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Magnetic reconnection is a ubiquitous plasma physics process responsible for

the explosive release of magnetic energy. It is thought to play a fundamental role

in the production of non-thermal particles in many astrophysical systems. Though

MHD models have had some success in modeling particle acceleration through the

test particle approach, they do not capture the vital feedback from the energetic

particles on the reconnection process. We use two and three-dimensional kinetic

particle-in-cell (PIC) simulations to self-consistently model the physics of electron

acceleration in magnetic reconnection. Using a simple guiding-center approxima-

tion, we examine the roles of three fundamental electron acceleration mechanisms:

parallel electric fields, betatron acceleration, and Fermi reflection due to the re-

laxation of curved field lines. In the systems explored, betatron acceleration is an

energy sink since reconnection reduces the strength of the magnetic field and hence

the perpendicular energy through the conservation of the magnetic moment. The

2D simulations show that acceleration by parallel electric fields occurs near the mag-

netic X-line and the separatrices while the acceleration due to Fermi reflection fills



the reconnection exhaust. While both are important, especially for the case of a

strong guide field, Fermi reflection is the dominant accelerator of the most energetic

electrons. In a 3D systems the energetic component of the electron spectra shows

a dramatic enhancement when compared to a 2D system. Whereas the magnetic

topology in the 2D simulations is characterized by closed flux surfaces which trap

electrons, the turbulent magnetic field in 3D becomes stochastic, so that electrons

wander over a large region by following field lines. This enables the most energetic

particles to quickly access large numbers of sites where magnetic energy is being

released.
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Chapter 1: Introduction

1.1 History

Magnetic reconnection is a fundamental plasma physics process that converts

magnetic energy into plasma energy through a change in the magnetic topology. It

is thought to play an important role in the dynamics of many astrophysical systems

including the solar corona, planetary magnetospheres, magnetic sectors of the solar

wind, pulsar wind nebulae, and black holes. Reconnection is also of great importance

in the context of laboratory fusion devices, as it is the driver of the sawtooth crash

which disrupts confinement in fusion devices.

The history of magnetic reconnection begins with the puzzle of solar flares.

Solar flares are sudden flashes of brightening just above the surface of the sun.

Perhaps the earliest and most famous of solar flares was the one independently

reported in 1859 by the English amateur astronomers R. C. Carrington and R.

Hodgson [1,2]. This flare, now commonly known as the ‘Carrington Flare’, disrupted

telegraph communications and resulted in powerful aurorae that extended as far

south as Cuba [3]. Fig. 1.1 depicts Carrington’s visible-light observation as reported

in the the Monthly Notices of the Royal Astronomical Society. By comparison, figure

1.2 shows a recent soft X-ray image of a solar flare taken by the TRACE satellite.

1



Figure 1.1: R. C. Carrington’s diagram of the September 1, 1859 solar flare. The

flare began with bright light appearing in the areas labeled A and B, and faded

in intensity as it moved toward points C and D. Reprinted with permission from

Carrington (1859) [1].

2



Figure 1.2: X-ray image of a solar flare. Image taken September 2005 by the TRACE

Satellite. Credit: NASA/LMSAL.
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Though observations steadily improved, the source of this phenomenon re-

mained a mystery for almost a century. In 1947, Ron Giovanelli [4] noted that solar

flares were associated with regions where there was a magnetic null point - that

is, where the field changes direction. This idea was eventually pursued by James

Dungey, who suggested that oppositely oriented field lines would break apart and

reconnect due to diffusion, forming a thin current sheet in the process [5, 6].

It was around this time that P. A. Sweet presented an idea for how such a

reversed field configuration could be formed. Bipolar field configurations just above

the surface of the sun could be pressed together; these oppositely oriented fields,

thus driven together, could then reconnect in a similar manner to that proposed by

Dungey. E. N. Parker was present at the conference where Sweet gave his talk, and

subsequently derived the steady state scaling analysis of what is now known as the

Sweet-Parker reconnection [7, 8]. Parker’s depiction of this model is shown in Fig.

1.3. This model was an important advance in that it showed that magnetic energy

could be dissipated at a rate much greater than what would be predicted by simple

diffusion. However, it was still too slow to explain the rapid dissipation observed in

solar flares.

A few years after this model was proposed, H. E. Petscheck devised a solution

in which the inflow and outflow regions are separated by slow shocks. These shocks

facilitate a rate of magnetic energy dissipation that would be substantially greater

than that of the Sweet-Parker model [10]. However, numerical simulations found

that this configuration would only persist if the resistivity was locally enhanced [11];

it would otherwise revert to a Sweet-Parker configuration [12].
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Figure 1.3: Diagram of Sweet-Parker reconnection. Antiparallel magnetic field lines

are driven together from above and below a central current sheet. The field lines

‘merge’ or reconnect, and are expelled to the left and right. Reprinted from Parker,

1963 [9].
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More recently, work in collisionless reconnection has showed that the recon-

nection rate can be fast when the width of the current layer is thin enough that a

fluid description of the plasma becomes inadequate. This is due to the presence of

small-scale kinetic physics that allows magnetic flux to slip past the plasma more

rapidly than would be expected from resistive diffusion. Comparisons of a variety of

numerical models showed a remarkable invariance of the reconnection rate so long

as a minimum set of kinetic physics was included [13].

Reconnection occurs in a variety of regimes: from dense, collisional plasmas

in fusion devices to collisionless reconnection in the magnetotail, to relativistic phe-

nomena where the dominant positively charged species is the positron. Reconnec-

tion may be focused near a narrow current sheet where its onset is determined by

the tearing instabilities, or it may be globally driven by large-scale external flows.

Given the breadth of this field, this thesis will primarily focus on the dynamics of

thin current sheets in collisionless systems. The localized, intense dynamics of a

current sheet enable rapid acceleration of particles, and the absence of collisions

allows the production of superthermal particles with energies much larger than the

temperature of the ambient medium.

1.2 Observations of Energetic Particles in Reconnection

Magnetic reconnection is often found to be accompanied by the production

of energetic particles. Prominent early studies of superthermal electron production

during solar flares date back to the 1960’s, when X-ray spectra were used to deduce
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energetic populations well above 10 keV. [14–16]. The Reuven Ramaty High Energy

Solar Spectroscopic Imager (RHESSI) is the leading modern experiment for study-

ing the production of energetic particles during solar flares. It is capable of spatially

resolving hard X-ray sources in order to isolate the origin of the energetic spectra.

Observations of over-the-limb flares (where the intensely radiating footpoints are

occulted by the solar disc) have recently been used to isolate X-ray sources near the

flaring region. Figure 1.4 shows a RHESSI image of an above-the-looptop source

for energetic particles; electron energy spectra inferred from this source have large

superthermal components that may contain a significant fraction of the released

magnetic energy [17, 18]. Other studies have found that the energetic electron pro-

duction can comprise a significant fraction (∼ 10%) of the energy budget in a solar

flare/coronal mass ejection event [15, 19].

A number of in-situ magnetospheric observations have also found energetic

electrons associated with magnetic reconnection. A magnetotail reconnection event

reported by Øieroset et al. [20] was accompanied by energetic electrons that formed

power laws extending up to 300 keV. These energies are significant in that they

greatly exceed the kinetic energy associated with characteristic electron velocities

such as the Alfvén speed [21] (mec
2
Ae ∼ 2keV). A number of other observations

[21–23] find that energetic electron fluxes are enhanced along magnetic separatrices

and within magnetic islands.

Though these are the most thoroughly documented observations associating

energetic particle production with the reconnection process, there are a number of

other scenarios where reconnection might be important for energetic particle produc-
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Figure 1.4: Cartoon diagram of over-the-limb solar flare observed by RHESSI. The

flare loops are shown as black and red tubes. Hard X-rays (30− 50 keV) are shown

in blue contours, and microwaves are shown in magenta. Reprinted from Krucker

et al., 2010 [17].
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Figure 1.5: Electron energy spectra earthward of a magnetotail X-line. Reprinted

from Øieroset et al., 2002 [20].
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tion. One such example comes from the outer heliosphere where the stacked sectors

of the heliospheric current sheet provide an ideal environment for efficient magnetic

reconnection. The reconnection process has recently been posed as a possible means

for accelerating the Anomalous Cosmic Rays (a population of 10-100 MeV/nucleon

singly-ionized ions with a composition matching the interstellar medium) [24, 25].

Pulsar wind nebulae such as the Crab Nebula have similar geometries to that de-

scribed in the heliosheath. It has been suggested that reconnection may be vital for

facilitating the transition from a magnetically-dominated regime near the base to a

particle-dominated at the termination shock of the pulsar wind. Reconnection may

also explain remarkable recent gamma-ray observations in which the photon energy

exceeded the expected theoretical limit for synchrotron radiation [26, 27].

The prospects of reconnection as an efficient particle accelerator have driven

efforts to study it in the context of accretion discs, black hole jets, and magnetars

(neutron stars with strong magnetic fields). The well-known Cosmic Ray spectrum

forms a power law extending over ten orders of magnitude, up to 1020 eV. The stan-

dard mechanism for the energization of cosmic rays is Diffusive Shock Acceleration

(DSA) at supernova remnant shocks. DSA is a type of Fermi acceleration [28] which

occurs in the vicinity of astrophysical shocks. However, some authors have suggested

that magnetic reconnection may play a role in the production of the most energetic

cosmic rays [29].
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1.3 Summary of Results

A vast body of evidence shows that magnetic reconnection is an important

driver of energetic particles in astrophysical environments. Though significant progress

has been made in numerical study of particle acceleration, there have been few

studies which treat this issue in a fully three-dimensional system where turbulent

structure can impact the transport of particles and confinement in the reconnection

region.

In this thesis, I first discuss fundamental aspects of reconnection theory and

argue that a kinetic treatment of fully three-dimensional reconnection is vital for

capturing essential physics of the particle acceleration problem. I then present

an intuitive guiding-center model for particle energization and discuss the physical

importance of several important mechanisms that arise in this model: electric fields

parallel to the magnetic field accelerate particles directly while those perpendicular

to B do so through gradient-B and curvature drifts. The curvature drift drives

parallel heating through Fermi reflection while the gradient-B drift changes the

perpendicular energy through betatron acceleration.

I then evaluate the relative importance of these mechanisms in two-dimensional

kinetic simulations. For a case with a small guide field (20% of the magnitude of

the reconnecting component) the curvature drift is the dominant source of electron

heating. However, for a larger guide field (equal to the magnitude of the reconnect-

ing component) electron acceleration by the curvature drift is comparable to that

of the parallel electric field. In both cases the heating by the gradient-B drift is
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negligible in magnitude. It produces net cooling because the conservation of the

magnetic moment µ = mv2⊥/2B (where m is the mass, and v⊥ is the velocity per-

pendicular to the field) and the drop of B during reconnection produce a decrease in

the perpendicular electron energy. Heating by the curvature-drift dominates in the

outflow exhausts where bent field lines expand to relax their tension and is therefore

distributed over a large area. In contrast, the parallel electric field is localized near

X-lines. This suggests that acceleration by parallel electric fields may play a smaller

role in large systems where the X-line occupies a vanishing fraction of the system.

The curvature drift and the parallel electric field dominate the dynamics and drive

parallel heating. A consequence is that the electron energy spectrum becomes ex-

tremely anisotropic at late time, which has important implications for quantifying

the limits of electron acceleration due to synchrotron emission. An upper limit on

electron energy gain that is substantially higher than earlier estimates is obtained

by balancing reconnection drive with radiative loss.

I proceed to examine electron acceleration in a three-dimensional system. Elec-

tron acceleration is greatly enhanced when compared with a 2D system. In the 2D

system, electrons are trapped in magnetic islands which limits their energy gain by

inhibiting access to regions near the X-line and reconnection exhaust where mag-

netic energy is released. In the 3D system, however, the stochastic magnetic field

enables the electrons to access volume-filling acceleration regions. The dominant

accelerator of the most energetic electrons is a Fermi-type mechanism associated

with the curvature drift.

I then briefly examine how the three-dimensional results scale with the system
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size and mass ratio. I find that the relative enhancement of particle acceleration

increases with the system size. This suggests that the physical results discussed

in this thesis will be even more important for astrophysical regimes much larger

than what can be captured in kinetic simulations. Additionally, I find that the key

features of the three-dimensional simulations are preserved in a system with a more

realistic proton-to-electron mass ratio, suggesting that these results are robust and

relevant for physical systems.
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Chapter 2: Magnetic Reconnection Theory

In this chapter, I briefly describe the theoretical background for the modern

understanding of magnetic reconnection. I begin by presenting the ideal magne-

tohydrodynamic (MHD) formulation of plasma physics and discuss the concept of

magnetic tension and the approximate conservation law known as the ‘frozen flux

theorem’. I then discuss a simplified picture of reconnection and describe how

the violation of the frozen flux theorem facilitates energy release through field line

shortening driven by magnetic tension. I then discuss steady-state reconnection

including the slow Sweet-Parker model and compare it to fast reconnection at ki-

netic scales. I proceed to argue that a treatment which includes kinetic physics in a

three-dimensional system is vital for considering the particle acceleration problem. I

conclude by describing the particle-in-cell (PIC) formulation used in the simulations

examined in this thesis.

2.1 Magnetohydrodynamics

The magnetohydrodynamic (MHD) formulation treats plasma as a conducting

fluid. This is useful for studying reconnection on large temporal and spatial scales.

MHD combines Maxwell’s equations with the Navier-Stokes equations. Below are
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the ideal equations, where the plasma is taken to be a perfectly conductive fluid

with no viscosity:

dρ

dt
+ ρ∇ · v = 0 (2.1)

ρ
dv

dt
=

1

c
J×B−∇P (2.2)

∂B

∂t
= −1

c
∇× E (2.3)

J =
c

4π
∇×B (2.4)

E+
v ×B

c
= 0 (2.5)

Equations 2.4 and 2.5 can be used to eliminate the current density J and the electric

field E, yielding a set of equations in the following set of variables: the mass density

ρ, the bulk flow v, the magnetic field B and the pressure scalar P . The operator

d/dt ≡ ∂/∂t+v ·∇ is the convective derivative. An additional equation is required

in order to close this set of equations; a common choice is the adiabatic equation of

state:

d

dt

(

P

ργ

)

= 0

where γ is the ratio of specific heats. Ampère’s law can be used to rewrite the

momentum equation (2.2) in the following form:

ρ
dv

dt
= −∇P −∇⊥

B2

8π
+ κ

B2

4π
(2.6)
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where the perpendicular gradient ∇⊥ ≡ ∇−b(b ·∇) is defined with respect to the

unit vector in the direction of the magnetic field: b = B/B. The second term on

the right-hand-side acts similarly to the thermal pressure, though it only operates

tranverse to the magnetic field. The final term corresponds to magnetic tension

which acts in the direction of the magnetic curvature κ ≡ b ·∇b. Magnetic tension

drives the Alfvén wave, a fundamental MHD wave which propagates at a velocity

which depends on the magnetic field magnitude and the mass density: cA = B/
√
4πρ

The quantity κ = db/dl describes the curvature of the magnetic field (dl is an

infinitesimal displacement along the field line). Integration of this along a field line

yields the change in the magnetic field vector:

∫

dℓκ =

∫

dℓ(b ·∇b)

=

∫

dℓ
d

dℓ
b

= b2 − b1

The magnetic curvature can be related to a local radius of curvature: κ = −R/R2.

Hence the magnetic curvature points in the opposite direction as a radius vector.

An important result of ideal MHD is the ‘frozen-in-flux’ law, which states that

the magnetic flux through a surface moving with the fluid is conserved:

∫

S

B · dS = const (2.7)

This follows straightforwardly from Eqns. 2.3 and 2.5 which together yield:

∂B

∂t
= ∇× (v ×B) (2.8)
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Due to this property, it is often useful to describe the dynamics of field lines which

co-move with the plasma. Two fluid elements along a given field line will therefore

always be threaded by the same field line, and hence a field line cannot ’break’. This

a good approximation for many large-scale systems.

2.2 The Basics of Reconnection Theory

2.2.1 The Self-Driven Process: Breaking Field Lines

An important aspect of magnetic reconnection is that it ‘breaks’ this approxi-

mate conservation law. A simple picture of a 2D ‘X-line’ is shown in Fig. 2.1. This

geometry includes a central current sheet that separates magnetic fields of opposite

polarity. Four topological domains are divided by separatrices which meet at the

central ‘X’.

Magnetic tension pulls the strongly curved magnetic fields away from the cen-

tral X. This drives down the pressure at the X-line, and therefore pulls in new

plasma. However, for this to happen, the newly inflowing field lines must pass

across the separatrices, ‘breaking’ and reconnecting with each half of a pair on the

other side of the X-line. In other words, plasma elements once threaded by a single

field line are no longer topologically connected. This therefore suggests that 2.7 is

not be valid, and implies that physics omitted from the ideal Ohm’s law (Eqn. 2.5)

play an important role in enabling the magnetic field to slip past the plasma in the

vicinity of the X-line (this volume is known as the ‘diffusion region’, and is depicted

shaded in red in fig. 2.1). An important example is resistive diffusion which arises
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Figure 2.1: Two-dimensional magnetic reconnection diagram. A central X-line de-

marcates four regions of magnetic flux. Magnetic tension drives plasma away from

the X-line and draws in new field lines which ‘break’ and reconnect as they cross

the separatrices.
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from the finite conductivity of the plasma.

It is important to note that while this figure includes no magnetic field in the

out-of-plane direction, the two-dimensional topology is essentially equivalent in that

case.

2.2.2 Magnetic Energy Release

Magnetic reconnection releases energy through the shortening of field lines via

magnetic tension. Fig. 2.2 shows a contracting magnetic bubble (in reconnection,

these are frequently labeled ‘magnetic islands’ or ‘flux ropes’ and are created between

two X-lines). A flux tube is shown in green. The length of the initial bubble is L and

the width is w. The resulting circular bubble is described by a radius R, and the flux

contained in the island is given by Φ. Reconnection is a nearly incompressible process

(the inflow velocities are sub-magnetosonic, which allows magnetosonic waves to

propagate and enforce pressure balance) so the contraction preserves the island area

A ≈ wL ≈ R2 so that R =
√
wL. In the elongated island, most of the magnetic

energy is in the horizontal magnetic field Bi = Φ/w. In the circular bubble, the

magnetic field is a constant Bf = Φ/R. The energy release through this process is

then:

A(B2
i − B2

f)/8π = A
B2

i

8π
(1− B2

f/B
2
i ) = A

B2
i

8π
(1− w

L
) (2.9)

so that if w ≪ L, almost all of the initial energy is released.

Though the picture above is only a toy model, it illustrates the general mag-

netic energy release process. The released magnetic energy must therefore be trans-
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Figure 2.2: Cartoon diagram of a flux tube in a contracting magnetic bubble. Figure

courtesy of Jim Drake.

ferred to the kinetic energy of the plasma, either in bulk flows, thermal energy, or

energetic particles. Magnetic reconnection generates bulk outflows on the order of

the Alfvén speed. These outflows may carry a substantial amount of energy, and

are typically some of the clearest in-situ signatures of the process.

There are also a number of ways in which the plasma may be heated. For

example, cold ions in the reconnection exhaust may reflect from retracting field

lines, (in a manner analogous to a slingshot) generating counterstreaming beams

that increase the effective temperature [30]. There are also a number of mechanisms

for heating the electrons, including a number of beam instabilities. Some of the

most important mechanisms will be discussed in Chapter 2.6.3.

Energetic particle production, where some of the plasma is accelerated to

energies much larger than that of the ambient medium, can be another important

avenue for magnetic energy conversion. This is particularly relevant for collisionless

regimes where the small collision frequency allows non-Maxwellian distributions to

form and persist. Observational evidence (discussed in a section 1.2) suggests that

a large amount of energy may be released in superthermal particles. Some of the
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Figure 2.3: Sweet-Parker current sheet. The plasma flows advects the magnetic field

Bup toward the diffusion region (green) with a velocity vin. The field lines break

and are advected outward with a velocity vout.

important mechanisms for heating the bulk plasma overlap with those thought to be

responsible for producing superthermal particles. For example, Fermi acceleration

[28] (a mechanism in which charged particles gain energy by reflecting from magnetic

field disturbances) depends on the energy ǫ of the particle: dǫ/dt ∝ ǫ and is therefore

more efficient at energizing superthermal particles. In principle, however, it may still

play a role in heating the thermal population.

2.3 Steady-State Reconnection

2.3.1 Sweet-Parker Theory

In order to treat the reconnection process quantitatively, I now include a de-

scription of the well-known Sweet-Parker theory for steady-state reconnection. The

simple 2D ‘X-line’ picture of steady-state reconnection is shown in Fig. 2.3.
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Reconnection is nearly incompressible, (ρ = const.) so the steady-state conti-

nuity equation (2.1) becomes ∇ · v = 0. Let δ be the thickness of the dissipation

region, and L be the length, which typically corresponds to a system scale size. Take

vy = vin to be the velocity of the inflowing plasma (oriented in the y-direction), and

vx = vout to be that of the outflowing plasma. Then:

vin
δ

∼ vout
L

⇒ vin ∼ δ

L
vout (2.10)

Using Gauss’ law (∇ ·B = 0) based on an upstream magnetic field Bx = Bup and

a downstream magnetic field By = Bdown, we find:

Bup

L
∼ Bdown

δ
⇒ Bdown ∼ δ

L
Bup (2.11)

where Bup is the horizontal component of the magnetic field immediately upstream

of the dissipation region, and Bdown is the vertical component downstream.

We may then examine the momentum equation and balance the x-component

of the convection term ρ(v · ∇)v with the tension force (B · ∇)B/4π, neglecting

pressure gradients: ρv2out/L ∼ Bdown(Bup/δ)/4π. Using Eq. 2.11, we arrive at the

result:

v2out ∼
B2

up

4πρ
∼ c2Aup

where cAup is the Alfvén velocity based on the upstream plasma parameters.

Reconnection requires a form of dissipation in the MHD model, typically via

a resisivity which modifies the Ohm’s Law (2.5) as follows:

E+
v ×B

c
= ηJ (2.12)
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The electric field can then be substituted into Eq. 2.3 to obtain:

∂B

∂t
= ∇× (v×B) +

ηc2

4π
∇

2
B (2.13)

In a steady-state, incompressible plasma, this becomes:

(B ·∇)v − (v ·∇)B+
ηc2

4π
∇

2
B = 0 (2.14)

We can examine the y-component of this equation along the symmetry line imme-

diately upstream of the dissipation region. The first term is zero because of the

symmetry of the system. This yields:

vin
Bup

δ
∼ ηc2

4π

Bup

δ2
⇒ vin

vout
∼
√

ηc2

4π

1

cAupL
∼ 1√

S
(2.15)

Where S is the Lundquist number (the magnetic Reynolds number based on the

Alfvén velocity, corresponding to the relative importance of the second and third

terms in Eq. 2.12). As the Lundquist number is typically very large in astrophys-

ical plasmas, this yields a low rate of reconnection, and hence of magnetic energy

conversion.

The energy conversion can be summarized as follows. We take ǫ = δ2/L2, a

small parameter. The inflowing energy is given by the Poynting flux cE × B/4π,

equivalent to a magnetic enthalpy flux across the dissipation region of:

(vinL)B
2
up/4π ∼ (cAupδ)(B

2
up/4π) (2.16)

The downstream magnetic enthalpy flux is:

(voutδ)B
2
down/4π ∼ ǫ(cAupδ)(B

2
up/4π) (2.17)
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The upstream plasma flow energy is given by:

(vinL)(ρv
2
in/2) ∼ ǫ(1/2)(cAupδ)(B

2
up/4π) (2.18)

and finally the downstream kinetic energy flux is:

(voutδ)(ρv
2
out/2) ∼ (1/2)(cAupδ)(B

2
up/4π) (2.19)

The kinetic energy flux is the only term at the same order as the upstream Poynting

flux, and only accounts for half of inflowing flux, suggesting that this simplified

analysis fails to capture an important component of the energy conversion. In

the resistive plasma scenario, Ohmic heating can help satisfy this energy budget.

However, resistive physics is typically of little importance to astrophysical scenarios.

Magnetic energy release must therefore occur through other means, motivating the

subject of this thesis.

2.3.2 Fast Reconnection and Kinetic Physics

The preceding analysis has dealt with a fluid approach to reconnection. Recent

developments have shown that when a reconnecting current sheet thins to kinetic

length scales, (such as the ion inertial length di = c/ωpi, where ωpi is the ion plasma

frequency1) reconnection can proceed much more rapidly. This is due to the impor-

tance of physics such as the Hall effect, which allows the magnetic field to decouple

from the protons and instead advect only with the electrons. In the Hall regime, the

1The ion inertial length may also be written as cA/Ωci, the effective Larmor radius based on

the Alfvén speed.
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electrons carry the bulk of the current, resulting in an Ohm’s law of the following

form:

E ≈ −ve ×B

c
≈ J×B

ne
(2.20)

where n is the plasma density and e is the electron charge. The electrons flow in

the z direction in order to produce the current supporting to the magnetic field.

The Lorentz force then rotates the electrons into the outflow direction. Within the

electron diffusion region (current sheet thickness less than di), the outflow flux is

then:

δvout ∼ δ

(

J

ne

)

∼ δ

(

c

4π

Bup

δ

)

1

ne
∼ cAdi (2.21)

Hence in this regime the outflowing plasma flux is independent of the current sheet

thickness (so long as the layer thickness significantly exceeds electron scales). This

modifies the reconnection rate that would otherwise be expected from current sheet

thicknesses implied by δ ∝ L/
√
S in astrophysical regimes where S is large. For

example, the magnetotail has a Lundquist number ∼ 1010, so that δ/L ∼ 10−5.

Current sheets in the magnetotail are on the order of 102di, which would yield

δ ∼ 10−3di, well within the range where kinetic processes become relevant. A

similar analysis finds δ << di in the solar corona.

2.4 Kinetic Reconnection

2.4.1 The Role of Feedback

A straightforward reason for the need of a kinetic treatment of reconnection is

the simple fact that fluid models cannot self-consistently treat nonthermal spectra
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(such as power laws) that may be produced during reconnection. Feedback from

electron acceleration can play an important role in throttling magnetic reconnection.

The mirror and firehose instabilities effectively constrain the plasma so that it always

lies within the marginal stability boundaries: β‖−β⊥ = 2 (firehose) and β‖−β2
⊥/(1+

β⊥) = 0 (mirror). Such behaviour has been observed in the slow solar wind [31,32].

In gyrotropic plasma, the pressure tensor (assuming relevant time scales are

below the cyclotron frequency) is given by:

P = P‖bb− P⊥(I− bb) (2.22)

where P‖ and P⊥ are the parallel and perpendicular components of the pressure, I

is the identity tensor, and b is the local direction of the magnetic field. The force

due to the gyrotropic pressure is:

−∇ ·P =−∇⊥P⊥ −∇‖P‖ − (P⊥ − P‖)∇‖(lnB) (2.23)

+ (P⊥ − P‖)κ (2.24)

so that the tension force (∝ κ) in Eq. 2.6 is modified to become:

(

B2

4π
− P‖ + P⊥

)

κ =

(

1− β‖
2

+
β⊥
2

)

B2

4π
κ (2.25)

where β⊥ = 8πP⊥/B
2, β‖ = 8πP‖/B

2. When β‖ − β⊥ = 2, this term vanishes,

corresponding to the marginal stability condition for the firehose instability. Field-

aligned streaming (associated with β‖) produces a centrifugal force which opposes

the magnetic tension. In the context of reconnection, parallel heating due to tension-

driven shortening of field lines acts as a back-reaction. In high β plasmas, this leads

to very elongated magnetic islands as strong magnetic tension is required to maintain
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reconnection against the back pressure of the plasma [33]. The anisotropy generated

during reconnection can also lead to the development of secondary instabilities such

as the Weibel instability [34].

The inclusion of pressure anisotropy absent in MHD is therefore essential for

the self-consistent treatment of reconnection dynamics. The Chew-Goldberger-

Low (CGL) equations form an important fluid closure which includes the effects

of anisotropy. However, the CGL formulation neglects thermal transport, which is

especially important in the case of electrons, where vth,e ≫ cA. Therefore, a kinetic

treatments which include the effects of thermal transport is required to capture this

important aspect of the reconnection process.

2.4.2 Non-Maxwellian Distribution Functions

Non-Maxwellian distribution functions can be very important for the mi-

croscale physics of reconnection. The small collision rate in most astrophysical

systems means that the timescale for relaxation to an equilibrium distribution is

typically much longer than that of the relevant physical dynamics. This allows

the formation of a superthermal component of the distribution function (often a

power-law). Solar flare observations (described in 1.2) have found that the energetic

component can contain a large fraction of the total energy in the system, which sug-

gests that the superthermal population can contribute significantly to the dynamics.

This hence provides an important reason to include kinetic physics in models of re-

connection. The small-scale, non-ideal nature of the reconnection diffusion region
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leads to other important distribution function dynamics such as the production of

energetic beams via strong particle acceleration near the reconnection X-line. In

some situations, particularly at low electron β, these beams can spawn secondary

streaming instabilities which can help break field lines and enhance the effective

dissipation [35, 36].

2.5 Three-Dimensional Reconnection

Though two-dimensional treatments can be useful approximations for a num-

ber of systems, there is growing evidence that some aspects of reconnection can

be fundamentally different in a full three-dimensional treatment. Two-dimensional

topologies are relatively simple. Consider a system where ∂/∂z = 0. The magnetic

field may then be written in the form:

B = z×∇ψ(x, y) +Bz(x, y) z (2.26)

where ψ is the flux function. The contours of the flux function trace out magnetic

field lines. In the 2D picture, the topological separatrices trace out distinct magnetic

‘flux surfaces’. In contrast, in three-dimensional topologies, an individual field line

does not by itself form a separatrix, allowing greater freedom in the rearrangement

of the magnetic field by the reconnection process. An initially laminar magnetic

field can become stochastic, and individual field lines may be ergodic [37, 38] (that

is, a field line traced for a sufficient distance will pass arbitrarily close to an given

point in the stochastic region).

Three-dimensional topology is important even in reconnection that begins from
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a quasi-2D equilibrium. The tearing mode, which is the primary instability that ini-

tiates reconnection, requires B0 ·k = 0 [39]. In a 2D (x,y) system with reconnecting

field components Bx(y), this condition simplifies to kxBx = 0, so that this instability

is localized in the center of the current sheet where Bx = 0.

However, in a 3D system which allows a variation in z, and hence a component

of the wavevector kz, this condition is instead kxBx + kzBz = 0. In the presence of

a finite guide field (Bz 6= 0), this allows a number of different possible orientations

for the tearing mode, which can grow in locations away from the center of the

current sheet (Bx 6= 0). These multiple available modes can interact nonlinearly

and generate complex structure which cannot be described by closed flux surfaces

or ‘islands’ [40, 41].

2.6 Numerical Simulations of Magnetic Reconnection

2.6.1 The Particle-in-Cell Formulation

The work described in this thesis will explore reconnection using the kinetic

Particle-in-Cell (PIC) code p3d [42]. A cartoon diagram illustrating the Particle-

in-Cell method is shown in Fig. 2.4. This code models the distribution function

via representative ‘macroparticles’ with the appropriate charge-to-mass ratio per

species. The macroparticle trajectories are evolved using the relativistic Newton-

Lorentz equation:

d

dt
(mγv) = q

(

E+
v

c
×B

)

(2.27)

where m is the rest mass and γ = 1/
√

1− v2/c2 is the Lorentz factor.
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The electromagnetic fields are defined on a grid, and are evolved using Ampère’s

and Faraday’s laws using charges and currents that are accumulated by summing

the contributions from the macroparticles.

2.6.2 Simulation Parameters and Boundary Conditions

PIC simulations of reconnection, especially in three dimensions, are extremely

computationally intensive. It is important that the simulation domain capture large

scale dynamics L ≫ di, t ≫ Ω−1
ci while also resolving electron scales ∆x ∼ de,

∆t ∼ Ω−1
ce . Numerical stability conditions for explicit codes are even more stringent,

requiring that the Debye length λDe and plasma frequency ωpe also be resolved.

In a three-dimensional simulation, the computational expense scales as a large

power of the proton to electron mass ratio: (mi/me)
5/2. Artificial values of the mass

ratio are typically used in order to reduce this computational expense. The value

mi/me = 25 is typically considered sufficient to maintain a minimum separation of

scales between the two species.

Another way of reducing the computational expense is to use a ratio of the

electron plasma frequency to the cyclotron frequency that is smaller than realistic

values. This reduces the time resolution constraint while preserving cyclotron time

scale physics (dynamics at the electron plasma frequency are typically not important

for reconnection problems). For example, the simulations in this work use ωpe/Ωce =

c/cAe = 3, which is substantially smaller than a typical magnetotail value of ≈ 16

(based on n = 1 cm−3 and B = 20 nT).
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Figure 2.4: The Particle-in-Cell Method (PIC) method. Electromagnetic fields are

defined on a grid. Representative ‘macroparticles’ are evolved using the Lorentz force

law interpolated from the grid. Distribution function moments including charge and

current are accumulated on the grid cells and used to evolve Maxwell’s equations

for the electromagnetic field.
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In this simulations presented in this thesis, I will use periodic boundary con-

ditions for all dimensions. Given that the reconnecting component of the magnetic

field reverses across a current sheet, this requires that the initial condition contains

two current sheets, so that magnetic field reverses twice. Though there are two cur-

rent sheets, we will treat them independently as the systems of interest contain only

a single sheet. There is a potential concern in that at late time, the current sheets

can become strongly correlated so that eventually the separatrices and magnetic

islands from neighboring sheets merge. However, all analysis will be carried out at

times when the dynamics of the two sheets are uncorrelated.

Other boundary choices are possible. Conducting boundaries parallel to the

reconnecting component of the field have often been used [13]. However, these

boundary conditions suppress field line bending and therefore reduce the reconnec-

tion rate, especially in small systems. Open boundary conditions, where waves and

particles may leave the system, have seen use in recent years [43, 44]. However,

the small size of 3D PIC simulations is a serious problem. Energetic particles and

magnetic structures such as islands are rapidly lost from the simulation domain, so

that they no longer have an impact on the evolution. In most astrophysical systems,

the relevant scale sizes are many orders of magnitude larger than what is possible

in PIC, so that this is also a poor approximation. The periodic system is more

appropriate in that it models an ‘infinite’ current sheet where there would be no

such loss over the evolution time scales typically considered (∼ 100Ω−1
ci ).
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2.6.3 Current Sheet Initial Conditions

In modeling astrophysical systems, there are two typical initial conditions

for a symmetric one-dimensional current sheet. The varying quantities for each

configuration are depicated in Fig. 2.5. One is the Harris equilibrium, devised by

E. G. Harris [45] where the current sheet is supported by plasma pressure:

Bx = B0 tanh(y/λ) (2.28)

n = n0 sech
2(y/λ) (2.29)

where Bx is the reconnecting component of the field and n is the plasma density.

The electron and proton temperatures are chosen such that n0(Te + Ti) = B2
0/8π so

that the total pressure is a constant.

In Harris’ initial formulation, this is an exact kinetic equilibrium where the

proton and electron distribution functions are Maxwellians with drift velocities pro-

portional to their temperatures. The Harris equilibrium is typically modified to

include a constant background density nb and possibly a constant guide field Bz

which preserve the fluid equilibrium (pressure balance). This initial condition is of-

ten used to model the magnetotail, where the current sheet population has a much

higher temperature and density than the lobe (asymptotic) population, and the

guide field is small.

The force-free configuration is another common initial condition used for mod-

eling a current sheet. The name comes from the fact that the Lorentz force |J×B|
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Figure 2.5: Varying quantities for current sheet equilibria. (Top) Harris configu-

ration; the temperature and the guide field (not shown) are constant. (Bottom)

Force-free configuration; the density and temperature (not shown) are constant.
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= 0 so that |B| = const. Our implementation is given as follows:

Bx = Bx0 tanh(y/λ) (2.30)

Bz =
√

B2
z0 + (B2

x0 −B2
x) (2.31)

The plasma pressure is constant. This configuration is well-suited for systems where

the current sheet is supported by the magnetic field rather than the plasma pressure.

This is a natural choice in low-β systems such as the solar corona.
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Chapter 3: Particle Acceleration Mechanisms

In this chapter, I describe some of the important mechanisms for accelerating

particles in magnetic reconnection. I begin by presenting a simple guiding-center

model and proceed to describe the important mechanisms which arise. I first discuss

the role of parallel electric fields, which can accelerate electrons very quickly, but

are typically localized to small scales. I then describe betatron acceleration and

argue that its role should be small in the systems considered in this thesis. I then

discuss Fermi acceleration including its history, application to reconnection, and its

relation to the curvature-drift term in the guiding-center model. I finally present

a bulk equation which casts the three relevant particle energization mechanisms in

terms of fluid moments.

3.1 Particle Acceleration in the Guiding-Center Approximation

In order to examine various effects contributing to electron energy evolu-

tion, consider a standard treatment of the guiding-center approximation given by

Northrop [46]. The evolution of the energy ǫ of a single electron in the guiding-center
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limit is given by:

dǫ

dt
= (µ/γ)

∂B

∂t
+ q(v‖b+ vc + vg) · E (3.1)

where b = B/|B|, µ = meγ
2v2⊥/2B is the magnetic moment, γ is the relativistic

Lorentz factor, v‖ = v · b, and vc and vg are the curvature and grad-B drifts:

vc =
v2‖b

Ωce
× κ (3.2)

vg =
v2⊥b

2Ωce
× ∇B

B
(3.3)

In Eqs. (3.2) and (3.3) the electron cyclotron frequency Ωce = eB/γmec, and the

magnetic curvature is κ = b · ∇b.

Equation (3.1) may be rewritten in the following enlightening form:

dǫ

dt
= qE‖v‖ +

µ

γ

(

∂B

∂t
+ u

E
·∇B

)

+ γmev
2
‖(uE

· κ) (3.4)

Three distinct terms are apparent in this formulation. The first corresponds to ac-

celeration by parallel electric fields E‖. Parallel electric fields are difficult to sustain

over large regions since they are typically shorted out by fast moving electrons. As a

consequence they are typically localized to a scale of only a few Debye lengths. The

second grouping of terms corresponds to betatron acceleration, associated with the

conservation of the magnetic moment µ. When a charged particle experiences an

adiabatic change in B, either by advection (uE) or a local change in the magnetic

field strength, the perpendicular velocity evolves to compensate. Parallel motion

of the particles in the absence of an electric field simply exchanges energy between
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ǫ‖ and ǫ⊥ via the well-known magnetic mirror phenomenon and therefore does not

change the particle energy. The final term corresponds to a type of Fermi acceler-

ation due to reflection of charged particles from contracting field lines. The u
E
· κ

term shows that this occurs wherever magnetic fields are advected in the direction

of the magnetic curvature, hence releasing tension. These terms will be addressed

in turn in subsequent sections of this chapter.

These three terms accelerate particles in distinct ways. Both the first and

third terms change the parallel energy. Parallel electric fields, which are directional,

typically produce magnetic field-aligned beams. These beams can subsequently be

thermalized through a variety of instabilities. The magnitude of Fermi acceleration

is directly proportional to the parallel energy, and the process increases the parallel

temperature directly (omitting transport processes, dǫ/dt ∝ ǫ leads to an evolving

temperature dT/dt ∝ T ). The betatron mechanism instead increases the perpen-

dicular energy concurrent with an increase in the magnetic field. For a significant

energy gain to be possible, this would typically require the particle to see a large

increase in the magnetic field.

3.2 Parallel Electric Fields

An apparently straightforward means of accelerating particles in reconnection

is via parallel electric fields. Acceleration by parallel electric fields has been explored

in a number of studies [18, 47, 48]. However, parallel electric fields are typically

localized to small regions, as electrons move quickly to short out the parallel electric
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field.

Parallel electric fields can arise in the reconnection diffusion region in the

presence of a guide field. As in the Sweet-Parker analysis presented in Section 2.3.1,

we discuss a localized region with boundary conditions determined by the ideal

plasma properties. In the presence of a guide field, only the in-plane component

of the tension drives the reconnection outflow, and hence vout = cAx. The inflow

velocity is given by continuity: vin = (δ/L)vout.

As in the Sweet-Parker picture, a constant electric field Ez = −vinBx0/c sup-

ports the steady-state reconnection of the in-plane magnetic field Bx0. However,

this field must be accompanied by in-plane components so that E + v/c × B = 0.

In the inflow E‖ = ExB0x + EzB0z = 0 so Ex = −EzB9z/B0x. Similarly, along the

outflow Ey = −EzB0z/B0y. For B0z very large, these in-plane fields are much larger

than the reconnection electric field. These in-plane fields have odd symmetry across

the x-line and therefore are small within the diffusion region where E‖ 6= 0. The

typical transverse scale of the diffusion region for the case of a strong guide field is

the electron-sound Larmor radius [49]

There are several other ways in which parallel electric fields can arise in the

context of magnetic reconnection. For example, Egedal et al. [48] have examined

‘pseudo-potential’ wells near the X-line that develop as accelerated electrons leave

the X-line and leave ions behind, generating parallel electric fields. However, these

pseudopotentials are at most of the order mec
2
Ae, and hence do not significantly

affect energetic particles v‖ ≫ cAe. The role of any large-scale potential structure in

particle acceleration remains uncertain because particles entering such a potential
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and then leaving do not gain net energy. One of the goals of this dissertation is to

clarify this point.

Another way in which parallel electric fields can arise is through streaming

instabilities such as the Buneman instability [35,50], which can form electron holes

with strong localized electric fields. However, as with the pseudopotentials described

above, these typically interact most strongly with thermal particles, as the potentials

associated with these electron holes derive from the free energy of reconnection-

produced electron beams, and are hence associated with bulk flow energies ve‖ ∼

cAe. Hence these structures also do not seem likely to be efficient accelerators of

energetic particles. Again, one of the goals of this dissertation is to clarify the role of

turbulence versus the inductive electric field in heating and acceleration of electrons.

3.3 Betatron Acceleration

The betatron mechanism is a well-understood method of accelerating charged

particles. In earth-based particle accelerators, this is accomplished by using the

induced electric fields from a changing magnetic field in order to energize electrons

traveling in a circular orbit.

In a plasma, the underlying physics is essentially identical. It is convenient

to consider the non-relativistic magnetic moment µ = mv2⊥/2B = ǫ⊥/B. If the

temporal scales are much longer than the cyclotron period, then this is an adiabatic

invariant. Hence the evolution of the perpendicular energy ǫ⊥ is associated with a
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change in the magnetic field:

dµ

dt
=

1

B

dǫ⊥
dt

− ǫ⊥
B2

dB

dt
= 0 (3.5)

dǫ⊥
dt

=
ǫ⊥
B

(

∂

∂t
+ v · ∇

)

B (3.6)

where v is the velocity of the particle. The rapid gyromotion does not result in a

net drift, and the parallel motion only transfers energy between the perpendicular

and parallel components, and does not produce a net energization. Hence the net

energy gain is given by:

dǫ

dt
=
ǫ⊥
B

(

∂

∂t
+ uE · ∇

)

B (3.7)

where uE is the E × B velocity. In the guiding-center frame, this reduces to the

partial time derivative. A finite ∂B/∂t corresponds to a finite curl of the electric

field, which energizes the particle as it orbits the magnetic field line, in a manner

analogous to that employed in particle acceleration.

Magnetic reconnection releases magnetic energy, and hence reduces the magni-

tude of the magnetic field. Hence it would not be expected that betatron acceleration

would be very efficient, as it requires the particle to experience an increase in B in

order to gain energy. However, the global topology change enabled by reconnection

can result in betatron acceleration. One example is a ‘dipolarization front’ in the

magnetotail, where the onset of reconnection allows stretched field lines to snap

back toward the earth and into a region of larger magnetic field. Such global effects

are not captured by the slab kinetic simulations employed in this thesis.
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3.4 Fermi Acceleration

What is now known as Fermi acceleration was first proposed by E. Fermi

in order to explain the origin of Cosmic Rays [28]. In the original formulation,

Fermi proposed that charged particles could collide with randomly moving ‘magnetic

irregularities’. A head-on collision would increase the energy of the particle, a tail-

on collision decrease the energy of the particle. Fermi argued that since the head-on

collisions are more likely, there would be an average acceleration. The average gain

in energy per collision would then be given by:

δǫ ∝ (V/c)2ǫ (3.8)

where ǫ is the energy of the particle and V is the velocity of the magnetic irregularity.

He then assumed that energetic particles would have a finite lifetime, losing their

energy via collisions with ambient particles. A simple equation for the evolution of

the distribution f ≡ f(ǫ, t) of energetic particles is given by:

∂f

∂t
+

∂

∂ǫ
(ǫ̇f) = − f

T
.

If the average time between interations with magnetic irregularities is τ , then

ǫ̇ = ǫ(V/c)2/τ . If we assume no time variation (∂/∂t = 0) and take T to be

the characteristic lifetime of the energetic particles, we arrive at:

∂

∂ǫ
(αǫf) = − f

T
. (3.9)

Where α = (V/c)2/τ . The solution to 3.9 takes the form of a power law:

f(ǫ) ∝ 1

ǫ1+(αT )−1
(3.10)
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as is required in order to explain the Cosmic Ray spectrum.

Fermi’s original idea was subsequently adapted to describe acceleration at

astrophysical shocks. For any given shock there exist reference frames where the

fluid flow (and any magnetic irregularities) converges toward the shock. Charged

particles reflecting from these irregularities in the vicinity of the shock will always

see the head-on type of collisions and will gain energy in a secular fashion. This type

of Fermi acceleration is known as Diffusive Shock Acceleration, and is the leading

current model for the acceleration of Galactic and Intergalactic cosmic rays.

3.4.1 Fermi Acceleration in Reconnection

Recent work by Drake et al. [51] has described a Fermi-type process which

can occur inside magnetic islands during reconnection. In Fermi’s original article,

he described two types of collisions: type ‘A’ involving reflections from moving

magnetic mirrors, and type ‘B’ involving reflection from a moving, curved field line.

Fig. 3.1 illustrates the latter process adapated to a reconnecting system. In the

reconnection picture, the curved field line is contracting away from an X-line with

an Alfvénic outflow velocity.

The curved field line is moving rightward (here at the Alfvén velocity cA) and

a charged particle along the field line is moving leftward with a parallel velocity

vx = −v0. In the reference frame of the field line, the particle begins with a velocity

v′x,i = −v0 − cA. The particle reflects elastically from the field line, so that its final

velocity is v′x,f = v0 + cA. Transforming back to the ‘lab frame’, we find that the
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Figure 3.1: Cartoon diagram of a charged particle reflecting from a magnetic loop

contracting at the Alfvén speed. The particle velocity increases by 2cA.

particle’s final velocity is v0 + 2cA.
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Magnetic reconnection typically generates magnetic islands, which can be pic-

tured as elongated magnetic bubbles that are contracting at both ends. In such a

situation, the particles are well-confined and, if sufficiently fast, can reflect many

times from either end of the island. If the velocity of the particle is much greater

than the Alfvèn speed (as is typically the case for electrons), then the energy gain

per collision is ∆ǫ ≈ (mv)cA. The reflections occur with a frequency ∼ v/L, so that:

dǫ

dt
∼ m(v/L)(vcA) ∼ (cA/L)ǫ (3.11)

Another way to describe why the energy increases relies on the conservation

of the parallel action J‖ =
∫

v‖dℓ. As the island contracts, the field lines become

shorter. If the particles are circulating rapidly (v ≫ cA) then this directly implies

that v‖ must increase.

The acceleration of a particle in the presence of a contracting field line can

also be calculated analytically. Begin by calculating the evolution of the parallel

velocity:

dv‖
dt

=
d

dt
(v · b) (3.12)

=b ·
dv

dt
+ v ·

db

dt
(3.13)

=
q

m
E‖ + v · (v · ∇)b+ v · ∂b

∂t
(3.14)

where we have used the Newton-Lorenz equation for dv/dt. For simplicity, we as-

sume ∂b/∂t = 0, which is typically a good approximation for hot electrons (the

result is essentially the same without this assumption, but the deriviation and in-

terpretation are somewhat more complicated). We can then apply gyro-averaging
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〈 〉 to find a tractable expression for vv:

〈vv〉 ≈ (I− bb)
v2⊥
2

+ v‖v‖ + uEv‖ + v‖uE (3.15)

which neglects higher order terms such as the curvature and grad-B drifts. Dyadics

with leading b vanish when dotted into ∇b, yielding:

〈

dv‖
dt

〉

=
q

m

〈

E‖

〉

+ 〈vv〉 : ∇b (3.16)

=
q

m

〈

E‖

〉

+
v2⊥
2
∇ · b+ uE · (v‖∇‖)b (3.17)

=
q

m

〈

E‖

〉

− v2⊥
2B

∇‖B + uE · (v‖κ) (3.18)

The first term is the familiar parallel electric field term. The second corre-

sponds to the mirror force µ∇‖B which transfers energy between the parallel and

perpendicular components of the velocity. The last term corresponds to reflection

from contracting field lines. Neglecting parallel electric fields and the mirror force,

the evolution of the parallel kinetic energy ǫ‖ due to this term is then given by:

d

dt

(

mv2‖
2

)

= mv2‖uE · κ (3.19)

dǫ‖
dt

= 2ǫ‖
cE×B

B2
· κ (3.20)

= qE ·

(

2cǫ‖
qB

B× κ

B

)

(3.21)

= qE · vc (3.22)

where vc is the curvature drift.

The expression in Eq. 3.18 may be used to evaluate the increase in particle ve-

locity as it reflects from a contracting field line in a reconnection exhaust (neglecting
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the other two terms):

∆v‖ =

∫ 2

1

dv‖
dt
dt (3.23)

=

∫ 2

1

v‖(uE · κ)
dℓ

v‖
(3.24)

=

∫ 2

1

uE · (b · ∇)b dℓ (3.25)

We may replace uE with the reconnection outflow velocity u = uE+u‖b as b·κ = 0.

Since u is roughly constant throughout the reconnection outflow, we may then move

it outside of the integral:

∆v‖ = u ·

∫ 2

1

db

dℓ
dℓ = u · (b2 − b1) (3.26)

Assuming an outflow velocity u = cAx̂ and antiparallel magnetic fields b2 −

b1 = 2x̂, we arrive at the result ∆v‖ = 2cA. This is consistent with the cartoon

picture discussed previously (Fig. 3.1).

3.5 Bulk Acceleration Equations

If we sum over all the particles in a local region (applying
∫

f d3v), Equation

3.1 becomes:

dU

dt
=
β⊥
2

∂

∂t

(

B2

8π

)

+ E ·

[

J‖ +

(

β‖
2

+
u2‖
c2Ae

)

c

4π
B× κ+

β⊥
2

c

4π
B× ∇B

B

]

(3.27)

which may be rewritten as:

dU

dt
= E‖J‖ +

p⊥
B

(

∂B

∂t
+ u

E
· ∇B

)

+ (p‖ +menu
2
‖)uE

· κ (3.28)
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where U is the total kinetic energy, uE is the E-cross-B drift, cAe is the electron

Alfvén velocity, and u‖ is the bulk velocity parallel to the magnetic field. The

parallel and perpendicular pressures are p‖ and p⊥, respectively; n is the electron

density, β‖ = 8πp‖/B
2, and β⊥ = 8πp⊥/B

2. It is worth noting here that the

equations above are not specific to electrons, but will apply to any species for which

the guiding-center approximation is valid. This formulation is useful as it expresses

energy gain in terms of fluid moments which are frequently used diagnostics for

kinetic PIC simulations. Energization by parallel electric fields is represented in

the first term, betatron acceleration in the second, and curvature-drift or Fermi

acceleration is expressed in the third.
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Chapter 4: Electron Acceleration in Two-Dimensional Systems

4.1 Introduction

In this chapter, we discuss electron energization in two-dimensional kinetic

simulations of magnetic reconnection. In section 4.2, we present the set of simula-

tions that will be explored in this chapter. We then discuss electron heating and the

relative importance of different energization mechanisms in section 4.3. In section

4.4 we examine superthermal electron production as revealed by energy and mo-

mentum spectra. We then present results from simulations with a larger mass ratio

(mi/me = 100), and finally discuss the relevance of these results for astrophysical

contexts in section 4.6.

4.2 Simulations

We explore particle heating via simulations using the particle-in-cell (PIC)

code p3d [42]. Particle trajectories are calculated using the relativistic Newton-

Lorentz equations, and the electromagnetic fields are advanced using Maxwell’s

equations. The initial condition consists of a uniform guide field Bz superimposed
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on a double-Harris equilibrium [45]. The magnetic field configuration is:

Bx = B0

[

tanh

(

y − Ly/4

w0

)

− tanh

(

y − 3Ly/4

w0

)

− 1

]

(4.1)

where B0 is the asymptotic reconnecting field, w0 is the current sheet half-width

and Ly is the length of the computational domain in the y-direction. The density

consists of two populations, a drifting population with density:

n = n0

[

sech2

(

y − Ly/4

w0

)

+ sech2

(

y − 3Ly/4

w0

)]

(4.2)

that carries the current and a uniform background with density 0.2n0.

We use an artificial mass ratio mi/me = 25 and speed of light c = 15cA where

mi andme are the electron mass, cA is the Alfvén velocity based on B0 and n0. These

choices allow for sufficient separation of scales (between proton and electron spatial

scales and electromagnetic and particle time scales, respectively) while significantly

reducing the computational expense of the simulation. Lengths in our simulation are

normalized to the ion skin depth di = c/ωpi and times are normalized to the inverse

ion cyclotron frequency, Ω−1
ci . The initial temperature of all species is 0.25mic

2
A

for both background and the current sheet populations. The current sheet half-

thickness is set to w0 = 0.25di so that reconnection will onset quickly. The grid

scale is ∆ = de/4 ≈ 0.94λD where de = c/ωpe is the electron inertial length and λD

is the Debye length. We use periodic boundary conditions in both directions.

The goal of the present chapter is to explore the mechanisms for particle ac-

celeration using the expression for electron energy gain in Eq. (3.28). Since this

equation is valid only for adiabatic motion, we limit our computations to systems
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with a non-zero initial guide field. It was shown previously that electrons are magne-

tized in reconnecting systems with guide field exceeding 0.1B0 [52]. In this paper we

therefore focus on two simulations with non-zero guide fields both with dimensions

Lx×Ly = 204.8×102.4. Simulation ‘A’ has Bz = 0.2B0 and ‘B’ has Bz = 1.0B0. We

note that although our simulations contain two current sheets, we will often present

results from only the upper current sheet. In all cases the other sheet exhibits simi-

lar behavior. We will then present energy spectra from two larger simulations with

dimensions Lx×Ly = 409.6× 204.8 and Lx ×Ly = 819.2× 409.6, each with a guide

field Bz = 1.0B0.

4.3 2D Simulation Results: Electron Heating

Reconnection develops rapidly from the particle noise inherent in the PIC

formulation. Figure 4.1 shows the evolution of the electron out-of-plane current

density in simulation A. The tearing instability generates many magnetic islands on

each current layer that continually grow and merge due to reconnection. We halt the

simulation when the islands on the two current layers begin to interact, here at t ≈

150. Figures 4.2 and 4.3 display the parallel and perpendicular electron temperatures

in simulations A and B early and late in the simulation. In simulation A the parallel

electron temperature increases substantially within the exhausts downstream of the

X-lines and within the developing magnetic islands. The perpendicular temperature

increment is strongest in localized regions in the cores of magnetic islands. In

contrast, Te‖ significantly exceeds Te⊥ throughout the duration of simulation B.
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Figure 4.1: Out-of plane electron current density in simulation A at tΩci = 50 (top)

and tΩci = 125 (bottom). Reconnection generates many islands which merge until

they approach the system size.
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Figure 4.2: Parallel and perpendicular electron temperature from a simulation with

a guide field of 0.2 (simulation A) at tΩci = 50 (top) and tΩci = 125 (bottom).
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Figure 4.3: Parallel and perpendicular temperatures from a simulation with a guide

field of 1.0B0 (simulation B) at tΩci = 50 (top) and tΩci = 125 (bottom).
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Figures 4.4 and 4.5 show the contributions of the various terms in Eq. (3.28)

in the upper current sheet in simulations A and B. At a given time each term

in Eq. (3.28) was calculated at each grid point and then integrated over space to

give the displayed curves. Some smoothing was performed to reduce the noise in

the calculations but the results shown are insensitive to its details. The sum of

heating terms on the right-hand side of Eq. (3.28) is given by the dashed black

line, and should be compared to the solid black line which represents the total

measured electron heating. To the extent that the two match, Eq. (3.28) represents

a valid description of the system. The discrepancy at early time is due to the small

initial size of the islands (which makes the guiding-center approach less accurate).

Sharp, small-scale gradients that develop during island mergers may be a source of

additional discrepancies.

In Fig. 4.4, which corresponds to simulation A, the curvature-drift term is the

dominant source of heating and E‖J‖ is negligible. The grad-B and ∂B/∂t terms

are also negligible and result in net cooling. This is because magnetic reconnection

releases magnetic energy and therefore reduces the magnitude of B. Because of µ

conservation electrons therefore on average lose energy in the perpendicular direc-

tion. By contrast, Fig. 4.5 shows that in simulation B the curvature-drift and E‖J‖

terms are comparable, while the other terms are negligible. The increased impor-

tance of the heating from the parallel electric field in the guide field unity case is

because of the long current layers that develop in this case compared with those in

the case of the weak guide field. Both simulations exhibit quasi-periodic heating

which is largely due to island mergers. This can be seen by comparing times t = 50
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Figure 4.4: From a simulation with a guide field of 0.2B0 in black the electron

heating integrated over the upper current layer versus time. From Eq. (3.28) the

heating from the parallel electric field (green), the curvature drift (red), the gradient

B drift (blue), induction (cyan) and the sum (dashed black) of all of the heating

terms in Eq. (3.28). The curvature drift term, which describes Fermi reflection,

dominates.
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Figure 4.5: From a simulation with a guide field of 1.0B0 in black the electron

heating integrated over the upper current layer versus time. Other heating terms

as in Fig. 4.4. In contrast with the case of the weak guide field in Fig. 4.4, the

curvature and E‖ terms are comparable in magnitude.
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and t = 80 in simulation A: the former exhibits only modest heating while the latter

exhibits strong heating. Figure 4.8 (discussed further below) reveals that at t = 80

two islands are merging, which causes a burst of reconnection at the rightmost X-

line in the system. In contrast, reconnection is proceeding in the normal fashion at

t = 50.

Figures 4.6 and 4.7 show the spatial distribution of the curvature and E‖J‖

terms for simulation A at t = 120 and B at t = 125, respectively. As expected, the

curvature-driven heating is primarily located in the reconnection exhaust regions

and at the ends of the islands. Heating and cooling in the island cores are due to

turbulent ‘sloshing’ of plasma inside the island. We show later that there is little

net heating from this behavior. The E‖J‖ term is localized near the X-lines in

both figures. The patchy regions of alternating heating and cooling throughout the

islands, which is associated with electron holes [35,50], does not on average produce

much electron heating (shown later). Note the different color scales in the two plots

in Fig. 4.6: the maximum intensity of the heating by E‖ is much smaller than that

of the curvature drift, consistent with its relatively small contribution to electron

heating shown in Fig. 4.4.

The patchy nature of the E‖J‖ term makes the interpretation of this data

difficult. It is not obvious, for example, whether the heating due to E‖ around the

X-line or due to the electrons holes dominates. As a further diagnostic, we therefore
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Figure 4.6: The distribution of electron heating for a guide field of 0.2B0 at t =

125Ω−1
ci from the curvature (top) and the parallel electric field (bottom). Note the

different color tables. The most intense heating occurs in the reconnection exhausts

and at the ends of the islands from Fermi reflection.
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Figure 4.7: The distribution of electron heating for a guide field of 1.0B0 at t =

120Ω−1
ci from the curvature (top) and the parallel electric field (bottom). Note that

the color tables are the same. The current layers, where the heating from the parallel

electric field is most intense, are much longer than in the case of a small guide field,
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calculate the quantity:

Ξ(x) =

∫ x

0

dx′
∫

U(x′, y)dy (4.3)

where U is a heating term, the y-integral is taken over the half of the box containing

the current layer (varying the bounds of integration does not significantly affect the

result). The slope dΞ(x)/dx =
∫

U(x, y)dy yields the heating at a given x.

Figure 4.8 shows Ξ for the curvature-drift term in simulation A at two different

times, corresponding to a temporal minimum in the curvature-drift heating (t = 50)

and a temporal maximum (t = 80). The merger of two islands near X ≈ 160 drives

acceleration at the X-line in the far right of the simulation. The resulting island has

a larger aspect ratio, (length x compared to width y) so that freshly reconnected field

lines experience a greater tension force around the far right X-line. This enhances

the rate of electron heating in the exhausts around this X-line. The plot of Ξ also

reveals that the heating and cooling in island cores results in little net heating, as

can be seen for example inside the island at x ∼ 165 at t = 80.

Figure 4.9 shows Ξ for E‖J‖ at t = 100 from simulation B. The dominant

heating occurs near the primary X-lines at x ∼ 30 and 100 as well as the secondary

X-lines (due to island mergers) at x ∼ 150 and 190. Inside the islands, there is

net cooling. Many of the small scale fluctuations in the E‖J‖ term correspond with

electron holes, which are driven by electron beams generated near the X-line [35].

Because they tend to appear as bipolar structures in the heating term, they produce

little net heating.
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Figure 4.8: Plots of the heating from the curvature-drift and its spatially integrated

contribution Ξ (see Eq. (4.3)) from the weak guide field simulation at t = 50Ω−1
ci and

80Ω−1
ci . For each time, the top half shows the spatial distribution and the bottom

half shows its integrated contribution Ξ.
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Figure 4.9: The spatial distribution of the rate of electron heating due to E‖ at

t = 100Ω−1
ci from the strong guide field simulation (above) and its spatially integrated

value Ξ. The dominant heating is from the current layers around the X-lines, while

the contribution from electron holes in the islands appears to cause electron cooling.
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Figure 4.10: The effect of island motion on heating from the curvature drift from the

strong guide field simulation at t = 120Ω−1
ci . The top panel shows the heating from

the curvature drift, the middle panel shows its spatially integrated contribution Ξ,

and the bottom panel shows the horizontal bulk flow vx.
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A number of the islands exhibit dipolar heating: the curvature term makes

positive and negative contributions (red and blue) at the opposite ends of an island.

Figure 4.10 exhibits this behavior. The island on the right drives heating due to

Fermi reflection at both ends, and the plot of vx shows large inward flows indicating

island contraction. By contrast, the island on the left has dipolar heating. The entire

island is moving in the −x direction. In the simulation frame, particles see receding

field lines at the left end of the island and lose energy in a reflection. Equivalently,

u
E
· κ < 0. However, the magnitude of the velocity at the right end is greater than

that at the left, so the cooling at the left end is more than offset by the heating

at the right: Ξ shows that the total heating across the island is positive. This is

ultimately an issue of frame-dependence: in the frame of the island, both ends are

contracting towards the center so that u
E
· κ > 0.

4.4 Simulation Results: Electron Spectra

During reconnection with a strong guide field, which is expected to be the

generic regime in most space and astrophysical systems, the dominant mechanisms

for electron acceleration are the parallel electric field and Fermi reflection associated

with the curvature drift, both of which accelerate electrons parallel to the local mag-

netic field. An important question, therefore, is whether the energetic component

of the spectrum exhibits the strong anisotropy that is reflected in the moments T‖

and T⊥ in Fig. 4.3. Figure 4.11 shows electron spectra for the momenta parallel

and perpendicular to the magnetic field. These spectra are taken from a simu-
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lation with the same initial conditions as in simulation B but in a larger domain

Lx×Ly = 819.2×409.6 carried out to t = 400. The larger simulation produces much

better statistics in the particle spectra compared with simulation B shown earlier.

In the parallel momentum a clear nonthermal tail develops by t = 50 and continues

to strengthen until the end of the simulation. The perpendicular momentum also

develops a nonthermal tail, but with an intensity that is smaller by more than two

orders of magnitude. It is hence clear that the dominant nonthermal acceleration oc-

curs in the parallel component and the anisotropy survives over long periods of time

as the simulation develops. An important question is what mechanism causes the

perpendicular heating of energetic electrons. If the magnetic moment were exactly

preserved, electrons with such high values of v⊥ would not be produced because

the magnetic field B is not large enough anywhere. Therefore the increase in the

perpendicular spectrum must arise from scattering either because of non-adiabatic

behavior in the narrow boundary layers that develop as a result of reconnection or

because of the development of an instability directly driven by the anisotropy.

The distribution of the electron magnetic moment µ = mv2⊥/2B for simulations

A and B is shown in Fig. 4.12. It is clear that µ is very well conserved in simulation

B, especially at low energies µ < 0.1 where the electrons remain adiabatic in the

presence of the strong guide field Bz = B0. For simulation A with Bz = 0.2B0, there

is a drop of about 10% at the lowest energies, indicating that there is scattering into

higher µ. This further suggests that the greater perpendicular heating in simulation

A is due to non-adiabatic behavior in the small guide field regime.

Observations of magnetic reconnection typically find that the electron energy
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Figure 4.11: Parallel and perpendicular electron momentum spectra (over the entire

domain) for a simulation with guide field of 1.0B0 in a Lx × Ly = 819.2 × 409.6

domain. Solid lines correspond to parallel momenta and dashed with perpendicular

momenta. Purple, red, and black are at t = 0, 50Ω−1
ci and 350Ω−1

ci , respectively.

Note the extreme anisotropy of the spectra at late time.
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Figure 4.12: Distribution of the electron magnetic moment µ = mv2⊥/2B (over the

entire domain) for simulation A (dashed lines) and B (solid lines). Black corresponds

with t = 0, red with t = 100.
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Figure 4.13: Log-linear plot of distribution of electron kinetic energy ǫ = (γ−1)mec
2

(over the entire domain) for a simulation with Lx×Ly = 409.6×204.8 and Bz0 = B0.
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Figure 4.14: Log-log plot of distribution of electron kinetic energy ǫ = (γ − 1)mec
2

(over the entire domain) for a simulation with Lx×Ly = 409.6×204.8 and Bz0 = B0.

No clear power law develops in the energetic spectra.
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spectra take the form of a power law. Electron energy spectra for a simulation with

Lx × Ly = 409.6di × 204.8di are shown in Figs. 4.13 (log-linear) and 4.14 (log-log).

The late-time spectrum in Fig. 4.14 do not show any clear indications of a power-

law component. This is not entirely surprising, as it has been argued that particle

loss (absent in periodic simulations) is required for the formation of power-laws [53].

Another possible factor is that the maximum energy gain depends on the time of

the simulation (which in turn depends on the domain size as larger systems have

more magnetic flux to be reconnected). Hence a larger domain may be required

in order for the most energetic electrons to attain an energy significantly separated

from that of the thermal population.

4.5 Mass Ratio Scaling: mi/me = 100

In order to explore how these results depend on the mass ratio, we performed

a 2D simulation with mi/me = 100, Lx × Ly = 102.4di × 51.2di and a strong initial

guide field Bz0 = B0. The speed of light in this simulation is c = 30cA so that

c/cAe = 3 as in the simulations with a mass ratio of 25 (cAe is the electron Alfvén

speed based on B0). The energy spectra are shown in figure 4.15. There is little

enhancement at the highest energies ǫ > mec
2 over the last 25Ω−1

ci .
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Figure 4.15: Distribution of electron kinetic energy ǫ = (γ− 1)mec
2 (over the entire

domain) for a simulation with mass ratio mi/me = 100 and guide field Bz0 = B0.
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Electron momentum spectra (figure 4.16) exhibit a strong anisotropy, as was

the case in the strong guide field simulation with the smaller mass ratio. The

only significant enhancement in the perpendicular momentum occurs at the highest

energies; this is consistent with the idea that this is due to pitch-angle scattering of

particles with high parallel momentum. The distribution of µ (figure 4.17) shows

that the conservation of the magnetic moment is much better in this simulation.

This is unsurprising, as electrons have smaller gyroradii and should therefore be

more strongly magnetized. On the other hand, this result also suggests that there

are no anisotropy-driven instabilities that are actively scattering the electrons since

such instabilities should not be sensitive to the mass-ratio. The time evolution (Fig.

4.19) and spatial distribution (4.18) of the electron heating are not appreciably

different than in the simulations with mi/me = 25 .
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Figure 4.16: Parallel and perpendicular electron momentum spectra (over the entire

domain) for a simulation with a mass ratio mi/me = 100. Solid lines correspond to

parallel momenta and dashed with perpendicular momenta.
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Figure 4.17: Distribution of the electron magnetic moment µ = mv2⊥/2B (over the

entire domain) for a simulation with mass ratio mi/me = 100.
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Figure 4.18: From a simulation with mass ratio mi/me = 100 and a guide field of

1.0B0. The electron heating (black) integrated over the upper current layer versus

time is shown. Other heating terms as in Fig. 4.4.
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Figure 4.19: The distribution of electron heating for mi/me = 100 and a guide

field of 1.0B0 at t = 60Ω−1
ci from the curvature (top) and the parallel electric field

(bottom).
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4.6 Discussion and Conclusions

We have presented a guiding center model to explore the heating of electrons

during reconnection with modest and large guide fields. We find that for a small

guide field of 0.2B0 (with B0 the asymptotic reconnecting field) electron heating is

dominated by the Fermi reflection of electrons downstream of X-lines where the ten-

sion of newly reconnected field lines drives the reconnection outflow. The electron

energy gain is given by the curvature drift of electrons in the direction of the recon-

nection electric field. In this small guide field case heating from the parallel electric

field and that associated with betatron acceleration (which is actually an energy

sink) are negligible. In the case of a stronger guide field (1.0B0) the heating asso-

ciated with parallel electric fields and the Fermi mechanism are comparable. The

greater importance of the parallel electric field is because of the elongated current

layers that form during reconnection with a guide field, which is where most paral-

lel heating by this mechanism takes place. The net electron heating from electron

holes, which densely populate the separatrices and island cores, is small because

positive and negative contributions cancel. For both weak and strong guide fields,

island mergers lead to bursts of electron acceleration.

An important scaling question concerns the role of heating by the parallel

electric field in very large systems. The acceleration by parallel electric fields is

largely confined to the narrow current layers around the X-line. In contrast, the

heating through Fermi reflection occurs in a broad region in the exhaust downstream

of X-lines and well into the ends of magnetic islands. At early times the sheer number
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of X-lines could well make parallel electric fields a significant source of heating and

acceleration. However, at late time when islands may be system-size, fewer x-lines

might remain so parallel electric fields might not produce significant acceleration. In

addition, the regions in which the E‖J‖ term dominates have characteristic widths

that scale with de ∝ m
1/2
e with me the electron mass. In the simulations presented

here, mi/me = 25. For a real mass ratio of mi/me ≈ 1836 the corresponding regions

with E‖ 6= 0 are expected to be much smaller. In contrast, the curvature drift

dominates electron heating on island scales, which are not expected to depend on

the choice of mass ratio once islands grow to finite size.

Evidently, further simulations are required to test whether the conjecture that

E‖J‖ becomes less important in large systems is valid. One of the motivations of

exploring electron acceleration in the guiding center model is to develop a generic

approach for addressing acceleration mechanisms in 3D systems where simple ex-

planations of particle acceleration in contracting islands are no longer adequate:

magnetic islands will generally no longer exist because field lines in 3D systems are

chaotic and therefore volume-filling. However, since the conversion energy by the

relaxation of magnetic tension is fundamental to the reconnection process, we expect

that the Fermi-like acceleration mechanism will remain important in a 3D system

and its role can be quantified by evaluating the heating mechanisms presented in

Eq. (3.28).

Finally, we comment briefly about the implications of the strong anisotropy

of the energetic electrons seen in the spectra in Fig. 4.11 for the simulation with

a guide field of 1.0B0. Gamma-ray flares have recently been detected in the Crab
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Nebula with photon energies exceeding ≈ 200 MeV. These photons exceed the upper

cutoff (≈ 160 MeV) that is obtained by balancing energy gain from the electric field

E ∼ B with that from losses associated with the synchrotron radiation reaction

force. One proposed solution is that electrons are accelerated to the necessary ener-

gies (≈ 1015 eV) in a large-scale reconnecting current sheet where E ≫ B and the

usual synchrotron assumptions do not apply [54]. On the other hand, constraining

the electrons in a narrow layer and preventing their escape into the reconnection

exhaust and downstream magnetic island is a challenge. Another possibility is that

reconnection takes place in the presence of a guide field such that the acceleration of

the electrons is dominantly parallel to the local magnetic field so that the anistropic

energy distribution could mitigate synchrotron losses. In such a situation a rough

upper limit on reconnection-driven energuzation can be obtained by balancing the

Fermi drive (scaling as γ/Rc, where Rc is a typical radius of curvature of a recon-

necting magnetic field) against the curvature radiation loss (γ4/R2
c),

γ < (Rc/Re)
1/3 (4.4)

where Re = e2/mec
2 = 2.82 × 10−13 cm is the classical electron radius. For the

most energetic events Rc should equal the system size. Based on the flare duration

of 1 day, Rc ≈ 3 × 1015 cm and the upper limit on the electron energy is ǫ =

γmec
2 ∼ 1015 eV, which is in the range needed to explain the observations. Clearly,

a fundamental question is whether there are scattering mechanisms that limit the

degree of anisotropy of the energetic particle spectrum and therefore reduce the

upper limit given in Eq. (4.4).
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Chapter 5: Electron Acceleration in a Three-Dimensional System

In this chapter, we explore magnetic reconnection in 3D systems with a strong

guide field, which is the most generic form of reconnection in space and astrophysical

plasmas. We find that the efficiency of particle acceleration is greatly increased

compared to that in 2D systems. We show that this occurs because the complex

3D magnetic fields enable the most energetic particles to continually access volume-

filling acceleration sites rather than being confined to a single magnetic island that

no longer accelerates particles once it has fully contracted. We also examine the

energy dependence of the dominant E‖ and Fermi acceleration mechanisms, and

find that Fermi reflection is the primary accelerator of the energetic electrons. In

section 5.1, we lay out the setup for the simulations discussed in this chapter. We

then describe the three-dimensional evolution of the simulations and describe the

stochastic structure of the magnetic field in section 5.2. We then examine energetic

electron spectra and the localization of acceleration regions in 5.3. We compare and

contrast particle trajectories in 2D and 3D systems in 5.4. The transition from 2D

to 3D reconnection is examined in 5.5, and the role of anisotropy in the 2D and 3D

systems is briefly discussed in 5.6. We then discuss some of the implications and

limitations of these results in 5.7.
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5.1 Three-Dimensional Setup

We explore particle acceleration via simulations using the massively parallel

3D particle-in-cell (PIC) code p3d [42]. Particle trajectories are calculated using the

relativistic Newton-Lorentz equations, and the electromagnetic fields are advanced

using Maxwell’s equations. The simulations are initialized with a force-free magnetic

field of the following form: Bx = B0 tanh(y/w0) and Bz =
√

2B2
0 − B2

x, where B0 is

the asymptotic value of Bx and and w0 = 0.25di. This geometry corresponds to an

asymptotic guide field with a magnitude equal to B0. We include two current sheets

at y = Ly/4 and 3Ly/4 to produce a periodic system. The force-free configuration

is chosen as the most generic model for large-scale systems such as the solar corona

where the density jump between the current layer and the upstream plasma is not

expected to be important.

The time and space coordinates are normalized, respectively, to the proton

cyclotron time Ω−1
ci = mic/eB and inertial length di = c/ωpi.

In sections 5.2, 5.3, and 5.4 we examine the results of a 3D simulation with

dimensions Lx×Ly ×Lz = 51.2di× 25.6di × 25.6di and an analogous 2D simulation

with Lx × Ly = 51.2di × 25.6di. The grid cell width is de/4, where de = di
√

me/mi

is the electron inertial length. We use an artificial proton-to-electron mass ratio

mi/me = 25. The 3D simulation used 50 particles per cell for each species, and

the 2D simulation used 1600 particles per cell. A 3D simulation with 100 particles

per cell produced nearly identical results. The boundary conditions are periodic

in all three dimensions and are most relevant for a large current sheet with many
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interacting magnetic islands, which is expected in large systems such as the solar

corona [55, 56]. The time step is dt = 0.01Ω−1
ci = 0.25Ω−1

ce , where Ωce = (mi/me)Ωci

is the electron cyclotron frequency. The initial electron and proton temperatures

are Te = Ti = 0.25mic
2
A, and the initial density n0 and pressure p are constant so

that β = 8πp/B2 = 0.5. The speed of light is c = 15cA, where cA = B0/
√
4πmin0.

5.2 3D Magnetic Field Structure

Reconnection develops from particle noise via the tearing instability, generat-

ing interacting flux ropes which grow and merge until they reach the system size at

tΩci ∼ 50. The macroscopic evolution of the 2D and 3D systems is similar at this

point, though the 2D simulation has released roughly 15% more magnetic energy,

as is illustrated in Fig. 5.1.

Fig. 5.2 shows an isosurface of one component of the electron current density

Jez at tΩci = 50 in the 3D simulation. The current exhibits filamentary structure

which develops from instabilities with kz 6= 0 that are prohibited in 2D reconnection

simulations [41]. An analogous isosurface of the electron current in the 2D simulation

(Figure 5.3) exhibits simple laminar structure.

A different view of that filamentary structure, which emphasizes the chaotic

nature of the field lines, can be observed in the Poincaré surface-of-section plot

shown in Figure 5.4. There is a clear boundary between the disordered punctures

(stochastic field region) and the asymptotic, laminar magnetic field region. Fig. 5.5

shows where an initially uniformly spaced grid of points in the x-y plane at z=0
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Figure 5.1: Magnetic energy vs. time in 2D and 3D simulations. At Ωcit = 50, more

energy has been released in the 2D simulation.
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Figure 5.2: Isosurface of Jez in the 3D simulation tΩci = 50. The isosurface level is

60% of the maximum current density (a 2D slice of the same quantity is shown on

the bottom). The current is filamentary, exhibiting significant 3D structure.
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Figure 5.3: Contours of Jez in the 2D simulation tΩci = 50. A 3D visualization of

the equivalent isosurface with a level 15% of the maximum current density is shown

for the upper current sheet. The structure is laminar, consisting of simple 2D flux

ropes (islands).
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Figure 5.4: Poincaré surface-of-section for the 3D simulation at Ωcit = 50. We

trace a set of field lines beginning at x = 0, 0 < y < 25.6, z = 0 and plot where

they puncture the plane z = 0. The surface-of-section shows a clear boundary

between the stochastic field lines inside the reconnecting region and the laminar

unreconnected fields.
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Figure 5.5: Single-puncture field line tracing. We trace an uniform grid of 160 x 320

points in the x-y plane at z = 0 along the magnetic lines a single passage through

the domain and plot where these field lines puncture the surface at z = 25.6di.

This plot shows finer structure which is reflected in the spatial distribution of the

energetic particles (Fig. 5.7).
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map along the magnetic field and puncture the plane z = 25.6di. This highlights

additional fine-scale structure not visible in the usual Poincarè plot.

5.3 Electron Energization

Energy spectra (top panel of Fig. 5.6) reveal significant electron acceleration

in both simulations. However, the 3D simulation produces a greater number of

energetic particles: the fraction of electrons with energy exceeding 0.5mec
2 is roughly

an order of magnitude larger than in the 2D simulation. Since the magnetic energy

dissipation is greater in the 2D system, this suggests that the increased energetic

electron production in the 3D system is due to enhanced acceleration efficiency

rather than an increase in the total energy imparted to the plasma.

The spatial distribution of the most energetic particles (shown in the left-

hand panels of Fig. 5.7) also differs between these simulations: these particles

occupy narrow bands well inside the islands in the 2D simulation, but are distributed

throughout the reconnecting region in the 3D simulation. In the 2D system, the

reconnected field lines form closed loops (islands) that trap particles. The stochastic

structure of the magnetic field in the 3D system, however, allows field-line-following

particles to wander throughout the chaotic reconnecting region [37]. The energetic

electron energy density (Fig. 5.8) is distributed throughout a much larger region

than in the 2D case. This distribution matches very well the distribution of single-

pass field lines in Fig. 5.5.
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Figure 5.6: [Top] Global electron energy spectra at the beginning (solid lines) and

end (dotted lines) of 2D (red) and 3D (black) simulations. The energetic electrons in

the 3D simulation gain significantly more energy. [Bottom] Acceleration due to E‖

(blue) and Fermi Reflection (red) in the 3D simulation at tΩci = 50. Parallel electric

fields are most important for low energies, whereas Fermi reflection dominates at

high energies.
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Figure 5.7: Parallel energy density and Fermi reflection heating rate for electrons

with ǫ > 0.5mec
2 in the plane z = 0 at Ωcit = 50. The energetic particles are

confined to narrow rings in the 2D simulation, but are distributed throughout the

reconnecting volume in the 3D simulation. This is reflected in the Fermi reflection

heating rate, which is also localized to the rings in the 2D simulation, but distributed

throughout the reconnection exhaust in the 3D simulation.
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In order to examine the mechanisms responsible for accelerating these parti-

cles, we assume a guiding-center approximation relevant for a strong guide field [46]

(for more details, see Chapter 2.6.3). In this limit, the evolution of the kinetic energy

ǫ of a single electron can be written as:

dǫ

dt
= qE‖v‖ +

µ

γ

(

∂B

∂t
+ u

E
· ∇B

)

+ γmev
2
‖(uE

· κ) (5.1)

where E‖ = E · b is the parallel electric field, µ = meγ
2v2⊥/2B is the magnetic mo-

ment, u
E
is the E×B velocity corresponding to the advection of the magnetic field,

and κ = b · ∇b is the magnetic curvature. The velocity components parallel and

perpendicular to the magnetic field are v‖ and v⊥, respectively; γ is the relativistic

Lorentz factor, and b is the unit vector in the direction of the local magnetic field.

The first term on the right-hand-side of the equation corresponds to acceler-

ation by parallel electric fields, which are typically localized near the reconnection

X-line and along separatrices. The second term corresponds to betatron acceleration

and is a consequence of the conservation of the magnetic moment µ: when a particle

experiences a change in B, its perpendicular energy evolves to compensate. In the

case of reconnection, which reduces the overall magnetic field, betatron acceleration

typically reduces particle energy [57]. The last term corresponds to reflection of

particles from contracting magnetic field lines, a type of first order Fermi accelera-

tion [25, 51, 58]. This occurs where tension is released as magnetic fields advect in

the direction of magnetic curvature (u
E
· κ > 0).

Equation 5.1 reveals that the acceleration mechanisms have different scaling

with the particle energy: the Fermi reflection term is second order in the parallel
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Figure 5.8: Isosurface of the parallel energy density of electrons with ǫ > 0.5mec
2.

The isosurface level is set to 10% of the maximum value. The bottom of the figure

shows the distribution of the parallel energy density of these particles in the lower

current sheet in the plane z = 0.
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velocity, whereas the parallel electric field term is only first order. The bottom

panel of Fig. 5.6 shows the average acceleration per particle for both E‖ and Fermi

reflection in the 3D simulation at tΩci = 50. The bulk thermal electrons (low

energies) are primarily accelerated by E‖, whereas Fermi reflection is more important

at high energies. This indicates that Fermi reflection is the dominant accelerator of

the most energetic particles, consistent with the energy scaling of Eq. 5.1.

The spatial distribution of the Fermi reflection term for the most energetic

electrons (> 0.5mec
2) is shown on the right-hand side of Fig. 5.7. While acceler-

ation occurs throughout the reconnection exhaust in the 3D simulation, in 2D the

acceleration is limited to narrow bands near the cores of magnetic islands. This

contrast suggests that the stochastic 3D field structure allows the electrons to have

greater access to the acceleration regions where magnetic energy is being released.

Similar behavior is visible in the parallel electric field term (again, for the most

energetic electrons).

5.4 Particle Trajectories

To explore the reason for enhanced acceleration in the 3D system, we examine

the trajectories of the 750 most energetic electrons in both the 2D and 3D simula-

tions. A typical trajectory from the 2D simulation is shown in the top left panel

in Fig. 5.9. The electron begins in the tail of the electron distribution with kinetic

energy ǫ ≈ 0.4mec
2. The electron streams along a field line outside the reconnec-

tion region before accelerating at an X-line near x ∼ 50 and becoming trapped in
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an island. The electron bounces several times inside this island, accelerating up to

ǫ ≈ 0.8mec
2. By this point, the field line the electron is following has released its

tension, so acceleration ceases even as the electron continues to bounce.

The top right panel of Fig. 5.9 shows a typical electron trajectory from the

3D simulation. The electron is not confined to a single island, but instead moves

throughout the reconnecting domain. This allows it to undergo significantly greater

acceleration than the electron from the 2D simulation, as it is able to return to active

acceleration regions rather than being confined to the stagnant field lines near island

cores. The acceleration of this particle is spread across a number of different islands,

enabling it to reach a maximum energy of ǫ ≈ 1.15mec
2.

The electron trajectories shown here are generic for their respective simula-

tions. Though the acceleration details differ, all of the electrons in the 2D sim-

ulation are confined to single islands, whereas no electrons in the 3D simulation

show significant trapping. The bottom panels of Fig. 5.9 show the distribution of

|∆x| = |x(Ωcit = 50) − x(Ωcit = 25)| for the 750 most energetic particles in each

simulation (the choice of Ωcit = 25 as the earliest time eliminates free streaming

along unreconnected field lines before islands develop). The average displacement

of the energetic electrons in the 3D system is nearly an order of magnitude greater

than that in the 2D simulation, underscoring a fundamental difference in the particle

trajectories of the two systems.

95



Figure 5.9: [Top] Typical energy vs. position plots for an energetic particle in the 2D

system (left) and the 3D system (right) over the period Ωcit = 0 to 50. The electron

in the 3D simulation continuously gains energy as it moves throughout the domain.

The electron in the 2D simulation is trapped in an island at x ∼ 40 for a significant

period of time and no longer gains energy after the island has released its tension.

[Bottom] Distribution of ∆X = |x(t = 50)− x(t = 25)| for the 750 most energetic

particles in the 2D simulation (left) and 3D simulation (right). The particles in the

3D simulation are able to access a much larger fraction of the simulation domain.
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5.5 Transition from 2D to 3D

In order to examine the transition between 2D and 3D reconnection, we per-

formed 3D simulations with different Lz. Fig. 5.10 shows the distribution of elec-

trons with ǫ < 0.2mec
2. The simulations with small Lz have island structures which

are mostly laminar. In contrast, the ‘islands’ in the largest simulations (especially

Lz = 12.8, 25.6) do not have the simple oval shape as in the 2D simulations. Figure

5.11 shows the spatial distribution of the electrons with ǫ > 0.5mec
2. The sim-

ulations with small Lz have rings of energetic particles, as in the purely 2D case

discussed earlier. The energetic particles are distributed throughout the reconnect-

ing region in the simulations with Lz > 6.4di. The Lz = 6.4di simulation has

elements of both the ‘2D’ and ‘3D’ features; while the electrons are well-distributed

throughout a few of the islands, others show more of the localized ring distribution.

The electron energy spectra, shown in Fig. 5.12, show a transition between the

simulations Lz = 4.8di and Lz = 6.4di. The 3D simulations with Lz ≤ 4.8di along

with the 2D simulation all have spectra which extend to rougly the same energy

range. The 3D simulations with Lz ≥ 6.4di have spectra which are comparatively

enhanced. A transition at Lz ∼ 5di is consistent with the energetic electron spatial

distribution; though the Lz = 6.4di shows remnants of 2D structure, it appears to

be sufficiently three-dimensional for the electron acceleration to be enhanced.
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Figure 5.10: Spatial distribution of electrons ǫ < 0.2mec
2 at Ωcit = 50 in the plane

z = 0 for 3D simulations with differing Lz. The islands in the smallest simulations

are largely laminar, while the islands in the largest simulations exhibit complex,

turbulent structure.
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Figure 5.11: Spatial distribution of electrons ǫ > 0.5mec
2 at Ωcit = 50 in the plane

z = 0 for the simulations shown in Fig. 5.10. Simulations Lz ≤ 4.8di exhibit

localized rings of energetic particles as in the purely 2D simulation, whereas those

with Lz ≥ 6.4di have energetic electrons distributed throughout the reconnecting

region.
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Figure 5.12: Electron energy spectra at Ωcit = 50 for the simulations shown in

Fig. 5.10. The simulations with Lz ≥ 6.4di show enhanced electron energization

compared to the simulations with Lz ≤ 4.8di.
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Figure 5.13: Comparison of parallel and perpendicular electron temperature P‖ and

P⊥ for the 2D and 3D systems. Both simulations exhibit a strong anisotropy.
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5.6 Anisotropy

It has been shown previously that the development of pressure anisotropy with

P‖ ≫ P⊥ causes the cores of magnetic islands to approach firehose marginal stability,

where the tension driving magnetic reconnection ceases, thereby throttling recon-

nection. Figure 5.13 shows that a significant anisotropy P‖ > P⊥ persists in the

3D system, suggesting that the turbulent dynamics do not significantly isotropize

the pressure. It therefore seems likely that energetic particle feedback on reconnec-

tion through the firehose mechanism will continue in the more complex magnetic

geometry of 3D systems.

5.7 Discussion

The nonthermal electron spectra in both simulations do not assume a power

law form as is frequently observed in nature. This is due in part to the limited

energy gain possible in the modest-sized 3D simulation presented here. Previous

2D simulations have shown the total energy gain is greater in larger systems [57].

An additional issue is that these simulations have periodic boundary conditions so

no particles are lost from the system. Solar observations suggest that electrons

are confined in regions of energy release in the corona [17]. The mechanism for

confinement remains an open issue. Both magnetic mirroring and double layers

are possible mechanisms [59]. On the other hand, it has been suggested that the

development of a power law requires a loss mechanism in addition to an energy drive
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[53]. However, recent electron-positron simulations [60, 61] suggest that power-law

spectra may still develop in the absence of a loss mechanism. The set of conditions

under which power-law spectra form in kinetic reconnection simulations remains an

open issue.

A limitation of the present simulations is the use of an artificial mass ratio,

which reduces the separation between proton and electron scales. In order for an

electron to access multiple acceleration sites, as we observe in our simulations, its

characteristic velocity must exceed that of the macroscopic flows associated with the

protons. This suggests that we have achieved a significant separation of scales (the

dependence on the mass ratio will be discussed more fully in Chapter 6). In contrast,

proton spectra (not shown) do not exhibit enhanced acceleration in the 3D system.

The absence of a separation of scales between the motion of energetic electrons and

the flows associated with reconnection exhausts may explain why enhanced electron

acceleration is not observed in electron-positron simulations [60].
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Chapter 6: Scaling of Electron Acceleration in Three-Dimensional

Reconnection

Three-dimensional kinetic simulations of magnetic reconnection are greatly

constrained by computational expense. Hence, runs require compromises in the

numerical prameters of a simulation. There are two key areas where numerical

constraints could pose a potential problem. The first is the use of an artificial

mass ratio in order to reduce the separation of scales between protons and electrons

and hence reduce computational expense (discussed more extensively in Section

2.6.2). The simulations and analysis presented thus far have focused on the case of

a modest mass ratio of mi/me = 25, which is much smaller than the physical ratio

mi/me ≈ 1836.

The second important concern is the relatively small domains of these simu-

lations when compared to physical scales. The simulations described in this thesis

have characteristic length scales on the order of tens or hundreds of di. The proton

inertial length is ∼ 500 km in the magnetosphere, so that the simulations are on the

scale of a few earth radii. The proton inertial length is only a few tens of meters in

the solar corona, so that these simulations represent volumes of km3, much smaller

than the Mm3 flaring regions.
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It is therefore important to examine how these results depend on system size

and the mass ratio in order to determine how they scale to physically relevant

regimes. We will first address the issue of the system size by exploring a simulation

with dimensions larger than that discussed in the previous chapter. We will then

address the mass ratio issue by exploring a simulation with mi/me = 100.

6.1 Spatial Domain Size Scaling

In order to examine the dependence on the system size, we performed a sim-

ulation with Lx × Ly × Lz = 102.4di × 51.2di × 25.6di. This doubles both Lx and

Ly with respect to the simulation discussed in detail in the previous chapter, and

leaves Lz unchanged (we found that the important 3D features were insensitive to

Lz so long as Lz ≥ 6.4di).

Figures 6.1 and 6.2 show the energetic electron spatial distribution in the 2D

and 3D simulations at two different times. The characteristic scales of the island

structures increase with time as earlier structures coalesce. As was the case in the

smaller domains, the energetic electrons are confined to narrow rings in 2D, and are

instead relatively uniformly distributed throughout the reconnecting region in 3D.

The evolution of the energetic electron spectra as a function of time is shown in Fig.

6.3. Figure 6.4 shows the same spectra normalized to the 3D spectrum at Ωcit = 125

to emphasize the behavior of electrons at high energy. In 2D the evolution of the

spectra slows down at late time while in 3D the spectra at high energy continue to

separate in time, suggesting that the 3D physics becomes more important as the
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Figure 6.1: Spatial distribution of parallel energy density for electrons in 2D and 3D

simulations at Ωcit = 75. The spatial distribution for the 3D simulation represents

the plane z = 0. Plot titles list the electron energy range for each panel.

106



Figure 6.2: Spatial distribution of parallel energy density for electrons in 2D and 3D

simulations at Ωcit = 125. The spatial distribution for the 3D simulation represents

the plane z = 0. Plot titles list the electron energy range for each panel.
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Figure 6.3: Electron kinetic energy spectra for simulations with Lx×Ly = 102.4di×

51.2di. The separation between spectra in the 2D and 3D systems increases with

time, suggesting that this behavior scales favorably with the system size.
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Figure 6.4: Electron energy spectra for simulations with Lx×Ly = 102.4di×51.2di.

The spectra are normalized to the 3D spectrum at t = 125. At late time electrons

in the 2D simulation show very little enhancement at high energies. The 3D spectra

show that the energetic electrons continue to gain energy, and that the energetic

portion of the spectrum continues to fill in throughout the simulation.
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characteristic scale lengths (and hence the system size) increases. The energetic

electrons continue to fill in at high energies for the 3D simulation, suggesting that

the maximum energy gain depends on the time scale of reconnection and hence

the spatial scale of the system. Hence though the energy gain in these simulations

is relatively modest compared to the initial energy; in real systems the maximum

energy gain is likely to be very large because the electrons continue to steadily

gain energy during the entire time evolution of the system —a larger system will

accelerate particles for a longer period of time.

6.2 Mass Ratio Scaling

In this section, we explore a simulation with a mass ratio of mi/me = 100 and

Lx × Ly × Lz = 51.2di × 25.6di × 12.8di and compare it with a 2D simulation with

Lx × Ly = 51.2di × 25.6di as well as a simulation with the same dimensions and

mi/me = 25. The initial current sheet width is w0 = 1.25de for both simulations

(this corresponds to w0 = di/4 for mass-ratio 25 and w0 = di/8 for mass-ratio 100).

The spatial distribution of energetic electrons in the 2D and 3D simulations

are shown in figure 6.5. The electron energy spectra, shown in Fig. 6.6 show a

substantial separation between 2D and 3D distributions which increases with time.

This can be most easily seen by comparing the t = 20 and t = 50 spectra for the 2D

and 3D simulations; there is a much larger enhancement between these two times

for the 3D simulation. Figure 6.7 shows spectra from simulations with two mass

ratios. The number of energetic electrons is slightly greater in the mass ratio 100
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Figure 6.5: Spatial distribution of parallel energy density for electrons in 2D and

3D simulations with mass ratio mi/me = 100 at Ωcit = 50. The spatial distribution

for the 3D simulation represents the plane z = 0. Plot titles list the electron energy

range for each panel.
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Figure 6.6: Electron energy spectra for simulations with mass ratio mi/me = 100.
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Figure 6.7: Electron energy spectra for 3D simulations with Lx×Ly×Lz = 51.2di×

25.6di × 12.8di.
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Figure 6.8: Magnetic energy dissipated vs. time in simulations with Lx×Ly ×Lz =

51.2di × 25.6di × 12.8di. Colored boxes correspond to same-color lines in fig. 6.7.
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simulation at t = 50. However, according to figure 6.8, reconnection onset occurs

approximately 10Ω−1
ci earlier for the mass-ratio 100 simulation compared with the

mass-ratio 25 simulation (reconnection onset is faster for smaller w0/di) Accounting

for this offset (red line in Fig. 6.7) the difference between the two simulations is

negligible.

6.3 Discussion

In this chapter, we examined how particle acceleration in 3D reconnection

scales with the mass ratio and the system size. We found that as time proceeds

(and the reconnecting region grows) the distinction between 3D and 2D electron

acceleration physics increases. The energetic spectra in the 3D system continue

to fill in. In contrast, the energetic particle spectra from 2D simulations seem to

saturate as the most energetic electrons become trapped in islands that have already

undergone contraction but have not yet merged with other islands. This suggests

that the qualitative differences between these simulations are robust for large spatial

scales, and should play an important role for systems such as the solar corona.

We also examined how the dynamics of reconnection and the electron energy

gain depends on the mass ratio, and found that the 3D structuring of the magnetic

field and the associated enhancement of electron energy gain continues as the ion-

to-electron mass-ratio is increased. The qualitative features of the energetic spectra

and the spatial distribution of energetic particles were not sensitive to the mass

ratio. The enhanced acceleration in the 3D system is contingent on the separation
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between proton and electron scales so that the electrons may explore the system

on a faster time scale than that of the macroscopic dynamics tied to proton time

scales. The limit mi ≫ me is therefore favorable for the enhancement of electron

acceleration.
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Chapter 7: Conclusions

7.1 Summary

In this thesis, I used kinetic PIC simulations to examine electron energization

mechanisms in magnetic reconnection. In 2D simulations of kinetic reconnection, I

found that Fermi reflection dominated electron energy gain for reconnection with

a weak guide field while in the case of a strong guide field Fermi reflection and

parallel electric fields played comparable roles. In both cases betatron acceleration

was small and in fact acted as an energy sink since the magnetic field strength is

reduced during reconnection —the conservation of the electron magnetic moment

therefore produces a reduction of the electron perpendicular energy. Since both

Fermi reflection and parallel electric fields increase the parallel energy of electrons,

the late time spectra displayed extreme anisotropy with the parallel energy being

much greater than the perpendicular energy. The Fermi mechanism is the dominant

accelerator of the most energetic electrons, which was expected because Fermi re-

flection is quadratic in the electron velocity while the parallel electric field is linear.

Additionally, I found that parallel electric fields are localized to small regions near

the X-lines, and might be expected to have negligible impact in large astrophysi-

cal systems. I then explored 3D simulations of reconnection, and found that the
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stochastic field structure that develops in a 3D system facilitates energetic electrons

access to regions where magnetic energy is released, dramatically enhancing the

production of superthermal particles. These energetic particles were spatially dis-

tributed throughout the reconnecting region rather than being confined to narrow

boundary layers as occurs in 2D systems. A consequence of the enhanced mobility

of energetic electrons in 3D is that robust energy gain of the energetic component

continues to the end of the simulations while in 2D energy gain stagnates because

energetic electrons are trapped in fully contracted islands where further energy gain

is not possible without merging with other islands.

7.2 Comparison to Observations

Direct comparison of simulations to observational results is difficult, especially

given that power-law spectra do not form. However, a simple analytical argument

can be carried out to show that the Fermi mechanism is capable of driving sufficient

energy gain to produce MeV particles such as those observed in solar flares (e.g.

Krucker et al. 2010 [17]). According to recent scaling studies [62], the electron

heating at a single X-line is ∆Te ≈ 0.033mic
2
A. If the initial electron energy is

neglected, a density of 109/cm3 and magnetic field B ≈ 50G implies that the seed

electron temperature arising from reconnection at a single X-line is Te ≈ 4keV.

Further energy gain takes place during the merger of magnetic islands. Two islands

of nearly equal size reduce the field line length by around
√
2. The invariance of the

action as discussed in Chapter 2.6.3 then implies that the parallel particle velocity
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increases by the same factor of
√
2. During an island merger, an energetic particle

can therefore roughly double its energy as the contracting field lines shorten. A

thermal electron therefore requires only ≈ 8 island mergers to attain an energy of

1MeV.

The island merger time can be estimated as tmerge ≈ ℓ/(0.1cA), where ℓ is the

island size and 0.1cA is the reconnection rate given in terms of the Alfvén speed.

In the flare observed by Krucker et al., cA ≈ 3 × 103km/s. For an island scale

size ℓ ≈ 100km (in a flaring region with a length scale ∼ 10Mm), the merger time

is tmerge < 1s so 1MeV electrons can be produced in around 10s. Since the hard

X-ray decay time is around 40s, Fermi reflection is sufficiently fast to account for

the production of MeV electrons in this event.

7.3 Future Work

There are a number of useful ways to extend the results described in this

thesis. An important extension would be a rigorous scaling study that explores how

the relative roles of the various acceleration mechanisms depend on parameters such

as the guide field, plasma beta, and system size. The role of the guide field has been

partially addressed in this work, but would benefit from an analytical treatment

that could be applied to specific physical situations. The dependence on the plasma

beta was largely unaddressed in this thesis, as the simulations used initial conditions

where β was of order unity. Beam-driven instabilities in low β systems can generate

turbulence that might play a role in particle energization.
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The dependence of particle acceleration on the system size is a challenging

problem. The kinetic scales of regions with significant E‖ suggest that this term

would be negligible in large systems. However, the continuous generation of mag-

netic islands during reconnection leads to a broad distribution of magnetic island

sizes [23, 63], including many at kinetic scales. The relative role of these small

(‘secondary’) islands in particle acceleration remains an open question but they are

expected to play an important role because of the short time scale required for their

contraction and merger with similar size islands.

The electron energy spectra in the simulations presented in this thesis do

not form power-laws as is observed in nature. Drake et al. [53] have suggested

that power-law formation requires particle loss, which does not occur in periodic

simulations. However, recent studies [60, 61] suggest that power-law spectra may

still form in such systems. Guo et al. [60] argue that the dominant curvature-

drift mechanism acting on an initial distribution preserves its form, effectively only

increasing the temperature. In their model, a continuous injection of particles leads

to overlapping distribution functions which, when added together, form a power-law.

Rather than particle loss, injection is invoked as necessary for power-law formation.

The stochastic magnetic field that develops in 3D reconnection has important

implications for particle loss. In 2D systems where islands trap particles on closed

flux surfaces, particles primarily leave the system due to the convection of magnetic

islands away from the reconnecting region (this is true so long as the gyroradius is

much smaller than the scale size of the islands, which is typically true for electrons).

The breakdown of magnetic surfaces in 3D enables particles to pass between flux
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ropes, so that they might leave the reconnecting region faster than would occur due

to pure convection. Transport on random-walking field lines operates as a diffusive

process, so its relative role in particle loss should depend on the system size.

There are many astrophysical systems that are too large for kinetic PIC mod-

eling of the entire domain to be feasible. In order to include the effects of particle

acceleration in these systems, it is vital to capture both the large-scale dynamics

and the important kinetic physics important for particle acceleration. The energiza-

tion due to Fermi reflection can, in principle, be calculated in fluid (MHD) models,

as it can be determined from the bulk flow and magnetic curvature. A method for

including energetic particle back pressure in fluid models is somewhat less clear, and

warrants further study.
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Appendix A: Energization Terms Derived using a Gyrotropic Pres-

sure Tensor

The acceleration mechanisms described in Chapter 2.6.3 may be derived via

the momentum equation (including an gyrotropic pressure tensor) and Maxwell’s

Equations. In the reconnection process, we are primarily concerned with the dissi-

pation of magnetic energy. We begin with Faraday’s law:

∂B

∂t
= −c∇× E

B

4π
· ∂B
∂t

= −B

4π
· c∇× E

∂

∂t

B2

8π
= −∇ ·

( c

4π
E×B

)

− E · c∇×B

4π

∂

∂t

B2

8π
= −∇ ·

( c

4π
E×B

)

− E · J

where we have used Ampère’s law, neglecting the displacement current. The first

term on the right corresponds to the divergence of the Poynting flux, and the second

term corresponds with work done by the electromagnetic fields.

The momentum equation is:

ρ
dV

dt
=

J×B

c
−∇ ·

[

(P‖ − P⊥)bb+ P⊥I
]

where V is the bulk flow, P‖ and P⊥ are the parallel and perpendicular pressures,

b is the unit vector in the direction of the local magnetic field, and I is the identity
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tensor.

The current perpendicular to the magnetic field is then given by:

J⊥ =
cB

B2
×
[

ρ
dV⊥

dt
+∇P⊥ +

(P‖ − P⊥)

B2
(B · ∇)B

]

(A.1)

We may separate this current into a magnetization current Jm⊥ = c(∇×M)⊥ and

a free current Jf⊥. The magnetization corresponds to the magnetic moment density

which is given by:

M(r) = −
∫

mv2⊥b

2B
f(r,v)d3v = −P⊥B

B2
= −β⊥

B

8π

The two current terms are then:

Jm⊥ = c(∇×M)⊥

=
cB

B2
×
[

∇P⊥ − P⊥

2B2
∇B2 − P⊥

B2
(B · ∇)B

]

Jf⊥ = J⊥ − Jm⊥

=
cB

B2
×
[

P⊥

2B2
∇B2 +

P‖

B2
(B · ∇)B+ ρ

dV⊥

dt

]

The magnetization current contains the diamagnetic drift current (the first

term) and other terms which do not correspond to individual particle motions. In

contrast, the free current contains terms associated with single-particle drifts: the

first term corresponds to the grad-B drift (∝ B × ∇B), the second corresponds

to the curvature drift (∝ B × (B · ∇B)) and the third term corresponds to the

polarization drift.

It is worth examining some features of the work done on the full magnetization
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current:

E · Jm = E · (c∇×M)

= cM · (∇× E)− c∇ · (E×M)

= M · ∂B
∂t

−∇ ·
(

P⊥
cE×B

B2

)

= M · ∂B
∂t

−∇ · (P⊥V⊥)

This term is generally associated with the diamagnetic properties of the plasma.

The first term corresponds to betatron acceleration via the electromotive force (as-

sociated with ∇×E) acting on gyrating particles. The second term corresponds to

the change in the magnetic field due to a flux of magnetic dipoles. The divergence of

this flux corresponds to a change in the local diamagnetic properties of the plasma

due to a change in the magnetization (M ∝ P⊥).

We must now determine the parallel free current, which is modified through

terms that arise in c(∇×M)‖:

Jf‖ = J‖ − b · (c∇×M)

= J‖ + b ·
(

c∇× P⊥B

B2

)

= J‖ +
4πP⊥

B2
b ·
( c

4π
∇× B

)

=

(

1 +
β⊥
2

)

J‖

The β⊥/2 term arises from the Baños parallel drift (e.g. Appendix B of Northrop

and Rome, 1978):

vd‖ =
v2⊥
2Ωce

b · (∇× b) (A.2)
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This velocity is typically small compared to the thermal velocities of energetic par-

ticles, as it is of order v⊥(ρe/ℓ) where ℓ is the length scale. We now have all of the

necessary terms to separate J as free current and magnetization current. We finally

arrive at the following form for the evolution of B2/8π:

∂

∂t

B2

8π
=−∇ ·

( c

4π
E×B

)

+∇ · (P⊥V⊥)

− β⊥
2

(

∂

∂t
+V⊥ · ∇

)

B2

8π

−E‖J‖

(

1 +
β⊥
2

)

− ρ
d

dt

V 2
⊥

2

− P‖V⊥ ·
[

B · ∇B

B2

]

The first term is the divergence of the Poynting flux, the second term is the

divergence of the flux of magnetic dipoles. The third term corresponds to betatron

acceleration (µ conservation). The fourth term is the work done by the parallel

electric field on the free current, modified by the Baños drift. The fifth term corre-

sponds to the polarization drift, or bulk perpendicular acceleration of the plasma.

The final term corresponds to Fermi reflection associated with the curvature drift.
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