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Event scheduling is one of many important decisions facing event marketers 

in the entertainment industry (i.e., how should multiple performances be scheduled 

across markets, across venues, and over time?).  While there is ample research 

examining the issues of costs and constraints associated with such a decision, 

virtually no research exists to examine the impact of these decisions on consumer 

demand.  Hence, the objective of this dissertation is to examine how consumers 

respond to event marketers’ scheduling decisions. 

First, a scheduling effect may arise from performances within a market.  

When performances are scheduled closely in distance or time, their similarity in 

venue locations or performance dates may result in a stronger relationship and 

influence ticket sales.  This relationship may have a positive effect on ticket sales 

because the similarity could signal the quality of an event and suggest the desirability 

of these performances.  Thus, these performances attract more consumers and sell 

more tickets.  However, the relationship could be negative.  When performances are 



 
 

close in distance or time, they become direct substitutes and compete for consumer 

patronage. 

Another effect arises from an event distribution across markets.  When an 

event travels from one market to another and each market has a different performance 

schedule, the word of mouth of this event may accumulate and carry over to later 

markets.  If so, market sales may be a good proxy of word of mouth.  How well (or 

poorly) an event sells in preceding markets may affect ticket sales in following 

markets.   

This dissertation consists of three essays to examine the abovementioned 

scheduling effects.  We contact a national ticket seller to acquire a dataset containing 

ticket sales of a family event traveling across 42 markets.  The first essay analyzes a 

performance schedule in one metropolitan market and investigates the scheduling 

effect on ticket sales.  The second essay employs all performance schedules in 42 

markets to study heterogeneous market responses and propose explanatory factors.  

Finally, the third essay incorporates the distribution sequence of this event and 

examines whether ticket sales in preceding markets have a carryover effect to 

influence ticket sales in later markets. 
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1 Introduction 

 

Scheduling is one of many important decisions facing event marketers in the 

entertainment industry.  To maximize revenues in a national market, event marketers have to not 

only make marketing mix decisions but also schedule performances across markets, across 

venues, and over time.  Hence, these scheduling decisions result in a performance schedule 

within a market or across a national market for an event to perform in different venues and on 

various days.  In this dissertation, we define a performance schedule as a summary of 

performances taking places in various venue locations and on different dates to examine 

potential effects of this performance schedule on ticket sales at a performance level and across 

markets. 

Similar to airline and movie scheduling decisions, event marketers rely on costs and 

constraints in their scheduling process.  They need to comply with venue availability and seating 

capacity to decide when to provide performances and how many performances to provide.  They 

can minimize the travel distance across markets if it is expensive to move from one market to 

another.  They can also shorten a performing period in a venue if the cost to rent a facility 

outweighs the benefits of having performances for a long period. 

While there is ample research examining the issues of costs and constraints associated 

with such scheduling decisions, virtually no research exists to examine the impact of these 

decisions on consumer demand.  In other words, it is unclear to event marketers how consumers 

in a market evaluate individual performances and how consumer inferences influence their 

purchase decisions such as which performance to buy and when to buy.  Hence, at the 
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performance level, consumers’ evaluations about performances in a schedule may affect the 

number of ticket sales of these performances and the pattern of these ticket sales over time.   

It is important for event marketers to understand potential drivers for the number of ticket 

sales sold and the pattern of these ticket sales over time.  Once they know the effects of these 

drivers, they will be able to estimate expected market demand and schedule performances 

accordingly.  In this way, they can avoid revenue losses from undersupply and minimizes costs 

resulting from potential oversupply.  Additionally, event ticket sales are often available for 

purchases several months or weeks in advance, and these tickets are not sold at a constant rate 

throughout the advance-selling period.  If event marketers understand the drivers for the sales 

rate, sales pattern can be easily established to monitor actual ticket sales over time and 

potentially adjust the marketing strategy as the event approaches. 

As such, this dissertation aims to investigate the impact of performance schedules on 

ticket sales for a live performance event.  Specifically, we propose two types of effects emerging 

from the scheduling decisions.  One type of effect is likely to exist among performances within a 

market because of the way these performances are scheduled across venues and dates.  For 

example, performances scheduled closely in distance or time might signal the quality of an event, 

the desirability of these venues or dates, or just the potential substitutes across venues or dates.  

If consumers make any of these inferences and perceive performances to be more or less 

favorable, the scheduling effect among performances within a market would influence how well 

each performance sells and when ticket sales occur. 

The other type of effect might develop across markets where an event performs one after 

another.  In other words, after an event performs in each market for a period, its word of mouth 

may arise and cumulate over time.  If the word of mouth travels across markets and consumers 
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have positive feedbacks, how well this event does in previous markets could influence ticket 

sales in later markets.  Because ticket sales in previous markets can capture the volume of word 

of mouth to some extent, it is plausible to observe ticket sales in previous markets to affect sales 

in later markets.   

This dissertation consists of three essays to examine those possible scheduling effects 

mentioned above.  For this purpose, we acquired a dataset containing ticket sales of a family 

event traveling across 42 markets.  We start by characterizing a performance schedule in a single 

market and investigating its impact on the number of ticket sales at a performance level and the 

pattern of these ticket sales over time (i.e., essay one).  From essay one, we conclude that 

performances scheduled close to each other in terms of distance can experience more ticket sales, 

and these tickets sell at a faster rate.  On the other hand, performances scheduled close to each 

other in terms of time tend to sell fewer tickets, but do not exhibit any significant changes in 

their sale patterns.  However, these results are established for one metropolitan market in our 

dataset.  Hence, we expand the level of analysis to all 42 markets in essay two to ensure 

scheduling effects generalizable for this event and examine the heterogeneity across markets.  

Essay two confirms consistent scheduling effects across markets and identifies explanatory 

factors for the heterogeneity in effect sizes across markets.  Finally, essay three proceeds to 

investigate scheduling effects at a market level and examines whether an event performing 

across markets affects ticket sales in these markets.  Specifically, essay three reveals that markets 

to which an event travels sell more tickets when event marketers disperse performance dates or 

employ multiple venues in these markets.  Additionally, these markets do not influence one 

another on their ticket sales, but their venues within the same market have such an effect.  

Although one may argue that the third essay does not have to be conducted after the first two 
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essays, we choose this sequence because we need to investigate the effect of a touring event 

across markets after we can understand and control for the effect of a performance schedule 

within a market. 

The purpose of the first essay is to lay the foundation of this dissertation and to test 

whether scheduling decisions influence ticket sales of performances within a market.  We begin 

by examining ticket sales at a performance level within a single market and differentiate between 

performances based on a set of scheduling characteristics.  We derive a set of scheduling 

characteristics based on the venue locations and performance dates.  According to these 

scheduling characteristics, we measure how closely performances are scheduled in terms of 

distance or time.  A performance of a shorter geographic or temporal distance hence indicates its 

similarity in venue location or performance date to other performances.   

After examining ticket sales of these performances as a function of their distance 

measures, we find that geographic and temporal distances between performances have different 

effects on ticket sales.  More specifically, a shorter geographic distance between performances 

leads to more tickets sold and a faster sales rate for a performance.  However, a shorter temporal 

distance between performances just causes decreases in the number of ticket sales but does not 

influence how fast tickets are sold.   

Although it is not clear why consumers process geographic and temporal distances 

differently, it is clear that they refer to the way performances are scheduled as a means to make 

inferences about these performances.  Their inferences about performances of a shorter 

geographic distance could be regarding the quality of an event, the desirability of their associated 

venues, or others.  As a result, these performances sell more tickets and attract consumers to 

purchase tickets early.  On the other hand, their inferences about performances of a shorter 
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temporal distance could be the high substitutability within a shorter period.  Therefore, these 

performances compete for consumer patronage and suffer from sales cannibalization.  

While the first essay demonstrates the significant effects of geographic and temporal 

distances on ticket sales, the results are for one market only.  Yet, event marketers often need to 

make scheduling decisions for more than one market.  It is not clear whether the results in this 

first essay are consistent across markets.  For this reason, the objective of the second essay is to 

use all performance schedules of the same event to investigate heterogeneous market responses 

and identify explanatory factors.  

To achieve this objective, we follow the same approach as in essay one and analyze all 

performance schedules.  For performances within their associated market, we characterize them 

by their venue locations and performance dates and compute their geographic and temporal 

distances to other performances.  Then, for each market, we model ticket sales of performances 

as a function of their distance measures to understand whether the heterogeneity exists in market 

responses.  We then model these market specific parameters as a function of their market 

characteristics such as market population and additional scheduling characteristics such as travel 

sequence along the distribution to explain any differences across markets.   

Our results show that market responses to performance schedules are heterogeneous and 

can be explained by market and additional scheduling characteristics.  Specifically, when a 

market has a bigger population, the effects of days of week and baseline attractiveness are 

attenuated.  Moreover, after an event travels to more markets that are geographically adjacent to 

a focal market, the focal market is less responsive to its baseline attractiveness and temporal 

schedule.  Finally, a current market in a late distribution sequence tends to respond more 

favorably to a Sunday performance.           
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Results in essay two hence suggest a possibility that markets where an event travels one 

after another may be dependent.  In other words, how following markets respond to their 

temporal schedule depends on how many geographically adjacent markets an event has visited.  

Another possibility is that there may be another means of integrating participating markets along 

a touring event such that ticket sales of preceding markets might directly influence ticket sales of 

following markets (rather than through the response parameters and geographically adjacent 

markets).  If so, it is important to incorporate the temporal sequence in an event distribution and 

study the impact of preceding markets on following ones. 

The primary objective of essay three, therefore, is to examine the impact of a sequentially 

distributed event across markets.  Additionally, we consider the endogeneity between supply and 

demand for an event in case expected market demand influences event marketers’ scheduling 

decisions and their schedule further affect ticket sales in a market.   

To achieve this objective, we model the supply and demand for an event simultaneously.  

We model ticket sales of each market as a function of its performance schedule and the 

sequential distribution of this event.  In addition to modeling the supply and demand 

simultaneously to account for the endogeneity, we use three variables to present the scheduling 

influences on market demand and employ the spatially weighted approach to incorporate 

different release timing and ticket sales of preceding markets in an event tour.   

Our results show that a market experiences more ticket sales when event marketers 

disperse performance dates or book multiple venues in this market.  Moreover, we show that the 

sequentially distributed event has an effect on ticket sales.  However, this effect is significant 

across venues of the same market but not across markets.  When an event performs in more than 
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one venue, its ticket sales in a preceding venue carry over to a later venue and influence its 

overall market sales.   

The organization of this dissertation is as follows.  Chapter 1 introduces the issues of 

scheduling facing event marketers and presents a general overview of each essay.  Chapters 2, 3, 

and 4 discuss the three essays, respectively, in depth.  Finally, Chapter 5 provides a brief 

summary of each essay, integrates essential results, and points out limitations and future 

directions to conclude this dissertation. 
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2 Essay 1: Scheduling to Sell: Examining the Impact of a Performance 

Schedule on Event Ticket Sales 

 

2.1 Introduction 

Scheduling is one of many important decisions facing event marketers in the 

entertainment industry.  Besides decisions regarding marketing activities (e.g., pricing and 

promotions), event marketers have to schedule performances across markets, across venues, and 

over time.  Typically, they rely on costs and constraints in their scheduling process (Etschmaier 

and Mathaisel 1985; Lohatepanont and Barnhart 2004; Eliashberg et al 2007) and use pricing, 

advertising, and days of week to describe how well an event can sell (Weinberg and Shachmut 

1978; Putler and Lele 2003; Leslie 2004) or when ticket sales occur (Moe and Fader 2009).   

While there is ample research examining the issues of costs and constraints associated 

with such scheduling decisions, virtually no research exists to examine the impact of these 

decisions on consumer demand.  In other words, it is unclear to event marketers how consumers 

in a market may evaluate a performance schedule of an event and how consumer inferences 

influence their purchase decisions such as which performance to buy and when to buy.  Hence, at 

the performance level, consumers’ evaluations about performances in a schedule may affect the 

number of ticket sales of these performances and the pattern of these ticket sales over time.   

From event marketers’ perspective, they need to understand potential drivers for ticket 

sales in terms of the number of ticket sales and the pattern of these ticket sales over time.  Once 

they know how these drivers influence market demand, they can estimate expected market 

demand accordingly and schedule performances to meet this market demand.  In this way, they 
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can avoid revenue losses from undersupply and prevent decreases in profitability due to 

oversupply. 

On the other hand, event ticket sales are often available for purchases several months or 

weeks in advance, and these ticket sales do not occur at a constant rate throughout an entire 

advance-selling period.  If event marketers understand drivers for tickets selling at a different 

rate, they can portray the sales pattern as a benchmark and monitor actual ticket sales over time.  

Consequently, once event marketers find an actual pattern deviating from the benchmark, they 

can take actions in time. 

In general, scheduling decisions affect the maximum number of tickets that an event can 

sell.  When event marketers schedule a live performance event, they often allocate multiple 

performances across markets, across venues, and over time.  Although the number of 

performances and the capacities of chosen venues constrain the maximum number of tickets an 

event can sell, empirical evidence shows that it is rare for the demand to exceed supply in this 

industry.  Therefore, one possible impact of scheduling decisions is to constrain the maximum 

possible of ticket sales for an event although the supply is usually well beyond the actual demand. 

Scheduling decisions might also influence consumer responses in a market.  In other 

words, when consumers realize performances are scheduled in various venue locations and on 

different dates, they may try to rationalize why event marketers schedule performances in this 

way and then make inferences about these performances.  If so, consumers could formulate 

different preferences for these performances to choose one performance to attend and purchase 

tickets at their desired time.  At a performance level, consumer responses influence how well 

individual performances sell and when ticket sales of these performances occur. 
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Therefore, the objective of this essay examines the effects of scheduling characteristics of 

performances on ticket sales.  Specifically, we use venue locations and performance dates as the 

scheduling characteristics of each performance, and we investigate whether performances 

scheduled closely in distance or time experience a different number and timing of ticket sales.   

We define the timing of ticket sales as tickets sold at different times in an advance-selling 

period, and earlier or later timing of ticket sales suggests ticket sales occurred in the earlier or 

later advance-selling period.  In other words, if scheduling characteristics have an effect, 

performances scheduled close in distance or time would experience more (or fewer) ticket sales.  

Their ticket sales would occur earlier (or later) than those scheduled farther apart in an advance-

selling period, ceteris paribus.    

One possible effect is to see performances scheduled close in distance or time 

experiencing more ticket sales and earlier timing of sales than those scheduled farther apart.  For 

example, if event marketers want to signal the desirability of some venue locations or 

performance dates, they could allocate more performances to those specific venues or dates.  In 

this way, consumers would perceive performances scheduled close in distance or time to be more 

attractive (due to the similar scheduling characteristics) and assign higher utilities to these 

performances.  As a result, these performances could sell more tickets and experience earlier 

timing of sales than other performances. 

Another possible effect is to observe performances scheduled farther apart in distance or 

time experiencing more ticket sales and earlier timing of sales than those scheduled nearby.  In 

other words, when consumers have higher uncertainty about whether they can attend an event in 

a particular venue at a specific time, event marketers could sparsely allocate performances across 

venues and dates.  In this way, consumers have more alternatives and higher flexibility regarding 
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when and where to attend.  Hence, the chance for them to attend this event increases, and 

performances scheduled farther apart will be able to sell more tickets and experience earlier 

timing of sales.  In contrast, performances scheduled nearby merely substitute one another within 

certain venues or dates.  Consumers do not have to decide which performance they want to buy 

and can delay their purchase timing.  Hence, these closely scheduled performances compete 

against consumer patronage and cannibalize ticket sales.  To sum up, scheduling characteristics 

might have two possible but contradictory effects on ticket sales.  We allow both possibilities 

and examine the effects of scheduling characteristics empirically.  

Our modeling objective is to measure the scheduling characteristics of each performance 

and study the impact of these scheduling characteristics on the number and timing of ticket sales.  

We consider the possibility that consumers evaluate venue locations and performance dates 

differently.  Thus, we differentiate the effect of scheduling across venues from the effect of 

scheduling across dates and then investigate these separately effects.  Specifically, we refer to the 

previous effect as the effect of geographic scheduling or the effect of a geographic schedule and 

the later effect as the effect of temporal scheduling or the effect of a temporal schedule. 

First, to measure the scheduling characteristics of performances, we characterize each 

performance in a schedule of an event by its venue location and performance date.  Then, we 

compute the geographic and temporal distances between performances to understand how 

closely (or distantly) performances are scheduled across venues and dates.  For example, 

performances of a shorter geographic or temporal distance to others are relatively closer to other 

performances than performances of a longer geographic or temporal distance. 

Second, to examine the number of ticket sales across performances, we consider the 

possibility that some consumers might evaluate the venue locations and performance dates in a 
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schedule but eventually do not attend.  To account for consumers who make purchases and those 

who miss out the opportunity to attend, we specify the number of ticket sales in the form of sales 

share within a potential target market.  Then, we examine the share of each performance and the 

non-buyer segment within this potential market.  We extend the competing destination model 

proposed by Fotheringham (1988) and model the share of each performance and the non-buyer 

segment as a function of the geographic and temporal distances between performances.  By 

doing so, we can understand whether scheduling characteristics influence ticket sales at a 

performance level.  In addition, using sales shares of individual performances and the population 

size in a target market as the number of potential buyers, we can obtain the number of ticket 

sales at a performance level.  We can also obtain a market penetration rate by taking the sum of 

sales shares across performances.   

Third, to examine the timing of ticket sales across performances, we first consider a 

general pattern of ticket sales for a performance.  That is, a performance sells fewer tickets in the 

beginning of its advance-selling period and obtains more sales over time with the most arriving 

in the later period or the week of the performance.  Although this is a general pattern over time, 

each performance still has a different sales rate.  Some performances experience ticket sales 

occurred early (i.e., earlier timing of ticket sales) but others experience ticket sales arrived later 

(i.e., later timing of ticket sales).  To account for variations in sales rate across performances, we 

employ a Weibull hazard model to capture the timing of sales over time for individual 

performances.  We further model the sales rate of each performance as a function of its 

geographic and temporal distances to other performances to understand whether these scheduling 

characteristics explain the heterogeneity in sales rate.  
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Finally, we consider a possible endogeneity in scheduling decisions.  Since the live 

performance industry has been established and event marketers have scheduled for a variety of 

events, event marketers may have incorporated their experiences into a scheduling process.  If so, 

a performance schedule is endogenously determined.  For example, event marketers might have 

scheduled more performances on weekends across all venues because they know these 

performances have higher performance attractiveness.  It is also likely that they have scheduled 

performances based on the responses they expect in this market.  Specifically, they may have 

scheduled performances closely in distance or time or farther apart, because they know 

consumers prefer performances of such scheduling characteristics.  In case such an endogeneity 

exists in the scheduling process, we control for this possibility in our model development. 

We contact a national ticket seller to obtain a dataset of a live performance event and use 

its ticket sales to examine the impact of its scheduling characteristics on ticket sales.  Although 

this event performed across several markets, we use the performances in the New York 

metropolitan market as a subset.  The reason is that performances scheduled in this market have 

richer variations in venue locations and performance dates.  In short, this event had 70 

performances across four venues in the New York metropolitan market and performed between 

March and June 2004.   

Our results indicate that the effect of geographic scheduling differs from the effect of 

temporal scheduling on the number and timing of ticket sales.  Performances scheduled closely 

across venues not only sell more tickets but also sell tickets at a faster rate.  In contrast, 

performances sparsely scheduled across dates sell more tickets but do not have an impact on the 

timing of sales.   
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Our explanation for the observed effect of geographic scheduling is that event marketers 

may attempt to signal the desirability of some venues by scheduling more performances in those 

venues.  Although the desirability of these venues may also be owing to population around these 

venues and consumers’ shorter travel distance to these venues, we control for this possibility in 

our benchmark models and still find a significant effect of geographic scheduling.  Therefore, in 

contrast with performances scheduled in distant venues, performances scheduled in nearby 

venues signal higher desirability or popularity to consumers.  As a result, more consumers are 

interested in these performances and are more willing to purchase tickets earlier.  

On the other hand, our explanation for the observed effect of temporal scheduling is that 

event marketers try to accommodate consumers’ uncertain preferences to performance dates by 

scheduling performances sparsely across dates.  In this way, performances on dispersed dates (or 

of a longer temporal distance) provide consumers higher flexibility and further sell more tickets.  

In contrast, performances within a short time span (or of a shorter temporal distance) substitute 

one another and cannibalize ticket sales. 

In addition to the impact of scheduling characteristics on ticket sales, our results also 

indicate that there exists some endogeneity in the scheduling process.  Event marketers consider 

how attractive performances are when they schedule performances across dates.  However, our 

results show that event marketers have not yet incorporated the effects of geographic and 

temporal scheduling when they allocate performances across venues and dates. 

The organization of this essay is as follows.  We first review past works relevant to 

scheduling and event ticket sales.  Then, we present our conceptual framework and model 

development.  After a detailed data description, we provide our results and discuss possible 

rationale behind the scheduling effects.  We also conduct two policy simulations to show how re-
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allocating performances to a different venue or date would result different number and timing of 

ticket sales.  Finally, we conclude this essay with limitations and next steps.   

 

2.2 Literature Review and Conceptual Framework 

2.2.1 Airline and Movie Scheduling 

Because scheduling a live performance event is an important yet understudied research 

stream, we search literature in other contexts where scheduling is also critical to managers.  We 

find airline and movie scheduling literature a good fit because managers have a common 

objective to schedule a series of flights, screens, or performances to meet the market demand.  

Therefore, we discuss studies in airline and movie scheduling in turn. 

Airline Scheduling 

Airline scheduling is a complex system.  It involves demand estimation, pricing for 

different segments, flight scheduling for various routes, fleet assignments for individual flights, 

crew scheduling, aircraft rotation, flight gate assignments, and many other decisions (Etschmaier 

and Mathaisel 1985; Dobson and Lederer 1993; Jarrah et al 2000; Lohatepanont and Barnhart 

2004; Dorndorf et al 2007).  Therefore, any small changes require a series of adjustments in the 

entire system. 

Traditionally, airline scheduling has been a constrained-optimization decision.  

Researchers use historical data to estimate demand and consider the expected demand to 

construct flight schedules (Dobson and Lederer 1993; Lohatepanont and Barnhart 2004).  After 

schedule constructions, other departments evaluate proposed schedules to set airfares, assign 

aircrafts, and make other operational related decisions (Etschmaier and Mathaisel 1985; Dobson 

and Lederer 1993; Jarrah et al 2000; Dorndorf et al 2007).  Finally, they examine associated 
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profits and revise flight schedules to ensure profit maximization.  Therefore, in this iterative 

decision process, scheduling is primarily constraint-driven.  An airline managers’ objective is to 

maximize profitability while minimizing operational costs within feasible boundaries. 

The similarity between airline scheduling and performance scheduling is the common 

scheduling nature.  Airline managers and event marketers have to decide when and where flights 

or performances have to take place.  Their conceptual objective is the same because they aim to 

launch a schedule to extract the most demand in a given market.  However, the demand in the 

airline schedule is either treated as exogenous (McGill and van Ryzin 1999), based on historical 

data (Etschmaier and Mathaisel 1985), or dependent on price and departure and arrival times 

(Dobson and Lederer 1993).  Researchers assume that dropping flights always leads to losses in 

revenues (Lohatepanont and Barnhart 2004) and have not yet investigated how scheduling 

density (e.g., frequencies of flights) influences ticket demand. 

Movie Scheduling 

In the movie industry, movie scheduling takes place after movie distributors release 

movies to exhibitors.  The primary task that exhibitors perform is to allocate a number of screens 

within a theater to meet the local demand for this movie (Swami, Eliashberg, and Weinberg 1999; 

Eliashberg et al 2009).  Compared with advertising effect on box office revenues, movie 

scheduling is a relatively new research direction in this industry (Eliashberg, Elberse, and 

Leenderss 2006).    

When it comes to the implementation of movie scheduling, exhibitors have to select 

movies that might contribute higher revenues because they have a limited number of screens in a 

theater.  They usually start with estimating demand for a variety of movies and then select a 

smaller set of movies to play (Swami et al 1999; Eliashberg et al 2007; Eliashberg et al 2009).  
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After they choose movies of interest, they allocate available screens to these movies (Elberse and 

Eliashberg 2003).  Although the general principle is that the longer exhibitors play a movie, the 

more revenues they get, the decreasing demand over time and the contract with distributors also 

determine how long a movie shows in a theater (Swami et al 1999).  Finally, exhibitors refer to 

box office revenues in a previous week, movie genres, days of week, and times of day to revise 

their scheduling decision on a weekly basis (Elberse and Eliashberg 2003; Eliashberg et al 2007).  

Movie scheduling is similar to airline scheduling in the sense that both contexts heavily 

rely on the operational constraints, and profitability maximization is the top priority.  It is also 

similar to performance scheduling because within these contexts the purpose is to serve local 

demand by offering movies or performances at various days of week or times of day.  However, 

researchers in movie scheduling usually assumes demand to be exogenous (Swami et al 1999; 

Eliashberg et al 2007; Eliashberg et al 2009) or influenced by marketing activities (Elberse and 

Eliashberg 2003).  They have not yet considered the competition between theaters (Eliashberg et 

al 2006) or the impact of scheduling density on box office revenues.   

To sum up, the focus of airline and movie scheduling is constraint optimization and profit 

maximization.  Demand is often assumed exogenous and influences scheduling decisions.  

Whether these scheduling decisions influence demand deserves further investigation.  Therefore, 

the objective of this essay is to examine the impact of scheduling on ticket sales in the context of 

a live performance event.  Next, we review current research in event tickets to understand 

existing drivers for ticket sales before we discuss how scheduling could affect ticket sales. 

2.2.2 Event Tickets 

Live performance events typically refer to concerts, musicals, or circus acts, etc. that 

perform live in front of an audience.  Because an event often provides multiple performances 
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across venues and dates, understanding how well each performance can sell is an important issue 

for event marketers and researchers.  Hence, we review relevant works and discuss factors that 

influence the number and timing of ticket sales. 

Number of Ticket Sales 

Identifying drivers of ticket sales has been a common topic studied in marketing, 

economics, and performing arts literature.  Researchers have used product related drivers, 

consumer characteristics, and seasonality to explain consumer attendance (Weinberg and 

Shachmut 1978; Currim, Weinberg, and Wittink 1981; Venkatesh and Mahajan 1993; Reddy, 

Swaminathan, and Motley 1998; Putler and Lele 2003; Leslie 2004).  According to the number 

of events involved in the drivers, we further classify product-related drivers into (1) assortment-

related drivers, (2) event-related drivers, and (3) performance-related drivers.  We discuss these 

drivers and their importance in turn. 

Assortment-related drivers often refer to factors related with a bundle of events.  In other 

words, this type of drivers exists when multiple events are grouped together in a product offering.  

Researchers have shown that different bundle size, event types in a bundle, and associated 

seating benefits can attract varying degrees of demand because consumers have heterogeneous 

preferences to genres (e.g., operas, musicals), language types (e.g., Italian, English), and 

willingness to pay (Currim, Weinberg, and Wittink 1981; Havlena and Holak 1988; Venkatesh 

and Mahajan 1993).  On the other hand, event-specific drivers refer to information of a specific 

event (e.g., pricing or critics’ reviews for a Broadway show).  While genre, pricing, and 

advertising are important for all types of events (Weinberg and Shachmut 1978; Weinberg 1986; 

Reddy et al 1998; Corning and Levy 2002; Putler and Lele 2003; Leslie 2004), previews and 

critics’ reviews are more common for Broadway shows or theatrical events (Reddy et al 1998; 
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Corning and Levy 2002).  Because a venue manager’s objective is to increase ticket sales within 

a venue, they usually achieve their objective by bundling various events in a subscription 

package or scheduling a variety of events to attract consumer attendance.  Therefore, the first 

two types of drivers are important from a venue manager’s perspective. 

Performance-specific drivers, on the other hand, do not limit the number of events 

needed but focus on the lower level of characteristics such as days of week or times of day 

(Weinberg and Shachmut 1978; Corning and Levy 2002; Putler and Lele 2003; Leslie 2004).  In 

contrast with the first two types of drivers, this type of drivers is important to event marketers, 

especially when they promote a single event that tours across venues and dates.  In other words, 

when an event has multiple performances across venues and dates, the assortment-related drivers 

are not applicable to a single event.  The event-related drivers are important yet pricing and 

advertising are often planned at a market level and result in a constant effect across all 

performances.  Consequently, event marketers can only rely on days of week and times of day as 

descriptive drivers to differentiate ticket sales of multiple performances. 

The fourth type of driver is consumer characteristics.  They often refer to consumers’ 

income levels, willingness to pay, driving distances to venues, and tastes for genres (Moore 1966; 

Currim et al 1981; Venkatesh and Mahajan 1993; Leslie 2004).  Although this type of drivers 

allow event marketers and venue managers to understand consumer preferences better, it is 

relatively difficult for event marketers to identify their potential consumers, especially when an 

event travels to a new market and there is no previous consumer information available to event 

marketers.  The last type of driver is seasonality.  It generally refers to the season (i.e., spring, 

summer, fall, and winter) that events or performances takes place and is commonly used as a 

control variable (Weinberg and Shachmut 1978; Weinberg 1986; Corning and Levy 2002). 
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As such, although there are five types of descriptive drivers for event tickets, there are 

not plenty of drivers useful for event marketers to understand variations in ticket sales at a 

performance level.  Therefore, it is important for researchers to investigate additional drivers to 

explain such a variation.   

Timing of Ticket Sales 

To attend an event, consumers have to purchase tickets no later than its performance date.  

Throughout an advance-selling period, their purchase timing may range from very early (i.e., 

advance purchase) to the last minute (i.e., spot purchase).  Historically, there are few studies in 

event ticket purchases.  However, there are many in other contexts such as airline ticket 

purchases.  Thus, we refer to studies in other contexts to discuss firms’ motivation to advance 

sell and consumers’ motivation to advance purchase tickets for an event. 

Generally, advance selling is common in the service-related industry or in a long lead-

time manufacturing industry.  Although it is not necessary to charge lower prices in an advance-

selling period (Xie and Shugan 2001), firms still tend to use a two-stage pricing (i.e., charge 

discounted rate in the early market but a regular rate in the spot market) as the primary tool to 

attract consumers’ early purchases and secure some demand well in advance (Desiraju and Xie 

1999; Shugan and Xie 2000; Cachon 2004; McCardle, Rajaram, and Tang 2004; Tang et al 

2004).  Two good examples of advance selling are that, first, a venue manager offers a bundle of 

events at a lower rate to attract early arrivals of subscription ticket sales (Currim, Weinberg, and 

Wittink 1981; Havlena and Holak 1988; Venkatesh and Mahajan 1993) and, second, an airline 

company charges a cheaper airfare to attract leisure travelers’ advance purchases (Weatherford et 

al 1993; Gallego and van Ryzin 1994; Talluri and van Ryzin 2004). 
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Regarding consumers’ motivation to advance purchase, extant literature has suggested 

various reasons for consumers’ early versus spot purchases.  In addition to reservation prices, 

consumers’ uncertainty toward the consumption state also determines their purchase timing 

decisions (Desiraju and Shugan 1999; Shugan and Xie 2000).  Specifically, they tend to 

procrastinate when they have higher uncertainty about whether they can attend an event in the 

future.  In contrast, they tend to purchase early when they are more certain to attend in the future.  

Other psychological drivers include consumption utility and personal characteristics.  For 

example, consumers may want to savor their vacation experience better by paying earlier (Prelec 

and Loewenstein 1998).  Their tendency of being an innovator in their group versus being a 

follower also affects their purchase timing decision.  Innovators tend to purchase earlier and 

influence followers in the later period (Moe and Fader 2002). 

Although pricing has been a major factor to affect consumers’ purchase timing, a recent 

study by Moe and Fader (2009) illustrated a need to re-evaluate the impact of pricing on the 

timing of ticket sales.  Specifically, they examined the timing of ticket sales across different 

price tiers in the context of event tickets and found that consumers who purchase in advance are 

not affected by the price discounts or face values of tickets.  This result is very different from 

airline tickets.  Perhaps it is because there are no so-called “business” or “leisure” buyers in the 

context of event tickets.  Hence, the reason for consumers to advance purchase event tickets is 

not clear and deserves further investigation.   

2.2.3 Impact of Scheduling on Ticket Sales  

The objective of this essay is to examine the impact of scheduling on ticket sales of 

performances of the same event.  Because performances are scheduled with different frequencies 

across venues and dates, the similarity in these scheduling characteristics varies across 
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performances.  We refer to literature in context effect, signaling, retail location, and distribution 

services for possible effects of these scheduling characteristics. 

Context Effect 

Context effect has been extensively studied by behavioral literature (Huber, Payne, and 

Puto 1982; Huber and Puto 1983; Simonson 1989) where researchers investigate how 

alternatives of dominated or dominating attributes influence consumer choices.  In general, this 

stream of literature proposes violation of proportionality (Luce 1959). Researchers examine 

situations when products of similar attributes are more attractive (i.e., attraction effect) and when 

they are substitutable (i.e., substitution effect) and where alternatives in the middle level of 

attributes are more favorable (i.e., compromise effect) (Huber et al 1982; Huber and Puto 1983; 

Simonson 1989).  In other words, when consumers have uncertain preferences to product 

attributes, they would choose alternatives based on various reasons (Simonson 1989).  A 

dominating alternative may have a higher choice share under the attraction effect although it may 

have a lower share under the substitution effect (Huber at al 1982; Huber and Puto 1983).  

However, it is also likely that consumers prefer the new added alternative that has compromised 

attributes under the compromise effect. 

The relevance between the context effect and the scheduling effect is that similarity 

between alternatives (i.e., performances in this case) could influence consumer perception and 

choice decisions.  As consumers pay more attention to alternatives that share a similar attribute 

level (Huber et al 1982), they might focus on evaluating performances in the same or near 

venues (or on the same or near dates) and find these performances more attractive or substitutive.  

At the aggregate level, the similarity in these scheduling characteristics could further determine 

how well these performances sell.  On the other hand, performances of compromised attributes 
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(e.g., in a preferred venue but on a less preferred date or vice versa) might also sell differently 

from other dominating or dominated performances. 

Signaling 

Signaling has been studied in marketing to address the issue of product quality.  The 

assumption for signaling to work is under the separating equilibrium (Chu and Chu 1994) that 

manufacturers are credible and have high transaction costs to signal (Moorthy and Srinivasan 

1995).  Therefore, credible manufacturers can use money-back guarantees (Moorthy and 

Srinivasan 1995) or an extended warranty (Padmanabhan and Rao 1993; Lutz and Padmanabhan 

1995; Soberman 2003) to signal the quality of their product.  They can also sell their products in 

reputable retailers for consumers to infer the reputation of manufacturers, especially when their 

reputation is not directly observable to consumers (Chu and Chu 1994; Purohit and Srivastava 

2001). 

We relate signaling with performance scheduling because it is likely that event marketers 

want to signal the performing quality of an event to a market.  Because sending a false signal can 

be expensive (e.g., incremental costs for multiple performances and revenue losses from empty 

seats), we assume event marketers are credible.  They could increase the number of 

performances in a market to signal event popularity.  They could also allocate these 

performances densely in some venues or on particular dates to suggest popularity or desirability 

of these venues or dates.  As a result, depending on which signal event marketers want to send, 

they will schedule performances differently.  After consumers receive the signal and believe the 

credibility, they could adjust their preferences and make purchase decisions accordingly. 
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Retail Location 

In the retail industry, store locations influence consumers’ shopping destination and store 

choices (Fotheringham 1988).  Therefore, collocating or keeping some distance away from 

primary competitors has been an important issue in retail location literature (Mazzeo 2002; 

Vitorino 2007; Zhu and Singh 2009).  Although some studies show that shorter geographic 

distance between retailers leads to direct competition and decreases in store profitability (Watson 

2005; Orhun 2005; Seim 2006; Thomadsen 2007; Zhu and Singh 2009; Zhu, Singh, and 

Manuszak 2009), other studies indicate benefits for retailers to locate closely (Mazzeo 2002; 

Vitorino 2007; Zhu, Singh, and Dukes 2007).  For example, retailers collocating in a shopping 

center provide consumers a larger product assortment (across stores) such that these retailers can 

attract more consumers to the shopping center (Vitorino 2007; Zhu et al 2007).  Motels, on the 

other hand, collocate in a highway exit to facilitate consumer search and attract more traffic 

(Mazzeo 2002). 

The relevance between retail location and performance scheduling is that event marketers, 

like retailers, have to consider how far in distance or time they should keep performances apart 

to avoid substitution within the same event (i.e., cannibalization).  On the other hand, event 

marketers might also consider scheduling performances closely enough to provide more 

alternatives or signal the popularity to attract more demand.  Therefore, if the substitution 

between performances outweighs the collocating synergy, performances scheduled closely could 

suffer fewer ticket sales and slow sales arrival (because consumers can always wait until the last 

minute).  Otherwise, densely scheduled performances would experience more ticket sales and 

faster sales arrival.   
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Distribution Services 

In addition to abovementioned spatial differentiation in retail location, retailers also try to 

differentiate themselves from other competitors by improving their distribution services 

(Betancourt 2004).  Distribution services generally refer to the extent of services that retailers are 

able to deliver to consumers.  These services include product assortment, assurance of product 

delivery at consumers’ desired time or in the desired form, spatial accessibility between stores 

and consumer residences, and so on (Betancourt 2004).  For example, retailers can provide a 

larger assortment of products, extend business hours, or open more store locations to enhance 

their distribution services. 

In the live performance industry, similarly, both venue managers and event marketers 

may aim to enhance their distribution services.  To accommodate consumers who have different 

tastes, venue managers may improve their assortment by scheduling a variety of events in their 

venues.  On the other hand, event marketers may consider consumers who have state uncertainty 

about to which venue they want to go and which date they can attend.  In this case, they might 

schedule performances in multiple venues and disperse performance dates to allow consumers to 

attend at their own convenience.  In other words, if event marketers schedule performances 

sparsely across venues and dates, these performances could accommodate more consumers at 

different times and in different venues.  In this way, sparsely scheduled performances will sell 

more than densely scheduled performances.  

2.2.4 Conceptual Framework 

Although there may be several reasons to explain event marketers’ scheduling decisions 

and consumers’ decision process, this information is unfortunately unobservable to researchers.  

Hence, we can only use the abovementioned literature to speculate potential scheduling effects.  
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To sum up, if event marketers want to signal quality, they will increase the number of 

performances and schedule these performances closely in distance or time to attract more 

consumers.  Then, consumers will perceive these performances to be more popular.  

Consequently, more consumers will attend these performances and these consumers will be more 

likely to purchase tickets in advance.  On the other hand, if event marketers schedule 

performances to enhance their distribution services, they will schedule performances across 

multiple venues and disperse performance dates farther apart.  In this way, performances 

scheduled farther apart are able to accommodate more consumers and sell more tickets.  Yet, it is 

still possible for consumers to procrastinate given their uncertainty for the consumption state.  As 

such, based on different streams of literature, we can anticipate different scheduling mechanisms 

and consumer responses.   

However, if event marketers do not have a specific scheduling strategy but schedule 

performances to comply with operational constraints such as venue availability and seating 

capacity, their scheduling process is similar to airline and movie scheduling.  Then, the impact of 

scheduling could be positive or negative.  According to the retail location literature, event 

marketers may expect performances in close distance or time to have a substitutive relationship 

and cannibalize ticket sales.  They may also expect a collocation synergy between performances 

to attract more demand.  From consumers’ perspective, they may make their own inferences 

about these performances based on different contexts.  According to the attraction effect, they 

may perceive performances of similar scheduling characteristics to be more attractive.  Hence, 

these performances will sell more tickets and these ticket sales will arrive earlier.  In contrast, 

consumers may perceive these performances to be highly substitutable (i.e., substitution effect) 
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and delay their purchase timing.  If so, these performances will sell less and sell more slowly 

than do those of dissimilar scheduling characteristics. 

However, event marketers may not just simultaneously schedule performances densely 

(or sparsely) across venues and dates.  They may sometimes schedule performances densely in 

certain venues to signal venue popularity yet disperse performance dates to accommodate 

consumers’ uncertainty of attendance timing.  Similarly, they may schedule performances 

densely on certain dates as popular leisure activities but allocate these performances in several 

distant venues to increase spatial accessibility.  Consequently, if event marketers have separate 

objectives and schedule accordingly, consumers will find performances scheduled closely in 

distance (or time) but distantly in time (or distance).  In this way, performances have different 

scheduling characteristics across venue locations and performance dates, and consumers will 

evaluate a geographic and temporal schedule separately.  Hence, the effect of geographic 

scheduling may differ from the effect of temporal scheduling.  We allow this possibility and 

empirically test these scheduling effects. 

On the other hand, to study the impact of performance schedules on ticket sales, we also 

have to control for the attractiveness of performances on different days of week and the potential 

endogeneity between scheduling decisions and expected market response.  In other words, if 

event marketers have some knowledge about how a market responds to a performance schedule 

and then use this knowledge to schedule performances, the performance schedule will be 

endogenously set and the scheduling impact will be biased.  In case the endogeneity exists, we 

propose to examine the effect of performance schedule on ticket sales and control for the 

endogeneity simultaneously.  Figure 2-1 below summarizes our conceptual framework.   

Figure 2-1: Conceptual Framework 
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2.3 Model Development 

2.3.1 Model Overview 

To test the potential impact of scheduling, our modeling objective is to measure the 

scheduling characteristics of each performance and study the impact of these scheduling 

characteristics on the number and timing of ticket sales.  Thus, our model development consists 

of four steps.  First, we measure the scheduling characteristics to capture the similarity or 

dissimilarity in venue locations and performance dates across performances.  Second, we 

examine the number of ticket sales across performances.  Because it is possible that some 

consumers evaluate the venue locations and performance dates but do not attend (i.e., non-

buyers), we incorporate the impact of scheduling characteristics on the size of non-buyer 

segment.  In this way, event marketers can understand how much market potential they have 

captured and how much they have missed out.  Third, we examine the timing of ticket sales 

across performances.  Because each performance sells tickets at a different rate and experience 

different timing of ticket sales in an advance-selling period, it is important to capture 

heterogeneous sales patterns and explain the differences.  Finally, we consider a possible 

endogeneity between performance scheduling and market response.  If event marketers know the 

effects of scheduling on the number of ticket sales, they could allocate performances based on 

the positive or negative effect and expected performance attractiveness.  Under this situation, 

performance scheduling is endogenous with market response (Manchanda, Rossi, and 

Chintagunta 2004).  It is important to control for this endogeneity to ensure unbiased model 

results.  Figure 2-2 below summarizes our model development and we discuss each modeling 

element in turn. 

Figure 2-2: Model Overview 
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2.3.2 Scheduling Characteristics 

To capture the similarity or dissimilarity in scheduling characteristics of performances, 

we refer to a performance schedule of an event and differentiate between performances based on 

their venue locations and performance dates.  We create two measures to represent the 

scheduling similarity in this performance schedule to understand how performances are 

scheduled closely or distantly across venues and dates.  

Specifically, we take the inverse geographic distance (in miles) between performances as 

the geographic density measure and the inverse temporal distance (in days) between performance 

dates as the temporal density measure (Fotheringham 1988).  In this way, performances 

scheduled in the same or proximate venues will have a higher value in geographic density to 

represent similarity in the geographic schedule.  Performances scheduled on the same or near 

dates will have a higher value in temporal density to show similarity in the temporal schedule.  

Therefore, our specifications for the density measures are as follows: 
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where GEOj is the geographic density for performance j (j=1,2,.., J), TMPj is the temporal 

density for performance j, milesjj’ represents the geographic distance between venues of 

performance j and j’ (j≠j’), and daysjj’ represents the temporal distance between performance 

dates of j and j’. 

To compute the distance between venue locations and performance dates, we use driving 

distance (in miles) between the venues of j and j’ as milesjj’.  We also specify milesjj’=1 for 
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performances in the same location to avoid the denominator equal to zero.  In addition, we use 

the absolute value of distance (in days) between performances j and j’ as daysjj’.  However, we 

specify the denominator as (1+daysjj’) in equation (2) to avoid performances on the same date 

having a zero temporal distance.   

Therefore, with respect to a target performance j, after taking its average (inverse) 

geographic and temporal distance to other performances, GEOj and TMPj suggest its average 

geographic and temporal density.  The higher GEOj and TMPj of this performance, the closer this 

performance is to other performances.  As such, this performance is densely scheduled around 

other performances and has higher similarity in venue locations and performance dates. 

2.3.3 Number of Ticket Sales 

To examine the number of ticket sales across performances and understand how much 

market potential event marketers miss out, we apply a competing destination model by 

Fotheringham (1988) and specify the share of each performance and the non-buyer segment as a 

function of scheduling characteristics.  By doing so, we can understand whether geographic and 

temporal scheduling influence ticket sales at a performance level.  In addition, using sales shares 

of individual performances and the population size in a target market, we can obtain the number 

of ticket sales expected at a performance level.  We can also obtain a market penetration rate by 

summing sales shares across performances.   

Competing Destination Model  

Among various extensions of the logit model, we consider the competing destination 

model proposed by Fotheringham (1988) as a good alternative.  The competing destination 

model extends the traditional logit model by releasing the property of independence from 

irrelevant alternatives (IIA) (Luce 1959; McFadden 1974).  It examines consumers’ spatial 
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choice set as a function of geographic distance between stores.  Then, the composition of the 

spatial choice set further influences consumers’ store choices.  If stores of shorter geographic 

distance have higher chance to be in consumers’ choice set, these stores will attract more 

consumers and have higher choice shares.  However, if stores of shorter geographic distance 

have a lower chance to be in consumers’ choice set, these stores will substitute one another and 

have lower choice shares.  The specification of the competing destination model is as follows 

(Fotheringham 1988): 

(3) ௜ܲ௝ ൌ
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where Pij denotes the probability that consumer i shops in retail outlet j, Vij represents the 

deterministic utility of retailer j to consumer i, and l୧ሺj א Mሻ is the likelihood that retailer j is in 

consumer’s spatial choice set.  After aggregating Pij across consumers, Pj represents the market 

share of a retailer j in a studied market of interest (González-Benito 2005).   

Moreover, to measure the likelihood of spatial choice set, Fotheringham specified the 

likelihood as a function of average inverse geographic distance between retail stores 

(Fotheringham 1983; Fotheringham 1988) and empirically test the role of geographic distance: 

(4) ݈௜ሺ݆ א ሻܯ ൌ

ۉ

ۈ
ۇ 1
J െ 1෍

w୨′

d୨୨′

J

୨′ୀଵ
୨ஷ୨′ ی

ۋ
ۊ

θ

 

where djj’ is the geographic distance between a target store j and a competing store j’, wj’ is the 

weight for the competing store j’, and θ is the parameter indicating the role of geographic 

distance.  More specifically, if θ> 0, stores of shorter geographic distance to other stores will 

have higher chance to be included in consumers’ choice set.  If θ< 0, in contrast, stores will have 
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lower chance to be included.  Finally, if θ= 0, geographic distance does not affect the 

composition of consumers’ spatial choice set. 

Extension of Competing Destination Model 

To examine the separate effects of geographic and temporal scheduling, we extend the 

competing destination model by incorporating the geographic and temporal density values and 

allowing separate parameter values for these scheduling characteristics.  In addition, we include 

the non-buyer segment in a market as another alternative for potential buyers.  In this way, we 

can understand how scheduling characteristics affect the sales share of performances and the size 

of non-buyer segment.  Our adaption is as follows: 

(5) ܲሺ݆ሻ ൌ
exp൫ ௝ܸ൯ ڄ ܧܩ ௝ܱ

ఏభܶܯ ௝ܲ
ఏమ

1 ൅ ∑ exp൫ ௝ܸ′൯ ڄ ܧܩ ௝ܱ′
ఏభܶܯ ௝ܲ′

ఏమJ
୨′ୀଵ

 

where P(j) denotes the sales share of performance j, Vj represents the attractiveness of this 

performance (which we will discuss later), GEOj and TMPj are the geographic and temporal 

density values of performance j, and parameters θ1 and θ2 represent the scheduling effects.   

If θ1 or θ2 > 0, geographic or temporal scheduling has a positive effect.  Performances of 

similar venue locations or performance dates will enjoy higher sales share.  In contrast, if θ1 or θ2 

< 0, geographic or temporal scheduling has a negative effect.  Performances of similar venue 

locations or performance dates will substitute one another and suffer from sales cannibalization.  

However, if θ1 or θ2 = 0, scheduling has no impact on sales share.  Moreover, we can use the 

population size in a target market (which we will discuss in the data section), POP, to calculate 

the expected number of ticket sales for any performance: Salesሺjሻ ൌ POP ൈ Pሺjሻ.  We can also 

obtain the market penetration rate by summing sales share across performances ቀi. e. , ∑ PሺjሻJ
୨ୀଵ ቁ 

and understand the size of non-buyer segment as 1 െ ∑ PሺjሻJ
୨ୀଵ .   
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To measure and control the effect of performance attractiveness (Vj), event ticket 

literature has suggested various drivers for ticket sales that can be a good proxy for attractiveness.  

However, because we focus on analyzing multiple performances of the same event, only 

performance-related drivers are applicable.  Therefore, we specify Vj as a function of days of 

week indicators (Friday, Saturday, and Sunday).  The reason for us to choose these three days of 

week indicators is that past studies indicate that performances on those days have higher 

attractiveness (Corning and Levy 2002; Putler and Lele 2003).  Hence, we specify performance 

attractiveness as a control covariate for the number of ticket sales and incorporate a random error 

term for unobserved attractiveness: 

(6) V୨ ൌ α଴ ൅ αଵFRIDAY୨ ൅ αଶSATURDAY୨ ൅ αଷSUNDAY୨ ൅ ε୨   where   ε୨~Nሺ0, σଶሻ 

where α0 reflects the baseline attractiveness, α1, α2, and α3 suggest the effects of days of week on 

incremental performance attractiveness for a Friday, Saturday, or Sunday performance, and E[Vj] 

represents the expected performance attractiveness.  

To sum up, we adapt the competing destination model to understand the effects of 

geographic and temporal scheduling on the sales share of performance and the size of non-buyer 

segment.  We also control for the performance attractiveness due to the days of week effects.  

Although a linear regression or spatial model can also examine the number of ticket sales across 

performances, our model specification is more appropriate than a regression or spatial model.  A 

linear regression is commonly used in event tickets literature (Moore 1966; Weinberg and 

Shachmut 1978; Weinberg 1986; Reddy et al 1998; Corning and Levy 2002).  However, it 

cannot examine the sales share of each performance and the non-buyer segment at the same time 

In other words, a linear regression does not allow us to understand how much of the market 

performances have captured and how much they have left untapped.  In contrast, our proposed 
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model can accomplish all of these limitations of a linear regression model.  In comparison to a 

spatial model, the model proposed in this dissertation specifically measures the effects of 

performance schedules as drivers of ticket sales and not just modeling the spatial correlation 

between performances (Bradlow et al 2005).   

2.3.4 Timing of Ticket Sales 

To examine the timing of ticket sales across performances, we first consider a typical 

sales pattern for a performance.  In general, a performance starts selling tickets 12 weeks prior to 

its performing date.  It usually sells fewer tickets in the beginning of its advance-selling period 

and obtains more sales over time with the most arriving in the later period or the week of the 

performance.  Given this typical pattern, however, each performance still has a different sales 

rate.  Some performances experience ticket sales arrived earlier (i.e., earlier timing of ticket sales) 

but others experience ticket sales arrived later (i.e., later timing of ticket sales). 

Figure 2-3 below illustrates three patterns of ticket sales in an advance-selling period.  

First, the solid line in Figure 2-3 (Case 1) is one common pattern, where consumers have low 

probability to purchase well in advance.  As time passes, the probability of a ticket transaction 

slowly increases and peaks at the week of performance.  However, there are some situations 

where consumers expect performances to be of greater performance attractiveness or higher 

popularity.  As a result, they are more willing to purchase earlier and result in more ticket sales 

arriving in the middle of an advance-selling period, as shown in the dotted line of Figure 2-3 

(Case 2).  Yet, there is another case when consumers think performances of lower performance 

attractiveness and/or of higher substitutability.  In this instance, they do not want to commit early 

and wait until the week (or the day) of a performance.  Therefore, ticket sales for such a 
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performance are very low in the entire advance-selling period and only peak in the spot market.  

The broken line in Figure 2-3 (Case 3) represents this pattern. 

Figure 2-3: Pattern of Ticket Sales Over Time 

Weibull Hazard Model 

Although performances usually follow a similar pattern as seen in Figure 2-3 (Case 1), 

there still exists variability of sales pattern among performances (e.g., Case 2 and Case 3 in 

Figure 2-3).  To account for variations in sales rate across performances, we need a model that is 

flexible enough to capture various sales patterns and examine the performance-specific sales 

rates.  Hence, we specify a Weibull hazard model to fit the timing of ticket sales because of its 

flexibility in capturing various sales patterns, as shown in Figure 2-3.  A Weibull hazard process 

has the following properties: 

(7) ௝݄ሺݐሻ ൌ ௝ߣ ௝ܿݐ௖ೕିଵ 

௝ܵሺݐሻ ൌ ݁ିఒೕ௧
೎ೕ  

ሻݐ௝ሺܨ ൌ 1 െ ௝ܵሺݐሻ ൌ 1 െ ݁ିఒೕ௧
೎ೕ  

where, with respect to a performance j, hj(t) is the instantaneous hazard rate for a ticket purchase 

made at time t given this transaction has not yet been made, Sj(t) is the survival rate for a ticket 

purchase that has not yet occurred up to time t, and Fj(t) is the cumulative probability for sales to 

arrive over time.  More specifically, λj is the slope parameter for performance j to represent how 

fast ticket sales arrive (λj >0), and cj is the shape parameter to capture an overall pattern of ticket 

sales (cj >0).   

For any discrete time t (e.g., week) in an advance-selling period, the probability of a 

ticket purchase becomes: 
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(8) ௝ܲሺݐሻ ൌ ሻݐ௝ሺܨ െ ݐ௝ሺܨ െ 1ሻ ൌ ݁ିఒೕሺ௧ିଵሻ
೎ೕ െ ݁ିఒೕ௧

೎ೕ  

However, ticket sales in the context of a live performance event have to arrive no later 

than the performance date.  We adjust the probability of a ticket purchase in the spot market (i.e., 

the week of the performance) as follows:  

(9) ௝ܲ൫ ௝ܶ൯ ൌ 1 െ ݁ିఒೕሺ்ೕିଵሻ
೎ೕ  

where Tj is the number of advance selling weeks for performance j. 

In addition, because we often observe seasonality (e.g., Thanksgiving, Christmas, etc.) or 

marketing activities in an advance-selling period, we can include a time-varying covariate to 

control for resulting sales bumps.  Therefore, we rewrite equations (7), (8), and (9) as follows: 

(10) ௝݄ሺݐሻ ൌ ௝ߣ ௝ܿݐ௖ೕିଵ݁ఉೕ௑ೕ೟ 

௝ܵሺݐሻ ൌ exp ൜െߣ௝෍ ሾݑ௖ೕ െ ሺݑ െ 1ሻ௖ೕሿ
௧

௨ୀଵ
݁ఉೕ௑ೕೠൠ 

ሻݐ௝ሺܨ ൌ 1 െ exp ൜െߣ௝෍ ሾݑ௖ೕ െ ሺݑ െ 1ሻ௖ೕሿ
௧

௨ୀଵ
݁ఉೕ௑ೕೠൠ 

௝ܲሺݐሻ ൌ exp ൜െߣ௝෍ ሾݑ௖ೕ െ ሺݑ െ 1ሻ௖ೕሿ
௧ିଵ

௨ୀଵ
݁ఉೕ௑ೕೠൠ െ 

  exp ൜െߣ௝෍ ሾݑ௖ೕ െ ሺݑ െ 1ሻ௖ೕሿ
௧

௨ୀଵ
݁ఉೕ௑ೕೠൠ     ݐ׊ ൌ ሺڮ1 ௝ܶ െ 1ሻ 

௝ܲሺܶሻ ൌ exp ൜െߣ௝෍ ሾݑ௖ೕ െ ሺݑ െ 1ሻ௖ೕሿ
௧ିଵ

௨ୀଵ
݁ఉೕ௑ೕೠൠ 

where Xjt is a time-varying covariate or seasonality indicator and βj is its associated parameter.  

Consequently, the timing of ticket sales for each performance changes with its parameters λj, cj , 

and βj.  
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Heterogeneity in Sales Patterns  

To capture and explain the heterogeneity in sales pattern, we further specify the sales rate 

of each performance as a function of its geographic and temporal density measures.  We also 

include two control covariates to ensure unbiased effects of these scheduling characteristics.  The 

first covariate is the length of advance-selling period because Moe and Fader (2002, 2009) found 

that sales tend to arrive more slowly under a longer advance-selling period.  In addition, because 

consumers may purchase tickets much earlier when they expect performance to be more 

attractive, we incorporate the expected performance attractiveness as the second control 

covariate.  Consequently, we specify the Weibull parameters (λj and cj) and the covariate effect 

(βj) to follow the multivariate normal distribution.  We take the log transformation for the 

Weibull parameters to ensure positive values: 

(11) 

൦
log൫ߣ௝൯
log൫ ௝ܿ൯
௝ߚ

൪~ܸܰܯ൫࢐ࣆ, ઱૚൯ 

where 

࢐ࣆ ൌ ૙ࢽ ൅ ܧܩ૚ࢽ ௝ܱ ൅ ܯ૛ܶࢽ ௝ܲ ൅ ૜ࢽ ௝ܶ ൅ ૝ࢽ Eൣ ௝ܸ൧ 

where μj is the vector of expected Weibull parameters and covariate effect, GEOj and TMPj are 

the geographic and temporal density measures in equations (1) and (2), Tj is the number of 

advance selling weeks for performance j, E[Vj] is the expected performance attractiveness in 

equation (6), and γ0, γ1, γ2, γ3, and γ4 are the vectors of parameters for these covariates.  

Therefore, using the parameter results in equation (11), event marketers can understand why 

some performances experience earlier timing of ticket sales while other experience later timing 

of ticket sales. 
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2.3.5 Endogeneity in Performance Scheduling 

Finally, we consider a possible endogeneity in scheduling decisions.  Since the live 

performance industry has been established and event marketers have scheduled for a variety of 

events, event marketers might have incorporated their experiences into a scheduling process.  In 

other words, how densely event marketers allocate performances across venues may be 

dependent on the effect of geographic scheduling, and how densely event marketers allocate 

performances across dates may be dependent on the effect of temporal scheduling.  Moreover, it 

is also likely that event marketers increase the total number of performances and schedule those 

on weekend to increase the performance attractiveness.  If so, the geographic and temporal 

density values vary with the scheduling impact and the expected performance attractiveness.  

To control for this type of endogeneity, we refer to a modeling approach proposed by 

Manchanda et al (2004).  In their research of pharmaceutical detailing, they mentioned that sales 

representatives visit various doctors with different frequencies, and sales representatives 

determine the frequencies based on how many prescriptions a doctor writes without any detailing 

and how strong the effect of detailing is if they visit this doctor.  They pointed out the 

endogeneity between the decision of detailing and the effect of detailing, and further proposed a 

model to correct this endogeneity.   

In other words, they specified the expected prescription volume from a doctor as a 

function of its baseline volume, the magnitude of detailing, and the detailing effect: 

(12) lnሺߤ௜כሻ ؆ ൤
଴௜ߚ

ሺ1 െ ଶ௜ሻߚ
൨ ൅ ൤

ଵ௜ߚ
ሺ1 െ ଶ௜ሻߚ

൨  ݐ݁ܦ

where lnሺߤ௜כሻ is the expected volume of prescription, ቂ ఉబ೔
ሺଵିఉమ೔ሻ

ቃ is the baseline prescription volume, 

Det is the frequency of office visits, and ቂ ఉభ೔
ሺଵିఉమ೔ሻ

ቃ is the effect of detailing.   
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To model the endogenous detailing behavior, they specify the expected value of detailing 

ሺlnሺߟ௜ሻሻ as a function of the baseline prescription volume and the effect of detailing: 

(13) lnሺߟ௜ሻ ൌ ଴ߛ ൅ ଵߛ ൤
଴௜ߚ

ሺ1 െ ଶ௜ሻߚ
൨ ൅ ଶߛ ൤

ଵ௜ߚ
ሺ1 െ ଶ௜ሻߚ

൨ 

In this way, if detailing is indeed endogenous, the parameter γ1 or γ2 will be significantly 

different from zero, and the endogeneity between detailing and its effect is under control. 

To control for the possible endogenous scheduling behaviors, we take the same modeling 

approach as Manchanda et al (2004).  We specify geographic and temporal density measures 

(GEOj and TMPj) as a function of expected performance attractiveness (E[Vj] in equation 6), and 

the effects of scheduling characteristics (θ1 and θ2 in equation 5).  Because GEOj and TMPj in 

equation (1) and (2) are between 0 and 1, we take the logit transformation for these density 

measures and specify them following the multivariate normal distribution: 

(14) 
ቈ
logitሺܧܩ ௝ܱሻ
logitሺܶܯ ௝ܲሻ

቉ ,࢐࢓൫ܸܰܯ~ ઱૛൯ 

where 

ቂ
݉ଵ௝
݉ଶ௝

ቃ ൌ ࣘ૙ ൅ ࣘ૚E ሾ ௝ܸሿ  ൅ ࣘ૛ ൤
ଵߠ
ଶߠ
൨ 

As such, if scheduling decisions are indeed endogenous and reflect on the density 

measures, the parameters φ1 or φ2 will be significantly different from zero and this endogeneity 

will be taken into account. 

 

2.4 Data Description 

We contact a national ticket seller to obtain a dataset of live performance events.  

Because of the confidentiality agreement with our data provider, we cannot disclose our data 
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provider or the names of events.  However, we will describe the nature of the events and the 

behaviors observed in the dataset.   

In this dataset, there were two events touring across several cities in the U.S.  Each event 

had a different number of performances in a city and lasted for a different period.  For each 

performance, we observe its venue location and performance date.  In addition, we also have 

detailed information regarding when tickets were purchased, for how much money, at which 

price levels, and through which channels.  Moreover, we are also able to observe the pattern of 

ticket sales because transactions were recorded at a daily level.  Table 2-1 provides a detailed 

description of each field in our data set, which contains abundant information about the live 

performance event and has many research opportunities for marketing researchers.   

Table 2-1: Description of Variables in the Dataset 

2.4.1 Description of Events 

The events we have in the dataset are two popular family events.  They are live 

entertainments that targets on families with young children.  In general, there are several types of 

family events such as children’s music and theater (e.g., The Wiggles and Dora the Explorer 

Live!), circus (e.g., Ringling Brothers and Barnum & Bailey and UniverSoul Circus), ice shows 

(e.g., Disney on Ice series), magic shows (e.g., Xtreme Magic and Steve Wyrick ), and so on.  

They usually travel across the U.S. or stay in a local market such as Las Vegas.  The family 

events we have are within the abovementioned categories. 

For the two events we have, one sold 2.2 millions of tickets between January and June 

2004 and travelled across 50 cities on 245 dates for 449 performances.  The other sold 0.8 

millions of tickets between January and May 2004 and travelled across 17 cities on 85 dates for 

157 performances.  The reason for the sales discrepancy is that one event had multiple 
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performing groups touring across cities simultaneously while the other had only one group 

performing in our observed time span.  Although these two events travelled to numerous cities 

during their tours and had three cities in common (i.e., Jacksonville, FL; Miami, FL; Phoenix, 

AZ), these events did not perform in those cities at the same time but at least 2.5 months apart.  

Therefore, we assume there was no direct competition between these events to affect ticket sales.  

Although both events are representative in terms of their ticket sales and the number of 

performances, we take only one event in this dissertation to keep the event attractiveness 

constant and examine merely the scheduling effect on ticket sales.  In this way, once we confirm 

a significant scheduling effect, we can further incorporate the renown of different events as an 

extension.  As such, we choose the event that had more performances. Among 50 cities that this 

event toured, we also find some cities were within the same metropolitan markets (e.g., New 

York and other metropolitan markets).  This observation suggests that the event had multiple 

stops in some markets and had higher variations in both geographic and temporal schedules.  

Hence, we further select performances in the New York metropolitan market1 and examine the 

impact of geographic and temporal schedules on ticket sales in essay one.  In summary, this 

event had performances in Continental Arena in East Rutherford, NJ, Nassau Coliseum in 

Uniondale, NY, Madison Square Garden in New York, NY, and Sovereign Bank Arena in 

Trenton, NJ, respectively between March and June 2004 for 70 performances. 

2.4.2 Description of Ticket Sales 

Because a dataset of event tickets is not commonly available in marketing, we first 

examine ticket sales by price levels and channel types to describe how much money people 

usually pay and through which channel.  Then, we examine the distribution of ticket sales across 

                                                            
1 We follow the Census Bureau data to define the boundary of a metropolitan market. 



42 
 

performances to understand how many tickets each performance sells and when ticket sales 

arrive. 

Ticket Sales by Price Levels 

We first aggregate ticket sales by price levels and performances to examine any different 

sales distributions across price levels.  On average, the admission fees to a performance 

(including face value, facility fees, and service charges) are $30.44 and there are about six price 

tiers for consumers to choose.  Although seating quality in a venue determines the price levels, 

83% of ticket sales are contributed by mid-priced levels (i.e., price levels 2, 3 and 4) with 

average price ranges from $20 to $50.   

Specifically, price level 3 (mean price=$25.31, std= 3.66) represents 50% of ticket sales, 

and price level 4 (mean price= $20.02; std= 3.17) and price level 2 (mean price= $50.16; std= 

6.89) contribute 21% and 12% of ticket sales, respectively.  In addition, we find the average 

admission fees are relatively equal across venues and days of week.  In other words, price 

variations are within a performance (via price levels) but not across venues or days of week. 

Ticket Sales by Channel Types 

Next, we aggregate ticket sales by channel types and performances to examine ticket 

sales across channels.  Although consumers can purchase tickets through any of the six available 

channels (i.e., primary box office, secondary box office, Hermes (automatic phone), Internet, 

outlet, and phone), we find majority of ticket sales are made through the primary box office 

(62% of ticket sales), following by the Internet (22% of ticket sales) and a ticket outlet (11% of 

ticket sales).  A possible reason for a primary box office to be a dominating channel choice is 

that consumers do not have to pay for the convenience charges when they buy tickets in a box 

office. 
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Ticket Sales by Performances 

We also aggregate ticket sales across performances.  As Figure 2-4 shows, a performance 

on average sells 8,316 tickets but has its standard deviation being 3,525.  Upon a closer look of 

the sales distribution by days of week (based on performance dates), we find that weekend 

performances tend to have more ticket sales than weekdays.  Yet, the variation of ticket sales on 

the same day of week is still prominent.  The boxplot in Figure 2-5 summarizes the sales 

distributions by days of week and indicate a clear variation even on the same day of week.  For 

example, a Friday performance sells 8,112 tickets on average but has a big standard deviation of 

2,509, and a Saturday performance has average ticket sales of 9,552 but has the standard 

deviation being 3,808.  According to Figure 2-5 and the observation that each performance has 

similar price levels, it is convincing that there must be additional factors to explain the variations 

in ticket sales.  Although one can argue that ticket sales are due to venue capacities, we find the 

sizes of capacity in the four venues are similar and there are no sold out for any performance.  

Hence, we do not consider the impact of venue capacity on ticket sales in this essay.     

Figure 2-4: Sales Distribution by Performances 
 

Figure 2-5: Sales Distribution by Days of Week 

Finally, we aggregate daily ticket sales into weekly sales to examine the sales pattern for 

each performance.  On average, ticket sales arrive up to 15 weeks prior with the range between 

11 and 19 weeks.  Table 2-2 presents the ticket sales across performances and the breakdown of 

weekly sales throughout an advance-selling period in Table 2-2.  On average, a performance sells 

8,316 tickets with 24% of sales arrived one month prior, 33% of sales arrived 2 to 4 weeks prior, 

and 42% of sales arrived in the week of performances.  Figure 2-6 shows a sales pattern for a 

randomly chosen performance and it is a common pattern in our dataset.  However, given this 
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similar pattern across performances, some performances experience ticket sales much earlier 

than other performances (e.g., 59% vs. 3% of total sales arrived in the early stage) yet other 

performances do not have as many ticket sales arrived in the last week (e.g., 75% vs. 11% of 

total sales arrived in the spot stage).  The boxplot in Figure 2-7 demonstrates the heterogeneity in 

the timing of ticket sales across performances throughout an advance-selling period. 

Table 2-2: Summary of Ticket Sales 
 

Figure 2-6: Weekly Sales Pattern of a Performance 
 

Figure 2-7: Heterogeneity in Timing of Ticket Sales across Performances 

2.4.3 Covariate Specifications 

Before we estimate the proposed model, there are several covariates not directly provided 

in the dataset that require our attention.  They are the geographic and temporal density measures 

(GEOj and TMPj), the days of week indicators (FRIDAYj, SATURDAYj, SUNDAYj), the 

estimated population size in the target market (POP), the length of advance-selling period (Tj), 

and the time-varying covariate (Xjt).  We discuss and specify these covariates in turn.  

To compute the density measures, we first refer to venue locations and use the GoogleTM 

maps to find the driving distance (in miles) between venues.  The numbers in Figure 2-8 indicate 

the venue locations in the New York metropolitan market and represent the travel sequence 

across venues.  In addition, the numeric values between venues represent the mileage between 

venues (i.e., milejj’).  We summarize the geographic distance between venues and the number of 

performances in each venue in Figure 2-9 and follow equation (1) to calculate the geographic 

density for each performance.  Next, we refer to performance dates to calculate the temporal 

distance (in absolute values) between performances (dayjj’).  According to the performance dates 
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and their temporal distance to others in Figure 2-10, we apply equation (2) to compute the 

temporal density for every performance.   

Figure 2-8: Venue Locations and Driving Distances 
 

Figure 2-9: Summary of Geographic Distance  
 

Figure 2-10: Summary of Temporal Distance 

To compute the days of week indicators, we refer to performance dates to identify on 

which days of week performances take place (i.e., FRIDAY, SATURDAY and SUNDAY).  

Although some performances are scheduled on the same date, unfortunately our data does not 

indicate time of day for the performances. 

Next, we compute the population size in the target market (POP).  Given that the event 

targets families with young children, we define the target market as the population of families 

with children under 10 years old.  To compute the market size, we refer to the U.S. Census 

Bureau for the 2000 data to find the total number of families with children under 18 years old 

and the percentage of all children who are under 10 years old.  We multiply these two numbers 

to get the family population with children under 10 years old and then multiply the average 

family size to get the population size in the target market.  According to these calculations, there 

are 4,082,615 potential consumers in the New York metropolitan market.  We use this market 

size and ticket sales across all performances to find the market penetration rate to be 14%, which 

means the non-buyer segment represents 86% of the target market. 

To measure the number of advance selling weeks (Tj in equation 11) as a control 

covariate, we compute the difference between the first sale date and the performance date for 

each performance.  Then, we divide this number by seven to convert the advance-selling period 
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to weeks.  Although tickets may be available for sales prior to the first sale date, we think our 

approach a good proxy given very few sales arrived in the early selling period.   

Finally, because we observe Christmas within the advance-selling period for some 

performances, we incorporate a time-varying indicator (Xjt) in equation (10) to control for a 

possible pre-Christmas shopping and resulting sales bumps.  For each performance j, we code 

Xjt=1 if the advance selling week t is consistent with the pre-Christmas shopping week (i.e., 7 

days prior to Christmas).  Otherwise, Xjt=0.  Table 2-3 summarizes the descriptive statistics of 

covariates. 

Table 2-3: Descriptive Statistics of Covariates 
 

2.5 Model Estimation and Benchmark Comparison 

2.5.1 Estimation 

We choose the Bayesian statistics approach to estimate the number of ticket sales, the 

timing of ticket sales, and the endogeneity in a performance schedule simultaneously.  We 

specify appropriate and diffuse priors for our parameters in the WinBUGS program and estimate 

the model over 40,000 iterations.  After checking the convergence criteria, we check the 

autocorrelation plots for all covariates, discarded 30,000 iterations for burn-in, and use the 

remaining iterations as the posterior distribution.   We specified the prior distribution of 

parameters below: 

Priors for modeling the number of ticket sales: 

 ଴~ܰሺെ6,10ሻ For the baseline performance attractivenessߙ

 ௜~ܰሺ0,100ሻߙ For the effects of days of week (where i=1, 2,3) 

 ௜~ܰሺ0,100ሻ For the effect of scheduling characteristics (where i=1, 2)ߠ

 ሺ0.1,0.1ሻ For the variance of the performance attractivenessܩܫ~ଶߪ
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Priors for modeling the timing of ticket sales: 

,௜௞~Nሺ0ߛ 100ሻ For the Weibull parameters and the covariate effect  

(where i=0, 1, 2, 3, 4 and k= 0, 1, 2, 3) 

઱૚ି૚~WeibullሺIଷ, 3ሻ For the variance-covariance of the Weibull parameters and the covariate 

effect 

Priors for modeling the endogeneity in performance schedule: 

߶௜௞~Nሺ0,100ሻ For the expected geographic and temporal density values  

(where i=0, 1, 2 and k= 1, 2) 

઱૛ି૚~WeibullሺIଶ, 2ሻ  

2.5.2 Benchmark Comparison 

Before presenting our model results, we specify benchmark models to compare with our 

proposed model to rule out alternative explanations for our proposed scheduling effects.  First, 

because the central focus of our modeling efforts is to examine the impact of scheduling 

characteristics, one ideal benchmark model is to exclude any scheduling effect but only 

incorporate performance attractiveness (i.e., Benchmark 1).  Second, some venue locations are 

more popular than others. For example, a venue in the New York city might be more attractive 

than another venue in Uniondale.  Therefore, we consider the second benchmark that 

incorporates the venue-specific indicator variables.  Finally, Population density around the venue 

locations could also explain ticket sales.  In other words, event marketers may schedule more 

performances in a specific venue because the population density in this venue is high and the 

scheduling decision is simply to meet potential market demand in this venue.  To rule out this 

alternative explanation, we extend our proposed model by including the population density 

around each venue location of performances as another explanatory variable (i.e., Benchmark 3).   

We estimate our proposed and benchmark models to compare the model fit using the 

deviance information criteria (i.e., DIC, Spiegelhalter et al 2002): 
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ܥܫܦ (15) ൌ ҧ൯ߦ൫ܦ ൅   ܦ݌2

where ܦ൫ߦҧ൯ is the deviance evaluated at the posterior means ߦҧ and pD is the effective number of 

parameters in a model, calculated as the difference between the posterior deviance and the 

deviance of the posterior mean.   

Table 2-4 summarizes the model fit across the benchmark and proposed models.  

According to the DIC reported for every model, we find that incorporating the scheduling effect 

is definitely superior.  Although adding city effects improves the DIC from 157,134 (Benchmark 

1) to 156,459 (Benchmark 2), city effects cannot explain the ticket sales as well as does the 

proposed model (DIC= 156,221).  Moreover, we find our proposed model has a similar fit to 

Benchmark 3 (DIC=156,220).  Although Benchmark 3 has a smaller DIC value by one unit, 

Ntzoufras (2009, p.220) suggests that a model performs better than another does if the DIC 

difference is greater than 2.  Therefore, we conclude that our proposed model is as good as 

Benchmark 3.   

Finally, we compare the parameter results between these two models and find significant 

and consistent effects of scheduling characteristics on ticket sales.  Although the third benchmark 

model also shows that the population density and travel distance from consumers’ residences to 

venues is relevant, results in this benchmark model still indicate a significant geographic effect.  

In other words, although consumers may prefer a venue nearest to them, it is still very likely that 

consumers are willing to travel to a farther venue that has a stronger association with a leisure 

activity (Okada 2005). 

Therefore, we are confident that there are scheduling effects to influence consumer 

decisions and ticket sales across performances.  We discuss the parameter results and their 

implications in the next section.  
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Table 2-4: Benchmark Models and Model Fit 
 

2.6 Results 

2.6.1 Number of Ticket Sales 

Table 2-5 summarizes our parameter results for the number of ticket sales.  First, we find 

that performances on Saturday and Sunday have higher attractiveness to increase ticket sales 

than those on other days of week (α2= 0.35; α3= 0.34).  This result is consistent with prior 

literature (Corning and Levy 2002; Putler and Lele 2003) and shows the importance of 

controlling for performance attractiveness when examining the impact of scheduling 

characteristics. 

Second, we find that scheduling indeed influences how many tickets each performance 

can sell.  When performances are scheduled closely in venues and have a shorter geographic 

distance to other performances, they attract more consumers and sell more tickets (θ1= 0.32).  

Additionally, when performances are scheduled sparsely along a time span and have a longer 

temporal distance to others, they attract more consumers and sell more tickets (θ2= -0.14).  

Because the geographic and temporal density measures have different effects on ticket sales, 

these results suggest that consumers evaluate geographic and temporal schedules separately and 

have different responses.   

Table 2-5: Results for the Number of Ticket Sales 

As we mentioned earlier, event marketers’ scheduling and consumers’ decision making 

are both unobserved processes to researchers.  Hence, we can only speculate possible underlying 

mechanisms based on prior literature and our results.  One way to interpret different consumer 

responses to geographic and temporal schedules is that event marketers have several objectives 

when they schedule performances.  These objectives influence their scheduling decisions and 
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consumers’ reactions.  For example, their objectives may be to signal venue popularity and 

enhance assurance of product delivery at the desired time.  If so, they will schedule performances 

closely in venues of interest yet sparsely across performance dates.  From consumers’ 

perspective, after they see such geographic and temporal schedules, they receive the signal of 

venue popularity and find the flexibility in attendance timing.  Then, they shape their preferences 

to favor performances of such scheduling characteristics and further influence their purchase 

decisions.  As a result, these performances sell more tickets than other performances. 

Alternatively, event marketers may not have a predetermined scheduling strategy in mind.  

The geographic and temporal schedules are the consequences of constrained optimization.  If so, 

consumers will make their own inferences about these performances.  For consumers who do not 

have specific preferences to venue locations and performance dates, they might evaluate 

performances differently based on different contexts.  For instance, they may find an event 

highly associated with some venues because these venues are close to each other and offer more 

performances.  Due to the similar venue locations and shorter geographic distance between 

venues, these venues may catch consumers’ attention better and become consumers’ preferred 

venues when consumers attend an event.  Performances in these venues hence share this 

common advantage to attract more consumers and sell more tickets.   

On the other hand, consumers may perceive an event highly associated with some days of 

week because many performances are scheduled around those days.  Therefore, these days of 

week would catch more attention and become more salient when consumers consider when to 

attend.  However, consumers usually have uncertainty for the future and prefer a wider range of 

dates for selections.  Closely scheduled performances at any time could merely substitute one 

another and suffer from sales cannibalization. 
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According to these two interpretations, one implication for event marketers is that they 

should keep their scheduling strategy (if they indeed have such a strategy) to schedule 

performances densely in venue locations but sparsely across performance dates.  Even if they do 

not have such a strategy but only practice constrained optimization, our results provide them 

another useful scheduling implication.  That is, they should incorporate the scheduling effects 

(i.e., a positive geographic effect but a negative temporal effect) into their decision process as 

new constraints to find the most optimal solution. 

2.6.2 Timing of Ticket Sales 

Table 2-6 describes the parameter estimates and indicates that geographic density and the 

number of advance selling weeks have significant effects on the Weibull parameters (γ11= -7.56; 

γ12= 0.93).  Because the objective of this paper is to examine the scheduling effect while 

controlling for the number of advance selling weeks, we discuss the geographic effect on the 

timing of ticket sales more in details.   

Table 2-6: Results for Timing of Ticket Sales 

However, it is less straightforward to observe the net effect of geographic density on the 

timing of ticket sales based on the parameter results.  We proceed to simulate performances of 

different levels of geographic density to visually show their effects on the timing of ticket sales.  

Therefore, Figure 2-11 presents three hypothetical performances of different levels of geographic 

density but of the same performance attractiveness.  The solid line illustrates the expected timing 

of ticket sales resulting from geographic density being the mean value observed in our dataset 

(GEO).  The two dashed lines show the expected timing of ticket sales for two performances 

where their geographic density values are one standard deviation higher or lower than the mean, 

respectively.  We can observe from Figure 2-11 that once the geographic density increases by 
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one standard deviation from the mean (GEO +1SD), the cumulative ticket sales after 12 weeks of 

advance selling increase from 11% to 25% of its expected total amount.  In contrast, when the 

geographic density decreases by one standard deviation from the mean (GEO -1SD), only 7% 

arrived after 12 weeks.  Therefore, we conclude that performances in densely scheduled venues 

have shorter geographic distance to other performances such that they sell tickets at a faster rate 

than those of longer geographic distance.  

Figure 2-11: Impact of Geographic Density on Timing of Ticket Sales 

Our intuition for this result is that venues where these performances are closely scheduled 

share the similarity in venue locations and geographic density.  These venues can catch 

consumers’ attention and lead to an attraction effect.  In other words, even after controlling for 

performance attractiveness, consumers still think performances in these venues more attractive.  

As a result, they are willing to purchase tickets much earlier.      

The implication of this result is that event marketers can monitor when and how fast 

ticket sales arrive based on the geographic density information across performances.  They can 

use the expected timing of ticket sales as benchmark measures to compare with realized sales.  In 

this way, they can be aware of possible sales deviation in an advance-selling period rather than in 

the week of performance.  Additionally, it is also important for operational and financial 

planning because event marketers can adjust their concession and security throughout an 

advance-selling period to make sure a performance is not over or under staffed.  Moreover, they 

can have a better knowledge with the cash flows based on the expected timing of ticket sales. 

Regarding the sales bump as a result of pre-Christmas shopping effect (βj), we find that 

geographic density, number of advance selling weeks, and expected performance attractiveness 

all contribute positive effects (γ13= 4.84; γ33= 0.97; γ43= 2.45).  Yet, temporal density does not 
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have such an effect.  In other words, performances of higher attractiveness tend to experience 

earlier timing of ticket sales.  The attractiveness comes from the expected individual 

performance attractiveness (due to the days of week effect) and the geographic density.  Because 

performances of shorter geographic distance are perceived more attractive even after controlling 

for individual performance attractiveness, these performances are more salient to consumers as 

Christmas gifts2.   

2.6.3 Endogeneity in Performance Scheduling 

As we have mentioned, the scheduling decision is likely endogenous and dependent on 

expected performance attractiveness or effects of geographic and temporal scheduling.  As such, 

the results discussed above are only managerially meaningful if we accommodate the potential 

endogenous scheduling decisions.  Table 2-7 indicates some evidence about the endogeneity in 

performance scheduling.  Specifically, event marketers consider the expected performance 

attractiveness when designing a temporal schedule (φ12= 0.26).  When they expect a performance 

to be more attractive, they schedule more performances similar to this one.  Consequently, there 

are more performances scheduled temporally close to each other, resulting in higher temporal 

density.  However, event marketers neither incorporate performance attractiveness when 

designing a geographic schedule, nor do they incorporate the geographic and temporal effects.  

This result implies that event marketers may primarily rely on performance attractiveness in their 

scheduling decision whether they are aware of the scheduling effects.   

Table 2-7: Results for Endogenous Performance Scheduling 
 

                                                            
2 We considered other covariates, such as the cumulative sales of earlier performances, but found that it had no 
significant impact on the timing of ticket sales.   
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2.7 Policy Simulation 

To demonstrate the scheduling effects on ticket sales, we conduct a policy simulation by 

varying the geographic schedule (Scenario 1) or temporal schedule (Scenario 2) to compare with 

the current setting.  To make a fair comparison and restrict a new schedule within the same 

geographic and temporal range, we only re-allocate one performance, keep the rest unchanged, 

and evaluate the differences in ticket sales for the target performance as well as the entire market.   

2.7.1 Scenario 1: Geographic Change 

According to results of the number of ticket sales, performances generate more sales 

volume when they are scheduled in the same or proximate venues and have a higher geographic 

density.  Hence, in Scenario 1 we reschedule a performance from Venue 2 (Nassau Coliseum) to 

Venue 3 (Madison Square Garden) in Figure 2-9, the most densely scheduled venue in our 

dataset.  As a result, geographic density of this performance increases.  We also keep the same 

performance date to ensure unchanged performance attractiveness and temporal density. 

Figure 2-12 presents the impact of schedule changes on ticket sales.  After relocating a 

performance from Nassau Coliseum to Madison Square Garden, its ticket sales increase from 

5,102 to 7,132, resulting in a difference of 2,031 tickets (which is 24% of average ticket sales per 

performance).  On the other hand, the overall market sales increase from 532,285 under the 

existing schedule to 535,424 tickets in Scenario 1.  Note that the 3,140 increases in market sales 

are greater than 2,031 increases in a target performance.  This increase in market sales provides 

the evidence of market expansion.  Hence, a geographic schedule after minor changes can attract 

more consumers to the rescheduled performance and increase the market penetration.   

Figure 2-12:  Effect of Schedule Changes on Ticket Sales 
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Relocating the target performance to a different venue also changes the timing of ticket 

sales.  Under the modified schedule, the cumulative ticket sales of the target performance reach 

60% of total sales after 12 weeks, yet the same performance only sells 28% under the original 

schedule.  Figure 2-13 shows that weekly sales of this performance arrive at a different rate and 

results in different patterns.  This implies that any monitoring or benchmarking of early ticket 

sales needs to incorporate the geographic density in a schedule. 

Figure 2-13:  Effect of Schedule Changes on Timing of Ticket Sales 

2.7.2 Scenario 2: Temporal Changes  

According to our results from studying the number of ticket sales, the second learning is 

to disperse performance dates to accommodate more consumers and increase ticket sales.  

Therefore, in Scenario 2, we reschedule the same target performance in Scenario 1 to two weeks 

earlier.  Yet, we keep its venue location and day of week constant.  In this way, this target 

performance has the same level of performance attractiveness and geographic density, yet with a 

lower level of temporal density.   

In contrast with Scenario 1 where we see substantial changes in the number and timing of 

ticket sales, we observe much smaller changes in Scenario 2.  This is consistent with the smaller 

parameter values for temporal density compared to those for geographic density (see Table 2-5 

and Table 2-6).  Specifically, ticket sales for the rescheduled performance increase very slightly 

by 385 tickets under the modified temporal schedule and the difference in total sales in the 

market is also quite small (772 tickets).  Figure 2-12 also shows minimal differences in the 

percentage of tickets sold in the first 12 weeks.  Hence, these results imply that geographic 

scheduling is more important than temporal scheduling.  A geographic schedule has a greater 

influence on the number and timing of ticket sales than does a temporal schedule.  
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2.8 Conclusions 

2.8.1 Summary 

In the live entertainment industry, scheduling performances and estimating ticket demand 

are two primary tasks facing event marketers.  Because these tasks have been treated as two 

independent problems by event marketers and marketing researchers, this essay aims to bridge 

performance scheduling and demand estimation by examining the potential impact of scheduling 

on ticket sales.   

According to different streams of literatures, we find that it is possible to see closely 

scheduled performances selling more than distantly scheduled performances, yet it is also 

possible to see the opposite effect.  Therefore, we allow these two possibilities and empirically 

test the effect of scheduling characteristics on the number and timing of ticket sales.  Specifically, 

we characterize performances of the same event by their venue locations and performance dates.  

Using their scheduling characteristics, we construct two density measures (i.e., geographic and 

temporal density) to capture how close in distance or time performances are scheduled to each 

other.  Then, we model the number and timing of ticket sales as a function of these density 

measures.  In addition, we also control for a possible endogeneity in case event marketers 

incorporate market responses in their scheduling process. 

We contact a national ticket seller to obtain a dataset of a live performance event and use 

its ticket sales to examine the impact of its scheduling characteristics on ticket sales.  This event 

had 70 performances across four venues in the New York metropolitan market and performed 

between March and June 2004.   

Our results indicate that performances of different scheduling characteristics sell 

differently in terms of their number and timing of ticket sales.  Specifically, we find that the 
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effect of geographic scheduling differs from the effect of temporal scheduling.  Performances 

scheduled closely in distance not only sell more tickets but also sell tickets at a faster rate.  In 

contrast, performances scheduled sparsely in time sell more tickets but do not have an impact on 

the timing of sales. 

Our explanation for the observed effects is that event marketers may schedule 

performances to signal the desirability of venues and accommodate consumers’ uncertain 

attendance timing.  In this way, performances in the desired venues and along a wider temporal 

stretch are more attractive to consumers (even after we have controlled the individual 

performance attractiveness). 

2.8.2 Limitations and Next Steps 

Although this essay shows significant effects of geographic and temporal scheduling on 

ticket sales, the results are for one market only.  However, event marketers often need to make 

scheduling decisions for more than one market.  Thus, it is not clear whether the results in essay 

one hold in other markets.  Hence, the objective of essay two is to use all performance schedules 

of the same event to investigate heterogeneous market responses and identify explanatory factors.  

We discuss essay two in the next chapter. 
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Table and Figures 

Table 2-1: Description of Data Fields 
Category in the Data Fields Description 

Event Name of event 

Identification number Used to differentiate repeat performances of the same event 

Performance date Month-Date-Year 

Venue location Name of a venue and its location (City and State) 

Transaction types Indicate individual purchases, group purchases, school 

purchases and so on 

Sales date Month-Date-Year 

Channel types Six channel types: Primary Box Office, Secondary Box Office, 

Hermes (Automatic phone), Internet, Outlet, and Phone. 

Price levels Label of price levels 

Price paid Indicates the face value, facility charges, service charges, and 

the total price paid 

Daily tickets Number of tickets sold 
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Table 2-2: Summary of Ticket Sales 
 Mean Std Dev Min Max 

Total Ticket Sales 8,316 3,525 1,827 15,810 
     

Ticket Sales by Stage     
Early Sales 

(one month prior) 
24% 14% 3% 59% 

Late Sales 
(2-4 weeks prior) 

33% 9% 15% 53% 

Spot Sales 
(performance week) 

42% 14% 11% 75% 
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Table 2-3: Descriptive Statistics of Covariates 
 Description Mean Std Dev Min Max 
GEO Geographic Density 0.368 0.185 0.128 0.540 
TMP Temporal Density 0.118 0.022 0.063 0.144 
FRIDAY Friday performance 0.157 0.367 0 1 
SATURDAY Saturday performance 0.300 0.462 0 1 
SUNDAY Sunday performance 0.286 0.455 0 1 
T Number of advance-selling weeks 15 2.044 11 19 
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Table 2-4: Benchmark Models and Model Fit 

Benchmark Model Proposed Model 
1 2 3 

Performance attractiveness  
City effects 
Population around venues 
Model Fit 
DIC 157,134 156,459 156,220 156,221 
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Table 2-5: Results for the Number of Ticket Sales 
Parameter Description Median (STD) 
Scheduling Effect    

θ1 Effect of geographic density 0.32 (0.05)** 
θ2 Effect of temporal density -0.14 (0.05)** 

   
Expected performance attractiveness: E[Vj]    

α0 Baseline value of event -6.32 (0.12)** 
α1 Friday effect 0.15 (0.13) 
α2 Saturday effect 0.35 (0.12)** 
α3 Sunday effect 0.34 (0.13)** 
    
σ2 Variance of performance attractiveness 5.45 (1.02) 

** significant at the 95% highest posterior density  
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Table 2-6: Results for the Timing of Ticket Sales 
Parameter Description     Median (STD) 
Weibull slope parameter: log(λj)     

γ01 Intercept  3.11 (3.62) 
γ11 Effect of geographic density -7.56 (2.20)** 
γ21 Effect of temporal density 0.67 (2.99) 
γ31 Number of advance-selling weeks -1.08 (0.21)** 
γ41 Expected performance attractiveness -0.63 (0.77) 

Weibull shape parameter: log(cj)     
γ02 Intercept -0.64 (1.03) 
γ12 Effect of geographic density 0.93 (0.24)** 
γ22 Effect of temporal density 0.23 (0.98) 
γ32 Number of advance-selling weeks 0.05 (0.02)** 
γ42 Expected performance attractiveness -0.16 (0.17) 

Time-varying pre-Christmas shopping effect: βj    
γ03 Intercept  2.09 (3.24) 
γ13 Effect of geographic density 4.84 (2.51)* 
γ23 Effect of temporal density 1.63 (3.04) 
γ33 Number of advance-selling weeks 0.97 (0.28)** 
γ43 Expected performance attractiveness 2.45 (0.81)** 

   
Variance-covariance matrix: ∑1       
  log(λj) log(cj) βj     

log(λj) 17.38 -1.3 -11.49     
log(cj)   0.13 0.77     
β     12.58     

      

** significant at the 95% highest posterior density   
* significant at the 90% highest posterior density   
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Table 2-7: Results for Endogenous Performance Scheduling 
Parameter Description     Median (STD) 
Expected geographic density: m1    

φ01 Intercept     0.18 (0.91) 
φ11 Expected performance attractiveness 0.22 (0.15) 
φ21 Effect of geographic density 0.04 (0.97) 

   
Expected temporal density: m 2    

φ02 Intercept     -0.61 (0.75) 
φ12 Expected value of performance 0.26 (0.12)** 
φ22 Effect of temporal density -0.03 (1.01) 

   
Variance-covariance matrix: ∑2    
  m 1 m 2      

m1 0.36 0.07      
m2   0.06      

      

** significant at the 95% highest posterior density  
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Figure 2-1: Conceptual Framework of Spatial Decomposition 
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Figure 2-2: Model Overview 
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Figure 2-3: Probability of Ticket Sales over Time 
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Figure 2-4: Sales Distribution by Performances 
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Figure 2-5: Sales Distribution by Days of Week 
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Figure 2-6: Weekly Sales Pattern of a Performance 
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Figure 2-7: Heterogeneity in Sales Pattern Across Performances 
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Figure 2-8: Venue Locations and Driving Distances 

 
Note: the number in Figure 2-8 indicates the sequence that the event travelled.    
That is, the event went to Venue 1, 2, 3, and 4, respectively. 
 

  

46

29

90

16

67

67

Note: distance in miles
Source: Google Maps

1

2
3

4



73 
 

Figure 2-9: Summary of Geographic Distance 
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Figure 2-10: Summary of Temporal Distance 
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Figure 2-11: Impact of Geographic Density on Timing of Ticket Sales 
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Figure 2-12: Effect of Schedule Changes on Ticket Sales 
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Figure 2-13: Effect of Schedule Changes on Timing of Ticket Sales 
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3 Essay 2: Heterogeneous Market Responses to Performance Schedules and 

Their Explanatory Factors 

 

3.1 Introduction 

In the first essay, we characterize multiple performances of a single event by their venue 

locations and performance dates to understand how their geographic and temporal scheduling 

characteristics influence their ticket sales.  Using ticket sales of a live performing event in the 

New York metropolitan market, we find that the effect of geographic scheduling differs from the 

effect of temporal scheduling.  Performances scheduled in nearby venues not only sell more 

tickets but also sell tickets at a faster rate.  In contrast, performances scheduled distantly in time 

sell more tickets but do not have an impact on the timing of sales. 

However, event marketers often need to make scheduling decisions for more than one 

market.  Although our finding in essay one has rich implications for event marketers, it is unclear 

whether event marketers can apply this finding to all markets.  For example, the event analyzed 

in essay one had 70 performances in four venues for 32 days in the New York metropolitan 

market.  However, when it travelled to other markets such as Norfolk, Virginia, it had 19 

performances in two venues for 10 days.  It also had 21 performances in one venue for 10 days in 

the Atlanta area.  Thus, performance schedules can vary across markets and these schedules may 

not have the same effect on ticket sales across markets.  Even if a schedule is the same across 

markets, these markets may not respond to their schedule identically.  This limitation in essay 

one hence motivates our second essay to examine the effect of performance schedules across 

markets. 
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Although several studies in the event tickets literature examine descriptive drivers for 

event ticket sales, very limited research focuses on examining heterogeneous market responses 

(Moore 1966; Weinberg and Shachmut 1978; Havlena and Holak 1988; Reddy et al 1998).  

Hence, the objective of essay two is to use all performance schedules of the same event to 

investigate heterogeneous market responses and identify explanatory factors.  It is important 

because events do not always go to the same set of markets when they are on tour.  A long 

lasting event may go on tour several times and travels to a different set of markets each time.  

Hence, once the heterogeneity in market responses and explanatory drivers are known, event 

marketers could infer a likely response in a new market or select markets for touring based on 

expected market responses. 

To accomplish our research objective, we first conduct a preliminary analysis to analyze 

all performance schedules and examine their impact on the number of ticket sales.  After 

applying the model developed in essay one to the entire dataset and estimating market responses 

iteratively across markets, we find that the effect of geographic scheduling differs from the effect 

of temporal scheduling and this difference is consistent across markets.  In terms of the 

geographic scheduling, performances scheduled in close venues sell more ticket sales than 

sparsely scheduled ones, but this result only hold for markets that use multiple venues.  

Regarding the temporal scheduling, in contrast, performances scheduled distantly in time sell 

more than the densely scheduled ones.  

Although we find consistent scheduling effects from the preliminary results, we also 

observe the market responses are of different magnitudes.  In other words, some markets are 

more responsive to geographic (temporal) schedules than other markets.  To identify the factors 

that explain these differences across markets, we extend the model developed in essay one to not 
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only examine market-specific response parameters but also investigate observed and unobserved 

heterogeneity via the hierarchical Bayesian approach.  In addition, we also control for the 

possible endogeneity in the performance scheduling process.  Among several marketing 

characteristics, we choose the size of market population as the first explanatory factor.  We also 

examine characteristics of a touring event to understand whether participating markets that are 

adjacent to each other and the order that an event travels across affect the magnitude of 

scheduling effects. 

We use the same family event mentioned in essay one and analyze all of its performance 

schedules in the dataset to test our model.  Because this event sequentially performed 449 times 

in 50 cities in the U.S. domestic market between January and June 2004, we aggregate these 50 

cities to 42 designated market areas (which will be discussed in detail in the data section).  As a 

result, there are six markets where the event performed in multiple venues yet all 42 markets 

have some variations in their temporal schedules.     

Our results show that market and additional scheduling characteristics can both explain 

the differences across market responses.  First, when a market has a bigger population, the 

effects of days of week and baseline attractiveness are attenuated.  Our explanation is that 

usually there are more events offered to a bigger market than to a smaller one.  Consumers in a 

bigger market may be used to seeing several competing events offered simultaneously and 

having a variety of events to choose from.  Hence, they are less responsive to an event no matter 

on which day of week it may be on as compared to consumers in a smaller market.   

Second, we find the additional scheduling characteristics can partly explain 

heterogeneous market responses.  With respect to a current market, after an event travels to more 

of its geographically adjacent markets, the current market is less responsive to its baseline 



81 
 

attractiveness and temporal schedule.  A possible reason is that after an event has gone to more 

geographically adjacent markets, its newness wears out but its reputation might accumulate over 

time.  As a result, consumers may refer to other measures such as word of mouth to make their 

purchase decisions rather than refer to the baseline attractiveness and its temporal schedule. 

Moreover, after an event perform in several markets (whether these markets are adjacent 

or not), a market in which an event performs later tends to respond more favorably to a Sunday 

performance.  Our explanation is that after an event has lasted longer and gone to more markets, 

its reputation, or word of mouth, accumulates over time (Reddy et al 1981) even though its 

newness may wear out.  Because a Sunday performance tends to be the last performance in a 

market (at least in the case of our dataset), consumers might think Sunday as their “last 

opportunity” to enjoy this event before it leaves for another market.  As a result, a market in a 

later temporal sequence has a stronger Sunday effect.   

We also find that the nature of performance schedules is endogenous.  Different from 

essay one that endogeneity is found only in a temporal schedule, we find in essay two that 

geographic and temporal schedules are both done endogenously after we pool all performances 

across markets for analysis.  When event marketers expect high performance attractiveness, they 

schedule more performances in all venues and tend to allocate those performances around 

weekends or along a limited time span.  As a result, on average, performances have a shorter 

geographic and temporal distance to others and have higher density values.  Moreover, when 

event marketers understand that consumers prefer performances on dispersed dates because of 

uncertain timing of attendance, they decrease the number of weekend performances and/or 

disperse performance dates.  Consequently, performances in a temporal schedule have lower 
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temporal density values.  Since we have accounted for this endogeneity in the estimation process, 

the results we present here are unbiased.    

The rest of essay two is organized as follows.  First, we conduct a preliminary analysis 

using all performances observed across markets to show heterogeneous market responses to 

performance schedules.  Second, we review extant literature to find possible reasons for 

heterogeneity and propose our conceptual framework.  In the next section, we present the 

modeling structure extended from the first essay and discuss the dataset in details.  After the 

model estimation and benchmark comparison, we present our results and conclude this essay 

with limitations and next steps. 

 

3.2 Preliminary Analysis 

As described in essay one, a family event went to 50 cities on 245 dates for 449 

performances between January and June 2004 (see §2.4.1 Description of Events for more details).  

Among which, several cities are within the same metropolitan area and show richer variations in 

geographic and temporal schedules.  To test whether markets have heterogeneous responses to 

their performance schedules, we conduct a preliminary analysis to run the model in equations (5), 

(6), and (14) for one market at a time and examine their market specific parameters. 

More specifically, we use the designated market area (DMA) to aggregate 50 cities into 

42 markets (see the data section for full descriptions) and summarize the market information in 

Table 3-1.  As Table 3-1 shows, we sort markets by their first performance date and assign a 

unique market identification number.  Every market has its information listed regarding its first 

and last performance dates, number of performances, length of performing period, and venue 

usage.  Hence, for performances within a market, we characterize these performances by their 
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venue locations and performance dates.  Then, we follow the equations (1) and (2) in essay one 

to compute their geographic and temporal density and understand how densely or sparsely these 

performances are scheduled.  Consequently, for each market, we model ticket sales of its 

performances as a function of their density measures and performance attractiveness while 

controlling for a possible endogeneity in performance scheduling.  

Table 3-1: Summary of Performance Schedules across Markets 

After iteratively estimating the model across 42 markets, we find that the days of week 

represent performance attractiveness and increase ticket sales (α0 ranges from -3.82 to -8.23; α1 

ranges from 0.10 to 0.95; α2 ranges from 0.24 to 1.48; α3 ranges from 0.13 to 1.09).  Moreover, 

the effect of geographic scheduling differs from the effect of temporal scheduling.  Performances 

scheduled in nearby venues sell more tickets than those scheduled in distant venues (θ1 ranges 

from 0.92 to 4.29).  However, this result only holds for markets that use multiple venues.  On the 

other hand, performances scheduled dispersed across dates sell more than the those scheduled 

close in time (θ2 ranges from -0.04 to -2.92).  We summarize these market-specific parameters in 

Table 3-2.  

Table 3-2: Summary of Market Responses to Performance Schedules 

According to our preliminary analysis, we confirm consistent yet heterogeneous market 

responses to performance schedules.  To understand why market responses are different, we 

review extant literature that suggests potential explanatory factors for this heterogeneity. 
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3.3 Literature Review and Conceptual Framework 

3.3.1 Literature Review 

Consumers are different individuals and their preferences and decisions often differ from 

one another.  However, as the proverb says, “birds of a feather flock together.”  It is very 

common to observe consumers who have similar tastes living in similar areas and making similar 

purchase decisions.  Accordingly, when marketers offer a variety of products to consumers, they 

often expect heterogeneous consumer responses across zip codes, counties, states, or 

metropolitan markets. 

Heterogeneity in the unit of analysis is commonly studied in marketing and the entities 

include individual consumers, products, firms, markets, and countries.  For example, consumers 

who have different demographic characteristics or live in different zip codes make different 

choices regarding automobiles (Yang and Allenby 2002), book formats (i.e., Print vs. PDF; Jank 

and Kannak 2005), or adoptions of online grocer (Choi, Hui, and Bell 2009).  Their shopping 

behaviors also differ across product types (e.g., motels of high, medium, or low quality, Mazzeo 

2002; department stores of upscale, midscale, or discount, Vitorino 2007),  store formats (e.g., 

supermarkets, hypermarkets, and discount stores, González-Benito 2005; discounted or regular 

retailers, Zhu et al 2007), and brand names (e.g., Wal-mart, K-mart, Target, Zhu and Singh 2009; 

Zhu et al 2009).  Besides examining the heterogeneity at an individual level, researchers can also 

summarize consumer responses across zip codes (Yang and Allenby 2002; Jank and Kannan 

2005), metropolitan statistical areas (Zhu and Singh 2009), or countries (Elberse and Eliashberg 

2003) to study heterogeneity at an aggregate level. 

One way to account for heterogeneity in empirical analyses is to specify individual-

specific parameters (Corning and Levy 2002; González-Benito 2005; Mazzeo 2002; Vitorino 
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2007; Moe and Fader 2009; Zhu and Singh 2009; Zhu et al 2009).  For example, Corning and 

Levy (2002) specified venue-specific parameters when examining ticket sales across venues to 

understand whether consumers of those venues have different responses to product offerings. In 

the retail locations, Mazzeo (2002) specified type-specific effects of spatial competition to study 

whether motels of low, medium, or high quality types have different spatial effects on 

profitability.  In addition, Zhu and Singh (2009) used brand-specific parameters to examine 

asymmetric competition effects among Wal-mart, K-mart, and Target. 

Although heterogeneity has been extensively studied in many contexts, most of prior 

studies in the event tickets literature have not yet examined heterogeneous market responses.  In 

other words, researchers assume the effects of days of week, prices, and promotions are 

homogeneous across venues, events, or performances (Moore 1966; Weinberg and Shachmut 

1978; Havlena and Holak 1988; Reddy et al 1998).  Although Corning and Levy (2002) and Moe 

and Fader (2009) are the two exceptions where Corning and Levy (2002) allowed parameters to 

be venue specific and Moe and Fader (2009) specified parameters varied with events and price 

tiers, they did not identify explanatory factors for their proposed heterogeneity.  Given that we 

have found the heterogeneous market responses in the preliminary analysis, the objective of 

essay two is to identify explanatory factors to explain the differences across markets.   

3.3.2 Conceptual Framework 

In our conceptual framework, we first discuss possible market characteristics that may 

explain differences across markets.  Then, we discuss characteristics of a touring event that may 

provide context dependent reasons for response heterogeneity. 
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Market Characteristics 

When the analysis is made at a market level rather than at an individual level, the first 

issue is to define what a market is.  Depending on the context of interest, a market can be a 

metropolitan statistical area (MSA; Zhu et al 2007), a designated market area defined by A.C. 

Nielsen (DMA; Carlyle, Slater, and Chakroff 2008), or a retail trade area (Bronnenberg and Mela 

2004).  Then, researchers try to find the market characteristics that may explain the difference to 

some extent. 

In general, metropolitan areas are assumed more similar to other MSAs than to rural 

areas, and the similarity or differences may be due to the population size, population density, 

income, education, household size, household values, commute time to work, etc. (Mazzeo 2002; 

Vitorino 2007; Zhu et al 2007; Zhu and Singh 2009; Zhu et al 2009).  For this reason, we 

propose that market characteristics can explain the heterogeneous market responses in our 

preliminary analysis.  

Additional Scheduling Characteristics 

We refer to additional scheduling characteristics as characteristics of a touring event.  For 

example, one characteristic is that its performing group travels from one market to another.  

Because this distribution mechanism follows the sequential distribution approach (Elberse and 

Eliashberg 2003; Bronnenberg and Mela 2004), we think sequential distribution literature may 

provide context dependent characteristics to explain why consumers in different markets react to 

performance schedules differently.   

Extant works in sequential distribution have focused on the effect of geographic 

adjacency on market adoption (Bronnenberg and Mela 2004) and the effect of release timing on 

box-office revenues (Elberse and Eliashberg 2003).  When Bronnenberg and Mela (2004) 
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studied the spatial evolution of a new product adoption across markets, they found manufacturers 

tend to enter markets that are geographically adjacent to a current market.  In other words, the 

initial market serves as a lead market and its lead market effect rolls out sequentially to 

geographically adjacent markets.  

On the other hand, the release timing in the distribution also influences how well a 

product sells.  For example, Elberse and Eliashberg (2003) studied motion pictures to investigate 

the issue of release timing between the U.S. market and foreign markets.  Although they only 

examined the effect of release timing between the initial market and following foreign markets 

rather than the effect of release timing along the entire sequence, they still found that shortening 

the time lag between two markets increases the revenues of a later market. 

Therefore, the sequential distribution literature has traditionally discussed the roles of 

geographic adjacency and release timing as important covariates.  Whether the geographic 

adjacency and release timing in the distribution explains different market responses still remains 

unknown and deserves further investigation.  Similarly, a live performance event follows a 

temporal sequence to travel across markets.  Each market along the sequence has different 

release timing and some of these markets are geographically adjacent to one another.  It is 

important to evaluate its geographic adjacency and temporal sequence to understand whether 

these additional scheduling characteristics explain different markets responses to performance 

schedules.  Therefore, we incorporate market characteristics and additional scheduling 

characteristics to explain different market responses across markets. 

In short, we summarize our conceptual framework in Figure 3-1.  Similar to essay one, 

we examine the impact of geographic and temporal scheduling on the number of ticket sales and 

control for the performance attractiveness through its days of week.  In addition, we also control 
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for the possible endogeneity in performance scheduling.  Finally, we examine whether and how 

market and additional scheduling characteristics explain response heterogeneity across markets.  

Figure 3-1: Conceptual Framework 
 

3.4 Model Development 

3.4.1 Model Overview 

Our model development consists of four steps.  First, we use the geographic and temporal 

density measures to capture the scheduling characteristics of performances in their associated 

markets and understand how densely or sparsely these performances are scheduled.  Second, 

within each market, we specify market-specific parameters and model ticket sales at a 

performance level as a function of these density measures and performance attractiveness.  Third, 

we control for a possible endogeneity between performance schedules and expected market 

responses.  Finally, we employ a hierarchical Bayesian (HB) approach to incorporate the 

heterogeneity in market responses.  Among these four steps, the first three steps are adapted from 

essay one, yet the fourth step is the model extension in essay two.  

Although the HB approach is not the only method to study heterogeneous market 

responses and the latent class analysis (Kamakura and Russell 1989) may be another appropriate 

alternative, we choose the HB approach because it can accommodate unobserved heterogeneity 

across markets (Rossi and Allenby 2003) in addition to the heterogeneity explained by market 

characteristics and additional scheduling characteristics.  

3.4.2 Scheduling Characteristics and the Number of Ticket Sales 

To begin with, we refer to equations (1) and (2) in essay one to capture the scheduling 

characteristics by their geographic and temporal density for all performances in their markets.  



89 
 

Then, we refer to equation (5) to rewrite the sales share of performances (and the share of non-

buyers) within a market with market-specific parameters:   

(16) ௠ܲሺ݆ሻ ൌ
exp൫ ௝ܸ௠൯ ڄ ܧܩ ௝ܱ௠

ఏభ೘ܶܯ ௝ܲ௠
ఏమ೘

1 ൅ ∑ exp൫ ௝ܸ௠ᇱ൯ ڄ ܧܩ ௝ܱ௠′
ఏభ೘ܶܯ ௝ܲ௠′

ఏమ೘Jౣ
୨ᇲୀଵ

 

where 

௝ܸ௠ ൌ α଴୫ ൅ αଵ୫FRIDAY୨୫ ൅ αଶ୫SATURDAY୨୫ ൅ αଷ୫SUNDAY୨୫ ൅ ε୨୫ ; ε୨୫~Nሺ0, σகଶሻ 

where Pm(j) is the sales share of performance j in market m, Vjm is its performance attractiveness 

(which is a function of days of week), GEOjm and TMPjm represent the geographic and temporal 

density measures, and α0m, α1m, α2m, α3m, θ1m, and θ2m are market specific parameters.  Therefore, 

among Jm performances in market m, their parameters are homogeneous within a market but 

heterogeneous across markets.  Using the population size in a target market (POPm) and the sales 

share of a performance, we can calculate the expected ticket sales of a performance (i.e., 

௠ሺ݆ሻݏ݈݁ܽܵ ൌ ܱܲ ௠ܲ ൈ ௠ܲሺ݆ሻ), the market penetration rate of this event (i.e., ∑ ௠ܲሺ݆ሻ
௃೘
௝ୀଵ ), and the 

size of non-buyer segment (i.e., 1 െ ∑ ௠ܲሺ݆ሻ
௃೘
௝ୀଵ ). 

3.4.3 Endogeneity in Performance Scheduling 

Next, we account for a possible endogeneity in performance scheduling by revising 

equation (14) as follows:  

(17) ቈ
logitሺܧܩ ௝ܱ௠ሻ
logitሺܶܯ ௝ܲ௠ሻ

቉ ൌ ࣘ૙ ൅ ࣘ૚E ൣ ௝ܸ௠൧ ൅ ࣘ૛ ൤
ଵ௠ߠ
ଶ௠ߠ

൨ ൅ ,௜~ܰ൫0ߟ where  ࣁ ఎ೔ߪ
ଶ ۷൯, ݅ ൌ 1,2 

where E[Vjm] is the expected performance attractiveness of performance j in market m, θ1m, and 

θ2m represent the effects of geographic and temporal scheduling, and Ԅ0, Ԅ1, and Ԅ2 are the 

parameters of interest.  When Ԅ1 or Ԅ2 is significant, scheduling is endogenous but has been 

taken into account.  Note that the specification of equation (17) is the same as equation (14) 
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except that we specify an independent relationship between geographic and temporal density.  In 

this way, when an event performs in a single venue within a market and only has variation in its 

temporal schedule, we can directly drop GEOjm in equations (16) and (17) and just investigate a 

possible endogeneity in temporal scheduling.   

3.4.4 Use of the HB Approach for Response Heterogeneity 

Finally, we take the HB approach to explain differences of response parameters across 

markets and specify these market-specific parameters as a function of their unobserved 

heterogeneity and observed market characteristics and additional scheduling characteristics:   

(18) 

ۏ
ێ
ێ
ێ
ێ
ۍ
଴௠ߙ
ଵ௠ߙ
ଶ௠ߙ
ଷ௠ߙ
ଵ௠ߠ
ےଶ௠ߠ

ۑ
ۑ
ۑ
ۑ
ې

ൌ ઩ܕ ൌ ઺ܕ܆ ൅ ࣕ where ߳~ܰ൫0, ఢ೔ߪ
ଶ ۷൯, ݅ ൌ 1,2,3,4,5,6 

where Λm is a 6-by-1 vector that contains the market-specific parameters (α0m, α1m, α2m, α3m, θ1m, 

and θ2m) in equation (16), Xm is a k-by-1 vector that includes market characteristics and 

additional scheduling characteristics, β is a 6-by-k matrix that represents the effects for these 

characteristics, and ࣕ is a vector of random errors for the unobserved heterogeneity. 

 

3.5 Data 

We contact a national ticket seller to obtain a dataset of two family events and analyze 

ticket sales for one event in this dissertation (see §2.4.1 for more information about this event).  

In short, this event sequentially performed 449 times in 50 cities in the U.S. domestic market 

between January and June 2004.  In essay one, we only used ticket sales in the New York 

metropolitan market.  In essay two, we analyze all performances in the dataset to investigate 

heterogeneity in market responses. 
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3.5.1 Definition of Markets 

Among 50 venues in the dataset, some venues are in the same MSAs, some are the only 

venues in their MSAs, and others are in rural areas (i.e., non-MSAs).  To avoid information 

losses after aggregating venues to MSAs, we aggregate venues by their designated market areas 

(DMAs) for urban and rural cities.  The definition and classification of DMAs are proposed by 

Nielsen Media Research (Weiner 2000) where each DMA consists of several counties and 

consumers in the same DMA receive the same TV broadcasting and media messages (Carlyle, 

Slater, and Chakroff 2008).  The advantage of aggregating data by DMAs is that, suppose 

marketing activities for an event are planned at a DMA level, consumers within the same DMA 

are potentially aware of this event even though they may live in a rural area far away from a 

venue. 

Hence, we refer to a website by the Truck Ads® (www.truckads.com) that disaggregates 

the U.S. market into several DMAs and lists all individual counties within each DMA.  Figure 3-

2 provides an example of the Orlando DMA in Florida.  As the map shows, there are nine 

counties within this DMA.  According to the venue locations in our dataset (i.e., names of venues, 

cities, and states), we can identify in which DMA a venue is and which counties are in this DMA.  

As a result, we aggregate 50 venues into 42 DMAs in Table 3-3.  Figure 3-3 also shows the 

locations of these DMAs.  Each shaded area represents a DMA and a number in a box is its 

market identification number assigned in Table 3-1.   

Figure 3-2: Example of a DMA and its county information 
 

Table 3-3: Venue Locations and their Associated DMAs 
 

Figure 3-3: DMA locations 
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3.5.2 Description of Performance Schedules across Markets 

According to the DMAs and performance information in our dataset, we summarize the 

temporal schedule in each market into Table 3-1 by its first and last dates, length of performing 

period, total number of performances, and venue usage in a market.  On average, there were 

10.69 performances in a market, lasted for 5.79 days, and used 1.19 venues.  

Temporal Sequence of the Event Distribution 

In Table 3-1, we sort the temporal schedules by their first performance date and observe 

the temporal sequence of the event distribution.  In general, this event first performed in 

Tallahassee in January (market ID= 1), Atlanta in February (market ID= 12), New York in 

March (market ID= 16), St. Paul in May (market ID= 33), and Tucson in June (market ID = 42)3.  

Table 3-1 also indicates a few incidences where two or three markets started performances on the 

same date or one to two days apart.  For instance, the event had performances in Providence 

(market ID= 26) and Worcester (market ID= 27) between May 1 and May 9 while having 

performances in La Crosse (market ID= 25) between May 4 and May 5.  Therefore, it is likely 

that there were up to three performing groups touring in the same period.  Because we cannot 

identify which groups performed in which markets, we assume that the performing quality is 

constant across performing groups and do not affect how markets respond to their performance 

schedules.  Hence, we analyze all 42 markets together regardless of their performing groups. 

Venue Usage of the Event across Markets 

In terms of the venue usage across markets, among 42 DMAs, only six markets had more 

than one venue in use.  These markets were the Greenville-Asheville, Raleigh-Fayetteville, 

Norfolk-Hampton, Champaign-Springfield, New York, and Philadelphia DMAs.   Moreover, 

                                                            
3 This event kept on travelling after performing in Tucson.  However, the performance schedules available in the 
dataset were truncated up to June 2004.  Thus, we examine the performance schedules of these 42 markets only. 
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except for the New York market that scheduled performances across four venues, the rest had 

performances scheduled in two venues.  We also find that the event did not always perform in 

these venues consecutively within a market.  Sometimes the event offered all performances in 

one market and then left for a new market, but sometimes it offered a few performances in one 

venue and then provided more after a period.  Specifically, this event completed all scheduled 

performances consecutively in the markets of Norfolk-Hampton, Champaign-Springfield, and 

Philadelphia.  However, in the market of Greenville-Asheville and Raleigh-Fayetteville, after the 

event performed in one venue, it left for other markets and then came back three to four months 

later.  In the New York market, it performed in three venues consecutively, left for other markets, 

and then returned seven weeks later. 

Geographic Adjacency of Markets 

Upon a closer look of these markets and their locations in Figure 3-3, we also find that 

this event had an extensive tour in the East Coast and some of the Mid-West markets.  Moreover, 

this event sometimes went to near or adjacent markets but occasionally traveled to an isolated 

market.  For example, this event went to Orlando (market ID=2) and Tampa (market ID=3) in a 

consecutive order but went to an isolated market in Tucson (market ID=42). 

Descriptions of Ticket Sales 

Table 3-4 summarizes the average ticket sales at a performance level and its total ticket 

sales at a market level.  Across all markets, a performance can sell an average of 3,825 tickets 

with a standard deviation being 1,162 tickets.  However, depending on in which market a 

performance is, it can sell as many as 8,316 tickets in New York (market ID= 16) or as little as 

585 tickets in Madison (market ID= 28).  In terms of ticket sales at a market level, an event can 

sell an average of 51,905 tickets with a standard deviation being 90,992.  Although it seems that 
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markets that use multiple venues experience more ticket sales (e.g., New York and Philadelphia 

are ranked as the top two best selling markets), markets of a single venue usage do not 

necessarily sell less.  For example, the event performed in only one venue in Atlanta (market 

ID=12) had market sales ranked at the third place.  Moreover, Miami is also a single venue DMA 

but its market sales exceeded the DMAs of Greenville-Ashville (market ID=9) and Champaign-

Springfield (market ID=20).  Because the focus of essay two is on sales at performance level and 

response heterogeneity across markets, we will address the issue of market sales in essay three. 

Table 3-4: Summary of Ticket Sales across Markets 

3.5.3 Covariate Specifications 

Before we estimate our model, we still have to measure geographic and temporal density 

as scheduling characteristics, create the days of week indicators for performance attractiveness, 

and compute the population size of the target markets.  Moreover, we need to select market 

characteristics and measure the geographic adjacency and temporal sequence for the additional 

scheduling characteristics.  Hence, we discuss each covariate in turn.  

Geographic and Temporal Density Measures 

First, we calculate the geographic density for performances in markets (GEOjm) where 

more than one venue is used.  These markets are Greenville-Asheville, Raleigh-Fayetteville, 

Norfolk-Hampton, Champaign-Springfield, New York, and Philadelphia.  We start with 

identifying venue locations on the Google Maps to compute the geographic distance (in miles) 

between venues in the same market.  Then, we apply the equation (1) in essay one to compute 

the geographic density for each performance.  As a result, depending on in which market a 

performance is, the average geographic density of a performance ranges between 0.368 and 

0.556 with the average across markets being 0.476 and the standard deviation being 0.09. 
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Next, we use the equation (2) in essay one to calculate the temporal density for 

performances in their associated markets (TMPjm).  On average, a performance in a market has 

its temporal density ranging from 0.118 to 0.667 with the average across markets being 0.476 

and the standard deviation being 0.09.  Table 3-5 provides the descriptive statistics of these 

covariates. 

Table 3-5: Descriptive Statistics of Covariates across Markets 

Days of Week Indicators and Market Population 

According to observed performance dates in the dataset, we further create the days of 

week indicators (FRIDAYjm, SATURDAYjm, and SUNDAYjm) to measure performance 

attractiveness.  On average, a market has 17% of performances on Friday, 38% on Saturday, and 

25% on Sunday.  However, there are markets without any Friday, Saturday, or Sunday 

performances, as shown in those blank cells in Table 3-5.  We also summarize the descriptive 

statistics of days of week covariates in Table 3-5. 

To compute a population size (POPm) in a target market (i.e., family population with 

children under 10 years of age) across all DMAs, we refer to the Census Bureau to collect 

relevant population information at the county level and then aggregate the population size by 

DMAs, the same approach used in essay one.  As a result, the average population size in a target 

market is 439,662 with a standard deviation being 647,091.  Table 3-6 presents the summary 

information of the population size in each DMA.     

Table 3-6: Descriptive Statistics of Market Characteristics 

Market Characteristics 

In addition to population size in a target market, we consider population density, family 

income, and average family size as other potential market characteristics to explain response 
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heterogeneity.  Different from the extant literature, we choose the information at a family level 

rather than at a household level because our event targets at families with young children.  Hence, 

we first download the U.S. 2000 Census data at the county level to match the counties of interest 

in our 42 DMAs.  Because the population size in each county differs, we weight the market 

characteristics in each county by its population size to calculate the average value for each DMA.  

Table 3-6 presents the summary statistics across these DMAs.  

Additional Scheduling Characteristics 

We consider two additional characteristics of a performance schedule to explain the 

heterogeneity across markets.  The first characteristic we examine reflects the order of markets 

that appear in a schedule. The second is the number of geographically adjacent markets with 

respect to a focal market.  We refer to the previous covariate as the temporal sequence and the 

later as geographic adjacency.  

To measure the temporal sequence, we refer to Table 3-1 that sorts markets by their first 

day of performance to check which market is in the earliest distribution timeline (Order=1).  

Then, we go down the list to assign an increasing number to markets in a later distribution 

timeline.  For example, according to Table 3-1, Tallahassee is the first market and Orlando is the 

second market.  We assign Order1=1 and Order2=2.  For markets that had the first performance 

on the same date (e.g., Columbia and Greenville-Asheville), we assigned an equal rank to these 

markets (i.e., Order8= Order9= 8).  Table 3-7 summarizes the descriptive statistics of temporal 

sequence across markets.  

Table 3-7: Descriptive Statistics of Additional Scheduling Characteristics 

According to the lead market effect (Bronnenberg and Mela 2004), markets that are 

adjacent and adopt a new product first have an impact on adjacent markets that have not yet been 
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adopted.  We follow this logic to measure the geographic adjacency among our participating 

DMAs.  Hence, we first refer to Figure 3-3 to locate these 42 DMAs and check which markets 

are adjacent to one another.  Then, we refer to the order of each market to count how many 

adjacent markets an event went to before it arrives to a focal market.  Finally, we use this number 

to represent the extent of geographic adjacency of a participating market.  As a result, an event 

went to an average of 0.95 spatially adjacent markets before it goes to a focal market.  Table 3-7 

summarizes the descriptive statistics of geographic adjacency across markets4. 

The purpose of essay two is to explain heterogeneous market responses and propose 

explanatory factors.  Thus, we use the same set of covariates in the HB approach in equation (18) 

and choose the population size in a target market, the order of markets that an event travels, and 

the number of geographically adjacent markets for a focal market.  We also examined other 

market characteristics as shown in Table 3-6.  Although population density is another significant 

explanatory factor, it has the same effect as the population size.  On the other hand, we find the 

average family income and family size cannot explain any response heterogeneity across markets. 

 

3.6 Model Estimation and Benchmark Comparison 

3.6.1 Estimation 

We choose the hierarchical Bayesian approach to estimate the number of ticket sales, 

heterogeneous market responses, and endogeneity in performance scheduling simultaneously. 

We specify appropriate and diffuse priors for our parameters in the WinBUGS program and 

estimate the model over 10,000 iterations. After checking the convergence criteria, we examine 

the autocorrelation plots for all covariates, discard the first 5,000 iterations for burn-in, and use 

                                                            
4 We also count how many adjacent markets a focal market has regardless of when the event performed in these 
markets.  However, this alternative measure did not explain any of the response heterogeneity. 
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the remaining iterations as the posterior distribution.  We specify the prior distributions of 

parameters below: 

Priors for modeling performance attractiveness: 

σகଶ~ܩܫሺ0.1,0.1ሻ  

Priors for modeling the heterogeneity in market responses: 

 ௞௜~ܰሺ0,10ሻ where k= 1, 2, 3, 4 and i=1, 2, 3, 4, 5, 6ߚ

ఢ೔ߪ
ଶ~ܩܫሺ0.1,0.1ሻ where i=1, 2, 3, 4, 5, 6 

Priors for modeling the endogeneity in performance scheduling: 

߶௞௜~Nሺ0,10ሻ where k= 0, 1, 2 and i=1, 2 

 ௜~ܰሺ0,10ሻ where k=1, 2ߟ

3.6.2 Benchmark Comparison 

Before presenting our model results, we compare the model fit between the proposed and 

benchmark models.  Because our proposed model aims to explain the heterogeneous market 

responses to performance schedules, we think a homogeneous model that does not account for 

any heterogeneity to be an appropriate benchmark (i.e., Benchmark 1).  In addition, we also 

compare the proposed model with the preliminary analysis (i.e., Benchmark 2).  After comparing 

the model fit using the DIC measure (equation 15), we find that the DIC of the proposed model 

is 5590.63.  This fit measure is lower than the heterogeneous model without explanatory factors 

(DIC=5613.94) and the homogeneous model (DIC=6927.14).  Hence, our proposed model has 

incorporated the market heterogeneity and explained the differences across markets.   
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3.7 Results 

3.7.1 Heterogeneous Market Responses to Performance Schedules 

According to the market-specific parameters, we find that markets respond to 

performance schedules consistently.  Although the effect sizes vary from markets to markets, all 

expected values of parameters (i.e., effects of baseline performance attractiveness, days of week, 

geographic density, and temporal density) are consistently positive or negative.  Figure 3-4 

visually presents these heterogeneous parameter values.  Specifically, the parameter values of the 

baseline performance attractiveness is consistently negative across markets (E[α0m] ranges from  

-4.43 to -7.10) and performances on Friday, Saturday, or Sunday have incremental attractiveness 

to generate more ticket sales (E[α1m] ranges from 0.08 to 0.39; E[α2m] ranges from 0.16 to 0.66; 

E[α3m] rangers from 0.18 to 0.44).   

Figure 3-4: Heterogeneous Market Responses 

Moreover, markets have consistent responses to their geographic and temporal schedules.  

For markets where multiple venues are in use, densely scheduled performances across venues 

sell more tickets than sparsely scheduled performances (E[θ1m] ranges from 0.81 to 2.13).  In 

contrast, sparsely scheduled performances along a time span sell more than densely scheduled 

performances (E[θ2m] ranges from -0.10 to -0.59).  These results are consistent with results in 

essay one and our preliminary analysis.  Hence, we confirm the consistent (yet heterogeneous) 

market responses to performance schedules.   

3.7.2 Explanatory Factors for Market Heterogeneity  

Our results in Table 3-8 report explanatory factors for the heterogeneity in market 

responses.  First, when a market has a bigger population, the effects of days of week and baseline 

attractiveness are attenuated (β11= -0.25; β12= -0.03; β13= -0.05; β14= -0.02).  Our explanation is that 
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usually there are more events offered to a bigger market than to a smaller one.  Consumers in a 

bigger market may be used to seeing several competing events offered simultaneously and have a 

variety of events to choose.  Hence, they are less responsive to an event (no matter on which 

days of week it is) than are consumers in a smaller market.   

Table 3-8: Explanatory Factors for Market Heterogeneity 

Second, we find that additional scheduling characteristics can partly explain 

heterogeneous market responses.  With respect to a current market, after an event travels to more 

of its geographically adjacent markets, the current market is less responsive to its baseline 

attractiveness and temporal schedule (β21= -0.14; β26= 0.10).  A possible reason is that after an 

event has gone to more spatially adjacent markets, its newness wears out but its reputation might 

accumulate over time.  As a result, consumers may refer to other measures such as word of 

mouth to make their purchase decisions rather than refer to the baseline attractiveness and its 

temporal schedule. 

Moreover, after an event follows its temporal sequence to perform in several markets 

(whether these markets are adjacent or not), a current market in a late distribution sequence tends 

to respond more favorably to a Sunday performance (β34=0.10).  This result is also graphically 

shown in Figure 3-4 (d).  Our explanation is that after an event has lasted longer and gone to 

more markets, its reputation or word of mouth accumulates over time (Reddy et al 1981) even 

though its newness may wear out.  Because a Sunday performance tends to be the last 

performance in a market (at least it is the case in our dataset), consumers might think Sunday as 

their “last opportunity” to enjoy this event before it leaves for another market.  As a result, a 

market in a later temporal sequence has a stronger Sunday effect.   
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3.7.3 Endogenous Scheduling Decision 

We also find an endogeneity in performance schedules.  Different from essay one where 

only endogeneity is found in a temporal schedule, in essay two we find that geographic and 

temporal schedules are both done endogenously after we pool all performances across markets 

for analysis.  When event marketers expect high performance attractiveness, they schedule more 

performances in all venues (φ11= 0.18) and tend to allocate those performances around weekends 

or along a limited time span (φ12= 0.84).  As a result, on average, performances have a shorter 

geographic and temporal distance to others and have higher density values.  Moreover, when 

event marketers understand that consumers prefer performances on dispersed dates because of 

uncertain timing of attendance, event marketers decrease the number of weekend performances 

and/or disperse performance dates (φ22= 1.30).  Consequently, performances in a temporal 

schedule have lower temporal density values.  Since we have accounted for this endogeneity in 

the estimation process, the results we present here are unbiased.  Table 3-9 summarizes the 

results of the endogeneity in performance scheduling. 

Table 3-9: Endogenous Performance Schedules 
    

3.8 Conclusions 

3.8.1 Summary 

In the first essay, we observe multiple performances of a single event and examine them 

by their venue locations and performance dates to understand how their geographic and temporal 

scheduling characteristics influence their ticket sales.  However, event marketers often need to 

make scheduling decisions for more than one market.  Although our finding in essay one has rich 

implications for event marketers, it is unclear whether event marketers can apply this finding to 
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all markets.  Hence, the objective of essay two is to use all performance schedules of the same 

event to investigate heterogeneous market responses and identify explanatory factors.   

To accomplish our research objective, we first conduct a preliminary analysis and find 

consistent scheduling effects.  However, we also observe the market responses are of different 

magnitudes.  To identify the factors that explain these differences across markets, we extend the 

model developed in essay one to not only examine market-specific response parameters but also 

investigate observed and unobserved heterogeneity via the hierarchical Bayesian approach.  

Among several marketing characteristics, we choose the size of market population as the first 

explanatory factor.  We also use additional scheduling characteristics along the distribution of 

this event to examine whether geographic adjacency between markets and temporal sequence 

along the distribution affect the magnitude of scheduling effects. 

We use the same family event mentioned in essay one and aggregate the 50 cities it 

travelled to 42 designated market areas.  Our results show that market characteristics and 

additional scheduling characteristics can both explain the differences across market responses.  

First, when a market has a bigger population, the effects of days of week and baseline 

attractiveness are attenuated.  Second, with respect to a current market, after an event travels to 

more of its geographically adjacent markets, the current market is less responsive to its baseline 

attractiveness and temporal schedule.  Moreover, after an event follows its temporal sequence to 

perform in several markets, a current market in a late distribution sequence tends to respond 

more favorably to a Sunday performance.  We also find an endogeneity in performance 

schedules.  Since we have accounted for this endogeneity in the estimation process, the results 

we present here are unbiased.          
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3.8.2 Limitations and Next Steps 

This essay examines heterogeneous market responses to performance schedules and 

contributes to the event tickets literature by investigating explanatory factors.  Results of this 

essay provide a more generalizable scheduling guideline for event marketers and assist event 

marketers in anticipating potential market response based on market characteristics and 

additional scheduling characteristics. 

However, the limitation of this essay is that we allow the additional scheduling 

characteristics to explain the heterogeneity in market responses (i.e., parameter effects) but have 

not yet directly examined whether additional scheduling characteristics in an event distribution 

affect ticket sales across markets.  As the sequential distribution literature suggests, preceding 

markets tend to have some effects on later markets through their spatial adjacency (Bronnenberg 

and Mela 2004) or time lag between release timing (Elberse and Eliashberg 2003).   It is 

important to examine whether sales in different markets are independent or not.  We continue 

discussing this issue in essay three.    
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Tables and Figures 
Table 3-1: Summary of DMA markets 
Market 

ID Market First 
Date 

Last 
Date 

Number of 
Performances 

Number of 
Show Dates 

Number of 
Venues 

1 Tallahassee 1/1 1/4 6 4 1 
2 Orlando 1/2 1/4 6 3 1 
3 Tampa 1/7 1/11 8 5 1 
4 Miami 1/8 1/18 16 10 1 
5 Jacksonville 1/14 1/18 9 5 1 
6 Birmingham 1/21 1/25 10 5 1 
7 Nashville 1/22 1/25 8 4 1 
8 Columbia 1/28 2/1 9 5 1 
9 Greenville-Asheville 1/28 6/13 19 10 2 

10 Raleigh-Fayetteville 2/5 5/23 17 9 2 
11 Richmond 2/11 2/16 11 6 1 
12 Atlanta 2/12 2/22 21 10 1 
13 Norfolk-Hampton 2/18 2/29 19 10 2 
14 Cincinnati 2/25 2/29 9 5 1 
15 Charlotte 3/3 3/7 11 5 1 
16 New York 3/3 6/6 70 32 4 
17 Wheeling 3/17 3/20 7 4 1 
18 Louisville 3/24 3/28 7 5 1 
19 Terre Haute 4/6 4/7 4 2 1 
20 Champaign-Springfield 4/9 4/25 11 6 2 
21 Carbondale 4/13 4/14 3 2 1 
22 Philadelphia 4/14 5/2 31 16 2 
23 Charleston 4/15 4/18 8 4 1 
24 Albany 4/29 5/2 8 4 1 
25 La Crosse 5/4 5/5 4 2 1 
26 Providence 5/5 5/9 9 5 1 
27 Worcester 5/5 5/9 8 5 1 
28 Madison 5/7 5/9 6 3 1 
29 Hartford 5/12 5/16 9 5 1 
30 Dayton 5/13 5/16 7 4 1 
31 Mankato 5/18 5/19 3 2 1 
32 Rochester 5/19 5/23 8 5 1 
33 St. Paul 5/21 5/23 6 3 1 
34 Cedar Rapids 5/25 5/26 4 2 1 
35 Hershey 5/26 5/31 9 6 1 
36 Sedalia 5/29 5/31 5 3 1 
37 Memphis 6/2 6/5 6 4 1 
38 Evansville 6/3 6/6 6 4 1 
39 Wilkes-Barre 6/9 6/13 8 5 1 
40 North Little Rock 6/16 6/20 8 5 1 
41 Macon 6/23 6/27 8 5 1 
42 Tucson 6/24 6/27 7 4 1 

Average (STD) 10.69 (10.81) 5.79 (4.97) 1.19 (0.55) 
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Table 3-2: Summary of Market Responses to Performance Schedules 
Market ID α0 α1 α2 α3 θ1 θ2 

1 -5.5 ** 0.3 1.32 ** 0.15 -1.8 ** 
2 -5.76 ** 1.19 ** 0.58 ** -0.79 ** 
3 -6.32 ** 0.75 ** 1.48 ** 0.88 ** -1.33 ** 
4 -6.97 ** 0.3 0.79 ** 0.61 ** -1.24 ** 
5 -5.96 ** 0.9 ** 1.33 ** 0.7 ** -1.69 ** 
6 -5.42 ** 0.62 ** 0.89 ** 0.22 -2.04 ** 
7 -5.99 ** 0.86 ** 1.42 ** 0.73 ** -1.4 ** 
8 -5.92 ** 0.95 ** 1.36 ** 0.59 ** -1.81 ** 
9 -7.17 ** 0.66 ** 0.94 ** 0.6 ** 0.96 ** -1.8 ** 

10 -6.16 ** 0.5 ** 0.81 ** 0.41 ** 4.29 ** -2.92 ** 
11 -5.66 ** 0.9 ** 1.3 ** 1.09 ** -2.38 ** 
12 -6.72 ** 0.24 0.5 ** 0.34 ** -1.2 ** 
13 -7.23 ** 0.54 ** 0.75 ** 0.48 ** 0.92 ** -0.84 ** 
14 -5.68 ** 0.4 * 0.91 ** 0.41 ** -1.74 ** 
15 -5.78 ** 0.69 ** 0.96 ** 0.53 ** -1.67 ** 
16 -8.23 ** 0.1 0.24 ** 0.2 ** 0.51 ** -1.16 ** 
17 -5.4 ** 0.94 ** 1.19 ** -2.22 ** 
18 -6.17 ** 0.56 * 1.21 ** 0.22 -1.18 ** 
19 -3.82 ** -2.22 ** 
20 -6.03 ** 0.40 ** 0.35 ** 2.09 ** -2.04 ** 
21 -4.43 ** -1.17 ** 
22 -7.18 ** 0.28 ** 0.37 ** 0.24 ** 0.99 ** -1.3 ** 
23 -5.68 ** 0.83 ** 1.27 ** 0.61 ** -1.8 ** 
24 -5.62 ** 0.89 ** 1.4 ** 0.79 ** -2.1 ** 
25 -4.79 ** -0.66 ** 
26 -5.63 ** 0.34 * 0.85 ** 0.27 * -1.71 ** 
27 -6.82 ** 0.53 ** 1.27 ** 0.71 ** -0.37 ** 
28 -6.1 ** 0.98 ** 0.29 -0.04 
29 -5.86 ** 0.35 0.84 ** 0.29 * -1.32 ** 
30 -6.2 ** 0.7 ** 1.46 ** 0.9 ** -1.25 ** 
31 -3.83 ** -2.12 ** 
32 -6.19 ** 0.66 ** 1.34 ** 0.87 ** -1.41 ** 
33 -6.44 ** 1.05 ** 0.5 ** -0.59 * 
34 -4.59 ** -0.98 ** 
35 -6.83 ** 0.45 ** 1.11 ** 0.71 ** -0.34 ** 
36 -6.35 ** 0.65 ** 0.77 ** 0.08 
37 -6.13 ** 0.59 * 1.24 ** -1.08 ** 
38 -6.04 ** 0.35 1.16 ** 0.13 -0.88 ** 
39 -6 ** 0.51 ** 1.13 ** 0.6 ** -1.47 ** 
40 -6.06 ** 0.58 ** 1.19 ** 0.6 ** -1.51 ** 
41 -6.14 ** 0.48 * 1.22 ** 0.57 ** -1.34 ** 
42 -5.79 ** 0.54 ** 1.36 ** 0.82 ** -1.7 ** 

**: significant at the 95% highest posterior density 
*  : significant at the 90% highest posterior density  
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 Table 3-3: Venue Locations and their Associated DMAs 
Venue City State DMA Market 
Pepsi Arena  Albany NY Albany 
Philips Arena Atlanta GA Atlanta 
Bjcc Arena Birmingham AL Birmingham 
Southern Illinois University Carbondale IL Carbondale 
Us Cellular Center Cedar Rapids IA Cedar Rapids 
Assembly Hall Champaign IL Champaign-Springfield 
Prairie Capital Convention Center Springfield IL Champaign-Springfield 
Charleston Civic Center Charleston WV Charleston 
Charlotte Coliseum Charlotte NC Charlotte 
Us Bank Arena Cincinnati OH Cincinnati 
Colonial Center Columbia SC Columbia 
Ej Nutter Center Dayton OH Dayton 
Roberts Municipal Stadium  Evansville IN Evansville 
Asheville Civic Center Asheville NC Greenville-Asheville 
Bi-Lo Center Greenville SC Greenville-Asheville 
Hartford Civic Center Hartford CT Hartford 
Giant Center Hershey PA Hershey 
Jacksonville Veterans Memorial Arena Jacksonville FL Jacksonville 
La Crosse Center Lacrosse WI Lacrosse 
Louisville Gardens Louisville KY Louisville 
Macon Centreplex Macon GA Macon 
Alliant Energy Center Coliseum Madison WI Madison 
Midwest Wireless Civic Center Mankato MN Mankato 
Pyramid Arena Memphis TN Memphis 
American Airlines Arena Miami FL Miami 
Gaylord Entertainment Ctr Nashville TN Nashville 
Continental Arena East Rutherford NJ New York 
Madison Square Garden New York NY New York 
Sovereign Bank Arena Trenton NJ New York 
Nassau Coliseum Uniondale NY New York 
Hampton Coliseum Hampton VA Norfolk-Hampton 
Norfolk Scope Arena Norfolk VA Norfolk-Hampton 
Alltel Arena North Little Rock AK North Little Rock 
Td Waterhouse Centre Orlando FL Orlando 
Boardwalk Hall Atlantic City NJ Philadelphia 
Wachovia Spectrum Philadelphia PA Philadelphia 
Dunkin' Donuts Center Providence RI Providence 
Crown Center Of Cumberland Fayetteville NC Raleigh-Fayetteville 
Rbc Center Raleigh NC Raleigh-Fayetteville 
Richmond Coliseum Richmond VA Richmond 
Blue Cross Arena Rochester NY Rochester 
Mathewson Center Sedalia MO Sedalia 
Xcel Energy Center St Paul MN St Paul 
Tallahassee Leon County Civic Center Tallahassee FL Tallahassee 
St Pete Times Forum Tampa FL Tampa 
Hulman Center Terre Haute IN Terre Haute 
Tcc Arena Tucson AZ Tucson 
Wesbanco Arena Wheeling WV Wheeling 
Wachovia Arena Wilkes-Barre PA Wilkes-Barre 
Worcester Centrum Centre Worcester MA Worcester 
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Table 3-4: Summary of Ticket Sales 

Market ID Market 
Ticket Sales per Performance 

Market Sales 
Mean STD Min Max 

1 Tallahassee 2362 1236 1659 4858 14174 
2 Orlando 4348 396 3893 4952 26088 
3 Tampa 6660 2056 2644 9294 53277 
4 Miami 5192 2499 2150 10635 83075 
5 Jacksonville 5038 1148 3357 6766 45341 
6 Birmingham 8072 2048 5237 11214 80720 
7 Nashville 6359 1944 3897 9274 50869 
8 Columbia 3571 1147 2511 5707 32136 
9 Greenville-Asheville 3475 2306 800 7716 66024 

10 Raleigh-Fayetteville 5481 3480 1376 12747 93171 
11 Richmond 6355 1240 3863 7703 69901 
12 Atlanta 6611 1908 2499 9969 138827 
13 Norfolk-Hampton 5209 1433 3095 8093 98977 
14 Cincinnati 7788 2501 2638 10228 70092 
15 Charlotte 7457 2647 2935 11459 82030 
16 New York 8316 3525 1827 15810 582099 
17 Wheeling 1848 450 993 2469 12939 
18 Louisville 2734 317 2326 3173 19137 
19 Terre Haute 3031 422 2545 3563 12124 
20 Champaign-Springfield 1045 527 491 1910 11500 
21 Carbondale 3182 1321 1838 4478 9546 
22 Philadelphia 4497 2182 1548 8915 139421 
23 Charleston 4407 651 3434 5442 35258 
24 Albany 6489 1489 3456 8084 51914 
25 La Crosse 907 219 603 1096 3629 
26 Providence 5088 1065 2803 6216 45795 
27 Worcester 3233 995 1521 4838 25864 
28 Madison 585 210 278 914 3508 
29 Hartford 5137 1258 2768 6925 46237 
30 Dayton 2704 614 2011 3669 18928 
31 Mankato 869 321 646 1237 2608 
32 Rochester 2314 588 1472 3322 18513 
33 St. Paul 1855 337 1516 2324 11130 
34 Cedar Rapids 2037 287 1689 2356 8149 
35 Hershey 758 147 574 982 6825 
36 Sedalia 1088 203 855 1304 5442 
37 Memphis 3135 321 2624 3539 18811 
38 Evansville 972 429 507 1780 5834 
39 Wilkes-Barre 2921 933 2018 4583 23369 
40 North Little Rock 2879 827 2044 4281 23029 
41 Macon 1183 369 735 1691 9461 
42 Tucson 3465 824 2437 4379 24257 

 Market average 3825 1162 2098 5712 51905 
(STD= 90992) 
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Table 3-5: Descriptive Statistics of Covariates across Markets 
Market 

ID 
FRIDAY SATURDAY SUNDAY GEO TMP Population of 

Target Market Mean STD Mean STD Mean STD Mean STD Mean STD 
1 0.167 0.41 0.500 0.55 0.167 0.41 0.539 0.14 104326 
2 0.167 0.41 0.500 0.55 0.333 0.52 0.611 0.11 477402 
3 0.125 0.35 0.375 0.52 0.250 0.46 0.470 0.11 578505 
4 0.125 0.34 0.375 0.50 0.250 0.45 0.299 0.04 741879 
5 0.222 0.44 0.333 0.50 0.222 0.44 0.476 0.10 282479 
6 0.200 0.42 0.300 0.48 0.200 0.42 0.470 0.07 321845 
7 0.250 0.46 0.375 0.52 0.250 0.46 0.530 0.09 430888 
8 0.222 0.44 0.333 0.50 0.222 0.44 0.476 0.10 169819 
9 0.211 0.42 0.316 0.48 0.263 0.45 0.482 0.03 0.232 0.05 344151 

10 0.235 0.44 0.353 0.49 0.176 0.39 0.492 0.09 0.245 0.05 463117 
11 0.182 0.40 0.273 0.47 0.273 0.47 0.457 0.10 183972 
12 0.190 0.40 0.286 0.46 0.286 0.46 0.307 0.04 1074597 
13 0.211 0.42 0.316 0.48 0.263 0.45 0.497 0.03 0.296 0.04 345541 
14 0.111 0.33 0.333 0.50 0.222 0.44 0.463 0.08 435717 
15 0.182 0.40 0.273 0.47 0.273 0.47 0.473 0.07 466459 
16 0.157 0.37 0.300 0.46 0.286 0.46 0.368 0.18 0.118 0.02 4100325 
17 0.286 0.49 0.429 0.53 0.520 0.11 53729 
18 0.143 0.38 0.429 0.53 0.143 0.38 0.470 0.13 298428 
19 0.667 0.00† 66486 
20 0.273 0.47 0.545 0.52 0.182 0.40 0.461 0.05 0.318 0.06 156173 
21 0.667 0.14 155322 
22 0.129 0.34 0.290 0.46 0.258 0.44 0.556 0.17 0.221 0.03 1321626 
23 0.250 0.46 0.375 0.52 0.250 0.46 0.530 0.09 211135 
24 0.250 0.46 0.375 0.52 0.250 0.46 0.530 0.09 225057 
25 0.667 0.00† 86726 
26 0.111 0.33 0.333 0.50 0.222 0.44 0.463 0.08 287211 
27 0.125 0.35 0.375 0.52 0.250 0.46 0.470 0.11 1126579 
28 0.167 0.41 0.500 0.55 0.333 0.52 0.611 0.11 147178 
29 0.111 0.33 0.333 0.50 0.222 0.44 0.463 0.08 463979 
30 0.143 0.38 0.429 0.53 0.286 0.49 0.532 0.12 240286 
31 0.667 0.14 17074 
32 0.125 0.35 0.375 0.52 0.250 0.46 0.470 0.11 186215 
33 0.167 0.41 0.500 0.55 0.333 0.52 0.611 0.11 802661 
34 0.667 0.00† 140908 
35 0.111 0.33 0.333 0.50 0.222 0.44 0.438 0.11 316530 
36 0.400 0.55 0.400 0.55 0.567 0.09 423202 
37 0.167 0.41 0.500 0.55 0.506 0.13 347835 
38 0.167 0.41 0.500 0.55 0.167 0.41 0.539 0.14 128297 
39 0.125 0.35 0.375 0.52 0.250 0.46 0.470 0.11 227157 
40 0.125 0.35 0.375 0.52 0.250 0.46 0.470 0.11 230179 
41 0.125 0.35 0.375 0.52 0.250 0.46 0.470 0.11 109799 
42 0.143 0.38 0.429 0.53 0.286 0.49 0.532 0.12 174998 

Market 
Average 0.172 0.40 0.382 0.51 0.250 0.46 0.476 0.09 0.476 0.09 439662 

Note:  
1. Markets without any observations in days of week are shown in blank cells. 
2. Markets without any variation in their geographic schedules are shown in blank cells. 
† Performances in market 19, 25, and 34 had equal temporal distance to other performances in the same market.    
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Table 3-6: Descriptive Statistics of Market Characteristics 
Market Characteristics N Mean STD Min Max 
POPm Population of target market 42 439662 647091 17074 4100325
POP_Densitym Population density (in the log term) 42 5.717 0.85 3.787 7.615 
Incomem Family income (in the log term) 42 10.594 0.15 10.260 10.883 
Family_Sizem Average family size 42 3.028 0.09 2.857 3.276 
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Table 3-7: Descriptive Statistics of Additional Scheduling Characteristics 
Additional Scheduling Characteristics N Mean STD Min Max 
ADJm Number of geographically adjacent 

markets performing prior to a focal 
market 

42 0.95 1.00 0 4 

ORDERm Distribution order in the temporal 
sequence 

42 21.43 12.3 1 42 
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Table 3-8: Sources of Heterogeneous Market Responses 
Parameter Description     Median (Std Dev) 
Effect of Baseline performance attractiveness: E[α0m]    

β01 Intercept     -4.30 (0.21)** 
β11 Population size in a target market -0.25 (0.06)** 
β21 Num. of geographically contiguous markets -0.14 (0.09)* 
β31 Num. of preceding markets in temporal sequence -0.12 (0.16) 

    
Effect of Friday performances: E[α1m]    

β02 Intercept     0.31 (0.73)** 
β12 Population size in a target market -0.03 (0.01)** 
β22 Num. of geographically contiguous markets 0.00 (0.03) 
β32 Num. of preceding markets in temporal sequence 0.03 (0.06) 

    
Effect of Saturday performances: E[α2m]    

β03 Intercept     0.51 (0.07)** 
β13 Population size in a target market -0.05 (0.01)** 
β23 Num. of geographically contiguous markets 0.01 (0.02) 
β33 Num. of preceding markets in temporal sequence 0.06 (0.05) 

    
Effect of Sunday performances: E[α3m]    

β04 Intercept     0.21 (0.07)** 
β14 Population size in a target market -0.02 (0.01)** 
β24 Num. of geographically contiguous markets 0.00 (0.03) 
β34 Num. of preceding markets in temporal sequence 0.10 (0.05)** 

    
Effect of Geographic density: E[θ1m]    

β05 Intercept     1.22 (0.85)* 
β15 Population size in a target market -0.18 (0.32) 
β25 Num. of geographically contiguous markets -0.25 (1.19) 
β35 Num. of preceding markets in temporal sequence 0.86 (1.53) 

    
Effect of Temporal density: E[θ2m]    

β06 Intercept     -0.61 (0.15)** 
β16 Population size in a target market 0.04 (0.04) 
β26 Num. of geographically contiguous markets 0.10 (0.06)** 
β36 Num. of preceding markets in temporal sequence 0.09 (0.11) 

    

*   significant at the 90% highest posterior density 
** significant at the 95% highest posterior density 
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Table 3-9: Results of Performance Schedule Model 
Parameter Description     Median (Std Dev) 
Expected geographic density: m1    

φ01 Intercept     -0.06 (0.47) 
φ11 Expected performance attractiveness 0.18 (0.06)** 
φ21 Effect of geographic density 0.09 (0.14) 

   
Expected temporal density: m 2    

φ02 Intercept     3.35 (0.27)** 
φ12 Expected value of performance 0.84 (0.05)** 
φ22 Effect of temporal density 1.30 (0.18)** 

        

** significant at the 95% highest posterior density  
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Figure 3-1: Conceptual Framework of Heterogeneous Market Responses 
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Figure 3-2: Example of a DMA and its county information 

 



115 
 

Figure 3-3: Locations of DMA Markets and Performing Sequence 
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Figure 3-4: Heterogeneous Market Responses 
(a) Expected baseline effect: E[α0] 

 

(b) Expected Friday effect: E[α1] 

 

(c) Expected Saturday effect: E[α2] 

 

(d) Expected Sunday effect: E[α3] 

 

(e) Expected geographic effect: E[θ1] 

 

(f) Expected temporal effect: E[θ2] 
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4 Essay 3: Sequential Distribution of a Live Performance Event  

 

4.1 Introduction 

When and where to schedule performances are two of the most important decisions 

facing event marketers in the live entertainment industry. When event marketers schedule a tour 

for an event, they have to design a performance schedule within each participating market and 

determine an overall travel sequence across markets.  Therefore, their scheduling decisions are 

within and across markets and may have different effects on ticket sales. 

In the first two essays, we have shown the effect of within-market scheduling and 

identified explanatory factors for heterogeneous market responses.  Specifically, we find that 

venue locations in a geographic schedule influences ticket sales differently from do performance 

dates in a temporal schedule.  Densely scheduled performances across venues sell more tickets, 

yet densely scheduled performances across times sell fewer tickets.  Moreover, the population 

size, geographic adjacency between markets, and temporal sequence in an event distribution can 

explain heterogeneous market responses to some extent.   

Because essays one and two have studied the effect of within-market scheduling and left 

the impact of across-market scheduling unknown, essay three examines an event distribution 

across markets and its impact on market sales.  Specifically, an event distribution involves 

scheduling across markets.  Event marketers first decide a touring sequence at one time.  Then, a 

performing group follows this sequence to travel from one market to another.  This group 

performs in one market at a time, provides a few shows within a venue, and then leaves for 

another market.  Therefore, the mechanism of an event distribution is the same as the sequential 

distribution. 
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Sequential distribution has been studied in marketing literature where researchers study 

the market roll out of a new product (Bronnenberg and Mela 2004) and movie releases across 

markets or channels  (Lehmann and Weinberg 2000; Elberse and Eliashberg 2003; Chintagunta, 

Gopinath, and Venkataraman 2009).  These works show a dependent relationship between 

preceding and following markets and indicate the effect of sequential distribution on sales or 

profitability.  In addition, they suggest the underlying reasons for the effect of sequential 

distribution to be the lead market effect from geographically adjacent markets (Bronnenberg and 

Mela 2004), word of mouth effect from previous markets (Elberse and Eliashberg 2003; 

Chintagunta et al 2009), or effect of release timing between channels (Lehmann and Weinberg 

2000).  Hence, it is common to observe how well a new product sells in previous markets to 

influence whether other markets adopt this product, when following markets launch this product, 

and how well this product sells.   

Similarly, when an event is distributed across markets, it is likely to see preceding 

markets influencing following markets.  This influence may come from geographic adjacency, 

word of mouth, or release timing.  Although essay two uses geographical adjacency between 

markets and temporal sequence in a distribution to explain heterogeneous market responses, it 

has not yet explored the possibility that markets may have a more direct dependent relationship.  

Consequently, the objective of essay three is to examine whether an event distributed 

sequentially across markets has an effect such that ticket sales in preceding markets can 

influence sales in those following markets.  We refer to such an effect as the carryover effect in 

this essay.  

To achieve this objective, we model ticket sales of each market as a function of its 

performance schedule within a market and potential carryovers from an event distribution.  
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However, one modeling challenge is that scheduling decisions are correlated and endogenous 

with the demand.  For instance, the number of performances, the number of venues booked, and 

the number of days scheduled may be highly correlated with one another.  If we simply use these 

scheduling decisions to explain market demand, these scheduling variables will be highly 

correlated and suffer from the issue of collinearity.   

To solve this issue, in addition to modeling supply and demand simultaneously to account 

for the endogeneity, we have to use variables that are independent of one another yet still 

represent the scheduling influences.  Thus, in the demand model for event tickets, we use the size 

of trading areas of booked venue(s) in a market as one instrumental variable for the scheduling 

influence.  We also use the distribution of performance dates in a schedule as the second 

instrumental variable for the supply of an event on different dates.   

On the other hand, we capture carryovers from an event distribution from the beginning 

of its tour.  Because an event travels to markets at different times and each market along the 

distribution has different release timing, we employ the spatially weighted approach to account 

for ticket sales of preceding markets as well as their release timing. 

To specify the supply decisions simultaneously with the demand, we assume that event 

scheduling within a market consists of three related decisions.  First, event marketers consider 

how many seats they have to provide in order to sell an expected number of tickets.  We call this 

decision an overall supply in a market.  Next, they decide how many venues they need to reserve 

given the number of seats needed in a market.  This is the decision of venue usage.  In the 

meantime, they have to determine how many days they need to book given the number of seats 

needed and the size of a venue capacity.  We refer to this decision as the day usage decision.  In 



120 
 

this way, we take into account the influence of expected demand on the supply decisions and use 

variables to incorporate the scheduling influences on demand. 

We contact a national ticket seller to obtain a dataset of live performance events and use 

ticket sales for one event to test our model.  This particular event sequentially performed 449 

times in 50 cities in the U.S. domestic market between January and June 2004.  Because we 

aggregated these cities into 42 DMAs in essay two, we proceed to analyze ticket sales at a 

market level in essay three.   

The first finding of our demand model is that an event experiences more market sales 

when more consumers are within the primary trading area of its venue(s).  The intuition behind is 

that when an event is more accessible to consumers and has more consumers within its primary 

trading area, it provides more convenience to consumers due to a shorter travel distance.  As a 

result, an event with a larger trading area because of using more venues in a market can 

accommodate more consumers and increase ticket sales.   

Second, we show that an event sells more tickets when it has performances on various 

dates in a market.  In other words, when an event has more performances available to a market 

and has a dispersed temporal schedule, it provides more flexibility to consumers especially for 

those who have higher uncertainty about whether they could attend at a particular time.  

Therefore, an event with a bigger variance in the distribution of performance dates sells more 

tickets in a market.   

Third, we show that an event distribution has a carryover effect on ticket sales.  However, 

the influence is across multiple venues within the same market but not across different markets.  

In other words, when an event performs from one market to another, its ticket sales in preceding 

markets do not affect sales in following markets.  Yet, when this event performs in more than 
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one venue, its ticket sales in a preceding venue carry over to a later venue and influence its 

overall market sales.   

We think the nature of the family event analyzed in this essay is the underlying reason for 

a carryover effect significant within a market but not across markets.  Because this family event 

targets young children and their parents, it is easier to observe children and parents discussing 

event information within a market than across markets.  Moreover, this family event travels 

within the U.S. and often goes to a similar set of markets after a year or longer.  Thus, these 

markets do not have to depend on other participating markets but can rely on their own historical 

experience to determine the quality of this event. 

Finally, we show the endogeneity in the supply of an event.  Event marketers use the 

expected market demand to determine how many seats they need to provide, and this overall 

supply further influences the number of venues and days they schedule the event.   

The rest of essay three is organized as follows.  We start with reviewing relevant 

literature and constructing the conceptual framework.  Next, we introduce our model 

development and describe our data.  After the model estimation and benchmark comparisons, we 

discuss our results and conclude this essay. 

 

4.2 Literature Review and Conceptual Framework 

Essay three centers on literature in sequential distribution.  Although we have reviewed 

some relevant works in essay two, we discuss this literature in depth to show its mechanism and 

possible effects in turn. 

4.2.1 Sequential Distribution 

Sequential distribution has been studied in movie and retailing contexts.  The concept of 

sequential distribution is that a new product starts in one channel or market and then gradually 
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distributes to another.  Hence, as time passes by, the product availability increases and reaches 

more consumers (Lehmann and Weinberg 2000).  Based on where sequential distribution takes 

place, we categorize extant works into two mechanisms: (1) sequential distribution across 

channels and (2) sequential distribution across markets.    

Sequential Distribution across Channels 

Sequential distribution across channels refers to a new product released from one 

channel to another, and it is a very common mechanism in the movie industry.  One key 

objective of research in this stream is to understand the impact of release timing of a new movie 

title on its box-office revenues (Lehmann and Weinberg 2000; Hennig-Thurau et al 2006; 

Hennig-Thurau, Houston, and Walsh 2007).  In this way, researchers can suggest the optimal 

release timing of a movie to another channel.   

Specifically, Lehmann and Weinberg (2000) examined the optimal release timing from 

movie theaters to video rental stores, and they found shortening the release timing (compared 

with current practice) leads to increases in profits.  On the other hand, Hennig-Thurau et al (2006) 

studied revenue drivers in different movie channels (i.e., theater and video).  They found that 

release timing has a stronger influence on short-term box-office revenues than on long-term 

revenues.  Yet, release timing does not affect how well a movie sells on the video channel.   

Another work by Hennig-Thurau et al (2007) examined the optimal release timing across 

four distribution channels (i.e., theater, video purchase, video rental, and video on demand) and 

further indicated that changing the order of distribution or shortening the release timing increases 

profits for movie studios.  To sum up, studies in this category emphasize the effect of time lags 

between channels and show higher profitability due to a shortened time lag between channels. 
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Sequential Distribution across Markets 

Sequential distribution across markets refers to a new product distributed from one 

market to another, and it is observed in the movie and retailing industries.  A primary objective 

of this research stream is to investigate whether and how previous market success carries over to 

later markets and influences market entry decisions or product sales in later markets (Elberse and 

Eliashberg 2003; Bronnenberg and Mela 2004; Chintagunta et al 2009).   

In terms of the movie industry, no matter whether movies are of limited or wide release 

within a market, a common approach is to distribute movies sequentially across markets.  For 

instance, Elberse and Eliashberg (2003) investigated the relationship between the U.S. domestic 

and a foreign market.  Within a market, they concluded that box-office revenues of a movie title 

and the number of screens in a theater in a preceding week affect the supply and demand in a 

following week.  They also found that total box-office revenues in the U.S market tend to carry 

over to a foreign market and influence the supply and demand for the same movie in the opening 

week.  However, when they tested an interaction effect between the U.S. box-office revenues and 

the time lag on a foreign market, they found this carryover effect only significant for the screen 

management decision but insignificant for market demand.   

Similarly, Chintagunta et al (2009) studied a sequentially released movie across the U.S. 

local markets and examined the effect of online word of mouth (measured by the valance of 

online reviews) from previous markets on the box-office revenues on the opening day in a new 

market.  They found that a time lag between an initial market and a current market negatively 

affects sales, yet the average user rating of online reviews positively influences sales.  However, 

reviews are accumulated from the opening of a movie up to a current market.  Researchers did 
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not incorporate the joint effect between the release timing and user rating generated in different 

markets.   

On the other hand, in the retailing context, Bronnenberg and Mela (2004) examined 

manufacturers’ market entry decisions and retailers’ chain adoption decisions for newly 

introduced frozen pizzas.  They suggested that past market entry decisions influence whether a 

manufacturer enters a new market, and past chain adoption decisions affect whether a chain in a 

new market adopts this product.  However, because the focus of this paper was on the supply 

side, researchers did not investigate the effect of previous market entry or retail adoption on 

demand in following markets.   

Rationale for the Effect of Sequential Distribution 

One primary reason for retailers or movie studios to practice sequential distribution is to 

prevent financial losses of a failing launch (Lehmann and Weinberg 2000).  Moreover, there are 

several underlying reasons to explain why sequential distribution would be effective and 

influence sales in later markets or channels.   

For example, the success-breed-success effect (Elberse and Eliashberg 2003; Hennig-

Thuran et al 2006) shows a previous success in preceding markets or channels may be replicated 

more easily in later entities.  The word-of-mouth effect (Elberse and Eliashberg 2003; Hennig-

Thuran et al 2007; Chintagunta et al 2009) suggests that people exchange opinions and their 

experiences influence how other people think.  Moreover, the lead market effect (Bronnenberg 

and Mela 2004) posits that similar behaviors tend to take place in spatially adjacent markets.  

Thus, it is easier for adjacent markets to observe a focal market and imitate behaviors in this 

focal market. 
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Summary 

To sum up, studies in sequential distribution show a dependent relationship between 

preceding and following markets and indicate the effect of sequential distribution on sales or 

profitability.  However, one limitation is that some, if not all, of these papers assume the decision 

of sequential distribution is made one at a time rather than simultaneously (Lehmann and 

Weinberg 2000; Elberse and Eliashberg 2003; Bronnenberg and Mela 2004; Hennig-Thuran et al 

2006; Hennig-Thuran et al 2007).  In other words, decisions of release timing, market entry, 

chain adoption, and screen management are made sequentially after managers observe outcomes 

(i.e., adoption decisions, box-office revenues, or profitability) from previous adoptions.   

When managers have to plan a new product launch simultaneously for all participating 

markets, it is not clear whether these markets still have a dependent relationship such that sales 

in preceding markets carry over to following markets and influence their sales.  Accordingly, 

essay three contributes to this literature by studying an event distribution and its impact while a 

touring sequence has to be planned at one time for an event to travel sequentially across markets. 

4.2.2 Conceptual Framework  

The objective of essay three is to examine whether markets along an event distribution 

have a dependent relationship such that ticket sales of preceding markets have a carryover effect 

to influence ticket sales in following markets.  Hence, in our conceptual framework, we first 

discuss how a performance schedule in a market influences its ticket sales.  Then, we discuss 

why preceding markets along an event distribution could influence following markets and what 

the possible impact might be.  Finally, we discuss the endogeneity between supply and demand 

for an event. 
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Effects of Performance Schedule within a Market  

When an event provides many performances in a market, its performance schedule is of a 

relatively larger scale, compared with an event providing fewer performances.  Among these 

performances, if event marketers choose to book multiple venues and each venue is surrounded 

by densely populated consumers, this event will be able to reach more consumers and have a 

bigger primary trading area (Huff 1964) due to its enhanced spatial accessibility (Betancourt 

2004).  On the other hand, if these performances are at different times of day across various days 

of week, this event will provide more flexibility to consumers and can deliver the performing 

contents at consumers’ desired times (Betancourt 2004).  In this way, the supply of a 

performance schedule within a market influences how well an event sells in this market.   

Effects of Carryovers from an Event Distribution 

Moreover, as an event travels across markets and incurs a varying number of ticket sales, 

it is possible to see preceding markets influencing following markets due to the effect of event 

distribution.  In other words, how well an event sells in a market may influence its sales in 

adjacent markets via the lead market effect (Bronnenberg and Mela 2004).  Addition, it is 

possible that when an event sells well in one market, event marketers try to replicate this success 

in another market because of the success-breed-success effect (Elberse and Eliashberg 2003; 

Hennig-Thuran et al 2006).   

On the other hand, it is also likely that consumers who have attended an event talk about 

this event online or offline thus influencing people who have not yet attended.  In this way, the 

word of mouth of this event may travel across markets and influence people in different areas 

(Elberse and Eliashberg 2003; Chingatunga et al 2009).  Hence, the more ticket sales an event 
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experiences from previous markets, the higher is its volume of word of mouth, and the more 

likely an event will sell well.  

One special case occurs when an event travels to multiple venues of the same market.  It 

is possible that people who have gone to an event in a preceding venue express their opinions 

about this event and influence other people in the same market.  If so, an event distribution will 

not only influence ticket sales across markets but also affect ticket sales across venues within the 

same market.  Consequently, the carryover effect from an event distribution may be across 

markets as well as within a market (but across multiple venues). 

Finally, although the population size of a market may influence the baseline market 

demand, once we control for this market characteristic, a sequentially distributed event may still 

influence its market sales through its performance schedule within a market and carryovers from 

an event distribution.  

Endogenous Supply and Demand of an Event Distribution 

  Meanwhile, because supply is often endogenous with demand, it is likely that the supply 

of an event in a market influences its market sales, and the expected demand in this market 

affects the supply of the same market.  Therefore, our conceptual framework for an event 

distribution must consider supply and demand simultaneously and allow the expected demand 

and other scheduling constraints to influence the supply decision.  Figure 4-1 below indicates the 

endogenous relationship and summarizes the effects of performance schedule and event 

distribution on market sales. 

Figure 4-1: Conceptual Framework of Essay Three 

  Specifically, we assume event marketers make several scheduling decisions for a 

touring event.  Similar to the screen management decision in the movie industry (Elberse and 
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Eliashberg 2003; Basuroy, Desai, and Talukdar 2006; Eliashberg et al 2007), the first scheduling 

decision is to determine the total number of seats an event needs to provide in individual markets.  

Because the total number of seats is the maximum possible seats that an event can sell within a 

market, we call this an overall supply decision.  To endogenize the overall supply with market 

sales, we assume event marketers rely on a size of market population and expected market 

demand to set a desirable amount of supply.  Hence, they may increase the overall supply when 

they expect higher demand in a bigger market.  In addition, after setting an overall supply of an 

event, other scheduling issues are deciding how many venues to use and how many days to book 

for this event.  We call these decisions as venue usage and day usage and assume these decisions 

are as a result of the market characteristics (e.g., population size or population density) and 

scheduling constraints (e.g., venue capacity, venue availability, or facility rental fees). 

 

4.3 Model Development 

4.3.1 Overview 

To test our conceptual framework, we model the supply and demand for an event 

simultaneously.  At the supply side, we model the total number of seats, venues, and days needed.  

At the demand side, we specify ticket sales of each market as a function of its performance 

schedule within a market and potential carryovers from an event distribution.  However, one 

modeling challenge is that scheduling decisions are correlated and endogenous with market 

demand.  For instance, the number of performances, the number of venues booked, and the 

number of days scheduled in a market may be highly correlated with one another.  If we simply 

use these scheduling decisions to explain market demand, these covariates will be highly 

correlated and suffer from the issue of collinearity.   
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To solve this issue, in addition to modeling supply and demand simultaneously to account 

for the endogeneity, we have to use variables that are independent of one another yet still 

represent the scheduling influences.  Thus, in the demand model for event tickets, we use the size 

of trading areas of booked venue(s) in a market as one variable for the scheduling influence.  We 

also use the distribution of performance dates in a schedule as the second variable for the supply 

of an event on different dates.   

Although our modeling approach is similar to that of Elberse and Eliashberg (2003) who 

specified the number of screens and box-office revenues simultaneously for a sequentially 

distributed movie, our approach differs from theirs because we model several elements in the 

scheduling decisions in additional to just the capacity decision. 

As such, we model the linerized supply and demand to follow the multivariate normal 

distribution.    
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 where Salesm is the number of ticket sales in market m (i.e., market demand), Seatsm is the total 

number of seats supplied in market m (i.e., overall supply), Venuesm is the number of venues 

used in a market (i.e., venue usage), and Daysm is the number of days available in a schedule (i.e., 

day usage).  These dependent variables have expected values ym and a variance-covariance 

matrix Σ.  In this way, the correlations between supply decisions and the correlation between 

supply and demand are controlled in the variance-covariance matrix. 

4.3.2 Demand Equation: Market Sales 

According to equation (19), we model expected market sales as a function of its 

performance schedule within a market and potential carryovers from an event distribution: 



130 
 

ଵ௠ݕ (20) ൌ ଴ߙ ൅ હ૚࢓૚ࢄ ൅ હ૛࢓૛ࢄ ൅  હ૜࢓ࢆ

where y1m is the expected ticket sales (in the log term) in market m, X1 is a vector of variables to 

represent the scheduling influences, X2 represents potential carryovers from an event distribution, 

Zm is a vector of market characteristics used as control covariates, and α is the vector of 

associated parameter effects.  We discuss the operationalization of these covariates in variable 

specification. 

4.3.3 Supply Equations: Overall Supply, Venue Usage, and Day Usage 

Although some studies assume an exogenous supply decision (Swami et al 1999; 

Eliashberg et al 2005; Eliashberg et al 2007; Chintagunta et al 2009), we propose an endogenous 

and positive relationship between overall supply and market demand (Elberse and Eliashberg 

2003; Basuroy et al 2006). 

We assume that event scheduling within a market consists of several related decisions.  

First, event marketers consider how many seats they have to provide in order to sell an expected 

number of tickets.  Hence, we specify the expected number of seats as a function of its expected 

market demand and market characteristics: 

ଶ௠ݕ (21) ൌ ଴ߚ ൅ βଵݕଵ௠ ൅  ઺૛࢓ࢆ

where y2m is the expected number of seats (in the log term) provided, y1m is the expected market 

sales (in the log term), Zm is a vector of market characteristics used as control covariates, and β 

is the vector of associated parameter effects. 

Second, we assume the following decisions are to decide how many venues to reserve 

and how many days to book.  Specifically, given the amount of supply event marketers have to 

provide, they can also refer to market characteristics such as market land area and population 

density in a market to determine how many venues to book.  They can also refer to the size of 
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venue capacity and the cost of venue rental to decide how many days are needed in order to be 

cost effective.  For example, if a market is densely populated and its land area is big, event 

marketers may consider booking more venues to increase the spatial accessibility of this event.  

On the other hand, if the average venue capacity is small and the daily cost of renting a venue is 

high, event marketers may consider booking fewer days but scheduling more performances in a 

day.  We specify the expected venue and day usage as follows:        

ଷ௠ݕ (22) ൌ ଴ߛ ൅ γଵݕଶ௠ ൅  ઻૛࢓ࢆ

ସ௠ݕ ൌ ଴ߠ ൅ θଵݕଶ௠ ൅  ી૛࢓ࢆ

where y2m is the expected number of seats (in the log term) provided, y2m is the expected number 

of venues (in the log term) needed, y3m is the expected number of days (in the log term) needed, 

Zm is a vector of market characteristics, and γ and θ are the vectors of associated parameter 

effects. 

Similar to Elberse and Eliashberg (2003), the advantage of specifying supply and demand 

equations in the way above is that parameters in equations (20), (21), and (22) represent 

elasticity of covariates.  These parameter values suggest how changes in their covariates result in 

changes in demand and supply.  We can also compare α in equation (20) to rank the importance 

of these covariates on market sales. 

4.3.4 Variable Specifications 

Because of the endogenous and correlated scheduling decisions, we aim to find 

representative variables that are correlated with a performance schedule but do not have a severe 

collinearity in the demand equation.  Among several possible measures, we find the size of 

trading area of venues and the flexibility in a temporal schedule may serve the modeling purpose.  

The rationale is that when an event uses multiple venues in its performance schedule, it has a 
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bigger primary trading area and is more accessible for consumers within this area.  In addition, 

when this event has more performances at different times of day and on various days of week, it 

provides consumers with higher flexibility to attend at their own convenience.  Since these 

benefits are relevant with a performance schedule but are not highly collinear, we propose three 

variables and discuss how we operationalize these variables in turn.   

Size of Trading Area 

We follow the retail trading area in the retail location literature (Huff 1964; Applebaum 

1966; Cliquet 1998) to compute the size of trading area of booked venue(s) in a market.  

Specifically, we measure the size of trading area by referring to the population density around 

each venue of a performance schedule.  Because population density can determine the size of a 

potential market (Huff 1964) yet it is not uniformly distributed (Donthu and Rust 1989), we 

assume the zip code of each venue as its primary trading area and consumers living in the same 

zip code to be the potential consumers.  Therefore, the proxy of total consumers within the 

primary trading areas is as follows: 

௠݁ݖ݅ܵ (23) ൌ ෍ ௩ݕݐ݅ݏ݊݁ܦ

௏௘௡௨௘೘

௩ୀଵ

 

where Sizem is the size of trading area of selected venues, x1m is the total number of consumers 

within the primary trading areas and Densityv is the population density around the zip code of 

venue v. 

However, the level of people’s willingness to travel can expand or shrink the trading area 

of a venue (Huff 1964; Applebaum 1966).  In other words, when people have higher tolerance to 

travel, a venue is able to reach more people and has a bigger trading area.  To consider the factor 

of travel tolerance, we further include an adjustment term and rewrite equation (23) as follows: 
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௠݁ݖ݅ܵ (24) ൌ ෍ ௩ݕݐ݅ݏ݊݁݀ · ௩ߣ

௏௘௡௨௘௦೘
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where λv is an adjustment term to represent consumers’ willingness to travel.   

To approximate consumers’ willingness to travel, we use the average commute time as a 

proxy.  Our assumption is that consumers who spend more time commuting on a daily basis are 

more willing to travel and have higher travel tolerance.  Hence, we compute λv as an index 

relative to the average (Mazzeo 2002): 

௩ߣ (25) ൌ
௩݁ݐݑ݉݉݋ܿ

݉݁ܽ݊ሺܿ݁ݐݑ݉݉݋௩ሻ
ݒ ׊ ; א ሼ݉ ൌ 1,2, …  ሽܯ,

where commutev is the average commute time (in minutes) for people living in zip code v and 

mean(commutev) is the average.  In this way, if λv > 1, people are willing to travel farther, and 

venue v has an expended trading area to reach more people.  In contrast, if λv < 1, the trading 

area of venue v shrinks.  Finally, if λv = 1, the trading area of a venue is as it is. 

Flexibility in a Temporal Schedule 

Because the flexibility in a temporal schedule represents how easily consumers can attend 

an event at different times of day and across various days of week, we use the distribution of 

performance dates in a schedule as other variables.  Specifically, we compute the average 

number of performances per day for the flexibility during a day.  In addition, among all 

performances available to a market, we use its distribution and calculate its variance to represent 

the flexibility during a week.  Therefore, if an event has more performances per day and has a 

bigger variance, consumers will have more flexibility to attend this event at their own 

convenience.  
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Carryovers from an Event Distribution 

As we mentioned in the conceptual framework, carryovers from an event distribution 

may affect sales in later markets.  Moreover, when an event performs in multiple venues within a 

market, the carryover effect may also exist across venues but within this market.  Therefore, we 

measure across-market carryovers and within-market carryovers in this section.     

To measure across-market carryovers since the beginning of an event distribution, we use 

ticket sales from preceding markets as a proxy (Elberse and Eliashberg 2003; Bronnenberg and 

Mela 2004).  In this way, various amounts of ticket sales from preceding markets represent 

different magnitudes of carryovers from these markets.  However, because an event travels to 

markets at a different time and each market along the distribution has different release timing, we 

employ the spatially weighted approach to account for ticket sales of preceding markets as well 

as their release timing (Yang and Allenby 2003; Bronnenberg and Mela 2004; Choi, Hui, and 

Bell 2009). 

௠ܥܣ (26) ൌ ܕܛ܍ܔ܉܁૚܅ ൌ ෍ ଵܹ௠௠ᇱ݈ܵܽ݁ݏ௠ᇱ

M

௠ᇲୀଵ
௠ᇱஷ௠

 

where 

ଵܹ௠௠ᇱ ൌ
1

exp൫݀ଵሺ݉,݉Ԣሻ൯
 

where ACm represents the amount of across-market carryovers up to market m, Salesm is a vector 

of ticket sales that market m’ has occurred up to the beginning of market m (m’≠m), and W1 is a 

spatial weight matrix where each element (W1mm’) is an exponentially weighted distance measure 

between a preceding market m’ and a current market m (d1(m,m’)). 

Although it is arguable that our across-market measure only considers the temporal 

sequence of participating markets but not considers the geographic adjacency between markets, 

we think our measure is better because this essay focuses on understanding the effect of an entire 
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distribution rather than the effect of spatially adjacent markets only.  However, it is possible to 

include the geographic adjacency between markets as an extension and study the effect of spatial 

adjacency. 

Therefore, before measuring d1 in equation (26), we observe markets are temporally 

adjacent in several ways.  Figure 4-2 below illustrates various possibilities of market 

connectedness, where a darker color represents a preceding market m’, a lighter color indicates a 

current market m, and the width of a box is the length of a performing period.  In our dataset, we 

observe several ways of market connectedness.  We classify them into three cases and discuss 

each one in turn.  

Figure 4-2: Illustration of Market Connectedness 

Specifically, in the first case, Apart, performances in two markets are apart from each 

other in a few days or are tightly connected.  Case 1.a and Case 1.b in Figure 4-2 illustrates these 

situations, respectively.  In the second case, Overlap, performances in two markets have an 

overlapped performing period.  This overlapped period may be for a few days or for a longer 

period.  Case 2.a and Case 2.b in Figure 4-2 illustrates these situations, respectively.  Note that 

in the first two cases, an event only employs one venue to provide performances.  If there are 

multiple performing groups touring in the U.S. at the same time, it is possible to observe markets 

without any time lag in between or markets have performances at the same time.  Case 1.b, Case 

2.a, and Case 2.b in Figure 4-2 represent these situations. 

On the other hand, when an event performs in two markets and uses multiple venues in 

one of the markets, it is likely that performances in a current market are in between two venues 

of another market or overlaps with one of the venues.  Case 3.a, In between a break, and Case 

3.b, Overlap with one venue, in Figure 4-2 are examples of these situations. However, when an 
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event performs in two markets and both employ multiple venues, it is possible to see performing 

periods overlapping in some venues yet apart in others (i.e., Figure 4-2, Case 3.c: between and 

overlap).  Therefore, Case 3.b and Case 3.c in Figure 4-2 exist if an event has more than one 

performing group touring at the same time. 

According to these different situations, we measure d1 (in weeks) differently.  In Case 1 

(Apart), we measure d1 by calculating the time lag (in days) between two markets and then 

converting this value to week: 

(27) ݀ଵሺ݉,݉ᇱሻ ൌ ݐݎܽ݌ܽ# 7⁄  

where #apart indicates the time lag between two markets in days. 

Case 2 represents a situation that markets have an overlapped performing period.  

Because there are performances showing concurrently in two markets, we assume the carryovers 

from these markets should have no decay but a stronger effect.  In other words, markets of some 

overlapped performing periods should have stronger influence on each other than markets that 

are apart from each other.  Therefore, overlapped markets should have higher spatial weights.  

To do this, we allow d1(m,m’) in equation (26) to be negative such that its associated spatial 

weight (W1mm’) is larger: 

(28) ݀ଵሺ݉,݉ᇱሻ ൌ  െ1 ൈ #݌݈ܽݎ݁ݒ݋ 7⁄  

where #overlap indicates the number of days that two markets have overlapped performances.  

This specification ensures overlapped markets in Case 2 have higher weights than markets in 

Case 1.  

Finally, in Case 3, venues are either in between a break (Case 3.a), overlap with one 

venue (Case 3.b), or between and overlap (Case 3.c).  We consider each condition separately and 

measure d1 accordingly: 
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• Case 3.a In between a break   

Case 3.a is when performances in market m are in between the first and second venue of 

market m’.  Because by the time of market m, sales in the second venue of market m’ have not 

yet occurred.  Hence, d1(m,m’) is the time lag between performances in the first venue of market 

m’ and those in the venue of market m.  That is, Case 3.a is similar to Case 1.a.  We measure d1 

using equation (27).  However, the associated market sales (Salesm’) in equation (26) are up to 

the end of first venue of market m’ only.   

• Case 3.b Overlap with one venue   

Case 3.b is when performances in market m overlap with the first venue of market m’.  

This is a similar case to Case 2.  Therefore, we measure d1 using equation (28) yet sales for 

market m’ are up to the end of first venue only. 

• Case 3.c Between and overlap   

Because Case 3.c is a combination of Case 1 and Case 2, we need to consider the number 

of days markets are apart and overlapped at the same time.  Hence, we allow #apart and #overlap 

to cancel each other and measure d1 accordingly:  

(29) ݀ଵሺ݉,݉ᇱሻ ൌ   ሾ#ܽݐݎܽ݌ ൅ ሺെ1 ൈ ሻሿ݌݈ܽݎ݁ݒ݋# 7⁄  

To measure within-market carryovers from preceding venues in a market, we take the 

same spatially weighted approach and assign a different weight based on the time lag to a current 

venue v: 

௠ܥܹ (30) ൌ ܞܛ܍ܔ܉܁૛܅ ൌ ෍ ଶܹ௩௩ᇱ݈ܵܽ݁ݏ௩ᇱ
௩,௩ᇱא௠

 

where 

ଶܹ௩௩ᇱ ൌ
1

exp൫݀ଶሺݒ, Ԣሻ൯ݒ
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where WCm is the within-market carryovers for market m (if it is a market that uses multiple 

venues), Salesv’ is a vector of ticket sales that a preceding venue v’ has occurred up to the 

beginning of venue v, and W2 is a spatial weight matrix to measure the temporal difference (d2) 

between a current venue v and its preceding venue v’ in market m. 

In a market where an event employs multiple venues, performances tend to take place 

sequentially with a number of days apart from one another.  Hence, we measure d2 in a similar 

way to Case 1 in equation (27): 

(31) ݀ଶሺݒ, ᇱሻݒ ൌ ݐݎܽ݌ܽ# 7⁄  

4.3.5 Model Summary 

To sum up, we model the supply and demand simultaneously.  At the demand side, we 

use three variables and two spatially weighted measures to represent the scheduling influences 

from a performance schedule and carryovers from an event distribution.  We also use the 

population size as a market characteristic to control for the baseline effect on market demand.  At 

the supply side, we model the total number of seats, venues, and days an event needs to provide 

for each market.  We allow the expected market demand to influence the total number of seats 

and assume event marketers book venues and days based on their overall supply.  Meanwhile, 

we take into account the potential effects of market characteristics and scheduling constraints in 

the supply decision.   

Finally, in case there are omitted yet correlated variables to affect supply and demand 

jointly, we allow correlated error terms and estimate supply and demand simultaneously.  We 

rewrite our model specification as follow and present the relationships among these covariates in 

Figure 4-3: 
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ࢅ (32) ൌ

ۏ
ێ
ێ
ۍ ln

ሺ݈ܵܽ݁ݏ௠ሻ
lnሺܵ݁ܽݏݐ௠ሻ
lnሺܸ݁݊ݏ݁ݑ௠ሻ
lnሺݏݕܽܦ௠ሻ ے

ۑ
ۑ
ې
൮൦ܸܰܯ~

ଵ௠ݕ
ଶ௠ݕ
ଷ௠ݕ
ସ௠ݕ

൪ , ઱൲ 

ଵ௠ݕ ൌ ଴ߙ ൅ ଵߙ lnሺܵ݅݁ݖ௠ሻ ൅ ଶߙ lnሺݕݐ݅ݏ݊݁ݐ݊ܫ௠ሻ ൅ ଷߙ lnሺܸܽ݁ܿ݊ܽ݅ݎ௠ሻ 

         ൅ߙସ lnሺܥܣ௠ሻ ൅ ହߙ lnሺܹܥ௠ሻ ൅ ଺ߙ lnሺܱܲ ௠ܲሻ 

ଶ௠ݕ ൌ ଴ߚ ൅ ଵ௠ݕଵߚ ൅ ଶߚ lnሺܱܲ ௠ܲሻ 

ଷ௠ݕ ൌ ଴ߛ ൅ ଶ௠ݕଵߛ ൅ ଶߛ lnሺܽ݁ݎܣ௠ሻ ൅ ଷߛ lnሺݕݐ݅ݏ݊݁ܦ௠ሻ 

ସ௠ݕ ൌ ଴ߠ ൅ ଶ௠ݕଵߠ ൅ ଶߠ lnሺݕݐ݅ܿܽ݌ܽܥ௠ሻ ൅ ଷߠ lnሺݏ݁݁ܨ௠ሻ 

 
where 

M = market 1,2,…,M market 

Salesm = Number of ticket sales (market demand) 

Seatsm = Number of seats supplied (overall supply) 

Venuesm = Number of venues booked (venue usage) 

Daysm = Number of days scheduled (day usage) 

Sizem = Size of trading area of venues  

Intenstiym = Average number of performances per show day 

Variancem = Variance in the distribution of performance dates 

ACm = Across-market carryovers up to market m 

WCm = Within-market carryovers in market m 

POPm = Size of market population 

Aream = Size of market land area (in square miles) 

Densitym = Population density in market m 

Capacitym = Avg. capacity of selected venues in market m 

Rentalm = Avg. rental fees in market m 

 
Figure 4-3: Overview of Model Development 

 

4.4 Data 

We contact a national ticket seller to obtain a dataset of live performance events and use 

ticket sales for one event to test our model.  This event sequentially performed 449 times in 50 
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cities in the U.S. domestic market between January and June 2004.  We have aggregated the data 

into 42 DMAs in essay two and analyze this aggregated dataset in essay three5. 

4.4.1 Touring Sequence 

We have discussed how the event travels across markets in essay two.  Table 3-1 lists the 

first and last dates of performances and the venue usage for each DMA and Figure 3-3 shows the 

touring sequence graphically.  Among these 42 DMAs, the event performed in multiple venues 

in six DMAs where we observe two ways of within-market touring.   

One approach is that the event first performed in one venue in a focal DMA, left for other 

DMAs, and then returned to the focal DMA again but performed in a different venue.  

Specifically, the event took this approach in the Greenville-Asheville DMA (market ID= 9), the 

Raleigh-Fayetteville DMA (market ID= 10), and the Champaign-Springfield DMA (market 

ID=20).  In the Greenville-Asheville DMA, the event first performed in Greenville between 

January 28 and February 1, left for other DMAs, and then returned to Asheville on June 9, 2004.  

In the Raleigh-Fayetteville DMA, it performed in Raleigh between February 5 and February 9, 

left for other DMAs, and then returned to Fayetteville on May 20, 2004.  Finally, in the 

Champaign-Springfield DMA, it performed in Springfield between April 9 and April 11 and then 

in Champaign on April 23. 

The other approach is that the event performed in venues within a market consecutively 

and then left for other DMAs.  For example, when it performed in the Norfolk-Hampton DMA 

(market ID= 13), it first stayed in Norfolk between February 18 and February 22 and then went 

to Hampton on February 25.  In the Philadelphia DMA (market ID= 22), it first performed in 

Philadelphia between April 14 and April 25 and then went to Atlantic City on April 28. 

                                                            
5 Essay one provides detailed discussion about the event and essay two describes how we aggregate sales data into 
42 DMAs. 
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However, the tour for the New York DMA (market ID= 16) is a combination of these two 

approaches.  The event first performed in East Rutherford, Uniondale, and New York 

consecutively between March 3 and April 11.  Then, it left for other DMAs and finally returned 

to Trenton on June 3. 

4.4.2 Covariates in the Demand Model 

Venue Usage and Size of Trading Area 

In terms of the venue usage within a market, we find that a selected venue may not be in 

the center of a DMA but it is often located in a densely populated area.  For example, Figure 4-4 

illustrates the venue locations of the six DMAs discussed above and shows the population 

density around each venue.  Therefore, it is reasonable to assume that the zip code of a venue is 

the primary trading area for this venue and consumers living in this zip code are the potential 

consumers in the trading area.  As such, it is meaningful to use the population density to measure 

the size of potential market.   

Figure 4-4: Venue Locations and Surrounding Population Density 

Specifically, to calculate the size of trading area for selected venues in a market, we refer 

to the data collected from the U.S. Census Bureau for population, land area (in square miles), and 

consumers’ travel time to work (in minutes) at a zip code level for all venues observed in the 

dataset.  We further divide the population by the size of land area for the population density of 

each venue (Venuev).  On average, there are 3,289 consumers in the same zip code of a venue 

with the standard deviation being 4,239.   

In addition, the average travel time to work across all observed venues is 20.70 minutes 

with the standard deviation being 5.71.  We divide travel time to work for each venue 

(Commutev) by the sample average to get the index of travel tolerance (λv).  Hence, the mean 
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travel tolerance across venues is 1 with its standard deviation being 0.28.  Using the new 

information above, we compute the size of trading area at a venue level.  Then, for DMAs that 

have multiple venues, we aggregate across venues to conclude that an average size of trading 

area in a market is about 4,291 consumers with the standard deviation being 9,968.  Table 4-1 

indicates the descriptive statistics of the size of trading area across markets (in the log term).  

Table 4-1: Descriptive Statistics of Covariates (in the log term) 

Day Usage and Flexibility Measures 

We summarize the touring dates across markets in Figure 4-5.  On average, it took an 

event 5.79 days performing in a market with the number of show days ranging from two to 32.  

In terms of days of week for performances, we find that most markets (32 out of 42 DMAs) tend 

to offer the last performance on Sunday.  However, depending on the number of performances 

offered in a market, some markets started the first performance on Wednesday (22 out of 42 

DMAs), some on Thursday (10 out of 42 DMAs), and the rest on Tuesday or Friday.  In other 

words, the flexibility that an event provides with consumers to attend on various days of week is 

heterogeneous across markets.  Descriptively, nine DMAs have performances for two to three 

days in a week, nine DMAs have performances across four days, 14 DMAs have performances 

across five days, and 10 DMAs have performances more than six days.  

Figure 4-5: Touring Dates across Markets 

After examining the distribution of performance dates for each market, we find an 

average market has its variance in the distribution of performance dates to be 199.71 days with 

the standard deviation being 831.68.  This skewed distribution is due to four DMAs that have 

performances in multiple venues and have a long lag between venues.  Therefore, if we exclude 
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these four DMAs, the average value of variance is 2.325 days with its standard deviation being 

3.37.   

In addition, on average, there are 1.79 performances available during a show day with the 

standard deviation being 0.21.  Although we do not know the specific times for day of our 

performances, we still find the flexibility that an event provides with consumers to attend at 

different times of day to be heterogeneous across markets.  Table 4-1 indicates the descriptive 

statistics of the flexibility in days of week and for times of day (in the log term).  

Across-Market and Within-Market Carryovers  

Figure 4-5 also illustrates how markets are temporally connected with one another.  

According to venue usage and the first and last dates of performances, we classify 42 DMAs into 

markets that are completely apart from one another (Case 1 in Figure 4-2), overlapped (Case 2), 

or are in between multiple venues (Case 3).  We further apply equations (27), (28), or (29) to 

compute the time lag between markets to ensure all preceding markets have different spatial 

weights in equation (26) and calculate across-market carryovers accordingly.  Hence, the average 

across-market carryovers are 73,963.88 with the standard deviation being 65,688.67.   

Figure 4-5: Touring Dates across Markets 

Similarly, we use equation (31) to calculate the time lag between venues within a market 

for those six DMAs that have multiple venues.  As a result, we have an average within-market 

carryovers being 51,564.62 and its standard deviation being 73,673.07.   Table 4-1 indicates the 

descriptive statistics of the across-market and within-market carryovers (in the log term).  

Population Size 

The last covariate in the demand equation is the population size in each market.  Because 

we have computed the target market population in essay two, we include the descriptive statistics 
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in Table 4-1.  The average population size in a market is 439,662 and the standard deviation is 

647091. 

4.4.3 Covariates in the Supply Model 

Venue Capacity and Market Capacity 

Before we study the overall supply in each market (Seatm) as the first supply decision, we 

need to know the number of performances and the seating capacity for each venue.  However, we 

do not have information regarding venue capacity in our dataset, so we refer to venue websites 

and the Wikipedia to collect seating capacity data.   

According to venue websites, venues have various configurations for different events 

(e.g., basketball games, hockey games, concerts, etc.).  Hence, we choose the format that is the 

closest to the setting of a family event and record the associated capacity as the venue capacity 

(Capacityv).  Using all venue capacity in the same market, we further compute the average venue 

capacity in a market (Capacitym) for equation (32) and observe heterogeneity in venue capacity.   

On average, a venue has 13,612 seats with standard deviation being 4,682.  Fifty percent of 

venues have capacity between 10,423 seats (quartile 1) and 17,315 seats (quartile 3). 

Next, we multiply the venue capacity by the number of performances in this venue to 

know the total number of seats supplied by this venue and then sum across all venues in the same 

market to get the market capacity (Seatsm).  On average, an event offers 156,747 seats in a 

market with its standard deviation being 184,537.  Some markets only supplied a few seats (e.g., 

Mankato DMA offered 14,496 seats in a total) but some markets provided as many as 1,159,059 

seats (i.e., New York DMA).   

According to the market sales and market capacity, we find that at most 50% of market 

capacity was filled.  On average, only 24% of total capacity was filled in a market.  Figure 4-6 
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presents the rate of filled capacity across markets.  Table 4-1 also indicates the descriptive 

statistics of the overall market supply (in the log term).  

Figure 4-6: Capacity-Filled Rate across Markets 

Market Land Area and Population Density 

To study the number of venues a market needs to book in equation (32), we still need 

information about the market land area and population density at a market level.  Hence, we use 

the U.S. Census Bureau statistics to obtain the market land area (in square miles) and the size of 

population at a county level.   

After we divide the county population by its land area, we understand the population 

density at a county level.  Then, we sum across all counties within the same DMA to get the 

population density (Densitym) at a market level.  We also compute the land area in a market 

(Aream) by summing the land area across counties in the same DMA.  Therefore, an average 

market has 3,846 square miles of land and its population density is 422 people per square mile.  

Table 4-1 indicates the descriptive statistics of the market land area and population density (in 

the log term). 

Facility Rental Fees 

We also use the facility rental fees (Feesm) to study the number of days event marketers 

need to book in a market.  However, because this information is not publicly available, we 

assume rental fees of a venue are positively correlated with housing values in the same zip code.  

In other words, when a median value of a single-family house is high, it is very likely that rental 

fees of a venue in this zip code are also high.  Hence, we collect housing market data from the 

U.S. Census Bureau based on this assumption.  The distribution of the housing value across 

markets is skewed.  The average value (in thousands) is 2055 and the standard deviation is 4855.  
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The median of the housing value is 94.2.  Table 4-1 also summarizes the descriptive statistics of 

this covariate (in the log term).  

Correlation 

Finally, before we estimate the proposed model, we also check the correlation among our 

covariates and the correlation among all dependent variables.  Table 4-2 reports the correlation 

between covariates in the demand model and Table 4-3 indicates that dependent variables are 

moderate or highly correlated.  Hence, our proposed model that correlates all error terms among 

dependent variables has accounted for this issue. 

Table 4-2: Correlation Coefficient of Demand Covariates 
 

Table 4-3: Correlation Coefficient of Dependent Variables 
 

4.5 Estimation and Results  

4.5.1 Model Estimation  

We estimate demand and supply equations simultaneously using the Bayesian approach 

where parameters are specified to follow diffuse prior distribution as follows: 

Priors for model of market sales: 

 ௜~ܰሺ0,100ሻ where i=1, 2, 3, 4, 5, 6ߙ ଴~ܰሺ10,10ሻ  andߙ

Priors for model of overall supply: 

 ௜~ܰሺ0,100ሻ where i=1, 2ߚ ଴~ܰሺ11,10ሻ  andߚ

Priors for model of venue usage: 

 ௜~ܰሺ0,100ሻ where i=1, 2, 3ߛ ଴~ܰሺ0.11,10ሻ  andߛ

Priors for model of day usage: 

 ௜~ܰሺ0,100ሻ where i=1, 2, 3ߠ ଴~ܰሺ1.5,10ሻ  andߠ

Priors for the variance-covariance of Supply and Demand: 

઱ି૚~ܹܾ݈݈݁݅ݑሺܫସ, 4ሻ 
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We run 30,000 iterations in WinBUGs.  After checking the convergence criteria, we 

check the autocorrelation plots for all covariates, discard the first 20,000 iterations for burn-in, 

and use the remaining iterations as the posterior distribution.   

4.5.2 Results of Demand Equation 

Scheduling Influence in a Performance Schedule 

First, we show that the size of trading area of selected venues in a market has a positive 

effect on market sales.  When an event performs in multiple venues in a market or when its 

venues are located in densely populated areas, this event sells more tickets in this market 

(α1=0.160).  Our explanation is that scheduling performances in multiple venues or selecting 

venues in densely populated area can improve the spatial accessibility of this event (Huff 1964; 

Donthu and Rust 1989; Betancourt 2004).  In this way, consumers living within the trading area 

do not have to travel a longer distance to attend an event.  When there are more consumers 

within the trading area of a market, it is more likely for this market to sell more tickets (Huff 

1964; Applebaum 1966; Cliquet 1988).  

Second, we find the flexibility of performance dates in a schedule has a positive effect on 

ticket sales.  When the variance in the distribution of performance dates increases, an event 

provides consumers with higher flexibility to attend on various days of week (Betancourt 2004) 

and sell more tickets in a market (α3=0.235).  However, when there are more performances in a 

show day, the flexibility for times of day does not contribute to ticket sales.      

Carryovers in an Event Distribution 
 

Moreover, we show that a sequentially distributed event has an effect on ticket sales.  

However, the influence is across multiple venues within the same market but not across different 

markets.  In other words, when an event performs from one market to another, its ticket sales in 
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preceding markets do not affect sales in following markets.  Yet, when this event performs in 

more than one venue within a market, its ticket sales in a preceding venue can carry over to a 

later venue and influence its overall market sales (α5=0.083).   

We think the nature of the family event analyzed in this essay is the underlying reason for 

a carryover effect significant within a market but not across markets.  Because this family event 

targets young children and their parents, it is easier to observe children and parents discussing 

event information within a market than across markets.  Moreover, this family event travels 

within the U.S. and often goes to a similar set of markets after a year or longer.  Thus, these 

markets do not have to depend on other participating markets but can rely on their own historical 

experience to determine the quality of this event. 

Our results are consistent with the results in Elberse and Eliashberg (2003).  Specifically, 

they used sales in a preceding week as the volume of word of mouth and found a significant 

effect on box-office revenues in a following week within the same market.  This is similar to our 

carryover effect within a market except that our carryover effect is across venues but not over 

time.  On the other hand, when Elberse and Eliashberg (2003) measured the interaction effect 

between market sales in a domestic market and the time lag between a domestic and foreign 

market, they found this interaction, or weighted word of mouth, effect insignificant across 

markets.   Although our spatially weighted measure for the carryovers across markets is similar 

to their measure except that we take into account all of the participating markets instead of just 

the initial market, our results are consistent with their work and support their results. 

Elasticity 

Another advantage of our model specification is that parameter estimates in our demand 

model suggest the elasticity for all covariates.  After comparing elasticity across significant 
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covariates, we conclude that the variance in the distribution of performance dates is more 

important than the size of trading area of selected venues and the carryovers of an event 

distribution within a market, respectively in this order.  Although market population has a higher 

elasticity (α6= 0.264), this is a market characteristic that event marketers cannot manipulate in 

their scheduling decisions.  Furthermore, these elasticity values suggest event marketers which 

factors to strengthen.  If trade-offs among these factors have to be made, they can make rational 

decisions based on the elasticity.  We summarize the parameter estimates in our demand model 

in Table 4-4. 

Table 4-4: Results of the Demand Model  

4.5.3 Results of Supply Equations 

From the results of the supply model, we confirm the endogeneity between the supply 

and demand for an event.  Event marketers use the expected market demand to determine how 

many seats they need to provide (β1=0.771) but not the size of market population.  Moreover, in 

terms of the venue usage, when event marketers need to increase their overall supply, they tend 

to schedule performances in more venues (γ1=0.473) but do not consider the size of market land 

area or population density in this market.   

On the other hand, when event marketers evaluate how many days to book for an event, 

they consider how many seats they need to supply (θ1 = 0.929) and the average venue capacity in 

a market (θ2 = -0.703).  In other words, when they need to provide more seats to a market, they 

book more days for this event and have a longer performing duration.  However, the number of 

days needed decreases with the venue capacity.  Although we do not find average housing value 

influences the decision of day usage, it is possible that this variable is not an appropriate proxy 
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for the rental facility fees in a market.  Table 4-5 below summarizes the parameter values in the 

supply equations.    

Table 4-5: Results of the Supply Model 

4.5.4 Correlated Demand and Supply 

Finally, we find correlated error terms in the supply and demand models.  In other words, 

there are unspecified covariates affecting both supply and demand at the same time.  The 

correlation between the market sales and overall supply is 0.549 and the correlation between the 

market sales and day usage is 0.499.  On the other hand, the decisions of overall supply and day 

usage are also correlated (corr(εSeats, εDays)=0.823)).  Hence, it is necessary to assume correlated 

error terms in our model to avoid biased parameter estimates.  Table 4-6 below indicates the 

correlation coefficients among our supply and demand models. 

Table 4-6: Correlation between Supply and Demand Models 
 

4.6 Conclusions 

4.6.1 Summary 

When an event travels across markets and has its distribution sequence planned at one 

time, it is not clear whether and how the sequential distribution of this event influences ticket 

sales in each participating market.  The objective of essay three is to examine whether markets 

along an event distribution have a dependent relationship and whether ticket sales of preceding 

markets have a carryover effect to influence ticket sales in following markets.   

To achieve this objective, we model ticket sales of each market as a function of its 

performance schedule within a market and potential carryovers from an event distribution.  

Specifically, we employ three variables to represent the scheduling influences from various 

venues and performance dates, and take the spatially weighted approach to capture carryovers of 
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participating markets that have different ticket sales and release timing.  We also specify the 

supply and demand for this event simultaneously to account for a likely endogeneity.  At the 

supply side, we model separate but correlated decisions of overall supply, venue usage, and day 

usage.  In this way, our proposed model provides better understanding of scheduling effects on 

demand and control for the endogenous supply and demand. 

We contact a national ticket seller to obtain a dataset of a live performance event and 

analyze ticket sales at a market level.  The first result indicates that an event experiences more 

market sales when it plays in several venues and has a bigger trading area to accommodate more 

potential consumers.  Second, an event sells more tickets when its performances are dispersed 

across days of week but not during many times a day.  In other words, the flexibility in a 

temporal schedule is along the days of week to attract more consumer attendance.   

Third, we find a significant effect of carryovers from an event distribution.  When an 

event performs in multiple venues within a market, ticket sales in a preceding market carry over 

to later venues and influence its market sales although this carryover effect does not exist across 

participating markets.  Finally, we find supply and demand for an event to be endogenous.  Event 

marketers use the expected market demand to determine how many seats they need to provide, 

and this overall supply further influences how many venues they reserve and how many days 

they book in a schedule.   

4.6.2 Conclusion 

This essay contributes to the sequential distribution literature by studying an event 

distribution where its touring sequence is set at one time rather than sequentially.  We show that 

the impact of sequential distribution exists locally but not across markets.  In other words, 

although markets along a tour do not have a dependent relationship, venues of the same market 
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have a dependent relationship and preceding venues can influence ticket sales in later venues and 

ticket sales in this market. 

The methodological contribution of this essay is to employ variables for an endogenous 

and correlated performance schedule.  By modeling the supply and demand simultaneously and 

having the variables in the demand equation, we ensure unbiased scheduling effects and provide 

actionable implications for event marketers. 

To sum up, the first implication of essay three lies in the decision of venue usage.  After 

event marketers decide how many venues to book, they can refer to the size of trading area of 

each alternative venue and select among these venues accordingly.  Moreover, they can add or 

drop venues based on the size of trading area if the desirable number of venues is not feasible in 

a market.  The second implication lies in the decision of day usage.  Event marketers should 

consider not to allocate multiple performances in a day but to disperse performances across 

various days of week.  However, event marketers should still evaluate the overall costs for such 

scheduling changes in any venue or day usage. 

Finally, when a touring sequence has to be planned simultaneously, it is not necessary for 

event markets to consider any dependent relationship across markets.  However, if this event 

performs in multiple venues in a specific market, it is preferred that event marketers schedule 

this event in a more important venue prior to other venues.  In other words, the scheduling 

objective for a touring event should be to minimize the travel distance across markets but 

maximize the within-market carryovers for venues in the same market. 
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Tables and Figures 
Table 4-1: Descriptive Statistics of Covariates (in the log term) 
Variable Label N Mean Std Dev Min Max
Covariates in the demand equation    
Sales Number of ticket sales 42 10.18 1.15 7.87 13.27
Size Size of trading area 42 7.54 1.26 4.78 11.08
Intensity Avg. number of performances in a 

show day 
42 0.58 0.12 0.34 0.79

Variance Variance in the distribution of 
performance dates 

42 1.02 2.20 -1.10 8.44

AC Across-market carryovers 42 10.93 0.74 9.52 12.75
WC Within-market carryovers 6 5.16 8.33 -7.45 12.13
POP Population size 42 12.46 0.92 9.75 15.23
    
Covariates in the supply equations    
Seats Number of seats supplied  42 11.59 0.85 9.58 13.96
Venues Number of venues booked 42 0.12 0.30 0 1.39
Days Number of days supplied 42 1.57 0.56 0.69 3.47
Area Size of market land area (in square 

miles) 
42 7.90 0.80 6.55 9.81

Density Population density of a market 42 5.72 0.85 3.79 7.62
Capacity Avg. capacity of selected venues in a 

market 
42 9.45 0.42 8.06 10.09

Rental Avg. housing value of a market (in 
thousands) 

42 5.24 1.85 3.60 9.71
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Table 4-2: Correlation Coefficient of Demand Covariates 

  ln(Size) ln(Intensity) ln(Variance) ln(AC) ln(WC) ln(POP) 
ln(Size) -- 
ln(Intensity) 0.41 -- 
ln(Variance) 0.52 0.22 -- 
ln(AC) -0.02 0.08 -0.00 -- 
ln(WC) 0.44 0.22 0.20 0.11 -- 
ln(POP) 0.63 0.28 0.45 -0.23 0.16 -- 
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Table 4-3: Correlation Coefficient of Dependent Variables 
  ln(Sales) ln(Seats) ln(Venues) ln(Days) 

ln(Sales) -- 
ln(Seats) 0.87 -- 
ln(Venues) 0.51 0.57 -- 
ln(Days) 0.80 0.86 0.73 -- 
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Table 4-4: Results of the Demand Model 
Parameter Effect Median (Std Dev) 
ln(Sales): Expected ticket sales in a market  

α
0 
 Intercept  5.329 (1.164) ** 

α
1
  Effect of geographic coverage 0.161 (0.073) * 

α
2
  Effect of intensity 0.128 (0.168)  

α
3
  Effect of variance 0.235 (0.038) ** 

α
4
  Effect of across-market carryover  0.002 (0.063)  

α
5
  Effect of within-market carryover 0.083 (0.021) ** 

α
6
  Effect of population size 0.264 (0.086) ** 

     

** significant at the 95% highest posterior density  
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Table 4-5: Results of the Supply Model 

Parameters Median (Std Dev) 
ln(Seats): Expected number of seats supplied in a market  

β
0 
 Intercept  4.766 (0.832) ** 

β
1
  Effect of expected market sales 0.771 (0.086) ** 

β
2
  Effect of population -0.073 (0.050)  
    

ln(Venues): Expected number of venues needed    
γ

0 
 Intercept  -4.621 (0.709) ** 

γ
1
  Effect of planned overall supply 0.473 (0.067) ** 

γ
2
  Effect of market land area -0.042 (0.046)  

γ
3
 Effect of market population density -0.087 (0.050)  
    

ln(Days): Expected number of days needed    
θ

0 
 Intercept  -2.169 (1.097) ** 

θ
1
  Effect of planned overall supply 0.929 (0.070) ** 

θ
2
  Effect avg. venue capacity -0.703 (0.098) ** 

θ
3
 Effect of housing value -0.024 (0.028)  

     

** significant at the 95% highest posterior density  
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Table 4-6: Correlation between Supply and Demand Models 

Σ ε
Sales

 ε
Seats

 ε
Venues

 
ε

Sales
 --      

ε
Seats

 0.549 ** --    
ε

Venues
 -0.169  -0.280  --  

ε
Days

 0.499 ** 0.823 ** -0.273  
       

** significant at the 95% highest posterior density  
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Figure 4-1: Conceptual Framework 
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Figure 4-3: Overview of Model Development 
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Figure 4-4: Venue Locations 
(a) Greenville-Asheville 

 
 

(b) Raleigh-Fayetteville 

 
 

(c) Norfolk-Hampton 

 
 

(d) New York 

 
 

(e) Champaign-Springfield 

 

(f) Philadelphia  
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Figure 4-5: Touring Dates across Markets  
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Figure 4-6: Capacity-Filled Rate across Markets 
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5 Conclusion 

 

5.1 Summary 

Scheduling is an important decision facing event marketers in the live entertainment 

industry.  When they schedule a tour for an event, they have to design a performance schedule 

within each participating market and determine an overall travel sequence across markets.  

Therefore, their scheduling decisions are within and across markets, which may have different 

effects on ticket sales. 

Although marketing research in the live entertainment industry has focused on 

identifying drivers for ticket sales, researchers have not evaluated whether the scheduling 

decisions influence how markets respond.  In other words, researchers treat the supply and 

demand for an event as two separate problems and they have not yet investigated the relationship 

between supply and demand.    

As such, this dissertation analyzes performance schedules of a live performance event 

and examines the effects on ticket sales within and across markets.  Specifically, essay one 

investigates whether and how performances of similar scheduling characteristics sell differently 

in terms of how many tickets each performance sells and when ticket sales arrive.  We use the 

venue locations and performance dates as the scheduling characteristics for each performance 

and measure the similarity in these scheduling characteristics by the geographic distance between 

venues and the temporal distance between performance dates.  

Methodologically, we use the competing destination model to examine the number of 

ticket sales and the Weibull hazard model for the timing of ticket sales.  In addition, we also 

control for a possible endogeneity between a performance schedule and it demand effect.  Using 
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70 performances in the New York market, we show that performances sell differently depending 

on how similar their venue locations and performance dates are.   

In other words, when performances are in the same or nearby venues, they have higher 

similarity in a geographic schedule.  From consumers’ perspective, they may perceive nearby 

venues to be more attractive due to this similarity in venue locations.  As a result, more 

consumers purchase tickets for those performances and they are more willing to purchase these 

tickets early.  On the other hand, when performances are on the same or closer dates, they have 

higher similarity in a temporal schedule.  Because consumers often have uncertainty about their 

consumption state and prefer various attendance timing for choices, shorter temporal distance 

between performances result in higher competition and sales cannibalization. 

Since results in essay one are limited in the New York metropolitan market, essay two 

analyzes performance schedules across 42 markets and examines whether the results in essay one 

are heterogeneous across markets and if there are any explanatory factors to explain differences 

across markets.  We first conduct a preliminary analysis using the same model developed in 

essay one and compare the effects of scheduling characteristics across markets.  After confirming 

the heterogeneous market responses to performance schedules, we employ the hierarchical 

Bayesian approach to identify explanatory factors for differences across markets. 

Our results show that market population, geographic adjacency between markets, and 

temporal sequence in an event distribution can explain different market responses.  First, when a 

market has a bigger population, the effects of days of week and baseline attractiveness are 

attenuated.  Second, with respect to a current market, after an event travels to more of its 

geographically adjacent markets, the current market is less responsive to its baseline 

attractiveness and temporal schedule.  Third, after an event follows its temporal sequence to 
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perform in several markets, a current market in a late distribution sequence tends to respond 

more favorably to a Sunday performance. 

As such, essay one examines the impact of a performance schedule in a single market, 

and essay two analyzes all performance schedules observed in the dataset and uses market and 

additional scheduling characteristics to explain different market responses.  However, the event 

in our dataset is sequentially distributed across its participating markets.  It is important to 

understand whether the carryover effect exists due to an event distribution and how this 

carryover effect influences ticket sales of participating markets.   

Therefore, essay three analyzes the distribution of this live performance event and 

examines whether ticket sales of preceding markets carry over to following markets and 

influence ticket sales in those following markets.  Besides controlling for the effect of a 

performance schedule within a market, we model ticket sales of each market as a function of its 

potential carryovers from an event distribution.  We also model the supply and demand for an 

event simultaneously to account for a possible endogeneity.  Specifically, we use the size of 

trading area(s) of scheduled venue(s) in a market and flexibility in the distribution of 

performance dates in a schedule to represent the scheduling influences and employ the spatially 

weighted approach to incorporated carryovers of preceding markets and their different release 

timing.   

Our results show that when an event has a larger trading area in a market and/or offers 

more performances along a dispersed time span, it tends to sell more tickets in this market. 

Moreover, we show that an event distribution has an effect on ticket sales.  However, the effect 

of carryovers is significant across venues of the same market but not across markets.  When an 
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event performs in more than one venue, its ticket sales in a preceding venue carry over to a later 

venue and influence its overall market sales.   

5.2 General Discussions 

In general, this dissertation indicates several scheduling effects.  We classify these effects 

into effect of within-market scheduling and effect of across-market scheduling.  Moreover, we 

study the effect of within-market scheduling into two aspects.  Essays one and two focus on the 

effect of within-market scheduling at a performance level, yet essay three addresses the same 

effect at a market level.  We sum up these scheduling effects and discuss the differences in turn. 

First, for the effect of within-market scheduling at a performance level in essays one and 

two, we find that the effect of a geographic schedule differs from the effect of a temporal 

schedule.  The similarity in venue locations benefit ticket sales at a performance level but the 

similarity in performance dates cannibalizes ticket sales.  Moreover, market responses to 

performance schedules are heterogeneous and can be explained via the market and additional 

scheduling characteristics.  Second, for the effect of within-market scheduling at a market level 

in essay three, we find that an event sells more tickets when it employs more venues in its 

geographic schedule and serve a bigger trading area.  It also sells more when the distribution of 

its performance dates in a temporal schedule has a big variance to offer consumers greater 

flexibility in attendance timing.  Third, for the effect of across-market scheduling in essay three, 

we find that markets are not dependent on one another, but venues within the same market have a 

dependent relationship to influence ticket sales in this market. 

Although the effect of a geographic schedule at a performance level seems contradictory 

to the effect at a market level, these results are in fact complimentary.  Although the first two 

essays suggest event marketers to decrease the geographic distance between performances and 
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increase the similarity in venue locations, this suggestion is for markets that employing multiple 

venues only.  When an event performs in just one single venue, event marketers can follow the 

learning in essay three to select a venue that has the biggest trading area.  In other words, if event 

marketers decide to schedule an event in multiple venues, they can apply their learning in essay 

three to select venues and then allocate performances to these venues based on the first two 

essays.   

Consequently, the order of these essays allows us to understand the scheduling effects 

from a performance level to a market level.  Essay one starts with examining the effect of a 

performance schedule at a performance level in a single market and concludes that performances 

scheduled closely in distance but distantly in time can experience more ticket sales.  In addition, 

essay one also suggests performances experiencing earlier timing of ticket sales when these 

performances are scheduled in nearby venues.  To test the generalizability of these results and 

explain the heterogeneity across markets, essay two expands the scope of analysis and confirms 

the scheduling impact in all participating markets of a touring event.   

Finally, essay three examines whether an event has a carryover effect when it 

sequentially distributes across markets.  This essay concludes that markets do not influence one 

another on their ticket sales yet their venues within the same market have such an effect.  

Although one may argue that the third essay does not have to be conducted after the first two 

essays, we choose this sequence to investigate the carryover effect after we can understand and 

control for the effect of a performance schedule within a market.  

Finally, although it is arguable that essay three could have used the density measures 

developed in essay one, we choose to use three variables for the following reasons.  First, the 

scheduling characteristics represent the similarity between performances in a schedule.  They do 
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not represent how well an event is able to serve its trading area at a market level or express the 

flexibility in attendance timing in a temporal schedule.  Second, the measure of geographic 

density in essay one is applicable only when an event performs in multiple venues in a market.  

For markets where an event performs in one venue only, there is no variation in its geographic 

distance yet the trading area of this single venue could still influence ticket sales.  Therefore, it is 

necessary to use different measures to differentiate the effect of scheduling characteristics at a 

performance level from the effect of a performance schedule at a market level. 

5.3 Contributions 

This dissertation has both empirical and academic contributions to the marketing field.  

Empirically, we show that performance schedules do affect ticket sales.  Managers can use 

performance schedules to estimate ticket sales at a performance or market level.  Event 

marketers can use these estimates as benchmarks to monitor a pattern of ticket sales and even 

allocate marketing resources accordingly.   

Academically, the findings in this dissertation enrich literature in event tickets and 

sequential distribution.  We introduce new drivers of ticket sales to the event tickets literature 

such that researchers can use new differential measures to explain variations in the number and 

timing of ticket sales.  Moreover, we examine a sequential distribution problem in a new context 

where simultaneous planning is needed and find the effect of sequential distribution only within 

a local market but not across markets.   

5.4 Limitation and Future Research 

The primary limitation in this dissertation is that we do not have access to consumer 

identification data.  Although individual transactions are observed, we cannot model a 

consumer’s decision process to understand the effect of a performance schedule at a finer level.  
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To resolve this issue, we could apply an agent based modeling approach.  Using our model 

results as aggregated parameter values, we can further simulate individual consumers in a market 

using the U.S. Census data and allow variations in agents’ preferences.  This future direction will 

better assist event marketers in performance scheduling and allow researchers to study marketing 

problems using a complexity system. 

Another future research lies in the pricing structure of event tickets.  As our data suggest, 

the total price that a consumer pays includes the face value, facility fees, and convenience 

charges, where face value represents the highest share in the total price paid, followed by 

convenience charges and facility fees.  When summarizing consumers’ channel usage, we find 

that consumers tend to purchase in box offices to avoid paying for convenience fees.  However, 

convenience fees are the major revenue source for ticket sellers.  If ticket sellers and event 

promoters could collaborate and re-structure the pricing breakdowns (e.g., the merger between 

Ticketmaster, a primary ticket seller, and Live Nation, an event promoter), it is likely that 

consumers’ ticket purchases will migrate to the Internet or other channels.  This new topic 

involves pricing and channel strategies and we leave it for a future direction. 
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