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This paper develops an estimation methodology for network data generated from
a system of simultaneous equations, which allows for network interdependencies
via spatial lags in the endogenous and exogenous variables, as well as in the
disturbances. By allowing for higher-order spatial lags, our specification provides
important flexibility in modeling network interactions. The estimation methodology
builds, among others, on the two-step generalized method of moments estimation
approach introduced in Kelejian and Prucha (1998, Journal of Real Estate Finance
and Economics 17, 99–121; 1999, International Economic Review 40, 509–533;
2004, Journal of Econometrics 118, 27–50). The paper considers limited and full
information estimators, and one- and two-step estimators, and establishes their
asymptotic properties. In contrast to some of the earlier two-step estimation liter-
ature, our asymptotic results facilitate joint tests for the absence of all forms of
network spillovers.

1. INTRODUCTION

In this paper, we develop a generalized estimation theory for simultaneous equation
systems for cross-sectional data with possible network interactions in the depen-
dent variables, the exogenous variables and the disturbances. A leading application
will be spatial networks. However, since network interdependencies are modeled
only to relate to a measure of proximity, without assuming that observations are
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indexed by location, the developed methodology can be of interest to the estimation
of a much wider class of networks, including social networks.

There is substantial empirical evidence of cross-sectional interdependence
among observations in many areas of economics both at the macro level, where
cross-sectional units may, e.g., be countries, states, or counties, as well as at
the micro level where cross sectional units may, e.g., be industries, firms, or
individuals.1

An important class of models for spatial networks originates from the seminal
work by Whittle (1954) and Cliff and Ord (1973, 1981). In those models, cross-
sectional interactions are modeled through spatial lags, where the weights used
in forming the spatial lags are reflective of the relative importance of the links
between neighbors for the generation of spillovers. In a spatial setting, the relative
importance would typically be taken to be inversely related to a measure of
distance. The usefulness of those models for the analysis of a wide class of
networks beyond spatial networks stems from the recognition that the notion of
distance is not confined to geographic distance.2

Spatial econometrics has a long history in geography, regional science, and
urban economics; see, e.g., Anselin (1988). For the last two decades, the devel-
opment of econometric methods of inference for Cliff–Ord type models has also
been an active area of research in economics.3 Most of the literature focused on
single-equation models where a single dependent variable, say, yi, is determined
for units i = 1, . . . ,n. However, in economics, it is frequent that the outcomes for
several dependent variables, say, yi1, . . . ,yiG, are determined jointly by a system
of equations for units i = 1, . . . ,n. In this case, the simultaneous nature of the
outcomes can stem from two sources, interactions between different economic
variables as well as interactions between cross-sectional units.

Surprisingly, the literature on the estimation of simultaneous systems of spa-
tially interrelated cross-sectional equations has been quite limited until recently.
Kelejian and Prucha (2004) provide, by extending the methodology developed in
Kelejian and Prucha (1998, 1999) for single equations, an early development of
generalized method of moments (GMM) estimators for such models. However, as

1For instance, Conley and Ligon (2002) or Ertur and Koch (2007) document spatial spillovers in economic growth.
Holtz-Eakin (1994) or Audretsch and Feldmann (1996) put forward evidence for spatial spillovers in productivity.
Egger, Pfaffermayr, and Winner (2005) provide evidence for spatial interdependencies of value added tax rates,
and Devereux, Lockwood, and Redoano (2008) for spatial corporate tax rates. Case, Hines Jr., and Rosen (1993)
report on spatial budget spillovers. The results in Behrens, Koch, and Ertur (2012) suggest that bilateral trade flows
exhibit spatial interdependence, and Baltagi, Egger, and Pfaffermayr (2007), Baltagi, Egger, and Pfaffermayr, 2008
and Blonigen et al. (2007) illustrate that the same holds true for bilateral foreign direct investment.

Pinkse, Slade, and Brett (2002) provide evidence for spatial price competition among wholesale-gasoline
terminals. For contributions to the literature on social interactions see, e.g., Ballester, Calvó-Armengol, and Zenou
(2006); Lee (2007); Calvó-Armengol, Patacchini, and Zenou (2009); Blume et al. (2011); Cohen-Cole, Liu, and
Zenou (2018) and Liu (2014).
2As stated, we think Cliff–Ord type models provide important tools for analyzing networks. However, we also want
to point out an important literature in statistics where spatial dependence is molded via random Markov fields and
conditional autoregressive models; see, e.g., Cressie (1993).
3See, e.g., Anselin (2010) for a review of the development of spatial econometric methods.
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discussed in more detail below, they do not provide a full asymptotic theory for all
considered estimators and their setup only covers first-order spatial lags. Liu (2014,
2019, 2020); Cohen-Cole, Liu, and Zenou (2018), and Liu and Saraiva (2019) build
and extend the methodology of Kelejian and Prucha (2004) within the context
of social interaction models with first-order spatial lags, and cross-sectionally
independent disturbances. Their contributions include one-step GMM estimation
methods that utilize both linear and quadratic moment conditions, identification
conditions, bias correction procedures for many instruments, heteroskedasticity,
and an estimation methodology for a simultaneous system of equations with binary
outcomes generated from an incomplete information network game. Other recent
contributions to the literature on spatial simultaneous equation models are Baltagi
and Deng (2015), who consider an extension of a two-equation system with
first-order spatial lags to panels. Wang, Li, and Wang (2014) analyze the quasi
maximum likelihood estimator for such a system in the cross section. Yang and
Lee (2017) consider identification and quasi maximum likelihood estimation for
a multiequation system with a first-order spatial lag in the dependent variable.
Yang and Lee (2019) provide an extension to dynamic panel data models allowing
for multiple weights matrices. In contrast to the current paper, the above-cited
literature only considers first-order spatial lags in the dependent variable, and
does not also consider spatial spillovers in the disturbance process. Those papers
also differ in terms of the considered estimation methodology. In particular, a
methodological focus of this paper is on two-step estimation, while also covering
one-step estimation.

Within the context of Cliff–Ord type models, two-step procedures are generally
less efficient than one-step procedures. However, they are attractive, especially for
situations where the instruments are strong and the efficiency loss is small, because
of their relative computational simplicity. An important limitation of the two-step
estimation methodology developed in Kelejian and Prucha (2004) is that the paper
only establishes the consistency of the estimator for the spatial autoregressive
parameter in the disturbance process, but not its asymptotic normality. As a result,
the methodology does not facilitate a joint test for the absence of spatial inter-
actions in the dependent variables, the exogenous variables and the disturbances.
Closely related to this is that Kelejian and Prucha (2004) do not consider efficiently
weighted GMM estimators for the spatial autoregressive parameters, since that
paper lacked the knowledge of the limiting distribution for those estimators.

Another important limitation of the earlier paper is that it only allowed for
first-order spatial lags. Allowing for higher-order spatial lags is important for at
least two reasons. First, the researcher may not be sure about the channel through
which interactions occur—e.g., although geographic proximity, or technological
proximity, or both. By allowing for higher-order spatial lags the researcher can
consult the data on this issue. Second, as argued below, higher-order spatial lags
can be used to partially relax the requirement regarding a priori knowledge of what
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weights should be assigned to different units in the construction of a spatial lag.4

Given the complexity of our systems specification, we do not pursue nonparametric
estimation here.

The paper is organized as follows: Section 2 specifies the considered simulta-
neous equation system with spatial/cross sectional network interactions. In this
section, we also discuss two exemplary applications. The first example highlights
how higher-order spatial lags can be used to achieve a more flexible specification
of the spatial weights. The second example considers a social interaction model
where individuals make interdependent choices on the level of effort for mul-
tiple activities. In Section 3, we discuss the moment conditions underlying the
considered GMM estimators for the regression parameters and the parameters of
the disturbance process. The paper focuses on two-step estimation procedures. It
turns out that the distribution of the GMM estimator for the spatial autoregressive
parameters of the disturbance process depends on the estimator of regression
parameters. Section 4 is hence devoted to give generic results concerning the
consistency and asymptotic normality of two-step GMM estimators. In particular,
we give generic results concerning the joint limiting distribution of estimators for
all model parameters of interest, which can be utilized in the usual way to form
general Wald tests regarding the model parameters. Results for one-step estimators
are in essence delivered as a special case of two-step estimation. In Section
5, we consider specific limited and full information two-step estimators, and
provide specific expressions for consistent estimators of the associated asymptotic
variance-covariance (VC) matrices of those estimators. In Section 6, we consider
limited and full information one-step estimators that combine the linear and
quadratic moment conditions used by the two-step estimators. The last section
concludes with a summary of our findings and possible directions for future
research. All technical derivations are given in Appendixes and in an Online
Supplementary Appendix. In the Online Supplementary Appendix, we also report
on a Monte Carlo study of the small sample properties of the various estimators
and test statistics.

Throughout the paper, we adopt the following notations and conventions. Let
(An)n∈N be some sequence of matrices, then we denote the (i,j)th element of An

with aij,n. If An is nonsingular, then we denote its inverse with A−1
n , and the (i,j)th

element of A−1
n with aij

n . Let An be of dimension pn ×pn, then the maximum column
sum and row sum matrix norms of An are, respectively, defined as

‖An‖1 = max
1≤j≤pn

∑pn
i=1

∣∣aij,n

∣∣ and ‖An‖∞ = max
1≤i≤pn

∑pn
j=1

∣∣aij,n

∣∣.
If ‖An‖1 ≤ c and ‖An‖∞ ≤ c for some finite constant c which does not depend on
n, then we say that the row and column sums of the sequence of matrices An are
uniformly bounded in absolute value. We note that if the row and column sums

4The term higher-order spatial lags seems to have been imported from the time series literature. However, in contrast
to the time series literature, there is not a natural ordering of the lags. Different spatial lags model different pathways
for network dependence, and the corresponding spatial autoregressive parameters reflect their importance.
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of the matrices An and Bn are uniformly bounded in absolute value, then so are
the row and column sums of An + Bn and AnBn; cf., e.g., Kapoor, Kelejian, and
Prucha (2007), Remark A2. For any square matrix An, An = (An +A′

n)/2, and for
any vector or matrix An, ‖An‖ = [tr(A′

nAn)]1/2, where tr denotes the trace operator.
Let An,g, g = 1, . . . G, be a sequence of matrices, then diagG

g=1(An,g) denotes the
block diagonal matrix, where An,g is the gth diagonal block.

2. MODEL

In the following, we specify our simultaneous system of G equations for G
endogenous variables observed for n cross-sectional units.

2.1. Structural Form Model

In specifying the system, we allow for two sources of simultaneity. First, the
observations for the gth endogenous variable for the ith unit may depend on
observations of the other endogenous variables for the ith unit, as in the classical
text book simultaneous equation system.5 Second, simultaneity may stem from
Cliff and Ord (1973, 1981) type higher-order cross-sectional network interactions,
where spatial interactions represent a leading application.

As remarked, the model specification will be fairly general and allows for net-
work interactions modeled by, possibly, higher-order spatial lags in the dependent
variables, the exogenous variables and the disturbances. More specifically, let
g denote the equation index, then we assume that the cross-sectional data are
generated by the following system (g = 1, . . . ,G):

yg,n =
G∑

l=1

blg,nyl,n +
K∑

k=1

ckg,nxk,n +
G∑

l=1

[
p∑

s=1

λlg,s,nWs,n

]
yl,n +ug,n,

ug,n =
[

q∑
r=1

ρg,r,nMr,n

]
ug,n +εg,n, (1)

where yg,n is the n × 1 vector of cross-sectional observations on the dependent
variable in the gth equation, xk,n is the n×1 vector of cross-sectional observations
on the k th exogenous variable, which is taken to be nonstochastic,6 ug,n is the n×1
disturbance vector in the gth equation, Ws,n and Mr,n are n×n weights matrices,
εg,n is the n×1 vector of innovations entering the disturbance process for the gth
equation, and n denotes the sample size. With blg,n and ckg,n we denote the (scalar)
parameters corresponding to the lth endogenous and kth exogenous variables,

5Our specification differs from, e.g., Anselin (1988) and Wang, Lee, and Bao (2018) who consider systems for one
variable.
6In treating the exogenous variables as nonstochastic, the analysis may be viewed as conditional on the exogenous
variables.
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respectively. Of course, the structural model parameters are not identified without
certain restrictions. Those restrictions will be introduced below.

Consistent with the usual terminology for Cliff–Ord type network interactions,
we refer to Ws,n and Mr,n as spatial weights matrices, to

yl,s,n = Ws,nyl,n and ug,r,n = Mr,nug,n,

as spatial lags, and to the (real scalar) parameters λlg,s,n and ρg,r,n as spatial
autoregressive parameters. The weights matrices carry the information on the links
between units and on the relative weight of those links, and the spatial autore-
gressive parameters describe the strength of the spillovers. Although originally
introduced for spatial networks, Cliff–Ord type interaction models do not require
the indexing of observations by location. In general, they only rely on a measure
of distance in the formation of the spatial weights. Since the notions of space and
distance or proximity are not confined to geographic space, these models have,
as discussed Section 1, also been applied in various other settings. This includes
social-interaction models, where one considered specification has been to assign
to each of the ith individual’s friends a weight of 1/ni, where ni denotes the total
number of friends of i, while assigning zero weights to individuals not belonging
to the circle of friends. In the following, we continue to refer to yl,s,n and ug,r,n and
λlg,s,n and ρg,r,n as spatial lags and spatial autoregressive parameters, but note the
wider applicability.

The reason for allowing the elements of the spatial weights matrices to
depend on the sample size is to permit—as is frequent practice in applications—
normalizations of these matrices where the normalization factor(s) depend on the
sample size.7 The ith element of yl,s,n is given by yil,s,n =∑n

j=1 wij,s,nyjl,n. We note
that even if the elements of the spatial weights matrices do not depend on the
sample size, the elements of the spatial lag yl,s,n and, analogously, the elements
of ug,r,n will generally depend on the sample size. This in turn implies that also
the elements of yg,n and ug,n will generally depend on the sample size, i.e., form
triangular arrays. In allowing the elements of xk,n to depend on the sample size,
we implicitly also allow for some of the exogenous variables to be spatial lags
of exogenous variables. For example, the elements of xk,n could be of the form
xik,n =∑n

j=1 wij,s,nξj where ξj is some basic exogenous variable. Thus the model
accommodates, as remarked above, cross-sectional interactions in the endogenous
variables, the exogenous variables, and the disturbances.

The above model generalizes the spatial simultaneous equation model consid-
ered in Kelejian and Prucha (2004) in allowing for higher-order spatial lags.8

Consistent with the terminology introduced by Anselin and Florax (1995) in a
single-equation context, we refer to the above model as a simultaneous spatial

7The normalizing factors may in turn affect the parameters of the spatial lags, which is the reason for allowing the
parameters in (1) to depend on the sample size; see, e.g., Kelejian and Prucha (2010) for further discussions regarding
normalizations.
8Extensions of the estimation methodology will be discussed later.
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autoregressive model of order p with spatially autoregressive disturbances of
order q, for short, a simultaneous SARAR(p,q) model.9 One reason for allowing
for multiple spatial weights matrices is that they can capture different forms of
proximity between units. For example, within the context of R&D spillovers
between firms, one matrix may refer to geographic proximity between firms,
and the other may correspond to a measure of proximity in the product space.
As another example, as discussed in more detail below, within the context of a
social interaction model different matrices may refer to different circles of friends,
e.g., one matrix may identify the very close friends, and a second matrix the
other friends. Additionally, as discussed below, an estimation theory that allows
for multiple spatial weights matrices can also be used to accommodate certain
parameterizations of the spatial weights.

Model (1) can be written more compactly as

Yn = YnBn +XnCn +Yn�n +Un,

Un = UnRn +En (2)

with

Yn = (y1,n, . . . ,yG,n)n×G, Xn = (x1,n, . . . ,xK,n)n×K,

Un = (u1,n, . . . ,uG,n)n×G, En = (ε1,n, . . . ,εG,n)n×G,

Yn = (y1,1,n, . . . ,y1,p,n, . . . ,yG,1,n, . . . ,yG,p,n)n×pG,

Un = (u1,1,n, . . . ,u1,q,n, . . . ,uG,1,n, . . . ,uG,q,n)n×qG,

and where the parameter matrices Bn = (blg,n)G×G, Cn = (clg,n)K×G, �n =
(λlg,s,n)pG×G, and Rn = (ρg,r,n)qG×G are defined conformably.10

2.2. Exemplary Applications

We next motivate the importance of considering higher-order spatial lags with
two examples. The first example illustrates how higher-order spatial lags can be
useful for certain parameterizations of the spatial weights. The second example
formulates a social interaction model where the utility maximizing solution is
described by a system of equations with higher-order spillovers as defined in (1).

2.2.1. Parameterized Spatial Weights. As part of the specification of the
model in (1) the researcher has to specify the elements of the spatial weights
matrices. When those elements are specified incorrectly, the model is misspeci-
fied and the estimates will generally be inconsistent. Allowing for higher-order
spatial lags provides important flexibility and robustness in modeling network

9For single equations higher order SAR models have been considered by Blommestein (1983, 1985) and Huang
(1984), among others, and more recently by Bell and Bockstael (2000); Cohen and Morrison Paul (2007), Badinger
and Egger (2010), and Lee and Liu (2010).
10For clarity, we note that the gth column of �n and Rn are, respectively, given by [λ1g,1,n, . . . ,λ1g,p,n, . . . ,

λGg,1,n, . . . ,λGg,p,n]′ and [0, . . . ,0,ρg,1,n, . . . ,ρg,q,n,0, . . . ,0]′.
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interactions. However, while adding higher-order spatial lags helps to address
potential specification errors, it does not, of course, eliminate the possibility; for
a recent contribution on an omnibus test for weights matrix misspecification see
Lee, Phillips, and Rossi (2021).

In the following, we discuss exemplarily how higher-order spatial lags can be
used to allow for certain flexible parameterizations of the spatial weights. For
simplicity of notation we drop subscripts n. Spatial weights are often specified
as a function of some distance measure, possibly combined with some contiguity
measure. Let W = (wij) be the basic spatial weights matrix, let dij denote some
distance measure between units i and j, and let d∗

ij be some contiguity measure
taking on values of one or zero. Then, the researcher may specify the weights as the
product of the contiguity measure and a polynomial in dij, treating the coefficients
of the polynomial as unknown parameters11:

wij = d∗
ij

[
λ1dij +·· ·+λpdp

ij

]
.

Now, suppose the researcher models yg as a function of, say, λlgWyl, then clearly

λlgWyl =
[
λlg

p∑
s=1

λsWs

]
yl =

[
p∑

s=1

λlg,sWs

]
yl

with λlg,s = λlgλs, Ws = (wij,s), and wij,s = d∗
ijd

s
ij. In allowing for higher-order

spatial lags, model (1) covers this specification as a special case. Of course,
the above specification of spatial weights is entirely illustrative, and model (1)
will cover many other specifications, including specifications with alternate basis
functions instead of power functions, and more general measures of distance and
contiguity. The same ideas also apply to the modeling of the disturbance process.12

2.2.2. Social Interactions in Multiple Activities. The following example
extends Cohen-Cole, Liu, and Zenou (2018). We follow their basic setup, but
allow for more flexible peer effects. More specifically, consider a model where
n individuals choose effort levels for G activities, say yi1, . . . ,yiG, allowing for
peer effects among p groups of peers, e.g., for p = 2, we may distinguish between
very close friends and other friends. Now let w∗

ij,s be one or zero depending on
whether individual j belongs to the sth peer group of individual i, and let nis be the
size of that peer group. Let wij,s = w∗

ij,s/nis denote the corresponding normalized
weights, let yig,s =∑n

j=1 wij,syjg denote the average effort level for activity g by the

11Alternatively the researcher could specify a polynomial in 1/dij.
12The above observations are related to Pinkse and Slade (1998), who estimate, in a single-equation context, the
spatial weights corresponding to the dependent variable nonparametrically. Given the complexity of our systems
specification, we do not pursue nonparametric estimation here.
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sth group of peers, and assume that the utility of individual i is of the following
linear-quadratic form:

u(yi1, . . . ,yiG) = v(yi1, . . . ,yiG,yi1,1, . . . yi1,p, . . . ,yiG,1, . . . ,yiG,p)

=
G∑

g=1

π∗
igyig +

G∑
g=1

yig

G∑
l=1

p∑
s=1

λ∗
lg,syil,s︸ ︷︷ ︸

payoff

−1

2

G∑
g=1

b∗
gy2

ig −
G∑

g=1

G∑
l=1,l �=g

b∗
lgyigyil︸ ︷︷ ︸

cost

. (3)

The specification considered in Cohen-Cole, Liu, and Zenou (2018) corresponds
to p = 1. The first-order conditions for the maximum of u(yi1, . . . ,yiG) yield

yig = πig +
G∑

l=1,l �=g

blgyil +
G∑

l=1

p∑
s=1

λlg,syil,s

with πig = π∗
ig/b∗

g, blg = −b∗
lg/b∗

g, λlg,s = λ∗
lg,s/b∗

g, or in matrix notation

yg = πg +
G∑

l=1,l �=g

blgyl +
G∑

l=1

p∑
s=1

λlg,sWsyl (4)

with πg = [π1g, . . . ,πng]′. Similar to Cohen-Cole, Liu, and Zenou (2018) assume
that πg can be modeled as

πg =
K∑

k=1

ckgxk +ug. (5)

Substituting (5) into (4) then shows that the utility maximizing vectors of effort for
the G activities are defined as the solution of a model of the form specified in (1).

We note that by specifying the Ws to be block diagonal, we can accommodate
situations where the individuals i = 1, . . . ,n belong to, say, C groups which,
e.g., represent class rooms. Also, some of the xk covariates may represent group
indicator variables, and others may be spatial lags of some basic covariates.

2.3. Reduced Form and Structural Model with Exclusion Restrictions

Towards computing the reduced form of the above model, let

yn = vec(Yn), xn = vec(Xn), un = vec(Un), εn = vec(En),

and let

Wn = [W′
1,n, . . . ,W

′
p,n

]′
, Mn = [M′

1,n, . . . ,M
′
q,n

]′
.

Observing that vec(Yn) = (IG ⊗Wn)yn and vec(Un) = (IG ⊗Mn)un, and that
vec(A1A2) = (A′

2 ⊗ I)vec(A1) for any two conformable matrices A1 and A2, it
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is readily seen that the spatial simultaneous equation system (2) can be re-written
in stacked notation as

yn = B∗
nyn +C∗

nxn +un,

un = R∗
nun +εn, (6)

where B∗
n = [(B′

n ⊗ In
)+ (�′

n ⊗ In)(IG ⊗Wn)
]
, C∗

n = (C′
n ⊗ In), and R∗

n = (R′
n ⊗

In)(IG ⊗Mn) . Assuming invertability of InG −B∗
n and InG −R∗

n, the reduced form
of the system is now given by

yn = (InG −B∗
n

)−1 [
C∗

nxn +un
]
,

un = (InG −R∗
n

)−1
εn. (7)

As remarked, the structural parameters of the spatial simultaneous equation
system (1) and (2) are not identified unless we impose exclusion restrictions. Let
βg,n, γ g,n, λg,n, and ρg,n denote the Gg × 1, Kg × 1, pg × 1 and qg × 1 vectors
of nonzero elements of the gth column of Bn, Cn, �n, and Rn, respectively,
and let Yg,n, Xg,n, Yg,n, and Ug,n be the corresponding matrices of observations
on the endogenous variables, exogenous variables, spatially lagged endogenous
variables, and spatially lagged disturbances appearing in the structural equation for
the gth endogenous variable. Then, system (2) can be expressed as (g = 1, . . . ,G):

yg,n = Zg,nδg,n +ug,n,

ug,n = Ug,nρg,n +εg,n, (8)

where Zg,n = [Yg,n,Xg,n,Yg,n] and δg,n = [β ′
g,n,γ

′
g,n,λ

′
g,n]′.

2.4. Model Assumptions

We maintain the following assumptions regarding the spatial weights matrices and
model parameters.

Assumption 1. For s = 1, . . . ,p and r = 1, . . . ,q: (a) All diagonal elements of
Ws,n and Mr,n are zero. (b)

∥∥Ws,n

∥∥
1 ≤ c,

∥∥Mr,n

∥∥
1 ≤ c for some finite constant c

which does not depend on n, and
∥∥Ws,n

∥∥∞ = 1,
∥∥Mr,n

∥∥∞ = 1.

Assumption 2. (a) The matrices InG − B∗
n are nonsingular. (b) The spatial

autoregressive parameters satisfy supn

∑
r∈Ig,ρ

∣∣ρg,r,n

∣∣< 1 for g = 1, . . . ,G, where
Ig,ρ = {rg,1, . . . ,rg,qg} ⊆ {1, . . . ,q} denotes the set of indices associated with the
elements of ρg,n. (c) The row and column sums of the matrices [InG − B∗

n]−1 are
uniformly bounded in absolute value.

The above assumptions are in line with the recent spatial literature. Assumption
1(a) entails a normalization rule. Assumption 1(b) implies that the row and column
sums of the matrices Ws,n and Mr,n are uniformly bounded in absolute value.
The assumption that

∥∥Ws,n

∥∥∞ = 1 and
∥∥Mr,n

∥∥∞ = 1 implies a normalization for
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the parameters. For interpretation, let W∗
s,n be some spatial weights matrix with∥∥W∗

s,n

∥∥
∞ �= 1 and let λ∗

lg,s,n be the corresponding spatial autoregressive parameter
on W∗

s,nyl,n. Now define Ws,n = W∗
s,n/
∥∥W∗

s,n

∥∥
∞ and λlg,s,n = λ∗

lg,s,n

∥∥W∗
s,n

∥∥
∞, then∥∥Ws,n

∥∥∞ = 1 and λlg,s,nWs,n = λ∗
lg,s,nW∗

s,n. Thus the normalizations
∥∥Ws,n

∥∥∞ = 1
and

∥∥Mr,n

∥∥∞ = 1 can always be achieved by appropriately re-scaling the elements
of the spatial weights matrix, provided the corresponding spatial autoregressive
parameter is correspondingly redefined; for further discussions see Kelejian and
Prucha (2010).13

Assumption 2(a) ensures that the first equation of the expression for the reduced
form in (7) is well defined. In allowing in Assumption 2(b) for the index set Ig,ρ

to vary with g we allow for different orders of spatial lags in the disturbance
process of different equations. Next, observe that R∗

n = diagG
g=1

[
R∗

g,n

]
with R∗

g,n =
R∗

g,n(ρg,n) = ∑
r∈Ig,ρ

ρg,r,nMr,n. In light of this, it follows from Assumptions

1(b) and 2(b) that
∥∥R∗

n

∥∥∞ ≤ maxg
∑

r∈Ig,ρ

∣∣ρg,r,n

∣∣ < 1, which in turn implies that
InG −R∗

n is nonsingular. Consequently, also the second equation of the expression
for the reduced form in (7) is well defined, and thus yn is uniquely defined by
the model. Assumptions 1(b) and 2(b) imply even that supn

∥∥R∗
g,n

∥∥
∞ < 1, which

implies that the row sums of the matrices
[
In −R∗

g,n

]−1
are uniformly bounded in

absolute value. To see this, observe that ‖ [In −R∗
g,n

]−1 ‖∞≤ 1/
[
1−∥∥R∗

g,n

∥∥
∞
]

≤
1/
[
1− supn

∥∥R∗
g,n

∥∥
∞
]
< ∞. The above arguments use results in Horn and Johnson

(1985, p. 301).

Assumption 3. (a) The matrix of (nonstochastic) exogenous regressors Xn in
(2) has full column rank (for n sufficiently large). Furthermore, the elements of Xn

are uniformly bounded in absolute value by some finite constant. (b) The elements
of the parameter matrices Bn, Cn, and �n are uniformly bounded in absolute value.

An assumption such as Assumption 3(a) is common in the spatial literature. In
treating Xn as nonstochastic, our analysis should be viewed as conditional on Xn.
Note that in part (b) of Assumption 3 uniformity refers to n. Assumption 3(b) is
trivially satisfied, if the parameters do not depend on the sample size, since any
real number is finite.

We next state the assumptions maintained w.r.t. εn. In the following let Vn =
[v1.n, . . . ,vG,n] be an n×G matrix of basic innovations and let vn = vec(Vn).

Assumption 4. The innovations εn are generated as follows:

εn = (
′
� ⊗ In)vn, (9)

13The suggested re-scaling is simple and practically implementable even if n is large. In situations where n is
sufficiently small such that the eigenvalues of the spatial weights matrices are computable, one could alternatively
normalize each spatial weights matrix by its spectral radius, which would in conjunction with the next assumptions
entail an expansion of the admissible parameter space.
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where 
′
� is a nonsingular G × G matrix and the random variables {vig,n : i =

1, . . . ,n,g = 1, . . . ,G} are, for each n, identically and independently distributed
with zero mean, unitary variance, and finite 4 + ν moments for some ν > 0, and
their distribution does not depend on n. Furthermore, let 
 = 
′

�
�.

The above assumption on the innovation process is in line with the specification
of the disturbance terms for a classical simultaneous equation system. Let εn(i)
denote the ith row of En, then, observing that En = Vn
�, it is readily seen that the
innovation vectors {εn(i) : 1 ≤ i ≤ n} are i.i.d. with zero mean and VC matrix 
.
With respect to the stacked innovation vector, the assumption implies that Eεn = 0
and Eεnε

′
n = 
 ⊗ In.

Given (7), we note that Assumption 4 implies, furthermore, that Eun = 0 and
Eyn = (InG −B∗

n

)−1
C∗

nxn, and that the VC matrices of un and yn are given by,
respectively,

�u,n = (InG −R∗
n)

−1(
 ⊗ In)(InG −R∗′
n )−1,

�y,n = (InG −B∗
n)

−1�u,n(InG −B∗′
n )−1.

Assumptions 2 and 4 imply that the row and column sums of the VC matrix of un

(and similarly those of yn) are uniformly bounded in absolute value, thus limiting
the degree of correlation between, respectively, the elements of un and of yn.

Remark. Under the above assumptions it is shown in Lemmata A.2 and A.3
that all random variables in [Yn,Xn,Yn] have uniformly bounded finite fourth
moments, and that

n−1Z′
g,nAnug,n −n−1EZ′

g,nAnug,n = op(1)

for any n×n real matrix An whose row and column sums are bounded uniformly
in absolute value.

For purposes of estimation it proves helpful to apply a spatial Cochrane-Orcutt
transformation to the model. In particular, premultiplying (8) by In − R∗

g,n(ρg,n)

yields

y∗g,n = Z∗g,nδg,n +εg,n (10)

with y∗g,n = y∗g,n(ρg,n) = [
In −R∗

g,n(ρg,n)
]

yg,n and Z∗g,n = Z∗g,n(ρg,n) =[
In −R∗

g,n(ρg,n)
]

Zg,n. Stacking the transformed equations yields

y∗n = Z∗nδn +εn (11)

with y∗n = [
y′

∗1,n, . . . ,y
′
∗G,n

]′
, Z∗n = diagG

g=1

[
Z∗g,n

]
, δn = [

δ′
1,n, . . . ,δ

′
G,n

]′
and

where εn is as defined above.
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3. MOMENT CONDITIONS

Recall that from the Cochrane–Orcutt transformed form of the model (10), we have

εg,n = εg,n(ρg,n,δg,n) = [In −R∗
g,n(ρg,n)

][
yg,n −Zg,nδg,n

]
.

The estimators for the model parameters ρg,n and δg,n considered in this paper will
utilize a set of linear and quadratic moment conditions of the form (g = 1, . . . ,G)

Emδ
g,n(ρg,n,δg,n) = En−1H′

nεg,n = 0, (12)

Emρ
g,n(ρg,n,δg,n) = E

⎡⎢⎣ n−1ε′
g,nA1,nεg,n

...
n−1ε′

g,nAS,nεg,n

⎤⎥⎦= 0, (13)

where the n×pH instrument matrix Hn in the linear form and the n×n weighting
matrices As,n in the quadratic forms are nonstochastic. In the following, we will
also simply write mδ

g,n and mρ
g,n for the sample moment vector at the true parameter

values.14

We maintain the following assumptions regarding the instruments Hn. Specific
choices of instruments and a discussion of how the nonlinearity of Eyn in the
parameters generates instruments from within the model are given after the
assumptions.

Assumption 5. The instrument matrices Hn are nonstochastic and have full
column rank pH ≥ Gg + Kg + pg(for all n large enough). Furthermore, the ele-
ments of the matrices Hn are uniformly bounded in absolute value. Additionally
Hn is assumed to contain, at least, the linearly independent columns of Hn =[
Xn,M1,nXn, . . . ,Mp,nXn

]
.

The inclusion of Hn in Hn ensures that the exogenous variables on the right
hand side (r.h.s.) of the Cochrane–Orcutt transformed model serve as their own
best instruments. For limited information estimators, it suffices to postulate
that Hn is assumed to contain, at least, the linearly independent columns of[
Xg,n,M1,nXg,n, . . . ,Mp,nXg,n

]
.

Assumption 6. The instruments Hn satisfy furthermore:

(a) QHH = limn→∞ n−1H′
nHn is finite and nonsingular.

(b) QHZ,g = plimn→∞n−1H′
nZg,n and QHMZ,r,g = plimn→∞n−1H′

nMr,nZg,n are
finite and have full column rank.

(c) Let QHZ,g∗(ρg,n) = QHZ,g −∑r∈Ig,ρ
ρg,r,nQHMZ,r,g, then

λmin
[
QHZ,g∗(ρg,n)

′Q−1
HHQHZ,g∗(ρg,n)

]≥ c for some c > 0.

The above assumptions are in the spirit of those maintained, e.g., in Kelejian
and Prucha (1998, 2004, 2010) and Lee (2003). We first discuss Assumption 5.

14We note that our setup could be readily modified to accommodate for Hn and for the As,n to vary with g at the
expense of further complicating the notation.
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The best instruments for Yg,n and Yg,n are given by their conditional means.
Observe that in light of (6) we have

Eyn = (InG −B∗
n

)−1
C∗

nxn

with B∗
n = [(B′

n ⊗ In
)+ (�′

n ⊗ In)(IG ⊗Wn)
]
. For large n, the accurate computa-

tion of the inverse of InG − B∗
n, which is of dimension nG × nG and depends on

unknown parameters, will be challenging if not impossible, unless the weights
matrices are sparse. Furthermore, even in the single equation case existing results
on the asymptotic properties of GMM estimators based on the best instruments
have so far only been obtained by restricting the parameter space to a compact
interval in, say, (−1,1). To avoid those difficulties and limitations, we employ
an approximation of the best instruments, which is consistent in spirit with the
approach adopted in the above cited literature.

Given
∥∥B∗

n

∥∥ < 1, we have
(
InG −B∗

n

)−1 = ∑∞
d=0(B

∗
n)

d and thus Eyn =∑∞
d=0

(
B∗

n

)d
C∗

nxn. In light of the structure of B∗
n, it is not difficult to see that the

blocks of
(
InG −B∗

n

)−1
can be expressed as infinite weighted sums of the matrices

In, {Wj1,n}p
j1=1, {Wj1,nWj2,n}p

j1,j2=1, {Wj1,nWj2,nWj3,n}p
j1,j2,j3=1, . . . Adopting the

notation
[
Ej
]m

j=1 := [E1, . . . ,Em] for any set of conformable matrices E1, . . . ,Em,
define

X1,n = [Wj1,nXn
]p

j1=1 ,

X2,n = [Wj1,nWj2,nXn
]p

j1,j2=1 ,

...

XR,n = [Wj1,nWj2,n . . . WjR,nXn
]p

j1,j2,...,,jR=1 ,

and let HR,n = [Xn,X1,n, . . . ,XR,n]. Now suppose Ws1, . . . ,Wsg are the spatial
weights matrices appearing in Yg,n, then by including in Hn the linearly
independent columns of

[
HR,n,Ws1 HR,n, . . . ,Wsg HR,n

]
, we may view the fitted

values of Zg,n as computationally simple approximations of the best instruments
EZg,n. Suppose further that Mr1, . . . ,Mrg are the spatial weights matrices in
the disturbance process of the gth equation, then by including in Hn also
the linearly independent columns of Mr1

[
HR,n,Ws1 HR,n, . . . ,Wsg HR,n

]
,. . .,

Mrg

[
HR,n,Ws1 HR,n, . . . ,Wsg HR,n

]
we may view the fitted values of Z∗g,n as

computationally simple approximations of the best instruments EZ∗g,n. The Monte
Carlo results presented in the Online Supplementary Appendix suggest that in
many situations, relatively low values of R are sufficient for providing a good
approximation. A discussion, in a simplified context, as to how instruments
are generated from within the model is given in Appendix F in the Online
Supplementary Appendix.

Assumption 6(a) is standard. Assumption 6(b) is a sufficient condition that
ensures the identification of δg,n from linear moment conditions corresponding to
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the untransformed model (8). Assumption 6(c) is used to ensure identification from
linear moment conditions corresponding to the transformed model (10). Those
assumptions are crucial for the consistency of the first-step estimators of δg,n from
linear moment conditions only. A more detailed discussion of those assumptions,
including scenarios where those conditions will not hold, are provided in Appendix
F in the Online Supplementary Appendix. Of course, within the context of
one-step estimation identification is still possible with the use of the quadratic
moment conditions, even if identification by the linear moment conditions fails.
More detailed remarks and references are provided in Appendix F in the Online
Supplementary Appendix.

We will maintain the following assumptions regarding the matrices As,n in the
quadratic moment conditions (12).

Assumption 7. The row and column sums of the matrices As,n, s = 1, . . . ,S, are
bounded uniformly in absolute value by some finite constant and, furthermore, all
diagonal elements of As,n are zero for any s = 1, . . . ,S.

The assumptions that the diagonal elements of As,n are zero ensures that the
moment conditions are robust against heteroskedasticity. Exemplary specifications
for As,n include

Mr,n, M′
r,nMr,n −diag(M′

r,nMr,n),

Ws,n, W′
s,nWs,n −diag(W′

s,nWs,n), M′
s,nWs,n −diag(M′

s,nWs,n).

For computational purposes and for proving consistency, it is convenient to re-
write the moment conditions in (13) as

γ g,n −�g,nrg,n(ρg,n) = 0, (14)

where

γ g,n
S×1

=
⎡⎢⎣γ 1,g,n

...
γ S,g,n

⎤⎥⎦,

�g,n
S×q∗

g

=
⎡⎢⎣�11,g,n �12,g,n �13,g,n

...
...

...
�S1,g,n �S2,g,n �S3,g,n

⎤⎥⎦, rg,n
q∗

g×1

(ρg,n) =
⎡⎣r1,g,n

r2,g,n

r3,g,n

⎤⎦
with

γ s,g,n = n−1Eu′
g,nAs,nug,n,

�s1,g,n = n−1(2Eu′
g,nM′

rg,1,n
As,nug,n, . . . ,2Eu′

g,nM′
rg,qg,nAs,nug,n),

�s2,g,n = −n−1(Eu′
g,nM′

rg,1,n
As,nMrg,1,nug,n, . . . ,Eu′

g,nM′
rg,qg,nAs,nMrg,qg,nug,n),

�s3,g,n = −n−1(2Eu′
g,nM′

rg,1,n
As,nMrg,2,nug,n, . . . ,2Eu′

g,nM′
rg,qg−1,n

As,nMrg,qg,nug,n),
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r1,g,n = (ρg,rg,1,n, . . . ,ρg,rg,qg,n)
′,

r2,g,n = (ρ2
g,rg,1,n

, . . . ,ρ2
g,rg,qg,n)

′,

r3,g,n = (ρg,rg,1,nρg,rg,2,n, . . . ,ρg,rg,1,nρg,rg,qg,n, . . . ,ρg,rg,qg−1,nρg,rg,qg,n)
′,

recalling the definition of the index set Ig,ρ = {rg,1, . . . ,rg,qg} ⊆ {1, . . . ,q} and
where q∗

g = 2qg +qg(qg −1)/2.15

For the case of two-step estimation, let δ̃g,n be some estimator for δg,n, let ũg,n =
yg,n − Zg,ñδg,n, and let �̃g,n and γ̃ g,n denote the corresponding estimators of �g,n

and γ g,n, respectively, which are obtained by suppressing the expectations operator
and replacing ug,n by ũg,n in the above expressions. Then

mρ
g,n(ρg,̃δg,n) = γ̃ g,n − �̃g,nrg,n(ρg). (15)

4. GENERIC ASYMPTOTIC PROPERTIES

In this section, we give a generic discussion of the asymptotic properties of
GMM estimators for ρg,n and δg,n corresponding to the moment conditions in
(12) and (13). A main focus is on two-step estimators. Two-step estimators are
appealing, since they are computationally simple, and since in a single-equation
context, the loss of efficiency has been found to be small under various reasonable
scenarios, provided that the instruments are not weak; see, e.g., Das, Kelejian, and
Prucha (2003) and the Monte Carlo results presented in the Online Supplementary
Appendix. A two-step procedure may also provide some robustness for the
estimation of δg,n against misspecification of the disturbance process. As will be
seen below, the limiting distribution of the GMM estimators for ρg,n will depend
on the estimator of δg,n used in computing the estimated residual. That is, δg,n is
not a nuisance parameter for ρg,n (although the reverse is true). As a consequence,
the derivation of the limiting distribution of the two-step estimators is technically
more challenging. We will discuss one-step estimators later on in the paper. In
essence, the results in this section also deliver the limiting distribution of one-step
estimators as a special case.

The GMM estimators for the autoregressive parameter vectors ρn introduced
below generalize the GMM estimators in Kelejian and Prucha (2004). In contrast
to Kelejian and Prucha (2004), we not only accommodate higher-order spatial
disturbance processes, but we also provide for a full asymptotic theory for those
estimators. As a result, we are able to introduce more efficient estimators, and
provide results on the joint limiting distribution of the estimators for all model
parameters.

15To clarify the double indexing notation, consider the example where Ig,ρ = {2,4,5} and thus qg = 3. In this case, and
dropping the subscript n, r1,g = (ρg,2,ρg,4,ρg,5)

′, r2,g = (ρ2
g,2,ρ

2
g,4,ρ

2
g,5)

′ and r3,g = (ρg,2ρg,4,ρg,2ρg,5,ρg,4ρg,5)
′.

The weight matrices in �s1,g, �s2,g, and �s3,g are indexed analogously.
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4.1. Consistency of GMM Estimator for ρ

Let ϒ̃gg,n be some S × S symmetric positive semidefinite (moments) weighting
matrix. Then a corresponding GMM estimator for ρg,n can be defined as

ρ̃g,n = ρ̃g,n(ϒ̃gg,n) = argmin
ρg:
∑

r∈Ig,ρ |ρg,r|∈[−aρ,aρ ]

mρ
g,n(ρg,̃δg,n)

′ϒ̃gg,nmρ
g,n(ρg,̃δg,n)

(16)

with aρ ≥ 1. We note that the objective function for ρ̃g,n remains well defined even
for values of ρg for which In −R∗′

g,n(ρg) is singular, which allows us to take as the
optimization space a compact set containing the true parameter space.

We postulate the following additional assumption to establish consistency of
ρ̃g,n.

Assumption 8. The smallest eigenvalue of �′
g,n�g,n is uniformly bounded away

from zero.

Assumption 9. ϒ̃g,n − ϒg,n = op(1), where ϒg,n is an S × S nonstochastic
symmetric positive definite matrix. The largest eigenvalues of ϒg,n are bounded
uniformly from above, and the smallest eigenvalues of ϒg,n are bounded uniformly
away from zero (and, thus, by the equivalence of matrix norms, ϒg,n and ϒ−1

g,n are
O(1)).

Assumption 8 requires �′
g,n�g,n to be nonsingular and in conjunction with

Assumption 9 ensures that the smallest eigenvalue of �′
g,nϒg,n�g,n is uniformly

bounded away from zero. This will be sufficient to demonstrate that ρg,n is
identifiable unique w.r.t. the nonstochastic analog of the objective function of the
GMM estimator16

Emρ
g,n(ρg,δg,n)

′ϒg,nEmρ
g,n(ρg,δg,n)

= [γ g,n −�g,nrg,n(ρg,n)
]′

ϒg,n
[
γ g,n −�g,nrg,n(ρg,n)

]
.

Some additional remarks on this assumption and connections to the GMM lit-
erature are provided in Appendix F in the Online Supplementary Appendix.
Assumption 9 ensures that ϒ̃g,n is positive definite with probability trending to
one. Of course, Assumption 9 is satisfied for ϒ̃g,n = ϒg,n = IS. In this case, the
estimator defined by (16) reduces to a nonlinear least-squares estimator. Choices
of ϒ̃g,n which result in efficient estimates of ρg,n will be discussed below in
conjunction with the asymptotic normality result.

Our basic consistency result for ρ̃g,n is given by the next theorem.

THEOREM 1 (Consistency). Let ρ̃g,n = ρ̃g,n(ϒ̃g,n) denote the GMM estima-
tor for ρg,n defined by (16). Suppose Assumptions 1–9 hold, and suppose that

n1/2(̃δg,n − δg,n) = Op(1), then,

ρ̃g,n −ρg,n
p→ 0 as n → ∞.

16For a definition of identifiable uniqueness, see, e.g., Definition 3.1 in Pötscher and Prucha (1997).
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4.2. Asymptotic Distribution of GMM Estimator for ρ

The limiting distribution of the GMM estimator ρ̃g,n will generally depend on the
estimator δ̃g,n used to compute estimated disturbances. To define GMM estimators
for δg,n we can employ the moment conditions (12). Leading examples for limited
and full information GMM estimators for δg,n will be the spatial two-stage least
squares (2SLS) and three-stage least squares (3SLS) estimators defined in the next
section. To keep the discussion general, we maintain the following assumption
regarding δ̃g,n.

Assumption 10. The estimator δ̃g,n is asymptotically linear in εn in the sense
that

n1/2(̃δg,n − δg,n) = n−1/2
G∑

h=1

T′
gh,nεh,n +op(1)

with Tgh,n = Fgh,nPgh,n, where Fgh,n and Pgh,n are, respectively, n×pF and pF ×pδg

real nonstochastic matrices whose elements are uniformly bounded in absolute
value by a finite constant, and where pδg is the dimension of the parameter vector
δg,n. (We note that under the maintained assumptions the elements of Tgh,n are
again uniformly bounded in absolute value by a finite constant).

In Appendix A, we show that our spatial 2SLS and 3SLS estimators satisfy
this assumption. For 2SLS estimators of the parameters of the, say, first equation,∑G

h=1 T′
1h,nεh,n reduces to T′

11,nε1,n. Also note that under Assumptions 4 and 10,
we have n1/2(̃δg,n − δg,n) = Op(1), as is assumed by Theorem 1.

In preparation of our result concerning the asymptotic distribution of the GMM
estimator, we next define the matrices that will compose the limiting VC matrix.
In particular, consider the S ×qg matrix

Jg,n = −E
∂mg,n

∂ρg,n
= �g,n

∂rg,n(ρn,g)

∂ρg,n
, (17)

and the S ×S matrix �ρρ
gg,n = (ψρρ

rs,gg,n

)
where

ψρρ
rs,gg,n = σ 2

gg(2n)−1tr
[(

Ar,n +A′
r,n

)(
As,n +A′

s,n

)]
(18)

+n−1α′
g,r,n

[
G∑

h=1

G∑
l=1

σhlT′
gh,nTgl,n

]
αg,s,n,

with

αg,r,n = −n−1E
[
Z′

g,n(In −R∗′
g,n(ρg,n))(Ar,n +A′

r,n)(In −R∗
g,n(ρg,n))ug,n

]
.

As shown in the proof of the subsequent theorem, �ρρ
gg,n is the asymptotic VC

matrix of the sample moment vector mρ
g,n(ρg,̃δg,n). The second term in (18) stems

from the fact that the sample moment vector depends on estimated residuals. If the
true residuals could be observed, we could take δ̃g,n = δg,n or Tgh,n = 0, in which
case the second term in (18) is zero.
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THEOREM 2 (Asymptotic Normality). Let ρ̃g,n = ρ̃g,n(ϒ̃g,n) denote the GMM
estimator for ρg,n defined by (16). Then given Assumptions 1–10, and given that
λmin(�

ρρ
gg,n) ≥ c∗

� > 0, we have

n1/2(̃ρg,n −ρg,n) = [J′
g,nϒg,nJg,n

]−1
J′

g,nϒg,nξ g,n +op(1), (19)

where

ξ g,n =
⎡⎢⎣ξg1,n

...
ξgS,n

⎤⎥⎦= −n−1/2

⎡⎢⎣
1
2ε′

g,n(A1,n +A′
1,n)εg,n +α′

g,1,n

∑G
h=1 T′

gh,nεh,n

...
1
2ε′

g,n(AS,n +A′
S,n)εg,n +α′

g,S,n

∑G
h=1 T′

gh,nεh,n

⎤⎥⎦
(20)

and (�ρρ
gg,n)

−1/2ξ g,n
d→ N(0,IS). Furthermore n1/2(̃ρg,n − ρg,n) = Op(1) and

λmin
[
�ρρ

gg,n(ϒg,n)
]≥ const > 0 for

�ρρ
gg,n(ϒg,n) = (J′

g,nϒg,nJg,n)
−1J′

g,nϒg,n�
ρρ
gg,nϒg,nJg,n(J′

g,nϒg,nJg,n)
−1. (21)

The above theorem implies that the difference between the cumulative distribu-

tion function of n1/2(̃ρg,n −ρg,n) and that of N
[
0,�ρ̃g,n

]
converges pointwise to

zero, which justifies the use of the latter distribution as an approximation of the
former.17

Remark. Clearly, �ρρ
gg,n((�

ρρ
gg,n)

−1) = [J′
g,n(�

ρρ
gg,n)

−1Jg,n
]−1

and �ρρ
gg,n(ϒg,n)−

�ρρ
gg,n((�

ρρ
gg,n)

−1) is positive semi-definite for any ϒg,n. Thus, choosing ϒ̃g,n as
a consistent estimator for (�ρρ

gg,n)
−1 leads to the efficient GMM estimator. As

discussed in the proof of the above theorem, the elements of �ρρ
gg,n are uniformly

bounded in absolute value and, hence, λmax
(
�ρρ

gg,n

)≤ c∗∗
� for some c∗∗

� < ∞. Since
by assumption also 0 < c∗

� ≤ λmin(�
ρρ
g,n), it follows that the conditions on the

eigenvalues of ϒg,n postulated in Assumption 9 are automatically satisfied by
(�ρρ

gg,n)
−1.

We next define a consistent estimator for �ρρ
gg,n(ϒg,n). As a preliminary result

we have the following lemma.

LEMMA 1. Suppose Assumptions 1–4 hold. For g,h = 1, . . . ,G define

σ̃gh,n = n−1ε̃′
g,ñεh,n (22)

with ε̃g,n = y∗g,n(̃ρg,n)−Z∗g,n(̃ρg,n)̃δg,n and assume δ̃g,n −δg,n = op(1) and ρ̃g,n −
ρg,n = op(1), then σ̃gh,n −σgh = op(1).

17This follows from Corollary F4 in Pötscher and Prucha (1997). Compare also the discussion on pp. 86–87 in that
reference.
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We note that in the above lemma ρ̃g,n and δ̃g,n can be any consistent estimators.
Now, let �̃g,n be defined as in (15) and corresponding to (17) define

J̃g,n = �̃g,n
∂rg,n(̃ρn,g)

∂ρg,n
. (23)

Furthermore, corresponding to (18) consider the following estimator �̃
ρρ

gg,n =(
ψ̃ρρ

rs,gg,n

)
for �ρρ

gg,n, where

ψ̃ρρ
rs,gg,n = σ̃ 2

gg,n(2n)−1tr
[(

Ar,n +A′
r,n

)(
As,n +A′

s,n

)]
(24)

+n−1α̃′
g,r,n

[
G∑

h=1

G∑
l=1

σ̃hl,nT̃′
gh,nT̃gl,n

]
α̃g,s,n,

with

α̃g,r,n = −n−1
[
Z′

g,n(In −R∗′
g,n(̃ρg,n))(Ar,n +A′

r,n)(In −R∗
g,n(̃ρg,n))̃ug,n

]
,

where T̃gh,n is some estimator for Tgh,n, and ũg,n = yg,n −Zg,ñδg,n. Given estimators
for Jg,n and �ρρ

gg,n we can now formulate the following estimator for �ρρ
gg,n:

�̃
ρρ

gg,n(ϒ̃g,n) = (̃J′
g,nϒ̃g,ñJg,n)

−1̃J′
g,nϒ̃g,n�̃

ρρ

gg,nϒ̃g,ñJg,n(̃J′
g,nϒ̃g,ñJg,n)

−1. (25)

The next theorem establishes the consistency of �̃
ρρ

g,n and �̃
ρρ

gg,n.

THEOREM 3 (VC Matrix Estimation). Suppose all assumptions of Theorem 2
hold, except for Assumption 9, and suppose that n−1T̃′

gh,nT̃gl,n − n−1T′
gh,nTgl,n =

op(1). Then, provided that ρ̃g,n −ρg,n = op(1),

�̃
ρρ

gg,n −�ρρ
gg,n = op(1), (�̃

ρρ

gg,n)
−1 − (�ρρ

gg,n)
−1 = op(1),

and �ρρ
gg,n = O(1), (�ρρ

gg,n)
−1 = O(1). If furthermore Assumption 9 holds, then,

�̃
ρρ

gg,n −�ρρ
gg,n = op(1), (�̃

ρρ

gg,n)
−1 − (�ρρ

gg,n)
−1 = op(1),

and �ρρ
gg,n = O(1),(�ρρ

gg,n)
−1 = O(1).

Note that for the first part of the above theorem ρ̃g,n can be any consistent
estimator.

4.3. Joint Asymptotic Distribution of Estimators for ρ and δ

In the following, let δn = [δ′
1,n, . . . ,δ

′
G,n]′ and ρn = [ρ ′

1,n, . . . ,ρ
′
G,n]′, and let

δ̃n= [̃δ
′
1,n, . . . ,̃δ

′
G,n]′ and ρ̃n= [̃ρ ′

1,n, . . . ,ρ̃
′
G,n]′ denote the corresponding estimators

as defined in the previous subsections. In this section, we derive the joint limiting
distribution of δ̃n and ρ̃n. Knowledge of the joint asymptotic distribution of all
model parameters will then enable the researcher to test for the presence of network
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spillovers in any of the dependent variables, explanatory variables, or disturbances
in the system.

As shown in the proof of the next theorem, the joint limiting distribution of
the estimators will depend on the joint limiting distribution of the following
vector of linear and quadratic forms [η′

n,ξ
′
n]′ with η′

n = [η′
1,n, . . . ,η

′
G,n]′ and ξ ′

n =
[ξ ′

1,n, . . . ,ξ
′
G,n]′, where ηg,n = n−1/2∑G

h=1 T′
gh,nεh,n and the ξ g,n are defined in (20).

Let

Tn =
⎡⎢⎣T11,n . . . TG1,n

...
. . .

...
T1G,n . . . TGG,n

⎤⎥⎦,

then the VC matrix of [η′
n,ξ

′
n]′ is given by

�n =
[
�δδ

n �δρ
n

�δρ′
n �ρρ

n

]
, (26)

where

�ρρ
n = Eξ nξ

′
n =

⎡⎢⎣ �
ρρ

11,n . . . �
ρρ

1G,n
...

. . .
...

�
ρρ

G1,n . . . �
ρρ

GG,n

⎤⎥⎦,

�δδ
n = Eηnη

′
n = n−1T′

n(
 ⊗ In)Tn,

�δρ
n = Eηnξ

′
n = n−1T′

n(
 ⊗ In)TndiagG
g=1

[
αg,1,n, . . . ,αg,S,n

]
,

and where the (r,s)th element of �
ρρ

gh,n is given by

ψ
ρρ

rs,gh,n = σ 2
gh,n(2n)−1tr

[(
Ar,n +A′

r,n

)(
As,n +A′

s,n

)]
+n−1α′

g,r,n

[
G∑

u=1

G∑
v=1

σuv,nT′
gu,nThv,n

]
αh,s,n.

Analogous to (24), consider the following estimator �̃
ρρ

gh,n =
(
ψ̃

ρρ

rs,gh,n

)
for �

ρρ

gh,n,

where

ψ̃
ρρ

rs,gh,n = σ̃ 2
gh,n(2n)−1tr

[(
Ar,n +A′

r,n

)(
As,n +A′

s,n

)]
+n−1α̃′

g,r,n

[
G∑

u=1

G∑
v=1

σ̃uv,nT̃′
gu,nT̃hv,n

]
α̃h,s,n,

with

α̃g,r,n = −n−1
[
Z′

g,n(In −R∗′
g,n(̃ρg,n))(Ar,n +A′

r,n)(In −R∗
g,n(̃ρg,n))̃ug,n

]
,
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with T̃gh,n being some estimator for Tgh,n, and ũg,n = yg,n −Zg,ñδg,n. Next, consider
the estimators

�̃
δδ

n = n−1T̃′
n(
̃n⊗In)T̃n,

�̃
δρ

n = n−1T̃′
n(
̃n⊗In)T̃ndiagG

g=1

([̃
αg,1,n, . . . ,α̃g,S,n

])
,

then our estimator for �n can be formulated as

�̃n =
[

�̃
δδ

n �̃
δρ

n

�̃
δρ′
n �̃

ρρ

n

]
. (27)

We now have the following theorem concerning the joint limiting distribution of
δ̃n − δn and ρ̃n −ρn.

THEOREM 4 (Asymptotic Normality). Let ρ̃n= [̃ρ ′
1,n, . . . ,ρ̃

′
G,n]′ where ρ̃g,n =

ρ̃g,n(ϒ̃g,n) denotes the GMM estimator for ρg,n defined by (16), and let

δ̃n= [̃δ
′
1,n, . . . ,̃δ

′
G,n]′ be an estimator for δ, where δ̃g,n is asymptotically linear

in εn. Then given Assumptions 1–10, n−1T̃′
gh,nT̃kl,n − n−1T′

gh,nTkl,n = op(1), and
given that λmin(�n) ≥ c for some c > 0, we have

n1/2

[
δ̃n − δn

ρ̃n −ρn

]
=
[

I 0
0 diagg[

[
J′

g,nϒg,nJg,n
]−1

J′
g,nϒg,n]

][
ηn

ξ n

]
+op(1),

with

�−1/2
n

[
ηn

ξ n

]
d→ N(0,Id),

where d =∑G
g=1(Gg +Kg +pg +qg). Furthermore, let

�n =
[

I 0
0 diagG

g=1

(
(J′

g,nϒg,nJg,n)
−1J′

g,nϒg,n
)]�n (28)

×
[

I 0
0 diagG

g=1

(
ϒg,nJg,n(J′

g,nϒg,nJg,n)
−1
)],

�̃n =
[

I 0
0 diagG

g=1

(
(̃J′

g,nϒ̃g,ñJg,n)
−1̃J′

g,nϒ̃g,n
)]�̃n

×
[

I 0
0 diagG

g=1

(
ϒ̃g,ñJg,n(̃J′

g,nϒ̃g,ñJg,n)
−1
)] .

Then, �̃n −�n = op(1), �̃
−1
n −�−1

n = op(1), �n = O(1), �−1
n = O(1) and �̃n −

�n = op(1), �̃
−1
n −�−1

n = op(1), �n = O(1), �−1
n = O(1).

Theorem 4 implies that the difference between the joint cumulative distribution
function of the estimators of all model parameters n1/2[(̃δn − δn)

′,(̃ρn − ρn)
′]′,

and that of N(0,�n) converges pointwise to zero so that using the latter as an
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approximation of the former is justified.18 The theorem also states that �̃n is
a consistent estimator of �n. Of course, since the marginal distribution of a
multivariate normal distribution is normal, the above theorem also establishes the
limiting distribution of any subvector of n1/2[(̃δn − δn)

′,(̃ρn −ρn)
′]′.

5. LIMITED AND FULL INFORMATION TWO-STEP ESTIMATORS

In the previous section, we developed generic results regarding the asymptotic
properties of two-step GMM estimators for the parameters of model (1). The
results show that the limiting distribution of GMM estimators for ρg,n, which
employ an initial estimator for δg,n in computing estimated residuals, will generally
depend on the limiting distribution of the latter. Thus, establishing the proper
asymptotic theory for specific estimators is “delicate.” In this section, we define
specific limited and full information estimators and provide specific expressions
for their asymptotic VC matrices.

5.1. Definition of Limited Information Estimators

In the following, we define, in a sequence of steps, a specific generalized spatial
2SLS (GS2SLS) estimator of δg,n and a GMM estimator of ρg,n based on GS2SLS
residuals. WLOG we focus on the estimation of the parameters of the gth equation.

Step 1a: 2SLS estimator of δg,n As a first step, we apply 2SLS to the gth
equation of the untransformed model (8) using the instrument matrix Hn in
Assumptions 5 and 6 to estimate δg,n. The 2SLS estimator, say δ̃g,n, is then
defined as

δ̃g,n = (Z̃′
g,nZg,n)

−1Z̃′
g,nyg,n, (29)

where Z̃g,n = PHn Zg,n = (Ỹg,n,Xg,n,Ỹg,n), Ỹg,n = PHn Yg,n, Ỹg,n = PHn Yg,n, and
where PHn = Hn(H′

nHn)
−1H′

n.19

Step 1b: Initial GMM estimator of the vectorρg,n based on 2SLS residuals
Let ũg,n = ug,n(̃δg,n) = yg,n − Zg,ñδg,n denote the 2SLS residuals of the gth

equation, and let mρ
g,n(ρg,n,̃δg,n) denote the corresponding sample moment vector

as defined in (15). Our initial GMM estimator for ρg,n is now defined as

ρ̃g,n = argmin
ρg:
∑

r∈Ig,ρ |ρg,r|∈[−aρ,aρ ]

mρ
g,n(ρg,n,̃δg,n)

′mρ
g,n(ρg,n,̃δg,n) (30)

with aρ ≥ 1.
Step 2a: GS2SLS estimator of δg,n Analogous to Kelejian and Prucha (1998),

we next compute a GS2SLS estimator of δg,n, δ̂g,n(̃ρg,n). This estimator is defined

18This follows from Corollary F4 in Pötscher and Prucha (1997). Compare also the discussion on pp. 86–87 in that
reference.
19In the previous section we used tilde to denote generic estimators. In the following tilde is used to denote our initial
2SLS based estimators.
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as the 2SLS estimator of the gth equation of the spatially Cochrane–Orcutt
transformed model (10) with ρg,n replaced by ρ̃g,n, i.e.,

δ̂g,n = δ̂g,n(̃ρg,n) = [Ẑ∗g,n(̃ρg,n)
′Z∗g,n(̃ρg,n)]

−1Ẑ∗g,n(̃ρg,n)
′y∗g,n(̃ρg,n), (31)

where y∗g,n(̃ρg,n) = [In −R∗
g,n(̃ρg,n)

]
yg,n, Z∗g,n(̃ρg,n) = [In −R∗

g,n(̃ρg,n)
]

Zg,n, and

Ẑ∗g,n(̃ρg,n) = PHn Z∗g,n(̃ρg,n). We shall also utilize the following estimator for the
(g,g)th block of �δδ

n (corresponding to δ̂g,n):

�̂
δδ

gg,n = σ̂gg[n−1Ẑ∗g,n(̃ρg,n)
′Ẑ∗g,n(̃ρg,n)]

−1,

where σ̂gg,n = n−1̂ε′
g,n̂εg,n with ε̂g,n = y∗g,n(̃ρg,n)−Z∗g,n(̃ρg,n)̂δg,n.

Step 2b: Efficient GMM estimator of ρg,n based on GS2SLS residuals
Let ûg,n = yg,n −Zg,n̂δg,n denote the GS2SLS residuals of the gth equation, and

let mρ
g,n(ρg,n,̂δg,n) denote the corresponding sample moment vector as defined in

(15). Then, the corresponding efficient GMM estimator for ρg,n based on GS2SLS
residuals is given by

ρ̂g,n = argmin
ρg:
∑

r∈Ig,ρ |ρg,r|∈[−aρ,aρ ]

mρ
g,n(ρg,n,̂δg,n)

′(�̂ρρ

gg,n)
−1mρ

g,n(ρg,n,̂δg,n), (32)

where �̂
ρρ

gg,n = (ψ̂ρρ
rs,gg,n) is an estimator of the VC matrix of the limiting distribution

of the normalized sample moments n1/2mρ
g,n(ρg,n,̂δg,n). Specifically, we have

ψ̂ρρ
rs,gg,n = (2n)−1σ̂ 2

gg,ntr
[
(Ar,n +A′

r,n)(As,n +A′
s,n)
]

+ α̂′
g,r,n�̂

δδ

gg,nα̂g,s,n,

with

α̂g,r,n = −n−1
[
Z′

∗g,n(̃ρg,n)(Ar,n +A′
r,n)(In −R∗

g,n(̃ρg,n))̂ug,n
]

.

The claim that (�̂
ρρ

gg,n)
−1 provides the efficient weighting of the sample moments

will be established by Theorem 5.

5.2. Asymptotic Properties of Limited Information Estimators

In this subsection, we derive results concerning the joint limiting distribution of the
GS2SLS estimators ρ̂g,n and δ̂g,n by applying the generic limit theory developed in
Theorem 4. In preparation, we first specialize the expressions for estimators of the
(g,g)th blocks of �δρ

n , �ρρ
n and �δδ

n , �δρ
n , �ρρ

n as implied by the specific structure
of δ̂g,n and ρ̂g,n. More specifically, let

�̂
δδ

gg,n = �̂
δδ

gg,n, �̂
δρ

gg,n = �̂
δρ

gg,nĴg,n, �̂
ρρ

gg,n =
[̃
J′

g,n

(
�̂

ρρ

gg,n

)−1
J̃g,n

]−1
,
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with

�̂
δρ

gg,n = �̂
δδ

gg,n

[̂
αg,1,n, . . . ,α̂g,S,n

]
,

Ĵg,n = (�̂ρρ

gg,n

)−1
J̃g,n

[̃
J′

g,n

(
�̂

ρρ

gg,n

)−1
J̃g,n

]−1
,

and J̃g,n = Jg,n(̃ρg,n). We now have the following result concerning the joint
asymptotic distribution of δ̂g,n and ρ̂g,n.

THEOREM 5 (Joint Asymptotic Normality of ρ̂g,n and δ̂g,n). Suppose Assump-
tions 1–8 hold, and that the smallest eigenvalues of �n are bounded away from
zero.20 Then, ρ̂g,n is efficient among the class of GMM estimators based on GS2SLS
residuals, and[
δ̂g,n − δg,n)

ρ̂g,n −ρg,n)

]
∼ AN

⎡⎣0,n−1

⎛⎝�̂
δδ

gg,n �̂
δρ

gg,n

�̂
δρ′
gg,n �̂

ρρ

gg,n

⎞⎠⎤⎦ .

In the above theorem, the estimators for the asymptotic VC matrix of ρ̂g,n and
δ̂g,n employ ρ̃g,n as an estimator for ρg,n. The theorem continues to hold if ρ̃g,n is
replaced by ρ̂g,n (or any other consistent estimator).

5.3. Definition of Full Information Estimators

In the previous section, we discussed GS2SLS estimation, where the parameters
of each equation are estimated separately from the spatially Cochrane–Orcutt
transformed model (10). In the following, we consider full information estimation,
where all parameters are estimated jointly from the stacked spatially Cochrane–
Orcutt transformed model (11). In particular, we will consider a GS3SLS estimator.

Step 3a: GS3SLS estimator of δn The GS3SLS estimator of δn based on the
stacked spatially Cochrane–Orcutt transformed model (11) is given bŷ̂δn = [Ẑ′

∗n(̂ρn)(
̂
−1
n ⊗ In)Z∗n(̂ρn)]

−1Ẑ′
∗n(̂ρn)(
̂

−1
n ⊗ In)

−1y∗n(̂ρn), (33)

where y∗n(̂ρn) = [y′
∗1,n(̂ρ1,n), . . . ,y

′
∗G,n(̂ρG,n)

]′
, Z∗n(̂ρn) = diagG

g=1

[
Z∗g,n(̂ρg,n)

]
,

Ẑ∗n(̂ρn) = diagG
g=1

[
Ẑ∗g,n(̂ρg,n)

]
with Ẑ∗g,n(̂ρg,n) = PHn Z∗g,n(̂ρg,n), and where


̂n = (̂σgh,n) with σ̂gh,n = n−1̂ε′
g,n̂εh,n and ε̂g,n = y∗g,n(̂ρg,n) − Z∗g,n(̂ρg,n)̂δg,n.

Below, we shall also utilize the following estimator for �δδ
n (corresponding tô̂δn):

̂̂�δδ

n =
[
n−1Ẑ′

∗n(̂ρn)(
̂
−1
n ⊗ In)Ẑ∗n(̂ρn)

]−1
,

and we denote the (g,h)th blocks of �δδ
n and ̂̂�δδ

n with �δδ
gh,n and ̂̂�δδ

gh,n, respectively.

20Explicit expressions for the submatrices composing �n specialized to ρ̂g,n and δ̂g,n are given in the proof of the
theorem.
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Step 3b: GMM estimator ofρg,n based on GS3SLS residuals In a final
step, we compute a further GMM estimator of ρg,n based on the GS3SLS

residuals ̂̂ug,n = yg,n − Zg, n̂̂δg,n, where ̂̂δg,n denotes the gth component of ̂̂δn. Let

mρ
g,n(ρg,n,̂̂δg,n) denote the corresponding sample moment vector as defined in (15).

Then, the corresponding GMM estimator for ρg,n based on GS3SLS residuals is
given by

̂̂ρg,n = argmin
ρg:
∑

r∈Ig,ρ |ρg,r|∈[−aρ,aρ ]

mρ
g,n(ρg,n,̂̂δg,n)

′
(̂̂�ρρ

gg,n

)−1
mρ

g,n(ρg,n,̂̂δg,n), (34)

where ̂̂�ρρ

gg,n is an estimator of the VC matrix �ρρ
gg,n of the limiting distribution

of the normalized sample moments n1/2mρ
g,n(ρg,n,̂̂δg,n). Towards presenting the

asymptotic distribution of ̂̂ρ1,n, . . . ,̂̂ρG,n we need estimators not only for the

(g,g)th block of �ρρ
n , but more generally for the (g,h)th block �

ρρ

gh,n. Let ̂̂�ρρ

n

and ̂̂�ρρ

gh,n denote the estimators for �ρρ
n and �

ρρ

gh,n, respectively, then the (r,s)th

element of ̂̂�ρρ

gh,n is defined as

̂̂ψρρ

rs,gh,n = (2n)−1σ̂ 2
gh,ntr

[
(Ar,n +A′

r,n)(As,n +A′
s,n)
]

(35)

+̂̂α′
g,r,n
̂̂�δδ

gh,n
̂̂αh,s,n,

with ̂̂αg,r,n = −n−1
[
Z′

g,n(In −R∗′
g,n(̂ρg,n))(Ar,n +A′

r,n)(In −R∗
g,n(̂ρg,n))̂̂ug,n

]
.

5.4. Asymptotic Properties of Full Information Estimators

In this subsection, we derive results concerning the joint limiting distribution of the

GS3SLS estimators ̂̂ρn and̂̂δn by applying again the generic limit theory developed
in Theorem 4. In preparation, we first specialize the expressions for estimators of

�δρ
n , �ρρ

n and �δδ
n , �δρ

n , �ρρ
n as implied by the specific structure of ̂̂ρn and ̂̂δn.

More specifically, let

̂̂�δδ

n = ̂̂�δδ

n ,̂̂�δρ

n = ̂̂�δρ

n diagG
g=1

(̂̂
Jg,n

)
, ̂̂�ρρ

n = diagG
g=1

(̂̂
J

′
g,n

) ̂̂�ρρ

n diagG
g=1

(̂̂
Jg,n

)
,

witĥ̂�δρ

n = ̂̂�δδ

n diagG
g=1

(
[̂̂αg,1,n, . . . ,̂̂αg,S,n]

)
,

̂̂
Jg,n =

(̂̂�ρρ

gg,n

)−1
Ĵg,n

[̂
J′

g,n

(̂̂�ρρ

gg,n

)−1
Ĵg,n

]−1

,

and with Ĵg,n = Jg,n(̂ρg,n). The next theorem establishes the joint limiting distri-

bution of ̂̂ρn and ̂̂δn.
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THEOREM 6 (Joint Asymptotic Normality of ̂̂ρn and̂̂δn). Suppose Assumptions
1–8 hold, and that the smallest eigenvalues of �n are bounded away from zero.21

Then,[
(̂̂δn − δn)

(̂̂ρn −ρn)

]
∼ AN

[
0,n−1

(̂̂�δδ

n
̂̂�δρ

n̂̂�δρ′
n

̂̂�ρρ

n

)]
.

The estimators ̂̂ρg,n based on GS3SLS residuals are efficient within their class.

In the above theorem, the estimators for the asymptotic VC matrix of ̂̂ρn and̂̂δn employ ρ̂g,n as an estimator for ρg,n. The theorem continues to hold if ρ̂g,n is
replaced by ̂̂ρg,n (or any other consistent estimator).

6. LIMITED AND FULL INFORMATION ONE-STEP ESTIMATORS

In the following, we discuss the one-step analogs to the two-step estimators
considered in the previous section. For simplicity, we assume the availability of
a consistent estimator for 
, say 
̃n = (σ̃ gh,n).

Toward defining our one-step limited information GMM estimator, consider the
stacked moment vector

mg,n(ρg,n,δg,n) =
[

mL
g,n(ρg,n,δg,n)

mQ
g,n(ρg,n,δg,n)

]
,

where mL
g,n(ρg,n,δg,n) = mδ

g,n(ρg,n,δg,n) and mQ
g,n(ρg,n,δg,n) = mρ

g,n(ρg,n,δg,n) are
the vectors of linear and quadratic sample moments for the gth equation as defined
in (12) and (13).22 Let

�LL
gg,n = σgg,n

[
n−1H′

nHn
]

and �QQ
gg,n = σ 2

gg,nKQQ
n ,

with KQQ
n = (kQQ

rs,n) and

kQQ
rs,n = (2n)−1tr

[
(Ar,n +A′

r,n)(As,n +A′
s,n)
]

.

Then, Emg,n(ρg,n,δg,n) = 0 and

VC(n1/2mg,n(ρg,n,δg,n)) =
[

�LL
gg,n 0
0 �QQ

gg,n

]
.

21Explicit expressions for the submatrices �n are given in the proof of the theorem.
22The purpose of switching the superscripts from δ and ρ to L for “linear” and Q for “quadratic” is to emphasize that
for one-step estimators both moment vectors are used for estimating both ρg,n and δg,n.
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Let �̃
LL
gg,n and �̃

QQ
gg,n denote the corresponding estimators, where σgg,n is replaced

by some consistent estimator σ̃gg,n. Then the one-step limited information GMM
estimator is defined as

(̂δ
o
g,n,ρ̂

o
g,n) = argmin

ρg,n,δg,n

mg,n(ρg,n,δg,n)
′
[
�̃

LL
gg,n 0

0 �̃
QQ
gg,n

]−1

mg,n(ρg,n,δg,n). (36)

For ease of distinction from the two-step limited information estimators defined
in the previous section, we refer to this estimator as the linear-quadratic GS2SLS
(LQ-GS2SLS) estimator. A simple adaptation of the methodology used to derive
the limiting distribution of two-step estimators yields

[
(̂δ

o
g,n − δg,n)

(̂ρo
g,n −ρg,n)

]
∼ AN

[
0,n−1�̂

o
g,n

]
,

with �̂
o
g,n = (̂So

g,n)
−1 and

Ŝo
g,n =

[
Ŝo,LL

g,n Ŝo,LQ
g,n

Ŝo,QL
g,n Ŝo,QQ

g,n

]
,

Ŝo,LL
g,n = σ̂ o−1

gg,n [n−1Ẑ∗g,n(̂ρ
o
g,n)

′Ẑ∗g,n(̂ρ
o
g,n)]+ σ̂ o−2

gg,n α̂o
g,n(K

QQ
n )−1α̂o′

g,n,

Ŝo,LQ
g,n = Ŝo,QL′

g,n = −σ̂ o−2
gg,n α̂o

g,n(K
QQ
n )−1Jg,n(̂ρ

o
g,n),

Ŝo,QQ
g,n = σ̂ o−2

gg,n J′
g,n(̂ρ

o
g,n)
(
KQQ

n

)−1
Jg,n(̂ρ

o
g,n),

where σ̂ o
gg,n = n−1̂εo′

g,n̂ε
o
g,n with ε̂o

g,n = y∗g,n(̂ρ
o
g,n) − Z∗g,n(̂ρ

o
g,n)̂δ

o
g,n, and where

α̂o
g,n = [̂αo

g,1,n, . . . ,α̂
o
g,S,n] with α̂o

g,r,n = −n−1
[
Z′∗g,n(̂ρ

o
g,n)(Ar,n +A′

r,n)

(In −R∗
g,n(̂ρ

o
g,n))̂u

o
g,n

]
and ûo

g,n = yg,n −Zg,n̂δ
o
n.

The one-step estimator defined in (36) is efficient among GMM estimators based
on the moment conditions Emg,n(ρg,n,δg,n) = 0. However, a comparison of the
above expressions for the asymptotic VC matrix of the one-step estimator with
those for the two-step estimator given by Theorem 5 reveals that in the case where
Zg,n only contains exogenous variables, and thus αg,n = 0, both estimators have
the same limiting distribution.

Our setup contains as an important special case models without spatial lags
in the disturbances (i.e., where ρg,n = 0 is known). Obviously the LQ-GS2SLS
estimator, which combines both linear and quadratic moment conditions, remains
well defined in this case, and we obtain (̂δ

o
g,n − δg,n) ∼ AN

[
0,n−1(̂So,LL

g,n )−1
]

as a
special case. The use of quadratic moment conditions may be especially beneficial
in cases where identification by the linear moments is weak; see, e.g., Kuersteiner
and Prucha (2020) for a recent discussion.
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Toward defining our one-step full information GMM estimator consider the
stacked sample moment vector

mn(ρn,δn) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mL
1,n(ρ1,n,δ1,n)

...
mL

G,n(ρG,n,δG,n)

mQ
1,n(ρ1,n,δ1,n)

...
mQ

G,n(ρG,n,δG,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let

�LL
n = 
n ⊗ [n−1H′

nHn
]
,

�QQ
n =

⎡⎢⎣�
QQ
11,n . . . �

QQ
1G,n

...
. . .

...
�

QQ
G1,n . . . �

QQ
GG,n

⎤⎥⎦= 
SQ,n ⊗KQQ
n ,

with �
QQ
gh,n = σ 2

gh,nKQQ
n and 
SQ,n = (σ 2

gh,n). Then, Em(ρn,δn) = 0 and

VC(mn(ρn,δn)) = n−1

[
�LL

n 0
0 �QQ

n

]
.

Let �̂
LL
n and �̂

QQ
n denote the corresponding estimators where σgh,n is replaced

by some consistent estimator σ̃gh,n. Then the one-step full information GMM
estimator is defined as

(̂̂δ
o

n,
̂̂ρo

n) = argmin
ρn,δn

mn(ρn,δn)
′
[

�̂
LL
n 0

0 �̂
QQ
n

]−1

mn(ρn,δn).

For ease of distinction from the two-step full information estimators defined in the
previous section, we refer to this estimator as the LQ-GS3SLS estimator. Again,
a simple adaptation of the methodology used to derive the limiting distribution of
two-step estimators yields[

(̂̂δ
o

n − δn)

(̂̂ρ
o
n −ρn)

]
∼ AN

[
0,n−1̂̂�o

n

]
,

with ̂̂�o

n = (̂̂S
o

n)
−1 and

̂̂So

n =
[ ̂̂SLL

n
̂̂SLQ

n̂̂SQL

n
̂̂SQQ

n

]
,

̂̂So,LL

n = n−1Ẑ′
∗n (̂̂ρ

o
n)[(
̂̂
o

n)
−1 ⊗ In]Ẑ∗n (̂̂ρ

o
n)

+diagG
g=1[̂̂α

o
g,n][(̂̂
o

SQ,n)
−1 ⊗ (KQQ

n )−1]diagG
g=1[̂̂α

o′
g,n],
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Ŝo,LQ
g,n = Ŝo,LQ′

g,n = −diagG
g=1[̂̂α

o
g,n][(̂̂
o

SQ,n)
−1 ⊗ (KQQ

n )−1]diagG
g=1[Jg,n (̂̂ρ

o
n)],

Ŝo,QQ
g,n = diagG

g=1[J′
g,n (̂̂ρ

o
n)][(

̂̂
o

SQ,n)
−1 ⊗ (KQQ

n )−1]diagG
g=1[Jg,n (̂̂ρ

o
n)],

where ̂̂
o

n = (̂̂σ o
gh,n) and ̂̂
o

SQ,n = (̂̂σ o2
gh,n) with ̂̂σ o

gh,n = n−1̂̂ε
o′
g, n̂̂ε

o
h,n and ̂̂εo

g,n =
y∗g,n (̂̂ρ

o
g,n)−Z∗g,n (̂̂ρ

o
g,n )̂̂δ

o

g,n, and where ̂̂αo
g,n = [̂̂α

o
g,1,n, . . . ,

̂̂αo
g,S,n] with

̂̂αo
g,r,n = −n−1

[
Z′

∗g,n (̂̂ρ
o
g,n)(Ar,n +A′

r,n)(In −R∗
g,n (̂̂ρ

o
g,n))̂̂ug,n

]
and ̂̂uo

g,n = yg,n −Zg, n̂̂δ
o

n.
A comparison of the above expression for the asymptotic VC matrix of the

one-step full information estimator with that for the two-step estimator given by
Theorem 6 reveals that in the case where the Zg,n only contain exogenous variables,
and thus αg,n = 0, both estimators have the same limiting distribution.

7. CONCLUDING REMARKS

This paper develops estimation methodologies for a cross-sectional simultaneous
equation model in G variables, where simultaneity stems from interdependencies
in the G variables as well as from network interdependencies. Taking guidance
from the spatial literature network interdependencies are modeled in the form of
weighted averages. For simplicity, and consistent with the spatial literature, we
refer to those weighted averages as spatial lags. We allow for higher-order spatial
lags in the endogenous variables, exogenous variables, and disturbances. As a
consequence, the model provides for significant flexibility in modeling network
effects.

The paper develops an estimation theory for both limited and full information
generalized method of moments estimators, which utilize both linear and quadratic
moment conditions. We consider both two- and one-step estimators. An important
aim in specifying our estimators was that the estimators remain feasible even for
very large data sets and general weights matrices.

To explore the small sample properties of our estimators we conducted a Monte
Carlo study. The details of the design and the results of that study are given in
Appendix G in the Online Supplementary Appendix. In general, the results are
encouraging. We consider scenarios where the parameters are well identified by
the linear moment conditions as well as scenarios where they are not. The study
includes the maximum likelihood (ML) estimator for comparison. In the well
identified case, the biases of all considered estimators are fairly small. As expected,
the ML estimator has the smallest root mean squared error (RMSE). However, in
general, the ML estimator only dominates the GS3SLS estimator slightly, and the
GS3SLS estimator dominates the GS2SLS estimator. The differences in RMSE
are the most pronounced for the estimates of the autoregressive parameters in
the disturbance process. For the scenarios where identification by linear moment
conditions alone is weak, the GS2SLS and GS3SLS estimators can, as expected,
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be substantially biased. In these scenarios, the LQ-GS2SLS and LQ-GS3SLS
estimators can greatly outperform the GS2SLS and GS3SLS estimators. However,
for the well identified scenarios the benefit of combining linear and quadratic
moment conditions seems limited.

We expect the model will be helpful for empirical research in both macro and
micro economic settings, as well as areas outside of economics. As illustrated in
the paper, one potential application is for modeling social interactions in different
activities; e.g., the level of different physical activities among groups of friends
connected via an activity tracker such as Fitbit. Suggestions for future research
include an extension of the methodology to panel data, as well as an extension that
allows for measurement errors in the data.

A. APPENDIX: PRELIMINARY RESULTS

In this appendix, we collect some preliminary results. All proofs are relegated to the Online
Supplementary Appendix.

A.1. Asymptotic Linearity of S2SLS, GS2SLS, and GS3SLS

Assumption 10 postulates that the estimators of the regression parameters are asymptoti-
cally linear. In the following, we show that the S2SLS, GS2SLS, and GS3SLS estimators
are indeed asymptotically linear.

LEMMA A.1. Let An = (aij,n) be some mn × mn real matrix where the row sums
of the absolute elements are bounded uniformly in n by some finite constant. Let
μn = (μ1,n, . . . ,μmn,n) and ηn = (η1,n, . . . ,ηmn,n)′ be some mn × 1 random vectors
with supn maxmn

i=1 E
∣∣μi,n

∣∣p < ∞ and supn maxmn
i=1 E

∣∣ηi,n
∣∣p < ∞ for some p > 1, and

let ξn = (ξ1,n, . . . ,ξmn,n)′ = μn +Anηn. Then supn maxmn
i=1 E

∣∣ξi,n
∣∣p < ∞.

LEMMA A.2. Suppose Assumptions 1–4 hold. Let Zn = [Yn,Xn,Yn], then

E
∣∣∣zij,n

∣∣∣4 ≤ C < ∞, (A.1)

where C does not depend on i,j, and n.

LEMMA A.3. Suppose Assumptions 1–4 hold. Let Zn = [Yn,Xn,Yn] and let An = (aij,n)

be some n×n matrix, where the row and column sums of the absolute elements are bounded
uniformly in n by some finite constant. Then n−1u′

h,nAnug,n = Op(1), n−1ZnAnug,n =
Op(1) and n−1ZnAnZn = Op(1) and furthermore

n−1ZnAnug,n −n−1EZnAnug,n = op(1).

LEMMA A.4. Suppose Assumptions 1–4, 5 and 6 hold. Consider the S2SLS estimator

δ̃g,n = (Ẑ′
g,nZg,n)−1Ẑ′

g,nyg,n,
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where Ẑg,n = PHn Zg,n and PHn = Hn(H′
nHn)−1H′

n. Then, (a) n1/2(̃δg,n − δg,n) =
n−1/2T′

gg,nεg,n +op(1) with Tgg,n = Fgg,nPgg,n and where

Pgg = Q−1
HHQHZ,g[Q′

HZ,gQ−1
HHQHZ,g]−1,

Fgg,n =
(

In −R∗′
g,n

)−1
Hn.

(b) n−1/2T′
gg,nεg,n = Op(1).

(c) Pgg is a finite matrix and P̃gg,n −Pgg = op(1) for

P̃gg,n = (n−1H′
nHn)−1(n−1H′

nZg,n)×
[(n−1Z′

g,nHn)(n−1H′
nHn)−1(n−1H′

nZg,n)]−1.

(d) λmin(n−1T′
gg,nTgg,n) ≥ c for some c > 0 for all large n.

LEMMA A.5. Suppose Assumptions 1–4, 5 and 6 hold. Consider the GS2SLS estimator

δ̂g,n = [Ẑ∗g,n(̂ρg,n)′Z∗g,n(̂ρg,n)]−1Ẑ∗g,n(̂ρg,n)′y∗g,n (̂ρg,n),

where Ẑ∗g,n(̂ρg,n) = PHn Z∗g,n(̂ρg,n), where ρ̂g,n is any consistent estimator for ρg,n.
Then,
(a) n1/2[̂δg,n − δg,n] = n−1/2T∗′

gg,nεg,n +op(1) with T∗
gg,n = F∗

gg,nP∗
gg,n and where

P∗
gg,n = Q−1

HHQHZ,g∗(ρg,n)[Q′
HZ,g∗(ρg,n)Q−1

HHQHZ,g∗(ρg,n)]−1,

F∗
gg,n = Hn.

(b) n−1/2T∗′
gg,nεg,n = Op(1).

(c) P∗
gg,n = Op(1) and P̃∗

gg,n −P∗
gg,n = op(1) for

P̃∗
gg,n = (n−1H′

nHn)−1(n−1H′
nZ∗g,n(̂ρg,n))×[

(n−1Z′∗g,n(̂ρg,n)Hn)(n−1H′
nHn)−1(n−1H′

nZ∗g,n(̂ρg,n))
]−1

.

(d) λmin(n−1T∗′
gg,nT∗

gg,n) ≥ c for some c > 0 for large n.

LEMMA A.6. Suppose Assumptions 1–4, 5 and 6 hold. Consider the GS3SLS estimator

̂̂δn =
[
Ẑ′∗n(̂ρn)(
̂

−1
n ⊗ In)Z∗n(̂ρn)

]−1
Ẑ′∗n(̂ρn)(
̂

−1
n ⊗ In)y∗n(̂ρn),

where Ẑ∗n(̂ρn) = diagG
g=1

[
Ẑ′∗g,n(̂ρg,n)

]
with Ẑ∗g,n(̂ρg,n) = PHn Z∗g,n(̂ρn), and ρ̂n =[

ρ̂′
1,n,. . . ,ρ̂

′
G,n

]′
is any consistent estimator for ρ̂n and 
̂n is any consistent estimator

for 
. Then

(a) n1/2[̂̂δn − δn] = n−1/2T∗∗′
n εn +op(1) with T∗∗

n = F∗∗
n P∗∗

n , and where

P∗∗
n =

[

−1 ⊗Q−1

HH

]
diag

[
QHZ,g∗(ρg,n)

]
×
{

diag
[
Q′

HZ,g∗(ρg,n)
][


−1 ⊗Q−1
HH

]
diag

[
QHZ,g∗(ρg,n)

]}−1
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and

F∗∗
n = IG ⊗Hn.

(b) n−1/2T∗∗′
n εn = Op(1).

(c) P∗∗
n = Op(1) and P̃∗∗

n −P∗∗
n = op(1) for

P̃∗∗
n =

[

̂

−1
n ⊗ (n−1H′

nHn)−1
]

diag
[
n−1H′

nZ∗g,n(̂ρg,n)
]

×
[
n−1Ẑ′∗n(̂ρn)(
̂

−1
n ⊗ In)Z∗n(̂ρn)

]−1
.

(d) λmin(n−1T∗∗′
n T∗∗

n ) ≥ c for some c > 0 for large n.

A.2. Auxiliary Results for Linear Quadratic Forms

In the following, we establish some auxiliary results on the relationship between linear and
quadratic forms based on some n×1 disturbance vector un and corresponding forms based
on a predictor ũn.

Assumption A.1. For n ≥ 1 the n×1 disturbance vector un is generated by

Rn
n×n

un
n×1

= en
n×1

,

where Rn is a nonstochastic nonsigular n×n matrix, and the row and column sums of the
absolute elements of Rn and R−1

n are bounded uniformly by some finite constant, and
the innovations en = (e1,n, . . . ,en,n)′ have the following properties: For each n ≥ 1 the
random variables e1,n, . . . ,en,n are totally independent with Eei,n = 0, E(e2

i,n) = σ 2 > 0,

and sup1≤i≤n,n≥1 E
∣∣ei,n

∣∣4+υ
< ∞ for some υ > 0.

Assumption A.2. The predictor ũn for un satisfies that

ũn −un = Dn�n,

where Dn = (dij,n) is an n × p� random matrix and �n is a p� × 1 random vector.

Furthermore, supn sup1≤i≤n,1≤,j≤p�
E
∣∣dij,n

∣∣2+δ
< ∞ for some δ > 0, and n1/2 ‖�n‖ =

Op(1).

Assumption A.3. For any n×n real matrix A∗
n, whose row and column sums are bounded

uniformly in absolute value,

n−1D′
nA∗

nun −n−1ED′
nA∗

nun = op(1).

Remark. The above assumptions are formulated in a general fashion, so that the results
on the properties of linear quadratic forms established below can also be utilized in a
variety of contexts. For an interpretation of the results specific to this paper, suppose that un
corresponds to the disturbance term of the g-th equation of the model defined by (1)–(8).
Then the quantities considered in Assumptions A.1–A.3 should be interpreted as un = ug,n,
Dn = −Zg,n, Rn = I −∑r∈Ig,ρ

ρg,r,nMr,n, en = εg,n, and �n = δ̃g,n − δg,n, where δ̃g,n

is some estimator for the parameter vector δg,n. Observe that under Assumptions 1-4, and
given δ̃g,n a n1/2 -consistent estimator, these quantities clearly satisfy Assumptions A.1–
A.3 in light of Lemmata A.1 and A.2.
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LEMMA A.7. Let A∗
n be an n×n real matrix whose row and column sums are bounded

uniformly in absolute value. Suppose Assumptions A.1 and A.2 hold, then:

(a) n−1E
∣∣u′

nA∗
nun
∣∣= O(1), var(n−1u′

nA∗
nun) = o(1) and

n−1̃u′
nA∗

nũn −n−1Eu′
nA∗

nun = op(1).

(b) n−1E
∣∣D′

nA∗
nun
∣∣= O(1), and

n−1D′
nA∗

nũn −n−1D′
nA∗

nun = op(1).

(c) If furthermore Assumption A.3 holds, then

n−1/2̃u′
nA∗

nũn = n−1/2u′
nA∗

nun +α∗′
n n1/2�n +op(1)

with α∗
n = n−1ED′

n(A
∗
n + A∗′

n )un. (Of course, in light of (a) and (b), we have α∗
n =

O(1) and n−1D′
n(A

∗
n +A∗′

n )̃un −α∗
n = op(1)).

We next state an additional assumption regarding �n, which is satisfied by the various
IV estimators considered in the paper; compare Lemmata A.4–A.6. This assumption then
permits a specialization of the r.h.s. expression for n−1/2ũ′

nA∗
nũn given in Lemma A.7(c) for

the case where A∗
n = R′

nAnRn, which will be helpful for deriving its limiting distribution.
Note that given Assumption A.1 and A∗

n = R′
nAnRn we have u′

nA∗
nun = u′

nR
′
nAnRnun =

e′nAnen.

Assumption A.4. (a) The vector of innovations εn = [ε′
1,n, . . . ,ε

′
G,n]′ satisfies Assump-

tion 4. (b) The estimator �n is asymptotically linear in the sense that

n1/2�n = n−1/2
G∑

h=1

T′
h,nεh,n +op(1),

with Th,n = Fh,nPh,n where the Fh,n = (fhis,n) are n × pF dimensional real nonstochastic
matrices with supn n−1∑n

i=1

∣∣fhis,n
∣∣η < ∞ with η > 2 for h = 1, . . . ,G,s = 1, . . . ,pF , and

Ph,n = (phkl,n) are pF × p� dimensional real nonstochastic matrices whose elements are
uniformly bounded in absolute value.

We now have the following specialization of Lemma A.7(c).

LEMMA A.8. Suppose Assumptions A.1–A.3 hold where �n is asymptotically linear
satisfying Assumption A.4, and suppose en = εg,n. Furthermore, let An be an n × n real
matrix whose row and column sums are bounded uniformly in absolute value.

(a) Then

n−1/2̃u′
nR

′
nAnRnũn = n−1/2ε′

g,nAnεg,n +n−1/2
G∑

h=1

a′
h,nεh,n +op(1),

where ah,n = (ah1,n, . . . ,ahn,n)
′ = Th,nαn with αn = n−1ED′

nR
′
n(An + A′

n)Rnun.
Furthermore, supn n−1∑n

i=1

∣∣ahi,n
∣∣η < ∞ for η > 2.
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(b) If furthermore the diagonal elements of An are zero, then

E

[
n−1/2ε′

g,nAnεg,n +n−1/2
G∑

h=1

a′
h,nεh,n

]
= 0,

var

[
n−1/2ε′

g,nAnεg,n +n−1/2
G∑

h=1

a′
h,nεh,n

]

= n−1σ 2
ggtr

[
An(An +A′

n)
]+n−1

G∑
h=1

G∑
l=1

σhla′
h,nal,n.

B. Appendix: Proofs for Section 4

Proof of Theorem 1. The existence and measurability of ρ̃g,n is assured by, e.g., Lemma
3.4 in Pötscher and Prucha (1997). The objective function of the weighted nonlinear least
squares estimator and its corresponding nonstochastic counterpart are given by, respectively,

Rn(ω,ρg) = mρ
g,n(ρg,̃δg,n)′ϒ̃g,nmρ

g,n(ρg,̃δg,n)

=
[
�̃g,nrg,n(ρg)− γ̃ g,n

]′
ϒ̃g,n

[
�̃g,nrg,n(ρg)− γ̃ g,n

]
,

Rn(ρg) =
[
�g,nrg,n(ρg)−γ n

]′
ϒn

[
�g,nrg,n(ρg)−γ n

]
,

where the quantities appearing in the above equation are defined before the theorem in the
text. To prove the consistency of ρ̃g,n we show that the conditions of, e.g., Lemma 3.1 in
Pötscher and Prucha (1997) are satisfied for the problem at hand. We first show that ρg,n

is an identifiably unique sequence of minimizers of Rn. Observe that Rn(ρg) ≥ 0 and that

Rn(ρg,n) = 0, since γ n = �g,nrg,n(ρg,n) by (14). Utilizing Assumptions 8 and 9, we get

Rn(ρg)−Rn(ρg,n) = Rn(ρg)

=
[
�g,nrg,n(ρg)−�g,nrg,n(ρg,n)

]′
ϒn

[
�g,nrg,n(ρg)−�g,nrg,n(ρg,n)

]
=
[
rg,n(ρg)− rg,n(ρg,n)

]′
�′

g,nϒn�g,n

[
rg,n(ρg)− rg,n(ρg,n)

]
≥ λmin(ϒn)λmin(�′

g,n�g,n)
[
rg,n(ρg)− rg,n(ρg,n)

]′ [
rg,n(ρg)− rg,n(ρg,n)

]
≥ λ∗

q∑
s=1

[
ρg,s −ρg,s,n

]2
for some λ∗ > 0. Hence, for every ε> 0 and n, we have

inf
ρg:
∑

r∈Ig,ρ

∣∣ρg,r
∣∣∈[−aρ,aρ ] and

∥∥ρg−ρg,n

∥∥≥ε
[Rn(ρg)−Rn(ρg,n)]

≥ inf
ρg:
∑

r∈Ig,ρ

∣∣ρg,r
∣∣∈[−aρ,aρ ] and

∥∥ρg−ρg,n

∥∥≥ε
λ∗
∑

r∈Ig,ρ

[
ρg,r −ρg,r,n

]2 = λ∗ε2 > 0,
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which proves that ρg,n is identifiably unique. Next let �n = [�n,−γ n] and �̃n = [�̃n, −
γ̃ n], then∣∣∣Rn(ω,ρg)−Rn(ρg)

∣∣∣
=
∣∣∣∣[rg,n(ρg)′,1

][
�̃

′
nϒ̃n�̃n −�′

nϒn�n

][
rg,n(ρg)′,1

]′∣∣∣∣
≤
∥∥∥�̃′

nϒ̃n�̃n −�′
nϒn�n

∥∥∥∥∥∥[rg,n(ρg)′,1]
∥∥∥2

≤
∥∥∥�̃′

nϒ̃n�̃n −�′
nϒn�n

∥∥∥{1+ [2q+q(q−1)/2]a4
ρ

}
.

Next, observe that the elements of �n and �̃n are all of the form n−1Eu′
nAnun and

n−1ũ′
nAnũn, where the row and column sums of A n are bounded uniformly in absolute

value. Recall that ug,n =
[∑

r∈Ig,ρ
ρg,r,nMr,n

]
ug,n +εg,n and observe that ũg,n −ug,n =

−Zg,n(̃δg,n − δg,n). By Assumption 1 and 2, the row and column sums of the absolute

elements of
∑

r∈Ig,ρ
ρg,r,nMr,n and

[∑
r∈Ig,ρ

ρg,r,nMr,n

]−1
are bounded in absolute value

by some finite constant. By Assumptions 4, the elements of εg,n are totally independent
with zero mean, positive variance and finite 4 + υ absolute moments for some υ > 0.
Furthermore, observe that by Lemma A.2 the fourth absolute moments of the elements
of Zg,n are uniformly bounded by a finite constant and n1/2(̃δg,n − δg,n) = Op(1). It now

follows immediately from Lemma A.7(a) that �̃n −�n
p→ 0, that the elements of �n are

O(1) and, consequently, that the elements of �̃n are Op(1). The elements of ϒ̃n and ϒn
have the analogous properties in light of condition (b) in the theorem. Given this, it follows
from the above inequality that Rn(ω,ρg) − Rn(ρg) converges to zero uniformly over the
optimization space, i.e.,

sup
ρg:
∑

r∈Ig,ρ

∣∣ρg,r
∣∣∈[−aρ,aρ ]

∣∣∣Rn(ω,ρg)−Rn(ρg)

∣∣∣
≤
∥∥∥�̃′

nϒ̃n�̃n −�′
nϒn�n

∥∥∥{1+ [2q+q(q−1)/2]a4
ρ

} p→ 0

as n → ∞. The consistency of ρ̃g,n now follows directly from Lemma 3.1 in Pötscher and
Prucha (1997). �

Proof of Theorem 2. We have shown in Theorem 1 that the GMM estimator ρ̃g,n defined
in (16) is consistent. Apart on a set, whose probability tends to zero, the estimator satisfies
the following first-order condition

mρ
g,n(̃ρg,n,̃δg,n)′ϒ̃g,n

∂mρ
g,n(̃ρg,n,̃δg,n)

∂ρg
= 0.

Substituting the mean value theorem expression

mρ
g,n(̃ρg,n,̃δg,n) = mρ

g,n(ρg,n,̃δg,n)+ ∂mρ
g,n(ρ̌g,n,̃δg,n)

∂ρg
(̃ρg,n −ρg,n),
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where ρ̌g,n is some between value, into the first-order condition yields

∂mρ
g,n(̃ρg,n,̃δg,n)

∂ρ′
g

ϒ̃g,n
∂mρ

g,n(ρ̌g,n,̃δg,n)

∂ρg
n1/2 (̃ρg,n −ρg,n) (B.1)

= −∂mρ
g,n(̃ρg,n,̃δg,n)

∂ρ′
g

ϒ̃g,nmρ
g,n(ρg,n,̃δg,n).

Observe that

∂mρ
g,n(ρg,̃δg,n)

∂ρg
= −�̃g,n

∂rg,n(ρg)

∂ρg
(B.2)

and consider

�̃g,n = ∂mρ
g,n(̃ρg,n,̃δg,n)

∂ρ′
g

ϒ̃g,n
∂mρ

g,n(ρ̌g,n,̃δg,n)

∂ρg
(B.3)

= ∂rg,n(̃ρg,n)

∂ρ′
g

�̃
′
g,nϒ̃g,n�̃g,n

∂rg,n(ρ̌g,n)

∂ρg
,

�g,n = ∂rg,n(ρg,n)

∂ρ′
g

�′
g,nϒg,n�g,n

∂rg,n(ρg,n)

∂ρg
.

In proving Theorem 1, we have demonstrated that �̃g,n −�g,n
p→ 0 and that the elements of

�̃g,n and �g,n are Op(1) and O(1), respectively. By Assumption 9, we have ϒ̃g,n −ϒg,n =
op(1) and also that the elements of ϒ̃g,n and ϒg,n are Op(1) and O(1), respectively. Since
ρ̃g,n and ρ̌g,n are consistent for ρg,n, and the elements of ρg,n are bounded in absolute
value, clearly

�̃g,n −�g,n
p→ 0, (B.4)

as n → ∞, and furthermore �̃g,n = Op(1) and �g,n = O(1). In particular, λmax(�g,n) ≤
λ∗∗
� where λ∗∗

� is some finite constant. Observe that in light of Assumptions 8 and 9, we
have

λmin(�g,n) ≥ λmin(ϒg,n)λmin(�′
g,n�g,n)λmin

{
∂rg,n(ρg,n)

∂ρ′
g

∂rg,n(ρg,n)

∂ρg

}
≥ λ∗

�

for some λ∗
� > 0, observing that

λmin

{
∂rg,n(ρg,n)

∂ρ′
g

∂rg,n(ρg,n)

∂ρg

}
= λmin

{
Iqg + semi-positive matrix

}≥ 1.

Hence 0 < λmax{�−1
g,n} = 1/λmin(�g,n) ≤ 1/λ∗

� < ∞, and thus we also have �−1
g,n = O(1).

Let �̃
+
g,n denote the generalized inverse of �̃g,n. It then follows as a special case of Lemma

F1 in Pötscher and Prucha (1997) that �̃g,n is nonsingular eventually with probability

tending to one, that �̃
+
g,n = Op(1), and that

�̃
+
g,n −�−1

g,n
p→ 0, (B.5)

as n → ∞.
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Premultiplying (B.1) by �̃
+
g,n and rearranging terms yields

n1/2(̃ρg,n −ρg,n) =
[
I − �̃

+
g,n�̃g,n

]
n1/2 (̃ρg,n −ρg,n)

− �̃
+
g,n

∂mρ
g,n(̃ρg,n,̃δg,n)

∂ρ′
g

ϒ̃g,nn1/2mρ
g,n(ρg,n,̃δg,n).

In light of the above discussion, the first term on the r.h.s. is zero on ω-sets of probability
tending to one. This yields

n1/2(̃ρg,n −ρg,n) = −�̃
+
g,n

∂mρ
g,n(̃ρg,n,̃δg,n)

∂ρ′
g

ϒ̃g,nn1/2mρ
g,n(ρg,n,̃δg,n)+op(1). (B.6)

Observe that

�̃
+
g,n

∂mρ
g,n(̃ρg,n,̃δg,n)

∂ρ′
g

ϒ̃g,n −�−1
g,n

∂rg,n(ρn.g)

∂ρ′
g

�′
g,nϒg,n = op(1). (B.7)

In light of (15), the elements of n1/2mρ
g,n(ρg,n,̃δg,n) are of the form (s = 1, . . . ,S)

n−1/2ũ′
g,n

[
In −R∗′

g,n(ρg,n)
]

As,n

[
In −R∗

g,n(ρg,n)
]

ũg,n

with[
In −R∗

g,n(ρg,n)
]

ug,n = εg,n,

ũg,n −ug,n = −Zg,n(̃δg,n − δg,n),

n1/2(̃δg,n − δg,n) = n−1/2
G∑

h=1

T′
gh,nεh,n +op(1).

Recall that if we define ũn = ũg,n, un = ug,n, en = εg,n, Rn = In − R∗
g,n(ρg,n), Dn =

−Zg,n, �n = δ̃g,n −δg,n these quantities satisfy Assumptions A.1–A.3 in light of Lemmata
A.1–A.3. Hence, it follows from Lemma A.8 that

n−1/2ũ′
g,n

[
In −R∗′

g,n(ρg,n)
]

As,n

[
In −R∗

g,n(ρg,n)
]

ũg,n

= n−1/2 1

2
ε′

g,n(As,n +A′
s,n)εg,n +n−1/2α′

g,s,n

G∑
h=1

T′
gh,nεh,n +op(1),

where αg,s,n = −n−1EZ′
g,n

[
In −R∗′

g,n(ρg,n)
]
(As,n +A′

s,n)εg,n. Furthermore, the lemma

implies that for some η > 2 the sample moments of the absolute elements Th,nαg,s,n are
uniformly bounded. We now have

n1/2mρ
g,n(ρg,n,̃δg,n) (B.8)

= n−1/2

⎡⎢⎢⎣
1
2ε′

g,n(A1,n +A′
1,n)εg,n +α′

g,1,n
∑G

h=1 T′
gh,nεh,n

...
1
2ε′

g,n(AS,n +A′
S,n)εg,n +α′

g,S,n
∑G

h=1 T′
gh,nεh,n

⎤⎥⎥⎦+op(1).
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Let �
ρρ
gg,n = (ψ

ρρ
rs,gg,n) denote the VC matrix of the vector of linear quadratic forms on the

r.h.s. of (B.8), then observing that the diagonal elements of As,n are zero and that the VC
matrix of εn is 
 ⊗ In, it follows from Lemma A.1 in Kelejian and Prucha (2010) that

ψ
ρρ
rs,gg,n = 1

2n
σ 2

ggtr
[
(Ar,n +A′

r,n)(As,n +A′
s,n)
]

(B.9)

+ 1

n
α′

g,r,n

⎡⎣ G∑
h=1

G∑
l=1

σhlT
′
gh,nTgl,n

⎤⎦αg,s,n.

We note that λmin(�
ρρ
gg,n) ≥ const > 0 by assumption. Since the matrices As,n, the vectors

of the linear forms, and—in light of Assumption 4—the innovations εn satisfy all of the
remaining assumptions of the central limit theorem for vectors of linear quadratic forms
given in Kelejian and Prucha (2010) it now follows that

ξg,n = −(�
ρρ
gg,n)−1/2n−1/2

⎡⎢⎢⎣
1
2ε′

g,n(A1,n +A′
1,n)εg,n +α′

g,1,n
∑G

h=1 T′
gh,nεh,n

...
1
2ε′

g,n(AS,n +A′
S,n)εg,n +α′

g,S,n
∑G

h=1 T′
gh,nεh,n

⎤⎥⎥⎦
d→ N(0,IS). (B.10)

Next, observe that �
ρρ
gg,n = O(1), and hence (�

ρρ
gg,n)1/2 = O(1), since the row and column

sums of the absolute elements of Ar,n are uniformly bounded by assumption, and since in
light of the above assumptions the terms n−1α′

g,r,nT′
gh,nTgl,nα′

g,s,n are uniformly bounded
in absolute value. It now follows from (B.6), (B.7), and (B.10) that

n1/2(̃ρg,n −ρg,n) = [J′
g,nϒg,nJg,n]−1J′

g,nϒg,n(�
ρρ
gg,n)1/2ξg,n +op(1), (B.11)

observing that �g,n = J′
g,nϒg,nJg,n. This establishes (19). Since all of the nonstochas-

tic terms on the r.h.s. of (B.11) are O(1), it follows that n1/2(̃ρg,n − ρg,n) = Op(1).
Next recall that 0 < λ∗

� ≤ λmin(�g,n) ≤ λmax(�g,n) ≤ λ∗∗
� < ∞ and observe that

λmin(�−1
g,n) = 1/λmax(�g,n). Hence

λmin

{
�−1

g,nJ′
g,nϒg,n�

ρρ
gg,nϒg,nJg,n�−1

g,n

}
≥ λmin

(
�

ρρ
gg,n

)
λmin

(
ϒg,n

)
λmin(�−1

g,nJ′
g,nϒg,nJg,n�−1

g,n)

≥ λmin
(
�

ρρ
gg,n

)
λmin

(
ϒg,n

)
/λ∗∗

� ≥ const > 0.

This establishes the last claim of the theorem. �

Proof of Lemma 1. Observe that ũg,n = ug,n −Zg,n�g,n with �g,n = δ̃g,n −δg,n, and
thus

ε̃g,n =
[
In −R∗

g,n (̃ρg,n)
]

ũg,n

= εg,n −R∗
g,n(̃ρg,n −ρg,n)ug,n −

[
In −R∗

g,n (̃ρg,n)
]

Zg,n�g,n.
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Consequently

σ̃gh,n = n−1ε̃′
g,nε̃h,n = n−1ε′

g,nεh,n

+n−1u′
g,n

[
R∗

g,n (̃ρg,n −ρg,n)
]′

R∗
h,n(̃ρh,n −ρh,n)uh,n

+�′
g,nn−1Z′

g,n

[
In −R∗

g,n (̃ρg,n)
]′ [

In −R∗
h,n (̃ρh,n)

]
Zh,n�h,n

−n−1ε′
g,nR∗

h,n (̃ρh,n −ρh,n)uh,n −n−1ε′
h,nR∗

g,n(̃ρg,n −ρg,n)ug,n

−n−1ε′
g,n

[
In −R∗

h,n (̃ρh,n)
]

Zh,n�h,n −n−1ε′
h,n

[
In −R∗

g,n (̃ρg,n)
]

Zg,n�g,n

+n−1u′
g,n

[
R∗

g,n (̃ρg,n −ρg,n)
]′ [

In −R∗
h,n (̃ρh,n)

]
Zh,n�h,n

+n−1u′
h,n

[
R∗

h,n (̃ρh,n −ρh,n)
]′ [

In −R∗
g,n (̃ρg,n)

]
Zg,n�g,n.

By Assumption 4, we have σgh =∑G
l=1 σ∗lgσ∗lh and εg =∑G

l=1 σ∗lgvl. Since the elements

of v are i.i.d. (0,1), it follows that n−1v′
lvl = 1+op(1) and n−1v′

lvk = op(1) for l �= k. Hence

n−1ε′
g,nεh,n =

G∑
l=1

G∑
k=1

σ∗lgσ∗khn−1v′
lvk =

G∑
l=1

σ∗lgσ∗lh +op(1) = σgh +op(1).

Next observe that, taking into account that εh,n =
[
In −R∗

g,n(ρg,n)
]

ug,n, all the other

terms consist of expressions of the form op(1)n−1u′
g,nAnuh,n, op(1)n−1u′

g,nAnZh,n and

op(1)n−1Z′
g,nAnZh,n, where An is a matrix whose row and column sums of the absolute

elements is uniformly bounded. In light of Lemma A.3 all those expressions are seen to be
op(1), and thus σ̃gh,n −σgh = op(1) as claimed. �

Proof of Theorem 3. We first demonstrate that �̃
ρρ
gg,n − �

ρρ
gg,n = op(1), where the

elements of �̃
ρρ
gg,n and �

ρρ
gg,n are defined in ( 18) and (24). By Lemma 1, we have σ̃gh,n −

σgh = op(1). Furthermore, by assumption n−1T̃′
gh,nT̃gl,n −n−1T′

gh,nTgl,n = op(1), where

n−1T′
gh,nTgl,n = O(1) in light of Assumption 10. Next, observe that under the maintained

assumption the row and column sums of the absolute elements of the matrices Ar,n and
As,n are uniformly bounded, and thus clearly are those of the matrices An = (aij,n) with
aij,n = (aij,r,n + aji,r,n)(aij,s,n + aji,s,n). It then follows directly from Lemma A.7 that
α̃g,r,n −αg,r,n = op(1), where αg,r,n = O(1) and α̃g,r,n = Op(1). Hence, clearly ψ̃

ρρ
rs,gg,n −

ψ
ρρ
rs,gg,n = op(1), ψρρ

rs,gg,n = O(1) and ψ̃
ρρ
rs,gg,n = Op(1), as well as �̃

ρρ
gg,n −�

ρρ
gg,n = op(1),

�
ρρ
gg,n = O(1) and �̃

ρρ
gg,n = Op(1). Observing that λmin(�

ρρ
gg,n) ≥ c∗

� > 0 it follows further

that (�̃
ρρ
gg,n)−1 − (�

ρρ
gg,n)−1 = op(1), (�

ρρ
gg,n)−1 = O(1) and (�̃

ρρ
gg,n)−1 = Op(1).

By Assumption 9, ϒ̃g,n −ϒg,n = op(1), ϒg,n = O(1) and thus ϒ̃g,n = Op(1). In proving

Theorem 2, we have verified that J̃g,n − Jg,n
p→ 0, Jg,n = O(1) and J̃g,n = Op(1), and

furthermore that (̃J′
g,nϒ̃g,ñJg,n)+ −(J′

g,nϒg,nJg,n)−1 = op(1), (̃J′
g,nϒ̃g,ñJg,n)+ = Op(1)

and (J′
g,nϒg,nJg,n)−1 = O(1). The claim that �̃

ρρ
gg,n −�

ρρ
gg,n = op(1) and �

ρρ
gg,n = O(1)

is now obvious. Observing that λmin
[
�

ρρ
gg,n(ϒg,n)

] ≥ const > 0 by Theorem 2, it follows

further that (̃�
ρρ
gg,n)−1 − (�

ρρ
gg,n)−1 = op(1), (�

ρρ
gg,n)−1 = O(1) and (�̃

ρρ
gg,n)−1 = Op(1).

�
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We shall utilize the following lemma.

LEMMA B.1. Suppose the nG × 1 vector of innovations εn is generated as postulated
in Assumption 4. Let A = diagG

g=1(Agg), and B = diagG
g=1(Bgg) be symmetric nG × nG

matrices with zero diagonal elements, and let a=[a′
1, . . . ,a

′
G]′ and b=[b′

1, . . . ,b
′
G]′ be nG×

1 nonstochastic vectors. Then

E(ε′Aε +a′ε)=0

cov(ε′Aε +a′ε,ε′Bε +b′ε)=2tr [A(
 ⊗ I)B(
 ⊗ I)]+a′(
 ⊗ I)b

= 2
G∑

h=1

G∑
l=1

σ 2
hltr [AhhBll]+

G∑
h=1

G∑
l=1

σhla
′
hbl.

Proof. The result follows immediately from Lemma A1 in Kelejian and Prucha (2010),
observing that the diagonal elements of A∗ = (
�⊗I)A(
′

�⊗I) and B∗ = (
�⊗I)B(
′
�⊗

I) are zero. �

Proof of Theorem 4. Observe that ηn = n−1/2T′
nεn and thus clearly �δδ

n = Eηnη′
n =

n−1T′
nEεnε′

nTn = n−1T′
n(
 ⊗ In)Tn as claimed.

Next, observe that ξgs,n = n−1/2 [ε′
nBεn +b′εn

]
with B = diag(0, . . . ,Bgg, . . . ,0), where

Bgg = (As,n +A′
s,n)/2 and b = Tg,nαg,s,n with Tg,n = [T′

g1,n, . . . ,T
′
gG,n]′. It now follows

from Lemma B.1 that

cov(ηn,ξgs,n) = cov(n−1/2T′
nεn,n

−1/2 [ε′
nBεn +b′εn

]
)=cov(n−1/2ηn,n

−1/2b′εn)

= n−1T′
n(
 ⊗ In)Tg,nαg,s,n,

and thus

cov(ηn,ξg,n) = n−1T′
n(
 ⊗ In)Tg,n

[
αg,1,n, . . . ,αg,S,n

]
and

�
δρ
n = cov(ηn,ξn) = n−1T′

n(
 ⊗ In)TndiagG
g=1

[
αg,1,n, . . . ,αg,S,n

]
,

as claimed.
Define ξgr,n = n−1/2 [ε′

nAεn +a′εn
]

with A = diag(0, . . . ,Agg, . . . ,0) where Agg =
(Ar,n +A′

r,n)/2 and a = Tg,nαg,r,n. Then applying Lemma B.1, we see that

cov(ξgr,n,ξhs,n) = σ 2
gh,n(2n)−1tr

[(
Ar,n +A′

r,n
)(

As,n +A′
s,n
)]

+α′
g,r,n

⎡⎣ G∑
u=1

G∑
v=1

σuv,nT′
gu,nThv,n

⎤⎦αh,s,n,

which verifies the expressions for the elements of �n = cov(ξn,ξn).
In light of Assumption 10 and Theorem 2, we have

n1/2
[
δ̃n − δn
ρ̃n −ρn

]
=
⎡⎣I 0

0 diagg

[[
J′

g,nϒg,nJg,n

]−1
J′

g,nϒg,n

]⎤⎦[ηn
ξn

]
+op(1).
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The vector of linear-quadratic forms [η′
n,ξ

′
n]′ is readily seen to satisfy the assumptions

of Theorem A.1 in Kelejian and Prucha (2010). Hence, it follows from that central limit
theorem that

�
−1/2
n

[
ηn
ξn

]
d→ N(0,Id),

which proves the first part of the theorem.
Note that λmin(�

ρρ
gg,n) ≥ λmin(�

ρρ
n ) ≥ λmin(�n) ≥ const > 0. In proving Theorem 3, we

have shown that �̃
ρρ
gg,n −�

ρρ
gg,n = op(1), �ρρ

gg,n = O(1) and �̃
ρρ
gg,n = Op(1). The proof that

�̃
ρρ
gh,n −�

ρρ
gh,n = op(1), �ρρ

gh,n = O(1) and �̃
ρρ
gh,n = Op(1) is analogous. Thus �̃

ρρ
n −�

ρρ
n =

op(1), �
ρρ
n = O(1) and �̃

ρρ
n = Op(1). Observing that λmin(�

ρρ
n ) ≥ const > 0 it follows

further that (�̃
ρρ
n )−1 − (�

ρρ
n )−1 = op(1), (�

ρρ
n )−1 = O(1) and (�̃

ρρ
n )−1 = Op(1).

Next recall that in proving Theorem 3, we demonstrated that α̃g,r,n − αg,r,n = op(1),
αg,r,n = O(1) and α̃g,r,n = Op(1), and furthermore that σ̃gh,n − σgh = op(1). Since

n−1T̃′
gh,nT̃kl,n − n−1T′

gh,nTkl,n = op(1) it follows that �̃
δδ
n − �δδ

n = op(1) and �̃
δρ
n −

�
δρ
n = op(1). Also observe that in light of Assumption 10, we have �δδ

n = O(1) and

�
δρ
n = O(1). This and the above results imply that �̃n −�n = op(1), �n = O(1) and �̃n =

Op(1). Recalling that λmin(�n) ≥ const > 0, it follows further that �̃
−1
n −�−1

n = op(1),

�−1
n = O(1) and �̃

−1
n = Op(1).

By Assumption 9, ϒ̃g,n − ϒg,n = op(1), ϒg,n = O(1) and thus ϒ̃g,n = Op(1). Also
recall from the proof of Theorem 3 that J̃g,n −Jg,n = op(1), Jg,n = O(1) and J̃g,n = Op(1),

and furthermore that (̃J′
g,n
˜̃ϒg,ñJg,n)+ − (J′

g,nϒg,nJg,n)−1 = op(1), (̃J′
g,n
˜̃ϒg,ñJg,n)+ =

Op(1) and (J′
g,nϒg,nJg,n)−1 = O(1). The claim that �̃n −�n = op(1) and �n = O(1) is

now obvious. Observing that

λmin(�n) ≥ λmin(�n)λmin

{
diagg[(J′

g,nϒg,nJg,n)−1]
}

≥ const > 0

utilizing that λmin

[
J′

g,nϒg,nJg,n)−1
]
≥ const > 0 as demonstrated in the proof of Theorem

2, it follows further that �̃
−1
n −�−1

n = op(1), �−1
n = O(1) and �̃

−1
n = Op(1) . �

C. Appendix: Proofs for Section 5

LEMMA C.1. Suppose the assumptions of Theorem 5 hold. Let ρ̃g,n be the initial GMM
estimators defined in (30). Then ρ̃g,n −ρg,n = op(1).

Proof. To prove the claim we verify the assumptions of Theorem 1. Assumptions 1–8
are maintained. Assumption 9 holds trivially with ϒ̃g,n = ϒg,n = I. Observing furthermore
that by Lemma A.4 we have n1/2(̃δg,n − δg,n) = Op(1) completes the proof. �

Proof of Theorem 5. The proof of Theorem 5 is based on the generic limit theory
developed in Theorem 4. In light of that theorem it proves convenient to first derive the
limiting distribution of δ̂n = (̂δ

′
1,n, . . . ,̂δ

′
G,n)′ and ρ̂n = (̂ρ′

1,n, . . . ,ρ̂
′
G,n)′. The limiting

distribution of δ̂g,n and ρ̂g,n is then obtained as a trivial specialization. For clarity we divide
the remainder of the proof into several parts.
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Part 1: (Verification of Assumption 10 for δ̂g,n) In light of Lemma A.5, we have
n1/2[̂δg,n − δg,n] = n−1/2T′

gg,nεg,n +op(1) with

Tgg,n = HnPgg,n with Pgg,n = Q−1
HHQHZ,g∗(ρg,n)[Q′

HZ,g∗(ρg,n)Q−1
HHQHZ,g∗(ρg,n)]−1,

and thus

n−1T′
gg,nThh,n = [Q′

HZ,g∗(ρg,n)Q−1
HHQHZ,g∗(ρg,n)]−1Q′

HZ,g∗(ρg,n)Q−1
HH

× (n−1H′
nHn)Q−1

HHQHZ,h∗(ρh,n)[Q′
HZ,h∗(ρh,n)Q−1

HHQHZ,h∗(ρh,n)]−1.

The remaining conditions of Assumption 10 are also seen to hold in light of Lemma A.5.
Part 2: (Specialized Expressions for �n and the Corresponding Estimator) Next observe

that the components of �n defined in (26) simplified in obvious ways in that Tn =
diagg(Tgg,n), and thus all terms involving a Tgh,n with g �= h are zero. In particular, the

(g,h)th blocks of �δδ
n and �

δρ
n are given by

�δδ
gh,n = σghn−1T′

gg,nThh,n,

�
δρ
gh,n = σghn−1T′

gg,nThh,n
[
αh,1,n, . . . ,αh,S,n

]
,

and the elements of �
ρρ
gh,n, i.e., the elements of the (g,h)th block of �

ρρ
n are given by

ψ
ρρ
rs,gh,n = σ 2

gh,n(2n)−1tr
[(

Ar,n +A′
r,n
)(

As,n +A′
s,n
)]

+σgh,nn−1α′
g,r,nT′

gg,nThh,nαh,s,n.

Now consider the estimator

T̂gg,n = Hn(n−1H′
nHn)−1(n−1H′

nZ∗g,n(̃ρg,n))×[
(n−1Z′∗g,n(̃ρg,n)Hn)(n−1H′

nHn)−1(n−1H′
nZ∗g,n(̃ρg,n))

]−1
,

where ρ̃g,n denotes the first-stage estimator for ρg,n, let

α̂g,r,n = −n−1
[
Z′

g,n(In −R∗′
g,n (̃ρg,n))(Ar,n +A′

r,n)(In −R∗
g,n (̃ρg,n))̂ug,n

]
with ûg,n = yg,n − Zg,n̂δg,n, and let σ̂gh,n = n−1ε̂′

g,nε̂h,n with ε̂g,n = y∗g,n (̃ρg,n) −
Z∗g,n(̃ρg,n)̂δg,n. Then the components of the estimator for �n defined in (27) simplify
to

�̂
δδ
gh,n = σ̂ghn−1T̂′

gg,nT̂hh,n,

�̂
δρ
gh,n = σ̂ghn−1T̂′

gg,nT̂hh,n
[
α̂h,1,n, . . . ,α̂h,S,n

]
,

and the elements of the estimator �̂
ρρ
gh,n of �

ρρ
gh,n are given by

ψ̂
ρρ
rs,gh,n = σ̂ 2

gh,n(2n)−1tr
[(

Ar,n +A′
r,n
)(

As,n +A′
s,n
)]

+ σ̂gh,nn−1α̂′
g,r,nT̂′

gg,nT̂hh,nα̂h,s,n.
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Note that

n−1T̂′
gg,nT̂hh,n =

[
n−1Ẑ′∗g,n(̃ρg,n)Ẑ∗g,n(̃ρg,n)

]−1
n−1Ẑ′∗g,n(̃ρg,n)Ẑ∗h,n(̃ρh,n)

×
[
n−1Ẑ′∗h,n(̃ρh,n)Ẑ∗h,n(̃ρh,n)

]−1
,

and

n−1T̂′
gg,nT̂gg,n =

[
n−1Ẑ′∗g,n(̃ρg,n)Ẑ∗g,n(̃ρg,n)

]−1 =
[
n−1Ẑ′∗g,n(̃ρg,n)Z∗g,n(̃ρg,n)

]−1
.

Also note that in light of Lemma A.5, we have n−1T̂′
gg,nT̂hh,n −n−1T′

gg,nThh,n = op(1).

Part 3: (Verification of Assumption 9 for ϒg,n = (�
ρρ
gg,n)−1 and ϒ̃g,n = (�̂

ρρ
gg,n)−1 with

�̂
ρρ
gg,n = (ψ̂

ρρ
rs,gg,n)). Observe that the assumption that λmin(�n) ≥ c for some c > 0 implies

that also λmin(�
ρρ
gg,n) ≥ c. Recall furthermore that by Lemma C.1, we have ρ̃g,n −ρg,n =

op(1). It now follows directly from Theorem 3 that �̂
ρρ
gg,n −�

ρρ
gg,n = op(1), (�̂

ρρ
gg,n)−1 −

(�
ρρ
gg,n)−1 = op(1), and �

ρρ
gg,n = O(1), (�

ρρ
gg,n)−1 = O(1), which verifies Assumption 9.

Part 4: (Limiting Distribution of δ̂g,n and ρ̂g,n) Recall that Assumptions 1-8 are
maintained. Thus, in light of the above discussion, all assumptions of Theorem 4 are
satisfied. Next, observe that since Tgh,n = 0 for g �= h the expression for �n given in (28)
simplify to:

�n =
[

�δδ
n �

δρ
n

�
δρ′
n �

ρρ
n

]
with

�δδ
n = �δδ

n ,

�
δρ
n = �

δρ
n diagG

g=1

(
(�

ρρ
gg,n)−1Jg,n(J′

g,n(�
ρρ
gg,n)−1Jg,n)−1

)
,

�
ρρ
n = diagG

g=1

(
(J′

g,n(�
ρρ
gg,n)−1Jg,n)−1J′

g,n(�
ρρ
gg,n)−1

)⎡⎢⎢⎣
�

ρρ
11,n . . . �

ρρ
1G,n

...
. . .

...
�

ρρ
G1,n . . . �

ρρ
GG,n

⎤⎥⎥⎦
×diagG

g=1

(
(�

ρρ
gg,n)−1Jg,n(J′

g,n(�
ρρ
gg,n)−1Jg,n)−1

)
.

By Theorem 4, n1/2[(̂δn − δn)′,(̂ρn −ρn)′]′ d→ N(0,�n), and as a specialization,

n1/2
[
δ̂g,n − δg,n)

ρ̂g,n −ρg,n)

]
d→ N

⎡⎣�δδ
gg,n �

δρ
gg,n

�
δρ′
gg,n �

ρρ
gg,n

⎤⎦ (C.1)

with

�δδ
gg,n = �δδ

gg,n = σggn−1T′
gg,nTgg,n,

�
δρ
gg,n = �

δρ
gg,n(�

ρρ
gg,n)−1Jg,n(J′

g,n(�
ρρ
gg,n)−1Jg,n)−1,

= σggn−1T′
gg,nTgg,n

[
αg,1,n, . . . ,αg,S,n

]
(�

ρρ
gg,n)−1Jg,n(J′

g,n(�
ρρ
gg,n)−1Jg,n)−1,

�
ρρ
gg,n = (J′

g,n(�
ρρ
gg,n)−1Jg,n)−1.
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Observe from part 3 of the proof that

n−1T̂′
gg,nT̂gg,n =

[
n−1Ẑ′∗g,n(̃ρg,n)Ẑ∗g,n(̃ρg,n)

]−1

and that n−1T̂′
gg,nT̂gg,n −n−1T′

gg,nTgg,n = op(1). The asymptotic normality result of the
theorem now follows immediately from (C.1), observing that Theorem 4 also established
the consistency of the VC estimators. �

Proof of Theorem 6. The proof is again based on the generic limit theory developed
in Theorem 4. For clarity, we divide the proof, analogous to the proof of Theorem 5, into
several parts.

Part 1: (Verification of Assumption 10 for̂̂δn) In light of Lemma A.6, we have n1/2[̂̂δn −
δn] = n−1/2T′

nεn +op(1) with

Tn = (IG ⊗Hn)Pn,

Pn =
[

−1 ⊗Q−1

HH

]
diagG

g=1

[
QHZ,g∗(ρg,n)

]
×
{

diagG
g=1

[
Q′

HZ,g∗(ρg,n)
][


−1 ⊗Q−1
HH

]
diagG

g=1

[
QHZ,g∗(ρg,n)

]}−1
. (C.2)

Now let Tgh,n and Pgh,n denote the (g,h)th block of Tn and Pn, then Tgh,n = Fgh,nPgh,n
with Fgh,n = Hn. The remaining conditions of Assumption 10 are then seen to hold in light
of Lemma A.6.

Part 2: (Specialized Expressions for �n and the Corresponding Estimator) Specialized

expressions for each of the submatrices �δδ
n , �

δρ
n , �

ρρ
n of �n defined in (26) are readily

found by substituting into those expressions the formulas for Tn given in (C.2), and by
observing that

∑G
u=1

∑G
v=1 σuv,nT′

gu,nThv,n represents the (g,h)th block of �δδ
n = T′

n(
⊗
I)Tn.

Next let̂̂Tn = (IG ⊗Hn )̂̂Pn,̂̂Pn =
[

̂

−1
n ⊗ (n−1H′

nHn)−1
]

diag
[
n−1H′

nZ∗g,n(̂ρg,n)
]

×
[
n−1Ẑ′∗n(̂ρn)(
̂

−1
n ⊗ In)Z∗n(̂ρn)

]−1
.

Let ̂̂Tgh,n and ̂̂Pgh,n denote the (g,h)th block of ̂̂Tn and ̂̂Pn, respectively. Then, clearly,̂̂Tgh,n = Hn
̂̂Pgh,n. Next observe that

̂̂�δδ

n =
[
n−1Ẑ′∗n(̂ρn)(
̂

−1
n ⊗ In)Z∗n(̂ρn)

]−1 = n−1̂̂T′
n(
̂n ⊗ In)̂̂Tn,

and thus the (g,h)th block of ̂̂�δδ

n is given by ̂̂�δδ

gh,n =∑G
u=1

∑G
v=1 σ̂uv,n

̂̂T′
gu,n
̂̂Thv,n. From

this, we see that the estimators ̂̂�δδ

n , ̂̂�δρ

n ,̂̂�ρρ

n ,̂̂�δδ

n ,̂̂�δρ

n ,̂̂�ρρ

n are special cases of the class
of VC estimators considered by Theorem 4. Also note that in light of Lemma A.6, we have
that

n−1̂̂T′
gh,n
̂̂Tgl,n −T′

gh,nTgl,n = op(1),

which verifies that also this condition of Theorem 4 holds.

https://doi.org/10.1017/S026646662200007X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662200007X


46 DAVID M. DRUKKER ET AL.

Part 3: (Verification of Assumption 9 for ϒg,n = (�
ρρ
gg,n)−1 and ϒ̃g,n = (̂̂�ρρ

gg,n)−1 witĥ̂�ρρ

gg,n = (̂̂ψρρ

rs,gg,n)) Observe that the assumption that λmin(�n) ≥ c for some c > 0 implies

that also λmin(�
ρρ
gg,n) ≥ c. Recall furthermore that by Lemma C.1 we have ̂̂ρg,n −ρg,n =

op(1). It now follows directly from Theorem 3 that ̂̂�ρρ

gg,n −�
ρρ
gg,n = op(1), (̂̂�ρρ

gg,n)−1 −
(�

ρρ
gg,n)−1 = op(1), and �

ρρ
gg,n = O(1), (�

ρρ
gg,n)−1 = O(1), which verifies Assumption 9.

Part 4: (Limiting Distribution of ̂̂δg,n and ̂̂ρg,n) Recall that Assumptions 1–8 are
maintained. Thus, in light of the above discussion, all assumptions of Theorem 4 are
satisfied. It thus follows from that theorem that[

(̂̂δn − δn)

(̂̂ρn −ρn)

]
d→ N

[
�δδ

n �
δρ
n

�
δρ′
n �

ρρ
n

]
, (C.3)

where

�δδ
n = �δδ

n , �
δρ
n = �

δρ
n diagG

g=1(Jg,n), �
ρρ
n = diagG

g=1(J′
g,n)�

ρρ
n diagG

g=1(Jg,n)

with

�
δρ
n = �δδ

n diagG
g=1[αg,1,n, . . . ,αg,S,n],

Jg,n = (�
ρρ
n )−1Jg,n

[
J′

g,n(�
ρρ
gg,n)−1Jg,n

]−1
.

The asymptotic normality result of the theorem now follows immediately from (C.3),
observing that Theorem 4 also establishes the consistency of the VC estimators. �

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit:
10.1017/S026646662200007X.
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