

(a) full picture and (b) truncated wave. 
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Figure 2.14: Time history and wavelet transform of the response of a tapered rod: 

(a) full picture and (b) truncated wave. 
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2.5 Conclusions 

The effect of varying the thickness of one-dimensional wave-guides (rods) can be 

effectively used to cutoff undesirable low frequency vibrations. The main parameter that 

influences the spectral location of the cutoff frequency is the ratio between the cross 

sections at the end of the wave-guide. 

The filtering characteristics of these variable geometry rods have also been 

demonstrated experimentally. 

The slight discrepancy between the experimental results and the numerical 

predictions was caused by the fact that a low pass filter has been used in the experiments 

in order to filter out the higher frequencies content and better focus on the range of 

frequencies of interest. In spite of such a discrepancy, it is important to note that rods 

with tapered profiles are found to shift the energy content to a higher frequency range 

and, hence, they behave as high-pass mechanical filters. 
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CHAPTER 3: WAVE PROPAGATION IN PERIODIC SHELLS 

WITH TAPERED WALL THICKNESS  

AND CHANGING MATERIAL PROPERTIES 

3.1 Introduction 

Shells of revolution play an important role in many structural applications. 

However, the analysis of the dynamics of these structural elements is more complex than 

the analysis of one-dimensional elements as rods. In fact, traditionally most studies have 

attempted to adapt the membrane model (very thin shells) for practical calculations. 

Generally, thick shells present a more interlaced behavior that is not described by 

extended 2D models. However, the availability of faster computers has shown that 

analyses of solid bodies based on 3D structural models [17] yield accurate predictions of 

static displacements, free vibration frequencies and modes, buckling loads, and mode 

shapes. Many applications require the use of axis-symmetric shells, such as in space 

vehicles, aircrafts and submarines skins. Transmission shafts for automotive and 

helicopter industry and turbo-compressor units present even more complex behavior due 

to the rotation along their axes. All these applications need a careful vibrational and 

acoustic analysis. Furthermore, the development of particular stop bands through tapered 

and periodically variable cross sections [43] has become a very interesting field of 

investigation at this point. 
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Several researchers have studied three-dimensional vibration of hollow circular 

cylinders. Early investigations were focused in applying 2D shell theory on circular 

cylindrical shells having continuously variable wall thickness. In 1973, Stoneking [49] 

formulated a set of equations to solve vibrations of clamped-clamped tapered cylinders 

with the partition method. In 1991, Sivadas and Ganesan [47] presented a semi-analytical 

finite-element analysis for determining the natural frequencies of thin circular isotropic 

cylindrical shells with linear and quadratic varying section. In their study, Love’s first 

approximation shell theory was considered to solve the problem and investigated 

different boundary conditions. In 1993, Sivadas and Ganesan [46] improved their model 

by including the normal strain as well as the transverse shear effects and compared the 

solutions to two other approximations: the thick shell theory without normal stress and 

Love’s model without shear and rotary inertia. Suzuki et al. [50 and 51] presented an 

analytical solution of the free vibration of a clamped-clamped circular cylindrical shell 

with quadratic thickness variation along the axial direction. 

 

Basically, only three groups of researchers studied conical shells with variable 

thickness using 2D-based shell theory. In 1977 Penzes and Padovan [39] characterized a 

tapered cone with an approximate closed-form solution. Then, Irie et al. [18] in 1982 

used the transfer matrix approach to treat the case of free vibration of a truncated conical 

shell having a meridian thickness expressed by an arbitrary function. Natural frequencies 

and mode-shapes were numerically calculated for linear, parabolic and exponential 

variable thickness. Takahashi et al. [52 and 53] wrote a series of papers (1982-1986) on 

this subject. 2D models have been developed for moderately thick conical shells of 
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variable thickness where the normal displacement component is assumed to be constant 

along the thickness. The tangential displacements and bending rotations is supposed to be 

linearly varying, as in the well-known Mindlin plate theory. In 1995, Leissa and So [28] 

presented extensive studies on a 3D-based procedure to determine free vibration 

frequencies and modes for truncated hollow cones with arbitrary thickness by applying 

Ritz method. These results were refined in 1999 by Kang and Leissa [20]. 

 

The present chapter is organized as follows: a literature survey has been presented 

in Section 3.1. In Section 3.2, the equations of motion are derived from the energy 

conservation principles using the transfer matrix approach. This approach allows further 

investigations of the effect of varying the geometry and/or stiffness, which are the main 

goals of Sections 3.3. Section 3.3.1 presents numerical solution of examples of 

exponential and polynomial tapered shell. The propagation constants for the longitudinal 

and transverse waves are discussed and the time-frequency plots are generated by the 

Wavelet transform for a linear profile. Section 3.3.2 investigates the possibility of using 

Functionally Graded Materials (FGM) where by the material Young’s modulus is 

allowed to vary according to exponential or polynomial shapes. Numerical solution of 

various examples is presented in terms of propagation constants in order to quantify the 

effect of geometry changes. Moreover, the combined effect of varying the geometrical 

profiles as well as the gradient of the elastic properties is also investigated. 

Section 3.4 describes the experiments conducted on a linearly tapered shell. The 

time response and the corresponding Wavelet transform analysis are compared to the 

numerical predictions of Section 3.3. Section 3.5 extends the results of Section 3.3.1 to 
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the case of periodic shell elements. All different combinations of periodicity are 

surveyed. Section 3.6 summarizes the conclusions indicating that the best results are 

obtained when combining tapered geometry and either functionally graded materials or 

with periodicity. Bi-periodic tapered elements have exhibited the most interesting 

behavior. 

 

3.2 Equation Of Motion For Shells Of Variable Material Properties And 

Geometry 

Under hypothesis of small deformation, the elastic strains (ε , γ) for the generic 

three-dimensional shell shown Figure (3.1) are given by [13]: 
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 (3.1) 

 

where: U, V, W are the displacement in the three spatial directions (x, ϑ , r) and R is the 

medium radius. 

and 
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Figure 3.1: Three-dimensional cylindrical shell. 

 

 

Introducing Kirchhoff hypotheses, such that U and V linearly vary through the 

thickness and W is constant through the thickness, then: 
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Substituting equation (3.2) into (3.1), a simpler expression is obtained: 
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 (3.3) 

 

If we assume the axial symmetric shell to be thin (r/R<<1), and torsion and 

bending to be uncoupled (Donnell-Mushtari) ( v,x ≅ 0 ; v,ϑ  ≅ 0 ), then equations (3.3) reduce 

to [29]: 
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In order to obtain the equations of motion for the axis-symmetric shell, the energy 

method approach is employed along with the Hamilton’s principle, such that: 

 

and 

and 
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where T is the Kinetic Energy of the structure, U denotes its Potential Energy and W 

defines the Virtual Work done by any external force. 

 

 

The general expressions of these quantities for a three-dimensional structure are: 
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The constitutive relations for a linear elastic solid are 
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Hence, the kinetic and potential energies reduce to: 

 

and 

and 
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where: 

 ( )21
)()()()(

ν−
== xEhxRxKxRg t  is the longitudinal rigidity of the shell, 

 ( )2

3

112
)()()()(
ν−

== xEhxRxDxRq t  is the bending rigidity of the shell, 

and ( )21 ν
ρ

−
=

E
c  is the characteristic wave propagation phase speed. 

Applying Hamilton’s principle yields the following equations of motion for the 

tapered shell: 
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and 
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Applying the Separation Principle to the displacements u and w gives: 

 

 ( , ) ( ) j tu x t u x e ω=     and     ( , ) ( ) j tw x t w x e ω=  (3.11) 

 

 

From equations (3.10) and (3.11), the dynamics of the shell subjected to harmonic 

excitation are given by: 
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It is convenient, for the further analysis, to have a state-space representation of the 

shell system as follows: 
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where 
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Solutions to equation (3.13) are calculated by the integration over the shell length 

L to give: 
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The last three components of the state vector U(x) can be transformed into 

generalized forces (traction N, shear Q, bending moment M) through the coordinate 

transformation matrix [Gx] and a new state vector Y is obtained: 
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 )()( xUxY xG=  (3.15) 

 

where 
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G  transformation matrix 

 

The vector Y in equation (3.15) transforms (3.14) into the Transfer Matrix 

representation as follows: 
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 (3.16) 

 

where  ( ) [ ]00 (0)x Y U= ⇒ = 0G    and   ( ) [ ] ( )Lx L Y U L= ⇒ = LG   . 

 

The eigenvalues λi of the transfer matrix T give all the information about the 

propagation characteristics. 
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From the previous chapter, it can be summarized that: 

 

 ( ) ( ) ( )i ii
L i O Oi i i

Y Y e Y eα βλ= =  (3.17) 

 

where i i ii
i e e eµ α βλ = = . 

 

Equation (3.17) shows that the disturbance measured at location L is shifted in 

phase by the factor β (phase angle) with respect to the signal measured at location 0 and 

it is magnified or attenuated by factor α (attenuation factor) depending on the taper ratio. 

When the phase β shifts to 180°, destructive interference occurs between the traveling 

wave and the reflected wave so that no remaining disturbance propagates along the shell. 

 

3.3 Numerical Examples 

A plastic composite shell is considered in this chapter. The basic properties of this 

shell are listed in Table (3.1). As indicated in Chapter 1, changes in the material 

properties and/or geometry can affect considerably the propagation characteristics of the 

structure. 
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Table 3.1: PVC Shell Properties. 

Parameter Value 

Young Modulus [Pa] 3.6x109 

Density [Kg/m3] 1700 

Length [mm] 315 (12 3/8”) 

External Diameter [mm] 48 (1.9”) 

Internal Diameter [mm] 40 (1.58”) 

Geometric Taper Ratio 4 

FGM Ratio 10 

 

 

3.3.1 Geometrically Tapered Profiles 

It is of great interest to study the influence of thickness variation along the length 

of a straight cylindrical shell. In the present study, only the internal diameter will assume 

different profiles, while the outer diameter is maintained constant. 

Hence, the medium radius R(x) at any cross-section x is represented as function of 

the fixed outer diameter D0 and the variable thickness h(x) as follows: 

 

 
2

)()( 0 xhDxR −=  (3.19) 
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In order to compare results with the characteristics of a typical uniform shell, the 

mass is also kept constant, which adds a constraint on the initial thickness h0 , such that 

 

 ∫ −=
Vol

uu LhhDdxhxR )()()( 0πV  (3.20) 

 

Two different profiles are presented in comparison with the uniform shell, namely 

the exponential profile and the polynomial profile. 

 

3.3.1.1 Exponential Profile 

The thickness h(x) is modeled as follows, according to Figure (3.2): 

 

 L
xa

ehxh 0)( =  (3.21) 

 

 

 

 

 

 

 

 

Figure 3.2: Section of exponential-tapered shell. 
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Parameter a is quickly identified when the thickness ratio is decided: 

 

 
0

ln Lha
h

=  (3.22) 

 

The eigenvalues problem defined by equations (3.16) and (3.17) is numerically 

solved with Matlab. 

 

The expression for the state-space matrix A and the transformation matrix Gx 

reduce to: 
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and [ ] ( ) ( )

( )

( ) 































−

−
−

−−=

2

3

2

3

22

112
)()(00000

0
112

)()(0000

00
1

)(0
)(1

)(0
000100
000010
000001

ν

ν

νν
ν

xRxEh

xRxEh

xEh
xR

xEh

xG  (3.24) 

 



 

 43

The propagation constants are plotted in the frequency domain as shown in Figure 

(3.3). One can recognize the longitudinal and the bending characteristics and compare 

them to the corresponding characteristics of a uniformly shaped cylinder: 
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Figure 3.3: Propagation constants of uniform (dash) and tapered (solid) shells: 

(a) longitudinal direction and (b) radial direction. 
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3.3.1.2 Polynomial Profile 

The thickness h(x) according to Figure (3.4), is given by: 
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L
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 += 1)( 0  (3.25) 

 

where the parameter a is function of the thickness ratio: 
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Figure 3.4: Cross-section of a linearly tapered shell. 
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Hence, the state-space matrix A and the transformation matrix Gx become: 
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Emphasis is placed here on linearly tapered shells (m=1) because of the ease of 

their machining. Figure (3.5) portraits the propagation constants in the frequency domain. 

Such characteristics can be compared to that of shells with exponential taper (Figure 3.3). 

The interesting point is that there is not a big difference in the performance between the 

two profiles. Indeed, for the actual choice of dimensions and material, the longitudinal 

attenuation is more effective at low frequencies than for the case of exponential profile. 

The radial propagation characteristics are comparable in the two cases. 
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Figure 3.5: Propagation constants of uniform (dash) and tapered (solid) shells: 

(a) longitudinal direction and (b) radial direction. 

 

 

In order to gain a better understanding of the energy distribution of the shell in the 

time and frequency domains, the Wavelet transform technique is applied when the shell is 

subjected to an impulsive load exerted at location 0. Figure (3.6) emphasizes that the 

transmitted energy shifts to higher modes and the peak below 1 kHz vanishes. 
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Figure 3.6: Frequency response and Wavelet Transform: 

(a) uniform thickness and (b) tapered profile. 
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3.3.2 Functionally Graded Materials 

The focus is now placed on tuning Young’s modulus of the material in order to 

improve the vibration properties. 

First, comparisons are made with plain shell, and then the benefit of combining 

the effect of geometrical changes with FGM will be considered. Young’s Modulus is 

modeled as either a polynomial function or an exponential function, following the same 

line of thought as presented in the previous chapter. 

3.3.2.1 FGM Effect: Exponential Grading 

The exponential model of Young’s modulus is assumed to be 

 

 L
xe

eExE 0)( =  (3.29) 

 

where the coefficient e is more conveniently calculated from the modulus ratio between 

the two ends of the shell: 

 

 
0

ln
E
Ee L=  (3.30) 

 

Recalling the general solution for the equations of motion obtained in Section 3.2, 

equations (3.12) to (3.17), the following expression for the state-space matrix A are 

obtained: 
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Also, the transformation matrix Gx has the following form: 
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The propagation constants of the FGM shell (solid lines) are compared to the 

uniform shell (dashed lines) in Figure (3.7) in the case when the ratio of the Young’s 

moduli is 10. These characteristics show a principal cut-off frequency at about 2000 Hz 

for the longitudinal and radial waves and some smaller interference at higher frequencies.  
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Figure 3.7: Propagation constants of uniform (dash) and exponential FGM (solid) shells: 

(a) longitudinal direction and (b) radial direction. 

 

 

3.3.2.2 FGM Effect: Linear Grading 

For a linear Young’s modulus we have: 
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The parameter e is depends on the modulus ratio: 
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Hence, the general expression for the state-space matrix A is: 
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where we notice the main difference with (3.31) is the term A[5,6]=0 because the second 

derivative of the linear profile vanishes. 

 

The propagation constants for the shell of Table (3.1) can be plotted in the 

frequency domain, as shown in Figure (3.8). The characteristics are very similar to those 

obtained for the exponentially graded shell (Figure (3.7)). More precisely, a cut-off 

frequency at about 2000 Hz in the radial direction is still present in the FGM 

characteristics (solid line). 
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Figure 3.8: Propagation constants of shells with linearly varying Young’s modulus: 

(a) longitudinal direction and (b) radial direction. 

 

 

3.3.3 Combined Effect 

Lastly, one can combine the effect of the geometric taper with the functionally 

graded Young’s modulus in order to have more control over the propagation 

characteristic if the shell. The resulting system matrix [A]: 
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A numerical comparison among three different possibilities has been carried out 

and obtained results are displayed in Figure (3.9). In all the characteristics, Young’s 

modulus is assumed to be linearly decreasing. The dashed line denotes the response of a 

shell with uniform thickness, where as the dotted line defines the performance of a shell 

with linearly decreasing thickness and the solid line is corresponding to shells with 

linearly increasing thickness. 

and 
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Figure 3.9: Frequency response: 

(dash) uniform thickness, (solid) same slope, (dot) opposite slope. 

 

 

As expected, the combined effect of decreasing Young’s modulus and decreasing 

thickness gives the largest stop band. As a result of this analysis, we can conclude that it 

is possible to effectively control the spectral location and width of the stop bands over a 

wider range of frequency spectrum, with proper selection of geometrical and material 

parameters. 
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3.4 Experimental Characteristics of Shells with Varying Geometry 

A series of experiments are carried out in order to validate the numerical results 

presented in Section 3.3. Manufacturing considerations suggested keeping the internal 

diameter constant and letting the outer profile be linearly varying. Dimensions and 

material properties of the shell used in the experiments have been summarized in Table 

(3.1). One of the two PVC shells has uniform profile while the other is tapered with a 

geometric ratio AL / A0 = 4. Figure (3.10) shows photographs of the shells used. 

 

 

(a) 

 

(b) 

 

Figure 3.10: (a) uniform shell and (b) tapered shell. 
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An impact hammer (PCB Model 086C02) is used to exert a longitudinal 

impulsive excitation on one end of the shell. The longitudinal acceleration at the shell end 

opposite to the force location is captured by a piezoelectric accelerometer (PCB Model 

303A03). The spectrum analyzer (ONO SOKKI Model CF910) is triggered by the input 

force. The analyzer is used to record the signal coming from the accelerometer for 30 

milliseconds. The stored transient response is analyzed through the Wavelet Transform 

(WT) in order to capture the energy content associated with the propagation spectrum. 

The WT allows for displaying the energy distribution simultaneously in the time and 

frequency domain and hence allows for fully describing the filtering characteristics of the 

considered classes of shells. Results are displayed in Figure (3.11). 

 

Figure (3.11a) shows that the uniform profile propagates sinusoidal waves with no 

dispersion. The energy looks equally distributed about the two most significant peaks at 

approximately 900 Hz and 2500 Hz. On the other hand, the tapered profile, pictured in 

Figure (3.11b), deforms the impulsive wave as time progresses. This reflects the shift in 

the energy content as represented by the WT plot to higher frequencies. Also, most of the 

energy is concentrated about the 2500 Hz peak and the peak at 900 Hz has been 

significantly cut off. These results confirm the prediction obtained by the numerical 

model and displayed in Figure (3.6). 
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(b) 

 

Figure 3.11: Experimental Time Response and Wavelet Transform of shells: 

(a) uniform thickness and (b) tapered profile. 
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3.5 Periodic Shells with Tapered Elements 

Further improvements in the wave propagation characteristics can be obtained by 

connecting a series of tapered shell elements. It is proved [43] that elements whose length 

is comparable to the diameter perform better than very long elements. Therefore, for a 

medium radius of 0.87 in. (Table (3.1)), the length of the tapered element is limited to 

about 2 inches. 

Three different configurations are investigated and each of them brings different 

improvements. Table (3.2) shows the different configurations considered in the study. 

 

Table 3.2: Periodic Tapered Elements. 

Single sub-element Two sub-elements Bi-periodic 

Type(A) Type(B) Type(C) 

 

 

The characteristics of configuration (A) have already been discussed in details in 

Section 3.3.1. The shorter length of the element amplifies the width of the stop bands 

while periodicity amplifies the amount of the energy redistribution. Figure (3.12) 

represents the characteristics of the tapered element with solid lines and the uniform 

characteristics in dashed. The principal cut-off frequency has increased to about 1.5 kHz. 

Another stop band is located at about 3.6 kHz. Figure (3.13) displays the overall effect on 

the frequency response of a periodic shell with four consecutive cells. 
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Figure 3.12: Propagation characteristics of a periodic tapered shell type (A). 
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Figure 3.13: Transmitted force: type (A) tapered shell (solid) and uniform shell (dashed). 
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Configuration (B) consists of two tapered sub-elements of opposite taper ratio. 

Although it appears to be less effective than type (A) at lower frequencies, the 

characteristics portrayed in Figure (3.14) show that there is a principal stop band around 

2.5 kHz whereas the type (A) has a pass band (Figure (3.12)). 
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Figure 3.14: Propagation characteristics of a periodic tapered shell type (B). 

 

 

Figure (3.15) displays the overall effect on the frequency response of a periodic 

shell with 4 consecutive type (B) cells. Although the first natural frequency is not 

affected by this configuration, all peaks between 2 kHz and 3.5 kHz vanish. 
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Figure 3.15: Transmitted force: type (B) tapered shell (solid) and uniform shell (dashed). 

 

 

The bi-periodic configuration (C) allows for attempting a combination of the 

effects shown in the two previous cases. The bi-periodic cell consists of three sub-

elements with the same taper ratio followed by one with opposed taper ratio. 

The characteristics are displayed in Figure (3.16). The principal stop band at low 

frequencies that was observed in type (A) characteristics (Figure (3.12)) is combined with 

the mid-frequencies stop band similar to the one of Figure (3.13) (type (B) element). 

The overall frequency response of a periodic shell with 2 consecutive bi-periodic 

cells appears in Figure (3.17). Only disturbance about 3 kHz can effectively propagate 

along the shell. 
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Figure 3.16: Propagation characteristics of a periodic tapered shell type (C). 
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Figure 3.17: Transmitted force: type (C) tapered shell (solid), uniform shell (dashed). 
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3.6 Conclusions 

Variation of the thickness of a shell can be effectively used to filter out 

undesirable bands of wave propagation frequencies. The main parameter that influences 

the width of the stop bands is the ratio between the cross sections at the two ends of the 

shell. We can also state that there are no significant improvements of the propagation 

characteristics when more complex profiles are implemented. The latter result is very 

important from a practical point of view since linear tapers are much easier to machine 

with traditional machinery and they can result in significant attenuation as much more 

complex geometries. 

Very similar results have been obtained with a variation of Young’s Modulus 

using functionally graded materials. Such materials can be very helpful in environments 

where the geometry of the structure impose design constraints, which cannot be modified. 

Besides, it may be easier to obtain a much higher ratio. Finally, by combining the two 

effects one can obtain the flexibility needed for some very demanding applications. 

Periodicity is also considered. Different taper configurations (same ratio versus 

opposite ratio) proved to have complementary effects on the wave characteristics that can 

be successfully combined in bi-periodic tapered cells. This complex geometry can 

produce the most effective energy redistribution. 
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CHAPTER 4: WAVE PROPAGATION IN PERIODIC ROTATING 

SHAFTS WITH DIFFERENT GEOMETRIES 

4.1 Introduction 

Rotational motion is one of the oldest developments in the human history, and 

rotating flexible shafts are one of the most commonly employed mechanical elements for 

power transmission in industrial applications and automotive and aeronautic engineering. 

In each case, an accurate vibration analysis and stability behavior of the rotating shaft is 

essential for the success of the machine performance. 

The first published work on dynamics of rotating shafts was presented in 1869 by 

Rankine [40]. According to Gunter [16], Rankine’s neglect of Coriolis acceleration led to 

erroneous conclusions that confused engineers for half a century. The number of 

publications on dynamics of rotating shafts increased exponentially after the 40s. Over 

these early years most rotating machinery were traditionally designed to operate below 

the first natural transverse frequency of the shaft (or critical speed) in order to ensure 

reliable operation. For this reason, the earliest papers were mainly focused on predicting 

the first critical velocity of shafts for different practical configurations and they would 

suggest methods on balancing shafts for the sub-critical operation range. 

Modern rotating machinery, however, often must operate at much higher speeds, 

far in excess of the first critical velocity (super-critical range); therefore, more recent 

literature [14, 23, 26, 34] treats a wider set of problems and phenomena, such as the 
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proximity of operating speed to higher order criticals, the extent of unstable regions and 

fatigue stresses, investigating both experimental data and FEM models. In general, three 

beam theories are commonly employed to examine the transverse vibrations of rotating 

flexible shafts. These are the Timoshenko’s model, where both the rotary inertia and 

shear deformation effects are accounted for, Rayleigh’s model, which considers only the 

rotary inertia, and Euler-Bernoulli’s beam. Timoshenko and Rayleigh models also 

include conservative gyroscopic moments generated by the rotation of the shaft about its 

longitudinal axis, resulting in a non-self-adjoint problem. As more exact analyses are 

required, it is recognized that the Timoshenko theory gives the most accurate predictions. 

Kuang and Tan [24] obtained an exact solution for the free and forced response of 

a stepped, rotating Rayleigh shaft by the distributed transfer function method and a 

generalized displacement formulation. Murphy [36] developed a polynomial transfer 

matrix method to improve the efficiency in analyzing the eigenvalues problem and the 

unbalance response of multi-element rotors. Curti et al. [10] investigated the steady-state 

unbalance response of a continuous rotor on anisotropic supports by using a FEM model 

based on Timoshenko theory. The development of lightweight, stiff, extended boring bars 

for metal cutting operations motivated the work by Kim et al. [21], who performed a free 

vibration analysis of a rotating tapered filament-wound composite shaft, showing that, by 

tapering, the bending natural frequencies and stiffness of the shaft can be significantly 

increased over those of a uniform shaft of the same volume and material. The same 

results are confirmed by Scott and Kim [44], who further investigate the wave 

propagation characteristics of the same composite shaft. Suzuki et al.[50] proposed an 

analytical solution to the problem of free vibrations of rotating tapered shells by power 
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series expansion in the particular case of clamped-clamped boundary conditions. 

Numerical results illustrate the effect of thickness variation upon natural frequencies and 

mode shapes. 

 

An innovative point of view is introduced by Kang and Tan’s description of the 

vibration of rotors in terms of propagating and attenuating waves in waveguides. First, 

they investigate the general problem of flexural waves propagation by considering an 

infinitely long axially strained rotating Timoshenko shaft [19]. Also, in a second work 

[54], they examine the effect of the axial strain on the wave reflection and transmission 

characteristics under arbitrary geometric discontinuities, supports and boundary 

conditions. 

 

In this chapter, a literature survey on the problem of rotordynamics has been 

given in Section 4.1. Section 4.2 develops a detailed analysis of the different components 

of a rotor. The equations of motion and the transfer matrix of a generic shaft are derived 

from the energy conservation using Lagrange’s equations in Section 4.3. Section 4.4 

addresses the problem of critical speeds and the concept of Campbell diagrams. Section 

4.5 introduces a finite element formulation to evaluate the wave characteristics and 

stability problems in rotordynamics. Section 4.6 displays the numerical results for tapered 

profiles as well as periodic geometries. It also deals with possible combinations of the 

two effects in order to optimize the bandwidth and location of the stop bands. Section 4.7 

presents the experimental results and validates the numerical predictions for the tapered 
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shaft and the stepped periodic shaft. Section 4.8 introduces the effect of damping 

material. The drawn conclusions are summarized in Section 4.9. 

4.2 Lateral Shaft Problems 

This section refers to Lalanne and Ferraris [26], who give a very detailed 

derivation of the governing equations of a generic rotor. 

 

The basic elements of a rotor are the disk, the shaft, the bearings and seals; the 

inherent mass unbalance must also be considered to complete the analysis. 

 

 

 

 

 

 

 

 

 

Figure 4.1: Sketch of a complete rotor. 

 

The kinetic energy T, potential strain energy U and virtual work δW due to 

external disturbances F are written for each element and Lagrange’s equations are 

generated as follows 
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where N are the degrees of freedom, qi the generalized independent coordinates. 

4.2.1 The disk 

The disk is usually assumed rigid; therefore it is simply characterized by its 

kinetic energy. Recalling the instantaneous angular speed vector ω 
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 (4.2) 

 

Assuming that the angular speed Ω is constant, the angles θ and ψ are small and 

the disk is symmetric and isotropic, we can simplify the kinetic energy as 

 

 2 2 2 2 21 1 1( ) ( )
2 2 2Disk D zD xD xDM u w I I Iθ ψ ψθ= + + + + Ω + ΩT  (4.3) 

 

where the last term represents the gyroscopic effect (Coriolis acceleration) with MD and 

ID denoting the mass and mass moment of inertia of the disk respectively. Also, u and w 

denote the transverse deflections in the x and z direction. 
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4.2.2 The shaft 

The flexible shaft is represented by a generic beam with circular cross section 

with kinetic energy TShaft and strain energy UShaft. A possible axial force Faxial is taken into 

account because it may seriously affect the dynamical behavior of the system. Moreover, 

the hypotheses of symmetry, isotropy and linearity are still assumed as valid, but the 

rotary inertia is taken into account (Timoshenko beam) in the kinetic energy. 
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where ρ, L, S and I denote the density, length, cross-section and moment of inertia of the 

shaft respectively. Also, u and w denote the transverse deflections in the x and z direction. 

The strain energy becomes: 
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4.2.3 Bearings and seals 

The bearings are supposed rigid. Hence, the virtual work δW due to their viscous 

and elastic forces is neglected in this analysis, or 

 

 0≅+= SealsBearings WWW δδδ  (4.6) 
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4.2.4 Mass unbalance 

The unbalance can be related to manufacturing tolerances and misalignments 

among the geometric and inertial centers of the various elements of the rotor. It is 

generally defined as a small additional mass mu , which is eccentric to the geometric 

center of the shaft by a distance ε. The associated kinetic energy can be approximated as: 

 

 )sincos( twtumuUnbalance Ω−ΩΩ≅ εT  (4.7) 

 

where TUnbalance denotes the so-called “centrifugal vector” and it will be considered as an 

external excitation to the perfectly centered structure. 

 

4.3 Equations of Motion 

The problem is now solved for the simple case of a single shaft on rigid bearings. 

The analysis takes into account various geometries, as sketched in Figure (4.2). 

 

 

 

Figure 4.2: Sketch of a periodic, uniform and tapered shaft. 
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For this structure, one can collect the following terms: 
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The Lagrange’s equations are applied to system of equation (4.7) 
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where  q1 = u  and  q2 = w. These result in the following equations of motion of the 

system: 
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System (4.9) can be put in a spectral form in terms of a sole complex variable 

W(x,t) as vectorial sum of its components u and w, 
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 ( ) [ ]2 2
2 ,( ) ( ) ( ) sin( ) cos( )xx u u
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Applying the separation principle, the state-space spectral formulation is obtained: 
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The state vector U(x) corresponds to the configuration where the first two 

components are the generalized displacements (transverse w, slope w,x), while the last 

couple reflects the generalized forces (shear Q, bending moment M) in the shaft. 

Equation (4.11) can now be cast into “Transfer Matrix” representation. First of all, we 

define a coordinate transformation matrix Gx as follows: 
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and 
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Solutions to the dynamics of equation (4.10) are calculated by the integration of 

equation (4.11) over the length of the shaft, such that 
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One finally gets to the following Transfer Matrix Representation of the dynamics 

of the shaft: 
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From the analysis of the transfer matrix performed in the previous chapters, it can 

be summarized that: 
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where i i ii
i e e eµ α βλ = = . Equations (4.15) shows that the disturbance measured at 

location L is shifted in phase by the factor β (phase angle) with respect to the signal 

measured at location 0 and it is magnified or attenuated by factor α (decaying amplitude) 

depending on the geometric characteristics of the structure and on the amount of wave 

interference. When the phase β shifts of 180°, destructive interference occurs between the 

traveling waves and the reflected waves so that no remaining disturbance propagates 

along the shaft. 

 

4.4 Campbell Diagrams 

Traditionally [23], a rough estimate of the first critical speed for practical 

applications is simple to obtain for simply-supported Jeffcott rotors. In this case, for 

steady operating conditions, the lowest critical speed Ω coincides with the first natural 

frequency f1 of the shaft. In other words, 
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A careful study of the critical velocities of a generic rotor can be carried out using 

FEM or analytic methods [14, 26]. In the latter case, the equations of motion (4.9) can be 

modified with the transformation  1 2( , ) ( ) ( ) and ( , ) ( ) ( )i iu x t f x q t w x t f x q t= = . 

The equations of motion end up being: 
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where 
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∫      is the gyroscopic effect , 
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∫     is the stiffness coefficient, 

and  fi(x) is an admissible displacement function of the longitudinal coordinate x for 

the ith mode shape of the shaft. 

For each of the first ith configurations, we can study the Campbell diagram of the 

shaft, by solving the homogeneous part of equation (4.17) for the rotation speed Ω.  
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and 
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The solution   0 ( )fω ωΩ== ± Ω     defines the two critical speeds at which either 

backward or forward whirl appears. The intersection of these curves with the critical 

condition, when the rotating speed of the shaft matches an harmonic of the natural 

frequency of the rotor ( , 1, 2...in nωΩ = = ), gives the value of the critical speed related 

to the ith deformed shape. The picture that portraits the natural frequencies versus the 

rotating speed parameter is called “Campbell diagram”. 

4.5 Finite Element Formulation 

The kinetic energy (4.4) and potential energy (4.5) of a shaft can also be written 

in terms of   1 2( , ) [N ( )] ( ) and ( , ) [N ( )] ( )u x t x u t w x t x w tδ δ= =  ,  which gives the 

mass [M], stiffness [K] and gyroscopic matrix [G] of a FEM shaft element [26]: 
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T
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I x dxρ
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∫  (4.19a) 

 

where 
( )
( )

u t
w t

δ
δ
 ∆ =  
 

    are the shape function, and [N1] and [N2] are the typical cubic 

displacement polynomial functions for a beam in bending. 
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Applying Lagrange’s principle, in absence of axial force F0 , allows for obtaining 

the equation of motion of the ith beam element as 

 

 i i i i i i[M] [G( )] [K] , 1..externalF i n∆ + Ω ∆ + ∆ = =  (4.19b) 

 

The system (4.19) can be assembled into the overall governing equation for the 

whole shaft, or 

 

 [M] [G( )] [K] externalF∆ + Ω ∆ + ∆ =  (4.20) 

 

4.5.1 Transfer Matrix 

A coordinates transformation brings the system (4.19) into the transfer matrix 

approach. It is convenient to rewrite the equation of motion in terms of the dynamic 

stiffness 

 

2[[K]+ [G( )]-[M] ] KDynj F Fω ωΩ ∆ = ⇒ ∆ =  

Noticing that { } { } 11 12

21 22

; , ; , Kleft right left right Dyn

K K
U U F F F

K K
 ∆ = = =  
 

 

it is possible to rearrange the system in the transfer matrix approach: 
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 (4.21) 

 

The transfer matrix approach considers the whole structure as one single input-

output block that directly relates the right side of the shaft (output) to the left side (input); 

hence the whole shaft is divided into one single macro-element, which brings concerns 

about the accuracy of the analysis [36]. Therefore, higher order polynomials must be 

considered to improve the accuracy. 

The transfer matrix method allows for investigating periodically tapered shafts in 

a very compact form. In this case, the transfer matrix of the overall structure [TN] is equal 

to the product of the transfer matrices of each element [Ti]: 
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U U
F F

   
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 (4.22) 

 

where    [ ] [ ]
N

i=1

T TN i= ∏  .   The frequency response of the periodic structure is derived 

applying the proper boundary conditions. In the case of simply-supported shaft, it 

resolves into 
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where 11 12

21 22
T N N

N N

N

T T
T T
 

=  
 

 

 

4.5.2 Campbell Diagram 

The homogeneous part of system (4.20) is taken into consideration while 

investigating for critical speeds: 

 

 2[[K] [G( )] [M] ] 0jω ω+ Ω − ∆ =  (4.24) 

 

Solving the eigenvalues-problem of (4.24) for different values of the velocity Ω 

gives the Campbell diagram of the shaft. In this case, the maximum number of whirl 

speeds obtained depends on the number of finite elements n the shaft is divided into. 

 

4.6 Numerical Results 

Different types of geometries are considered in order to clarify their specific 

waves propagation pattern in comparison with a simple uniform cylindrical shaft. 

First, tapered profiles are investigated. Then, periodicity is introduced with 

stepped cylindrical profiles. Finally, the different geometries are combined with 

periodicity in order to optimize the wave propagation pattern at low frequencies as well 

as the bandwidth of the stop bands. 
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4.6.1 Tapered Shaft 

A tapered aluminum shaft is considered and compared to a uniform shaft with the 

same mass. Detailed schematic drawings of the shafts are represented in Figure (4.3). 
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Figure 4.3: Schematic drawing of the tapered and uniform shaft. 

 

Dimensions and material properties are displayed in the following Table (4.1): 

 

Table 4.1: Tapered Shaft Properties 

Parameter Value 

Young Modulus [Pa] 71x109 

Density [Kg/m3] 2700 

Length [mm] 584.2 (23”) 

Medium Diameter [mm] 28.575 (1 1/8”) 

Geometric Taper Ratio 4 

 

23” 

29” 

23” 

29” 

1 1/8” 1” ½” ½” 1” 

1” ½” ½” 1” 
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The propagation characteristics as well as and the Campbell diagram are 

calculated for the tapered rotor in order to compare its dynamic behavior with that of a 

cylindrical shaft of equal mass and material properties. Figure (4.4) displays the 

propagation constants for both shafts. A comparison between the phase shift and the 

attenuation parameters of the uniform shaft (dashed line) and the tapered shaft (solid line) 

shows that the tapered profile presents an interesting stop band between  

0.9 kHz and 1.7 kHz. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Propagation Constants: tapered profile (solid) and uniform profile (dash). 

 

 

Figure (4.5) portraits the Campbell diagram for the two systems. The tapered 

profile has lower critical frequencies than the uniform shaft due to the loss of overall 

rigidity in the narrower section. On the other hand, the area between the backward and 
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forward whirl curves remains as limited as the uniform shaft, showing similar behavior 

during transition 
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Figure 4.5: Campbell Diagram of a tapered profile 

(solid line) and uniform profile (dash line). 

 

4.6.2 Periodically Stepped Shaft 

A periodically stepped aluminum shaft is taken into consideration and compared 

to a uniform shaft with the same mass. Dimensions and material properties are displayed 

in Table (4.2), while a sketch of the shafts is represented in Figure (4.6). 
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Figure 4.6: Schematic drawing of the stepped and uniform shafts. 

 

 

Table 4.2: Periodic Shaft Properties. 

Parameter Value 

Young Modulus [Pa] 71x109 

Density [Kg/m3] 2700 

Shaft Length [mm] 533.4 (21”) 

Medium Diameter [mm] 23.3 (7/8”) 

Element Diameter Ratio ¾  

Element Length Ratio ½  

Element Length [mm] 152.4 (6”) 

21” 

26” 

21” 

26” 

7/8” ¾” ½” ½” ¾” 

¾ ” ½” ½” ¾” ¾” 
1”
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The propagation constants of the periodic rotor are compared with the 

corresponding characteristics of a cylindrical shaft of equal mass and material properties, 

as displayed in Figure (4.7). A comparison between the attenuation and the phase shift 

parameters of the uniform shaft (dashed line) and the periodic shaft (solid line) shows a 

sharp stop band between 1.1kHz and 1.6kHz. A higher frequency stop band starts around 

4.8kHz. 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

m
ag

ni
tu

d
e

Propagation Coefficients

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

p
ha

se

frequency [Hz]

 

 

Figure 4.7: Propagation Constants: periodic profile (solid) and uniform profile (dash). 
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4.6.3 Optimized Geometry: Combined Effect 

The major goal of this optimization process is trying to shift the first stop band to 

lower frequencies and enlarge it as much as possible. Length mismatch between the two 

sub-elements of the periodic cell is used as an effective way to lower the frequency at 

which the stop band appears. Then, a tapered sub-element is introduced in order to 

combine the filtering effects of periodicity with that of tapered profiles. 

The length of the large section is increased in order to create a length mismatch in 

the wave-guide. The best compromise between width and amplitude of the stop band is 

found with an element length ratio of 5. Also, the cell length was slightly increased from 

6” to 8”. It has to be noticed that higher diameter ratio is more effective in stopping the 

wave propagation. Indeed, a combination of steps and tapered profiles optimizes the 

performance of the shaft. A sketch of the final periodic tapered cell is represented in 

Figure (4.8). 

 

 

0 2 4 6 8 10 12 14 16
-1.5

-1

-0.5

0

0.5

1

1.5

Length [in.]

D
ia

m
et

er
 [i

n
.]

Periodic  Element

0 2 4 6 8 10 12 14 16
-1.5

-1

-0.5

0

0.5

1

1.5

Length [in.]

D
ia

m
et

er
 [i

n
.]

Periodic  Element

 

 

Figure 4.8: Sketch of the stepped profile and the stepped-tapered profile. 
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In comparison to the periodic shaft of Figure (4.7) (where the two sub-elements 

have same length), Figure (4.9) shows the stop band of the optimized stepped profile 

(dashed line) moves about 500Hz to lower frequencies. However, after introducing a 

linearly tapered sub-element (taper ratio = 10), the same stop band has shifted 1kHz back 

in frequency and consistently grows in magnitude (solid line). Also the second stop band 

considerably shifts back in frequency and it starts now at only 2kHz instead of 5kHz. 
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Figure 4.9: Propagation Constants with length mismatch: 

stepped-tapered profile (solid) versus stepped profile (dash). 
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4.7 Experimental Results 

A series of experiments on the shafts displayed in Figures (4.3) and (4.6) are 

carried out in this chapter in order to validate the numerical predictions from the previous 

section. 

4.7.1 Tapered Shaft 

Table (4.1) and Figure (4.3) summarize the dimensions and material properties of 

the shafts used in this experiment, and the setup is shown in Figure (4.10a-b). The rotors 

consist of two axis-symmetric aluminum shafts (AISI-6061), one of which linearly 

tapered, simply supported by two ball-bearing cages. At one end, a pulley connects the 

shaft to an AC motor (½HP@3450rpm) by mean of a V-belt (ratio 2/1), while the other 

end is connected to a piezoelectric shaker (Wilcoxon Research Model D60H). The 

asynchronous AC motor is used to drive the shaft at a constant speed, and a Variac device 

allows for adjusting the rotating speed by varying the AC input voltage to the motor. 

The shaker, driven by a high-voltage power amplifier (Trek Model 50/750), exerts 

a lateral excitation (random noise / sine sweep) on the shaft through a small radial ball 

bearing. Two piezoelectric accelerometers (PCB Model 303A03) are placed on the 

bearings mounts at each end of the shaft, in order to capture the disturbance transmitted 

by the rotor. The spectrum analyzer (SRS Model SR780) is triggered to the input force 

and records the frequency response at the accelerometer locations. Two laser sensors 

(NAIS Model ANL2500A) is used to capture the lateral vibration directly on the shaft. 
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Figure 4.10a: Experimental setup. 

 

 

Figure 4.10b: Power Amplifier and Spectrum Analyzer. 
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At first, the non-rotating frequency responses of the two shafts are captured, in 

order to have a preview of the system behavior. Figure (4.11) compares the frequency 

response of the two different rotors. Some attenuation can be observed between 900Hz 

and 1.4kHz, which corresponds to the predicted stop band (Figure 4.4). 

200 400 600 800 1000 1200 1400 1600
-30

-25

-20

-15

-10

-5

0

5

10
FREQUENCY RESPONSE (non-rotating)

frequency [Hz]

A
m

p
lit

ud
e 

[d
B

]

 

Figure 4.11: Non-rotating shaft: frequency response of the tapered profile (solid) and 

uniform profile (dash). 

 

Figure (4.12) displays the frequency response of the shafts when their rotation 

speed is about 84Hz. Higher harmonics of the rotation speed are clearly evident in the 

picture, as the motor and the ball bearings are found to introduce considerable noise in 

the accelerometers readings. Nonetheless, it has to be noticed how the tapered profile 

shows a stop band between 900Hz and 1.5kHz in good agreement with predictions 

obtained in Section 4.6 (Figure 4.4). 
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Figure 4.12: Rotating shaft: Frequency response of the tapered profile (solid)  

and uniform profile (dash). 

 

4.7.2 Periodically Stepped Shaft 

Figure (4.6) and Table (4.2) summarize dimensions and material properties of the 

shafts used in the experiments. A photograph of the setup is shown in Figure (4.13). The 

rotors consist of two axisymmetric aluminum shafts (AISI-6061), one of which is stepped 

and is simply-supported by two ball-bearing. At one end, an asynchronous AC motor 

drives the shaft at a constant speed by mean of pulleys and V-belt, while the other end is 

connected to an electromagnetic shaker (Wilcoxon Research Model F4). A Variac is used 

for adjusting the rotating speed of the motor. 

STOP BAND 
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The shaker, driven by a power amplifier (Wilcoxon Research Model PA7C), 

exerts a lateral excitation on the shaft through a small radial ball bearing. A piezoelectric 

accelerometer (PCB Model 303A03) is placed on the bearing support at each end of the 

shaft, in order to capture the transmitted disturbance along the rotor. The spectrum 

analyzer (SRS Model SR780) of Figure (4.10b) is triggered to the input force and records 

the frequency response at the accelerometer locations. 

 

 

 

 

 

Figure 4.13: Experimental setup for the stepped and uniform shaft. 

 

 

At first, the non-rotating frequency responses of the two shafts are captured, in 

order to have a preview of the system behavior. Figure (4.14) shows a stop band is 
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present between 1kHz and 1.8kHz and a second stop band starts at about 4.8kHz. This 

result is in good agreement with the theoretical propagation constants obtained in Section 

4.6.2 and reported in Figure (4.7). 
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Figure 4.14: Non-rotating shaft: Frequency response of the periodic profile (solid) and 

uniform profile (dash). 

 

 

Once again, when the shaft is set into rotation at constant speed of 83 Hz, 

considerable noise is introduced in the frequency response as can be seen in  

Figure (4.15). However, the comparison between the response of the uniform shaft (dash) 
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and the stepped shaft (solid) still shows good attenuation in the same regions (1kHz-

1.8kHz and after 4.8kHz), as predicted by Figure (4.7). 
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Figure 4.15: Rotating shaft: Frequency response of the periodic profile (solid) and uniform 

profile (dash). 
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4.8 Alternative Optimization: Effect of Viscoelastic Inserts 

In Section 4.6.3 it is noticed that, shifting the stop bands to lower frequencies, 

comes at the expense of localizing the stresses due to the abrupt change in geometry and 

of using rather extreme taper ratios. 

In this section, viscoelastic material is used as an additional way to increase the 

broadband filtering capabilities of the periodic structures and improve the structural 

integrity of the smaller sections. The thinner elements of the stepped periodic shaft in 

Figure (4.6) are coated with a layer of commercial Neoprene rubber 1/8 inch thick. The 

properties of the viscoelastic coating are listed in Table (4.3): 

 

Table 4.3: Neoprene Properties. 

Parameter Value 

Young Modulus [Pa] 3.6x109 

Density [Kg/m3] 1150 

Width [mm] 76.2 (3”) 

Thickness [mm] 3.18 (1/8”) 

 

 

The theoretical propagation characteristics and the experimental frequency 

response of the coated shaft are compared to the performance of the stepped periodic 

shaft and the uniform shaft tested in Section 4.6.2. 

First, the preliminary data is collected from the non-rotating case. Each of the 

three shafts are suspended in a free-free boundary condition, as shown in Figure (4.16). 
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The shafts are then excited at one end by a piezoelectric shaker (Wilcoxon Research 

Model D60H) driven by the high voltage power amplifier (Trek Model 50/750) of  

Figure (4.10b). An accelerometer (PCB Model 303A03) is placed at each side of the 

shaft. The responses to sine sweep and random noise excitations are measured and the 

transfer function is computed by the spectrum analyzer (SRS Model SR780). 

 

 

 

 

 

 

Figure 4.16: Experimental setup of the shaft with free-free boundary conditions. 

 

 

Figure (4.17) presents the predicted propagation characteristics and the 

experimental frequency responses for the three different shafts: dashed lines are used to 

indicate the uniform shaft, thin solid lines for the stepped shaft, and thick solid lines for 

the rubber-coated shaft. 
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Figure 4.17: Broadband frequency response and propagation characteristics of the  

non-rotating uniform shaft (dash), stepped periodic shaft (thin solid)  

and rubber-coated shaft (thick solid). 
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The stepped shaft shows three main stop-bands around 1.1-1.5kHz, 4.8-6.5kHz 

and 20-23kHz and a smaller one at 12-13kHz. Note that the two lower stop-bands have 

already been measured in Sections 4.6, as shown in Figure (4.7). 

The coated shaft adds to these four stop bands a broadband effect due to the 

internal viscous dissipation that extends over the entire frequency range. This effect is 

responsible of rounding all the peaks corresponding to the natural frequencies of the 

shaft. 

Figure (4.17) presents also the means to verify the numerical predictions against 

the experimental results. Very good agreement is evident between theory and experiment 

even at high frequencies (above 9-10kHz) where the Euler-Bernoulli beam element used 

in the numerical model becomes a rough approximation of the physical phenomenon. 

 

Another series of experiments are carried out with the shaft rotating at constant 

speed. Figure (4.18) displays the experimental setup. An adequate source of vibration is 

provided by an epicyclic gearbox (ratio ½) driven by an asynchronous AC motor 

(½HP@2450rpm). The output of the gearbox is secured to one end of the shaft with a 

rigid connecting sleeve, while a bearing supports the other end of the shaft. Because this 

bearing provides a severe source of disturbance, a more sophisticated data sampling and 

analysis is needed in order to clearly identify the filtering capabilities of the three 

different rotors without introducing any other source of noise. 
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Figure 4.18: The rubber-coated rotor and the experimental setup for the rotating case. 

 

 

A laser vibrometer (Polytech Vibrascan PSV200) is utilized to scan a mesh of 

about 200 points evenly distributed along the entire length of the shaft. A color-map 

displays a live picture of the displacements intensity on the scanned surface The yellow 

color identifies the highest vibration intensity while quiet areas are in purple and blue. 

Figure(4.19) gives the color-map distribution of the vibration of the three shafts. It 

is evident that the darker zones (low vibration zones) get wider as we move from the 

uniform profile to the periodic rotor, to the rubber-coated shaft. 

 

 

Ball bearing Coated stepped shaft Motor and gearbox 
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Figure 4.19: Rotating shaft: Frequency response of the periodic profile (solid) and uniform 

profile (dash). 

 

 

The vibrometer also gives the average power spectrum of vibration of the scanned 

mesh of points. Figure (4.20) compares the power spectrum of each shaft with the 

numerical propagation characteristics with emphasis on the first stop-band. In 

comparison to the uniform shaft (dashed lines), a broadband attenuation is clearly visible 

for the rubber-coated shaft (thick solid line). A localized attenuation is difficult to 

identify in this picture. 
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Figure 4.20: Attenuation factor and Average Power Spectrum of the rotating uniform shaft 

(dash), stepped periodic shaft (thin solid) and rubber-coated shaft (thick solid). 

 

 

A sharper picture of the actual filtering characterietics of the two periodic profiles 

can be obtained by applying the Wavelet Transform [Appendix (A1)] to the power 

spectrum of Figure (4.20). 

 

In the following Figures ((4.21)-(4.22)-(4.23)) red corresponds to the maximum 

intensity and blue to the lowest. 
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Figure 4.21: Wavelet Transform of the power density for the uniform shaft. 

 

 

Figure 4.22: Wavelet Transform of the power density for the stepped shaft. 
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Figure 4.23: Wavelet Transform of the power density for the coated shaft. 

 

Figure (4.21) shows the characteristics of the uniform shaft. The peak at 1kHz is 

continuously linked to the high frequency region, showing that the energy is evenly 

distributed along the whole bandwidth. 

Figure (4.22) displays the energy distribution of the stepped rotor. It is clear that 

there is a gap between the higher frequencies and the lowest peak. The energy has 

redistributed itself away from the stop-band but the overall intensity of vibration is not 

significantly reduced (red spot) 

Figure (4.23) presents the wavelet for the rubber-coated periodic shaft. The 

energy redistribution is even more evident than for the stepped rotor. First of all, the peak 

at 1kHz is completely separated from the higher energy spectrum, showing the predicted 
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local stop-band (Figure 4.20). Then, the absence of red spots exhibits the broadband 

energy dissipation characteristics typical of the viscoelastic material. 

 

4.9 Conclusions 

A simple case was practically investigated, where the rotor consists of a shaft with 

mass unbalance simply-supported by rigid bearings. The influence of tapered and 

periodic shapes was investigated to demonstrate their ability reduce vibration at certain 

frequency ranges (stop-bands). By combining tapered profiles and/or uniform elements 

and carefully tuning the element length and diameter ratio, the width and spectral location 

of the stop-bands of a specific rotor can be conveniently altered according to the 

application. 

Experiments were conducted in order to validate the numerical predictions. These 

experiments confirmed the filtering characteristics of tapered and stepped periodic rotors 

with respect to cylindrical shafts. 

The most important conclusion is that introducing rotation at constant speed does 

not appreciably affect the wave propagation characteristics of the rotor. 

For the case of the tapered shaft, the Campbell diagram was compared to a 

uniform profile and no consistent changes were noticeable in the dynamic behavior 

except for a slight decrease of the critical speeds in the case of the tapered rotor. 

Finally, the addition of viscoelastic materials to the periodic profiles was proved 

to be effective in adding a broadband attenuation to the already present local stop bands. 
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CHAPTER 5: ACTIVE CONTROL OF PERIODIC SHAFTS 

5.1 Introduction 

The previous chapter investigated the effectiveness of variable geometries on the 

wave propagation characteristics of rotating shafts. It was determined that periodically 

stepped shafts and tapered shaft transmit waves only in certain frequency bands (called 

pass bands) and impede the transmission over other frequency bands (stop bands). 

This chapter introduces some active control capabilities to the passive periodic 

structure in order to enhance the tuning of the spectral width and location of the pass and 

stop bands. 

Active control also allows for intentionally introducing the idea of “aperiodicity” 

in the periodic structure, in terms of the well-known phenomenon of localization [8, 31]. 

Emphasis is placed on investigating the effect of adding an active constant force 

on the shaft on the propagation characteristics and the Campbell diagrams. 

Furthermore, a feedback active control is implemented to illustrate a broadband 

localization effect. 

 

In this chapter, an introduction to the possible benefit of actively controlling a 

rotating periodic shaft has been given in Section 5.1. Section 5.2 addresses the 

modifications necessary to account for the active control into the mathematical model 
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that was already discussed in detail in Chapter 4, and describes the properties of the 

piezo-actuators used in this dissertation. 

Section 5.5 compares the theoretical and experimental results obtained in Sections 

5.3 and 5.4. It also validates the mathematical model for the controller. The drawn 

conclusions are summarized in Section 5.6. 

 

5.2 Characteristics of periodic shafts with piezoelectric actuators 

The periodic shaft considered in this chapter is an assembly of four aluminum 

rods (6 in. long, ¾ in diameter) connected together by three piezoelectric-actuator disks 

(0.4 in long, 2 in. diameter). A schematic drawing of the system is shown in Figure (5.1). 

The piezoelectric disks are included to provide a longitudinal force that is tuned by an 

electronic controller. 

 

 

 

 

 

 

 

 

Figure 5.1: Schematic drawing of the active shaft assembly. 
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The numerical model of the system is derived from equations (4.19). Here, the 

generic longitudinal force F0, appearing in equation (4.19), is substituted by the actuator 

force Fp, which directly depends on the applied control voltage Vp. 

When the control voltage Vp is generated according to a simple displacement 

and/or velocity control law 

 

 ( )  -  p prop deriv LV k k s w= +  (5.1) 

 

the formula for the actuator force becomes: 

 

   -  p g LF K w=  (5.2) 

 

where   ( )g prop derivK k k s= +    is the control gain and wL is the transverse displacement. 

5.2.1 Characteristics of the piezoelectric actuators 

In the present study, piezoelectric actuators (PCB Piezotronics, Model 712A02) 

are used. These inertial actuators (Figure (5.2)) provide high efficiency and force output 

over the middle- to high-frequency audio range. When compared to competing 

technologies, they are exceptionally efficient in generating dynamic force at frequencies 

above 150 Hz. When used as part of a closed-loop control system, the actuator provides 

high-authority canceling force to suppress vibration. Constructed with an all-welded 

titanium housings and hermetic connectors, they are exceptionally lightweight and they 
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particularly fit applications such as aircraft, helicopters, marine hulls and isolation 

mounts. 

 

 

Figure 5.2: Piezoelectric actuator PCB Piezotronics Model 712A02. 

 

 

Table (5.1) lists the main geometrical and performance parameters of the 

actuators. 

 

Table 5.1: Piezo-actuator PCB 712A02 data sheet. 

Frequency Range, Hz  150 to 5000 Dynamic 
Performance Broadband Force (min), lb/volt  0.004 

Clamped Force, lb/volt  0.015 Static  
Performance Free Displacement, µ in/volt  2.56 
Environmental Temperature, oF  -10 to +150 

Capacitance nF  65 
Resistance ohm (min)  1 x 107 

DC Excitation -125 to 500  
AC Excitation (off resonance) ± 100 

Electrical 

Input Voltage (max), Vpk 

AC Excitation (on resonance) ±  80 
Weight, oz  1.27 

Height 0.4 Size, in  
Diameter 2.0 

Electrical connector  BNC Plug 
Mounting Thread  10-32 Male 
Housing Material  Titanium 

Mechanical 

Sealing Type  Welded Hermetic 
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Also, Figure (5.3) shows the frequency response characteristics of the actuator 

authority between 150-5000 Hz with a sensitivity of 0.015 lb/volt and a peak excitation 

voltage of 100 volts. 

 

 

Figure 5.3: Actuator output force characteristics. 

 

 

5.3 Numerical results 

In this section, the propagation characteristics of the periodic shaft are first 

compared to the ones of the uniform shaft. Then, one piezo-actuator at a time is activated 

and finally all piezoelectric actuators are excited with constant voltage. Finally, active 

feedback is implemented on the piezo-actuator at the source location and the 

characteristics are discussed. 

Figure (5.4) compares the frequency response and the Campbell diagrams of the 

shaft with the three periodic piezoelectric inserts (thick lines) to an equivalent uniform 
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aluminum shaft (thin lines). The figure demonstrates once again that material and 

geometry mismatch introduce effective localized energy redistribution in the structure, 

which does not allow transmission over certain frequency bands. A stop-band between 

800Hz and 1500Hz is visible in the frequency response as well as in the Campbell 

diagrams of the periodic shaft (thick lines). Also, other redistribution can be seen around 

3kHz and above 4.5kHz. 
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Figure 5.4: Frequency response and Campbell diagram for a uniform shaft (thin) and the 

passive periodic shaft (thick). 
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It can be summarized at this point that the critical speeds of rotating periodic 

shafts move away from the stop-bands and concentrate in the pass-band regions. 

 

Activating the piezoelectric disks can enhance this interesting behavior because 

we can stretch and more carefully locate the stop-bands in the frequency spectrum. The 

effect of applying constant forces to the piezo-actuator is first evaluated, as it does not 

require the use of any sensors on the shaft. Compression and tension stresses are both 

taken into consideration, as they end up giving different energy redistribution patterns. 

 

Figure (5.5) shows the periodic shaft where only the first piezo-actuator (near the 

input disturbance location) is activated. Thick lines correspond to the case where the 

piezo-actuator is subjected to positive voltage and tends to expand, while thin lines 

denoting the case of a shrinking piezo-actuator. The stop band at 1kHz now extends to 

2kHz, while the redistribution effect around 3kHz is improved only when applying 

negative voltage to the piezo-actuator. 

Activating the piezo-actuator at midspan further increases the width of the stop-

band at 1kHz. Figure (5.6) shows that compressing the piezo-actuator (thin line) enlarges 

this stop-band from 800Hz to 2600Hz. A secondary stop-band appears now from 3000Hz 

to 4200Hz and also between 200Hz and 600Hz.  

Figure (5.7) shows the corresponding characteristics when the piezo-actuator at 

the output location is activated. In this case, the behavior is similar to the characteristics 

of Figure (5.5) when the input piezo-actuator was active. We can still see a large stop-

band between 1-2kHz and some redistribution effect around 3000Hz. 
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Figure 5.5: Frequency response and Campbell diagram for the active periodic shaft: 

compressive load (thin), tensile load (thick) at input location. 
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Figure 5.6: Frequency response and Campbell diagram for the active periodic shaft: 

compressive load (thin), tensile load (thick) at midspan location. 
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Figure 5.7: Frequency response and Campbell diagram for the active periodic shaft: 

compressive load (thin), tensile load (thick) at output location. 

 

Figure (5.8) shows the case of a periodic active shaft, when all three piezo-

actuator are activated. In this case, the advantage of applying a negative voltage is very 
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clear: the characteristics of the shaft with shrinking piezo-actuators show a broadband 

stop-band from 800Hz to 4300Hz. In this region, no critical speeds appear in the 

Campbell diagram either. When applying a tensile load on the piezo-actuators we can still 

obtain a wide stop-band between 800 and 2600Hz, but in this case no other secondary 

stop-bands can be observed. 
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Figure 5.8: Frequency response and Campbell diagram for the active periodic shaft: 

compressive load (thin), tensile load (thick) at all locations. 
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We can therefore conclude that applying tensile stresses along the periodic shaft 

significantly improves the filtering capabilities of the system. The most benefit can be 

gained when a negative constant voltage actively excites all the actuators. 

 

Another powerful tool that can drastically enhance the vibration confinement of 

the structure is using an electronic active feedback controller. This technique needs a 

sensor to be placed on the shaft, which reads the local transmitted disturbance and it feeds 

it back to the controller. Interfering waves can then be introduced in the structure through 

the piezo-actuator actuators. This configuration introduces a broadband attenuation effect 

along the whole frequency spectrum, which makes it very interesting. 

The propagation characteristics of the active shaft of Figure (5.9) present a 

broadband stop-band in addition to the local stop-bands that we can see also in the 

passive periodic shaft of Figure (5.10). 
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Figure 5.9: Propagation coefficients for the active periodic shaft. 
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Figure 5.10: Propagation coefficients for the passive periodic shaft. 

 

5.4 Experimental results 

The practical inspiration of this set of experiments is to test the transmission of 

gearbox-motor induced vibrations to the tail rotor of a helicopter through different types 

of rotating shafts in order to evaluate the filtering capabilities of the periodic shaft with 

active feedback control. 

 

The setup of the experiment is displayed in Figure (5.11a-b). The output of the 

epicyclic gearbox (Toledo Gearmotor Co. Model M164-A, ratio ½), driven by an 

asynchronous AC motor (GE Industrial Systems Model D285, ½HP@2450rpm). The 

motor is directly linked to one end of the shaft with a rigid connecting sleeve, while a 

slip-ring (Airflyte Electronics Model CAY125-10-1, 4 channels) is located at the opposite 

side of the shaft and carefully aligned to the axis of the motor. A Variac device (Dayton 
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SCR) allows for adjusting the rotating speed by varying the AC input voltage to the 

motor. 

 

 

 

Figure 5.11a: Experiment setup. 

 

 

Figure 5.11b: Spectrum analyzer and active controller. 
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An accelerometer (PCB Model 303A03) is placed at the end of the shaft. Its 

signal flows through the slip ring to the signal conditioner (PCB Model 480E09) and it is 

read by the frequency analyzer (SRS Model SR780). The control unit consists of a phase 

shifter pre-amplifier (PCB Model 780A01) and a high voltage power amplifier (PCB 

Model 790A06). 

 

Experiments at different rotating speeds are carried out in order to evaluate the 

effectiveness of the controller over various excitation intensities. 

Figure (5.12) shows the experimental frequency response transmitted to the end 

tip of the shaft in the case when all the actuators are open circuit. Three different rotating 

speeds are represented in the graph: 

• minimum speed: 15% voltage (thick solid line) 

• medium speed: 60% voltage (dashed line) 

• maximum speed: 100% voltage (thin solid line) 

Higher rotating speeds involve a stronger vibration transmission along the 

structure. However, even under such conditions, it is still easy to identify the spectral 

regions where the disturbance is free to propagate and the frequency bands where 

attenuation occurs. By comparing the experimental frequency response to the theoretical 

propagation constants one can spot two main stop-bands at 800-1400Hz and 4.5-5.3kHz 

and some more attenuation around 500Hz and between 3.4-3.9kHz. 
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[              = low speed,              = medium speed,             = high speed] 

 

Figure 5.12: Experimental frequency response and propagation coefficients of the passive 

periodic shaft 

 

Figure (5.13) displays the frequency response of the periodic shaft when the 

piezo-actuator near the gearbox-motor is actively controlled by a proportional feedback. 

It is clear at this point that the controller is capable of consistently reducing the 

disturbance without being influenced by the rotating speed. By comparing Figure (5.13) 

to Figure (5.12), one can see that the active shaft rotating at the maximum speed 

transmits vibration amplitudes similar to those transmitted by the passive shaft when 
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rotating at the lower possible speed. This accounts for an average broadband reduction of 

about 15-20 dB. 

A broadband attenuation along the whole spectrum of frequencies is evident 

especially at low rotations. Now the major local stop-bands are effective between 800-

1800Hz and between 2.5-5.5kHz. But, because of the nature of the actuators (see Section 

5.2.1) it was not possible to obtain good performance below 200Hz. 
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Figure 5.13: Experimental frequency response and propagation coefficients of the active 

periodic shaft. 
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More experiments are carried out activating also the piezo-actuator at the midspan 

and at the end tip of the shaft for different rotation speeds. For all these different cases, 

the transfer functions of the control gain and phase shift are recorded in order to be able 

to compare the experimental results with the mathematical model. 

Figures (5.14) through (5.16) show the controller transfer function for the three 

different piezo-actuator positions at all different rotation speeds. 
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Figure 5.14: Control gain for the active shaft: piezo-actuator at input position. 
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Figure 5.15: Control gain for the active shaft: piezo-actuator at midspan position. 
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Figure 5.16: Control gain for the active shaft: piezo-actuator at output position. 
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As it turns out, the optimal gain and phase adjustments are the same for all 

rotations, so only one curve for each actuator appears in each of the graphs above. 

In our case, Figure (5.16), which pictures the output piezo-actuator gain values, is 

the collocated actuator-sensor system configuration, because the accelerometer is placed 

right next to it (Figure (5.11a)), but, as we already pointed out in the previous section, 

there is not much difference in controlling this piezo-actuator or the piezo-actuator at the 

input side of the shaft. The attenuation levels in all cases are comparable and they all 

extend from 50 to 90 dB. 

 

5.5 Comparisons between theory and experiments 
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Figure 5.17: Experimental frequency response for the passive shaft (thin) 

and active shaft (thick): piezo-actuator at input position. 
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Figure (5.17) compares the effect of the feedback control on the experimental 

frequency response of the periodic shaft. The implemented proportional active control is 

very effective in attenuating the peaks of resonance and it also tends to enlarge the effect 

of the stop-bands: the propagation bands are now restricted to the region between  

500-800Hz and at 1800-2700Hz. These results agree also with the theoretical frequency 

response obtained by substituting the experimental control gain into the FEM model. 

Figure (5.18), which uses the control law of Figure (5.14), verifies how the controller 

reduces the pass-bands to the region around 500Hz and in the region between 1.7-2.4kHz 

in the case when the piezo-actuator at the input position is activated. 
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Figure 5.18: Theoretical frequency response for the passive shaft (thin) 

and active shaft (thick) piezo-actuator at input position. 
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By substituting the control gain for the other piezo-actuator, one can also test the 

effectiveness of the remaining actuators on the frequency response. 

Figure (5.19) shows that the actuator at midspan only gives a slightly better 

performance at the lower frequencies below 500Hz, while everything else looks very 

similar to the previous case. The gain law for this actuator was reported in Figure (5.15). 
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Figure 5.19: Theoretical frequency response for the passive shaft (thin) 

and active shaft (thick): piezo-actuator at midspan position. 
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Finally, Figure (5.20) excites the actuator next to the slip ring. This configuration 

brings the same attenuation pattern as the response of the piezo-actuator at the source 

location (Figure (5.18)).  
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Figure 5.20: Theoretical frequency response for the passive shaft (thin) 

and active shaft (thick): piezo-actuator at output position. 
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5.6 Conclusions 

In this chapter the performance of a periodic rotating shaft with three actively 

controlled piezoelectric disks was analyzed. The propagation characteristics, the 

frequency response and the Campbell diagrams were compared and evaluated. Constant 

voltage was first applied to the actuators: a tensile load on the shaft appears to be the 

preferable solution in order to modify the location and width of the stop-bands. The most 

effective configuration turned out to be when all three piezo-actuator are subjected to 

negative voltage. 

A further enhancement of these results was obtained by applying active feedback 

control on one of the actuators. No appreciable difference was observed when controlling 

a collocated system (piezo-actuator at output location) or a non-collocated system (piezo-

actuator at input location). It is noticeable that the feedback control only on the input 

piezo-actuator (Figure (5.18)) gives very similar results in term of energy redistribution 

as controlling all three piezo-actuator with constant negative voltage (Figure (5.8)), 

therefore it is understood to be the most cost effective solution for our purposes. 
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CHAPTER 6: SUMMARY AND RECOMMENDATIONS 

6.1 Summary 

In this work, we developed a theoretical method was developed based on the 

“Transfer Matrix” Formulation and the Wavelet Transforms that effectively investigates 

the influence of periodicity, variable geometry and graded material properties on the 

wave propagation characteristics of rods, shells and rotating shafts. Several experiments 

were carried out in order to verify the numerical predictions, and the Wavelet Transform 

proved to be a very powerful tool to uniquely identifying and compare the energy spectral 

distribution in the time-frequency domain. 

 

It can be summarized here that, in the case of longitudinal wave-guides, tapered 

profiles introduce a cutoff frequency below which no disturbance can travel in the 

structure, and the main parameter that affects the spectral location of this cutoff 

frequency is the ratio between the cross sections at the end of the element. Rods with 

tapered profile shift the energy spectrum to a higher frequency range and hence behave as 

a simple high-pass mechanical filter. 

 

Thin shells can be modeled as two-dimensional wave-guides, where the 

propagation of the longitudinal waves can interfere with the flexural (radial) waves. A 

much richer scenario comes out as a result of this. Variations of the wall thickness, 
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medium radius and element length of the shell can effectively filter out undesirable bands 

of frequencies from the longitudinal and/or the transverse wave patterns. Still, the 

principal parameter that influences the width of the stop bands is the ratio between the 

cross sections at the two ends of the shell element. 

It was also observed that there are no significant improvements in the propagation 

characteristics when more exponential profiles were implemented instead of simple linear 

polynomials. 

Very similar results were obtained with functionally graded materials, and it is 

easier to obtain much higher ratios. Finally, by combining the two effects one can obtain 

the flexibility needed for some very demanding applications. 

Different types of periodic taper configurations proved to have complementary 

effects on the wave characteristics. Combinations of these complex geometries (bi-

periodic tapered cells) produce the most effective energy redistribution. 

 

For the case of simple rotors (axisymmetric shaft with mass unbalance and rigid 

bearings), tapered and periodic profiles were tested in their ability to redistribute the 

energy away from specific frequency ranges (stop-bands). The most important 

observation is that introducing rotation at constant speed does not appreciably affect the 

wave propagation characteristics of the rotor. We also demonstrated that by carefully 

tuning the element length and diameter ratio of periodic elements one has the possibility 

to conveniently shape and locate the stop-bands of a specific rotor. 

The Campbell diagrams of tapered and periodic shafts showed that the 

propagation characteristics of the static rotor extend to the case when the shaft is rotating 
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at constant speed: the critical speeds move away from the stop-bands and concentrate 

around the regions of frequencies that allow transmission (pass-bands). 

Also, the addition of viscoelastic materials to periodic profiles has proved to have 

a great potential in adding broadband attenuation to the already present local stop bands. 

Finally, we established that the application of active constant forces on the shaft 

enlarges the regions of interference especially when the shaft is subjected to tensile 

forces. Active feedback control of one actuator introduces significant broadband 

attenuation that adds up to the local stop-bands and most effectively proved to trap the 

vibrational energy at the source location (localization effect). 

6.2 Recommendations 

Two areas of improvement of the results accomplished can certainly be identified: 

a more detailed investigation of viscoelastic inserts in combination with active control 

would further improve the broadband attenuation of vibrations, and also the 

implementation of FGM needs to be fully investigated because they would require no 

external source of power. 

 



 

132 

APPENDIX A1: The Wavelet Transform 

The Wavelet Transform (WT) of a signal x(t) is an example of a time-scale 

decomposition obtained by dilating and translating along the time axis a chosen analyzing 

function (wavelet) [9]. The integral or continuous WT relative to some basic wavelet 

)t( ψ  is defined as: 

 

 ( ) dt)
a

bt()t(x
a

1b,aW *∫
+∞

∞−

−⋅= ψψ  (A.1) 

 

where b is a translation parameter used for positioning the function )t( ψ  over the time 

domain, and a>0 is a scaling parameter dilating or contracting the function )t( ψ . The 

WT provides a flexible time-frequency window, which automatically narrows when 

observing high frequency phenomena and widens when studying low frequency 

components [9]. The wavelet function used in this work is the Morlet wavelet, defined in 

the time domain as: 

 

 twj2

2t

ee)t( ⋅⋅−
⋅= ωψ  (A.2) 

 

The Morlet wavelet is a sinusoidal function, oscillating at the frequency wω , 

modulated by a gaussian envelope of unit variance. Being composed of a modulated 

sinusoidal function, the Morlet wavelet is well suited for reproducing and analyzing 

signals in many applications and particularly in this work. 
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As signal decomposition, the WT cannot be directly compared to a time-frequency 

representation. However, it can be shown that b represents a time parameter and that the 

dilation parameter a is strictly related to frequency [37 and 43]. In the frequency domain, 

the Morlet wavelet becomes: 

 

 
2)w(

2
1

e2)(
ωω

πωΨ
−⋅−

⋅⋅=  (A.3) 

 

Equation (A.3) shows that the frequency domain formulation of the Morlet wavelet 

is a gaussian function centered at wωω = . Its dilated version is expressed as: 

 

 
2)wa(

2
1

e2)a(
ωω

πωΨ
−⋅⋅−

⋅⋅=⋅  (A.4) 

 

whose maximum is located at wa ωω =⋅ . Since wω =1.875π is a fixed parameter 

defining the wavelet function [37], the center of the gaussian curve and therefore the 

frequency of the analysis can be located by changing the dilation parameter as follows: 

 

 
a
wωω =  (A.5) 

 

The scale parameter can be hence considered as the inverse of a frequency 

parameter and thus the WT can be classified as a time-frequency transform. 

An alternative formulation of the continuous WT can be obtained transforming both 

the signal x(t) and the wavelet function ( )tψ  in the frequency domain: 

 

 ( ) ( ) ( ) ωωΨω ω deaXab,aW bj*
g ∫

+∞

∞−

⋅⋅ ⋅⋅⋅⋅⋅=  (A.6) 
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being X(ω) and ( ) bj* 0ea ⋅⋅⋅ ωωΨ  the Fourier transforms of x(t) and 





 −

a
bt*ψ  

respectively. 

This formulation of the WT can be expressed in a discrete form as: 

 

 ( ) ( ) ( ) bnf2j
n

*

n
n

nefamfXamn,mW ∆π∆Ψ∆ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ∑  (A.7) 

 

where fn is the discrete frequency and ∆a and ∆b are discrete increments of dilation and 

translation parameters. Equation (A.7) allows an easy implementation of the WT. The 

frequency domain formulation of the WT is particularly convenient when the signal to be 

analyzed is expressed in the frequency domain. 
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