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ABSTRACT

In this paper error bounds are derived for a first order expansion of
the LU factorization of a perturbation of the identity. The results are
applied to obtain perturbation expansions of the LU, Cholesky, and
QR factorizations.

1. Introduction

Let A be of order n, and suppose that the leading principal submatrices of A are
nonsingular. Then A has an LU factorization

A= LU, (1.1)

where L is lower triangular U is upper triangular. The factorization is not unique;
however, any other LU factorization must have the form

A= (LD)(DU),

where D is a nonsingular diagonal matrix. Thus, if the diagonal elements of L (or
U) are specified, the factorization is uniquely determined.

The purpose of this note is to establish a first order perturbation expansion for
the LU factorization of A along with bounds on the second order terms. At least
three authors have considered the perturbation of LU, Cholesky, and QR factor-
izations [1, 2, 4]. The chief difference between their papers and this one is that
the former treat perturbations bounds for the decompositions in question, while
here we treat the accuracy of a perturbation expansion.

Throughout this note || - || will denote a family of absolute, consistent matrix
norms; i.e.,

Al <|Bl = [[All < I1B],
and
[ABI| < [|A[l]|B]l

whenever the product AB is defined. Thus the bounds of this paper will hold for
the Frobenius norm, the l-norm, and the co norm, but not for the 2-norm (for
more on these norms see [3]).
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2. Perturbation of the Identity

The heart of this note is the observation that the LU factorization of the matrix
I + F, where F'is small, has a simple perturbation expansion. Specifically, write

P =B+ Py,
where Fy, is strictly lower triangular and Fy is upper triangular. Then
(I+ F) I+ Fo)=1+F.+Fo+ FLlu=1+F+O(|F|?), (2.1)

and the product of the unit lower triangular matrix /4 Fj, and the upper triangular
matrix 4 Fy reproduces [+ F up to terms of order || F'||?. The following theorem
shows that we can move these lower order terms to the right-hand side of (2.1) to
get an LU factorization of [ + F'.

Theorem 2.1. If |
7)< ;
then there is a strictly lower triangular matrix Gy, and an upper triangular matrix
Gy satisfying
£

L=2[F][ + /1 —4]|F]

|GL + Gul| <

such that
I+ +G)I+ v+ Gu)=1+F. (2.2)
Proof. From (2.2) it follows that the perturbations (i1, and Gy must satisfy
G+ Gu = —(FLFu + FLGu 4+ GLFu + GLGv).

Starting with Gf = 0 and G{; = 0, generate strictly lower triangular and upper
triangular iterates according to the formula

G 4 GET = —(FL By 4 FLGY + GEFy + GEGY). (2.3)
Because || - || is absolute,
IGENL G < IGE + GGl
Hence if we set ¢ = || F||, 70 = 0, and define the sequence {y;} by

Ve+1 :¢2+2¢7k+7]§7 k:()vlv"'? (24)
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then [|GF + G|l < .
Now by graphing the right hand side of (2.4), it is easy to see that if ¢ <
then the sequence 73 converges monotonically to

_ ¢’
R I P

which is therefore an upper bound on ||Gf + G%|| for all k. It remains only to

Ll L

show that the sequence Gf 4 G¥ converges.
From (2.3) it follows that

(GEFY 4 GEY) — (GF + GF) = FL(GEY — GE) 4+ (GF Y = GE ) Fy +
(GE = GH)GE + GE(GE = ).

Hence,
I(GE + GG = (GE + GOl < 2(¢ + 1) (GE + G) — (GE + Gy Y-

If 2(¢ + 7.) < 1, which is certainly true if ¢ < i, then the series of differences is
majorized by a geometric series, and the sequence converges.

There are some comments to be made on this theorem. In the first place
the first order expansion is particularly simple: split F' into its lower and upper
triangular parts. We will take advantage of this simplicity in the next section,
where we will derive perturbation expansions and asymptotic bounds for the LU,
Cholesky, and QR factorization

The condition that || F']| < I is perhaps too constraining, since the LU factor-
ization of I 4+ F' exists provided that ||F|| < 1. However, as || F|| approaches one,
it is possible for the factors in the decomposition to grow arbitrarily, in which case
the bounds on the second order terms must also grow. Thus the more restrictive
condition can be seen as the price we pay for bounds that do not explode.

As || F|| goes to zero, the bound quickly assumes the asymptotic form

1GL + Gull S 1FII%

i.e., the order constant for the second order terms is essentially one. If we write
this in the form

[GL + G|
1E]
we see that the relative error in the first order expansion is of the same order as
the perturbation itself, with order constant one.

SIEN
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Finally, Theorem 2.1 treats an LU decomposition of I 4+ F' in which L is unit
lower triangular. In analyzing symmetric permutations, we may want to take
L = U"'. In this case, we may work with slightly different matrices, illustrated
below for n = 3:

) T 0 0 X sfu fiz fis
FL=1| Jfa %fzz 0 and  Fy = 0 %fﬂ f23 (2.5)
a1 fa %f33 0 0 %fzz

If Gy, and Gy are defined analogously, the proof of Theorem 2.1 goes through
mutatis mutandis. For these matrices a useful inequality is

1

Fulle, [ Fulle <
| FL]rs [ Fullr < 7

£, (2.6)

where || - || denotes the Frobenius norm.

3. Applications

In this section we will apply the results of the previous section to get perturbation
expansions for the LU, the Cholesky, and the QR decompositions. We will present
only first order terms, since bounds for the second order terms can be derived from
Theorem 2.1, and since the rate of convergence of these bounds to zero, suggests
that the first order expansions will be satisfactory for all but the most delicate
work. We will also derive asymptotic bounds for the first order terms.

Our first application is to the problem we began with: the perturbation of the
LU decomposition. Let A have the LU decomposition (1.1) and let A=A+ E.
Then

LTPAU = [+ L' EUT =1+

Let F1, and Fy be as in the last section. Then [ 4+ F = (I 4+ FL)({ + Fy) is the
first order approximation to the LU factorization of I + F'. It follows that

A= LI+ FL)(I + Fy)U,

is the first order approximation to the LU factorization of A. Note that because
F1, is unit lower triangular, this expansions preserves the scaling of the diagonal
elements of L.
By taking norms we can derive the following asymptotic perturbation bound
1L — L] 1EN 1E]

SIZTHITTHNAN = fuu(A) = (3.1)
IL]] 1Al 1Al
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Thus kLu(A) = |[L7H|[U|||A]| serves as a condition number for the LU de-
composition of A. When A is square, this number is never less than the usual
condition number x(A) = ||A]|||A7"|| and can be much larger. Bounds on the
U factor can be derived similarly.

An unhappy aspect of the bound (3.1) is that it overestimates the perturbation
of the leading part of the LU factorization. Specifically, if we partition

A Ay _ Ly 0 Ui Uiy

Ay Ay Loy Ly 0 Uy )’
then Ay = L11Uq7 and the condition number for this part of the factorization is
kLu(A11), which is in general smaller than k,y(A). The perturbation in Lgp, can

then be estimated from the equation Ly = AglUﬁl.l
It A is symmetric and positive definite, then A has the Cholesky factorization

A= RIR,

where R is upper triangular. Let A = A+ E, where IV is symmetric. Setting, as
above, I' = R"TER™! and defining FY; as in (2.5), we have

R = (I+ Fy)R.

By (2.6) and the consistency of the 2-norm with the Frobenius norm, we have

Pl < Sl o 2l = 2,
where r9(A) = ||A||2||A7|2 is the usual condition number in the 2-norm.
TAn alternative approach is to set
()
so that
o )= (o) =

The proof of Theorem 2.1 can easily be adapted to give a bound on the perturbation of the
LU factorization of a perturbation of J and hence on the perturbation of the LU factorization

()
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Finally, let A, now rectangular, be of full column rank, and consider the
QR factorization

A=QR,

where () has orthonormal columns and R is upper triangular with positive diagonal
elements. The key to the derivation of the bounds is the equation

ATA = R'R;
i.e., R is the Cholesky factor of ATA.
As usual, let A= A+ F, and let F4 be the orthogonal projection of F onto
the column space of A. Then ATE = ATE,4. It follows that
ATAZ ATA+ ATE, + ESA=ATA+ F.
Hence with Fy as above, we have

R = (I+ Fy)R.

In particular,
IR — Rlr
[radip

| E4llF

S \/5532(‘4) HAHZ 9

where ry(A) = || R||2]|R™"||2- Since Q = 121];’_1, we have

Q=Q(I—Fy)+ ER,
from which it follows that

V2| Ealle + ]| ]l

(3.2)

Asymptotically, the bounds derived in this section agree with the bounds in
[1, 4], with the exception of (3.2), which is a little sharper owing to the presence
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