
ABSTRACT

Title of Dissertation: GEOMETRIC AND TOPOLOGICAL RECONSTRUCTION

By: Michael G. Rawson
Doctor of Philosophy, 2022

Dissertation directed by: Professor Radu Balan
Professor Thomas Ernst
Professor Michael Robinson

The understanding of mathematical signals is responsible for the information age. Com-

putation, communication, and storage by computers all use signals, either implicitly or

explicitly, and use mathematics to manipulate those signals. Reconstruction of a particu-

lar signal can be desirable or even necessary depending on how the signal manifests and is

measured. We explore how to use mathematical ideas to manipulate and represent signals.

Given measurements or samples or data, we analyze how to produce, or reconstruct, the

desired signal and the fundamental limits in doing so. We focus on reconstruction through a

geometric and topological lens so that we can leverage geometric and topological constraints

to solve the problems. As inaccuracies and noise are present in every computation, we adopt

a statistical outlook and prove results with high probability given noise. We start off with

probability and statistics and then use that for active reconstruction where the probability

signal needs to be estimated statistically from sampling various sources. We prove optimal

ways to doing this even in the most challenging of situations. Then we discuss functional

analysis and how to reconstruct sparse rank one decompositions of operators. We prove

optimality of certain matrix classes, based on geometry, and compute the worst case via

sampling distributions. With the mathematical tools of functional analysis, we introduce

the optimal transportation problem. Then we can use the Wasserstein metric and its ge-

ometry to provably reconstruct sparse signals with added noise. We devise an algorithm to

solve this optimization problem and confirm its ability on both simulated data and real data.

Heavily under-sampled data can be ill-posed which is often the case with magnetic resonance

imaging data. We leverage the geometry of the motion correction problem to devise an ap-

propriate approximation with a bound. Then we implement and confirm in simulation and

on real data. Topology constraints are often present in non-obvious ways but can often be

detected with persistent homology. We introduce the barcode algorithm and devise a method

to parallelize it to allow analyzing large datasets. We prove the parallelization speedup and

use it for natural language processing. We use topology constraints to reconstruct word-

sense signals. Persistent homology is dependent on the data manifold, if it exists. And it is

dependent on the manifold’s reach. We calculate manifold reach and prove the instability

of the formulation. We introduce the combinatorial reach to generalize reach and we prove

the combinatorial reach is stable. We confirm this in simulation. Unfortunately, reach and

persistent homology are not an invariant of hypergraphs. We discuss hypergraphs and how

they can partially reconstruct joint distributions. We define a hypergraph and prove its

ability to distinguish certain joint distributions. We give an approximation and prove its

convergence. Then we confirm our results in simulation and prove its usefulness on a real

dataset.

GEOMETRIC AND TOPOLOGICAL RECONSTRUCTION

by

Michael G. Rawson

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022.

Advisory Committee:
Professor Radu Balan, Advisor, Chair
Professor Thomas Ernst, Co-Advisor
Associate Professor Michael Robinson, Co-Advisor
Professor Wojciech Czaja
Associate Professor Maria Cameron
Associate Professor Behtash Babadi

© Copyright by
Michael G. Rawson

2022

Acknowledgments

Acknowledgments are necessary for the many people that made this work possible. My

first course at the University of Maryland at College Park was with Prof. John Benedetto. It

is always a shock coming into a new environment and Prof. Benedetto gave me reassurance

and confidence that guided me throughout my PhD degree which I am very thankful for.

But even before my first course started, I met with Prof. Radu Balan. I was surprised by

Prof. Balan’s generosity to give me time even before I officially joined the university. Prof.

Balan guided me on choosing problems, starting them, finishing them, and publishing. I

could not have made these accomplishments without this crucial guidance. After arriving

at the university, I attended a talk by Prof. Robert Ghrist about Applied Topology which

sounded like an oxymoron to me. It turned out his mentee, Prof. Michael Robinson, wrote

the textbook [92] on it and was just down the street. How lucky can you be. So I took an

idea to Prof. Michael Robinson and we started working on it. My first idea was terrible, but

I am glad Prof. Robinson did not tell me and let me figure it out and learn the meta-lesson

about how to avoid ideas, at least some, that will be terrible. Prof. Robinson helped me

write, communicate, calculate, and publish, of which I am very thankful. In the last two

years, I was able to apply my new knowledge in the university’s School of Medicine under

Prof. Thomas Ernst. I learned that it takes time to learn a new field which was MRI and

MRI physics. Prof. Ernst demonstrated great patience in me which I hope to emulate.

i

Working with the MRI team, I also learned, in a sense, how physicists and engineers think

and work. This is very useful for interdisciplinary work and I learned to think in a practical,

testable, and adaptive way. Finally, I would like to acknowledge Prof. Wojciech Czaja, Prof.

Maria Cameron, and Prof. Behtash Babadi. In their classes, RITs, and seminars, I have

been exposed to many areas and concepts unknown to me and their masterful lectures have

enlightened me.

ii

Table of Contents

Acknowledgments i

Table of Contents iii

1 Introduction 1
1.1 Thesis Contributions . 9

2 Statistical Signal Reconstruction 11
2.1 Reinforcement Learning Application . 15

2.1.1 Deep Epsilon Greedy Method Convergence 20
2.1.2 Deep Upper Confidence Bound Method 31
2.1.3 Optical Character Recognition Application 34
2.1.4 Open Problems . 36

3 Functional Analysis Based Reconstruction with Ray Separation Applica-
tions 41
3.1 Statistical Computation . 47
3.2 Open Problems . 50

4 Optimal Transport Based Sparse Reconstruction 51
4.1 Discrete Optimal Transport & Sinkhorn Algorithm 54
4.2 Star Cluster Detection Application . 58

4.2.1 Simulation . 63
4.2.2 Astronomy Data . 65
4.2.3 Open Problems . 68

5 Fourier Space Reconstruction with MRI Motion Correction Applications 69
5.1 Simulation . 84
5.2 In Vivo Experiment (Real Data) . 87
5.3 Open Problems . 87

6 Persistent Homology Computation Theory 89
6.1 Barcode Algorithm . 91

6.1.1 CPU Parallelization . 91
6.1.2 GPU Parallelization . 94

6.2 Natural Language Processing Application . 97

iii

6.3 Open Problems . 104

7 Geometric Reach 106
7.1 Combinatorial Reach . 112

7.1.1 Noise . 120
7.1.2 Open Problems . 123

8 Hypergraph Reconstruction with Neural Connectome Applications 125
8.1 Simulation . 131
8.2 Schizophrenia Data . 134
8.3 Open Problems . 138

Bibliography 140

iv

Chapter 1

Introduction

Mathematical reconstructions use information or data to construct a complete structure

useful to the application at hand. Information or data can be defined as numbers or a

sequence of numbers. First, we’ll talk about numbers and how they can be defined. Then,

we’ll talk about more abstract generalizations. We will not define here everything that is

used in this thesis, but we demonstrate how layer by layer, everything can be defined exactly.

The tools of mathematics are numbers. The natural numbers are those you can count on

your fingers, 1, 2, 3, and so on. Counting to the next number is the same as adding 1, or at

least we can define addition to do this. We will assume the first number, 1, exists. This is

our first axiom. Define the successor operation, S, to take any natural number and produce

it’s natural number successor. We say that the natural numbers, N, are closed under S since

for any n, S(n) is a natural number. Our next axiom says for any natural numbers n and m,

S(n) = S(m) if and only if n = m. With this axiom, we call S an injection. We need a first

number, so by axiom, there is no natural number n such that S(n) = 1. Finally, we need

to limit the natural numbers to all of the successors following 1. In other words, for every

1

natural number n, S(S(S(...(S(1))...))) = n for enough applications of S. With this setup,

we can define 2 as S(1) and 3 as S(S(1)) and so on. Now from this we can define addition

recursively. Define n + 1 to be S(n), that is n + 1 := S(n). Define n + S(m) := S(n + m).

Using this definition,

n+ S(m) = S(n+m) = S(S(n+ ...)) = ... = Sm(n+ 1) = Sm(S(n)) = Sm(Sn(1))

where Sk is just k applications of S. Throughout, we have been using the common notions

of logic and equality. Defining the natural numbers and addition from logic was the work of

Peano, Peirce, Dedekind, and others in the late 1800s [41, 75, 76, 90].

From the natural numbers, N, we will define the integers, Z. To do this, we will use

equivalence classes of pairs of natural numbers denoted (a, b) for a, b natural numbers. Define

the integers as the following equivalence classes on all pairs of natural numbers, N × N.

Define two pairs of natural numbers, (a, b) and (c, d), to be equivalence, (a, b) ∼ (c, d), when

a + d = c + b. We represent the equivalence class of a pair (a, b) with brackets, [(a, b)]. For

example, [(2, 1)] = [(3, 2)] since 2 + 2 = 3 + 1 and more generally [(a, b)] = [(a + 1, b + 1)].

So this defines 0 := [(1, 1)] and −1 := [(1, 2)] where 1 and 2 are natural numbers. This also

defines the integer 1 := [(2, 1)] with the natural numbers 2 and 1. Now we need to define

addition on the integers. We can do this by setting

[(a, b)] + [(c, d)] := [(a+ c, b+ d)]

where the right hand side is adding natural numbers defined previously. Finally we have

integers and addition, but for convenience we write an integer k instead of [(k + 1, 1)] and

−k instead of [(1, k + 1)]. As for subtraction, we define a − b := a + (−b) for any a, b ∈ Z

and −c := −[(d, e)] = [(e, d)] for any c ∈ Z and corresponding representation d, e ∈ N. The

2

way we have defined addition and subtraction, they are between just two numbers, not 3 or

4 different numbers. Define adding many numbers by starting with the left two and adding

that to the next left most number and so on. Define subtracting many numbers as just

adding many negative numbers [15].

Let us define negative numbers. A negative number is any n ∈ Z where n < 0. Now we

need to define the operator <. We define a < b true for a, b ∈ N when a + c = b for some

c ∈ N. Now on the integers, we define [(a, b)] < [(c, d)] for a, b, c, d ∈ N when a + d < c + b.

We almost have our inequalities except for the reverse. Define, for any a, b ∈ N or a, b ∈ Z,

a > b true when b < a true [15].

In a similar way, we can define rational numbers, Q. We define rational numbers as

the equivalence classes of pairs of integers where for (p, q) ∼ (r, s) when ps = rq for any

p, q, r, s ∈ Z. We need to mention that multiplication of a, b ∈ N is ab := a + a S(b)

and a1 := a. Our definition of multiplication on Z uses this as follows. For a, b, c, d ∈ N,

the product [(a, b)][(c, d)] := [(ac + bd, ad + bc)] defines multiplication of integers. Now for

convenience, we do not write rational numbers as [(p, q)], we write p
q

with the understanding

that this is one valid representation out of many, for example, 2p
2q

is the same rational number

[12].

Rational numbers form the number line which can be used to measure any length with

arbitrarily high precision. However, the rational numbers cannot solve many standard equa-

tions. For example, the length of the hypotenuse of a right triangle with unit (equal 1)

legs is not a rational number. We shall again turn to equivalence classes to define irrational

numbers using rational numbers. Define the irrational numbers as equivalence classes of

limits of sequences of rational numbers. Write an infinite sequence of rational numbers as

3

{pi}∞i=1 where pi ∈ Q for each i ∈ N. Now we say the sequence converges to a limit L ∈ Q

if for every ϵ > 0, ϵ ∈ Q there exists a M ∈ N such that for every m > M with m ∈ N,

|pm−L| < ϵ. Here we used absolute value defined as |x| := x if x ≥ 0 and |x| := −x if x < 0.

Some sequences of rational numbers do not converge to any rational number, for example

{pi}∞i=1 where pi := pi−1

2
+ 1

pi−1
and p1 = 2. This limit L ∈ Q, if it exists, has L = L/2 + 1/L

or L2 = LL = 2 [94].

We say two sequences, {pi}∞i=1, {qi}∞i=1, converge together when for every ϵ > 0, ϵ ∈ Q

there exists a M ∈ N such that for every m,n > M with m,n ∈ N, |pm − qn| < ϵ. Back

to our definition of irrational numbers, each irrational number is defined as an equivalence

class of sequences of rational numbers. Let rational sequence {pi}∞i=1 ∼ {qi}∞i=1 when they

converge together. The constant rational sequence {a
b
}∞i=1 defines an equivalence class for

each rational number a
b
. Putting all of these equivalence classes together, we get the rational

and irrational numbers. We henceforth define the Real numbers, R, as all of the equivalence

classes include rational and irrational numbers. The number line for R looks the same as

the number line for Q however R also contains all of the tiny holes or limits missing in Q.

For notational convenience we write the real number p
q

the same way though it represents

the equivalence class of the constant sequence [94].

Unfortunately, the real numbers, R, still cannot solve many equations. What real number

r has r2 = −1? For any r ∈ R, r2 ≥ 0 and 0 > −1 so r2 > −1. Then r2 ̸= −1. When

defining real numbers, we defined
√

2 to be a real number and now we will define
√
−1 to

be a number. We will call
√
−1 a complex number instead of a real number for historical

reasons. While anointing
√
−1 is arbitrary,

√
−1 can solve any equation of the form rk = −m

by r = m1/k(
√
−1)2/k. For convenience we will write i :=

√
−1 though we will not always

4

use this definition. We define the complex numbers, C, to contain i and R and be closed

under multiplication and addition. So for any r, k ∈ R, r + ki ∈ C. Note that the addition

and multiplication in r+ki are formal that is just a method of writing equivalent to writing

(r, k). By associativity and commutativity of addition and multiplication, any z ∈ C can be

written as r + ki with some r, k ∈ R [95].

So far we have given many categories, memberships, and classes. Another term for this

is a set, instantiated with {}. Sets have many useful operations defined: subset ⊂, element

∈, union ∪, intersection ∩, difference \, and product ×. We use the set theory framework to

give operations to our groups, now sets, of numbers, N,Z,Q, and R. Specifically we use the

Zermelo-Fraenkel Axioms or ZFC, see [32, 64] for all of the details. For example, one may

view the set N as a subset of set Z, written N ⊂ Z. Indeed, we can call any mathematical

object a set. Even 1 is a set. The most important set however is the empty set written ∅

which equals the intersection of two disjoint sets, A ∩B = ∅.

Once we define the power set, P(X) of a set X, we have a topology. Define the power set,

P(X), to be the set that contains, specifically, each set that is a subset of X. So A ∈ P(X)

if and only if A ⊂ X. Now a topology, τ , of a set X is a subset of the power set, P(X) such

that:

1. ∅ ∈ τ and X ∈ τ ,

2. any union of elements in τ is also in τ , and

3. any intersection of finitely many elements of τ is also in τ .

The largest (or finest) possible τ is when τ = P(X) and the smallest (or coarsest) possible

τ is when τ = {∅, X}. The standard topology τ on the set R is that containing every open

5

interval (a, c) := {b ∈ R : a < b < c} for all a, c ∈ R and their unions and finite intersections.

We call a subset U ⊂ X open when U ∈ τ for X. And we call U closed when Ū := X\U ∈ τ ,

but it can happen that U is open and closed [70].

The way we have defined a topology, τ , for a set X, X ⊂ ∪αUα where {Uα} are all of the

sets in τ . We say that a set {Uα} covers X when X ⊂ ∪αUα. And in the case that, for each

α, Uα ∈ τ or Uα is open, we call the set {Uα} an open cover [70].

As soon as we introduced sets, we saw that N ⊂ Z and then we partitioned R into

many intervals. Considering many different sets, we get a large tree with edges (or relations)

where a set is a subset of another set. Key here is the transitive feature of subset where if

set A ⊂ B and set B ⊂ C then set A ⊂ C. S. Eilenberg and S. Mac Lane generalized this

idea by defining categories to follow these rules and represent any sets or objects and their

relations [64]. A category C is

1. a set of objects, ob(C),

2. a set of relations between objects, hom(C), called morphisms and

3. a binary operation, ◦, on hom(b, c) × hom(a, b) to hom(a, c) for any a, b, c ∈ ob(C),

called composition.

The binary operation must also follow

1. associativity where (f◦g)◦h = f◦(g◦h) for any a, b, c, d ∈ ob(C) and h ∈ hom(a, b), g ∈

hom(b, c), h ∈ hom(c, d) and

2. identity where for any a, b ∈ ob(C) there exist the identities 1a ∈ hom(a, a) and

1b ∈ hom(b, b) and then 1b ◦ f = f = f ◦ 1a for any f ∈ hom(a, b).

6

Now back to the example of sets, we have the sets be ob(C) and we have a f ∈ hom(X, Y)

for sets X and Y when X ⊂ Y . The binary composition takes a X ⊂ Y and Y ⊂ Z and

produces X ⊂ Z for such sets X, Y, Z. Associativity holds because W ⊂ X ⊂ Y ⊂ Z is the

unique morphism W ⊂ Z, for such sets W,X, Y, Z. The identity composition holds because

X ⊂ X ⊂ Y is morphism X ⊂ Y and X ⊂ Y ⊂ Y is also morphism X ⊂ Y , for such sets

X, Y [64].

Consider another category, C, formed with the integers, Z. Let Z = ob(C) and let

f ∈ hom(n,m) when n and m are even (equal to 2k for some k ∈ Z). This is a category as

one can check, but is there a way to transform this while maintaining the category properties?

Indeed there is and we will show that by moving the morphisms from the evens to the odds

(that is Z\{even numbers}). We will denote F to do the work. Let F take every morphism

and shift it up by 1. So for every f ∈ hom(2k, 2w), F (f) ∈ hom(2k + 1, 2w + 1). In this

example F does not change ob(C) but that need not always be the case so we will specify

here that for every n ∈ Z, F (n) = n. Call the new category D. We write F : C → D and

call it a functor. A functor must map each object in ob(C) to some object in ob(D) and each

morphism in hom(C) to some morphism in hom(D) where

1. for every a ∈ ob(C), F (1a) = 1F (a), called identity, and

2. for every f ∈ hom(a, b), g ∈ hom(b, c), F (g ◦ f) = F (g) ◦ F (f), called functorality.

Let’s consider another type of set, G, where the set G has defined a function called ‘+’

that takes a, b ∈ G and produces some c ∈ G written c := a + b ∈ G. Our sets N,Z,R all

satisfy this using their ‘+’ but we want to add a requirement so that for each a ∈ G there is

a b ∈ G where identity 0 = a+ b ∈ G. We call the set G a group [6] if

7

1. associative, a+ (b+ c) = (a+ b) + c for any a, b, c ∈ G,

2. identity, there is an identity e ∈ G where e+ a = a = a+ e for any a ∈ G, and

3. inverse, for every a ∈ G there is a unique b ∈ G where identity e = a+ b.

Then N is not a group because it does not have negative numbers. However, Z,Q, and

R are groups with ‘+’ written (Z,+), (Q,+), and (R,+). Now the reals, R, using product,

·, instead of addition, +, also satisfies the rules of a group but the identity element changes

from 0 to 1. We can write the smallest group by {0} where 0 + 0 = 0. This is the smallest

group regardless of which symbol is used to describe it’s element and we denote the group

Z1. The next largest group can be written as {0, 1} where 0+0 = 0, 0+1 = 1, and 1+1 = 0.

The statement 1 + 1 = 0 is wrong for integers but here we define it to be true for the

symbols 0 and 1 in our set. We call this group Z2. We can keep going and define any group

Zn = {0, 1, ..., n− 1} by defining a+Z b := (a+ b)%n for a, b ∈ Zn. We use % as the modulo

operator where a%n := b where 0 ≤ b = a− kn for the largest such k ∈ Z [6]. Now that we

have covered some of the basics tools, we will continue with the thesis.

These basic tools are crucial for geometric and topological reconstruction. Later, we will

often start with some data or measurements. These measurements are in some space such

as N, Z, R, or C which we defined above. Then we calculate geometry, topology, missing

data, etc. The topology rules above, and their generalization to category theory are used

to construct many of the methods and proofs. Implicitly, the group theory and abstract

algebra above is used when we handle rings, vector spaces, and function spaces. However,

there are many concepts that we have not covered but will use later and it is up to the reader

to self-educate those topics.

8

1.1 Thesis Contributions

This thesis makes various contributions.

Section 2.1.1 proves Deep Epsilon Greedy Method convergence [82]. We prove that

Epsilon Greedy method regret upper bound is minimized with cubic root exploration. We

performs experiments with the real-world dataset MNIST, and witness how with either high

or low noise, some methods do and some do not converge which agrees with our proof of

convergence.

Section 2.1.2 also introduces generalizations of linear upper confidence bound methods

which we call DeepUCB. We give the analytic analysis and description. Empirical results

show that the Deep UCB often outperforms state of the art methods [83].

Chapter 3 gives new solutions and proofs to types of Feichtinger problems [9]. We perform

numerical simulations to confirm our results.

Section 4.2 introduces optimal transport and entropy based super resolution [84]. We

prove its convergence, robustness, and stability. We perform numerical simulations and real

data calculations to confirm our results and show the usefulness in applications.

Chapter 5 introduces a new analysis and algorithm called MGRAPPA [89]. We give the

convergence proof. We perform numerical simulations and real data experiments to confirm

the analysis and show usefulness in applications.

Section 6.1 details how to implement a parallel barcode algorithm on CPU or GPU

[86]. We analyze the computational complexity and reductions analytically. We perform

numerical simulations to confirm our analysis. Then, in Section 6.2, persistent homology

is applied to natural language processing to calculate word senses in order to show the

9

usefulness in applications [85].

Chapter 7 shows instability in Federer’s reach formulation in theory and practice [88]. In

Section 7.1, we introduce the combinatorial reach to generalize the reach concept. We prove

convergence and stability. We demonstrate the usefulness on various geometries.

Chapter 8 defines an entropic hypergraph from a collection of measurements [87]. We

prove the necessity of this hypergraph construction to identify many distributions. We

introduce an algorithm to approximate the hypergraph and prove the convergence properties.

We perform numerical simulations and real data analysis to confirm our result and show

usefulness in applications.

10

Chapter 2

Statistical Signal Reconstruction

Probability is a subject with a long history that goes back as far as gambling. Probability

is pattern recognition or signal recognition in a nondeterministic environment. Once the

correct probabilities are know, an accurate prediction can be made. Knowing the true

probabilities in reality is impossible. Thus comes the invention of statistics. Statistics tries

to approximate probabilities by collecting data or samples. Let’s say that you sample or

measure the temperature in many places in a room and always get a different number.

Statistics is the intuition that if you measure again, you will probably get a number close

to the average of the collected samples. Later on, the information age began with the mass

production of computers. Quickly, statisticians began collecting and storing as much data as

possible on computers and then began automating the statistical computations. A brand new

discipline, with its own questions and solutions, grew up combining statistics and computer

science, called machine learning.

Machine learning is the study of machines that study. More concretely, it is about

algorithms that adapt to data. By this description, statistical estimators are part of machine

11

learning if performed by a machine. Avoiding the issue of whether humans are a type of

machine, we will focus on modern computers and the algorithms that they can compute

or run. Since we must limit datasets to finite size, what is the best way to fill in gaps in

datasets? As we eluded, the average of the data points is one such estimate. Consider a

sequence of points in R taken across time, the most intuitive method to fill the gaps over

time is using a straight line between adjacent data points over time. Now a line segment

may contain infinitely many pairs of points which cannot be stored in a computer, but an

algorithm can calculate any interim point from storing the line segment end points. This

prediction algorithm adapts to the dataset which makes it a classic example of machine

learning. In general, creating lines or curves from datapoints is called interpolation. In

higher dimensions, with a dataset in some Rd, interpolation can calculate a function from

Rd to Rk. If the predictor or dataset comes from the same function calculated from the

interpolant, then the prediction will be accurate.

Consider the simple case where the datapoints (x, y) ∈ R2 follow ax + b = y for some

a, b ∈ R. To calculate or interpolate a, b we need at least two samples, say (x1, y1) and

(x2, y2). Then solving

x1 1

x2 1


a
b

 =

y1
y2

 for a, b gives the solution. Given more than

two data points, a choice must be made. If all of the data is accurate, all choices give the

same solution for a, b, but if some datapoints are inaccurate, the choice matters. Writing all

12

of the possible equations together for n datapoints yields

x1 1

x2 1

...

xn 1



a
b

 =



y1

y2

...

yn


(2.1)

which has no solution with inaccurate samples (xi, yi). When the errors in (xi, yi) are small

Equation (2.1) is approximately true. Following this notion, we will calculate a, b to make

the difference as small as possible,

min
a,b∈R

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



x1 1

x2 1

...

xn 1



a
b

−



y1

y2

...

yn



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

. (2.2)

This is a consistent approximation because as the errors go to 0, the minimizing pair (ã, b̃)

converges to the true (a, b). This robust estimation method can extend to higher dimensions

with more parameters such as (a, b, c, ...). More generally, for any predictors in matrix

X ∈ Rm×n and responses in vector y ∈ Rn, minimizing ∥Xv − y∥2 over vectors v ∈ Rm is

known as linear regression [107].

Computationally, minimizing ∥Xv−y∥2 is nontrivial. The first step is to instead minimize

∥Xv − y∥22 = ⟨Xv − y,Xv − y⟩. Then

⟨Xv − y,Xv − y⟩ = ⟨Xv,Xv − y⟩ − ⟨y,Xv − y⟩

= ⟨Xv,Xv⟩ − ⟨Xv, y⟩ − ⟨y,Xv⟩ + ⟨y, y⟩

= vTXTXv − 2vTXTy + yTy.

13

To optimize, we differentiate with respect to v and set to 0,

0 = 2XTXv − 2XTy

then

v = (XTX)−1XTy.

Now this local optimizer might be a maximizer or minimizer or saddle or some combination.

However, since the objective (2.1) is continuous, differentiable, and convex, this v is the

global minimizer [13].

Most interesting processes are not linear. And so linear regression cannot give an accurate

estimate in those cases. For datapoints (x, y) where y = |x|, how could linear interpolations

be combined to estimate such a process? We will need to combine them in a nonlinear way.

How would you do so just using the function ReLu(z) = 1z≥0 · z? One answer is

ReLu(x · (1,−1)) · (1, 1)T = y

where function ReLu is applied entrywise. This simple example generalizes and a sequence of

repeated linear maps and ReLu functions can approximate any Lipschitz continuous function

[99]! This model is known as a neural network [107]. As we saw with linear regression, when

errors are present in samples (xi, yi), there may be no neural network parameters θ ∈ Rk

where the neural network with parameters θ produces y, written as Φθ(x) = y. Using the

same logic from above, we instead minimize the norm of the difference, minθ ∥Φθ(x) − y∥2.

This objective is nonconvex and in general has many minimizers and maximizers so dif-

ferentiating and setting to zero does not give a global minimizer unfortunately. The next

simplest approximate solution is starting from a random initial condition and employing

gradient descent which will converge to a local minimizer under certain assumptions [113].

14

2.1 Reinforcement Learning Application

Reinforcement learning is a subfield of machine learning. We described machine learning

as machines that adapt to the data. Reinforcement learning adds the requirement that there

is a state of a system, decisions, and feedback. Reinforcement happens when the machine

or algorithm makes decisions and receives feedback. The algorithm’s goal is to reach some

goal state for the system. Consider a board game like Chess. The state of the system is the

position of each piece. The decision is which piece to move where. The feedback is the score

and the goal state is checkmate. Created in the 1400’s, 600 years later in 1997, an algorithm

beat the reigning Chess World Champion Garry Kasparov using reinforcement learning [51].

A rule that produces a decision from the system state is known as a policy. We can

write a policy, π, as a function that takes a state s ∈ S and decides upon an action a ∈ A,

π : S → A. The optimal policy is the policy that gets the best feedback. Let the feedback

be a real number, R, that we call a reward, written R(s, a) for s ∈ S and a ∈ A. In

some problems or games, for some s ∈ S, a ∈ A, R(s, a) may be undefined. So the optimal

policy, written π∗, has π∗(s) = arg maxa∈A:R(s,a)∈R R(s, a). This is a simple computation,

but in many cases, R(s, a) cannot be know until the action is chosen which causes the state

to change. The simplest solution is to collect reward data in a training phase by running

the system with the random policy which simply chooses each action randomly with equal

chance. Then at the end of training, if R(s, a) is known for each valid (s, a) ∈ S × A, set

π(s) = arg maxa∈A:R(s,a)∈R R(s, a), for all details see [36].

Unfortunately, this solution will not solve games like Chess. The problem is that choosing

to take the opponents largest piece each time may yet lead to defeat. If the opponent follows

15

a fixed strategy, then to win, if possible, the entire sequence of actions must be optimized.

The optimal policy, starting at state s1, is

π∗ = arg max
π

M∑
i=1

R(γi−1
π (s1), π(γi−1

π (s1))) (2.3)

where γπ(s) gives the state that follows from action π(s), written γπ(s) = s′ and γ0 is

identity. We are assuming that the problem or game finishes within M step, but if the

problem or game can continue forever, replace M with ∞. Computationally, solving (2.3)

is more difficult. Even after collecting reward data with a training phase and the random

policy, producing the optimal policy takes on the order of |A|M computations. Furthermore,

the training phase is longer, on the order of |A|M steps [36].

Computing all |A|M combinations is redundant if a state can be reached with more than

one sequence of actions or path in state space. A more efficient solution is to store reward

data, R(s, a), in a matrix R ∈ R|S|×|A|. During the training phase, check which matrix

entries are empty and only choose actions that produce R(s, a) where matrix entry Rs,a is

empty. This reduces excess computation but another order |A|M computation is required to

compute π∗ of Equation (2.3). Let’s setup another matrix called Q ∈ R|S|×|A| to provide the

reward of (s, a) plus future rewards from the optimal policy. Then

Qs,a = R(s, a) + max
a∈A

QΓ(s,a),a

where Γ is the function that takes a state and action, (s, a), and produces the next state of the

system, Γ(s, a) ∈ S. Now to compute thisQmatrix during training, still every non-redundant

path in state space needs to be traversed, but Q can be computed and updated quickly

during training. Once we have Q, then we directly have π∗(s) = arg maxa∈A:Qs,a∈RQs,a.

This reinforcement learning method is known as Q-learning. So far we have not allowed for

16

samples of R(s, a) to contains errors. Some amount of errors in matrix Q are inevitable

and can lead to the wrong policy based on Q, written πQ. To minimize the effect of errors,

common practice is to discount the future with a parameter 0 < β ≤ 1 and define

Qs,a = R(s, a) + βmax
a∈A

QΓ(s,a),a.

Then

πQ = arg max
π

M∑
i=1

βi−1R(γi−1
π (s1), π(γi−1

π (s1)))

Of course when the problem or game continues forever, there is no hope of collecting all of

the training data in finite time. By setting β < 1, then for some M large enough, βM is

bounded low enough and if R is bounded, this proxy problem can be solved.

In some problems or games, a training phase is not allowed. For example, you walk into

a casino and you want the optimal policy for what to play and how to play it. But playing

for free and ‘training’ yourself is not allowed. What is the best method to produce the best

policy when a training phase is not allowed? Note, no information about the problem or

game is known. Reward data from playing is the only data permitted. In the simple case of

just K ∈ N slot machines, a simple solution is the Epsilon Greedy Method in Algorithm 1

from [8]. This method covers problems or games with fixed actions, only one state, S = {0},

and rewards sampled from fixed distributions. These types of problems are also known as

Multi-Armed Bandits.

17

Algorithm 1: Epsilon Greedy Method

Parameters: K > 1, c > 0, 0 < d < 1.
Initialization: ϵn := min{1, cK

d2n
} for n = 1, 2, ...

for n = 1, 2, ... do
in = the action with the highest current average reward
if η > 1 − ϵn : η ∼ Uniform([0, 1]) then

play in
else

play a uniform random action
end

end

The Epsilon Greedy Method does not know the optimal policy initially, but it converges

to the optimal policy as time T → ∞, see below. Let µi := E(Pi) and ∆i := µ∗ − µi where

* is an optimal action index.

Theorem 1 (Auer 2002 [8]). For all K > 1, and for all reward distributions P1, ..., PK

with support in [0, 1], if policy Epsilon Greedy Method is run with input parameter 0 < d ≤

mini:µi<µ∗ ∆i, then the probability that after any number n ≥ cK/d of plays Epsilon Greedy

Method chooses a suboptimal machine j is at most

c

d2n
+ 2

(
c

d2
log

(n− 1)d2e1/2

cK

)(
cK

(n− 1)d2e1/2

)c/(5d2)
+

4e

d2

(
cK

(n− 1)d2e1/2

)c/2
.

Remark. For c large enough (e.g. c > 5) the above bound is of order c/(d2n) + o(1/n) for

n → ∞, as the second and third terms in the bound are O(1/n1+ϵ) for some ϵ > 0 (recall

that 0 < d < 1). Summing over N time steps gives a regret of O(log(N)). The average regret

O(log(N)/N) → 0 as N → ∞ so this converges to an optimal policy.

There are many other methods with various characteristics and convergence properties.

[4, 8].

Now when the state/context may change, the problem is more challenging. In many

scenarios, it is assumed that the state is a random variable sampled at each time step and

18

independent of past actions and rewards. This is known as unconfoundedness [7]. In [7, 116],

convergence is shown for the Doubly Robust method. When state X is sampled on a low

dimensional manifold, fast convergence is shown in [20]. Other neural network based policy

learning methods also converge [83, 118]. We will show convergence for Deep Epsilon Greedy

method under reasonable assumptions and then discuss variations and generalizations. The

convergence of policy learning depends on the policy and the neural network. The neural

network’s convergence that we use goes back to [45] which bounds the neural network’s

parameter weights. This is equivalent to a Lipschitz bound on the employed class of neural

networks [121].

First we describe the well known Epsilon Greedy method in Algorithm 2. We will use and

analyze this algorithm throughout this section. This method runs for M time steps and at

each time step takes in a state vector, Xt, and chooses an action, Dt, from A = {a1, ..., aK}.

The reward at each time step is recorded and the attempt is to maximize the total rewards

received.

19

Algorithm 2: Deep Epsilon Greedy

Input:
M ∈ N : Total time steps
m ∈ N : Context dimension
X ∈ RM×m where state Xt ∈ Rm for time step t
A = {a1, ..., aK} : Available Actions
Φ : Rm → R : Untrained Neural Network
Reward : N[1,K] → R
Output:
D ∈ NM : Decision Record
R ∈ RM where Rt stores the reward from time step t
Begin:
for t = 1, 2, ..., M do

for j = 1 ... K do
µ̂aj = Φj,t(Xt) (predict reward)

end
η ∼ Uniform(0,1)
ϵt = 1/t
if η > ϵt then

Dt = arg max1≤j≤K µ̂aj
else

ρ ∼ Uniform({1,...,K})
Dt = Aρ

end
Rt = Reward(Dt)
(Training Stage)
for j = 1 ... K do

Sj = {l : 1 ≤ l ≤ t, Dl = j}
TrainNNet(Φj,t−1, input = XSj

, output = RSj
)

end

end

2.1.1 Deep Epsilon Greedy Method Convergence

We will utilize the following theorem.

Theorem 2. [[45] Theorem 16.3] Let Φn be a neural network with n parameters and the

parameters are optimized to minimize MSE of the training data, S = {(Xi, Yi)} where X and

Y are almost surely bounded. Let the training data, be size n, and Yi = R(xi) ∼ N(µxi , σxi)

20

where R : Rm → R. Then for n large enough,

ES
∫

|Φn(x) − E(R(x))|2dP (x) ≤ c

√
log(n)

n
(2.4)

for some c > 0.

Now, assume there are K actions to play. Let Tj(t) be the random variable equal to

number of times action j is chosen in the first t− 1 steps. Let TRj (t) be the number of times

action j is chosen in the first t − 1 steps by the uniform random branch of the algorithm.

Let X be the state vector at some time step t and Y j
t be the reward of action j at time

step t both almost surely bounded. Let µj(X) := E(Y j
t |X). We will use ∗ for an optimal

action index, for example let µ∗(X) be the expectation of all optimal actions at X. Let

∆j(X) := max{0, µ∗(X) − µj(X)}. Let ϵt = 1/t. Let It be the action chosen at time t.

Assume state X is sampled from an unknown distribution i.i.d. at each time step t.

Theorem 3. [82] Assume there is optimality gap δ with 0 < δ ≤ ∆j(X) for all j and X

where j is suboptimal. Assume there is at least one suboptimal action for any context. With

the assumptions from above and from Theorem 2, the Deep Epsilon Greedy method converges

with expected regret approaching 0 almost surely. Let Ci be the constant from Theorem 2 for

neural network i and let ni be the minimal value of the training data size such that Equation

(2.4) holds. Set C0 = 8
√

2 maxiCi and t0 = exp(2K max{e,maxi ni}). Then for every t > t0

with probability at least 1 −K exp(−3 log(t)/(28K)),

δ/(tK) ≤ EXtEItER [R∗(Xt) −R(Xt)] ≤
maxi EXt∆i(Xt)

t
+K3/2C0

δ

√
log(log(t)) − log(2K)

log(t)
.

(2.5)

The expectations in above equations refer to the specific time step t. The probability refers

to the stochastic policy’s choices at previous time steps, 1 to t− 1.

21

Now we consider a more general rational function for ϵt.

Theorem 4. [82] Let ϵt = 1/tp where 0 < p < 1. Assume the assumptions of Theorem 3.

Set C ′
0 = 8

√
2(1 − p) maxiCi and t0 > (2(1 − p)K max{e,maxi ni})1/(1−p). Then for every

t > t0 with probability at least 1 −K exp (−(3 t−p+1)/(28(−p+ 1)K)),

δ/(Ktp) ≤ EXtEItER [R∗(Xt) −R(Xt)] (2.6)

≤ maxi EXt∆i(Xt)

tp
+K3/2C

′
0

δ

√
log(t−p+1) − log(2(−p+ 1)K)

t−p+1
. (2.7)

The expectations in above equations refer to the specific time step t. The probability refers

to the stochastic policy’s choices at previous time steps, 1 to t− 1.

We will need the following lemma.

Lemma 5. [82] Recall that TRj (t) is the number of times action j is chosen in the first t−1

steps by the uniform random branch of the algorithm. For the case ϵt = 1/t,

P

(
K∧
i=1

{TRi (t) ≥ log(t)/(2K)}

)
≥ 1 −K exp

(
−3 log(t)

28K

)
. (2.8)

For the case ϵt = 1/tp, where 0 < p < 1,

P

(
K∧
i=1

{TRi (t) ≥ t−p+1

2(−p+ 1)K
}

)
≥ 1 −K exp

(
− 3 t−p+1

28(−p+ 1)K

)
. (2.9)

Proof of Lemma 5. Fix i. Recall ϵt = 1/t. Following the proof of theorem 3 in [8],

E(TRi (t)) =
t−1∑
l=1

P(η < ϵl ∧ ρ = i) =
t−1∑
l=1

P(η < ϵl)P(ρ = i)

=
t−1∑
l=1

ϵl/K =
1

K

t−1∑
l=1

1

l
≥ 1

K
log(t)

Set B(t) := 1
K

∑t−1
l=1

1
l
. Then we have

V ar(TRi (t)) =
t−1∑
l=1

ϵl
K

(1 − ϵl
K

) ≤ 1

K

t−1∑
l=1

ϵl =
1

K

t−1∑
l=1

1

l
= B(t).

22

By Bernstein’s inequality

P(TRi (t) ≤ B(t)/2) = P
(
TRi (t) −B(t) ≤ −B(t)/2

)
≤ exp

(
−B(t)2/8

V ar(TRi (t)) + 1
3
B(t)/2

)
≤ exp

(
−B(t)2/8

B(t) + 1
3
B(t)/2

)
≤ exp

(
−3B(t)

28

)
≤ exp

(
−3 log(t)

28K

)
.

So by union bound

P

(
K∨
i=1

{TRi (t) ≤ log(t)/(2K)}

)
≤ KP

(
TR1 (t) ≤ log(t)/(2K)

)
≤ K exp

(
−3 log(t)

28K

)
.

And

P

(
K∧
i=1

{TRi (t) ≥ log(t)/(2K)}

)
≥ 1 −K exp

(
−3 log(t)

28K

)
.

This proves Equation (2.8). Next, we prove Equation (2.9). Fix i. Recall ϵt = 1/tp. Following

the proof of theorem 3 in [8],

E(TRi (t)) =
t−1∑
l=1

P(η < ϵl ∧ ρ = i) =
t−1∑
l=1

P(η < ϵl)P(ρ = i)

=
t−1∑
l=1

ϵl/K =
1

K

t−1∑
l=1

1

lp
≥ 1

(1 − p)K
t1−p

Set B(t) := 1
K

∑t−1
l=1

1
lp

. we have

V ar(TRi (t)) =
t−1∑
l=1

ϵl
K

(1 − ϵl
K

) ≤ 1

K

t−1∑
l=1

ϵl =
1

K

t−1∑
l=1

1

lp
= B(t).

23

By Bernstein’s inequality

P(TRi (t) ≤ B(t)/2) = P
(
TRi (t) −B(t) ≤ −B(t)/2

)
≤ exp

(
−B(t)2/8

V ar(TRi (t)) + 1
3
B(t)/2

)
≤ exp

(
−B(t)2/8

B(t) + 1
3
B(t)/2

)
≤ exp

(
−3B(t)

28

)
≤ exp

(
− 3 t−p+1

28(−p+ 1)K

)
.

So by union bound

P

(
K∨
i=1

{TRi (t) ≤ t−p+1

2(−p+ 1)K
}

)
≤ K P

(
TR1 (t) ≤ t−p+1

2(−p+ 1)K

)

≤ K P
(
TR1 (t) ≤ B(t)

2

)
≤ K exp

(
− 3 t−p+1

28(−p+ 1)K

)
.

And

P

(
K∧
i=1

{TRi (t) ≥ t−p+1

2(−p+ 1)K
}

)
≥ 1 −K exp

(
− 3 t−p+1

28(−p+ 1)K

)
.

This prove Equation (2.9).

Proof of Theorem 3. Let ∗ be an optimal action at Xt and R the reward from the epsilon

greedy method. Let Φi,t be the trained neural network for action i and have t parameters. By

Lemma 5, with probability greater than 1 −K exp(−3 log(t)/(28K)), TRi (t) ≥ log(t)/(2K)

for all i. In this case, we have

24

EXtEItER[R∗(Xt) −R(Xt)] = EXt [µ∗(Xt) − EItERR(Xt)]

= EXt [µ∗(Xt) −
K∑
i=1

µi(Xt)P(It = i|Xt)]

= EXt

∑
i

∆i(Xt)P(It = i|Xt)

=
∑
i

EXt∆i(Xt)P(It = i|Xt)

Then

EXt [∆i(Xt)P(It = i|Xt)] ≤ EXt∆i(Xt)[ϵt/K + P(Φi,t(Xt) ≥ Φ∗,t(Xt))]

and, with Markov’s inequality,

P(Φi,t(Xt) ≥ Φ∗,t(Xt)) ≤ P(Φi,t(Xt) ≥ µi(Xt) + ∆i(Xt)/2) + P(Φ∗,t(Xt) ≤ µ∗(Xt) − ∆i(Xt)/2)

=

∫
1{Φi,t(Xt)≥µi(Xt)+∆i(Xt)/2}

dPi +

∫
1{Φ∗,t(Xt)≤µ∗(Xt)−∆i(Xt)/2}

dP∗

≤
∫
1{|Φi,t(Xt)−µi(Xt)|≥∆i(Xt)/2}

dPi +

∫
1{|Φ∗,t(Xt)−µ∗(Xt)|≥∆i(Xt)/2}

dP∗

≤
∫

|Φi,t(Xt) − µi(Xt)|2

∆i(Xt)2/4
dPi +

∫
|Φ∗,t(Xt) − µ∗(Xt)|2

∆i(Xt)2/4
dP∗

Then

EXt [∆i(Xt)P(It = i|Xt)]

≤ EXt∆i(Xt)ϵt/K + EXt∆i(Xt)

∫
|Φi,t(Xt) − µi(Xt)|

∆i(Xt)/2
dPi + EXt∆i(Xt)

∫
|Φ∗,t(Xt) − µ∗(Xt)|

∆i(Xt)/2
dP∗

≤ EXt∆i(Xt)ϵt/K +
4

δ

∫
xt:i ̸=∗

∫
|Φi,t(xt) − µi(xt)|2dPidPxt +

4

δ

∫
xt:i ̸=∗

∫
|Φ∗,t(xt) − µ∗(xt)|2dP∗dPxt ,

by dominated convergence,

≤ EXt∆i(Xt) ϵt/K +
4

δ

∫ ∫
xt

|Φi,t(xt) − µi(xt)|2dPxtdPi +
4

δ

∫ ∫
xt

|Φ∗,t(xt) − µ∗(xt)|2dPxtdP∗

25

Recall that we are in the case that TRi (t) ≥ log(t)/(2K) for all i. Let Ci be the constant

from Theorem 2 for neural network i and let ni be the minimal value of the training data

size such that Equation (2.4) holds. Choose t0 > exp(2K max{e,maxi ni}). Since the map

x 7→
√

ln(x)
x

is monotone decreasing for x > e, the above expression is further upper bounded

by

≤ EXt∆i(Xt)
ϵt
K

+
4

δ
Ci

√
log(Ti(t))

Ti(t)
+

4

δ
C∗

√
log(T∗(t))

T∗(t)

≤ EXt∆i(Xt)
ϵt
K

+
4Ci
δ

√
log(TRi (t))

TRi (t)
+

4C∗

δ

√
log(TR∗ (t))

TR∗ (t)

≤ EXt∆i(Xt)

tK
+

[
4Ci
δ

+
4C∗

δ

]√
log(log(t)/(2K))

log(t)/(2K)

So

EXtEItER[R∗(Xt) −R(Xt)]

= EXt [µ∗(Xt) − EItERR(Xt)]

=
∑
i

EXt∆i(Xt)P(It = i|Xt)

≤ maxi EXt∆i(Xt)

t
+K3/2

√
2

[
4 maxiCi

δ
+

4C∗

δ

]√
log(log(t)) − log(2K)

log(t)

from where the upper bound in (2.5) follows. To prove the lower bound, we have, for i not

optimal, that

EXt [∆i(Xt)P(It = i|Xt)] ≥ EXt∆i(Xt)ϵt/K

≥ EXtδϵt/K ≥ δ/(tK).

26

Then using the suboptimal action, assumed to exist, we get

EXtEItER[R∗(Xt) −R(Xt)]

=
∑
i

EXt∆i(Xt)P(It = i|Xt) ≥ δ/(tK).

Corollary 5.1. [82] The Epsilon Greedy method with any predictor, neural network or

otherwise, with convergence of c
√

log(n)
n

, or better, will have regret converging to 0 almost

surely.

Remark. [82] With ϵt = 1/tp with p ≤ 1, enough samples will be taken to train an approxi-

mation to convergence. When p > 1, The number of samples is finite and the approximation

will not converge in general. This is called a starvation scenario since the optimal action is

not sampled sufficiently.

Corollary 5.2. [82] The optimal p for ϵt = 1/tp with the fastest converging upper bound of

Theorem 3 for Deep Epsilon Greedy is p = 1/3.

Proof of Corollary 5.2. From the above remark, we know p ≤ 1. First we show that 0 < p <

1 converges faster than p = 1. Theorem 3 gives the bound of

maxi EXt∆i(Xt)

t
+K3/2C0

δ

√
log(log(t)) − log(2K)

log(t)

for p = 1. Theorem 4 gives the bound of

maxi EXt∆i(Xt)

tp
+K3/2C

′
0

δ

√
log(t−p+1) − log(2(−p+ 1)K)

t−p+1
(2.10)

for p < 1. Set αt := maxi EXt∆i(Xt)

27

and βt = K3/2C0

δ

√
log(log(t)) − log(2K)

and γt = K3/2C
′
0

δ

√
log(t−p+1) − log(2(1 − p)K). Using the ratio test, the limit of the

ratio of the bounds is

lim
t→∞

αtt
−p + γtt

(p−1)/2

αtt−1 + βt/
√

log(t)

=
limt→∞ αtt

−pβ−1
t

√
log(t) + γtβ

−1
t t(p−1)/2

√
log(t)

limt→∞ αtt−1β−1
t

√
log(t) + 1

= lim
t→∞

t(p−1)/2
√

log(t) = 0

for 0 < p < 1. Now we find p to minimize Equation (2.10).

lim
t→∞

maxi EXt∆i(Xt)

tp
+K3/2C0

δ

√
log(t−p+1) − log(2(1 − p)K)

t−p+1

= t−p lim
t→∞

αt +K3/2C0

δ

√
log(t−p+1) − log(2(1 − p)K)

t−3p+1

The convergence rate is t−p if −3p + 1 ≥ 0. Otherwise, p > 1/3, the rate achieved is

t−(1−p)/2 > t−(1−1/3)/2 = t−1/3. So the optimal is at p = 1/3.

Proof of Theorem 4. Let ∗ be an optimal action at Xt and R the reward from the epsilon

greedy method. Let Φi,t be the trained neural network for action i and have t parameters.

By Lemma 5, with probability greater than 1 −K exp
(
− 3 t−p+1

28(−p+1)K

)
, TRi (t) ≥ t−p+1

2(−p+1)K
for

all i. In this case, we have

28

EXtEItER[R∗(Xt) −R(Xt)]

= EXt [µ∗(Xt) − EItERR(Xt)]

= EXt [µ∗(Xt) −
K∑
i=1

µi(Xt)P(It = i|Xt)]

= EXt

∑
i

∆i(Xt)P(It = i|Xt)

=
∑
i

EXt∆i(Xt)P(It = i|Xt)

Then

EXt [∆i(Xt)P(It = i|Xt)] ≤ EXt∆i(Xt)[ϵt/K + P(Φi,t(Xt) ≥ Φ∗,t(Xt))]

and, with Markov’s inequality,

P(Φi,t(Xt) ≥ Φ∗,t(Xt)) ≤ P(Φi,t(Xt) ≥ µi(Xt) + ∆i(Xt)/2) + P(Φ∗,t(Xt) ≤ µ∗(Xt) − ∆i(Xt)/2)

=

∫
1{Φi,t(Xt)≥µi(Xt)+∆i(Xt)/2}

dPi +

∫
1{Φ∗,t(Xt)≤µ∗(Xt)−∆i(Xt)/2}

dP∗

≤
∫
1{|Φi,t(Xt)−µi(Xt)|≥∆i(Xt)/2}

dPi +

∫
1{|Φ∗,t(Xt)−µ∗(Xt)|≥∆i(Xt)/2}

dP∗

≤
∫

|Φi,t(Xt) − µi(Xt)|2

∆i(Xt)2/4
dPi +

∫
|Φ∗,t(Xt) − µ∗(Xt)|2

∆i(Xt)2/4
dP∗

Then

EXt [∆i(Xt)P(It = i|Xt)]

≤ EXt∆i(Xt)ϵt/K + EXt∆i(Xt)

∫
|Φi,t(Xt) − µi(Xt)|

∆i(Xt)/2
dPi + EXt∆i(Xt)

∫
|Φ∗,t(Xt) − µ∗(Xt)|

∆i(Xt)/2
dP∗

≤ EXt∆i(Xt)ϵt/K +
4

δ

∫
xt:i ̸=∗

∫
|Φi,t(xt) − µi(xt)|2dPidPxt +

4

δ

∫
xt:i ̸=∗

∫
|Φ∗,t(xt) − µ∗(xt)|2dP∗dPxt ,

29

by dominated convergence,

≤ EXt∆i(Xt) ϵt/K +
4

δ

∫ ∫
xt

|Φi,t(xt) − µi(xt)|2dPxtdPi +
4

δ

∫ ∫
xt

|Φ∗,t(xt) − µ∗(xt)|2dPxtdP∗

Recall that we are in the case that TRi (t) ≥ t−p+1

2(−p+1)K
for all i. Let Ci be the constant

from Theorem 2 for neural network i and let ni be the minimal value of the training data

size such that Equation (2.4) holds. Choose t0 > (2(1 − p)K max{e,maxi ni})1/(1−p). Since

the map x 7→
√

ln(x)
x

is monotone decreasing for x > e, the above expression is further upper

bounded by

≤ EXt∆i(Xt)
ϵt
K

+
4

δ
Ci

√
log(Ti(t))

Ti(t)
+

4

δ
C∗

√
log(T∗(t))

T∗(t)

≤ EXt∆i(Xt)
ϵt
K

+
4Ci
δ

√
log(TRi (t))

TRi (t)
+

4C∗

δ

√
log(TR∗ (t))

TR∗ (t)

≤ EXt∆i(Xt)

Ktp
+

[
4Ci
δ

+
4C∗

δ

]√
log(t−p+1/(2(−p+ 1)K))

t−p+1/(2(−p+ 1)K)

So

EXtEItER[R∗(Xt) −R(Xt)]

= EXt [µ∗(Xt) − EItERR(Xt)]

=
∑
i

EXt∆i(Xt)P(It = i|Xt)

≤ maxi EXt∆i(Xt)

tp
+K3/2

√
2(1 − p)

[
4 maxiCi

δ
+

4C∗

δ

]
·
√

log(t−p+1) − log(2(−p+ 1)K)

t−p+1

from where (2.7) follows. To prove the lower bound, we have, for i not optimal, that

EXt [∆i(Xt)P(It = i|Xt)] ≥ EXt∆i(Xt)ϵt/K

≥ EXtδϵt/K ≥ δ/(Ktp).

30

Then using the suboptimal action, assumed to exist, we get

EXtEItER[R∗(Xt) −R(Xt)] =
∑
i

EXt∆i(Xt)P(It = i|Xt) ≥ δ/(Ktp).

2.1.2 Deep Upper Confidence Bound Method

Deep Upper Confidence Bound (Deep UCB) method [83] for high dimensional, nonlinear

CMAB problems is motivated by Upper Confidence Bound (UCB) method [8] for MAB

where the arm with the highest expected reward plus uncertainty is chosen. Deep UCB

uses two neural networks. One neural network predicts the expected reward and the second

neural network predicts uncertainty. The arms with the highest expected rewards plus

high uncertainty are chosen. Unlike the other methods, nonlinear reward functions are

accurately modeled and exploration is guided to maximize certainty. Choosing uncertain

arms decreases the uncertainty. As uncertainty of all arms approaches zero, this method

converges to choosing the arm with the highest expected reward.

We model the expectation of reward functions, µc, c ∈ C, from a neural network where

the input is the context vector c ∈ C and the output is a vector approximating the reward,

NN : C → R. Further, we estimate the uncertainty of the expected reward, σc, given a

context vector c ∈ C, represented as the standard error of the expectation. This procedure is

done for each arm. Then, for each arm, the deep upper confidence bound (DUCB) estimate

is defined, given c ∈ C, as

DUCB(c) = µ̂c + σ̂c/
√
n

by the arm’s n realizations, empiric expectation µ̂c, and empiric standard deviation σ̂c. Here,

31

µ and σ are unknown functions of the context vector; µ, σ : C → R. While we estimate µ̂c

approximately with NN1 = µ̂, we approximate σ with another neural network, NN2 : C → R

and NN2 = σ̂2, and thus,

DUCB(c) = NN1(c) +
√
NN2(c)/n

where n is number of realizations of the arm and c is the context vector. As implemented,

the neural networks have multiple outputs and will compute the prediction for each arm

simultaneously and then calculation is as above but with vectors.

When training these neural networks, the mean squared error (MSE) of NN1 is minimized

and the L1 error of NN2 is minimized. Let R(c) be a realization of the reward of a context

vector c for an arm and S ⊂ C be some subset of the context vectors. Then, for a sufficiently

parameterized NN,

NN1 = arg min
NN1

∑
c∈S

(NN1(c) −R(c))2

is the maximum likelihood esimator for each c and converges when the reward function

R(c) ∼ Gaussian. Likewise,

NN2 = arg min
NN2

∑
c∈S

|NN2(c) − (NN1(c) −R(c))2|.

For each c, with T independent realizations of R and t = 1, ..., T ,

∑
1≤t≤T

|NN2(c) − (NN1(c) −Rt(c))
2|

=
∑
t∈T1

NN2(c) − (NN1(c) −Rt(c))
2 −

∑
t∈T2

NN2(c) − (NN1(c) −Rt(c))
2

where T1 = {1 ≤ t ≤ T : NN2(c) − (NN1(c) − Rt(c))
2 ≥ 0} and T2 = [1, T]\T1. As

NN1(c) → µc,∑
t∈T1

NN2(c) − (NN1(c) −Rt(c))
2 → T1 ·NN2(c) −

∑
t∈T1

(µc −Rt(c))
2

32

Likewise for T2. By minimizing
∑

T |NN2(c) − (NN1(c) − R(c))2|, then NN2(c) → σ2
c as

NN1(c) → µc and T → ∞. Therefore, DUCB converges to the upper confidence bound

given sufficiently parameterized neural networks and enough training samples.

We will call this method Deep UCB2, given in Algorithm 3. Note that by assuming the

arms are similar stochastic functions (but still unknown), we have simplified Algorithm 3.

We call a variation of this method Deep UCB1, given in Algorithm 4.

Algorithm 3: Deep UCB2

C ∈ RT ·K·m where Ct,j is the jth context vector in Rm at time step t
A = {arm1, ..., armN}
NN1,Zt , NN2,Zt = Neural Network : Rm → R with Zt neurons
Reward : N[1,K] → R
for t = 1 ... T do

for j = 1 ... K do
NN(·) gives a prediction using NN
ÊR(armj) = NN1,Zt(Ct,j) # Predict reward

ÊV (armj) = NN2,Zt(Ct,j) # Predict certainty
end
for j = 1 ... K do

Choose arms

Dt,j = arg maxarm∈A−Dt,: ÊR(arm) +

√
ÊV (arm)

t

end
for j = 1 ... K do

Rt,j = Reward(Dt,j) # Record rewards

Vt,j = (Rt,j − ÊR(armj))
2 # Record accuracy

end
Train the networks
TrainNNet(NN1,Zt , in = C1:t,D1:t,1:K

, out = R1:t,1:K , loss = MSE)
TrainNNet(NN2,Zt , in = C1:t,D1:t,1:K

, out = V1:t,1:K , loss = L1)

end

33

Algorithm 4: Deep UCB1

C ∈ RT ·K·m where Ct,j is the jth context vector in Rm at time step t
A = {arm1, ..., armN}
NN1,Zt , NN2,Zt = Neural Network : Rm → R with Zt neurons
Reward : N[1,K] → R
ϵi = µi,max − µi,min + ϵ
for t = 1 ... T do

if t ≤ JN then
Initial exploration phase
for j = 1 ... K do

Choose arms
Dt,j = ((⌊ t−1

J
⌋ + j − 1) mod N) + 1

end

else
for j = 1 ... K do

NN(·) gives a prediction using NN

ÊR(armj) = 1
Wt

∑Wt

i=1NN
(i)
R,Zt

(Ct,j) # Predict reward

ÊV (armj) = 1
Wt

∑Wt

i=1NN
(i)
V,Zt

(Ct,j) # Predict certainty

end
for j = 1 ... K do

Choose arms

Dt,j = arg maxarm∈A−Dt,: ÊR(arm) +

√
2ÊV (arm)+2 log t√

|{d∈D1:t−1,: s.t. d=arm}|
+ ϵarm

end
for j = 1 ... K do

Rt,j = Reward(Dt,j) # Record rewards

Vt,j = (Rt,j − ÊR(armj))
2 # Record accuracy

end
Train the networks
for i = 1 ... Wt do

Ji = J(i− 1) t
Wt

+ 1, i t
Wt

K
TrainNNet(NN

(i)
R,Zt

, in = CJi,Dt,1:K
, out = RJi,1:K , loss=MSE)

TrainNNet(NN
(i)
V,Zt

, in = CJi,Dt,1:K
, out = VJi,1:K , loss=MSE)

end

end

end

2.1.3 Optical Character Recognition Application

We experiment with the MNIST [57] dataset which contains real world, handwritten

digits 0-9. The action set is {a1, ..., a5}. The state, Xt at each time step, t, is 5 random

34

images. Each digit has an equal chance of being chosen. The reward Yt = R(Xt, It) is the

digit of the image corresponding to the chosen action plus Gaussian noise. We plot the regret

convergence to 0 of the Deep Epsilon Greedy method in Fig. 2.1. We get a convergence rate

of approximately t−1/2 which is within the bounds of Theorem 3.

Next, we compare the Uniform Random method (see Algorithm 5), the Linear Regression

method (see Algorithm 7), the LinUCB method [62] (see Algorithm 8), the Deep Epsilon

Greedy method (see Algorithm 2), and the Simple Deep Epsilon Greedy method (only 1

hidden layer). The Deep Epsilon Greedy method uses 3 convolutional layers followed by a

fully connected layer of width 100. The Simple Deep Epsilon Greedy method uses just one

fully connected layer of width 100. For all methods, training is every 20 time steps. For

the neural networks, number of training epochs is always 16 and the initial learning rate is

10−3. We plot the reward normalized (divided by the time step) in Fig. 2.2. Each curve is

an average of 12 independent runs.

We see that in both the high noise and low noise case, Deep Epsilon Greedy converges to

the optimal but Simple Deep Epsilon Greedy does not. Simple Deep Epsilon does not have

the necessary complexity to converge required by Theorem 2. Because the neural network

does not converge, the regret in this policy does not converge to 0. The LinUCB and Linear

Regression also cannot converge to the solution because they are linear models but this is a

nonlinear problem. So they perform as well as purely random actions.

We have shown convergence guarantees for the Deep Epsilon Greedy method, Algo-

rithm 2. In Corollary 5.1, we have shown convergence of generalizations to other common

predictive models. We have shown convergence failure with ϵt = 1/tp for p > 1. In Corol-

lary 5.2, we showed that ϵt = 1/t1/3 gives the fastest convergence bound. To see these results

35

in experiments, we perform a standard MNIST [57] experiment. The converging methods vs

non-converging methods is empirically confirmed and displayed in Fig. 2.1 and Fig. 2.2.

2.1.4 Open Problems

• Is there a tighter bound for Theorem 3?

• Is there a function ϵ(t) with a tighter bound than the bound in Theorem 4?

• Is there a tighter bound for Theorem 2, since that would improve the bound in Theo-

rem 3?

Algorithm 5: Random

Input:
M ∈ N : Total time steps
m ∈ N : Context dimension
X ∈ RM×m where state Xt ∈ Rm for time step t
A = {a1, ..., aK} : Available Actions
Reward : N[1,K] → R
Output:
D ∈ NM : Decision Record
R ∈ RM where Rt stores the reward from time step t
Begin:
for t = 1, 2, ..., M do

ρ ∼ Uniform({1,...,K})
Dt = Aρ (Choose Random Action)
Rt = Reward(Dt)

end

36

Algorithm 6: Optimal

Input:
M ∈ N : Total time steps
m ∈ N : Context dimension
X ∈ RM×m where state Xt ∈ Rm for time step t
A = {a1, ..., aK} : Available Actions
Reward : N[1,K] → R
oracle : N[1,M] → N[1,K] : Oracle for correct action index
Output:
D ∈ NM : Decision Record
R ∈ RM where Rt stores the reward from time step t
Begin:
for t = 1, 2, ..., M do

Dt = oracle(t) (Choose Correct Action)
Rt = Reward(Dt)

end

Algorithm 7: Linear

Input:
M ∈ N : Total time steps
m ∈ N : Context dimension
X ∈ RM×m where state Xt ∈ Rm for time step t
A = {a1, ..., aK} : Available Actions
Reward : N[1,K] → R
Output:
Bj ∈ Rm : Linear Models for 1 ≤ j ≤ K
D ∈ NM : Decision Record
R ∈ RM where Rt stores the reward from time step t
Begin:
for j = 1, 2, ..., K do

Bj = 0
end
for t = 1, 2, ..., M do

for j = 1, 2, ..., K do
µ̂aj = BT

j Xt (predict rewards)

end
Dt = arg max1≤j≤K µ̂aj
Rt = Reward(Dt)
(Training Stage)
S = {l : 1 ≤ l ≤ t, Dl = Dt}
BDt = arg minB ∥RS −BXT

S ∥2
end

37

Algorithm 8: LinUCB

Input:
M ∈ N : Total time steps
m ∈ N : Context dimension
X ∈ RM×m where state Xt ∈ Rm for time step t
A = {a1, ..., aK} : Available Actions
Reward : N[1,K] → R
Output:
Bj ∈ Rm×m : Linear Maps for 1 ≤ j ≤ K
bj ∈ Rm : Linear Models for 1 ≤ j ≤ K
D ∈ NM : Decision Record
R ∈ RM where Rt stores the reward from time step t
Begin:
for j = 1, 2, ..., K do

Bj = I
bj = 0

end
for t = 1, 2, ..., M do

for j = 1, 2, ..., K do
Θ = B−1

j bj
(Predict Rewards)

µ̂aj = ΘT Xt +
√
XT
t B

−1
j Xt

end
Dt = arg max1≤j≤K µ̂aj
Rt = Reward(Dt)
(Training Stage)
BDt = BDt +XtX

T
t

bDt = bDt +RtXt

end

38

0 500 1000 1500 2000 2500 3000 3500 4000

time steps

3

4

5

6

7

8

re
w

a
rd

Random

Deep Epsilon-Greedy

Optimal

10 0 10 1 10 2 10 3 10 4

time steps

10 0

10 1

re
g
re

t

Deep Epsilon Greedy

32 x -1/2

Figure 2.1: Deep Epsilon Greedy method convergence of regret to 0 at rate x−1/2. Plotting

normalized reward of optimal method minus normalized reward of Deep Epsilon Greedy

method. No noise added to MNIST dataset. Single run with 1000 neurons in the fully

connected, final layer.

39

20 40 60 80 100 120 140 160 180 200

time steps

3

4

5

6

7

8

re
w

a
rd

Random

Simple Deep Epsilon-Greedy

Deep Epsilon-Greedy

LinUCB

Linear

Optimal

20 40 60 80 100 120 140 160 180 200

time steps

4

5

6

7

8

re
w

a
rd

Random

Simple Deep Epsilon-Greedy

Deep Epsilon-Greedy

LinUCB

Linear

Optimal

Figure 2.2: Top: Low Noise with no Gaussian noise added to reward. Bottom: High Noise

with Gaussian noise, sigma = 1, added to reward. Both: Mean reward normalized (divide

by time step) plotted over time steps for each method. Task is to choose the largest MNIST

image (digit) of 5 random images. No Gaussian noise added to reward. Mean is over 12

independent runs. 40

Chapter 3

Functional Analysis Based

Reconstruction with Ray Separation

Applications

Functional analysis analyzes functionals, also known as operators, which are maps from

a space to a scalar field [96]. In multivariate applications and problems, samples are vectors

and together form a matrix. Functional analysis allows classification and decomposition of

operators, including matrices. Often multivariate applications inhabit a low dimensional

subspace. This corresponds to the spectrum of the data matrix being sparse, or the matrix

being low rank [6, 96]. Reconstructing the low dimensional subspace is a challenging problem

in estimation and optimization. We will discuss reconstructing sparse matrix decompositions

using the geometry of the L1 unit ball which naturally increases sparsity.

In signal processing, mixed signals often need to be processed and distilled. If we consider

41

waves in a medium as signals, reflections in the medium will mix a signal with itself. We

will consider mixed signals in the form of an operator which in finite dimensions is a matrix.

We distill, or reconstruct, the signals by decomposing the matrix into an integral of rank

one matrices. Many different measures will satisfy the decomposition, so we construct an

optimization problem to calculate the measure that maximizes sparsity. This can be viewed

as the simplest solution of the geometry problem.

Define the l1 unit sphere S1 = {x ∈ CN : ∥x∥1 = 1}. Solve µ∗ = arg minµ
∫
S1
dµ(x) such

that A =
∫
S1
xxTdµ(x) where µ is a measure on CN and A ∈ CN×N is the measurement

operator. For example, µ can be any matrix decomposition such as the eigendecomposition

A =
∫
S1
xxTdµ(x) =

∑
i λi∥vi∥21

vi
∥vi∥1

vTi
∥vi∥1 . We conjecture that µ∗ is a discrete, finite measure:

µ∗(x) =
∑M

i=1wiδxi(x) where δ is the Dirac delta measure and wi ∈ C ∀i. Indeed, we prove

that in some situations, this is true.

When restricted to discrete measures, this optimization problem can be formulated as:

solve A =
∑

n≥1 gng
∗
n for vectors gn ∈ CN and minimize

∑
n≥1 ∥gn∥21. Then each rank one

matrix corresponds to the autocorrelation of signal gn. We define the following relaxed inf’s.

Definition 3.0.1. For A ∈ Sn+ = {B ∈ Cn×n : B = B∗, B ≥ 0},

γ+(A) := inf
A=

∑
n≥1 gng

∗
n

∑
n≥1

∥gn∥21.

If A ∈ Sn = {B ∈ Cn×n : B = B∗},

γ(A) := inf
A=

∑
n≥1 gnh

∗
n

∑
n≥1

∥gn∥1∥hn∥1

and

γ0(A) := inf
A=B−C;B,C∈Sn

+

(γ+(B) + γ+(C)).

42

We introduce and investigate the properties of various measures of optimality of such

decompositions [9]. For some classes of positive semidefinite matrices, we give explicitly these

optimal decompositions. These classes include diagonally dominant matrices and certain of

their generalizations; 2×2, and a class of 3×3 matrices.

Recall that a matrix A ∈ Sn+(C) is said to be diagonally dominant if Aii ≥
∑n

j=1 |Aij|

for each i = 1, 2, ..., n. If the inequality is strict for each i, we say that the matrix is strictly

diagonally dominant. The following result applies to any diagonally dominant matrix in Sn+.

Theorem 6. [9] Let A ∈ Sn+(C) be a diagonally dominant matrix. Then γ(A) = γ0(A) =

γ+(A).

Proof. Let ei = (0, ..., 0, 1, 0, ..., 0) and ui,j(x) = (0, ...,
√
x, ...,

√
x, ..., 0). Given a diagonally

dominant matrix A, we consider the following decomposition of A,

A =
∑
i<j

ui,j(Aij)ui,j(Aij)
∗ +

∑
i

(Aii −
∑

j∈{1,..,n}\{i}

|Aij)eie∗i .

It follows that

γ+(A) ≤
∑
i<j

4|Aij| +
∑
i

(Aii −
∑

j∈{1,..,n}\{i}

|Aij|)

=
∑
i<j

4|Aij| +
∑
i

Aii −
∑
i

∑
j∈{1,..,n}\{i}

|Aij|

=
∑
i<j

4|Aij| +
∑
i

Aii −
∑
i<j

2|Aij|

= ∥A∥1,1.

Theorem 7. [9] Assume A ∈ Sn+ admits a decomposition

A =
∑

1≤i<j≤n

uiju
∗
ij +

n∑
i=1

viv
∗
i

43

where each uij has non-zero entries at most on positions i and j, and each vi has non-zero

entries at most on position i. Then γ+(A) = ∥A∥1,1.

Proof. The hypothesis implies

uij = (0, ..., 0, cij;i, 0, ..., 0, cij;j, 0, ..., 0)T

and

vi = (0, ..., 0, di, 0, ..., 0)T

where cij;i is on position i, cij;j is on position j, and di is on position i. Without loss of

generality, we can assume di ∈ R and cij;i, cij;j ∈ C. We write A = (aij)
n
i,j=1 where for

1 ≤ i < j ≤ n, aij = cij;icij;j, whereas for 1 ≤ i ≤ n,

aii = d2i +
i−1∑
j=1

|cji;i|2 +
n∑

j=i+1

|cij;i|2.

These imply

∑
1≤i<j≤n

∥uij∥21 +
n∑
i=1

∥vi∥21 =
∑

1≤i<j≤n

(|uij;i| + |uij;j|)2 +
n∑
i=1

d2i =
∑

1≤i,j≤n

|ai,j| = ∥A∥1,1.

Theorem 8. [9] Suppose that A ∈ S2
+, then

γ+(A) = ∥A∥1,1.

Proof. If A = uu∗ is a rank 1 matrix in S2
+, the proof is straightforward. Suppose A ∈ S2

+ is

rank 2. A =

a c

c̄ b

 with ab − |c|2 > 0. Using the Lagrangian decomposition [117] we can

write

44

A =


√
a

c̄√
a

[√a c√
a

]
+

 0√
b− |c|2

a

[0 √
b− |c|2

a

]

The result then follows.

For certain 3 × 3 matrices the Lagrangian decomposition [117] is optimal. In particular,

we have the following result.

Theorem 9. [9] Let A ∈ S3
+ be of rank 2 or 3. If

A =


a b c

b̄ d e

c̄ ē f


then

γ+(A) ≤ ∥A∥1,1 +
2(|ae− b̄c| + |b||c| − a|e|)

a
.

In particular, if |ae−b̄c|+|b||c| = a|e| then γ+(A) = ∥A∥1,1 and the Lagrangian decomposition

(which in this case is the LDL factorization) is optimal.

Proof. We first assume that A has rank 3. In this case, A must be positive definite and

adf ̸= 0. Indeed, if one of the diagonal term, say f = 0, then using the fact that A ∈ S3
+

would implies that df − |e|2 = −|e|2 > 0 which is impossible. Let

u1 = 1√
a
Aδ1 =


√
a

b√
a

c√
a

 ,

where {δi}3i=1 is the standard ONB for C3. By Theorem 2.10 in [9], the matrix A− u1u
∗
1 is

rank 2. In fact, in this case, the rank 2 matrix is given by

45

A− u1u
∗
1 =


0 0 0

0 d− |b|2
a

e− bc
a

0 e− cb
a

f − |c|2
a


Let

u2 = 1√
d−

|b|2
a

(A− u1u
∗
1)δ2 =


0√

d− |b|2
a

e− cb
a√

d−
|b|2
a


.

It follows that A− u1u
∗
1 − u2u

∗
2 = u3u

∗
3 where

u3 =


0

0√
detA
ad−|b|2

 .

Consequently, the Lagrange decomposition of A is A = u1u
∗
1 + u2u

∗
2 + u3u

∗
3 which implies

that

γ+(A) ≤
3∑

k=1

∥uk∥21 = ∥A∥1,1 + 2(|ae−bc|+|b||c|−a|e|)
a

.

Now suppose that the rank of A is 2. In this case, it is possible for adf = 0. However,

only one of the diagonal element can be 0. So assume that f = 0, then we also get that

e = c = 0. In this case

A =


a b 0

b d 0

0 0 0


which reduces to Theorem 8. Thus, we may assume without loss of generality that adf ̸= 0.

In this case, we can proceed as above. However, because the rank of the matrix A is now 2

46

we see that A = u1u
∗
1 + u2u

∗
2 and

γ+(A) ≤ ∥u1∥21 + ∥u2∥21 = ∥A∥1,1 + 2(|ae−bc|+|b||c|−a|e|)
a

.

Remark.

1. If one of the off diagonal elements b, or c is 0, then Theorem 9 shows that the Lagrange

decomposition is optimal for γ+(A).

2. Suppose n = 4 and let V = 1√
14



1 0

0 1

1 −1

1 1


, and consider

A = V V T =
1

14



1 0 1 1

0 1 −1 1

1 −1 2 0

1 1 0 2


.

Then A has rank 2, and the ∥A∥1,1 = 1. However, γ+(A) ̸= γ(A).

3.1 Statistical Computation

Here we inspect upper bounds of γ+(A)/∥A∥1,1 for A an N x N matrix with simulated

data from [9]. We randomly generate symmetric positive definite matrices and compute up-

per bounds on γ+(A)/∥A∥1,1 with different decompositions of A. The first step is generating

47

Gaussian distributed realizations in a matrix size N by N. Then by multiplying by its trans-

pose, the result is symmetric positive semi-definite, denoted A. Let AN denote a collection

of 30 independent realizations of this random matrix.

We consider two factorizations of the matrix A: the LDL and the Eigen matrix decom-

position. Specifically:

LDL : A =
N∑
k=1

vkv
∗
k

with vk vectors that have the top k − 1 entries 0, and

Eigen : A =
n∑
k=1

gkg
∗
k

where {g1, ..., gn} are the eigenvectors, each scaled by the corresponding eigenvalue’s square-

root. For each decomposition denote:

JLDL(A) =
N∑
k=1

∥vk∥21 and JEigen(A) =
N∑
k=1

∥gk∥21

Let FLDL and FEigen denote the worst upper bounds over the N realization ensemble:

FLDL(N) = max
A∈AN

JLDL(A)

∥A∥1,1

FEigen(N) = max
A∈AN

JEigen(A)

∥A∥1,1

We plot these worst upper bounds after 30 realizations for various N in Fig. 3.1. In the same

figure we plot the analytic approximations of these two curves using a square-root functions

and a logarithmic function. The square-root function was scaled as c
√
N to closely fit the

Eigen decomposition bound, FEigen(N). Numerically we obtained c = 4/5.

From these plots we notice a clearly strictly increasing trend. Furthermore, the LDL

factrization produces a smaller (tighter) upper bound than the Eigen decomposition. On

48

the other hand, as shown in Theorem 2.9 in [9], any optimal decomposition may take N2 + 1

vectors. By limiting the number of vector to N one should not expect to achieve the optimal

bound γ+(A) with any decomposition.

Decomposition performance via sampling random matrices

Figure 3.1: For each size N , 30 random matrices are sampled and decomposed in different

ways. The worst upper bound of γ+(A) is plotted for various N . Reference curves are also

plotted to indicate trend.

Numerical and statistical experiments show that LDL decompositions perform well with∑
n≥1 ∥gn∥21 ≈ O(log(N)) where N is the size of the square matrix. Crucial to the analysis

is the geometry of the space of matrices with the convexity and dimensionality necessary

for the main theorems. We find geometric analysis for matrix decompositions, or more

generally tensor decompositions, to be very useful and a promising direction for other matrix

decomposition problems.

49

3.2 Open Problems

• Can the above theorems be generalized to rectangular matrices via the singular value

decomposition, which corresponds to signals being mixed in complicated ways?

• Above we give the decomposition for diagonally dominant matrices, is there an ap-

proximate extension to almost diagonally dominant matrices?

50

Chapter 4

Optimal Transport Based Sparse

Reconstruction

In the previous chapter we introduced operators and explored some of their properties.

A mathematical problem written down in the late 1700’s by French mathematician Gaspard

Monge [68] posed: what is the most efficient operator to move a pile of material into a nearby

hole?

Figure 4.1: Image credit to Jakob Hultgren [53].

Mathematically, we describe a pile of material with a probability distribution and we

describe a hole to fill with another probability distribution. Consider the blue mass on the

51

left and the green mass on the right to each be probability distributions in Fig. 4.1. Note

we scale the mass by changing units so that the amount of mass is equal to 1. Call the

distributions µ and ν on R, then what is the most efficient operator T that moves the mass

from µ to ν? By this we mean that for any ν-measurable set A, µ(T−1(A)) = ν(A) and

T−1(A) is µ-measurable. This is the pushforward measure, written T∗µ := µ ◦ T−1. This

condition forces T : R → R to map the mass from µ to exactly where ν has mass, which we

called a hole to fill. We are close to a mathematical formulation of the problem now and we

just need to define efficiency. From the intuition that moving mass 0 distance is the most

efficient, we minimize
∫
x∈R c(x, T (x))dx where a cost function c maps R×R → R and T must

have T∗µ = ν. Finally, we have a well-specified formulation called the Monge Formulation

and an optimal map T , if it exists, will tell us the most efficient way to move the material

from a pile to a hole. More generally, for any space and measure pairs (X,µ) and (Y, ν), we

can formulate the problem as

inf
T :X→Y

{∫
X

c(x, T (x))dµ(x) : T∗µ = ν

}
.

Of course solving this formulation is anything but simple. In some cases there is no solution.

For example, the case when µ is a Dirac on R and ν is absolutely continuous on R has no

map T where T∗µ = ν.

Centuries later, the problem came up in a time of allocating factory products for con-

sumption [56]. Consider the simple case with 1 factory producing a stream of items and 2

consumers needing the items equally. A simple solution for the factory is to alternate back

and forth between the 2 consumers. This solution does not satify the Monge Formulation

because T must map the factory to exactly 1 consumer. That is the definition of a map. To

52

solve this problem, we need T (f) = c1 just 50% of the time and T (f) = c2 just 50% of the

time where f is the factory source and c1, c2 are the consumers. A factory producing items

does not need a fixed consumer, but can implement a joint distribution as above by allocat-

ing each item from sampling the distribution. Let γ be a joint distribution between space

(X,µ) and space (Y, ν) then γ is a measure on X×Y where the marginals γ(A×Y) = µ(A)

and γ(X × B) = ν(B) for any A µ-measurable and B ν-measurable. Now, we still want to

minimize the cost but that should be scaled by the chance of the event. So we minimize the

product
∫
X×Y c(x, y)dγ(x, y), that is Eγc(X, Y) where X, Y are random variables. This is

known as the Kantorovich Formulation and the solution agrees with the Monge Formulation

when there is a unique solution. Let Γ(µ, ν) be the set of joint distributions, then we have

inf
γ∈Γ(µ,ν)

{∫
X×Y

c(x, y)dγ(x, y)

}
. (4.1)

When the Monge Formulation does not have a solution, the Kantorovich Formulation still

has a solution, assuming cost c is lower semi-continuous and Γ(µ, ν) is a tight collection of

measures [108].

Not only does this solution tell one how to allocate items efficiently, it also tells one where

to put the producers and the consumers in the first place. Take our above example with

1 factory and 2 consumers, let f, c1, c2 ∈ R be the locations of the factory and consumers.

Then Equation (4.1) is 1
2
|f − c1|2 + 1

2
|f − c2|2 with c(x, y) = |x−y|2. To minimize over f , set

the derivative with respect to f to 0 by (f − c1) + (f − c2) = 0. So f equals the midpoint of

c1 and c2, f = c1+c2
2

. The most optimal solution is of course f = c1 = c2, however constraints

on consumer location may not allow this solution. In general, we have a distance between

any distributions µ and ν on X which is known as the Wasserstein distance, or metric. For

53

any p ∈ [1,∞),

dWp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

{∫
X×X

d(u,w)p dγ(u,w)

})1/p

(4.2)

defines a distance, or metric on distributions with finite pth moments, written Pp(X), if X

is a polish space and d(·, ·) is a metric on X [108].

So far we have seen how useful these formulations can be when solved, but we need a

reliable method to minimize Equation (4.1). First we must introduce a dual formulation.

Instead of minimizing Equation (4.1), maximize over functions ϕ ∈ L1(X,µ), ψ ∈ L1(Y, ν)

with

sup
ϕ(x)+ψ(y)≤c(x,y)

{∫
X

ϕ(x)dµ(x) +

∫
Y

ψ(y)dν(y)

}
. (4.3)

We can get a relation [108] with∫
X

ϕ(x)dµ(x) +

∫
Y

ψ(y)dν(y) =

∫
X

∫
Y

ϕ(x)dν(y)dµ(x) +

∫
Y

∫
X

ψ(y)dµ(x)dν(y)

=

∫
X×Y

ϕ(x) + ψ(y)dγ(x, y) ≤
∫
X×Y

c(x, y)dγ(x, y)

by Fubini’s Theorem [95], and since this holds for every γ ∈ Γ(µ, ν) then

sup
ϕ(x)+ψ(y)≤c(x,y)

∫
X

ϕ(x)dµ(x) +

∫
Y

ψ(y)dν(y) ≤ inf
γ

∫
X×Y

c(x, y)dγ(x, y).

The next step is to prove equality which follows since if ϕ(x) + ψ(y) < c(x, y) − ϵ on some

measurable set A with ϵ > 0 then ϕ′(x) := ϕ(x) + ϵ1A(x) would be a contradiction [108]. We

shall use this dual formulation in the next algorithm to solve the optimization.

4.1 Discrete Optimal Transport & Sinkhorn Algorithm

One starts with a source distribution, µ ∈ P(X), target distribution, ν ∈ P(Y), and a

cost C : X × Y → R. In the discrete setting (where X and Y are finite sets) relevant to

54

scientific computing, distributions are represented as finite dimensional vectors. Given two

vectors that represent distributions, µ ∈ Rn, ν ∈ Rm, together with a cost C represented as

an n×m matrix (Cij), the optimal transport plan between µ and ν is

arg min
P∈Π(µ,ν)

n∑
i=1

m∑
j=1

CijPij (4.4)

where Π(µ, ν) is the set of transport plans from µ to ν

Π(µ, ν) = {P ∈ Rn×m :
n∑
i=1

Pij = νj ∀j,
m∑
j=1

Pij = µi ∀i}.

When m = n and C defines a metric on {1, . . . , n} (i.e. d(i, j) := Cij is symmetric, non-

degenerate, and satisfies the triangle inequality) then the minimum value

dW (µ, ν) := min
P∈Π(µ,ν)

n∑
i=1

m∑
j=1

CijPij (4.5)

defines a metric on P({1, . . . , n}) [108].

For a probability mass function p : J → R (non-negative and sums to 1), we will use

H(p) to denote its entropy,

H(p) = −
∑
ι∈J

p(ι) log(p(ι)). (4.6)

We will represent probability densities with vectors and matrices, so we consider the indices to

be in the domain J . In (4.6), we use the convention that 0·log(0) = 0. With this convention,

H defines a continuous non-negative function on the probability simplex, differentiable in

the interior of the probability simplex and with a derivative unbounded at the boundary.

The distance dW in Equation (4.5) can be computed exactly using methods from linear

programming. However, for large n the quickly growing computation times excludes this

from many applications [25]. In applications involving large data sets (including machine

55

learning, vision, graphics and imaging) dW is often replaced by its entropic regularization,

which is much more feasible from a computational perspective [78]. Given a small constant

ϵ > 0, the ϵ-regularized distance between µ, ν ∈ P({1, . . . , n}) is

dϵW (µ, ν) :=
∑
i,j

CijP
∗
ij (4.7)

where

P ∗ = arg min
P∈Π(µ,ν)

∑
i,j

CijPij − ϵH(P). (4.8)

The regularized objective function in (4.8) is strictly convex and proper, hence always

admits a unique minimizer. While the minimizer in the true optimal transport distance

dW is usually very sparse, the entropy term in (4.8) pushes the minimizer away from the

boundary of the unit simplex, producing a less sparse minimizer. As ϵ → 0, this minimizer

converges to a minimizer of the original problem (4.5) (the minimizer with lowest entropy if

there are more than one), and the ϵ-regularized distance dϵW converges to dW [78].

A simple application of Lagrange multipliers show that the minimizer of (4.8) is the

unique element in Π(µ, ν) on the form

Pij =
∑
i,j

fie
−cij/ϵgj (4.9)

for some unknown positive multipliers f = (f1, . . . , fn), g = (g1, . . . gn). Determining f and

g from µ, ν and the matrix (e−cij/ϵ) is known as the matrix scaling problem, and a standard

algorithm to find approximate solutions is the iterative proportional fitting procedure, also

known as the Sinkhorn-Knopp Algorithm (or just Sinkhorn) [78]. The matrix (4.9) lies in

Π(µ, ν) if
∑

i Pij = µi for all i and
∑

j Pij = νj for all j. The Sinkhorn algorithm proceeds

iteratively, alternating between updating f so that the first of these conditions is satisfied

and updating g so that the second of these conditions is satisfied (see Algorithm 9).

56

The multipliers f ∈ Rn and g ∈ Rm above can be thought of as dual variables for the

optimization problem (4.8). More precisely,

F = ϵ log(f), G = ϵ log(g)

are the Lagrange multipliers for (4.7) [25]. When considering the regularized distance be-

tween µ and ν as a function of µ (keeping ν fixed) this can, at least for positive µ and ν,

be exploited to approximate its gradient (see for example [34, 59]). The Sinkhorn Algo-

rithm, used to approximate dϵµ(µ, ν) and its gradient with respect to µ is summarized in

Algorithm 9. Note that the output F and G of Algorithm 9 needs to be projected onto the

tangent space of the probability simplex to yield an approximation of the true gradients.

Algorithm 9: The Sinkhorn Algorithm for Regularized Op-
timal Transport Distances

Input:
µ, ν ∈ Rn : positive probability vectors
C ∈ Rn×n : cost matrix
ϵ : positive regularization parameter

Output:
dϵW ∈ R : regularized distance between µ and ν
F ∈ Rn : Gradient of dϵW (µ, ν) with respect to µ
G ∈ Rn : Gradient of dϵW (µ, ν) with respect to ν

Begin:
f = (1, . . . , 1) ∈ Rn

g = (1, . . . , 1) ∈ Rn

while f and g has not converged do
for 1 ≤ i ≤ n do

fi = µi/
(∑

j exp(−Cij/ϵ)gj
)

for 1 ≤ j ≤ n do
gj = νj/ (

∑
i exp(−Cij/ϵ)fi)

dϵW =
∑

i,j figj exp(−Cij/ϵ)Cij
F = −ϵ log(f)
G = −ϵ log(g)

We have introduced many aspects of optimal transport and discussed the metric and ge-

ometry that follows. We will apply this to provably reconstruct sparse signals in astronomical

57

measurements.

4.2 Star Cluster Detection Application

Star cluster detection from telescopic data can be performed with optimal transport [84].

Super resolution seeks to improve image resolution without further data collection. This is

useful when important features or pixels are missing. Improving the measurement device,

such as a camera or telescope, will improve the image resolution but only up to the diffraction

limit governed by physical laws. Increasing image resolution beyond this point is possible but

only with constraints that give a well-posed inverse problem. The most common constraint

is that the image needs to be sparse or smooth, at least in some nontrivial basis.

For example, Gaussian noise is a common input that blurs important features. Remov-

ing additive Gaussian noise can be done, imperfectly, by solving an inverse problem that

constrains total variation which enforces smoothness [73]. What about in non-smooth image

domains? For magnetic resonance imaging problems [42], a solution using the Fourier basis

is to extrapolate or interpolate in Fourier space. Then, transforming back to physical space

gives a higher resolution image.

A more general solution is to minimize with respect to a regularizing term that maximizes

sparsity. Compressed sensing methods often minimize an objective function involving the L1

norm of the solution [16]. Minimizing L0 maximizes sparsity but L1 is usually used instead

for its convex properties. Another regularizer that maximizes sparsity is entropy [23, 43].

Neural networks or deep learning has more recently been used for inverse problems, especially

on images [74].

58

We propose two super resolution inverse problems that produce sparse solutions which

are near to the measurement in Wasserstein distance. For a measurement ν and positive

regularization parameters λ and λ′, we define the sparse approximation of ν as a minimizer

µ∗ = arg min
µ∈P(X)

dϵW (µ, ν) + λH(µ). (4.10)

and the sparse retrieval of ν as a minimizer

µ∗ = arg min
µ:dW (µ,ν)<λ′

H(µ). (4.11)

Problem (4.10) and (4.11) are essentially dual, and for generic data ν there is a mapping

λ 7→ λ′(λ) such that µ is a solution to (4.10) if and only if µ is a solution to (4.11). We will

approach (4.11) from a theoretical perspective below but use (4.10) in our application since

it fits well into a gradient descent method.

At least one minimizer exists by compactness of the finite dimensional probability sim-

plex. The entropy term in (4.10) favors sparse solutions. Naturally, there is a trade-off

between sparsity of the solution and proximity to the measurement. How these two objec-

tives are prioritized is governed by λ. For λ = 0, no priority is given to the goal of sparsity

and µ∗ = ν. As λ increases, µ∗ turns into an increasingly sparse approximation of ν and

when λ→ ∞, ∥µ∗∥0 → 1.

This inverse problem is useful whenever there is a natural distance, or cost function, on

the index set of ν. If, for example, ν is given in Fourier space and each entry µi corresponds

to a frequency σi, then two natural choices for the cost Cij are Cij = |σi − σj| and Cij =

| log(σi/σj)|. In the application we describe below, each entry in ν describes the intensity of

a pixel in a 32× 32 image and Cij is chosen as the L2-distance between the ith pixel and jth

pixel.

59

Remark. This method can be contrasted to maximum entropy methods in statistical physics,

where the probability distribution with highest entropy (under constraints dictated by obser-

vations) is chosen as the best representative of the current state of knowledge about a system.

In our context, we work with the crucial assumption of sparsity, which motivates minimizing

the entropy instead of maximizing it.

We will let probability vector ν ∈ P ({1, . . . , n}) be a sparse signal (i.e. ∥ν∥0 < n is

small), and use ν̄ to denote this signal with noise and distortion. In our application, we

are interested in determining the support of ν (i.e. the indices of all non-zero entries in ν)

from ν̄. For two probability vectors µ and ν we will say that µ identifies the structure of

ν if they have the same support, i.e. if µi > 0 if and only if νi > 0 for all i. Our main

theorem (Theorem 11 below) shows that the minimizer of (4.10) identifies the structure of

ν under the assumptions that ν is sparse and the noisy signal ν̄ is close to ν in optimal

transport distance. As is indicated by Theorem 10 below, the latter assumption is natural

when dealing with Gaussian noise since the optimal transport distance, unlike total variation

and Lp distances, take the geometry of the space into account.

Let the probability distribution ν := 1
k

∑k
i=1 δpi be a sparse signal in P(Rd) where δ is

the Dirac delta. Assume the noisy signal ν̃ is produced in the following way: For each pi

in the sum above, we sample n points x1i , . . . , x
n
i in Rd according to a normal distribution

centered at pi with independent components of variance σ2. Let N = kn be the number of

points sampled and ν̃ = 1
N

∑n
i=1

∑m
j=1 δxji

be the noisy signal.

Theorem 10. [84] Given a sparse signal ν ∈ P(Rd) giving rise to a noisy signal ν̃ as

described above, the optimal transport distance between ν and ν̃ is bounded by σ2

N
XN where

60

XN is a random variable with distribution χ2
dN . In particular, the expected value and variance

of σ2

N
XN are dσ2 and 2dσ4/N , respectively.

Proof. The optimal transport cost is bounded from above by the cost of the transport plan

sending each xji to pi. The cost of this plan is 1
N

∑
|xji − pi|2. By assumption, each term

in this sum is the squared sum of d normal distributed random variables with mean 0 and

variance σ2.

Theorem 11. [84] Assume ν is a sparse signal and ν̄ is a noisy signal such that dw(ν, ν̄) < δ.

Then the solution of

µ = arg min
µ:dW (ν̄,µ)≤δ

H(µ) (4.12)

will identify the structure of ν, i.e. have the same support as ν, if ||ν||0 ≤ ||µ||0 for all µ

such that dW (µ, ν̄) < 2δ, with equality only if µ and ν has the same support.

Remark. The conditions in Theorem 11 can be summarized as a low enough noise level

δ and enough sparsity of the true signal ν (making it a local minimizer of the L0-norm).

It is interesting to note that these conditions are essentially necessary: if the inequality in

Theorem 11 is violated by some µ closer than δ to ν̄, then the solution of (4.12) does not

identify the structure of ν.

Remark. Noise is high entropy, hence it is expected that the noise can be removed by min-

imizing the entropy. However, if the signal-to-noise ratio is too low, this reconstruction is

underdetermined.

Proof of Theorem 11. By the triangle inequality, the feasible set in (4.12) is contained in

the ball centered at ν̄ of radius 2δ. As the feasible set in (4.12) contains ν, this means any

solution of (4.12) has to be ν or have the same support as ν.

61

Theorem 12. [84] Fix a positive probability vector ν ∈ Rd
>0 such that all elements of ν are

distinct. Then the sparse recovery is continuous to perturbations around ν for small λ, i.e.

for every ϵ′ > 0 there exists δ > 0, such that if dW (ν, ν ′) < δ,

µ∗ = arg minµ∈P(X):dW (µ,ν)<λH(µ), and

µ′
∗ = arg minµ∈P(X):dW (µ,ν′)<λH(µ) then ∥µ∗ − µ′

∗∥ < ϵ′.

Proof. The assumption on ν guarantees that minimizers are unique for small λ. Continuity

of the minimizer then follows from smoothness of H.

We solve (4.10) using a gradient descent method with variable step size. More precisely,

letting J(µ) := dϵW (µ, ν) + λH(µ) be the objective we set the step size to α∗ := sup{α >

0 : J(µ− α∇J |µ) < J(µ)}. As mentioned in above, the entropy is not differentiable on the

boundary of the probability simplex. An effect of this is that the output F in Algorithm 9 is

infinity in all indices where µ is zero. We circumvent this problem by defining the ith entry

in the gradient of J to be 0 whenever µi = 0. Geometrically, this means that whenever

the algorithm reaches a sub-simplex of the probability simplex, it ignores the component

of the gradient orthogonal to this sub-simplex, thus remaining in this sub-simplex for the

rest of the algorithm. Gradient descent will converge to a local minimum on the compact

probability simplex since the objective is smooth when restricted to the local simplex face.

Algorithm 10 contains the pseudocode and also predicts the star cluster classification.

62

Algorithm 10: Optimal Transport Star Cluster Prediction

Input:
X ∈ RN×m×m : N images size m×m
λ ∈ R : positive noise level
0 < ϵ < 1 : optimal transportation regularization
C ∈ Rm2×m2

: cost matrix
Jλ,ϵ(x, v) := dϵW (x, v) + λH(v)

Output:
K ∈ RN : star cluster classification

Begin:
for i = 1, 2, ..., N do

v = Xi

while v has not converged do
w = ∇dϵW (Xi, ·)|v + λ∇H|v
w = w − ⟨w, 1

m
1⟩ · 1

m
1

α = sup{α ∈ R : Jλ,ϵ(v) > Jλ,ϵ(v − αw)}
α = min{0.01, α}
v = v − αw
v = diag(1v>0) v
v = v/∥v∥1

Vi = v
δ = maxVi
if rank(H0(V

−1
i ([0.75δ, δ]))) == 1 then

Ki = 1
else

Ki = 0

4.2.1 Simulation

We first show this method’s results on a low dimensional example. For example, let the

measurement be

ν = (0.2, 0.15, 0, 0, 0, 0.1, 0.15, 0.2, 0.15, 0.1)T .

With sparsity parameter λ = 10 the method produces the sparse approximation

µ∗ = (0.35, 0, 0, 0, 0, 0, 0, 0.65, 0, 0).

This reflects the fact that ν has two peaks, one peak centered at position 1 and one peak

centered at position 8, and that 35% of the mass of ν is situated close to position 1 and

63

65% of the mass of ν is situated close to position 8. Fig. 4.2 plots ν, the gradient descent

steps, and the final result. With sparsity parameter λ = 100, the method produce the sparse

approximation (0, 0, 0, 0, 0, 0, 0, 1, 0, 0), reflecting the fact that most of the mass of ν is part

of a peak centered at position 8. Fig. 4.3 plots ν, the gradient descent steps, and the final

result.

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.2: Plot of super resolution O.T. method Algorithm 10. Red line is initial distri-

bution. Blue lines are steps along gradient of Equation (4.10). Pink line is final, converged

distribution. λ = 10. epsilon = 0.1. Max Sinkhorn iterations = 5000. Gradient step size =

0.01. Gradient steps=50.

64

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3: Plot of super resolution O.T. method Algorithm 10. Red line is initial distri-

bution. Blue lines are steps along gradient of Equation (4.10). Pink line is final, converged

distribution. λ = 100. epsilon = 0.1. Max Sinkhorn iterations = 5000. Gradient step size =

0.01. Gradient steps=50.

4.2.2 Astronomy Data

Next, we will analyze the real data. The formation and evolution of star clusters provide

insight into the processes governing the birth of stars as well as the dynamical evolution of

galaxies [81]. In order to save human hours and get reproducible results, it is of interest to

algorithmically detecting star clusters in images of sky patches. Many methods have been

proposed to algortihmically detect star clusters, including CLEAN [54], Multiscale CLEAN

[24], IUWT-based CS [61], decision trees [40] and optimal sheaves [93]. The state of the art

method trains a convolutional neural network (CNN) to classify each sky patch or region

65

in an image as containing a star cluster or not [81]. These neural networks are notoriously

computationally expensive, sensitive to noise, and inflexible to appending or removing data

variables.

We propose using the Wasserstein inverse problem (4.10) to detect star cluster locations.

Our dataset consists of measurements from the Hubble Space Telescope in the survey Trea-

sury Project LEGUS (Legacy ExtraGalactic Ultraviolet Survey) [14]. This data set consists

of 32 × 32 pixel images of star patches. Each image comes in 5 frequency bands (NUV,

U, B, V, and I) [14]. We encode each of these in a probability vector ν where each entry

correspond to the intensity of a pixel, normalized to sum to 1. Algorithm 10 produces a

sparse approximation each image which is classified as a star cluster if it contains just one

‘peak’. Specifically, the sparse image is made binary (1 and 0) by thresholding at 75% of

the max of the image. Then the number of ‘peaks’ is the number of connected components

in the binary image. This is the rank of the 0th homology of the binary image, denoted

rank(H0(V
−1
i ([0.75δ, δ]))) in Algorithm 10. We perform this calculation for each of the 5

frequency bands that were measured. Then these 5 predictions vote to produce the final

prediction for the image in question.

Algorithm 10 can be compared to the method of producing a binary image directly from

the source image, without first producing a sparse approximation, and counting the number

of connected components in this. The accuracy rate of this naive approach is 46% with

respect to the CNN. Algorithm 10 increases in accuracy to 74% with respect to the CNN.

The CNN accuracy rate is 86% with respect to experts, but even experts agree with each

other only around 70%-75% [2, 40, 111]. Given that experts are the baseline, it is impossible,

without overfitting, for a computational model to do better than that. Therefore our method

66

provides a very high performance given that no neural network training, which often takes

weeks of compute time, is required. Additionally, the O.T. method is less sensitive to noise

than a CNN, see [121], which we describe and bound in Theorem 10, Theorem 11, and

Theorem 12. Finally, with our method, variables can be simply added and removed where

Equation (4.10) is quickly recalculated.

We give the confusion matrix in Table 4.1 from our calculations. We test on 128 random

samples. The maximum Sinkhorn iterations is 500. The cost Cij is chosen as the L2-distance

between the ith pixel and jth pixel. The H0 threshold is 0.75. The initial gradient descent

step size is 0.001. Wasserstein parameter ϵ = 0.001. Sparsity parameter λ = 1. When

specifying the accuracy rates in the previous paragraph we use the classification results of

the CNN in [81] as the definition of the correct classification.

Table 4.1: Confusion matrix of O.T. metod Algorithm 10 on LEGUS data compared to

StarcNet [81]. Column gives StarcNet classification and row gives Algorithm 10 classification.

StarcNet Cluster StarcNet Not Cluster

O.T. Cluster 25% (32) 13.3% (17)

O.T. Not Cluster 12.5% (16) 49.2% (63)

Optimal transportation is more efficient, robust, and flexible than CNNs. We proved

that optimal transportation will reconstruct sparse sources and is robust to noise. This is

relevant for correcting distortions and noise in imaging which we showed for star cluster

detection. Another benefit of a predictive model for star clusters is that it can produce a

policy that informs where future surveys should look for star clusters [33, 82].

67

4.2.3 Open Problems

• How can global optimization be performed and guaranteed?

• Can local convergence be done with higher order (faster)?

68

Chapter 5

Fourier Space Reconstruction with

MRI Motion Correction Applications

Periodicity is a key concept in pattern recognition. A periodic signal, that is a signal

that repeats on some interval, may be a pattern that ought to be recognized. If a signal,

f : R → C, is periodic, then the signal can be viewed as a function or signal on a circle,

ϕ : S1 → C. We say the f ‘factors’ through S1 via f(x) = ϕ(cos(αx), sin(αx)). We can write

this with a commutative diagram [6] as follows

R f //

(cos(αx),sin(αx))
��

C

S1
ϕ

>> .

Then periodicity just depends on the topology of the domain, in this sense. And if the signal

f is continuous then the image ϕ(S1) is a compact set [70]. If f is an embedding then ϕ(S1)

has the topology of S1 [58]. And then image f(R) has the topology of S1 too. Sampling and

then estimating the topology of f(R) with persistent homology can indicate periodicity, see

69

Chapter 6.

Once the periodicity of a continuous signal, f , is confirmed, it is possible to decompose

the signal into the exponential basis [11]. With period P , let f(x) =
∑

k∈Z αke
2πi k

P
x. Since

the coefficients αk depend on f , we’ll write them as f̂(k) = αk and call this ‘f in k-space’.

By orthogonality, f̂(k) = ⟨f(x), e2πi
k
P
x⟩ = 1

P

∫ P
0
f(x)e−2πi k

P
xdx. We define the analogous

transform for function f ∈ L1(R,C) as f̂(k) =
∫∞
−∞ f(x)e−2πikxdx. We call the former the

‘discrete Fourier transform’ (DFT) and the latter the continuous Fourier transform [11]. We

will often write this transform as a map F : L1 → L1 where F(f)(k) = f̂(k). Reconstructing

signal f from samples of f̂ is often useful in applications. We will discuss a Magnetic Res-

onance Imaging (MRI) application where we reconstruct f under challenging circumstances

with heavily undersampled measurements of f̂ .

MRI is one of the most common and useful medical devices. An MRI machine can detect

or image 3D bodies within the machine. Unlike a traditional image that is 2D, an MRI

image is 3D and a 2D image at each depth can be rendered. MRI machines accomplish this

with sensitive electromagnets. A powerful magnet is designed in an outer annulus. Within

it are the Gradient Coils in another annulus and within that are the Radio Frequency (RF)

Coils in another annulus. The center of the annuli is the empty Bore. The Bore is loaded

with some subject for imaging. A diagram of an MRI machine is shown in Fig. 5.1 [49].

The outer magnet aligns the subject’s nuclei spin that have nuclear magnetic moments

[49]. A current pulse in the Radio Frequency Coils produces a magnetic field in the orthogonal

direction which reorients the spin temporarily. The Radio Frequency Coils turn off and

the Radio Frequency Coils detect the change in subject spin, via current, to the original

direction. The speed of the change indicates the type of molecule via its magnetic moment.

70

Figure 5.1: Magnetic Resonance Imaging (MRI) Machine. Image from [49].

The Gradient Coils also play an important role. The subject’s nuclei spin oscillate at the

Larmor frequency about the static magnetic field. The Gradient Coils are used to vary the

static magnetic field and thus vary the Larmor frequencies in space. The RF Coils will

sample a specific frequency and thus sample a specific 3D region in the Bore. Another key

point is that each RF Coil can sense nearby nuclei stronger than distance nuclei. This is

the r2 law and so we model each measurement as a product of the nuclei signal and the

sensitivity of the RF Coil (also called the profile of the RF Coil). For example, in Fig. 5.2a

we show the magnitudes of different frequencies sampled by an MRI machine [49]. This is a

2D slice, but putting the 2D slices together and calculating the 3D inverse Fourier transform

give us the true image, visualized in Fig. 5.2b [49].

A common technique to speed up MRI scans is to skip collecting certain data points,

which is important for various reasons. However, with missing Fourier coefficients, the in-

71

(a) Raw Data, 2D slice

(Modulus of FFT Coefficients).

(b) 3D Inverse Fourier Transform. Plot of

sediment in water.

Figure 5.2: MRI data locates Hydrogen in liquid water. Image from [49].

verse Fourier transform cannot be computed and the subject image is not produced. A

successful technique to approximate the missing data called Generalized Autocalibrating

Partially Parallel Acquisition (GRAPPA) was introduced in 2002 [42]. GRAPPA approxi-

mates missing data lines (constant ky value) in Fourier space, that are away from the center

or the low frequencies. We plot example missing data lines in red in Fig. 5.3.

The missing data will be approximated by a linear combination of nearby samples (non-

missing data). Now, the fully sampled lines near the center or constant exponential are

called the Auto-Calibration Signal (ACS). The weights for the above linear combination are

calculated with the ACS samples. Specifically, GRAPPA optimizes a set of weights to equate

ACS samples with their neighbors. We visualize this in Fig. 5.4.

Next, we will write down the specific optimization problem mathematically. Let the

72

Figure 5.3: MRI data, 2D slice, with missing data in red. Image from [49].

Figure 5.4: GRAPPA. Image from [42].

number of RF Coils be k. Let the stencil width (neighborhood size) be sw and the interval

be si. Let resolution of the image be n. Let auto-calibration signal, ACS ∈ Cn0×n. Let the

weights be ω ∈ Rk×n×sw×k and let Φ = {(u, v) ∈ ACS : stencil(u, v) ∈ Acquired}. Then

GRAPPA will optimize

min
ω

∑
(u,v)∈Φ

k∑
j=1

∣∣∣∣∣∣P̂jf(u, v) −
k∑
l=1

sw/2−1∑
b=−sw/2

ωj,u,b,lP̂lf(u, v + si/2 + bsi)

∣∣∣∣∣∣
2

To solve this system of linear equations, apply the pseudoinverse.

GRAPPA is a hugely successful method that is used frequently. However, subject mo-

tion during a scan, especially with living subjects, breaks the assumptions of GRAPPA.

73

Occasional subject motion is inevitable during MRI scans. Motion artifacts can be partially

corrected using post-processing or prospective correction methods [65]. Here, we consider

motion-induced image reconstruction errors for parallel imaging (PI) [102]. For time series

imaging, calibration, or ACS, data are often acquired in the beginning of the entire imag-

ing process to save time and to keep the image contrast the same for all image frames.

When motion occurs after the calibration data acquisition, the pre-motion calibration data

no longer match the spatial position and the corresponding coil sensitivity encoding of the

subsampled data. This mismatch subsequently causes image reconstruction errors using the

reconstruction kernels estimated from the calibration data. This problem can be solved by

re-acquiring calibration data and re-estimating the PI reconstruction coefficients, but this so-

lution is commonly impractical and requires additional scan time. The purpose of this study

is to propose a new method to solve this problem without reacquiring calibration data. As

a proof-of-concept study, we focused on PI reconstruction based on Cartesian sub-sampling

and GRAPPA [42, 110] but the solution can be extended into non-Cartesian sampling and

non-GRAPPA PI reconstruction schemes. Our method [89], which we call Motion-corrected

GRAPPA, or MGRAPPA, approximately accounts for and correction motion caused recon-

struction errors. MGRAPPA uses prospective motion correction (PMC) [65] measurements

to approximate changes in coil sensitivity maps.

Fig. 5.5 shows a flowchart of MGRAPPA in a typical PI scan. For each RF coil, a

fully sampled calibration data set (centered in k-space) and an under-sampled data set

are acquired. GRAPPA recovers missing k-space data by convolving the sub-sampled data

with kernels calculated from calibration data. For MGRAPPA, the acquisitions remain

unchanged, but the GRAPPA kernels are updated by reconstructing low-resolution coil sen-

74

sitivity maps from the calibration data, transforming sensitivity maps inversely to subject

motion, and recalculating calibration data and finally GRAPPA kernels.

Figure 5.5: Diagram showing flow of stages of scan and image reconstruction.

We will describe the method mathematically. Denote the Fourier transform operator by

F . For any signal f : R2 → R, its Fourier transform is denoted by f̂ or F(f) and is given

explicitly by:

f̂(u, v) = F(f)(u, v) =

∫ ∞

−∞

∫ ∞

−∞
e−2πi(ux+vy)f(x, y)dxdy

Each coil i ∈ [1, n] returns a data matrix obtained by sampling the Fourier transform of

P 0,0,0
i f , where P

(0,0,0)
i is the ith coil profile and f is the signal of interest. Define L(g) :=

F−1(ĝ · 1[−α,α]2) the lowpass operator associated to the frequency band [−α, α] × [−α, α].

We measure L(P 0,0,0
i f) for each i. First we approximate the low frequencies of the signal, f ,

(ex: brain) by

L(f)(x, y) ≈ f̃ l(x, y) :=

√√√√ n∑
i=1

|L(P 0,0,0
i f)(x, y)|2.

75

The first Theorem provides us with an upper bound on the approximation error.

Theorem 13. [89] For some α > 2β > 0 assume that: (1) supp(P̂i) ⊂ [−β, β]; (2) Pi(x, y) ≥

0, and (3) the coil profiles define a squared partition of unity, i.e.,
∑

i Pi(x, y)2 = 1 for every

x, y. Let L(g) := F−1(ĝ · 1[−α,α]2) denote the lowpass operator associated to the frequency

band [−α, α]× [−α, α]. Let f : R2 → R be a signal such that f(x, y), L(f)(x, y), L(Pif)(x, y),

and Pi(x, y) are greater than γ > 0 for all x, y. Let S = (−α + 2β, α − 2β)2, M = [−α −

2β, α + 2β]2\S, and H := R2\[−α− 2β, α + 2β]2 = (R2\M)\S.

Then for supu,v |f̂(u, v) · 1M(u, v)| small enough,

∣∣∣∣∣∣L(f)(x, y) −

√√√√ n∑
i=1

|L(Pif)(x, y)|2

∣∣∣∣∣∣ ≤ O

(
sup
u,v

|f̂(u, v) · 1M(u, v)|
)
.

Remark. The approximation f̃ l(x, y) is reasonable because the coil profiles, P , (superscripts

are rotation, θ, and translation, x, y, of coil profile and subscript is coil profile index) are

approximately a partition of unity and lowpass, denoted L (L clears high frequency coefficients

of the Fourier coefficients), is linear.

First, we will state and prove a lemma.

Lemma 14. [89] Assume the assumption of Theorem 13.

L(Pif)2 − (PifS)2 = (F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + (PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))

and

|L(Pif)2 − (PifS)2| ≤ O(sup
(u,v)

|f̂(u, v) · 1M(u, v)|).

Proof of Lemma 14. Let

f̂S = f̂ · 1S, f̂M = f̂ · 1M , f̂H = f̂ · 1H

76

So f̂ = f̂S + f̂M + f̂H .

F(Pif) = P̂i ∗ f̂ = P̂i ∗ f̂S + P̂i ∗ f̂M + P̂i ∗ f̂H

L(Pif) = F−1((P̂i ∗ f̂S) · 1[−α,α]2 + (P̂i ∗ f̂M) · 1[−α,α]2 + (P̂i ∗ f̂H) · 1[−α,α]2)

= F−1(P̂i ∗ f̂S + (P̂i ∗ f̂M) · 1[−α,α]2)

= PifS + F−1((P̂i ∗ f̂M) · 1[−α,α]2)

Square both sides

L(Pif)2 = (PifS)2 + (F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))

So

|L(Pif)2 − (PifS)2| ≤ O(sup |f̂M |).

Proof of Theorem 13. Recall S = (−α + 2β, α − 2β)2, M = [−α − 2β, α + 2β]2\S, and

H = R2\M\S. Let

f̂S = f̂ · 1S, f̂M = f̂ · 1M , f̂H = f̂ · 1H

Notice f̂ = f̂S + f̂M + f̂H . From Lemma 14

L(Pif)2 = (PifS)2 + (F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2

+2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))

(5.1)

77

Then

n∑
i=1

L(Pif)2 =
n∑
i=1

(PifS)2

+
n∑
i=1

[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

=
n∑
i=1

P 2
i f

2
S +

n∑
i=1

[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

(5.2)

from the square partition of unity

= f 2
S +

n∑
i=1

[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

= (F−1(f̂ · 1[−α,α]2) −F−1(f̂ · 1[−α,α]2\S))2

+
n∑
i=1

[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

(5.3)

= (L(f) −F−1(f̂ · 1[−α,α]2\S))2

+
n∑
i=1

[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

= L(f)2 + (F−1(f̂ · 1[−α,α]2\S))2 − L(f) · (F−1(f̂ · 1[−α,α]2\S))

+
n∑
i=1

[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

(5.4)

Let

T1(f) := (F−1(f̂ · 1[−α,α]2\S))2 − L(f) · (F−1(f̂ · 1[−α,α]2\S))

+
n∑
i=1

[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

(5.5)

Square root to get √√√√ n∑
i=1

L(Pif)2 =
√
L(f)2 + T1(f)

= L(f) + T1(f) · ξ−1/2/2

for some |ξ − L(f)2| < |T1(f)| and 0 < ξ. For fM small enough, L(f)2 − T1(f) > L(f)2/2.

78

Then ∣∣∣∣∣∣L(f) −

√√√√ n∑
i=1

|L(Pif(x, y))|2

∣∣∣∣∣∣ ≤ |T1(f) · ξ−1/2/2|

≤ |T1(f) · (L(f)2 − T1(f))−1/2/2|

≤ |T1(f)|
2
√
L(f)2/2

≤ O
(

sup |f̂M |
)
.

Next we utilize extrapolation. Let Eδ(P) be the linear extrapolation operator that ex-

trapolates {(x, y) : |P (x, y)| ≤ δ · max(|P |)} with a bilinear approximation. Set ϵ > 0 and

δ > 0 small and then approximate P 0,0,0
i by

P 0,0,0
i (x, y) ≈ P̃ 0,0,0

i (x, y) := Eδ

(
L(P 0,0,0

i f(x, y))

f̃ l(x, y) + ϵmaxx,y |f̃ l(x, y)|

)
.

Theorem 15. [89] Assume the assumption of Theorem 13.

Then for supu,v |f̂(u, v) · 1M(u, v)| small enough,∣∣∣∣∣Pi(x, y) − L(Pif(x, y))

f̃ l(x, y) + ϵmaxx,y |f̃ l(x, y)|

∣∣∣∣∣ ≤ O(ϵ) +O(sup
(u,v)

|f̂(u, v) · 1M(u, v)|).

Proof of Theorem 15. Let

f̂S = f̂ · 1S, f̂M = f̂ · 1M , f̂H = f̂ · 1H

So f̂ = f̂S + f̂M + f̂H .

From equation (5.1)

L(Pif)2 = (PifS)2 + (F−1((P̂i ∗ f̂M) · 1[−α,α]))
2

+2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))

79

Next, from equation (5.2),

(f̃ l)2 = f 2
S +

n∑
i=1

[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

thus

P 2
i (f̃ l)2 − P 2

i f
2
S = P 2

i

n∑
i=1

[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

thus

P 2
i (f̃ l)2 + ϵ2 P 2

i max
x,y

|f̃ l(x, y)|2 + 2ϵ P 2
i f̃

l max
x,y

|f̃ l(x, y)| − P 2
i f

2
S + L(Pif)2 − L(Pif)2

= ϵ2 P 2
i max

x,y
|f̃ l(x, y)|2 + 2ϵ P 2

i f̃
l max
x,y

|f̃ l(x, y)|

+ P 2
i

n∑
i=1

[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

then

P 2
i (f̃ l)2 + ϵ2 P 2

i max
x,y

|f̃ l(x, y)|2 + 2ϵ P 2
i f̃

l max
x,y

|f̃ l(x, y)| − L(Pif)2

= −(F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 − 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))

+ϵ2 P 2
i max

x,y
|f̃ l(x, y)|2 + 2ϵ P 2

i f̃
l max
x,y

|f̃ l(x, y)|

+P 2
i

n∑
i=1

[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + 2(PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

then

P 2
i − L(Pif)2

(f̃ l + ϵmaxx,y |f̃ l(x, y)|)2

=
−(F−1((P̂i ∗ f̂M) · 1[−α,α]2))

2 − (PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))

(f̃ l + ϵmaxx,y |f̃ l(x, y)|)2

+
ϵ2 P 2

i maxx,y |f̃ l(x, y)|2 + 2ϵ P 2
i f̃

l maxx,y |f̃ l(x, y)|
(f̃ l + ϵmaxx,y |f̃ l(x, y)|)2

+
P 2
i

∑n
i=1[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))

2 + (PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

(f̃ l + ϵmaxx,y |f̃ l(x, y)|)2
.

80

Let

T2(f, ϵ) :=
−(F−1((P̂i ∗ f̂M) · 1[−α,α]2))

2 − (PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))

(f̃ l + ϵmaxx,y |f̃ l(x, y)|)2

+
ϵ2 P 2

i maxx,y |f̃ l(x, y)|2 + 2ϵ P 2
i f̃

l maxx,y |f̃ l(x, y)|
(f̃ l + ϵmaxx,y |f̃ l(x, y)|)2

+
P 2
i

∑n
i=1[(F−1((P̂i ∗ f̂M) · 1[−α,α]2))

2 + (PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2))]

(f̃ l + ϵmaxx,y |f̃ l(x, y)|)2

(5.6)

Rearrange and square root

L(Pif)

f̃ l + ϵmaxx,y |f̃ l(x, y)|
=
√
Pi − T2(f, ϵ)

= Pi − T2(f, ϵ) · ξ−1/2/2

for some

|ξ − Pi| < |T2(f, ϵ)|

and 0 < ξ. For fM and ϵ small enough,

Pi − T2(f, ϵ) > γ/2

Then

|Pi −
L(Pif)

f̃ l + ϵmaxx,y |f̃ l(x, y)|
| ≤ |T2(f, ϵ) · ξ−1/2/2| ≤ |T2(f, ϵ)|

2
√
γ/2

So ∣∣∣∣∣Pi − L(Pif)

f̃ l + ϵmaxx,y |f̃ l(x, y)|

∣∣∣∣∣ ≤ O(ϵ) +O(sup |f̂M |).

Remark. For ϵ > 0, the approximation

Pi(x, y) ≈ P̃i(x, y) :=
L(Pi(x, y)f(x, y))

f̃ l(x, y) + ϵmaxx,y |f̃ l(x, y)|

decreases in accuracy as f(x, y) → 0 since P̃i(x, y) → 0.

81

Remark. Now, let Eδ(g) be the extrapolation operator that linearly extrapolates at points

(x, y) where |g(x, y)| < δmax |g|. Then the approximation

Pi(x, y) ≈ P̃i(x, y) := Eδ

(
L(Pif(x, y))

f̃ l(x, y) + ϵmaxx,y |f̃ l(x, y)|

)

is robust to small values of f since small values of P̃i are replaced with the linear extrapolation

of the higher accuracy approximations.

The approximation P̃ 0,0,0
i (x, y) is reasonable because the profiles are very smooth. Then

this implies that the high frequencies of f in the numerator get removed by L and then

the low frequencies of f in the numerator get removed by division with approximate low

frequencies of f denoted f̃ l where ϵ is added to avoid division by 0 and increase robustness.

Then

P θ,x0,y0
i (x, y) ≈ P̃ θ,x0,y0

i (x, y) = P̃ 0,0,0
i (Rθ(x, y) + (x0, y0)).

So now we have the matrices f̃ l and P̃ θ,x0,y0
i . Take the product and use the approximation

P θ,x0,y0
i f ≈ P̃ θ,x0,y0

i f̃ l to get the calibration data in the low frequencies.

Theorem 16. [89] Assume the assumption of Theorem 13.

Then for supu,v |f̂(u, v) · 1M(u, v)| small enough,

|L(P θ,x0,y0
i f) − P̃ θ,x0,y0

i f̃ l| ≤ O(ϵ) +O(sup
u,v

|f̂(u, v) · 1M(u, v)|)

Proof of Theorem 16. We bound |L(Pif) − P̃if̃
l|. By equation (5.5) and (5.6)

P̃ 2
i (f̃ l)2 = (P 2

i − T2(f, ϵ)) · (L(f)2 + T1(f))

= P 2
i L(f)2 + P 2

i T1(f) − T2(f, ϵ)L(f)2 − T2(f, ϵ)T1(f)

82

= P 2
i (fS + F−1(f̂ · 1[−α,α]2\S))2 + P 2

i T1(f) − T2(f, ϵ)L(f)2 − T2(f, ϵ)T1(f)

= P 2
i f

2
S+P 2

i F−1(f̂ ·1[−α,α]2\S)2+P 2
i fSF−1(f̂ ·1[−α,α]2\S)+P 2

i T1(f)−T2(f, ϵ)L(f)2−T2(f, ϵ)T1(f).

Also, from equation (5.1)

L(Pif)2 = (PifS)2 + (F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + (PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2)))

2.

Let

T3(f, ϵ) := L(Pif)2 − P̃ 2
i (f̃ l)2

= (F−1((P̂i ∗ f̂M) · 1[−α,α]2))
2 + (PifS)(F−1((P̂i ∗ f̂M) · 1[−α,α]2)))

2

− P 2
i F−1(f̂ · 1[−α,α]2\S)2 − P 2

i fSF−1(f̂ · 1[−α,α]2\S) − P 2
i T1(f) + T2(f, ϵ)L(f)2 + T2(f, ϵ)T1(f).

Then

P̃if̃
l =
√
L(Pif)2 − T3(f, ϵ) = L(Pif) − T3(f, ϵ) · ξ−1/2/2

for some |ξ − L(Pif)2| < |T3(f, ϵ)| and 0 < ξ.

For fM and ϵ small enough, L(Pif)2 − T3(f, ϵ) > L(Pif)2/2. Then

|L(Pif) − P̃i(f̃
l)| ≤ |T3(f, ϵ) · ξ−1/2/2| ≤ |T3(f, ϵ)|

2
√
L(Pif)2/2

≤ O(ϵ) +O(sup |f̂M |).

The frequencies in the calibration region of this approximation are used to compute the

new GRAPPA kernel and then reconstruct the image, see pseudocode in Algorithm 11.

83

Algorithm 11: MGRAPPA

Input:
n : measurement resolution
k : number of coils
Pf ∈ Rn×n×k : measurement
θ : theta rotation
T : (x,y)-translation
ϵ, δ : regularization parameters

Output:
R ∈ Rn×n : Image Reconstruction

Begin:
for i=1...k do

LPf(i,:,:) = lowpass(Pf(i,:,:))
end
f = sum(abs(LPf(:,:,:)),1)
for i=1...k do

P0(i,:,:) = E(LPf(i,:,:)/(f+epsilon*max(f)),delta)
end
for i=1...k do

P(i,:,:) = translate(rotate(P0(i,:,:),θ),T)
end
R = Grappa(P.*f) // Entry-wise product

5.1 Simulation

Simulation k-space data was synthesized based on coil sensitivity maps calculated from

a phantom experiment and clinical 3-D MP-RAGE coil-combined brain images previously

acquired. The phantom experiment was conducted on a 3T Prisma scanner (Siemens, Erlan-

gen, Germany) using a 20-channel head coil and a spherical water phantom (3-D MP-RAGE;

FOV = 240×240mm2, resolution = 0.9×0.9×0.9mm3, 256×256×256, 256 slices, TR/TE/TI

= 2600/2.29/1350ms, flip angle 8◦). The human MP-RAGE brain images were acquired on a

3T TrioTim scanner (Siemens) (FOV 256×256mm2, resolution 1×1×1mm3, 256×256×160,

160 slices, TR/TE/TI = 2600/4.47/1000ms, flip angle 12◦).

When rotation occurs with PMC, the apparent effect is inverse rotation of coil profiles by

84

the same amount. In this experiment, we use a brain scan as the signal and we use scans of

a disk as profiles. Simulation parameters were: 20 coils, full resolution 256x256, calibration

data 24*2 lines and ϵ = .05. We simulate rotation of the profiles by calculation using various

θ angles and then normalize the reconstructions in sup norm. We plot reconstruction errors

for GRAPPA and MGRAPPA, see Fig. 5.7. Error is L2 norm of the residual images; see

Fig. 5.6.

-40 -20 0 20 40

Rotation

0

2

4

6
L2 error vs rotation

MGrappa

Grappa

Figure 5.6: Simulated in-plane rotation θ post GRAPPA calibration with prospective mo-

tion correction and then plotted reconstruction L2 error of residual with MGRAPPA and

GRAPPA. Reconstruction errors increased almost linearly with the rotation angle for con-

ventional GRAPPA, but were essentially flat with MGRAPPA.

85

Rotated Coil Profiles Residual with MGRAPPA Residual with GRAPPA

Figure 5.7: Left: Subject simulated 20 degree in-plane rotation post GRAPPA calibration

with prospective motion correction. Center: Residual/error of MGRAPPA reconstruction

of Subject. Right: Residual/error of GRAPPA reconstruction of Subject.

-20 -10 0 10 20

X translation

0.1

0.2

0.3

0.4
L2 error vs translation

MGrappa

Grappa

Figure 5.8: Simulated in-plane translation along X axis post GRAPPA calibration with

prospective motion correction and then plotted reconstruction L2 error of residual with

MGRAPPA and GRAPPA. Reconstruction errors increased almost linearly with the rotation

angle for conventional GRAPPA, but were essentially flat with MGRAPPA.

86

5.2 In Vivo Experiment (Real Data)

Brain MRI was performed in a healthy volunteer (after obtaining consent) who was

trained to rotate the head by 7◦ to the left upon instruction in the middle of the scan.

This experiment was conducted on a 3T Prisma with a 20-channel head coil and MP-

RAGE sequence with FOV 240×240mm2, resolution 1.9×1.9×1mm3, 128×128×224, 224

slices, TR/TE/TI=2300/2.29/900ms, flip angle 8◦.

We collected full scans, 128x128, of a subject in 2 poses. We used the GRAPPA cali-

bration data, 24*2 lines, from the first pose to reconstruct the scan from the second pose

(subsample every other line and then reconstruct), both with and without MGRAPPA cor-

rection (ϵ = .05). The L2-norm error decreases 41% with MGRAPPA, see Fig. 5.9.

While the reconstruction error with GRAPPA increases markedly with rotations in an

almost linear fashion, MGRAPPA uses approximations to mitigate this and results in a

stable method with consistently low errors. In vivo, this appears as less ringing and blurring

in the brain image We conclude that our method has great potential to reduce re-scanning,

and improve image quality in the presence of motion.

5.3 Open Problems

• Above we used a rectangular sampling scheme, but what is the provably optimal sam-

pling scheme?

• Under statistical noise, is MGRAPPA an unbiased estimator?

87

Subject Residual with MGRAPPA Residual with GRAPPA

Figure 5.9: Left: Subject. Center: Residual/error of MGRAPPA reconstruction of Subject.

Right: Residual/error of GRAPPA reconstruction of Subject. The motion is rotation by

9 degrees and translation by 5 and 1 pixels in x and y directions respectively. GRAPPA

reconstruction, but not MGRAPPA, showed a clear ghosting artifact. Accordingly, the L2-

norm error decreased 41% with MGRAPPA.

88

Chapter 6

Persistent Homology Computation

Theory

Topology originated in the study of holes. Topology is now defined as the collection of

open sets associated to a space. By treating the holes of a space as a basis of a module

over a ring (or vector space over a field), we can work with simple objects that represent

complicated topological spaces. After defining this carefully, we call this the homology, see

[39, 47, 80]. What also comes out is that there are holes of different dimension. Essentially,

the kth homology of a space is the vector space on the basis of kth dimensional holes. In

applications, we often care about clustering data or detecting bifurcations (or branching)

in data. The 0th homology describes the cluster structure. This also corresponds to the

bifurcation structure when computed locally. However, given mere data points, the topology

is a trivial discrete topology. We need to make some assumptions to reconstruct a meaningful

topology of the underlying space of the data.

Let us introduce the Vietoris-Ripps (V Rϵ) complex from [48]. The V Rϵ complex takes a

89

small positive number ϵ ∈ R and assumes that data points with pairwise distance less than ϵ

are connected by an edge, creating a graph. A graph is a dimension 1 simplicial complex. We

will only consider dimension 1 V Rϵ complexes because higher dimensions don’t affect the 0th

homology. If one desires to compute higher dimension V Rϵ complexes, that is simply done

by applying the recursive rule that there will be a k-simplex on some k points if and only

if every j-subset of these points has a j-simplex for every k > j > 1. What is missing here

is what ϵ to use. The resulting homology drastically changes as ϵ is changed. By essentially

plotting the homology over ϵ then we can get an idea of the best ϵ.

To define this carefully, instead of a plot we’ll define intervals corresponding to the basis

elements of the homology. The starting value of each interval will be the smallest ϵ that

results in the corresponding homology basis element. The ending value of each interval will

be the largest ϵ that results in the corresponding homology basis element. When ϵ is near

0, the V Rϵ graph has a vertex for each point but no edges. As ϵ increases, many edges are

added based on how the data points are distributed. Then as ϵ increases more, the edge

additions tapers off. The edge additions will remove basis elements from the homology when

the edge connects two disconnected subgraphs. With these assumptions, there will be many

short intervals and few long intervals. The long intervals will correspond to the topology

of the space. These intervals, called “barcodes”, are the persistent homology of the space.

There is an algorithm to compute the persistent homology or barcodes, which we describe

next.

90

6.1 Barcode Algorithm

We explain the barcode algorithm for the 0th persistent homology, see [17, 21, 37]. We

start with a list of N data points, X, each in d dimensional Euclidean space, Rd. Then we

calculate the distance between every pair of points, which corresponds to the ϵ at which an

edge is added between the pair in V Rϵ. Take the list of distances, E, and sort it in increasing

order. Remove duplicate elements in E and call it D. We build a matrix, M , with a column

for each edge and a row for each vertex in V R∞ (the complete graph). Set M(i, j) to t a

when i is a vertex of edge j and where a is the index of edge j in D which ranges from 1 to

the length of D. All other entries of M are set to 0. We make the entries to be polynomials of

variable t with coefficients restricted to 0 or 1. The next step is to column reduce this matrix

so that what remains is lower triangular. Then the remaining nonzero diagonal entries, say

tb, correspond to the barcode or interval (0, b). With this list of intervals, the algorithm is

complete.

6.1.1 CPU Parallelization

Parallelization is highly desirable for the barcode algorithm. The computational com-

plexity of this algorithms is first O(N2) for the pairwise distance computation, actually over

a factor of 2 due to the distance symmetry. Then plus O(N2 log(N2)) for sorting the edges.

Then plus O(N2) to compute matrix M . Then plus O(N · N2 · N) = O(N4) to reduce,

with pivoting, the N by N2 matrix M . Then plus O(N) to collect the barcode. Altogether

this is O(N4). Even if N is small say N = 1000 data points, the time requirement is ap-

proximately 1012 in time units proportional to the CPU clock rate, a huge amount of time.

91

Parallelization can leverage multiple processors together to speed up codes and algorithms.

We use OpenMP parallelization in C++ to experiment with improving the performance of

the barcode algorithm. To use OpenMP we add “for” pragmas before the for loops. In

the matrix reduction code, the outer loop is not clearly parallelizable so we put the pragma

inside the outer loop where there are parallelizable for loops.

We implement the algorithm in C++ with OpenMP on a 2 core machine running Ubuntu.

We use randomly uniformly distributed pairs of numbers in (0,1) for our data. We compile

with g++ with -o3 highest compiler optimization since we want to see if the best performance

can be improved with parallelization. We note that with -o0 lowest compiler optimization,

we get very similar results. We plot averages of 10 runs. In the best case, the run time would

be divided by 2 when going from 1 thread to 2 threads. We plot the experiment in Fig. 6.1.

Figure 6.1: Run time to compute the 0th persistent homology versus number of data points

using 1 or 2 threads and compared with polynomial growth.

We get an increasing performance gain with the number of data points. The performance

gain is less than double however because the code is not perfectly parallel and due to the

92

thread overhead cost. As for how the run time increases with the number of data points,

N , we expect O(N4) from our calculation above. Even with parallelization and dividing

the time by 2, we still expect O(N4). We plot N4 times a constant above and see that

our experiments are not far off from N4 though they only need converge as N approaches

infinity. Since we use a 2 core machine, more than 2 threads should not give a performance

increase. We compare run times with the number of threads greater than 2. We plot the

experiment in Fig. 6.2. We see that more threads beyond the number of processing units

decreases performance. This is because threads have an overhead cost. Since a threading

point is inside of a loop in the matrix reduction code, the thread overhead cost is multiplied

by the number of data points, becoming significant.

Figure 6.2: Run time to compute the 0th persistent homology versus number of data points

using 3, 4, or 6 threads and compared with polynomial growth.

We have shown a large performance increase computing barcodes by using parallelization

on a dual core machine. We got up to about 1.75 fold performance increase which may

approach the limit of 2 fold increase for a large enough number of data points. We also

93

showed that the thread overhead cost can accumulate, destroying performance gains but

dependent on the implementation. Repeating this work for the higher persistence homology

computations won’t affect much other than increasing the amount of computation.

6.1.2 GPU Parallelization

First, we use GPU (graphics processing unit) parallelization to compute the 0th Persistent

Homology. By mass parallelization, we analytically and empirically decrease the run time

scaling from O(N4) to O(N33) and even O(N2) where N is the number of data points, for

a large enough GPU. Next, we analytically show run time scaling O(N) for an even larger

GPU [86].

GPU (graphics processing unit) usage for data analysis has become possible and popular

over the past decade. For example, [72, 104, 105] use GPUs for topological data analysis.

As these papers show, putting the GPU’s thousands of cores to use in parallel can yield

higher performance, that is, lower run times compared to a CPU (central processing unit).

As a comparison, consider that an Intel Core i7 980 XE can compute 109 gigaFLOPS [112]

(floating point operations) while an NVIDIA Tesla P100 can compute 10 teraFLOPS [46].

This is achievable because even though the GPU’s clock rate is only about a third of the

CPU’s, the GPU has thousands of cores compared to the above CPU’s 6 cores. To get an

idea of the parallelization of this GPU, we can compute the ratio of FLOPS over clock rate,

so 10 teraFLOPS / 1 Ghz = 103 operations in parallel [46]. This compares to the above

CPU’s 109 gigaFLOPS / 3 Ghz = 36 operations in parallel which makes sense given about

6 arithmetic logic units (ALUs) per core.

94

As explained above, the computational complexity of computing the 0th persistent ho-

mology is O(N4) where N is the number of data points [86]. This is caused by reducing the

boundary matrix of size N ×N(N − 1)/2. Now, as the matrix reduction iterates down the

matrix diagonal, each step is easily parallelizable in constant time, ignoring pivoting. This

reduction is then a O(N) operation. So can we experimentally observe total run time growth

of O(N)?

We use a Red Hat Linux server with an NVIDIA Tesla P100 16 GB GPU. We generate

N points of uniformly random data on [0, 1] × [0, 1] and then we compute the 0th persistent

homology as in [86]. We use the GPU to compute the steps of the algorithm in parallel, that

is, in constant time. Steps:

1. Compute N(N-1)/2 pairwise distances, that is the edges.

2. Sort the edges.

3. Create the boundary matrix.

4. For each diagonal entry of the matrix: Reduction step.

5. For each diagonal entry of the matrix: Get the barcode interval.

Then we plot the run time using the GPU vs sequential CPU code without the GPU, see

Fig. 6.3. The experiments are averages of 10 runs. We notice that the run time of the CPU

(no GPU) code grows with O(N4) as the theory predicts. The run time of the GPU code

grows with O(N2) from N=50 to 150. Then the run time of the GPU code grows with O(N3)

from N=200 to 700. A note on pivoting, pivoting, to the extent that it is happening, may

be thought to be affecting the theory and experiments. Experimentally, even when pivoting

95

is disabled, the result is very similar. As for the theory, finding the pivots could be done

with the GPU in logarithmic time by doing a binary search via sums of row slices. Another

note on sorting the N(N-1)/2 edges by length, sorting on the GPU in parallel, for a large

enough GPU, can be done in O(log(N(N − 1)/2)) run time [79]. Our implementation uses

the Thrust library for sorting on the GPU and we observe it takes negligible run time.

Figure 6.3: Run time to compute the 0th persistent homology versus number of data points

using CPU or GPU and compared with polynomial growth.

The reason that we didn’t get O(N) run time growth is because we made a crucial

assumption above. We assumed that the GPU could do N × N(N − 1)/2 operations in

parallel. Using our approximate calculation above of 103, that means N < 28. At those

small N values, the memory and initialization times can swamp the calculation. However,

if N < 103 or if N(N − 1)/2 < 103 then we can do column or row, respectively, operations

in parallel and then decrease the run time to O(N3) or O(N2), respectively. We calculate

those thresholds and see N = 150 and N = 103. This matches the data where we see O(N2)

run time growth up to N=150 and then after we see O(N3) run time growth. We did not

96

run N beyond 700 due to limited time. Of course for N large enough the run time growth

must be that of the computational complexity which is O(N4). Technically, if the computing

resources are finite and constant, then they will not change the computational complexity

as N grows very large.

We have shown analytically and experimentally that with a large enough GPU, we can

decrease the run time growth of computing the 0th persistent homology from O(N4) to O(N3)

and even O(N2). Analytically, with many large GPUs, O(N) run time growth is possible.

However, we’ve ignored memory transfers and latencies which could be researched in future

work. Future work also includes the straight forward extension to the higher order homology

groups.

6.2 Natural Language Processing Application

Natural language processing (NLP) seeks insights from data in form of a natural language

such as English. We will see how to analyze natural language data with persistent homology

[85]. We often want to understand the shape or topology of any dataset we are given. We

may think there is a linear relationship between the variables and fit a linear model. We may

believe that the data comes from a sphere and visualize them to test this theory. Often, we

do not know what the shape of the data is, but believe the data has been sampled from some

underlying surface or manifold lesser in dimension than the ambient space. The shape of

this surface is interesting, but difficult to analyze so we focus on topological features which

are much simpler. For example we check if the surface has holes or even multiple connected

components which will correspond to clusters of the data.

97

To formalize this question, suppose you are given some (finite) data X

which you believe comes from some surface, or low dimensional manifold, X.

The critical question is whether we can infer the shape (homology: number

of holes, components, etc.) of X from the given data X. Consider the data

to the right1. Intuitively we see that this data comes from noisily sampling a circle because

there is some hole in the middle of the data. But how would one algorithmically detect this

for any given data? The most common way to do this is to use a concept called persistence.

The core idea of persistence is to see how the union of balls around each point becomes

connected as the balls grow in radius.

Figure 6.4: Illustration of Topology. Image credit to [77]

We see that as we grow an ϵ-ball around each point, the union of balls becomes more

connected until we have all balls connected and 1 hole in the middle of the union. In persistent

homology, we examine how these connections evolve overtime (time being the ball radius

increasing). For the different discriminators of different shapes (connected components,

holes, etc), we can observe their birth and death as we increase ϵ. By focusing on those

discriminators which have a long life, i.e., persist, we can begin to understand the shape of

our data.

1Figures from reference [77]

98

This field has been studied for a long time, dating back to the 1940s ([69], [35], and [91]).

These works focus on the theory of topology, but they were restricted in their applicability

due to their lack of computation. Then [28] introduced a fast algorithm to compute a surface’s

topology, and this led to the focus of computational techniques in the field of topology. After

the publication of this work, many subsequent work was focused on advancing the theory

and computability of the shape of surfaces. For an abstract overview of these works see [60].

For a history of persistent homology in topological data analysis (TDA) see [77]. For more

mathematical and technical descriptions of the field see [19, 27, 38].

There are only six published works at the intersection of NLP and TDA [66, 97, 98, 106,

109, 120], at time of writing. The first concrete example of a successful application of TDA to

NLP comes from [109] which demonstrates the difficulties and possibilities for computational

topology to analyze the similarities within a collection of text documents. [106] argues for

applicability of persistent homology to lexical analysis using word embeddings. This paper

aims towards the same goal as ours, but does so using a slightly different TDA method, which

we believe we can improve upon. [98] applies TDA to entailment, with an improvement of

accuracy over the baseline without persistence.

Word sense disambiguation (WSD) was first framed as a computational task in the 1940s

with Zipf’s power-law theory. Since then, the types of solutions to WSD can be binned

into three categories: knowledge-based, supervised, and unsupervised. An example of the

knowledge-based approach is [67] where semantic similarity is used to measure distances

between words which theoretically “measure” how much words are semantically similar.

The approach taken in this example is different from our unsupervised approach, but the

end goal is the same. [67] support their claim of the appropriateness of (their specific)

99

similarity measures by using real time implicit feedback from user. An example of the

supervised approach is [18] which uses a combination of different models: Naive Bayes,

maximum entropy model, boosting, and kernel-PCA. This result [85] is the first of its kind

to provide evidence that WSD can be used to improve the performance of statistical machine

translation (SMT) tasks. Like the previous example, the goal is the same as ours but the

approach is different. [18] justify their claim using experiments comparing SMT against

SMT + WSD across a variety of tasks and a variety of performance measures. The final

approach is an unsupervised approach, like [100]. These authors posit that graph-based

centrality measures for word sense disambiguation can capture the necessary information.

This approach is similar to ours in that there is an assumption that the geometry of a space

carries some information about word senses. However, their work uses different similarity

measures directly, while ours will use inferred measures through word embeddings.

We will use training and evaluation datasets from Linguistic Computing Laboratory

group at the Sapienza University of Rome. The training data consists of two sense annotated

training corpora, SemCor and OMSTI. All senses are annotated with WordNet 3.0. The

XML data file contains the following tags: corpus → text → sentence. Then, each sentences

consists of “wf” (non-disambiguated) and “instance” (disambiguated) tags. We will use

persistent homology as described above to examine the shape of common word embeddings.

Firstly, we will compute word embeddings with word2vec, GloVe, and fasttext on the

datasets SEMEVAL-2013, SemCor, and SemCor+OMSTI. Then, we will compute barcodes

to understand the topology, or shape, of the word embedding space. We will analyze the

results of this algorithm by finding the topological components that each word belongs to,

as output from the barcodes algorithm. We hypothesize that this information will have

100

Figure 6.5: Diagram Algorithm Output. Figure from [77].

some signal about the number of word sense for each word. In addition, we will construct

pseudowords by concatenating unrelated words, replace them in the corpus and check if the

barcode algorithm recovers the senses of the two words. We will use the datasets SEMEVAL-

2013, SemCor, and SemCor+OMSTI. We will compute word embeddings for each dataset

using all three methods: word2vec, GloVe, and fasttext. This would output a total of nine

word embeddings. We will perform this computation on server clusters for mass paralleliza-

tion.

Recall, that the study of topology examines the surfaces that are generating the data.

For instance, we assume that our word embeddings are produced from some underlying

manifold that has particular structures of interest. For instance, word embeddings make

“similar” words cluster together in the embedding space. We note that the definition of

similar is somewhat nebulous. In topology, we call these clusters connected components

because if we were to connect each of the points/word embeddings to any other point that

is say ϵ away, then they would form one connected piece. This point can be seen in Fig. 6.4.

Recall that persistent homology is the study of the evolution of these topological features as

we increase ϵ.

101

The output of the Barcode algorithm will be a diagram like in Fig. 6.5. This diagram

will tell us which are topological features of the word embedding space that are meaningful.

In Fig. 6.5 they are the three signals on the right which fall above the noise-thresholded

diagonal. With the topological information output from the barcode algorithm, we can look

at words that have multiple senses. The essential question we ask will be, if we remove this

word/point from the embedding, does the topology change. To think of this more concretely,

consider the word “bank” which has a financial and a alluvial meaning, each with their own

cluster of similar words. However, “bank” falls between them and so if it is removed, the

connection between the two clusters will be broken and one connected component will become

two. We shall compute these changes for various words to analyze the topological relation

to the semantics.

Once we run the above barcode algorithm on the word embeddings for the different

datasets and perform the analysis, we will repeat the process but with pseudowords. For a

word that has multiple meanings or senses, we can break that word up into its component

senses, create new dummy words, and replace the original word with the respective dummy

word. For example, if the word “foo” has two meanings, we can create words “foo$1” and

“foo$2” and replace “foo” with the respective pseudoword we just created.

Once we have done this, we will replace the words in the corpora, retrain the embeddings,

and rerun the barcode algorithm. We will proceed entirely as before with our analysis

and draw conclusions about the appropriateness of topological data analysis in word sense

disambiguation/induction.

We will compare the number of senses calculated for each word with the ground truth

from the annotated datasets SEMEVAL-2013, SemCor, and SemCor+OMSTI to the barcode

102

algorithm prediction. We shall look at the topological features of words with multiple sense.

We will then compute how the topology changes when that word is omitted. The average

relative error, comparing word by word, will be a measure of success with a perfect match

having average relative error = 0. We will measure the success against the hyperparameters

δ, the locality radius, and ϵ, the noise sensitivity. That is if g is the ground truth vector of

number of word sense per word with length n, and g̃ is our approximate, then the average

relative error is

eδ,ϵ =
1

n

n∑
i=1

|(g)i − (g̃δ,ϵ)i|
(g)i

.

As stated above, we will also calculate this error on the pseudowords to measure our success

there.

The above measures the relative difference in word sense that our barcode algorithm

predicts versus what are given as ground truth. This will measure effectively how this

particular topological approach worked with recovering word senses. However, we note that

even if this measure is large, there might be useful information encoded with the barcode

algorithm. Therefore, we will also perform qualitative analyses to derive reasons for the

results.

Our baseline results have been computed on the Semcor dataset annotated using WordNet

with the word2vec embedding training routine. We define (number of senses = number of

death dates that are > (mean + 2 standard deviations)). We compute absolute and relative

errors when compared to the ground truth number of senses, see Fig. 6.6.

We plot number of closest words considered vs absolute error, see Fig. 6.7. If we consider

very few neighboring words, we have less information than what is required and for a large

103

Figure 6.6: Table of relative and absolute error for word sense disambiguation versus different

embedding dimensions and number of neighbors considered.

number words we have too much irrelevant information. In both cases, error is higher as

expected. The minimal error is in the middle, hence our results are coherent with our

expectations.

6.3 Open Problems

• Can a provably approximate barcode be calculated in linear time with limited hard-

ware?

• Can the d dimensional barcode be used to decrease the computation of the k dimen-

sional barcode where d ̸= k?

104

Figure 6.7: Plot of absolute error for word sense disambiguation versus number of neighbors

considered, using 100 dimensional word embeddings.

105

Chapter 7

Geometric Reach

In application and theory, reconstruction of an embedded manifold [58] from samples

hinges on the manifold’s curvature and reach. The reach of a manifold is the smallest

distance to the medial axis. Reach is a function of curvature but contains more information

for reconstruction. We show instability, theoretically and practically, in Federer’s manifold

reach formula [31].

The simplest interpolation method is linear interpolation which we discussed in Chap-

ter 2. Linear interpolation is a tried and true method that works for numerous applications.

Consider sampling part of a circle and plotting a linear interpolant, Fig. 7.1. As we see the

linear interpolant matches the data well in this case, though this is a bit of an artifact. If

the samples came from a larger interval, then clearly the linear interpolant would not match

the sample. We need to quantify mathematically where and when linear interpolation fails.

We can do so by calculating the (extrinsic) curvature [58] of the data distribution, which

in this case consists of all points (x, y) on the circle. When the curvature is very high, the

linear interpolant completely fails to match the data, as is the case shown in Fig. 7.2.

106

Figure 7.1: In black, half-circle and samples marked with red X. In blue, linear interpolation

of samples.

Quantifying and controlling curvature is crucial to properly using linear interpolation in

theorems and applications. Because curvature can vary at each point, standard procedure is

to require (scalar) curvature to always be below a threshold. This requirement along with a

minimal gap requirement gives us a requirement on reach. Reach is defined as the maximum

of a curvature term and the minimal gap between pieces of the data distribution [1]. Now

given a distribution, we can define the reach τD of distribution D ⊂ X by

Definition 7.0.1.

τD = inf
x∈X\D

{d(x, y) : ∃y, z ∈ D, y ̸= z, d(x, y) = d(x, z)} ∪ {∞}

where d : X ×X → R+ is a distance on X.

In Fig. 7.2, the space X is the plane and the distribution D is a density on the circle.

107

Figure 7.2: In black, circle and samples marked with red X. In blue, linear interpolation of

samples.

In the case that the data distribution is a manifold in X, the reach is equal to the

minimum of bottleneck distances,

{d(x, y) : x ∈ X\D, y ∈ D : ∃z ∈ D, x ̸= z, d(x, y) = d(y, z) = d(x, z)/2},

and a curvature term [1], see Fig. 7.3.

In this section, we will work with data distributions that are smooth manifolds which

are smoothly embedded in Euclidean space going forward except where noted. In the case

of compact manifolds without boundary in a normed space, Federer [31, Thm. 4.18] showed

that the reach of manifold M is

τM = inf
x ̸=y;x,y∈M

∥y − x∥22
2d(y − x, TxM)

108

Figure 7.3: Manifold in black and red line showing bottleneck location.

where TxM is the tangent space of M at x embedded in the ambient space. Many works

have utilized this formulation such as [1]. However, there exists an instability which makes

an accurate computation almost impossible. Given a set of samples S ⊂M , let estimate

τ̂M = inf
x ̸=y;x,y∈S

∥y − x∥22
2d(y − x, TxM)

.

Suppose a sample or tangent space is perturbed as in Fig. 7.4. We plot samples including

one that falls outside of the black straight line manifold. We plot a tangent line estimate in

blue at the erroneous sample. Then, with the error, the estimate τ̂M decreases to a small,

inaccurate result. We give the cause of this in the following theorem.

Theorem 17. For N samples, S, of smoothly embedded manifold M ⊂ Rm and some per-

turbation p of TxM and η(r) = infγ ∥projTxM(γ(r) − x)∥ where γ is a geodesic and some

0 ≤ ξ ≤ ∥y − x∥,

τ̂M ≤ inf
x ̸=y;x,y∈S

∥y − x∥
2∥p∥(sup ∥γ′′|x∥ + η′′(ξ)∥y − x∥)

Remark. Thus with worst case perturbations, for number of samples N large, τ̂M → 0 since

109

Figure 7.4: Noisy samples in red from manifold in black. Blue line showing inaccurate

tangent space.

infx ̸=y;x,y∈S ∥y − x∥ → 0 for i.i.d. samples S. We note that a perturbation of the tangent

space is equivalent to perturbing a sample since the samples estimate the tangent space.

Proof of Theorem 17. Let Nx(M) be the perpendicular space to the tangent space TxM .

There is a vector vN ∈ Nx(M) such that d(y − x, TxM) = ⟨y − x, vN ⟩. Then

τ̂ = inf
x ̸=y

∥y − x∥2

2⟨y − x, vN ⟩
.

Let p ∈ TxM and curvature cx = sup ∥γ′′|x∥ for γ : R →M,γ(0) = x, ∥γ′∥ = 1, projTxM(γ′′) =

0, that is a geodesic. Let η(r) = infγ ∥projTxM(γ(r) − x)∥ and 0 ≤ ξ ≤ ∥y − x∥.

τ̂ = inf
x ̸=y

∥y − x∥2

2⟨y − x, vN + p⟩

= inf
x ̸=y

∥y − x∥2

2⟨y − x, vN ⟩ + 2⟨y − x, p⟩

= inf
x ̸=y

∥y − x∥2

2⟨y − x, vN ⟩ + 2⟨projTxM(y − x), p⟩ + 2⟨projNxM(y − x), p⟩

110

= inf
x ̸=y

∥y − x∥2

2⟨y − x, vN ⟩ + 2∥projTxM(y − x)∥∥p∥

≤ inf
x ̸=y

∥y − x∥2

2⟨y − x, vN ⟩ + 2∥p∥η(∥y − x∥)

= inf
x ̸=y

∥y − x∥2

2⟨y − x, vN ⟩ + 2∥p∥(cx∥y − x∥ + η′′(ξ)∥y − x∥2)

≤ inf
x ̸=y

∥y − x∥2

2∥p∥(cx∥y − x∥ + η′′(ξ)∥y − x∥2)

= inf
x ̸=y

∥y − x∥
2∥p∥(cx + η′′(ξ)∥y − x∥)

.

Figure 7.5: Top: Samples as red X from half-circle manifold in black. Bottom: Blue line

showing Federer’s approx. reach of manifold. Manifold reach is equal to 1.

Next, we show how the error term grows with samples in Fig. 7.5. We plot a semicircle

manifold and a set of samples. Then we calculate τ̂ and vary the number of samples.

111

Typically, more samples leads to a better model, however here neither less data nor more

data results in an accurate estimate, since τ̂ ̸= τ = 1 in Fig. 7.5. To compensate for this

defect, we introduce a combinatorial reach which is a robust multiscale generalization of

reach.

7.1 Combinatorial Reach

Consider the simplicial complex S = {[vi1 , ..., vin]}{i}n1∈I , where I is an index set and vi

are labels of vertices embedded in metric space (X ⊂ Rm, d, ∥ · ∥). We always will assume

the faces of S are linear in Rm. Let {Vk}k∈I be the Voronoi complex of the vertices of S. For

each k, the cell is given by

Vk = {x ∈ X : d(x, vk) < d(x, vj) ∀j : vk ̸= vj}.

Using the Voronoi complex, define Vδ as the complex formed by the boundaries of the

cells Vk that are δ separated from S. Let

Vδ = {σ ∈ complex (∪k cl(Vk) − Vk) : d(σ, S) > δ}

where d(σ, S) = infx∈σ,y∈S d(x, y). In Fig. 7.6, we show a simplex S, Vk, and Vδ.

Definition 7.1.1. Define the combinatorial reach of simplicial complex S as

τS(δ) := min

(
d(S, Vδ), sup

u,w∈X
d(u,w)

)
which may equal ∞.

Let’s take a look at a few examples and their combinatorial reach which we will abbreviate

as c-reach. In Fig. 7.7 we see the c-reach of samples from three different spaces. The circles

112

x

x x

x

x

x

x x

x

x

x

Figure 7.6: Left: We show a simplicial complex. Center: A simplicial complex is in black.

The vertices are marked X. The Voronoi complex is in red. Right: The simplicial complex

is in black. We show Vδ complex in red for δ < the circumscribed circle’s radius.

c-reach reflects three values. First level on the left is half the distance between samples, then

the radius is reflected, and finally ∞ is achieved. Two parallel lines causes a bottleneck.

The spaces c-reach starts as half the distance between samples, then reflects the bottleneck

distance, and finally is ∞. We have seen that in the fundamental cases, the c-reach contains

the curvature and bottleneck distance. How does the c-reach handle a perturbation of a

sample on an interval? We plot this in Fig. 7.7 and see that the perturbed or kinked space

has a c-reach that starts at half the distance between points and then takes small steps up

to ∞. The correct reach of ∞ is contained in the c-reach beyond some level. This improves

over the standard reach which is very low and this improves over Federer’s formula which

gives a low value. A few properties become apparent.

113

Figure 7.7: Left Top: Samples from a circle marked with blue X. Right Top: Combinatorial

reach of circle samples. Left Middle: Samples from parallel lines marked with blue X. Right

Middle: Combinatorial reach of parallel lines samples. Left Bottom: Noisy samples from

interval marked with blue X. Right Bottom: Combinatorial reach of noisy interval samples.

114

Proposition 7.1.1. C-reach is a non-negative, monotonically increasing function up to

supu,w∈X d(u,w) and is then constant.

Remark. C-reach is a global function in the sense that perturbing one sample can change

c-reach at any δ.

However, in compact ambient spaces, c-reach is Lipschitz continuous, in Lp, to pertur-

bations of vertices. In a compact space X ⊂ Rm, Vk depends Lipschitz continuously on

perturbations of vj for any k, j in the Hausdorff (HD) measure. Vδ depends Lipschitz contin-

uously on perturbations of vj for any j. τS depends Lipschitz continuously on perturbations

of vj for any j in ∥ · ∥Lp . So τS depends Lipschitz continuously on perturbations of the

vertices of complex S. Adding or deleting interior cells (not a vertex) which is within δ in

HD, only changes τS below δ.

Theorem 18. In a compact ambient space X ⊂ Rm, c-reach of simplicial complex S is

Lipschitz continuous, in Lp, to a small enough perturbation η ∈ Rm of a vertex. Let S(η) be

complex S with perturbation η. Then

∥τS(η)(·) − τS(·)∥Lp ≤ L|X|1/p∥η∥

Remark. A finite sequence of small enough perturbations is also Lipschitz continuous for

τS via triangle inequality.

Proof of Theorem 18. Part I. The medial axis of vk and vj, medial axis(vk, vj) =

A = {x ∈ X : (x− vk + vj
2

) · (vk − vj) = 0}.

Let medial axis(vk + η, vj)=

Aη = {x ∈ X : (x− vk + η + vj
2

) · (vk + η − vj) = 0}.

115

Use the Hausdorff distance

d(A0, Aη) = inf{ϵ : A0 ⊂ ∪x∈AηB(x, ϵ), Aη ⊂ ∪x∈A0B(x, ϵ)}.

We calculate the Lipschitz constant of d(A0, Aη) as a function of η for ∥η∥ ≤ 1
2
∥△S∥min.

Take x ∈ A0 and x+ w ∈ Aη where ∥w∥ is minimal. Then

w

∥w∥
= ± (vk + η − vj)

∥vk + η − vj∥

Since x+ w ∈ Aη then

0 = (x+ w − vk + η + vj
2

) · (vk + η − vj)

= (x− vk + η + vj
2

) · (vk + η − vj) + w · (vk + η − vj)

= (x− vk + η + vj
2

) · (vk + η − vj) ± ∥w∥ (vk + η − vj)

∥vk + η − vj∥
· (vk + η − vj)

= (x− vk + η + vj
2

) · (vk + η − vj) ± ∥w∥∥vk + η − vj∥

So

∥w∥ =

∣∣(x− vk+η+vj
2

) · (vk + η − vj)
∣∣

∥vk + η − vj∥

=

∣∣(x− vk+vj
2

) · (vk − vj) + (x− vk+vj
2

) · η − (η
2
) · (vk + η − vj)

∣∣
∥vk + η − vj∥

since x ∈ A0 and (x− vk+vj
2

) · (vk − vj) = 0

=

∣∣(x− vk+vj
2

) · η − (η
2
) · (vk − vj) − (η

2
) · η

∣∣
∥vk + η − vj∥

≤
∥x− vk+vj

2
∥∥η∥ + ∥η

2
∥∥vk − vj∥ + ∥η

2
∥∥η∥

∥vk + η − vj∥

≤
∥x− vk+vj

2
∥ + 1

2
∥vk − vj∥ + ∥η

2
∥

∥vk − vj∥ − ∥η∥
∥η∥

116

since ∥η∥ ≤ 1
2
∥△S∥min

≤
∥x− vk+vj

2
∥ + 1

2
∥vk − vj∥ + ∥vk − vj∥/4

∥vk − vj∥/2
∥η∥

since |X| <∞

≤
|X| + 1

2
∥vk − vj∥ + ∥vk − vj∥/4
∥vk − vj∥/2

∥η∥

≤
|X| + 1

2
∥△S∥max + ∥△S∥max/4

∥△S∥min/2
∥η∥

≤ 2|X| + 2∥△S∥max

∥△S∥min

∥η∥.

So Lipschitz constant

L =
2|X| + 2∥△S∥max

∥△S∥min

.

Proof of Theorem 18. Part II. τ is Lip. continuous in perturbation of vertices of S as func-

tions in ∥ · ∥Lp . Let S(η) have a perturbation of vk0 for some k0, vk0 + η.

V η
k = {x ∈ X : d(x, vk + η) < d(x, vj) ∀j : vk ̸= vj}.

And

V η
ϵ = {σ ∈ complex (∪k cl(V η

k) − V η
k) : d(σ, S) > ϵ}.

Then

τS(η)(ϵ) = min

(
inf

x∈S(η)
inf
y∈V η

ϵ

d(x, y), sup
u,w∈X

d(u,w)

)
≤ min

(
inf

x∈S(η)
inf
y∈V 0

ϵ

d(x, y) + L∥η∥, sup
u,w∈X

d(u,w)

)
≤ min

(
inf

x∈S(η)
inf
y∈V 0

ϵ

d(x, y), sup
u,w∈X

d(u,w)

)
+ L∥η∥

≤ τS(ϵ) + L∥η∥.

117

So

|τS(η)(ϵ) − τS(ϵ)| ≤ L∥η∥.

Now τS(η)(ϵ) = τS(ϵ) for ϵ ≥ |X|. Then

∥τS(η)(·) − τS(·)∥Lp =

(∫ ∞

0

|τS(η)(ϵ) − τS(ϵ)|p
)1/p

=

(∫ |X|

0

|τS(η)(ϵ) − τS(ϵ)|p
)1/p

≤ L|X|1/p∥η∥

and

sup
ϵ

|τS(η)(ϵ) − τS(ϵ)| ≤ L∥η∥.

We have showed the c-reach well-defined and robust improvement over the standard

reach. However, so far it is defined on simplicial complexes, which are not as commonly

studied as manifolds. Simplicial complexes are usually just an approximation to the object

of interest which may be a manifold or stratification. Since simplicial complexes can ap-

proximate manifolds and stratifications, we will define c-reach with the limit of simplicial

approximation, if it exists.

Definition 7.1.2. The c-reach, denoted τM(·), on manifold or stratification M ⊂ Rm is

given by

τM(ϵ) := lim
N→∞

τSN
(ϵ)

if the limit exists and where SN ⊂M , SN finite, and limN→∞ dHD(SN ,M) = 0.

118

Remark. When stratifications of constant dimension are sampled statistically from a sup-

ported distribution, then with high probability, the above HD distance converges to 0 and the

above definition applies. This is since the probability of not sampling an ϵ-ball is eventually

arbitrarily small.

The examples above indicate the c-reach and reach agree on manifolds which we will show.

Consider the case where points x, y ∈ M achieve the reach to z such that d(x, z) = d(y, z).

For any ϵ > 0, for N large enough, there exists x̂, ŷ ∈ SN with d(x, x̂) < ϵ and d(y, ŷ) < ϵ.

Then there exists ẑ such that d(z, ẑ) < Cϵ and d(x̂, ẑ) = d(ŷ, ẑ) for some constant C.

If there does not exist such an x, y ∈ M then there exists x̃, ỹ ∈ M that are ϵ close to

achieving the reach. And then the same argument holds. So under certain conditions on δ

and N , |τM − τSN
(δ)| < ϵ. We can identify these conditions as follows. δ < τM − Cϵ − ϵ is

necessary otherwise the ẑ vertex is filtered out. It is also necessary for dHD(M,SN) < δ

so that the discretization is not mistaken for reach. For N large enough, there is a δ

interval that approximates the reach, dHD(M,SN) < δ < τM − Cϵ − ϵ. Since for every

ϵ : τM/(1 + C) > ϵ > 0, limN→∞ |τM − τSN
(δ)| < ϵ, there is equality τM = τM(0+). We have

proved the follow theorem!

Theorem 19. For a manifold or stratification M where τM(·) is well-defined, τM(0+) = τM .

We see an example of exact convergence in the circle in Fig. 7.7 where the c-reach equals

the reach (the radius) on the second step. To see an example of near convergence, let’s take

a look at the ellipse in Fig. 7.8. We see that due to a lack of samples, the c-reach is slightly

higher than the reach for δ larger than the discretization artifacts. But as samples are taken

near the endpoints of the ellipse, the c-reach recovers the reach.

119

Figure 7.8: Manifold is ellipse in black. Medial axis is in red. Reach is achieved on endpoint

of ellipse. Yellow line segment indicates reach. The samples are marked X. The blue line

segment indicates c-reach which is half of blue line segment. We see how c-reach and reach

converge with samples.

7.1.1 Noise

With noisy samples from a manifold, there is a trade-off in estimation error of the c-

reach based on the noise covariance matrix and the curvature of the manifold. Samples with

noise in a direction tangent to the manifold corresponds to noiseless samples of a manifold

with approximately the same c-reach. Whereas samples with noise in a normal direction

are equivalent to noiseless samples from a highly curved manifold. Here the difference in

dimension between the manifold and the ambient space becomes very relevant. The larger

the difference in dimension, the more likely the noise leaves the tangent plane. The more

curved a manifold becomes, the lower the reach. Where the reach agrees with the c-reach,

the c-reach becomes lower. Indeed, the c-reach at all levels generally decrease because the

symmetry that gives rise to the medial axis is broken. We plot an example of sampling an

ellipse with and without noise in Fig. 7.9.

120

Figure 7.9: Top: Noiseless samples from ellipse are dotted in blue. Bottom: Samples with

Gaussian noise (with identity covariance) are dotted in blue. Top and Bottom: Voronoi

complexes are shown as blue graphs. 121

Figure 7.10: Plot shows c-reach of ellipse samples with various levels (coeff.) of additive

Gaussian noise with identity covariance.

Noisy samples corrupt curvature information. C-reach estimates curvature of the mani-

fold, but the more noise, the worse the estimate. In the limit of samples that are pure noise

(and no signal), the c-reach shows no structure whatsoever. In Fig. 7.10, we plot the c-reach

noisy samples of the ellipse from Fig. 7.9. We see that even small amounts of noise flatten

the c-reach. Now we shall compute and plot the relative error as we stretch the ellipse from

circle to straight line in Fig. 7.11. The relative error increases the flatter the ellipse becomes.

This shows how stability increases with curvature.

The c-reach estimates give information about curvature and reach of manifolds which is

very useful for applications. Curvature information allows bounding approximation error in

manifold reconstruction. To do this, piece-wise linear interpolation is computed on pieces of

122

Figure 7.11: C-Reach discrete approximation error is plotted for different noise levels and

ellipse curvatures α. The noisily samples are an ellipse segment parameterized by α where

[0,1]=[line,circle].

the manifold. Refining the pieces small enough to limit the curvature error can be done once

curvature is estimated. Another application for c-reach estimates is topology reconstruction.

In topology reconstruction, the topology from the sampling manifold is estimated. A common

method is persistent homology, see Chapter 6. In persistent homology, the approximation

error can be bounded with the reach and other parameters [30]. The c-reach can be utilized

here to improve or realize approximation bounds.

7.1.2 Open Problems

• Can Voronoi diagram be calculated in linear time in high dimensions?

123

• Can this calculation be generalized to approximate the mu-reach and improve persistent

homology bounds?

124

Chapter 8

Hypergraph Reconstruction with

Neural Connectome Applications

Graphs are often useful for representing systems and signals. With a graph representa-

tion, the optimal path between nodes can be calculated, for example with the A∗ algorithm

or Dijkstra’s algorithm [22, 36]. Another use of graphs may be to predict the spread of in-

formation or pathogens through a network. Graphs can represent any elements and pairwise

interactions. However, in some cases there are 3-element interactions or 4-element interac-

tions. A graph can be generalized and given multi-edges that ‘connect’ more than 2 nodes

in the graph. We call this a hypergraph which contains nodes and hyperedges [80]. For

example, consider representing medical drugs as a graph. Let each drug be a node and

let there be an edge when a pair of drugs can be taken together. This graph is lacking in

that it cannot tell whether 3 drugs should be taken together. When we upgrade this graph

to a hypergraph that has a hyperedge for every viable combination, all of the information

can be represented and analyzed. In this chapter, we discuss reconstructing hypergraphs.

125

Then once a hypergraph can be reconstructed from statistical measurements, we can use its

geometry and topology for analyzing datasets. The geometry and topology of a hypergraph

is often so complex that we must use machine learning, see Chapter 2, to model datasets, as

we do below.

Organisms with a nervous system have many nerve cells or neurons that receive and

send electrical impulses. Neurons throughout the organism are connected to each other via

synapses. These electrical impulses are signals that coordinate and trigger movement in a

organism. The human brain contains an estimated 86 billion neurons [50]. Since neurons

are connected to each other, we can model the neurons and their connections as a graph.

Activity in certain regions of this graph are responsible for certain behaviors and capabilities.

Studying the characteristics of this graph or even writing down this graph is an emerging

area of study in computational neuroscience. Measuring which neurons are connected is also

difficult without invasive techniques.

Functional magnetic resonance imaging (fMRI) since the 1990’s has been used to inves-

tigate brain activity in a benign and noninvasive way [52]. fMRI detects oxygen usage by

neurons with changing magnetic fields. fMRI is not sensitive enough to measure something

as small as a neuron so a region of around 4mm by 4mm by 4mm is scanned. Typically,

the subject’s whole brain is scanned over these small regions which are called voxels. We

can view the results as a 3D matrix, or array, of real numbers and each entry corresponds

to a voxel or region in the subject. Each voxel represents an average of up to around a few

million neurons and tens of billions of synapses. Implicit here is that the scan happens at

some point in time. More accurately, the scan happens over around 1 second. This will miss

events in the brain that happen in significantly less time than 1 second. Often this large

126

dataset is compressed further by grouping voxels into known regions of the brain [29].

A connectome is a graph describing the connections between neurons. By grouping

neurons into voxels, a graph can be constructed from fMRI scan data. Each vertex of the

graph is a voxel and each weighted edge is the correlation between the voxels. Correlation

between voxels imply the neurons are directly or indirectly connected. This also assumes

that neural activity is probabilistic. When the number of samples or measurements is low,

the statistical confidence is low. To improve the confidence, voxels are often grouped into

brain regions. Then each brain region has many samples and the confidence of the correlation

is much greater. Additionally, the graph where the vertices correspond to few brain regions

is much smaller allowing for more computationally intensive graph analysis methods.

Brain function and connectivity is a pressing mystery in medicine related to many dis-

eases. Neural connectomes have been studied as graphs with graph theory methods includ-

ing topological methods. Work has started on hypergraph models and methods where the

geometry and topology is significantly different. We define a hypergraph called the hyper-

connectome with joint information entropy and total correlation [87]. Brain fMRI scan data

can be viewed as a hypergraph by using high order statistical methods. Hypergraph anal-

ysis can then yield a deeper, more informative analysis on brain connectomes. We build

a brain connectome hypergraph from fMRI scans to identify indicators that are impossible

to retrieve from a standard brain connectome graph. Note that the hyper-connectome is

not a simplicial complex and thus most topological data analysis (TDA) methods, such as

persistent homology, will not work here [103].

There has been a large amount of activity around this area in the recent past. In the

2000s, Darling and Norris studied large random hypergraphs [26] which is exactly what a

127

hyper-connectome is. Then in 2016, Munsell, Zu, Giusti, et al. considered different types of

hypergraphs related to connectomes and neural data and various diseases [39, 71, 122]. Sparse

linear regression has been used to predict hyperedges in hypergraphs and classify disease [44,

55, 63]. In 2018, hypergraph methods were compared and contrasted to TDA, sheaf methods,

point cloud methods, and others by Purvine et al. [80]. Later, Sizemore et al. created a

structural hypergraph of a mouse connectome [101] and analyzed the topology. On the other

hand, others learned, or optimized, a hypergraph as opposed to direct calculation [115, 123].

Banka et al. learned autoencoder embeddings by hypergraphs [10]. More broadly, Aksoy et

al. performed a general comparison between graphs and hypergraphs and their methods [5].

More recently, Stolz et al. analyzed the topology of connectomes in schizophrenic subjects

versus normal subjects (siblings and non-siblings) [103].

Given two random variables, the Pearson correlation coefficient is

corr(X1, X2) :=
E[(X1 − EX1)(X2 − EX2)]√

E((X1 − EX1)2)
√
E((X2 − EX2)2)

.

This can be approximated given samples from distributions. The sample Pearson correlation

coefficient, with n samples, is

corr(X̂1, X̂2) :=

∑
i
1
n
(X̂1,i − 1

n

∑
k X̂1,k)(X̂2,i − 1

n

∑
k X̂2,k)√

[
∑

i
1
n
(X̂1,i − 1

n

∑
k X̂1,k)][

∑
j

1
n
(X̂2,j − 1

n

∑
k X̂2,k)]

.

We will use this on fMRI samples to identify structure between brain regions. However,

there are other statistics that we can use. The information entropy of a discrete random

variable is

H(X) = −
∑
x∈R

p(x) log p(x)

where p is the probability that X = x. Note that we use the convention that 0 · log(0) = 0.

So again this can be approximated with samples. The sample information entropy, with n

128

samples, is

H(X̂) = −
∑
x∈R

1

n

∑
i

1X̂i=x
(X̂i) log

[
1

n

∑
i

1X̂i=x
(X̂i)

]
.

Now for any collection of discrete random variables, we can define the joint information

entropy as

H(X1, ..., Xn) = −
∑

x1,...,xn∈R

p(x1, ..., xn) log p(x1, ..., xn).

The joint information entropy can be very useful for approximating how independent brain

regions are versus how closely they collaborate in a predictable way. This is captured more

directly by comparing the sum of entropies with the joint entropy. This difference is the

mutual information or total correlation

C(X1,X2, ..., Xn) := [
∑
i

H(Xi)] −H(X1, ..., Xn).

We use the following well known simplification.

Proposition 8.0.1.

C(X1, X2, ..., Xn) =
∑

x1,x2,...,xn∈R

p(x1, x2, ..., xn) log
p(x1, x2, ..., xn)

p(x1)p(x2)...p(xn)
.

129

Proof of Proposition 8.0.1.

C(X1, X2, ..., Xn) = [
∑
i

H(Xi)] −H(X1, ..., Xn)

= [
∑

x1,...,xn∈R

p(x1, ..., xn) log p(x1, ..., xn)] − [
∑
i

∑
xi

p(xi) log p(xi)]

= [
∑

x1,...,xn∈R

p(x1, ..., xn) log p(x1, ..., xn)] − [
∑
i

∑
xi

∑
x1,...,xi−1,xi+1,...,xn∈R

p(x1, ..., xn) log p(xi)]

= [
∑

x1,...,xn∈R

p(x1, ..., xn) log p(x1, ..., xn)] − [
∑

x1,...,xn∈R

p(x1, ..., xn)
∑
i

log p(xi)]

=
∑

x1,...,xn∈R

[p(x1, ..., xn) log p(x1, ..., xn) − p(x1, ..., xn)
∑
i

log p(xi)]

=
∑

x1,...,xn∈R

p(x1, ..., xn) log
p(x1, ..., xn)

p(x1)...p(xn)

Next we show how discrete random variables can approximate absolutely continuous

random variables.

Theorem 20. [87] Let Yi be absolutely continuous random variables, Yi : Ω → R measurable.

The joint density pY can be approximated by simple functions arbitrarily close in integration.

We use an approximation and we say pỸi is a simple function. Set discrete random variables

Xi to have a dirac for each term in simple function pỸ with the coefficient so that the

measures are the same:

pỸ =
∑
k

αk1Πi(ai,k,bi,k), pX =
∑
k

βkδΠi(bi,k−ai,k)/2, βk = αkPỸ (Πi(ai,k, bi,k))

For any ϵ > 0, there is an discrete approximation with the total correlation

|C(Y1, Y2, ..., Yn) − C(X1, X2, ..., Xn)| < ϵ.

130

Proof of Theorem 20. Recall

pỸ =
∑
k

αk1Πi(ai,k,bi,k), pX =
∑
k

βkδΠi(bi,k−ai,k)/2, βk = αkPỸ (Πi(ai,k, bi,k)).

The total correlation

C(Ỹ1, Ỹ2, ..., Ỹn) =

∫
y1,y2,...,yn∈R

pỸ (y1, y2, ..., yn) log
pỸ (y1, y2, ..., yn)

pỸ (y1)pỸ (y2)...pỸ (yn)
dy1...dyn.

Write compactly as the integral of the simple function ΦỸ (y) =
∑

k∈N αk1Πi(ai,k,bi,k)(y)

C(Ỹ1, Ỹ2, ..., Ỹn) =

∫
y∈Rn

ΦỸ (y)dy =

∫
y∈Rn

∑
k∈N

αk1Πi(ai,k,bi,k)(y)dy

=
∑
k∈N

αk

∫
Πi(ai,k,bi,k)

dy =
∑
k∈N

βk

∫
δΠi(bi,k−ai,k)/2

=
∑
x∈Rn

ΦX(x) =
∑

x1,x2,...,xn∈R

pX(x1, x2, ..., xn) log
pX(x1, x2, ..., xn)

pX(x1)pX(x2)...pX(xn)

= C(X1, X2, ..., Xn).

With the justification of Theorem 20, we will approximate the total correlation from

finite samples with Algorithm 12.

8.1 Simulation

First we will consider a small example where we know the distributions. We will setup

the distributions where doing classification by hypergraph is in theory possible, which we

131

prove. For random variables X and Y , let

Xi ∼ Bernoulli({−1, 1}, 1/2), 1 ≤ i ≤ 3

and

Y = [Y1, Y2, Y3] = [X1X2, X2X3, X3X1].

Then σ2
Yi

= EY 2
i = 1. For i ̸= j, let k, u, and v be such that Yi = XkXu and Yj = XkXv.

Then

corr(Yi, Yj) =
E[YiYj]

σYiσYj
= 0. (8.1)

Proof of Equation (8.1).

corr(Yi, Yj) =
E[YiYj]

σYiσYj

= P(Yi = 1, Yj = 1) − P(Yi = −1, Yj = 1) − P(Yi = 1, Yj = −1) + P(Yi = −1, Yj = −1)

= P(X1 = 1, X2 = 1, X3 = 1) + P(X1 = −1, X2 = −1, X3 = −1)

− 2P(Yi = −1, Yj = 1) + P(Xk = −1, Xu = 1, Xv = 1) + P(Xk = 1, Xu = −1, Xv = −1)

= 1/8 + 1/8 − 2P(Xk = −1, Xu = 1, Xv = −1) − 2P(Xk = 1, Xu = −1, Xv = 1) + 1/8 + 1/8

= 0

This implies that the connectome Pearson correlation graph will not distinguish subject

X from subject Y . However, the total correlation of Y is not 0.

Proposition 8.1.1. [87]

C(Y1, Y2, Y3) = [
∑
i

H(Yi)] −H(Y1, Y2, Y3) < 0.

132

Proof of Proposition 8.1.1.

C(Y1, Y2, Y3) = [
∑
i

H(Yi)] −H(Y1, Y2, Y3)

= [
∑
i

P(Yi = 1) logP(Yi = 1) + P(Yi = −1) logP(Yi = −1)]

+ P(Y1 = 1, Y2 = 1, Y3 = 1) logP(Y1 = 1, Y2 = 1, Y3 = 1)

+ P(Y1 = 1, Y2 = 1, Y3 = −1) logP(Y1 = 1, Y2 = 1, Y3 = −1)

+ P(Y1 = 1, Y2 = −1, Y3 = 1) logP(Y1 = 1, Y2 = −1, Y3 = 1)

+ P(Y1 = 1, Y2 = −1, Y3 = −1) logP(Y1 = 1, Y2 = −1, Y3 = −1)

+ P(Y1 = −1, Y2 = 1, Y3 = 1) logP(Y1 = −1, Y2 = 1, Y3 = 1)

+ P(Y1 = −1, Y2 = 1, Y3 = −1) logP(Y1 = −1, Y2 = 1, Y3 = −1)

+ P(Y1 = −1, Y2 = −1, Y3 = 1) logP(Y1 = −1, Y2 = −1, Y3 = 1)

+ P(Y1 = −1, Y2 = −1, Y3 = −1) logP(Y1 = −1, Y2 = −1, Y3 = −1)

= [
∑
i

1/2 log 1/2 + 1/2 log 1/2]

+ P(Y1 = 1, Y2 = 1, Y3 = 1) logP(Y1 = 1, Y2 = 1, Y3 = 1)

+ P(Y1 = 1, Y2 = −1, Y3 = −1) logP(Y1 = 1, Y2 = −1, Y3 = −1)

+ P(Y1 = −1, Y2 = 1, Y3 = −1) logP(Y1 = −1, Y2 = 1, Y3 = −1)

+ P(Y1 = −1, Y2 = −1, Y3 = 1) logP(Y1 = −1, Y2 = −1, Y3 = 1)

= [3 log 1/2] + 1/4 log 1/4 + 1/4 log 1/4 + 1/4 log 1/4 + 1/4 log 1/4

= 3 log 1/2 + log 1/4 < 0.

133

In this case, a discriminator can distinguish subject Y from subject X with total cor-

relation but would fail to distinguish when using Pearson correlations. If this was a neural

connectome, only the hyper-connectome could classify the subjects. We calculate the hyper-

graph with Algorithm 12. Then we classify the data with a linear support vector machine

[107]. We give the results in Table 8.1. We find that the graph does not contain the informa-

tion needed to classify the subject as a member of X versus Y . We find that the hypergraph

does contain the information and the classifier successfully distinguishes X from Y .

Table 8.1: Linear support vector machine classification of X versus Y from above. Hy-

pergraph threshold ϵ = 10−5, dimension d = 3, and variable count 3. Subjects are 1000

subject from X and 1000 subjects from Y . There are 20 samples of each subject. The

training/testing split is random 50%.

Training Accuracy Testing Accuracy F1 Score

Graph 51% 49% 0.66

Hypergraph 100% 100% 1

8.2 Schizophrenia Data

We next compute the hyper-connectome on real data. We utilize a schizophrenia (schiz.)

fMRI dataset, see [114], consisting of 104 patients with schizophrenia and 124 healthy, normal

controls. Between the groups, the age and gender differences are minimal (schiz.: age 36.88

± 14.17 with 62 males, 41 females, 1 other, and Normal: age 33.75 ± 14.22 with 61 males and

134

63 females). The fMRI aquisition details and preprocessing details are laid out in Adhikari

et al. [3]. This dataset consists of activity in 246 regions of interest (ROI) which we call the

ROI variables [29]. We create the connectome and hyper-connectome with a subset of these

ROI variables.

(a) Normal Subject Connectome (b) Schiz. Subject Connectome

Figure 8.1: Connectome graph of normal vs. schiz. subject with 30 ROI nodes and correla-

tion weighted edges.

We visualize connectomes by plotting the graph for a normal subject and schiz. subject

in Fig. 8.1a and Fig. 8.1b. In this graph, the nodes are the brain regions and the edges are

the absolute value of Pearson correlation between regions, where length and width indicate

the weight of the edge. In Fig. 8.2a and Fig. 8.2b, we visualize the hyper-connectomes of the

same two subjects. In this graph, the square nodes are the brain regions and the circles are

significant hyperedges between multiple nodes [119]. We see that the connectomes are highly

clustered with few outliers versus the hyper-connectomes which are have nodes covering the

connectedness spectrum.

In Fig. 8.3 and Fig. 8.4, we show the corresponding adjacency matrices to the graphs in

135

(a) Normal Subject Connectome (b) Schiz. Subject Connectome

Figure 8.2: (a) and (b): Hyper-Connectome of normal vs. schiz. subject, plotting significant

(weight > 28) edges (circles) for 30 ROI nodes (squares).

Fig. 8.1 and Fig. 8.2. For each pair of ROI, we sum the weights of all common hyperedges

to produce the adjacency matrices in Fig. 8.4a and Fig. 8.4b. We see that the magnitudes of

Fig. 8.3a and Fig. 8.3b are similar (in 0 to 1) while the maximums of Fig. 8.4a and Fig. 8.4b

differ significantly (5000 vs. 5500). We calculated the hypergraph with Algorithm 12. The

hypergraph threshold ϵ = 10−5, dimension d = 3, and ROI variables are 30 brain regions.

Samples used are the first 20 in the time series.

We showed above that the connectome and hyper-connectome are differ greatly in infor-

mation content. The next question is how useful this is for distinguishing normal subjects and

schizophrenic subjects. We vectorize the upper triangle of the connectome adjacency matrix

and train a linear support vector machine to classify the subjects [107]. After training, we

calculate the test accuracy and F1 score on unseen data. We follow the same procedure with

the hyper-connectome. We report the results in Table 8.2. We find an increase in the testing

136

5 10 15 20 25 30

5

10

15

20

25

30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Normal Subject Pearson Correlation Ma-

trix

5 10 15 20 25 30

5

10

15

20

25

30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Schiz. Subject Pearson Correlation Ma-

trix

Figure 8.3: Pearson correlation matrix of normal vs. schiz. subject.

accuracy and in the F1 score from using the hyper-connectome versus the connectome.

Table 8.2: Linear support vector machine prediction of schiz. Hypergraph threshold ϵ =

10−5, dimension d = 3, and 61 ROI variables considered. Samples over time are 30. The

training/testing split is random 50%. Calculations are average of 10 independent trials.

Training Accuracy Testing Accuracy F1 Score

Graph 100% 51% 0.44

Hypergraph 100% 57% 0.52

We have introduced the entropic hyper-connectome as a useful concept to study neuronal

structure, function, and abnormalities. We have demonstrated this with fMRI data in vivo.

From theory, we have defined the hypergraph and proved that it can be necessary to detect

various mixture distributions. We visualized the connectome and hyper-connectome and

137

5 10 15 20 25 30

5

10

15

20

25

30

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(a) Normal Subject Total Correlation Tensor

5 10 15 20 25 30

5

10

15

20

25

30

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(b) Schiz. Subject Total Correlation Tensor

Figure 8.4: Total correlation tensor of normal vs. schiz. subject projected via summation

to matrix.

see significant differences. Finally, we trained a classifier to show that the hyperedges can

improve classification.

8.3 Open Problems

• Can a sparse hypergraph be calculated without checking each node tuple?

• Can Bayesian iterations provably approximate total correlation while decreasing com-

putation?

138

Algorithm 12: Total Correlation

Input:
M ∈ N : variables
N ∈ N : samples
d ∈ N : dimensions
X ∈ RM×N : measurements
ϵ ∈ R : threshold

Output:
T ∈ RMd

: total correlation
Begin:
T = 0 ∈ RMd

for 1 ≤ i1 ≤M do
for i1 ≤ i2 ≤M do...

for id−1 ≤ id ≤M do
for 1 ≤ s1 ≤ N do

ω1 = X(i1, s1)
p1(ω1) = 1

N

∑
j 1|X(i1,j)−ω1|<ϵ(X)

for 1 ≤ s2 ≤ N do
ω2 = X(i2, s2)
p2(ω2) = 1

N

∑
j 1|X(i2,j)−ω2|<ϵ(X)

...
for 1 ≤ sd ≤ N do

ωd = X(id, sd)
pd(ωd) = 1

N

∑
j 1|X(id,j)=ωd|<ϵ(X)

p(ω1, ω2, ..., ωd) = 1
N

∑
j 1|X(i1,j)−ω1|<ϵ,...,|X(id,j)−ωd|<ϵ(X)

T (i1, i2, ..., id) =

T (i1, i2, ..., id) + p(ω1, ω2, ..., ωd) log p(ω1,ω2,...,ωd)
p1(ω1)p2(ω2)...pd(ωd)

end
...

end

end

end
...

end

end

139

Bibliography

[1] Eddie Aamari, Jisu Kim, Frédéric Chazal, Bertrand Michel, Alessandro Rinaldo, and
Larry Wasserman. Estimating the reach of a manifold. Electronic journal of statistics,
13(1):1359–1399, 2019.

[2] Angela Adamo, JE Ryon, Matteo Messa, Hwihyun Kim, Kathryn Grasha, DO Cook,
Daniela Calzetti, Janice C Lee, BC Whitmore, BG Elmegreen, and others. Legacy
ExtraGalactic UV survey with the hubble space telescope: Stellar cluster catalogs
and first insights into cluster formation and evolution in NGC 628. The Astrophysical
Journal, 841(2):131, 2017. doi: 10.3847/1538-4357/aa7132.

[3] Bhim M. Adhikari, L. Elliot Hong, Hemalatha Sampath, Joshua Chiappelli, Neda
Jahanshad, Paul M. Thompson, Laura M. Rowland, Vince D. Calhoun, Xiaoming Du,
Shuo Chen, and Peter Kochunov. Functional network connectivity impairments and
core cognitive deficits in schizophrenia. Human Brain Mapping, 40(16):4593–4605,
2019. doi: 10.1002/hbm.24723.

[4] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed
bandit problem. JMLR Workshop and Conference Proceedings, page 26, 2012.

[5] Sinan G. Aksoy, Cliff Joslyn, Carlos Ortiz Marrero, Brenda Praggastis, and Emilie
Purvine. Hypernetwork science via high-order hypergraph walks. EPJ Data Sci., 9(1):
16, 2020. doi: 10.1140/epjds/s13688-020-00231-0.

[6] Paolo Aluffi. Algebra: chapter 0, volume 104. American Mathematical Soc., 2009.

[7] Susan Athey and Stefan Wager. Policy learning with observational data. Econometrica,
89(1):133–161, 2021.

[8] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine Learning, 47(2):235–256, 2002. ISSN 08856125. doi:
10.1023/A:1013689704352.

[9] Radu Balan, Kasso A. Okoudjou, Michael Rawson, Yang Wang, and Rui Zhang. Opti-
mal l1 Rank One Matrix Decomposition, pages 21–41. Springer International Publish-
ing, Cham, 2021. ISBN 978-3-030-61887-2. doi: 10.1007/978-3-030-61887-2.

[10] Alin Banka, Inis Buzi, and Islem Rekik. Multi-view brain hyperconnectome autoen-
coder for brain state classification. In Islem Rekik, Ehsan Adeli, Sang Hyun Park,

140

and Maria del C. Valdés Hernández, editors, Predictive Intelligence in Medicine, pages
101–110, Cham, 2020. Springer International Publishing. ISBN 978-3-030-59354-4.

[11] John J Benedetto. Harmonic analysis and applications. CRC Press, 1997. ISBN
9781003068839.

[12] Norman L. Biggs. Discrete mathematics. Oxford University Press, 2002.

[13] Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. Cambridge Univer-
sity Press, 2004. ISBN 978-0-521-83378-3.

[14] D. Calzetti, J. C. Lee, E. Sabbi, A. Adamo, L. J. Smith, J. E. Andrews, L. Ubeda, S. N.
Bright, D. Thilker, A. Aloisi, and et al. LEGACY EXTRAGALACTIC UV SURVEY
(LEGUS) WITH THE HUBBLE SPACE TELESCOPE. i. SURVEY DESCRIPTION.
The Astronomical Journal, 149(2):51, 2015. doi: 10.1088/0004-6256/149/2/51.

[15] Howard E Campbell. The structure of arithmetic. Appleton-Century-Crofts: New
York, 1970.

[16] Emmanuel J. Candes and Michael B. Wakin. An introduction to compressive sampling.
IEEE Signal Processing Magazine, 25(2):21–30, 2008. doi: 10.1109/MSP.2007.914731.

[17] Gunnar Carlsson, Afra Zomorodian, Anne Collins, and Leonidas J. Guibas. PERSIS-
TENCE BARCODES FOR SHAPES. International Journal of Shape Modeling, 11(2):
149–187, 2005. ISSN 0218-6543, 1793-639X. doi: 10.1142/S0218654305000761.

[18] Marine Carpuat and Dekai Wu. Improving statistical machine translation using word
sense disambiguation. In Proceedings of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), 2007.

[19] Frédéric Chazal. High-dimensional topological data analysis, 2016.

[20] Minshuo Chen, Hao Liu, Wenjing Liao, and Tuo Zhao. Doubly robust off-policy learn-
ing on low-dimensional manifolds by deep neural networks. Submitted to Operations
Research, under revision, 2020.

[21] Harish Chintakunta, Michael Robinson, and Hamid Krim. Introduction to the special
session on topological data analysis, icassp 2016. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pages 6410–6414, 2016.
doi: 10.1109/ICASSP.2016.7472911.

[22] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT press, 2009. ISBN 9780262033848.

[23] T. J. Cornwell and K. F. Evans. A simple maximum entropy deconvolution algorithm.
Astronomy and Astrophysics, 143:77–83, 1985.

[24] Tim J. Cornwell. Multiscale CLEAN deconvolution of radio synthesis images. IEEE
Journal of selected topics in signal processing, 2(5):793–801, 2008.

141

[25] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport.
Advances in neural information processing systems, 26:2292–2300, 2013.

[26] R. W. R. Darling and J. R. Norris. Structure of large random hypergraphs. The Annals
of Applied Probability, 15(1A):125 – 152, 2005. doi: 10.1214/105051604000000567.

[27] Herbert Edelsbrunner and Dmitriy Morozov. Persistent homology: theory and prac-
tice. Technical report, Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United
States), 2012.

[28] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence
and simplification. In Proceedings 41st Annual Symposium on Foundations of Com-
puter Science, pages 454–463. IEEE, 2000.

[29] Lingzhong Fan, Hai Li, Junjie Zhuo, Yu Zhang, Jiaojian Wang, Liangfu Chen, Zhengyi
Yang, Congying Chu, Sangma Xie, Angela R. Laird, Peter T. Fox, Simon B. Eickhoff,
Chunshui Yu, and Tianzi Jiang. The human brainnetome atlas: A new brain atlas
based on connectional architecture. Cerebral Cortex, 26(8):3508–3526, 07 2016. ISSN
1047-3211. doi: 10.1093/cercor/bhw157.

[30] Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivara-
man Balakrishnan, and Aarti Singh. Confidence sets for persistence diagrams. The
Annals of Statistics, 42(6):2301 – 2339, 2014. doi: 10.1214/14-AOS1252.

[31] Herbert Federer. Curvature measures. Trans. Amer. Math. Soc., 93:418–491, 1959.
doi: 10.1090/S0002-9947-1959-0110078-1.

[32] Abraham Adolf Fraenkel, Yehoshua Bar-Hillel, and Azriel Levy. Foundations of set
theory. Elsevier, 1973.

[33] Jade Freeman and Michael Rawson. Top-K ranking deep contextual bandits for infor-
mation selection systems. In 2021 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pages 2209–2214. IEEE, 2021.

[34] Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya-Polo, and
Tomaso A Poggio. Learning with a wasserstein loss. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc., 2015.

[35] Patrizio Frosini. A distance for similarity classes of submanifolds of a euclidean space.
Bulletin of the Australian Mathematical Society, 42(3):407–415, 1990.

[36] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning and acting. Cam-
bridge University Press, 2016.

[37] Robert Ghrist. Barcodes: The persistent topology of data. Bulletin of the Amer-
ican Mathematical Society, 45(1):61–76, 2007. ISSN 0273-0979. doi: 10.1090/
S0273-0979-07-01191-3.

142

[38] Robert Ghrist. Homological algebra and data. Math. Data, 25:273, 2018.

[39] Chad Giusti, Robert Ghrist, and Danielle S. Bassett. Two’s company, three (or more)
is a simplex. Journal of Computational Neuroscience, 41(1):1–14, Aug 2016. ISSN
1573-6873. doi: 10.1007/s10827-016-0608-6.

[40] K Grasha, D Calzetti, Angela Adamo, RC Kennicutt, BG Elmegreen, Matteo Messa,
DA Dale, K Fedorenko, S Mahadevan, EK Grebel, and others. The spatial relation
between young star clusters and molecular clouds in m51 with LEGUS. Monthly
Notices of the Royal Astronomical Society, 483(4):4707–4723, 2019. doi: 10.1093/
mnras/sty3424.

[41] Hermann Grassmann. Lehrbuch der Arithmetik für höhere Lehranstalten. Th. Chr. Fr.
Enslin, 1861.

[42] Mark A Griswold, Peter M Jakob, Robin M Heidemann, Mathias Nittka, Vladimir
Jellus, Jianmin Wang, Berthold Kiefer, and Axel Haase. Generalized autocalibrating
partially parallel acquisitions (grappa). Magnetic Resonance in Medicine: An Official
Journal of the International Society for Magnetic Resonance in Medicine, 47(6):1202–
1210, 2002.

[43] Stephen F Gull and Geoff J Daniell. Image reconstruction from incomplete and noisy
data. Nature, 272(5655):686–690, 1978.

[44] Hao Guo, Yao Li, Yong Xu, Yanyi Jin, Jie Xiang, and Junjie Chen. Resting-state brain
functional hyper-network construction based on elastic net and group lasso methods.
Frontiers in Neuroinformatics, 12, 2018. ISSN 1662-5196. doi: 10.3389/fninf.2018.
00025.

[45] László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A Distribution-Free
Theory of Nonparametric Regression. Springer Series in Statistics. Springer New York,
2002. ISBN 978-0-387-95441-7 978-0-387-22442-8. doi: 10.1007/b97848.

[46] Mark Harris. Inside pascal: Nvidia’s newest computing platform. NVIDIA Developer
Blog, 2016.

[47] A. Hatcher and Cambridge University Press. Algebraic Topology. Cambridge Univer-
sity Press, 2002. ISBN 9780521795401. URL https://books.google.com/books?id=

BjKs86kosqgC.

[48] Jean-Claude Hausmann. On the vietoris-rips complexes and a cohomology theory for
metric spaces. Prospects in topology (Princeton, NJ, 1994) MR1368659, pages 175–188,
1995.

[49] Heather Haynes and William Holmes. The Emergence of Magnetic Resonance Imaging
(MRI) for 3D Analysis of Sediment Beds, chapter 1. Wiley & Sons, 2013. ISBN
2047-0371.

143

https://books.google.com/books?id=BjKs86kosqgC
https://books.google.com/books?id=BjKs86kosqgC

[50] Suzana Herculano-Houzel. The remarkable, yet not extraordinary, human brain as a
scaled-up primate brain and its associated cost. Proceedings of the National Academy
of Sciences, 109(supplement 1):10661–10668, 2012. doi: 10.1073/pnas.1201895109.

[51] Feng-Hsiung Hsu. Behind Deep Blue: Building the computer that defeated the world
chess champion. Princeton University Press, 2002.

[52] Scott A Huettel, Allen W Song, Gregory McCarthy, et al. Functional magnetic reso-
nance imaging, volume 1. Sinauer Associates Sunderland, MA, 2004.

[53] Jakob Hultgren. Lecture notes on Optimal Transport delivered at the University of
Maryland at College Park, 2021.

[54] JA Högbom. Aperture synthesis with a non-regular distribution of interferometer
baselines. Astronomy and Astrophysics Supplement Series, 15:417, 1974.

[55] Biao Jie, Chong-Yaw Wee, Dinggang Shen, and Daoqiang Zhang. Hyper-connectivity
of functional networks for brain disease diagnosis. Medical Image Analysis, 32:84–100,
2016. ISSN 1361-8415. doi: 10.1016/j.media.2016.03.003.

[56] Leonid V Kantorovich. On the translocation of masses. In Dokl. Akad. Nauk. USSR
(NS), volume 37, pages 199–201, 1942.

[57] Yann LeCun. The MNIST database of handwritten digits. http://yann.lecun.com/
exdb/mnist/, 2021.

[58] John M Lee. Introduction to Smooth Manifolds. Springer, New York, NY, 2013. ISBN
978-1-4419-9981-8. doi: 10.1007/978-1-4419-9982-5.

[59] Jan Lellmann, Dirk A. Lorenz, Carola Schönlieb, and Tuomo Valkonen. Imaging with
kantorovich-rubinstein discrepancy. SIAM Journal on Imaging Sciences, 7(4):2833–
2859, 2014. ISSN 1936-4954. doi: 10.1137/140975528.

[60] Michael Lesnick. Studying the shape of data using topology. The Institute Letter,
pages 10–11, 2013.

[61] F. Li, T. J. Cornwell, and F. de Hoog. The application of compressive sampling to
radio astronomy: I. deconvolution. Astronomy & Astrophysics, 528:A31, 2011. ISSN
0004-6361, 1432-0746. doi: 10.1051/0004-6361/201015045.

[62] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit
approach to personalized news article recommendation. Proceedings of the 19th
international conference on World wide web - WWW ’10, page 661, 2010. doi:
10.1145/1772690.1772758.

[63] Yang Li, Jingyu Liu, Xinqiang Gao, Biao Jie, Minjeong Kim, Pew-Thian Yap, Chong-
Yaw Wee, and Dinggang Shen. Multimodal hyper-connectivity of functional networks
using functionally-weighted lasso for mci classification. Medical Image Analysis, 52:
80–96, 2019. ISSN 1361-8415. doi: 10.1016/j.media.2018.11.006.

144

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

[64] Saunders Mac Lane. Categories for the working mathematician. Number 5 in Graduate
texts in mathematics. Springer, 2nd ed edition, 1998. ISBN 978-0-387-98403-2.

[65] Julian Maclaren, Michael Herbst, Oliver Speck, and Maxim Zaitsev. Prospective mo-
tion correction in brain imaging: a review. Magnetic resonance in medicine, 69(3):
621–636, 2013.

[66] Paul Michel, Abhilasha Ravichander, and Shruti Rijhwani. Does the geometry of word
embeddings help document classification? A case study on persistent homology-based
representations. In Proceedings of the 2nd Workshop on Representation Learning for
NLP, Rep4NLP@ACL 2017, pages 235–240. Association for Computational Linguis-
tics, 2017. doi: 10.18653/v1/w17-2628.

[67] Kanika Mittal and Amita Jain. Word sense disambiguation method using semantic
similarity measures and owa operator. ICTACT Journal on Soft Computing, 5(2),
2015.

[68] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de
l’Académie Royale des Sciences de Paris, 1781.

[69] Marston Morse. Rank and span in functional topology. Annals of Mathematics, pages
419–454, 1940.

[70] James R. Munkres. Topology. Pearson modern classic. Pearson, second edition edition,
2000. ISBN 978-0-13-468951-7.

[71] Brent C. Munsell, Guorong Wu, Yue Gao, Nicholas Desisto, and Martin Styner. Iden-
tifying relationships in functional and structural connectome data using a hypergraph
learning method. In Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2016, pages 9–17, Cham, 2016. Springer International Pub. ISBN 978-3-319-
46723-8.

[72] N. Anurag Murty, Vijay Natarajan, and Sathish Vadhiyar. Efficient homology com-
putations on multicore and manycore systems. In 20th Annual International Confer-
ence on High Performance Computing, pages 333–342, 2013. doi: 10.1109/HiPC.2013.
6799139.

[73] Michael K Ng, Huanfeng Shen, Edmund Y Lam, and Liangpei Zhang. A total vari-
ation regularization based super-resolution reconstruction algorithm for digital video.
EURASIP Journal on Advances in Signal Processing, 2007:1–16, 2007.

[74] Gregory Ongie, Ajil Jalal, Christopher A. Metzler, Richard G. Baraniuk, Alexandros G.
Dimakis, and Rebecca Willett. Deep learning techniques for inverse problems in imag-
ing. IEEE Journal on Selected Areas in Information Theory, 1(1):39–56, 2020. doi:
10.1109/JSAIT.2020.2991563.

[75] Giuseppe Peano. Arithmetices principia: Nova methodo exposita. Fratres Bocca, 1889.

145

[76] C. S. Peirce. On the logic of number. American Journal of Mathematics, 4(1):85–95,
1881. ISSN 00029327, 10806377. URL http://www.jstor.org/stable/2369151.

[77] Jose A Perea. A brief history of persistence. Morfismos, 23(1):1–16, 2019.

[78] Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications
to data science. Foundations and Trends in Machine Learning, 11(5):355–607, 2019.
ISSN 1935-8237. doi: 10.1561/2200000073.

[79] David M W Powers. Parallelized quicksort and radixsort with optimal speedup. In
Proceedings Of International Conference On Parallel Computing Technologies. Novosi-
birsk., pages 167–176. World Scientific, 1991.

[80] Emilie Purvine, Sinan Aksoy, Cliff Joslyn, Kathleen Nowak, Brenda Praggastis, and
Michael Robinson. A topological approach to representational data models. In Sakae
Yamamoto and Hirohiko Mori, editors, Human Interface and the Management of Infor-
mation. Interaction, Visualization, and Analytics, pages 90–109, Cham, 2018. Springer
International Publishing. ISBN 978-3-319-92043-6.

[81] Gustavo Pérez, Matteo Messa, Daniela Calzetti, Subhransu Maji, Dooseok E. Jung,
Angela Adamo, and Mattia Sirressi. StarcNet: Machine learning for star cluster
identification. The Astrophysical Journal, 907(2):100, 2021. ISSN 1538-4357. doi:
10.3847/1538-4357/abceba.

[82] Michael Rawson and Radu Balan. Convergence guarantees for deep epsilon greedy
policy learning. arXiv:2112.03376, 2021.

[83] Michael Rawson and Jade Freeman. Deep upper confidence bound algorithm for
contextual bandit ranking of information selection. Proceedings of Joint Statistical
Meetings (JSM), Statistical Learning and Data Science Section, 2021, 2021. URL
https://arxiv.org/abs/2110.04127.

[84] Michael Rawson and Jakob Hultgren. Optimal transport for super resolution applied
to astronomy imaging. Proceedings of EUSIPCO, 2022, 2022. URL https://arxiv.

org/abs/2202.05354. [Under Review].

[85] Michael Rawson, Samuel Dooley, Mithun Bharadwaj, and Rishabh Choudhary. Topo-
logical data analysis for word sense disambiguation. arXiv:2203.00565, 2022.

[86] Michael G. Rawson. Linear run time of persistent homology computation with GPU
parallelization. arXiv:2203.02527, 2022.

[87] Michael G. Rawson. Entropic hyper-connectomes computation and analysis. Pro-
ceedings of SIAM International Conference on Data Mining (SDM22), 2022. URL
https://arxiv.org/abs/2203.00519.

[88] Michael G. Rawson and Michael Robinson. A combinatorial reach for resolving inad-
equacies of reach, 2022. [In Preparation].

146

http://www.jstor.org/stable/2369151
https://arxiv.org/abs/2110.04127
https://arxiv.org/abs/2202.05354
https://arxiv.org/abs/2202.05354
https://arxiv.org/abs/2203.00519

[89] Michael G. Rawson, Xiaoke Wang, Radu Balan, and Thomas Ernst. MGRAPPA:
Motion corrected GRAPPA for MRI. Magnetic Resonance in Medicine, 2022. [In
Preparation].

[90] Dedekind Richard and Ewald William. Was sind und was sollen die zahlen. Ewald, 2:
787–833, 1888.

[91] Vanessa Robins. Towards computing homology from finite approximations. In Topology
proceedings, volume 24, pages 503–532, 1999.

[92] Michael Robinson. Topological Signal Processing. Springer Berlin Heidelberg, 2014.

[93] Michael Robinson and Christopher Capraro. Super-resolving star clusters with sheaves.
arXiv:2106.08123, 2021.

[94] Walter Rudin. Principles of mathematical analysis, volume 3. McGraw-hill New York,
1964.

[95] Walter Rudin. Real and complex analysis. McGraw-Hill, 3rd ed edition, 1987. ISBN
978-0-07-054234-1.

[96] Walter Rudin. Functional analysis. International series in pure and applied mathe-
matics. McGraw-Hill, 2nd ed edition, 1991. ISBN 978-0-07-054236-5.

[97] Ishrat Rahman Sami and Katayoun Farrahi. A simplified topological representation
of text for local and global context. In Proceedings of the 25th ACM international
conference on Multimedia, pages 1451–1456. ACM, 2017.

[98] Ketki Savle, Wlodek Zadrozny, and Minwoo Lee. Topological data analysis for dis-
course semantics? In Proceedings of the 13th International Conference on Computa-
tional Semantics-Student Papers, pages 34–43, 2019.

[99] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Optimal approximation rate of ReLU
networks in terms of width and depth. Journal de Mathématiques Pures et Appliquées,
157:101–135, 2022. ISSN 0021-7824. doi: 10.1016/j.matpur.2021.07.009.

[100] Ravi Sinha and Rada Mihalcea. Unsupervised graph-basedword sense disambiguation
using measures of word semantic similarity. In International Conference on Semantic
Computing (ICSC 2007), pages 363–369. IEEE, 2007.

[101] Ann E. Sizemore, Jennifer E. Phillips-Cremins, Robert Ghrist, and Danielle S. Bassett.
The importance of the whole: Topological data analysis for the network neuroscientist.
Network Neuroscience, 3(3):656–673, 07 2019. ISSN 2472-1751. doi: 10.1162/netn\ a\
00073.

[102] Daniel K. Sodickson and Warren J. Manning. Simultaneous acquisition of spatial
harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magnetic Reso-
nance in Medicine, 38(4):591–603, 1997. ISSN 07403194, 15222594. doi: 10.1002/mrm.
1910380414.

147

[103] Bernadette J Stolz, Tegan Emerson, Satu Nahkuri, Mason A Porter, and Heather A
Harrington. Topological data analysis of task-based fMRI data from experiments on
schizophrenia. Journal of Physics: Complexity, 2(3):035006, may 2021. doi: 10.1088/
2632-072x/abb4c6.

[104] Shuji Suzuki, Takashi Ishida, Ken Kurokawa, and Yutaka Akiyama. GHOSTM: A
GPU-accelerated homology search tool for metagenomics. PLOS ONE, 7(5):1–8, 05
2012. doi: 10.1371/journal.pone.0036060.

[105] Shuji Suzuki, Masanori Kakuta, Takashi Ishida, and Yutaka Akiyama. GPU-
acceleration of sequence homology searches with database subsequence clustering.
PLOS ONE, 11(8):1–22, 08 2016. doi: 10.1371/journal.pone.0157338.

[106] Tadas Temčinas. Local homology of word embeddings. arXiv:1810.10136, 2018.

[107] Sergios Theodoridis. Machine learning: a Bayesian and optimization perspective. Aca-
demic Press, 2 edition, 2020. ISBN 978-0-12-818803-3.

[108] Cédric Villani. Topics in optimal transportation, volume 58 of Graduate studies in
mathematics. American Mathematical Society, 2003. ISBN 978-0-8218-3312-4.

[109] Hubert Wagner, Pawe l D lotko, and Marian Mrozek. Computational topology in text
mining. In Computational Topology in Image Context, pages 68–78. Springer, 2012.

[110] Ze Wang, Jiongjiong Wang, and John A Detre. Improved data reconstruction method
for grappa. Magnetic Resonance in Medicine: An Official Journal of the International
Society for Magnetic Resonance in Medicine, 54(3):738–742, 2005.

[111] Wei Wei, EA Huerta, Bradley C Whitmore, Janice C Lee, Stephen Hannon, Rupali
Chandar, Daniel A Dale, Kirsten L Larson, David A Thilker, Leonardo Ubeda, and
others. Deep transfer learning for star cluster classification: I. application to the
PHANGS–HST survey. Monthly Notices of the Royal Astronomical Society, 493(3):
3178–3193, 2020. doi: 10.1093/mnras/staa325.

[112] Rob Williams. Intel’s core i7-980x extreme edition – ready for sick scores?:
Mathematics: Sandra arithmetic, crypto, microsoft excel. Techgage, 2010.
URL http://techgage.com/article/intels_core_i7-980x_extreme_edition_-_

ready_for_sick_scores/8.

[113] Philip Wolfe. Convergence conditions for ascent methods. SIAM Review, 11(2):226–
235, 1969. doi: 10.1137/1011036.

[114] Qiong Wu, Xiaoqi Huang, Adam J. Culbreth, James A. Waltz, L. Elliot Hong, and
Shuo Chen. Extracting brain disease-related connectome subgraphs by adaptive dense
subgraph discovery. Biometrics, pages 1–13, 2021. doi: 10.1111/biom.13537.

[115] Li Xiao, Junqi Wang, Peyman H. Kassani, Yipu Zhang, Yuntong Bai, Julia M. Stephen,
Tony W. Wilson, Vince D. Calhoun, and Yu-Ping Wang. Multi-hypergraph learning-
based brain functional connectivity analysis in fmri data. IEEE Transactions on Med-
ical Imaging, 39(5):1746–1758, 2020.

148

http://techgage.com/article/intels_core_i7-980x_extreme_edition_-_ready_for_sick_scores/8
http://techgage.com/article/intels_core_i7-980x_extreme_edition_-_ready_for_sick_scores/8

[116] Tengyu Xu, Zhuoran Yang, Zhaoran Wang, and Yingbin Liang. Doubly robust off-
policy actor-critic: Convergence and optimality. arXiv:2102.11866, 2021.

[117] Bernard Ycart. Extreme points in convex sets of symmetric matrices. Proceedings of
the American Mathematical Society, 95(4):607–612, 1985.

[118] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-
based exploration. In Proceedings of the 37th International Conference on Machine
Learning, volume 119, pages 11492–11502. PMLR, 13–18 Jul 2020.

[119] Youjia Zhou, Archit Rathore, Emilie Purvine, and Bei Wang. Topological simplifica-
tions of hypergraphs, 2021.

[120] Xiaojin Zhu. Persistent homology: An introduction and a new text representation
for natural language processing. In Twenty-Third International Joint Conference on
Artificial Intelligence, 2013.

[121] Dongmian Zou, Radu Balan, and Maneesh Singh. On lipschitz bounds of general
convolutional neural networks. IEEE Transactions on Information Theory, 66(3):1738–
1759, 2019. doi: 10.1109/TIT.2019.2961812.

[122] Chen Zu, Yue Gao, Brent Munsell, Minjeong Kim, Ziwen Peng, Yingying Zhu, Wei
Gao, Daoqiang Zhang, Dinggang Shen, and Guorong Wu. Identifying high order brain
connectome biomarkers via learning on hypergraph. In Machine Learning in Medical
Imaging, pages 1–9, Cham, 2016. Springer International Publishing. ISBN 978-3-319-
47157-0.

[123] Chen Zu, Yue Gao, Brent Munsell, Minjeong Kim, Ziwen Peng, Jessica R. Cohen,
Daoqiang Zhang, and Guorong Wu. Identifying disease-related subnetwork connectome
biomarkers by sparse hypergraph learning. Brain Imaging and Behavior, 13(4):879–
892, Aug 2019. ISSN 1931-7565. doi: 10.1007/s11682-018-9899-8.

149

	Acknowledgments
	Table of Contents
	Introduction
	Thesis Contributions

	Statistical Signal Reconstruction
	Reinforcement Learning Application
	Deep Epsilon Greedy Method Convergence
	Deep Upper Confidence Bound Method
	Optical Character Recognition Application
	Open Problems

	Functional Analysis Based Reconstruction with Ray Separation Applications
	Statistical Computation
	Open Problems

	Optimal Transport Based Sparse Reconstruction
	Discrete Optimal Transport & Sinkhorn Algorithm
	Star Cluster Detection Application
	Simulation
	Astronomy Data
	Open Problems

	Fourier Space Reconstruction with MRI Motion Correction Applications
	Simulation
	In Vivo Experiment (Real Data)
	Open Problems

	Persistent Homology Computation Theory
	Barcode Algorithm
	CPU Parallelization
	GPU Parallelization

	Natural Language Processing Application
	Open Problems

	Geometric Reach
	Combinatorial Reach
	Noise
	Open Problems

	Hypergraph Reconstruction with Neural Connectome Applications
	Simulation
	Schizophrenia Data
	Open Problems

	Bibliography

