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The use of certain polymers is actively being examined as means to passively 

reduce the damaging effects of impact loading. With uncertainty of the dynamic 

environments in which these materials achieve optimal performance, a further 

investigation is necessary to analyze the dynamic behavior of the viscoelastic material as 

loading rate varies. This study was conducted using a polymeric Split-Hopkinson 

pressure bar while using electromagnetic velocity gauges for measuring stress-strain data 

to obtain material characteristics of the test specimens. Frequency domain characteristics 

were obtained by fitting a rheological model to test data. Strain-rates observed during the 

study were on the order of 103 s-1. A polymeric Split-Hopkinson pressure bar was used 

instead of a conventional elastic bar to reduce the impedance mismatch with the test 

specimens. Electromagnetic velocity gauges were employed to justifiably neglect the 

dispersion and attenuation effects that accompany the use of viscoelastic bars. 
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1.  Overview of the Conventional Split-Hopkinson 
Pressure Bar 

 
1.1  Introduction 

 Historically, the conventional Split-Hopkinson pressure bar (SHPB) is accredited 

to Kolsky when he utilized a split bar test setup for recording material stress-strain data 

from stress wave measurements [1]. Kolsky’s work follows single bar methods for 

measuring stress waves established by Hopkinson and Davies [2,3]. Among Kolsky [4], 

there are others whose work is widely referenced for understanding longitudinal wave 

propagation in bars and the common SHPB test [5,6]. Although a non-traditional SHPB 

test method was used for characterizing material in this study, it is essential to first 

understand the theory behind the conventional SHPB test.  This chapter will first review 

wave theory through elastic, uniform cross-section bars and then apply the derived 

findings to the conventional SHPB. 

 

1.2  Conventional SHPB Theory 

1.2.1  Longitudinal Waves in Uniform Cross-Section Bars 

  
Figure 1.1: Longitudinal motion through a uniform cross-section bar. 
 
 To understand the theory behind the commonly used linear-elastic Split-

Hopkinson pressure bar, it is first necessary to understand how longitudinal waves 
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propagate through a bar with uniform cross-sectional area. First, consider a long, thin, 

and dispersion-free linear-elastic bar of length 𝑙 as seen in Figure 1.1. The bar’s axial 

displacement is represented by 𝑢. The kinetic energy of the bar is given by the following 

equation: 

𝑇 = !
"∫ 𝑚𝑢̇"𝑑𝑥#

$          (1.1) 

 where 𝑚 is the mass per unit length. Rewriting the linear density in terms of the 

volumetric density 𝜌 and constant cross-sectional area 𝐴 gives: 

𝑇 = !
"
𝜌𝐴 ∫ 𝑢̇"𝑑𝑥#

$          (1.2) 

 The potential energy of the bar is written in terms of axial stress 𝜎, strain 𝜀, and 

cross-sectional area. It is then rewritten using the relationship between stress, Young’s 

modulus 𝐸, and strain as seen below. 

𝑉 = !
"∫ 𝜎𝜀𝐴𝑑𝑥 = !

"
#
$ ∫ (𝐸𝜀)𝜀𝐴𝑑𝑥 = !

"
𝐸𝐴∫ 𝜀"𝑑𝑥#

$
#
$      (1.3) 

Recognizing that the strain of the bar is the partial differentiation of 𝑢 with 

respect to 𝑥 leads to the equation: 

𝑉 = !
"
𝐸𝐴 ∫ 2%&

%'
3
"
𝑑𝑥#

$          (1.4) 

 The Lagrangian and the variation of the Lagrangian are given by: 

ℒ = 𝑇 − 𝑉 = !
" ∫ 𝜌𝐴𝑢̇"𝑑𝑥 −#

$
!
" ∫ 𝐸𝐴 2%&

%'
3
"
𝑑𝑥#

$      (1.5) 

𝛿ℒ = ∫ 𝜌𝐴𝑢̇𝛿𝑢̇𝑑𝑥 −#
$ ∫ 𝐸𝐴 2%&

%'
3 𝛿 2%&

%'
3 𝑑𝑥#

$       (1.6) 

 Applying the extended Hamilton’s principle [7] to acquire the equation of motion 

yields: 

∫ 𝛿ℒ(!
("

𝑑𝑡 = 0          (1.7) 
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∫ 𝛿ℒ(!
("

𝑑𝑡 = ∫ 9∫ 𝜌𝐴𝑢̇𝛿𝑢̇𝑑𝑥 −#
$ ∫ 𝐸𝐴 2%&

%'
3 𝛿 2%&

%'
3 𝑑𝑥#

$ : 𝑑𝑡 = 0(!
("

    

∫ 𝛿ℒ(!
("

𝑑𝑡 = ∫ ;∫ −𝜌𝐴𝑢̈𝛿𝑢𝑑𝑥 −#
$ 𝐸𝐴 2%&

%'
3 𝛿𝑢=

$

#
+ ∫ %

%'
𝐸𝐴 2%&

%'
3 𝛿𝑢𝑑𝑥#

$ ? 𝑑𝑡 = 0(!
("

 (1.8) 

with 𝐸𝐴 #!"
!#
$ 𝛿𝑢'

$

%
= 0        

 Here, the time from 𝑡! to 𝑡" represents some fixed time interval. The above 

equations imply that the following must be true: 

𝜌𝐴𝑢̈ − %
%'
𝐸𝐴 2%&

%'
3 = 0         

or 𝜌𝐴𝑢̈ = !
!#
,𝐸𝐴 #!"

!#
$-       (1.9) 

Using the notation: 

!⊡
!#
=⊡,# ; !!⊡

!#!
=⊡,## ; $⊡

$#
=⊡# ; $!⊡

$#!
=⊡##  

and letting 𝑐 = A)
*
 , which is the wave speed in the solid, alters Equation 1.9 to 

the form: 

!
+!
𝑢̈ = 𝑢,''          (1.10) 

 which is the familiar wave equation, and the equation of motion for the one-

dimensional bar of uniform cross-section.  Next, the separation of variables principle is 

used to express the axial displacement as: 

𝑢(𝑥, 𝑡) = 𝑈(𝑥)𝑇(𝑡)         (1.11) 

 where 𝑈(𝑥) is a spatial function of 𝑥, and 𝑇(𝑡) is the temporal function  

𝑇(𝑡) = 𝑒,-(. 𝜔 represents the oscillation frequency of the longitudinal waves 

propagating through the bar. Applying the separation of variables principle to the bar’s 

equation of motion gives: 
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!
+!
𝑇̈𝑈 = 𝑈''𝑇          (1.12) 

 Rearranging and substituting the temporal function into Equation 1.12 yields the 

following relationship:  

.̈
.
= 𝑐" 0##

0
= −𝜔"         (1.13) 

Let 𝑘 = -
+
 which, by definition, is the wave number. Then, the spatial equation of 

motion is given as: 

𝑈'' + 𝑘"𝑈 = 0         (1.14) 

 The above ordinary differential equation has the solution: 

𝑈(𝑥) = G𝐴𝑒1,2' + 𝐵𝑒,2'I        (1.15) 

where A and B are constants. In space and time, the displacement 𝑢 is: 

𝑢(𝑥, 𝑡) = G𝐴𝑒1,2' + 𝐵𝑒,2'I𝑒,-(       (1.16) 

 where the first term refers to an outgoing wave and the second refers to an 

incoming wave. This wave displacement equation will be applied in the context of the 

conventional SHPB in the subsequent section. 

 

1.2.2 Stress-Strain Relations of the SHPB 
 

 
Figure 1.2: Conventional Split-Hopkinson pressure bar test setup. 
 

The conventional Split-Hopkinson pressure bar, in its simplest description, 

consists of two separate linear-elastic cylindrical bars (rods) that are free to move axially. 
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A material specimen of interest is placed between the two bars, and when an axial wave 

is passed through the assembly, a portion of the wave gets reflected by the specimen and 

a portion of the wave continues. The reflection is due to a change in waveguide material 

from that of the bar to that of the test specimen. By measuring the magnitudes of these 

waves throughout the event, material properties of the test specimen can be determined.  

The following analysis is based on Baz [8]. From the conventional Split-

Hopkinson pressure bar setup shown in Figure 1.2, a striker bar, moving with velocity 𝑣3, 

impacts an incident bar. The resulting wave displacement, 𝑢!, in the incident bar is the 

sum of the displacement due to the incident (outgoing) wave and reflection (incoming) 

wave. From the previous analysis of wave motion through a uniform bar in Section 1.2.1, 

the displacement of the incident bar can be represented by: 

𝑢!(𝑥, 𝑡) = G𝐴𝑒1,2' + 𝐵𝑒,2'I𝑒,-( = 𝑢, + 𝑢4      (1.17) 

where the subscripts i and r refer to the incident wave and reflection wave 

respectively. The incident strain is: 

𝜀! =
%&"
%'

= G−𝑖𝑘𝐴𝑒1,2' + 𝑖𝑘𝐵𝑒,2'I𝑒,-( = 𝜀, + 𝜀4     (1.18) 

 The strain of the incident bar is typically measured by two diametrically opposed 

strain gauges, Strain Gauge Pair 1 in Figure 1.2, at the bisection of the bar. In addition, a 

Wheatstone bridge circuit is implemented to negate the measurement of bar bending 

effects. The velocity of the incident bar can be found by differentiating Equation 1.17 

with respect to time 𝑡. The results are given by: 

𝑢̇! = 𝑖𝜔G𝐴𝑒1,2' + 𝐵𝑒,2'I𝑒,-( = 𝑢̇, + 𝑢̇4      (1.19) 

 Rewriting Equation 1.19 in terms of the incident and reflection strains yields:  

𝑢̇! = 𝑢̇, + 𝑢̇4 = 𝑐(−𝜀, + 𝜀4)        (1.20) 



Overview of the Conventional Split-Hopkinson Pressure Bar 

 6 

Equation 1.20 reveals the relationship between axial particle velocity and axial 

strain as: 

𝑢̇ = ±𝑐𝜀           (1.21) 

   with the ± indicating a possible modification to the sign to comply with the 

datum being used. Given that the continuation of the wave through a transmitter bar, 

represented by the subscript t, is ideally terminated anechoically; there is no reflection 

wave. Thus, the transmitter bar velocity takes the same form as the outgoing wave 

velocity in the incident bar, shown by: 

 𝑢̇" = −𝑐𝜀(               (1.22) 

where the strain of the transmitter bar can be measured using Strain Gauge Pair 2 

in Figure 1.2 and another Wheatstone bridge circuit. The strain-rate of the specimen is: 

	𝜀&̇ =
("̇!)"̇")

%#
           (1.23)  

 where 𝑙& is the length of the specimen. Substituting Equation 1.20 and 

Equation 1.22 into Equation 1.23 yields: 

𝜀3̇ =
+
#$
(−𝜀, + 𝜀4 + 𝜀()        (1.24) 

 Using the relationship	𝜀( = 𝜀, + 𝜀4 yields: 

𝜀3̇ =
"+
#$
𝜀4          (1.25) 

 And thus, the strain of the specimen, shown by Equation 1.26, is obtained by 

integrating Equation 1.25: 

𝜀3 = ∫ 𝜀3̇𝑑𝑡
(
(%

= "+
#$
∫ 𝜀4𝑑𝑡
(
(%

        (1.26) 

 where 𝑡$ is a time at which the reflection wave is first measurable and 𝑡 represents 

the time at which the wave passes. To perform a stress analysis, it is assumed that the 
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specimen reaches a quasi-static equilibrium. At the interface of the test specimen 

(represented by subscript s2) and the transmitter bar, the force/stress relationships 

between the two faces are: 

𝐹3" = 𝐹(       

𝐴3𝜎3" = 𝐴5𝜎( = 𝐴5(𝐸𝜀()        (1.27) 

where 𝐸 is the Young’s modulus of the transmitter bar. Because it is assumed the  

specimen reaches stress equilibrium (𝜎3" = 𝜎3), the specimen stress is: 

𝜎3 =
6&
6$
𝐸𝜀(          (1.28)  

 The interface of the specimen and transmitter bar is used for the stress analysis 

because if one were to equate the forces at the interface with the incident bar, one would 

have to sum the incident strain signal and reflection strain signal to write the force-

balance equation. For soft materials, the incident and reflection strains are typically 

similar in magnitude but opposite sign; thus, this leaves the stress calculation vulnerable 

to error due to poor signal resolution following the summation.  
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2. Overview of the Velocity Gauge Instrumented Split-
Hopkinson Pressure Bar 

 
2.1  Introduction 

 The need for a velocity gauge instrumented SHPB arises from having to use low-

impedance bars to test low-impendence test specimens, like those of interest. Acquiring 

accurate results from testing a low-impedance material using typical elastic bars made 

from steel or aluminum can be difficult, because so little of the incident wave is 

transmitted through the material due to the impedance mismatch of the bar and the 

specimen. If one were to use the conventional test setup in Figure 1.2, standard strain 

gauges would not be sensitive enough to accurately measure the low-level transmitted 

strain. One solution to the issue of a small transmission wave is to use polymeric bars to 

reduce the impedance mismatch and to allow more of the incident wave to be transmitted. 

However, viscoelastic effects like attenuation and dispersion must be considered with the 

use of such bars. If using a conventional SHPB setup with strain gauges at the bar 

bisections to capture the wave propagation, one would have to account for these effects to 

predict what waveforms are occurring at the test specimen interfaces. While there are 

manners in which to account for the change in wave shape as it propagates through a 

polymeric bar, the analytical process is more complex and does not always guarantee 

accurate results.  

 The use of wire velocity gauges offers non-perturbing means to simplify much of 

the test analyses needed for a viscoelastic SHPB test. Velocity gauges, when 

instrumented at the ends of the pressure bars, are able to measure axial velocity directly at 

the test specimen interfaces without the need to account for viscoelastic effects. 



Overview of the Velocity Gauge Instrumented Split-Hopkinson Pressure Bar 

 9 

Although, when it comes to determining specimen stress, viscoelastic effects do play a 

role by affecting the wave speed. Wave speed is dependent on wave frequency in a 

viscoelastic bar, and attenuation further complicates the circumstances. At this point, 

viscoelastic wave modelling is seemingly unavoidable. However, Casem demonstrated 

that if one were to neglect viscoelastic effects and use a linear-elastic approximation 

while testing with polymeric bars and velocity gauges, the error in measurement was 

insignificant, which contrasts the error found when the same approximation was made 

using strain gauges in a conventional SHPB test setup [9,10]. In his works [9,10], Casem 

further elaborates on sources of this error when making a linear-elastic approximation 

with strain gauge measurements, but in a few words, a large error source is the projection 

of measured waves from the mid-bar strain gauge location to the test specimen location. 

In other words, the linear-elastic approximation is more appropriate when the point of 

interest (the test specimen) and the point of measurement are collocated. Since strain 

gauges on a SHPB cannot be placed near the test specimen because they have to measure 

wave trains independently, strain gauges, unlike velocity gauges, cannot be collocated 

with test specimens. In summary, no account for viscoelastic effects is necessary to 

perform an accurate specimen stress-strain analysis when using the velocity gauge SHPB 

setup like that described in detail in Section 2.2. 

 

2.2 Velocity Gauge Instrumented SHPB Theory 

2.2.1  Velocity Gauges 

An electromagnetic velocity gauge, for the purpose of the SHPB tests to be 

conducted, can be made by diametrically inserting a small insulated wire through a 
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pressure bar as close to the test specimen interface as possible, as shown in Figure 2.1. 

The wire, measuring 𝑙7 in length, will generate an electric potential, 𝐸, proportional to an 

axial velocity, 𝑣, should it cross an orthogonal magnetic field, 𝐵. This relationship is 

dictated by Faraday’s law of induction and is given by Equation 2.1 [11]. Since it is 

desired to only measure the axial velocity within the bar, the lead wires (the portion of 

the wire not within the bar) that carry the electric potential to a data acquisition system 

(DAQ) must be oriented parallel to the magnetic field (orthogonal to gauge wire), as 

shown in Figure 2.1. This is in order to reduce unwanted disturbances in measurement as 

the wires move with the bar. Because the function of these gauges is reliant on the use of 

a magnetic field, it should be noted that these gauges are only suitable for non-conductive 

pressure bars.  

𝐸 = 𝐵𝑣𝑙7          (2.1)  
 

 
Figure 2.1: Electromagnetic velocity gauge in a pressure bar. 
   

2.2.2 Helmholtz Coils 

 Helmholtz coils can be used to generate a uniform magnetic field in which the 

velocity gauges can operate. The coils consist of numerous loops of enameled magnet 

wire that will generate a magnetic field should a current flow through them. When two 

same-sized coils are spaced at a radius length apart from each other, they generate a 

Axonometric View Coaxial View 
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region of uniform magnetic field parallel to the coil axes and centered at the midway 

point between them. As seen in Figure 2.2, if the Helmholtz coils are positioned so that 

the pressure bars and the velocity gauges are located at this midway point, the gauges will 

have a proper field to measure the axial velocity of a wave propagating through the 

pressure bars.  

  
Figure 2.2: Helmholtz coil datum and configuration. 
 

Consider the datum shown in Figure 2.2, where the origin is coaxially located 

midway between two 𝑑-spaced coils. A single coil of radius 𝑅, 𝑛 number of wire loops, 

and a current flow 𝐼, that’s center is located at 𝑧 = ±𝑑/2 will generate a magnetic field 

on the z-axis in the positive z-direction represented by Equation 2.2 [12]. It is assumed 

that all 𝑛 number of wire loops are of the same radius and position. 

𝐵 = 	 %"&'(!

)*(!+,-±#!/
!
0
$/!        (2.2) 

 Here, 𝜇$ is the permeability constant, 4𝜋 × 1018 	.∙:
6

.  One can calculate the z-

directional magnetic field, along the z-axis, of two operating coils symmetrically 
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positioned about the xy-plane by applying the principle of superposition to Equation 2.2 

and a similar equation adjusted for a coil located at 𝑧 = ∓𝑑/2. This function is 

represented by Equation 2.3.  Recall, to generate a uniform magnetic field region about 

the origin, two coils must be spaced at a radius length (𝑑 = 𝑅). 

𝐵 = 	 %"&'(!

)*(!+,-±#!/
!
0
$/! +

%"&'(!

)*(!+,-∓#!/
!
0
$/!      (2.3)  

 

2.2.3 Stress-Strain Relations of the SHPB 

 
Figure 2.3: SHPB test setup instrumented with electromagnetic velocity gauges. 
 
 With the test setup shown in Figure 2.3, the striker bar, moving with velocity 𝑣3, 

impacts the polymeric incident bar and produces a longitudinal wave that propagates 

through the incident bar with an axial velocity, 𝑣. In addition, with the Helmholtz coils 

spaced at a radius distance apart from each other, the coils generate a uniform magnetic 

field about the velocity gauges and a test specimen between the pressure bars. When the 

wave propagates through Velocity Gauge 1, an electric potential, 𝐸!, is generated, and 

when the wave propagates through Velocity Gauge 2, an electric potential, 𝐸", is 

generated. These potentials can be converted to their respective velocities by rearranging 

Equation 2.1 to give: 
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𝑣+ =
,$

-$.%%
		 , 𝑗 = 1, 2        (2.4) 

 where 𝐺; is any gain applied to the electric potential within the DAQ. Because the 

velocity gauges are measuring the axial wave velocity directly at the test specimen 

interfaces, the specimen strain-rate can be calculated using: 

𝜀&̇ =
(/!)/")

%#
          (2.5) 

 an equation of the same form as Equation 1.23 for the linear-elastic conventional 

SHPB test setup in Section 1.2.2. Shown by Equation 2.6, the specimen strain is then 

found by integrating Equation 2.5. 

𝜀3 = ∫ 𝜀3̇𝑑𝑡
(
(%

          (2.6) 

 After substituting Equation 1.21 into Equation 1.28, utilizing the equation for 

wave speed in the bar (See Section 1.2.1), and then reducing, the following is generated 

as the equation for specimen stress in terms of Velocity Gauge 2: 

𝜎3 = 𝜌𝑐$
6&
6$
𝑣"          (2.7)  

 As mentioned in Section 2.1, wave speed is dependent on frequency in a 

viscoelastic pressure bar, but Equation 2.7 is using an acceptable linear-elastic 

approximation under the condition that velocity gauges are being used at the specimen 

interfaces. Here, 𝑐$ reflects the approximation and is called the static (zero-frequency) 

wave speed, which utilizes the static modulus, a value that remains constant at low 

frequencies much like in an elastic, non-dispersive case.  
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3.  Frequency Domain Characterization Theory 

3.1  Introduction 

 Upon capturing strain-rate, strain, and stress data using the SHPB and the 

relationships derived in Chapter 2, additional material characteristics can be determined 

in the frequency domain with the aid of a rheological model. The ability to extract both 

time domain stress-stain relationships and meaningful frequency information from a 

single high strain-rate dynamic test is an advantageous process that provides an 

abundance of information about the material. The first step in this process is the careful 

choice of a rheological model that displays realistic viscoelastic response characteristics. 

The Generalized Maxwell Model (GMM) or Maxwell-Wiechert Model is one of the 

simplest rheological models that encompasses all of these fundamental characteristics 

that will be underlined in Section 3.2. The key to joining this model with the SHPB test 

data is the application of the Boltzmann Superposition Principle. This principle, 

presented in Section 3.3, allows the parametric rheological model to act as the test 

material’s relaxation modulus, and using a proper optimization algorithm, the model can 

be fitted to experimental data until it accurately represents the material during a certain 

test event. With the parameters of the model optimal to represent the material, the 

parameters can be carried over to the model’s frequency domain relationships, where 

storage modulus, an elastic quantity, and loss factor, a dissipative quantity, are obtained. 

These quantities provide insight to whether the material, at certain bandwidths, responds 

satisfactory according to one’s requirements. 
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3.2  Generalized Maxwell Model 

A viscoelastic test specimen can be realistically represented by the Generalized 

Maxwell Model. The model is comprised of a spring in parallel with n number of 

elements containing a spring and damper in series. The springs and dampers in the model 

introduce known stiffness and damping relationships, with which a constitutive 

differential equation can be derived. The model’s unaccompanied parallel spring is to 

ensure that the model maintains elasticity responding to excitation frequencies near zero. 

Note that some fundamental characteristics of viscoelastic material are an increase in 

elasticity with an increase in excitation frequency and lower dissipation at low and high 

excitation frequencies. The GMM encompasses these qualities. The application of the 

GMM in the context of the SHPB can be seen in work done by Baz [8] and Akl and  

Baz [13]. Baz’s text utilizes the Boltzmann Superposition Principle to find the unknown 

model parameters using data from the entire SHPB test event, whereas the publication 

with Akl examines a material that responds in such a way that only the relaxation portion 

of the test event is required to be observed. The application of the GMM via the 

Boltzmann Superposition Principle is a more applicable method and therefore will be 

used for this research. 

 

3.2.1 Constitutive Equation  

To characterize the GMM, the constitutive equation must first be determined by 

applying a stress load, 𝜎, to the model, as shown in the rheological diagram of the GMM 

in Figure 3.1. To begin, analyzing the kth element of the spring-damper series due to a 

stress 𝜎2 yields the following relationships: 
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𝜎2 = 𝜎) = 𝜎<          (3.1) 

𝜀2 = 𝜀) + 𝜀<          (3.2) 

 
Figure 3.1: Generalized Maxwell Model rheological diagram. 
 

Where 𝜎) and 𝜎< are the stresses on the spring and damper in the kth element 

respectively, and 𝜀) and 𝜀< are the strains across the spring and damper in the kth element 

respectively. The relationships between stress and strain for the spring and damper are: 

𝜎) = 𝐸2𝜀)          (3.3) 

𝜎< = 𝜂2𝜀<̇          (3.4) 

 Here 𝐸2 is the element modulus and 𝜂2 is the element viscosity. Differentiating 

Equation 3.1, Equation 3.2 and Equation 3.3 with respect to time gives: 

𝜎̇2 = 𝜎̇) = 𝜎̇<          (3.5) 

𝜀2̇ = 𝜀)̇ + 𝜀<̇          (3.6) 

𝜎̇) = 𝐸2𝜀)̇          (3.7) 

 Substituting the strain-rate relationships from Equation 3.4 and Equation 3.7 into 

Equation 3.6 yields: 

𝜀2̇ =
3̇&
5'
+ 3(

6'
          (3.8) 
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 Applying the relationships in Equation 3.1 and Equation 3.5 to Equation 3.8 

results in the following: 

𝜀2̇ =
3̇'
5'
+ 3'

6'
          (3.9) 

 By multiplying Equation 3.9 through by 𝜂2 and letting 𝜌2 =
𝜂2

𝐸2] , the 

constitutive equation for the kth spring-damper element is found to be: 

𝜂2𝜀2̇ = 𝜌2𝜎̇2 + 𝜎2         (3.10) 

 

3.2.2 Relaxation Modulus  

 The time domain relaxation modulus of the kth element can be determined from 

the constitutive equation by setting conditions that represent a stress relaxation test 

(i.e.	𝜀2̇ = 0 and 𝜀2(𝑡) = 𝜀$). These conditions when applied to Equation 3.10 give: 

𝜌2𝜎̇2 + 𝜎2 = 0         (3.11) 

 The solution to this ordinary differential equation is: 

𝜎2(𝑡) = 𝜎$𝑒
1( *'=          (3.12) 

 where 𝜎$ is a constant and represents the initial stress. Using the relationship 

between the initial stress and the initial strain, 𝜎$=𝐸2𝜀$, alters Equation 3.12 to: 

𝜎2(𝑡) = 𝐸2𝜀$𝑒
1( *'=          (3.13) 

 Using Equation 3.13, the function for relaxation modulus of the kth element can 

be represented by: 

𝐸27(𝑡) =
3'
8"
= 𝐸2𝑒

9: ;'<         (3.14) 

 The n-length parallel combination of the spring-damper elements gives the 

relaxation modulus as: 



Frequency Domain Characterization Theory 

 18 

𝐸=&7 (𝑡) = ∑ 𝐸2𝑒
9: ;'<&

2>=         (3.15) 

 Combining the relaxation modulus of n spring-damper elements with the constant 

relaxation modulus of the single parallel spring (𝐸$) yields the relaxation modulus 

equation of the GMM, Equation 3.16. 

𝐸7(𝑡) = 𝐸? + 𝐸=&7 = 𝐸? + ∑ 𝐸2𝑒
9: ;'<&

2>=      (3.16) 

 Note that at 𝑡 = 0, 𝐸4(𝑡) = 𝐸$ + ∑ 𝐸2>
2?! , which is also equal to the elastic 

modulus for the material, and at 𝑡 = ∞, 𝐸4(𝑡) = 𝐸$, which is known as the equilibrium 

modulus. 

 

3.2.3 Complex Modulus 

To solve for the complex modulus of the GMM, the kth element is subjected to 

sinusoidal excitation. The stress and strain of the kth element can be represented by 

Equation 3.17 and Equation 3.18 respectively. 

𝜎2 = 𝜎$𝑒,-(          (3.17) 

𝜀2 = 𝜀$𝑒,-(          (3.18) 

 Here 𝜎$ and 𝜀$ represent amplitudes of their respective signals. Applying 

Equation 3.17 and Equation 3.18 to Equation 3.10 and differentiating when necessary 

yields: 

(𝜌2𝑖𝜔 + 1)𝜎$ = 𝜂2𝑖𝜔𝜀$        (3.19) 

 The complex modulus of the kth element is thus: 

𝐸2∗ =
3"
8"
= 6'AB

;'AB+=
= 𝐸2

;'AB
;'AB+=

       (3.20) 
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 For an n-length parallel combination of the spring-damper elements, the complex 

modulus is: 

𝐸=&∗ = ∑ 𝐸2
;'AB
;'AB+=

&
2>=         (3.21) 

 Combining the moduli of the single spring and the spring-damper elements in 

parallel yields the complex modulus of the GMM, Equation 3.22. 

𝐸∗ = 𝐸? + 𝐸=&∗ = 𝐸? +	∑ 𝐸2
;'AB
;'AB+=

&
2>=      (3.22) 

 After separating Equation 3.22 into its real and imaginary parts, the storage 

modulus, 𝐸@, and the loss factor, 𝜂, can be generated from the following relationship: 

 𝐸∗ = 𝐸′[1 + 𝑖𝜂]         (3.23) 

 

3.3  Boltzmann Superposition Principle 

 The Boltzmann Superposition Principle (BSP), as explained in detail by  

Brinson and Brinson [14], is a principle that states that the current stress state of a 

viscoelastic material is dictated by the cumulative effect of the accompanying strain 

history. The relationship that defines the manner in which the strain history affects the 

current stress state is represented by Equation 3.24: a convolution integral of the 

relaxation modulus and strain-rate. 

𝜎(𝑡) = 	∫ 𝐸0(𝑡 − 𝜏) !1(2)
!2

𝑑𝜏3
$        (3.24) 

 If the relaxation modulus of the material is modeled by the GMM, then 

substituting Equation 3.16 into Equation 3.24 reveals how the test specimen stress can be 

described using the GMM: 
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𝜎CDD(𝑡) = 	∫ 3𝐸? + ∑ 𝐸2𝑒
9(:9F)

;'<&
2>= 4 !8)(F)

!F
𝑑𝜏:

?     (3.25) 

 Now, upon recording stress-strain data from a SHPB test, the unknown 

parameters 𝐸$, 𝐸2, and 𝜌2 for 𝑘 = 1,… , 𝑛 can be determined by running an optimization 

algorithm that fits Equation 3.25 to the experimental stress data. As described by Baz [8], 

the optimization problem, is: 

 

 where 𝑡 = 0 marks the time at the beginning of the stress signal (prior to 𝑡 = 0 

there is only zero-valued stress and strain), 𝑇 marks the end time of the test event, and 

𝜎3(𝑡) is the experimental stress data. Because discrete data points from SHPB tests are 

being handled and not continuous functions, MATLAB’s conv( ) function can be used to 

convolve the GMM relaxation modulus and the strain-rate data, and the optimization can 

be carried out using MATLAB’s fmincon( ) function. The script in Appendix A provides 

additional detail on how to perform this optimization procedure.  

 Once the GMM parameters in Equation 3.25 have been optimized to fit the model 

to the experimental stress data, the parameters can then be substituted in Equation 3.22 to 

extract the storage modulus, 𝐸@, and loss factor,	𝜂, for the specimen during that particular 

SHPB test. Figure 3.2 shows a flow chart to clarify the process and the equations that 

will be used to determine frequency domain characteristics from the SHPB tests. 

Solve	for	𝐸$, 𝐸2 , and	𝜌2 	for	𝑘 = 1,… , 𝑛	

to	minimize	𝐹 =o[𝜎3(𝑡) − 𝜎BCC(𝑡)]"
(?.

(?$
such	that	𝐸$ > 0, 𝐸2 > 0, and	𝜌2 > 0	for	𝑘 = 1,… , 𝑛		
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Figure 3.2: Flow chart displaying the procedure for extracting frequency domain 
characteristics from SHPB test.
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4.  Test Preparation 

4.1  Introduction 

  The following chapter reviews the design process and the construction of main 

equipment within the experimental setup. Furthermore, this chapter covers procedures 

that were carried out to verify the proper function of each working element in the setup. 

This includes calibrating the constructed Helmholtz coils to produce a uniform magnetic 

field, analyzing the effects that an amplifier circuit has on measured signals, and 

calibrating the velocity gauges to determine the relationship between electric potential 

and axial velocity. Upon proving the proper function of all equipment, including a data 

acquisition system (DAQ), which is to be considered the combination of an amplifier 

circuit and an oscilloscope, then the equipment setup is deemed ready for material 

testing. 

 

4.2  Equipment and Data Acquisition System 

4.2.1 Split-Hopkinson Pressure Bar 

The SHPB components that remain unchanged for all of the tests conducted 

consist of polycarbonate pressure bars measuring 1219.2 mm in length and 15.875 mm in 

diameter. The polycarbonate density is 1200 kg/m3 and the static modulus was taken to 

be 2.2 GPa, resulting in a static wave speed of 𝑐$ = 1354 m/s. These pressure bars are 

mounted 101.6 mm above an aluminum beam base while using low-friction dry bearings 

to allow linear motion of the bars with minimal friction. Striker bars will be propelled by 

a nitrogen gas gun that has pressure regulation components, a digital pressure read-out, 

and a Whitey pneumatic actuator that acts as a trigger mechanism. Using a Phantom 
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high-speed camera, a small study was conducted to find the relationship between gas gun 

firing pressure, in psi, to striker bar velocity, in m/s. The two strikers used for research 

were fired at increasing gun pressures and recorded with the high-speed camera. The 

strikers are both polycarbonate with 15.875 mm diameters, but the lengths differ with 

values of 152.4 mm and 304.8 mm. Upon video capture, digital measuring software was 

utilized to obtain the striker velocities. Figure 4.1 shows the experimental results and 

curve fit lines. The curve fit equations were used to approximate striker velocities for 

tests with firing pressures greater than 10 psi and different than those not performed in 

the study. 

 
Figure 4.1: Gas gun striker velocity as a function of firing pressure. 
 

     Effective anechoic termination materials are a luxury; therefore, solid 

polyurethane rubber was used instead as a damping material to receive the impact of the 
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transmitter bar. As long as data from the first passing of the propagating wave can be 

analyzed independently and the measurements thereafter can be ignored, the use of 

anechoic termination materials is unnecessary. Figure 4.2 is a detailed diagram of the test 

equipment in its entirety. The striker bar and gas pressure regulation components are not 

shown. Some equipment will be explained further in detail throughout the chapter.  

Figure 4.3 is photographs of the SHPB and coils. Not all of the components from the 

diagram can be seen in the photographs.  

 
Figure 4.2: Diagram of equipment to be used for testing. 
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Figure 4.3: Photos of assembled test equipment and table of bar dimensions/properties. 
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4.2.2 Helmholtz Coils  

 
Figure 4.4: Diagram of constructed Helmholtz coils used for testing – coaxial to coils 
view. 
 

The Helmholtz coils constructed for the velocity gauge instrumented SHPB 

experiments are represented by the diagrams in Figure 4.4 and Figure 4.5. The 

measurements to accompany Figures 4.4 and 4.5 are listed in Table 4.1. The 101.6 mm 

flange radius was chosen so that the pressure bars, located 101.6 mm above the aluminum 

beam base structure supporting the SHPB, would be parallel with the coils’ midplane. 

The coils are of wooden construction and contain 300 loops of 16 AWG (American Wire 

Gauge) enameled magnet wire. The 16 AWG wire was chosen to appropriately 

accommodate the 10 amperes that were supplied to each coil by two 30V, 10A DC 

switch-mode power supplies.  
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Table 4.1: Key dimensions of the constructed Helmholtz coils. 
 

 
Figure 4.5: Diagram of constructed Helmholtz coils used for testing – coaxial to pressure 
bar view. 
 

As stated, the equations for calculating magnetic field in Section 2.2.2 assume that 

all of the wire loops are of the same radius; however, as anticipated, when constructing 

the coils, the radius of the magnet wire loops increased as more loops were added. Thus, 

to approximately calculate the magnetic field of the constructed coils, the average radius 
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of the coil loops was taken to be the equivalent wire loop radius (R) for use in the 

equations in Section 2.2.2. Measuring from the middle of the coil spool thickness (𝑡*), the 

two Helmholtz coils were spaced at an equivalent wire loop radius (d = R) length apart to 

establish a uniform magnetic field region. Furthermore, appropriately sized wooden 

spacers were needed to be placed between the coils so that when power was supplied to 

them, they would not move due to the magnetic attraction towards each other. Using 

Equation 2.2 and 2.3 and R, the plot in Figure 4.6 was generated to display the 

anticipated magnetic field coaxial to the coils as a function of position. The datum in 

Figure 2.2 was maintained, and the effect of the position change due to the distribution of 

the wire looping along the coil spool thickness was not accounted for. Figure 4.6 shows 

that each coil, operated individually with 10 A, is expected to generate 289.6 Gauss (G) 

at its center and 414.4 G at the midpoint between the coils when both coils are operating. 

Note that the SI unit for magnetic field strength is the Tesla (T) and 10,000 G = 1 T. 

 
Figure 4.6: Expected magnetic field coaxial to coils. 
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 It was deemed necessary that the powered Helmholtz coils be calibrated, due to 

nonuniformities in the wire looping. Using an AlphaLab DC Gaussmeter (Model GM1-

ST), the magnetic field of each individual coil was measured at its center. One coil, at  

10 A, measured 290 G and was deemed already calibrated because of the correspondence 

with the expected value. The second coil needed a supply of only 9.65 A to achieve a 

center magnetic field strength of 290 G. With the center of the coils calibrated, it is 

expected that the magnetic field along the coil axis (z-axis) is now symmetric about the 

pressure bar axis (x-axis). At the midpoint between the coils, the Gaussmeter measured 

421 G, which contrasts the 414.4 G expected value. This difference is most likely due to 

the wire loop distribution along the coil spool thickness. Hereafter, the velocity gauges 

are expected to be operating in a magnetic field of 421 G. 

 

4.2.3 Oscilloscope 

 The oscilloscope used throughout experimentation is a LeCroy 9354AM 

oscilloscope with a bandwidth of 500 MHz. For all of the tests logged throughout 

experimentation, the sampling rate used for recording was 25 MS/second. Upon capture, 

data was imported to MATLAB, where it would be processed by a script pertaining to the 

specific type of experiment.  

 

4.2.4 Amplifiers 

 In order to properly capture the small electric potentials (voltages) generated by 

the velocity gauges during testing, a two-channel amplifier circuit, represented by the 

diagram in Figure 4.7, was assembled to amplify measurements. The circuit utilizes two 
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Texas Instruments OPA551PA operational amplifiers (op-amps), two TT Electronics 

7286-10K-L.1 potentiometers, and two nominally 100 Ω carbon-film resistors (actual 

resistor values are shown in Figure 4.7). The op-amps are powered by a ±15 V dual 

supply generated by a Protek 3015B Dual DC Power Supply. The circuit’s inputs 𝐸!,> and 

𝐸",> are directly connected to the lead wires of the velocity gauges for measuring 𝑣! and 

𝑣" respectively and are amplified by gains, 𝐺! and 𝐺", governed by Equation 4.1 and 

Equation 4.2 respectively. The voltage outputs, represented by Equation 4.3, are sent via 

Bayonet Neill-Concelman (BNC) cables to the oscilloscope. 

𝐺! = 1 +	D!
D"

          (4.1) 

𝐺" = 1 +	D(
D)

          (4.2)  

𝐸;E&( =	𝐺;𝐸;,>	, 𝑗 = 1, 2        (4.3) 

 The range of the potentiometers being used should allow for all gains up to about 

101; however, one limitation discovered is that the op-amps did not appear to be stable at 

unity gain with this configuration. It was also found that to minimize noise within the 

DAQ, it was paramount to use well-insulated, well-grounded low-voltage cables for any 

wiring other than the velocity gauge wires, which are limited to noise-reducing luxuries 

due to their size constraint. 
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Figure 4.7: Circuit diagram of the two-channel amplifier. 
 

A property of op-amps is that as the gain increases, the frequency response 

decreases. This is important to note, so that the extent of capturable spectral information 

can be determined. For the OPA551A op-amps used, at unity gain, their frequency 

response is 3 MHz. Tracing back from the unity gain value at a slope of -20 dB/decade 

generates the line that represents the gain and frequency response relationship, as shown 

in Figure 4.8. With a mutual max circuit gain of 101.3 for the channels, the frequency 

response of the op-amps used is, at minimum, around 29.6 kHz. 
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A small study was conducted to determine the effect of the amplifier gains, and 

thus the frequency response, on the quality of the velocity gauge signals. This is to verify 

that no significant information is lost by utilizing the full range of amplifier gains. First, 

the potentiometers were adjusted so that the amplifier circuit resulted in mutual channel 

gains of 101.3, 50, and then 25. Following these adjustments, the pressure bars were 

placed directly against each other, and the incident bar was impacted with the 304.8 mm 

polycarbonate striker at a gas gun pressure of 15 psi. The results in Figure 4.9 reveal only 

miniscule changes in the wave measured by the velocity gauges, permitting the use of the 

entire range of amplifications. 

 
Figure 4.8: Frequency response of the OPA551A operational amplifier. 
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Figure 4.9: The effect of amplifier gains on the quality of velocity gauge signals. 
 

4.2.5 Velocity Gauges 

The velocity gauges instrumented in the pressure bars are 30 AWG Teflon 

insulated wires, measuring 0.80 mm in total diameter. Each gauge was diametrically 

inserted through a 1 mm hole, filled with glue, that is 2 mm from the pressure bar end 

that contacts test specimens. Due to their small size, the gauges will not disrupt passing 
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waves, and due to their location, the gauges will, in essence, measure at the test specimen 

interfaces. Furthermore, to reduce noise generated by the lead wires within the magnetic 

field, the lead wires were passed through a mass of grease. This is to limit wire 

oscillations but to allow for forward motion as the gauges move during testing. 

 Although the length of the wire gauge, the magnetic field, and amplifier gains 

can be measured to resolve the conversion from electric potential to velocity, variations 

of these conversion values are possible due to anomalies. One such anomaly could be the 

influence of gauge lead wire within the magnetic field on measured voltage. Thus, a 

method to calibrate the gauges was determined to be necessary, and Casem [9] presented 

a known displacement calibration technique to achieve this. For the following calibration 

technique, one gauge is truly calibrated, but it is assumed that any anomaly present is 

affecting both gauges equally. This assumption is reinforced by the symmetry within the 

test setup; however, a method to calibrate both wires independently would surely be 

preferred. The calibration constant (𝜇), or the conversion factor for gauge voltage to 

velocity, is taken to be the same for each gauge, and 𝜇 is revealed when Equation 2.4 is 

rearranged to a form shown by Equation 4.4. Equation 4.4 alludes to how a measured 𝜇 

will contain the combined contributions of 𝐺, 𝐵, and 𝑙7.  

H
5
= =

CIJ+
= 𝜇         (4.4) 

For the known displacement calibration test, no test specimen is used, and the 

incident and transmitter bars are spaced at a known displacement, 𝛿, as shown in  

Figure 4.10. Once the Helmholtz coils are operating, the incident bar is then impacted 

with a striker bar. The voltage generated from the time of non-zero measurement (𝑡$) of 

the incident bar velocity gauge to the time of bar impact (𝑡,) measured by the transmitter 
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bar velocity gauge can be numerically integrated using MATLAB. The derivation of 

Equation 4.6 from Equation 4.4 shows how 𝜇 can be determined from a measured 

voltage signal. 

𝑣! = 𝜇𝐸! 

" 𝑣,𝑑𝑡
-!

-"
= 𝜇" 𝐸,𝑑𝑡

-!

-"
 

with 𝛿 = ∫ 𝑣!𝑑𝑡
(*
(%

        (4.5) 

𝜇 = F

∫ )"H(
+*
+%

          (4.6) 

 Note here that the subscript 1 reflects using the incident bar velocity gauge, and 

Equation 4.5 shows how the known displacement, 𝛿, is the time-integral of the incident 

bar velocity during the test event.      

 
Figure 4.10: Known displacement calibration test setup. 
 

The calibration tests shown in Table 4.2 were conducted at various gas gun firing 

pressures and using the 304.8 mm polycarbonate striker. Also, the known displacement 

was 5 mm and both amplifier channels were set to a high gain of 101.3. An example of 
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the voltage signals captured by the velocity gauges is shown in Figure 4.11. Once a time 

of impact is determined by identifying a non-zero transmitter bar gauge voltage, the 

signals are then numerically integrated, as shown in Figure 4.12. The displacement 

measured by the incident bar gauge at the time of impact, in units 𝑉 ∙ 𝑠, is the value that is 

substituted in Equation 4.6 for that particular test. 

 
Figure 4.11: A known displacement calibration test voltage plot. 
 

 
Figure 4.12: A known displacement calibration test integrated-voltage plot. 
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Table 4.2: Velocity gauge calibration test results. 
 
 Across all of the calibration tests conducted, the average calibration constant was 

found to be 𝜇 = 14.126. This value was taken to be the calibration constant for the 

material tests, all of which were conducted at amplifier gains of 101.3. Understandably, if 

more calibration tests were to be conducted, the average value would better represent the 

characteristics of the velocity gauges; however, the results shown in Table 4.2 are in good 

agreement and no additional tests were deemed necessary. The determined calibration 

constant value can be compared with the expected value based on the perceived gauge 

length (the diameter of the bar), measured magnetic field, and gain used during the 

experiments. Using Equation 4.4, the expected value is therefore: 

 

 It is believed that the difference between the calibration test value and the 

expected value is mainly due to the effect of the gauge wire not within the diameter of the 

pressure bars. For the wire gauge theory in Section 2.2.1, the diameter of the lead wires 

Magnetic Field (G): 421
Amp Gain: 101.3
Gauge Length (mm): 15.875

𝜇 =
1

(101.3)(0.0421	𝑇)(0.015875	𝑚) = 14.77
𝑚 𝑠⁄
𝑉  
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spanning through the magnetic field was not addressed, but it could theoretically increase 

the effective wire cutting orthogonally through the magnetic field. Also, there is 

additional unaccounted wire that is exposed out from the diameter of the bar so that the 

wire is able to turn, parallel to the magnetic field, with shielding and all. These additional 

accounts of wire exposed to the magnetic field may seem insignificant; however, if the 

gain and measured magnetic field are taken to be absolutely true, using Equation 4.4 and 

the calibration constant found through testing would reveal an effective gauge length of 

𝑙7 = 16.599	𝑚𝑚. This shows that, in this experimental setup, around 0.72 mm of 

additional unaccounted wire, orthogonal to the central magnetic field, is enough to 

change measured velocities more than 0.64 m/s per volt. A quantity that could 

considerably affect test results. Alternatively, if the gain and assumed gauge length (bar 

diameter) were taken to be absolutely true, the actual central magnetic field strength 

would be 19.2 G greater than that measured. This is a highly improbable field variation in 

this region between the coils. Hence, the magnetic field is not likely a source of the 

calibration constant difference.  Furthermore, the amplifier gains determined using circuit 

theory were verified using known DC inputs and measuring the channel outputs, so the 

amplifiers are also not likely erroneous. The unaccounted effect of a relatively small 

amount of wire, however, is certainly possible in the experimental setup. Therefore, it 

was determined that the difference in the calibration constant expected value and the test 

value is likely due to an additional wire effect within the magnetic field. The calibration 

constant found through the calibration tests accounts for such additional effects and thus, 

is to be considered as a more accurate value for converting voltage to velocity. 
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5.  Experimentation 

5.1 Introduction 

 Once the necessary preliminary steps have been taken to properly record data with 

the velocity gauges, experimentation can begin. This study will look at two different 

viscoelastic test specimens: Solid polyurea and banded polyurea foam. The banded foam 

specimens are a composition of polyurea foam disks with a solid band of polyurea around 

the outer face. The goal for the experiments is to record a stress and strain history while 

maintaining as constant of a strain-rate as possible during the compression portion of the 

test event. Upon conducting a test with an approximately constant strain-rate, the 

corresponding stress-strain data will provide material-characterizing information for that 

strain-rate only, as characteristics of viscoelastic material change depending on the rate of 

loading. Tests will be carried out across a range of strain-rates to illustrate the change in 

material response as the strain-rate changes. The effect of strain-rate on the stress-strain 

relationship, energy dissipation, storage modulus, and loss factor were all of interest. 

  

5.2  Pulse Shaping 

 Pulse shaping is the process of attaching an additional piece of material to the face 

of the incident bar that interacts with the striker to manipulate the propagating wave prior 

to reaching the test specimen. The wave is manipulated so that the strain-rate during 

material loading can be held at a more constant value. Materials with impedances lower 

than that of the pressure bars are typically effective in altering the wave shape in a way so 

that these improvements are made. For all tests conducted, cylindrical solid polyurea 

pulse-shapers with the same diameter of the pressure bars were used. The pulse-shapers 
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were adhered to the face of the incident bar with a thin layer of grease. The thickness of 

the pulse shaper used for tests depended on the thickness of the test specimen and the 

intensity of the test as well. Generally, to hold the strain-rate approximately constant 

during testing, pulse-shapers with thicknesses equal to or greater than the thickness of the 

test specimen were needed.  

 
Figure 5.1: Velocity gauge signals from a similar test completed with (a) no pulse-
shaper, and (b) a 5 mm pulse-shaper. 
 

To highlight the importance and effect of pulse shaping, two tests were conducted 

using the same setup with the only difference being the use of a pulse-shaper. Both tests 

were completed with the 152.4 mm polycarbonate striker at a firing pressure of 15 psi 

and a 3.20 mm-thick, 15.87 mm-diameter solid polyurea test specimen. Figure 5.1(a) 

shows the velocity signals from the gauges when there is no pulse-shaper, and Figure 

5.1(b) shows the signals when a 5 mm-thick pulse-shaper was placed on the incident bar. 

Using Equations 2.5, 2.6, and 2.7, to convert the signals to strain-rate, strain, and stress 

respectively, Figure 5.2 shows the corresponding stress-strain results. Note that when the 
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pulse-shaper was introduced, the strain-rate, in Figure 5.2(b), is improved to a nearly 

constant value. This acceptable result allows confident conclusions to be made about the 

viscoelastic material’s characteristics at a strain-rate magnitude of about  

2200 s-1. 

 
Figure 5.2: Stress-strain results of a similar test completed with (a) no pulse-shaper, and 
(b) a 5 mm pulse-shaper. 
 

5.3  Solid Polyurea 

5.3.1 Overview 

 The solid polyurea test specimens were created by pouring the two-part uncured 

material mixture into a low-friction acetal plastic cylindrical mold with precise 

dimensions. When removed from the mold after curing, each specimen was handled with 

care so that no significant strains were applied prior to the testing. A non-zero strain 

history prior to testing a specimen could negatively affect the characterization results. 

Any non-zero pre-test strain history would be unaccounted for when applying the BSP 
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and carrying out the GMM modeling procedure highlighted in Section 3.3. Before testing, 

the specimens were visually inspected for defects such as air pockets, and using a digital 

caliper, the specimens were measured to verify the desired dimensions. The tests for the 

solid polyurea material were conducted using the 152.4 mm striker at room temperature. 

Initially, the 304.8 mm striker was used to perform testing; however, it became difficult 

to reach desired higher strain-rates with the achievable gas gun pressures. Using the 

lighter 152.4 mm striker produced strain-rate results higher than those of the 304.8 mm 

striker. For the tests conducted, test specimens had thicknesses of 3.25±0.10 mm and 

diameters of 15.83±0.05 mm. Figure 5.3 shows a solid polyurea test specimen in 

between the pressure bars prior to testing. In the photo, the green velocity gauges are also 

visible within the bars.  

 
Figure 5.3: A solid polyurea specimen between the pressure bars prior to testing. 
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5.3.2 Stress-Strain Results 

 
Figure 5.4: Effect of strain-rate on stress-strain curve for solid polyurea. 
 

Tests of varying gas gun firing pressures were carried out with appropriately sized 

pulse-shapers. Upon capturing multiple datasets (like that in Figure 5.2(b)) with a range 

of strain-rate values, the stress-strain curve assembly in Figure 5.4 was generated for the 

solid polyurea material. A total collection of the stress-strain test results can be found in 

Appendix B. For the tests with strain-rates 3800 s-1 and above, it was especially difficult 

to pulse shape in a way that could hold the strain-rates at a constant value. The strain-rate 

values that characterize these three tests are the maximum values measured. The strain-

rate variation for these tests is certainly noteworthy and should be taken into 

consideration when drawing conclusions about the material at these rates. Regardless, the 
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stress-strain curves for these tests appear to follow the trends set by those tests of lesser 

strain-rates, so it is untrue to say that the tests of strain-rates 3800 s-1 and above are 

valueless. In addition, it appears that for these strain-rates, the material experienced 

notable densification. The densification of viscoelastic material is characterized by a 

larger increase in material stress accompanied with only slight softening of the  

material [15]. This densification was difficult to combat when trying to appropriately 

pulse shape. Figure 5.4 displays the densification region on the stress-strain curve and 

also highlights the other stress regions typical of viscoelastic materials.  

 
Figure 5.5: Energy dissipation as strain-rate increases for solid polyurea. 
 
 The amount of energy the material specimen dissipated per unit volume for each 

test can be determined by integrating the individual stress-strain curves. Figure 5.5 

displays the energy dissipated by solid polyurea during the tests as a function of strain-

rate. These values can also be found in Appendix C. The energy dissipation trend appears 
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to be fairly linear up to 3300 s-1, but above this strain-rate, around when densification 

effects are observed, larger increases in energy dissipation were recorded.  

 

5.3.3 Relaxation Modulus, Storage Modulus, and Loss Factor 

 
Figure 5.6: Comparison of experimental stress and GMM-calculated stress. 
  

Upon collecting stress-strain data for the various strain-rate values, the optimal 

GMM parameters were found by solving the optimization problem described in Section 

3.3 with MATLAB. For this material, ten spring-damper elements were included in the 

optimization process. Note, the model had 21 total parameters to solve for with this 

quantity of GMM elements. It was observed that the more parametric the optimization 

became, the more MATLAB’s optimization function struggled to converge on a solution. 

Solving for 21 GMM parameters was feasible; however, it was crucial to give appropriate 

parameter initial conditions to the MATLAB solver in order to derive a satisfactory set of 

solution values. The optimal GMM parameter values found by MATLAB and the model-
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calculated elastic modulus, for all tests conducted, are given in Appendix C. The GMM 

results suggest that the elastic modulus of the material is around 70 MPa, which agrees 

with the slopes of the stress-strain curves in the linear-elastic region. Figure 5.6 exhibits 

how effective the GMM can be at representing the material’s relaxation modulus. The 

figure compares the experimentally measured specimen stress from the 2200 s-1 strain-

rate test and the GMM stress computed using the optimized parameters, measured 

specimen strain-rate, and Equation 3.25.  

 
Figure 5.7: Effect of strain-rate on relaxation modulus for solid polyurea. 
 

Figure 5.7 shows the relaxation modulus found by the GMM for the solid 

polyurea tests. The dashed plot lines correspond to tests where the GMM optimization 

process produced poor results. The poor fit results for the higher strain-rate tests are 

likely due to the presence of additional nonlinearities in the material response. These 

nonlinearities are evident by observing the stress-strain curves in Figure 5.4 and 
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comparing them to typical linear-viscoelastic stress-strain curves. The curves reveal that 

nonlinearities must be present to generate such responses. The nonlinearities could be 

material geometry related and/or material characteristic related. As Brinson and Brinson 

describe, geometric nonlinearities can occur with large material strain. For large strain 

values, the linearized definitions of stress and strain are no longer valid. Furthermore, 

material nonlinearities occur in the presence of nonlinear constitutive relationships [14]. 

Recall the constitutive equation for a GMM element, Equation 3.10. Since this equation 

is a linear differential equation, the GMM is likely not suitable for representing the 

material’s nonlinear characteristics at higher strain-rates. Although full of additional 

complexities, a nonlinear model should be considered instead to accurately analyze 

frequency domain characteristics across a wider range of strain-rates. 

 
Figure 5.8: Effect of stain-rate on storage modulus for solid polyurea. 
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 Figures 5.8 and 5.9 show the storage modulus and loss factor for the completed 

tests. Disregarding the poor model fits, no significant differences are observed for these 

characteristics at the strain-rates tested. The storage modulus results reveal that the 

material’s transitional region from a rubbery plateau region to a glassy region exists 

between approximately 200 Hz and 4000 Hz. Accordingly, no additional material 

elasticity is anticipated for excitations above 4000 Hz. The loss factor results reveal that 

the material has optimal damping characteristics between 475 Hz and 550 Hz. 

 
Figure 5.9: Effect of stain-rate on loss factor for solid polyurea. 
 

5.4  Banded Polyurea Foam 

5.4.1 Overview 

 The banded polyurea foam specimens were created by pouring the uncured solid 

polyurea two-part mixture onto a rotating acetal plastic rod wrapped with a thin fiberglass 
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mesh. Additional hollow acetal cylinders were fitted over the rod to restrict where on the 

rod the material could adhere. Upon curing, each ring-shaped material piece was 

carefully removed to ensure no significant strains were applied. To create the polyurea 

foam centers, the foam was cut to shape with a precision knife and gently pressed within 

the solid polyurea band. This specimen construction process was carefully carried out so 

that the specimens would have similar dimensions. However, it should be noted that due 

to the unique composition of these test specimens, there may have been dimensional 

variations that could have had minor influences on test results. Of most concern was the 

variation of the band inner diameter and its uniformity around the foam center. The 

finalized test specimens can be seen in Figure 5.10. The tests for the banded polyurea 

foam specimens were conducted using the 152.4 mm striker at room temperature. For the 

tests conducted, test specimens had thicknesses of 3.35±0.15 mm and diameters of 

14.40±0.10 mm. 

 
Figure 5.10: Photo of banded polyurea foam test specimens. 
 

5.4.2 Stress-Strain Results 

 Like with the solid polyurea specimens, tests of varying gas gun firing pressures 

were carried out with appropriately sized solid polyurea pulse-shapers. Upon capturing 
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multiple datasets with a range of strain-rate values, the stress-strain curve assembly in 

Figure 5.11 was generated for the banded polyurea foam composites. A total collection 

of the stress-strain test results can be found in Appendix B. Higher strain-rates were 

achievable compared to the solid polyurea tests, because the banded foams were softer in 

nature. Much higher strain-rates could have been recorded, but a high-speed video 

recording of the 5900 s-1 test showed that the specimen expanded radially such that some 

of the solid polyurea band was no longer in contact with the pressure bars. As a result, 

higher strain-rate tests were not sought after, since the band of the test specimens would 

no longer be contributing to the specimen responses for full test durations.  

 
Figure 5.11: Effect of strain-rate on stress-strain curve for banded polyurea foam. 
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Figure 5.12: Energy dissipation as strain-rate increases for banded polyurea foam. 
 

The stress-strain curves reveal more significant nonlinearities than those of the 

solid polyurea. There also seems to be only a subtle linear elastic curve region, and the 

plateau stress region that was observed with the solid polyurea tests is seemingly 

nonexistent. Based off of the shape of the stress-strain curves, it appears that the majority 

of the responses behaved in a densification-type manner. Because of the specimens’ foam 

composition and lack of rigidity, these responses were anticipated. Furthermore, it is 

believed that the reason the initial stress values occur at non-zero strain values is because 

of the lack in material rigidity. Since the stress values are measured purely using the 

transmitter bar velocity gauge, a more notable delay in wave propagation between the 

two gauges could have generated this effect. Despite the banded foams recovering a 

surprising amount of their original geometry, high-speed video highlights the specimens’ 

softness by showing how they seemingly crush during testing. In addition, it should be 
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noted that the only stress-strain curve that displayed any sort of linear-viscoelasticity is 

the 2100 s-1 curve. This foreshadows the unsatisfactory results the linear GMM produced 

when curve fitting to the specimen response data. Figure 5.12 displays the energy 

dissipated by the banded polyurea foam tests as a function of strain-rate. These values 

can also be found in Appendix C. Comparing only solid polyurea tests with alike strain-

rates, the energy dissipation trend for the banded foams appears similar. However, 

because higher strain-rates were achievable with the banded foams, a more exponential 

trend was observable as strain-rate increases, which is a good quality to have for impact-

mitigating materials.  

 

5.4.3 Relaxation Modulus, Storage Modulus, and Loss Factor 

As mentioned, the GMM optimization process for the nonlinear data of the 

banded polyurea foams produced poor results. For the solid polyurea tests, the linear 

GMM was able to provide quality data modeling for the majority of the tests collected. In 

contrast, the GMM was only able to adequately fit the 2100 s-1 response data. Although 

optimal GMM relaxation modulus curves were found, shown in Figure 5.13, a 

comparison of the GMM-calculated stress signals (found using Equation 3.25) and the 

experimental stress signals demonstrated how poorly the model represented the specimen 

responses. The dashed line of the 5900 s-1 test highlights its significant deviation from the 

other GMM results, but again, most of the results are poor representations of what 

occurred experimentally. 
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Figure 5.13: Effect of strain-rate on relaxation modulus for banded polyurea foam. 
 

 
Figure 5.14: Effect of stain-rate on storage modulus for banded polyurea foam. 
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Figure 5.15: Effect of stain-rate on loss factor for banded polyurea foam. 
 

Since the GMM only satisfactorily modeled the 2100 s-1 test, only frequency 

domain results for this test are credible. Analyzing this test’s storage modulus plot in 

Figure 5.14 shows that, for a strain-rate of 2100 s-1, an elasticity transition region exists 

between 100 Hz and 2000 Hz. Compared to the solid polyurea tests as a whole, this is a 

shorter bandwidth of smaller frequency magnitudes, suggesting the banded foams may 

begin to stiffen at lower excitation frequencies and also reach its glassy region sooner as 

excitation frequency increases. However, as one may expect, the magnitude of the 

banded foam storage modulus curve is of smaller magnitude than that of the solid 

polyurea. Understandably, the addition of foam to the test specimen composition will 

decrease its total stiffness. The 2100 s-1 loss factor results, shown in Figure 5.15, suggest 

that at this strain-rate, the banded foam has optimal damping characteristics around 200 

Hz, which is an eye-catching value when compared to that of the solid polyurea results. 
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For impact-mitigating materials, having effective damping characteristics at lower 

excitation frequencies is ideal, as many impact wave profiles contain large amounts of 

low frequency energy. To reiterate once more, despite some of the other strain-rate tests 

producing frequency domain results similar to the 2100 s-1 test, the GMM for these tests 

did not fit well to the experimental data.  

 

5.4.4 A Nonlinear Approach 

With the linear GMM properly modelling only one of the banded polyurea foam 

tests, existing approaches to modeling nonlinear viscoelasticity were researched for 

possible future work. A further examination of publications by Fung [16], Selyutina et al. 

[17], and Pryse et al. [18] would serve as an appropriate primer for the continuation of 

this study. Of the methods presented by Provenzano et al. [19], an approach similar to the 

quasilinear viscoelasticity (QLV) method was explored. The QLV method, presented by 

Fung [20] in 1972, introduces an additional function to the BSP convolution integral that 

is solely dependent on strain, not time. As described by Provenzano et al. [19], the QLV 

method takes the relaxation modulus of the viscoelastic material to be both time-

dependent and strain-dependent, i.e. 𝐸4(𝑡, 𝜀). Taking the relaxation modulus to be 

composed of two independent functions of time and strain yields: 

𝐸4(𝑡, 𝜀) = 𝐸((𝑡)𝑔(𝜀)         (5.1) 

Equation 5.1 is obtained using the separation of variables principle, where 𝐸((𝑡) 

is a time-dependent modulus function and 𝑔(𝜀) is a strain-dependent nonlinearizing 

modulus function. The BSP convolution integral is now nonlinearized and given as: 

𝜎(𝜀, 𝑡) = 	∫ 𝐸3(𝑡 − 𝜏)𝑔(𝜀)
!1(2)
!2

𝑑𝜏3
$       (5.2) 
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 If the linear GMM is independent of strain, 𝐸((𝑡) can be taken to be 𝐸4(𝑡) from 

Equation 3.16. Furthermore, in order to solve for some 𝑔(𝜀) that improves the modeling 

of the experimental response data, 𝑔(𝜀) was taken to be a seventh order polynomial, or: 

𝑔(𝜀) = ∑ 𝛼+𝜀+4
+5$          (5.3) 

 where 𝛼; are unknown parameters. Thus, given experimental strain-rate and strain 

data and also the linear GMM results from completing the optimization problem in 

Section 3.3, the nonlinear model stress is: 

𝜎KL(𝜀, 𝑡) = 	∫ 3𝐸? + ∑ 𝐸2𝑒
9(:9F)

;'<&
2>= 4 8∑ 𝛼M𝜀N

MO
M>? : !8)(F)

!F
𝑑𝜏:

?   (5.4) 

  Again, 𝐸2 and 𝜌2 are already determined parameters found by fitting the linear 

GMM to experimental stress data. The 𝛼; parameters are found by using MATLAB’s  

fmincon( ) function to solve the optimization problem: 

 

where  𝑡 = 0 marks the time at the beginning of the stress signal (prior to 𝑡 = 0 

there is only zero-valued stress and strain), 𝑇 marks the end time of the test event, and 

𝜎3(𝜀, 𝑡) is the experimental stress data. As stated in Section 3.3, because discrete data 

points from SHPB tests are being handled and not continuous functions, MATLAB’s 

conv( ) function can be used to convolve the integral functions. The MATLAB script to 

carry out this process is not included in this thesis, but a thorough understanding of the 

Solve	for	𝛼; 	for	𝑗 = 0,… , 7	

to	minimize	𝐹 =o[𝜎3(𝜀, 𝑡) − 𝜎IJ(𝜀, 𝑡)]"
(?.

(?$
such	that − ∞ < 𝛼; < ∞	for	𝑗 = 0,… , 7		
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optimization process in the script in Appendix A should enable one to generate their own 

code.  

 
Figure 5.16: Effect of strain-rate on nonlinearizing modulus function for banded 
polyurea foam. 
 

After carrying out the nonlinear model optimization process for the each banded 

polyurea foam test, the optimal 𝛼; parameters were found and are listed in Appendix D. 

The corresponding nonlinearizing modulus functions, 𝑔(𝜀), can be seen in Figure 5.16. 

Note that the closer the function values are to a value of 1, the more the nonlinear model 

resembles the linear GMM. As mentioned earlier, the 2100 s-1 banded foam test was the 

only test that displayed any sort of linear-viscoelastic response. The corresponding 

nonlinearizing modulus function for the test supports this statement by demonstrating that 

𝑔(𝜀) holds closer to a value of 1 more than any of the other tests. 

Figure 5.17 shows the plots for the modified relaxation modulus: 𝐸4(𝑡, 𝜀) =

𝐸4(𝑡)𝑔(𝜀). Significant differences can be seen when comparing the nonlinear modified 
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relaxation modulus curves to the linear GMM relaxation modulus curves in Figure 5.13.  

Figure 5.17 accentuates the type of relaxation modulus function shape needed to properly 

model some of these nonlinear viscoelastic material responses.  

 
Figure 5.17: Effect of strain-rate on modified relaxation modulus for banded polyurea 
foam. 
 

Figure 5.18 exhibits the data modelling improvements seen when using the 

nonlinear model versus the linear GMM. The figure compares the experimentally 

measured specimen stress from the 5300 s-1 strain-rate test, the linear GMM computed 

stress (using Equation 3.25), and the nonlinear model computed stress (using Equation 

5.4). Note how the linear GMM fails to accurately fit the experimental data, as it did with 

most of the banded foam test results, and note the substantial improvement made by 

applying the nonlinear model.  

 Unfortunately, many complexities are encountered when trying to convert the 

nonlinear model from the time domain to the frequency domain. Perhaps a unique form 
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of the nonlinearizing modulus function is necessary to make the model mathematically 

more suitable for this conversion. Nevertheless, it is anticipated that additional extensive 

research will be required to develop a method for extracting accurate frequency domain 

information from the nonlinear specimen response data within this study. The 

methodology explored here in Section 5.4.4 was presented to help demonstrate the kind 

of processes that may be required to accomplish such a task. 

 
Figure 5.18: Comparison of experimental, linear GMM, and nonlinear model stress. 
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6.  Concluding Remarks 

 The results obtained from this study are satisfactory, especially given the newness 

of the test setup to the author. For each material, strain-rates that induced nonlinear 

material behavior were determined, and energy dissipation trends were examined as 

strain-rate varied. Furthermore, meaningful frequency-domain characteristics were 

obtained, and for some strain-rates, GMM parameters that accurately represent the 

materials were found. These parameters, while an integral part of the frequency-domain 

analysis, can be used for other purposes such as computer simulations. The parameters 

and relaxation modulus of the materials when integrated into certain simulations can 

provide information on how the materials will respond to other stress loads without the 

need for experimentation. Note that the optimization process, from which the optimal 

parameters are derived, is not limited to the velocity gauge instrumented SHPB and can 

be applied to the conventional SHPB test setup or any test setup that captures specimen 

stress and strain-rate histories.  

It should be emphasized that the results presented assumed that the geometry of 

the test specimens remained the same throughout the test events. As video evidence 

would support, some of the tests saw significant radial expansion of the viscoelastic 

specimens. With more rigid materials, these geometric changes are slight and often 

negligible; however, with the soft materials in this study, these geometric changes are 

more significant and considerably increase stress measurement error. Implementing a 

manner in which to track the change in geometry throughout the test event would be 

ideal, but a more achievable objective would be to complete a study that determines the 

optimal ratio of specimen diameter to specimen thickness that minimizes radial 
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expansion while still attaining a stress equilibrium. Thinner specimens were chosen for 

this study to increase the likelihood that the specimens reach a quasi-static stress 

equilibrium. 

 To further improve the SHPB setup used in this study, the use of larger Helmholtz 

coils would surely be beneficial. A major constraint within the test setup is that the center 

of the constructed coils had to fall in line with the pressure bar axis. With an aluminum 

beam base below the bars restricting the maximum coil flange diameter, the coils had to 

be made rather small. Another limitation was the ability to obtain quality power supplies 

for the coils. The 10A switch-mode power supplies used contained the largest current 

output available for the project budget. Supplying larger currents to the coils would allow 

one to increase the diameter of the coils, and thus the region of field uniformity, without 

sacrificing magnetic field strength. In the case of this study, properly supplied larger coils 

would have allowed their position to be moved to the sides of the aluminum beam base, 

where their height could then be appropriately adjusted to align with the bars. If one is to 

improve the test setup by changing the coil power supplies, it is recommended that linear-

regulated power is used instead of switch-mode. Switch-mode power is not ideal for 

sensitive measuring applications like that in this study. Noise generated from the 10A 

power supplies was evident throughout the entire research process. 

 It is desired that this study serves the reader by providing another take on the 

application of velocity gauges in SHPB tests. The test setup used, while cost-effective, 

enables one to obtain material response data comparable to that of setups utilizing more 

intricate sensors and analyses. Furthermore, it is desired that this thesis described the 

application of a linear-viscoelastic model in great detail so that other researchers may 
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confidently apply similar models to their SHPB testing. Above all, it is desired that this 

study demonstrated the wealth of knowledge that can be obtained from a single SHPB 

test event when testing viscoelastic material. This thesis was written using theory that 

hopefully appeals to those with backgrounds in the field of vibrations. This was done to 

offer a more comprehensible take on the theory, should someone in this field be 

unfamiliar with the SHPB test. This was also done to facilitate a continuation of research 

into the frequency domain complexities that were encountered when dealing with 

nonlinear data. 
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Appendix A 

A.1 MATLAB Script Used to Process SHPB Test Data 

 

3/2/20 2:11 PM /Users/garrettwiles/Desktop/Grad Researc... 1 of 5

%% Velocity Gauge Results Tool
% V.1.1 Feb. 2020
% Author: Garrett S. Wiles
%
% Script to accompany research thesis submitted for the degree of Master of
% Science in Mechanical Engineering at The University of Maryland, College Park 
 
clc
close all
clear all
 
%% Time Domain Characterization
global t2
 
%Coil/specimen parameters
As = pi*((15.87E-3)/2)^2; %specimen cross-section area [m^2]
Ls = 3.22E-3; %specimen length [m]
 
%Bar Properties
E0 = 2.2E9; %pressure bar static Young's modulus [N/m^2]
rho = 1200; %pressure bar density [kg/m^3]
c0 = sqrt(E0/rho); %pressure bar static wave speed [m/s]
Ab = pi*(0.015875/2)^2; %pressure bar cross-section area [m^2]
 
%Experimental data load
fprintf('\nSelect incident bar voltage data .txt file...\n')
[filename,pathname] = uigetfile('*.txt;','Select incident bar voltage data file.');
file = fullfile(pathname,filename);
 
data = load(file,'-ascii');
t1 = data(:,1); %time data [s]
E1 = -data(:,2); %voltage data [V]
fprintf('Data recieved.\n')
 
fprintf('\nSelect transmitter bar voltage data .txt file...\n')
[filename,pathname] = uigetfile('*.txt;','Select transmitter bar voltage data file.');
file = fullfile(pathname,filename);
data = load(file,'-ascii');
t2 = data(:,1); %time data [s]
E2 = -data(:,2);  %voltage data [V]
fprintf('Data recieved.\n')
 
%apply lowpass filter (cuttoff frequency above amp frequency response)
cofreq = 1.5E5; %cutoff frequency (Hz)
fs = length(t1)/(max(t1)-min(t1)); %data sampling rate
filV1 = lowpass(E1,cofreq,fs);
E1 = filV1;
 
fs = length(t2)/(max(t2)-min(t2)); %data sampling rate
filV2 = lowpass(E2,cofreq,fs);
E2 = filV2;
 
v1 = 14.126*E1; %apply calibration constant to voltage signal
v2 = 14.126*E2; %apply calibration constant to voltage signal
 
figure(1)
f1 = subplot(211);
plot(t1.*1000,v1,'-k')
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3/2/20 2:11 PM /Users/garrettwiles/Desktop/Grad Researc... 2 of 5

title('Incident Bar Gauge Raw Data')
xlabel('Time (ms)')
ylabel('Velocity (m/s)')
grid on
f2 = subplot(212);
plot(t2.*1000,v2,'-k')
grid on
title('Transmitter Bar Gauge Raw Data')
xlabel('Time (ms)')
ylabel('Velocity (m/s)')
linkaxes([f1, f2],'xy');
 
%input start time of test event (used for offset correction), and the test end time
startInc = input('\nDefine start time of wave measured by incident gauge (for signal 
offset correction) (ms): ')/1000;
startidx = find(t1>=startInc,1);
endTrans = input('\nDefine end time of test event (ms): ')/1000;
endidx = find(t2<=endTrans,1,'last');
close all
 
%offset correction amount
offsetv1 = sum(v1(1:startidx))/length(v1(1:startidx));
offsetv2 = sum(v2(1:startidx))/length(v2(1:startidx));
 
%apply offset correction
v1 = v1-offsetv1; %correct signal offset
v2 = v2-offsetv2; %correct signal offset
 
%trim voltage and time data
v1 = v1(startidx:endidx);
v2 = v2(startidx:endidx);
t1 = t1(startidx:endidx)-t1(startidx);
t2 = t2(startidx:endidx)-t2(startidx);
 
figure(1)
set(gcf,'windowstyle','docked');
f3 = subplot(211);
plot(t1.*1000,v1,'-k','LineWidth',2)
title('Incident Bar Gauge')
xlabel('Time (ms)')
ylabel('Velocity (m/s)')
grid on
f4 = subplot(212);
plot(t2.*1000,v2,'-k','LineWidth',2)
grid on
title('Transmitter Bar Gauge')
xlabel('Time (ms)')
ylabel('Velocity (m/s)')
linkaxes([f3, f4],'xy');
 
global epsdot
epsdot = (v1-v2)/Ls; %specimen strain rate [1/s]
 
figure(2)
set(gcf,'windowstyle','docked');
subplot(311)
plot(t1.*1000,epsdot,'-k','Linewidth',2)
title('Specimen Strain Rate')
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3/2/20 2:11 PM /Users/garrettwiles/Desktop/Grad Researc... 3 of 5

xlabel('Time (ms)')
ylabel('Strain Rate (1/s)')
grid on
 
epss = cumtrapz(t1,epsdot); %specimen strain 
 
figure(2)
subplot(312)
plot(t1.*1000,epss,'-k','Linewidth',2)
title('Specimen Strain')
xlabel('Time (ms)')
ylabel('Strain')
grid on
 
global sigmas
sigmas = rho*c0*(Ab/As)*v2; %specimen stress [Pa]
 
figure(2)
subplot(313)
plot(t1.*1000,sigmas,'-k','Linewidth',2)
title('Specimen Stress')
xlabel('Time (ms)')
ylabel('Stress (Pa)')
grid on
 
%apply averaging filter to stress data to smooth stress strain curve (avoid
%large window size) 
windowSize = 100; 
b = (1/windowSize)*ones(1,windowSize);
a = 1;
filsigmas = filter(b,a,sigmas); %filtered stress data (Pa)
 
figure(3)
set(gcf,'windowstyle','docked');
% plot(epss,sigmas,'-b')
% hold on
plot(epss,filsigmas,'-k','LineWidth',2)
title('Specimen Stress-Strain Curve')
xlabel('Strain')
ylabel('Stress (Pa)')
grid on
 
energydis = trapz(epss,filsigmas); %energy dissipation [J/m^3]
fprintf('\nEnergy Dissipated: %.4f kJ/m^3\n',energydis/1000)
 
%% Frequency Domain Characterization (10 Element GMM Model)
fprintf('\nOptimizing rheological model parameters...\n')
pause(2)
 
A = [];
b = [];
x0 = [1E7 1E7 1.1E7 1.2E7 1.3E7 1.4E7 1.5E7 1.6E7 1.7E7 1.8E7 1.9E7 1E-4 1E-4 1E-4 1E-4 
1E-4 1E-4 1E-4 1E-4 1E-4 1E-4]; %initial conditions
lb = zeros(1,21); %parameter lower bounds
ub = [1E8 1E8 1E8 1E8 1E8 1E8 1E8 1E8 1E8 1E8 1E8 1E-1 1E-1 1E-1 1E-1 1E-1 1E-1 1E-1 1E-1 
1E-1 1E-1]; %parameter upper bounds
options = optimset('TolFun',1E-100,'TolX',1E-100,'MaxIter',2000,'MaxFunEvals',
4000,'Display','iter','TolCon',0,'DiffMinChange',1E-12,'DiffMaxChange',1E7); %
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3/2/20 2:11 PM /Users/garrettwiles/Desktop/Grad Researc... 4 of 5

optimization options
[x,fval,exitflag,output] = fmincon(@relaxop10,x0,A,b,[],[],lb,ub,[],options); %
optimization command
fprintf('Optimization complete.\n')
 
format long
x(1:11)' %GMM moduli [Pa]
x(12:21)' %GMM relaxation times [s]
fval
output
 
%GMM parameters
E0 = x(1);
E1 = x(2);
E2 = x(3);
E3 = x(4);
E4 = x(5);
E5 = x(6);
E6 = x(7);
E7 = x(8);
E8 = x(9);
E9 = x(10);
E10 = x(11);
p1 = x(12);
p2 = x(13);
p3 = x(14);
p4 = x(15);
p5 = x(16);
p6 = x(17);
p7 = x(18);
p8 = x(19);
p9 = x(20);
p10 = x(21);
 
ErGMM = E0+E1*exp(-t2/p1)+E2*exp(-t2/p2)+E3*exp(-t2/p3)+E4*exp(-t2/p4)+E5*exp(-t2/p5)
+E6*exp(-t2/p6)+E7*exp(-t2/p7)+E8*exp(-t2/p8)+E9*exp(-t2/p9)+E10*exp(-t2/p10); %
relaxation modulus [Pa]
figure(4)
set(gcf,'windowstyle','docked');
plot(t2.*1000,ErGMM,'-k','LineWidth',2)
xlabel('Time (ms)')
ylabel('Relaxation Modulus (Pa)')
title('GMM Relaxation Modulus')
grid on
 
N = length(t2);
dtau = max(t2)/N; %sampling period [s]
sigmaGMM = conv(epsdot,ErGMM)*dtau; %GMM convolution
sigmaGMM = sigmaGMM(1:N); %GMM-calculated stress [Pa]
figure(5)
set(gcf,'windowstyle','docked');
plot(t2.*1000,sigmas,'-k',t2.*1000,sigmaGMM,'--b','LineWidth',1)
title('Comparison of Experimental Stress and GMM-Calculated Stress')
xlabel('Time (ms)')
ylabel('Stress (Pa)')
grid on
legend('Experimental','GMM')
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3/2/20 2:11 PM /Users/garrettwiles/Desktop/Grad Researc... 5 of 5

f = 1:1:10^5; %frequnecies at which to perform frequency domain analysis [Hz]
w = f.*(2*pi); %frequnecies at which to perform frequency domain analysis [rad/s]
Estar = E0+E1*(1i*w*p1)./(1i*w*p1+1)+E2*(1i*w*p2)./(1i*w*p2+1)+E3*(1i*w*p3)./(1i*w*p3+1)
+E4*(1i*w*p4)./(1i*w*p4+1)+E5*(1i*w*p5)./(1i*w*p5+1)+E6*(1i*w*p6)./(1i*w*p6+1)+E7*
(1i*w*p7)./(1i*w*p7+1)+E8*(1i*w*p8)./(1i*w*p8+1)+E9*(1i*w*p9)./(1i*w*p9+1)+E10*
(1i*w*p10)./(1i*w*p10+1); %complex modulus [Pa]
Eprime = real(Estar); %GMM storage modulus [Pa]
eta = imag(Estar)./Eprime; %GMM loss factor [ul]
 
figure(6)
set(gcf,'windowstyle','docked')
subplot(211)
loglog(f,Eprime,'-k','LineWidth',2)
title('Frequency Domain Characteristics')
xlabel('Frequency (Hz)')
ylabel('Storage Modulus (Pa)')
grid on
subplot(212)
loglog(f,eta,'-k','LineWidth',2)
title('Frequency Domain Characteristics')
xlabel('Frequency (Hz)')
ylabel('Loss Factor (\eta)')
grid on
 
function fun = relaxop10(x)
global sigmas t2 epsdot
N=length(t2);
dtau = max(t2)/N; %sampling period [s]
prony = x(1)+x(2)*exp(-t2./x(12))+x(3)*exp(-t2./x(13))+x(4)*exp(-t2./x(14))+x(5)*exp(-t2.
/x(15))+x(6)*exp(-t2./x(16))+x(7)*exp(-t2./x(17))+x(8)*exp(-t2./x(18))+x(9)*exp(-t2./x
(19))+x(10)*exp(-t2./x(20))+x(11)*exp(-t2./x(21)); %parameterized GMM relaxation modulus 
[Pa]
sigmaGMM = conv(epsdot,prony).*dtau; %GMM convolution
sigmaGMM = sigmaGMM(1:N); %GMM calculated stress [Pa]
 
fun = sum((sigmas-sigmaGMM).^2,'all'); %optimization problem objective function for 
minimization
 
%live plot of optimization process comparing current iteration GMM stress
%and experimental stress
figure(7)
plot(t2.*1000,sigmas,'-k',t2.*1000,sigmaGMM,'--b')
title('Comparison of Experimental Stress and GMM Calculated Stress')
xlabel('Time (ms)')
ylabel('Stress (Pa)')
grid on
legend('Experimental','GMM')
 
end
 
 



Appendix B 

 68 

Appendix B 

B.1 Solid Polyurea Stress-Strain Results 

B.1.1 1850 s-1 

 
Figure B.1: Solid polyurea stress-strain results for strain-rate of 1850 s-1. 
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B.1.2 2200 s-1 

 
Figure B.2: Solid polyurea stress-strain results for strain-rate of 2200 s-1. 
 
B.1.3 2900 s-1 

 
Figure B.3: Solid polyurea stress-strain results for strain-rate of 2900 s-1. 
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B.1.4 3300 s-1 

 
Figure B.4: Solid polyurea stress-strain results for strain-rate of 3300 s-1. 
 
B.1.5 3500 s-1 

 
Figure B.5: Solid polyurea stress-strain results for strain-rate of 3500 s-1. 
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B.1.6 3800 s-1 

 
Figure B.6: Solid polyurea stress-strain results for strain-rate of 3800 s-1. 
 
B.1.7 4300 s-1 

 
Figure B.7: Solid polyurea stress-strain results for strain-rate of 4300 s-1. 
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B.1.8 4600 s-1 

 
Figure B.8: Solid polyurea stress-strain results for strain-rate of 4600 s-1. 
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B.2 Banded Polyurea Foam Stress-Strain Results 

B.2.1 2100 s-1 

 
Figure B.9: Banded polyurea foam stress-strain results for strain-rate of 2100 s-1. 
 
B.2.2 2800 s-1 

 
Figure B.10: Banded polyurea foam stress-strain results for strain-rate of 2800 s-1. 
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B.2.3 3300 s-1 

 
Figure B.11: Banded polyurea foam stress-strain results for strain-rate of 3300 s-1. 
 
B.2.4 4300 s-1 

 
Figure B.12: Banded polyurea foam stress-strain results for strain-rate of 4300 s-1. 
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B.2.5 5300 s-1 

 
Figure B.13: Banded polyurea foam stress-strain results for strain-rate of 5300 s-1. 
 
B.2.6 5900 s-1 

 
Figure B.14: Banded polyurea foam stress-strain results for strain-rate of 5900 s-1.  
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Appendix C 

C.1 Solid Polyurea Energy Dissipation, GMM Parameter Values, & Model-
Calculated Elastic Modulus  

 

 
Table C.1: Solid polyurea energy dissipation, GMM parameter values, & model-
calculated elastic modulus. 
  

Strain-Rate:

E0 1.19824E+07 E0 1.23301E+07 E0 1.13437E+07

!1 1.91022E-04 E1 1.17266E+06 !1 3.77716E-04 E1 4.32105E-03 !1 1.87858E-04 E1 3.66435E+04

!2 1.89762E-04 E2 1.21094E+07 !2 1.31854E-04 E2 6.88487E+06 !2 1.42895E-04 E2 4.73084E-01

!3 1.89587E-04 E3 1.36084E+07 !3 1.31484E-04 E3 1.99192E+07 !3 1.19145E-04 E3 1.38566E+07

!4 9.05842E-05 E4 1.99700E+07 !4 1.31437E-04 E4 2.49056E+07 !4 1.19015E-04 E4 1.37520E+07

!5 1.58961E-05 E5 2.10942E+02 !5 4.51680E-05 E5 7.48000E-06 !5 1.18943E-04 E5 2.56925E+07

!6 2.74170E-06 E6 1.34144E+07 !6 8.62626E-10 E6 2.03963E+07 !6 4.11675E-06 E6 1.55258E+07

!7 3.73253E-10 E7 1.13296E+07 !7 2.27899E-10 E7 1.63095E+07 !7 4.73569E-09 E7 1.32319E+07

!8 2.48832E-10 E8 1.95267E+07 !8 2.10851E-10 E8 9.84527E+06 !8 2.34778E-09 E8 2.23569E+07

!9 1.33811E-10 E9 1.37678E+07 !9 7.03831E-11 E9 1.45075E+07 !9 1.97549E-09 E9 1.35078E+07

!10 4.15184E-12 E10 2.97182E+07 !10 4.69697E-11 E10 5.17120E+06 !10 3.16818E-11 E10 3.54640E+07

72.26 64.04 80.21

Strain-Rate:

E0 1.35059E+07 E0 1.25597E+07 E0 2.11079E+05

!1 3.46070E-04 E1 6.30435E+00 !1 1.00000E-01 E1 3.28499E+06 !1 3.80284E-04 E1 8.93594E+06

!2 1.19419E-04 E2 1.79884E+06 !2 1.99277E-02 E2 3.90410E+02 !2 3.80264E-04 E2 2.27629E+07

!3 1.19350E-04 E3 1.36929E+07 !3 1.64960E-04 E3 1.73700E+07 !3 3.80263E-04 E3 2.26896E+07

!4 1.19341E-04 E4 1.56733E+07 !4 1.64939E-04 E4 2.70854E+07 !4 3.79657E-04 E4 2.90680E+04

!5 1.19303E-04 E5 2.49363E+07 !5 5.65096E-06 E5 9.56729E+06 !5 6.05430E-11 E5 8.85555E+01

!6 5.67260E-08 E6 5.65034E+03 !6 5.32500E-12 E6 2.11225E+03 !6 2.04552E-11 E6 3.27571E+07

!7 1.03390E-09 E7 1.43895E+00 !7 4.71000E-13 E7 1.46205E+07 !7 3.22813E-13 E7 5.80542E+06

!8 1.48738E-11 E8 7.93970E+06 !8 1.16000E-13 E8 1.43864E+07 !8 2.55623E-13 E8 1.50588E+07

!9 8.84277E-12 E9 1.46264E+07 !9 8.60000E-14 E9 1.88729E+07 !9 1.72198E-13 E9 1.21786E+07

!10 6.04970E-13 E10 1.10866E+07 !10 1.60000E-14 E10 1.53929E+07 !10 4.00000E-14 E10 2.11676E+07

69.61 69.87 54.63

Strain-Rate:

E0 3.39531E+05 E0 1.03113E+07

!1 3.21367E-04 E1 3.73402E+07 !1 2.63669E-04 E1 1.13855E+07

!2 3.21075E-04 E2 3.18299E+07 !2 2.63647E-04 E2 3.44919E+07

!3 2.23147E-11 E3 1.92203E+07 !3 2.63626E-04 E3 4.94297E+06

!4 1.04335E-11 E4 8.66742E+06 !4 2.63474E-04 E4 4.19175E+06

!5 1.01279E-11 E5 1.05191E+07 !5 2.30279E-04 E5 2.44156E+02

!6 9.43319E-12 E6 3.55544E+07 !6 1.93900E-09 E6 1.36785E+07

!7 9.17621E-12 E7 1.22712E+07 !7 1.16781E-09 E7 1.38826E+07

!8 8.73930E-12 E8 2.22245E+07 !8 8.46696E-10 E8 1.83056E+07

!9 5.31565E-12 E9 1.71703E+07 !9 3.31622E-10 E9 1.05648E+07

!10 4.77146E-12 E10 7.46041E-01 !10 2.76698E-11 E10 2.18033E+07

69.51 65.32
Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:2) 

Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:5) 

Relaxation Times (s) Relaxation Moduli (Pa) Relaxation Times (s) Relaxation Moduli (Pa)

Relaxation Moduli (Pa)

Relaxation Times (s) Relaxation Moduli (Pa)Relaxation Times (s) Relaxation Moduli (Pa) Relaxation Times (s) Relaxation Moduli (Pa)

Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:6) 

Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:5) 

Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:6) 

Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:5) 

Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:5) 

Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:4) 

Relaxation Times (s) Relaxation Moduli (Pa)

GMM Parameters GMM Parameters

4300 s-1 4600 s-1

Energy Dissipation (kJ/m3): 10252 Energy Dissipation (kJ/m3): 12642

GMM Parameters GMM Parameters GMM Parameters

3300 s-1 3500 s-1 3800 s-1

Energy Dissipation (kJ/m3): 7079 Energy Dissipation (kJ/m3): 8192 Energy Dissipation (kJ/m3): 9275

6375

GMM Parameters GMM Parameters GMM Parameters
Relaxation Times (s) Relaxation Moduli (Pa) Relaxation Times (s)

Solid Polyurea
1850 s-1 2200 s-1 2900 s-1

Energy Dissipation (kJ/m3): 4178 Energy Dissipation (kJ/m3): 4817 Energy Dissipation (kJ/m3):

= Negligible Terms 
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C.2 Banded Polyurea Foam Energy Dissipation, GMM Parameter Values, 
& Model-Calculated Elastic Modulus  

 

 
Table C.2: Banded polyurea foam energy dissipation, GMM parameter values, & model-
calculated elastic modulus.

Strain-Rate:

E0 3.10334E+06 E0 1.73932E+06 E0 1.25595E+06

!1 7.50747E-04 E1 9.36487E+02 !1 4.09683E-04 E1 8.09941E+05 !1 1.32067E-03 E1 2.49359E-01

!2 2.69963E-04 E2 6.48532E+06 !2 4.09667E-04 E2 5.96878E+06 !2 8.73924E-04 E2 6.21858E+06

!3 2.69836E-04 E3 3.27165E+06 !3 4.09657E-04 E3 1.49521E+07 !3 3.34678E-04 E3 3.07750E+05

!4 2.69749E-04 E4 1.14493E+07 !4 4.09627E-04 E4 1.83239E+06 !4 3.34624E-04 E4 1.11699E+06

!5 1.24129E-08 E5 6.38405E+05 !5 1.61524E-09 E5 3.67862E+06 !5 3.34571E-04 E5 4.22239E+06

!6 2.86196E-09 E6 2.09735E+06 !6 1.47699E-09 E6 4.38373E+06 !6 3.34517E-04 E6 2.31906E+05

!7 5.23596E-10 E7 2.16829E+06 !7 1.41796E-09 E7 9.75974E+06 !7 3.34516E-04 E7 8.02095E+06

!8 4.62792E-10 E8 4.09931E-01 !8 8.93033E-10 E8 2.00332E+06 !8 3.34492E-04 E8 6.86733E+06

!9 2.31915E-10 E9 9.67877E+05 !9 6.64360E-10 E9 2.45424E+07 !9 3.27395E-04 E9 2.38468E+02

!10 7.10000E-17 E10 1.30824E+06 !10 4.66268E-10 E10 1.92824E+02 !10 2.28275E-04 E10 6.34848E+02

24.31 25.30 28.24

Strain-Rate:

E0 4.47888E+06 E0 5.76119E+06 E0 2.50000E+04

!1 4.13574E-04 E1 1.26212E+01 !1 1.58749E-03 E1 2.49997E+04 !1 3.36321E-04 E1 2.58192E+06

!2 3.65210E-04 E2 4.24112E+06 !2 2.52062E-04 E2 3.01833E+06 !2 3.36308E-04 E2 3.78484E+06

!3 3.65203E-04 E3 5.76875E+06 !3 2.52021E-04 E3 4.59652E+06 !3 3.36285E-04 E3 5.86660E+06

!4 3.65196E-04 E4 7.31560E+06 !4 2.51970E-04 E4 8.55920E+06 !4 3.36266E-04 E4 7.47745E+06

!5 3.65178E-04 E5 9.21972E+06 !5 2.51959E-04 E5 9.19783E+06 !5 3.36250E-04 E5 8.78189E+06

!6 1.24054E-05 E6 5.70869E-01 !6 2.51936E-04 E6 1.02598E+07 !6 3.36241E-04 E6 9.48261E+06

!7 6.93947E-08 E7 1.68443E+02 !7 1.79094E-08 E7 5.41103E+06 !7 1.03201E-07 E7 5.71981E+06

!8 1.59954E-10 E8 3.84602E+06 !8 1.64125E-08 E8 6.09195E+06 !8 1.01698E-07 E8 5.89624E+06

!9 1.06193E-10 E9 4.87242E+06 !9 1.35393E-08 E9 6.04500E+06 !9 3.92678E-08 E9 5.79971E+06

!10 8.90887E-11 E10 3.15918E+06 !10 1.19382E-08 E10 5.93576E+06 !10 2.88587E-08 E10 5.73091E+06

31.02 41.42 38.00
Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:6) 

Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:6) 

Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:6) 

GMM Parameters GMM Parameters GMM Parameters
Relaxation Times (s) Relaxation Moduli (Pa) Relaxation Times (s) Relaxation Moduli (Pa) Relaxation Times (s) Relaxation Moduli (Pa)

4300 s-1 5300 s-1 5900 s-1

Energy Dissipation (kJ/m3): 3712 Energy Dissipation (kJ/m3): 6178 Energy Dissipation (kJ/m3): 10123

Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:4) 

Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:4) 

Model-Calculated Elastic Modulus (MPa):

Er (t=0) = E0 + ∑Ek (k = 1:10) 

3340

GMM Parameters GMM Parameters GMM Parameters
Relaxation Times (s) Relaxation Moduli (Pa) Relaxation Times (s) Relaxation Moduli (Pa) Relaxation Times (s) Relaxation Moduli (Pa)

Banded Polyurea Foam
2100 s-1 2800 s-1 3300 s-1

Energy Dissipation (kJ/m3): 1715 Energy Dissipation (kJ/m3): 2105 Energy Dissipation (kJ/m3):

= Negligible Terms
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Appendix D 

D.1 Banded Polyurea Foam Nonlinearizing Modulus Function Parameter 
Values 

 

 
Table D.1: Banded polyurea foam nonlinearizing modulus function parameter values.

Strain-Rate:

α0 0.9549 α0 0.5492 α0 0.6616
α1 0.0222 α1 2.1691 α1 0.9017
α2 -0.0555 α2 3.0675 α2 0.8200
α3 -0.2031 α3 3.7600 α3 0.3786
α4 -0.4650 α4 3.0646 α4 -0.7093
α5 -0.8550 α5 -1.7032 α5 -2.6109
α6 -1.0937 α6 -12.5511 α6 -4.1224
α7 0.7719 α7 6.8378 α7 3.8884

Strain-Rate:

α0 0.6686 α0 0.3790 α0 0.6089
α1 -0.1310 α1 3.5604 α1 -0.8924
α2 -0.3341 α2 2.6687 α2 -0.9373
α3 -0.6331 α3 1.0596 α3 -0.9266
α4 -1.0175 α4 -1.3845 α4 -0.8034
α5 -1.3453 α5 -4.2991 α5 -0.4478
α6 -0.9972 α6 -5.3493 α6 0.4168
α7 2.4015 α7 6.0658 α7 2.4955

Banded Polyurea Foam
2800 s-1

Nonlinearizing Modulus Function Parameters

5300 s-1

Nonlinearizing Modulus Function Parameters

3300 s-1

5900 s-1

Nonlinearizing Modulus Function Parameters
4300 s-1

Nonlinearizing Modulus Function Parameters

Nonlinearizing Modulus Function Parameters Nonlinearizing Modulus Function Parameters
2100 s-1
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