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On the Perturbation of LU, Cholesky,and QR FactorizationsG. W. StewartABSTRACTIn this paper error bounds are derived for a �rst order expansion ofthe LU factorization of a perturbation of the identity. The results areapplied to obtain perturbation expansions of the LU, Cholesky, andQR factorizations.1. IntroductionLet A be of order n, and suppose that the leading principal submatrices of A arenonsingular. Then A has an LU factorizationA = LU; (1:1)where L is lower triangular U is upper triangular. The factorization is not unique;however, any other LU factorization must have the formA = (LD)(D�1U);where D is a nonsingular diagonal matrix. Thus, if the diagonal elements of L (orU) are speci�ed, the factorization is uniquely determined.The purpose of this note is to establish a �rst order perturbation expansion forthe LU factorization of A along with bounds on the second order terms. At leastthree authors have considered the perturbation of LU, Cholesky, and QR factor-izations [1, 2, 4]. The chief di�erence between their papers and this one is thatthe former treat perturbations bounds for the decompositions in question, whilehere we treat the accuracy of a perturbation expansion.Throughout this note k � k will denote a family of absolute, consistent matrixnorms; i.e., jAj � jBj =) kAk � kBk;and kABk � kAkkBkwhenever the product AB is de�ned. Thus the bounds of this paper will hold forthe Frobenius norm, the 1-norm, and the 1 norm, but not for the 2-norm (formore on these norms see [3]). 1



2 The Perturbation of Matrix Factorizations2. Perturbation of the IdentityThe heart of this note is the observation that the LU factorization of the matrixI + F , where F is small, has a simple perturbation expansion. Speci�cally, writeF = FL + FU;where FL is strictly lower triangular and FU is upper triangular. Then(I + FL)(I + FU) = I + FL + FU + FLFU = I + F +O(kFk2); (2:1)and the product of the unit lower triangular matrix I+FL and the upper triangularmatrix I+FU reproduces I+F up to terms of order kFk2. The following theoremshows that we can move these lower order terms to the right-hand side of (2.1) toget an LU factorization of I + F .Theorem 2.1. If kFk � 14then there is a strictly lower triangular matrix GL and an upper triangular matrixGU satisfying kGL +GUk � kFk21 � 2kFk+q1� 4kFksuch that (I + FL +GL)(I + FU +GU) = I + F: (2:2)Proof. From (2.2) it follows that the perturbations GL and GU must satisfyGL +GU = �(FLFU + FLGU +GLFU +GLGU):Starting with G0L = 0 and G0U = 0, generate strictly lower triangular and uppertriangular iterates according to the formulaGk+1L +Gk+1U = �(FLFU + FLGkL +GkUFU +GkLGkU): (2:3)Because k � k is absolute, kGkLk; kGkUk � kGkL +GkUk:Hence if we set � = kFk, 
0 = 0, and de�ne the sequence f
kg by
k+1 = �2 + 2�
k + 
2k ; k = 0; 1; : : : ; (2:4)



The Perturbation of Matrix Factorizations 3then kGkL +GkUk � 
k.Now by graphing the right hand side of (2.4), it is easy to see that if � � 14then the sequence 
k converges monotonically to
� = �21 � 2� +p1 � 4�;which is therefore an upper bound on kGkL + GkUk for all k. It remains only toshow that the sequence GkL +GkU converges.From (2.3) it follows that(Gk+1L +Gk+1U )� (GkL +GkU) = FL(Gk�1U �GkU) + (Gk�1L �GkL)FU +(Gk�1L �GkL)Gk�1U +GkL(Gk�1U �GkU):Hence,k(Gk+1L +Gk+1U )� (GkL +GkU)k � 2(� + 
�)k(GkL +GkU)� (Gk�1L +Gk�1U )k:If 2(� + 
�) < 1, which is certainly true if � � 14 , then the series of di�erences ismajorized by a geometric series, and the sequence converges.There are some comments to be made on this theorem. In the �rst placethe �rst order expansion is particularly simple: split F into its lower and uppertriangular parts. We will take advantage of this simplicity in the next section,where we will derive perturbation expansions and asymptotic bounds for the LU,Cholesky, and QR factorizationThe condition that kFk � 14 is perhaps too constraining, since the LU factor-ization of I + F exists provided that kFk < 1. However, as kFk approaches one,it is possible for the factors in the decomposition to grow arbitrarily, in which casethe bounds on the second order terms must also grow. Thus the more restrictivecondition can be seen as the price we pay for bounds that do not explode.As kFk goes to zero, the bound quickly assumes the asymptotic formkGL +GUk <� kFk2;i.e., the order constant for the second order terms is essentially one. If we writethis in the form kGL +GUkkFk <� kFk;we see that the relative error in the �rst order expansion is of the same order asthe perturbation itself, with order constant one.



4 The Perturbation of Matrix FactorizationsFinally, Theorem 2.1 treats an LU decomposition of I + F in which L is unitlower triangular. In analyzing symmetric permutations, we may want to takeL = UT. In this case, we may work with slightly di�erent matrices, illustratedbelow for n = 3:F̂L = 0B@ 12f11 0 0f21 12f22 0f31 f32 12f33 1CA and F̂U = 0B@ 12f11 f12 f130 12f22 f230 0 12f22 1CA (2:5)If ĜL and ĜU are de�ned analogously, the proof of Theorem 2.1 goes throughmutatis mutandis. For these matrices a useful inequality iskF̂LkF; kF̂UkF � 1p2kFkF; (2:6)where k � kF denotes the Frobenius norm.3. ApplicationsIn this section we will apply the results of the previous section to get perturbationexpansions for the LU, the Cholesky, and the QR decompositions. We will presentonly �rst order terms, since bounds for the second order terms can be derived fromTheorem 2.1, and since the rate of convergence of these bounds to zero, suggeststhat the �rst order expansions will be satisfactory for all but the most delicatework. We will also derive asymptotic bounds for the �rst order terms.Our �rst application is to the problem we began with: the perturbation of theLU decomposition. Let A have the LU decomposition (1.1) and let ~A = A + E.Then L�1 ~AU�1 = I + L�1EU�1 � I + F:Let FL and FU be as in the last section. Then I + F �= (I + FL)(I + FU) is the�rst order approximation to the LU factorization of I + F . It follows that~A �= L(I + FL)(I + FU)U;is the �rst order approximation to the LU factorization of ~A. Note that becauseFL is unit lower triangular, this expansions preserves the scaling of the diagonalelements of L.By taking norms we can derive the following asymptotic perturbation boundk~L� LkkLk <� kL�1kkU�1kkAkkEkkAk � �LU(A)kEkkAk : (3:1)



The Perturbation of Matrix Factorizations 5Thus �LU(A) = kL�1kkU�1kkAk serves as a condition number for the LU de-composition of A. When A is square, this number is never less than the usualcondition number �(A) = kAkkA�1k and can be much larger. Bounds on theU factor can be derived similarly.An unhappy aspect of the bound (3.1) is that it overestimates the perturbationof the leading part of the LU factorization. Speci�cally, if we partition A11 A12A21 A22 ! =  L11 0L21 L22 ! U11 U120 U22 ! ;then A11 = L11U11 and the condition number for this part of the factorization is�LU(A11), which is in general smaller than �LU(A). The perturbation in L21, canthen be estimated from the equation L21 = A21U�111 .1If A is symmetric and positive de�nite, then A has the Cholesky factorizationA = RTR;where R is upper triangular. Let ~A = A+ E, where E is symmetric. Setting, asabove, F = R�TER�1 and de�ning F̂U as in (2.5), we have~R �= (I + F̂U)R:By (2.6) and the consistency of the 2-norm with the Frobenius norm, we havek ~R�RkFkRk2 <� 1p2kR�Tk2kR�1k2kEkF = �2(A)p2 kEkFkAk2 :where �2(A) = kAk2kA�1k2 is the usual condition number in the 2-norm.1An alternative approach is to set �L = � L11 0L21 I �so that �L�1� A11A21 �U�111 = � I0 � � J:The proof of Theorem 2.1 can easily be adapted to give a bound on the perturbation of theLU factorization of a perturbation of J and hence on the perturbation of the LU factorizationof � A11A21 �.



6 The Perturbation of Matrix FactorizationsFinally, let A, now rectangular, be of full column rank, and consider theQR factorization A = QR;whereQ has orthonormal columns and R is upper triangular with positive diagonalelements. The key to the derivation of the bounds is the equationATA = RTR;i.e., R is the Cholesky factor of ATA.As usual, let ~A = A + E, and let EA be the orthogonal projection of E ontothe column space of A. Then ATE = ATEA. It follows that~AT ~A �= ATA+ATEA + ETAA � ATA+ F:Hence with F̂U as above, we have~R �= (I + F̂U)R:In particular, k ~R�RkFkRk2 <� p2�2(A)kEAkFkAk2 ;where �2(A) = kRk2kR�1k2. Since ~Q = ~A ~R�1, we have~Q �= Q(I � F̂U) + ER�1;from which it follows thatk ~Q�QkF <� �2(A)p2kEAkF + kEkFkAk2 : (3:2)Asymptotically, the bounds derived in this section agree with the bounds in[1, 4], with the exception of (3.2), which is a little sharper owing to the presenceof kEAkF.Acknowledgements. This paper has been much improved by the suggestionsof Jim Demmel and Nick Higham.
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